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Abstract. We define a new function space B, which contains in particular BMO, BV, andW1/p,p ,
1 < p < ∞. We investigate its embedding into Lebesgue and Marcinkiewicz spaces. We present
several inequalities involving Lp norms of integer-valued functions in B. We introduce a signif-
icant closed subspace, B0, of B, containing in particular VMO and W1/p,p , 1 ≤ p < ∞. The
above mentioned estimates imply in particular that integer-valued functions belonging to B0 are
necessarily constant. This framework provides a “common roof” to various, seemingly unrelated,
statements asserting that integer-valued functions satisfying some kind of regularity condition must
be constant.

Keywords. BMO, VMO, BV, Sobolev spaces, integer-valued functions, constant function, isoperi-
metric inequality

Let � be a connected domain in Rn. Recall that if f : � → Z is a measurable function
which satisfies one of the following regularity properties:

1. f ∈ VMO(�);
2. f ∈ W 1,1(�);
3. f ∈ W 1/p,p(�) with 1 < p <∞,

then f is constant [3, Comment 2, pp. 223–224], [2, Theorem B.1]. The original motiva-
tion for this article was to provide a “common roof” to all these cases, and which yields
in particular the following

Theorem 1. Assume that f : � → Z is measurable and can be written as f = f1 +

f2 + f3 with f1 ∈ VMO(�;R), f2 ∈ W
1,1(�;R) and f3 ∈ W

1/p,p(�;R) for some
1 < p <∞. Then f is constant.
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The proof of Theorem 1 relies heavily on the introduction of a new space of functions,
which might be of interest well beyond the scope of Theorem 1.

In what follows we denote by Q the unit cube (0, 1)n. For 0 < ε < 1, Qε(a) is the
ε-cube centered at a.

Given f ∈ L1(Q;R) and an ε-cube Qε ⊂ Q, we set

M(f,Qε) =

 
Qε

|f − fQε |, where fQε =

 
Qε

f, (0.1)

M∗(f,Qε) =

 
Qε

 
Qε

|f (y)− f (z)| dy dz. (0.2)

Clearly, we have
M(f,Qε) ≤ M

∗(f,Qε) ≤ 2M(f,Qε). (0.3)

Note that if f = 1A with A ⊂ Q measurable, then

M(f,Qε) = M
∗(f,Qε) =

2|A ∩Qε|(|Qε| − |A ∩Qε|)

|Qε|
2 ≤

1
2
. (0.4)

The following quantity plays an important role:

[f ]ε = sup
F

{
εn−1

∑
j∈J

M(f,Qε(aj ))
}
. (0.5)

Here, F denotes a collection of mutually disjoint ε-cubes, F = (Qε(aj ))j∈J , such that
#J = cardinality of J ≤ 1/εn−1 (instead of #J we sometimes write #F) and the sup in
(0.5) is taken over all such collections.

We then introduce the space

B =
{
f ∈ L1(Q;R); sup

0<ε<1
[f ]ε <∞

}
,

and the corresponding norm (modulo constants)

‖f ‖B = sup
0<ε<1

[f ]ε. (0.6)

The definition of B is inspired by the celebrated BMO space of John–Nirenberg [4]
equipped with the norm (modulo constants)

‖f ‖BMO := sup
0<ε<1

sup
a∈Q

{M(f,Qε(a)); Qε(a) ⊂ Q}. (0.7)

Here are several examples of functions in B.

Example 1. BMO ⊂ B with continuous injection.

Indeed, using (0.7) we find that ‖f ‖B ≤ ‖f ‖BMO.
When n = 1, we clearly have B = BMO; however, when n ≥ 2, B is strictly bigger

than BMO (see e.g. Example 2 below).
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Example 2. BV ⊂ B with continuous injection.

Indeed, by Poincaré’s inequality
 
Qε

|f − fQε | ≤
cn

εn−1

ˆ
Qε

|∇f |,

so that ∑
j∈J

M(f,Qε(aj )) ≤
cn

εn−1

ˆ
⋃
j∈J Qε(aj )

|∇f | (0.8)

and
[f ]ε ≤ cn

ˆ
Q

|∇f |. (0.9)

Example 3. W 1/p,p
⊂ B, 1 < p <∞, with continuous injection.

Indeed, for every fixed α > 0 we have
ˆ
Qε

ˆ
Qε

|f (y)− f (z)| dy dz ≤ nα/2εα
ˆ
Qε

ˆ
Qε

|f (y)− f (z)|

|y − z|α
dy dz.

Choosing α = (n+ 1)/p and applying Hölder’s inequality gives

M∗(f,Qε) ≤
cn

ε(n−1)/p

[ˆ
Qε

ˆ
Qε

|f (y)− f (z)|p

|y − z|n+1 dy dz

]1/p

with cn = n
(n+1)/2,

and since #J ≤ 1/εn−1 we obtain

εn−1
∑
j∈J

M∗(f,Qε(aj )) ≤ cn

[∑
j∈J

ˆ
Qε(aj )

ˆ
Qε(aj )

|f (y)− f (z)|p

|y − z|n+1 dy dz

]1/p

. (0.10)

Therefore
[f ]ε ≤ cn‖f ‖W 1/p,p .

An important quantity associated with B is defined by

[f ] = lim
ε→0
[f ]ε. (0.11)

The subspace
B0 = {f ∈ B; [f ] = 0} (0.12)

plays a key role in this article.

Example 1′. VMO ⊂ B0.

This is clear, since VMO functions (see [5]) are characterized by

lim
ε→0

sup
a∈Q

{M(f,Qε(a)); Qε(a) ⊂ Q} = 0.
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Moreover, VMO = B0 when n = 1.

Example 2′. W 1,1
⊂ B0.

This is clear from (0.8) and the fact that |
⋃
j∈J Qε(aj )| ≤ ε.

Example 3′. W 1/p,p
⊂ B0, 1 < p <∞.

This is an immediate consequence of (0.10) and the fact that |
⋃
j∈J Qε(aj ) × Qε(aj )|

≤ εn+1.
In particular we see that

VMO+W 1,1
+W 1/p,p

⊂ B0. (0.13)

1. Some properties of B

The main result of this section is

Theorem 2. Let n ≥ 2. Then B ⊂ Ln/(n−1),w, and∥∥∥∥f −  
Q

f

∥∥∥∥
Ln/(n−1),w

≤ Cn‖f ‖B , ∀f ∈ B. (1.1)

In Theorem 2, the Marcinkiewicz space Ln/(n−1),w cannot be replaced by Ln/(n−1), as a
consequence of the next result.

Proposition 3. Let n ≥ 2. There exists some f ∈ B such that f 6∈ Ln/(n−1).

Proof of Theorem 2. We may assume that

‖f ‖B ≤ 1 and
 
Q

f = 0. (1.2)

We also temporarily make the additional assumption that f ∈ L∞. Under these assump-
tions, we will prove that

‖f ‖Ln/(n−1),w ' sup
t>0

t |{|f | > t}|(n−1)/n
≤ Cn. (1.3)

For this purpose it suffices to consider, in (1.3), only t & 1. We first note that, by (1.2),
we have ˆ

Q

|f | ≤ 1. (1.4)

In view of (1.4) we may consider, for t > 1, a Calderón–Zygmund decomposition at
height t , i.e., we consider families Fj (with j ≥ 1) of mutually disjoint cubes Q2−j ⊂ Q

of size 2−j such that, if we set F =
⋃
j≥1 Fj , then

 
Q∗

|f | ' t for every Q∗ ∈ F (1.5)
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and
|f | ≤ t a.e. in R := Q \

⋃
Q∗∈F

Q∗. (1.6)

We next decompose f = g + h, with

g = f 1R +
∑
Q∗∈F

( 
Q∗

f

)
1Q∗ ,

h =
∑
j≥1

hj , hj =
∑
Q∗∈Fj

(
f −

 
Q∗

f

)
1Q∗ .

By (1.5) and (1.6), we have

|g| ≤ Ct and thus {|f | > 2Ct} ⊂ {|h| > Ct}. (1.7)

Using (1.7), we see that (1.3) amounts to

sup
t>1

t |{|h| > Ct}|(n−1)/n
≤ c. (1.8)

We now proceed with the proof of (1.8). Since ‖f ‖B = 1, for every family G ⊂ Fj
such that #G ≤ 1/(2−j )n−1

= 2j (n−1) we have

2−j (n−1)
∑
Q∗∈G

 
Q∗

∣∣∣∣f −  
Q∗

f

∣∣∣∣ ≤ 1.

By covering Fj with mutually disjoint sets G as above, we find that∑
Q∗∈Fj

 
Q∗

∣∣∣∣f −  
Q∗

f

∣∣∣∣ ≤ 2j (n−1)
+ #Fj , (1.9)

and thus
‖hj‖L1 ≤ 2−j + 2−nj#Fj . (1.10)

On the other hand, we have (using (1.5))

1 ≥ ‖f ‖L1 ≥

∑
j≥1

∑
Q∗∈Fj

ˆ
Q∗

|f | =
∑
j≥1

∑
Q∗∈Fj

2−nj
 
Q∗

|f | &
∑
j≥1

2−nj t#Fj . (1.11)

From (1.10) and (1.11), we deduce that∑
j≥1

‖hj‖L1 .
1
t
+

∑
Fj 6=∅

2−j . (1.12)

We next recall that

‖f ‖Ln/(n−1),w = sup
A⊂Q

|A|−1/n
ˆ
A

|f |. (1.13)
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If Fj 6= ∅ and Q∗ ∈ Fj , then (1.13) applied with A = Q∗, combined with (1.5), implies
that

2−j . (‖f ‖Ln/(n−1),w/t)
1/(n−1). (1.14)

By (1.12) and (1.14), we have

‖h‖L1 ≤

∑
j≥1

‖hj‖L1 .
1
t
+ (‖f ‖Ln/(n−1),w/t)

1/(n−1). (1.15)

In turn, (1.15) implies that (with C as in (1.8))

|{|h| > Ct}| ≤ ‖h‖L1/(Ct) . 1/t2 + (‖f ‖Ln/(n−1),w/t
n)1/(n−1), (1.16)

and thus

t |{|h| > Ct}|(n−1)/n . t (2−n)/n + ‖f ‖
1/n
Ln/(n−1),w . 1+ ‖f ‖1/n

Ln/(n−1),w . (1.17)

By taking, in (1.17), the supremum over t > 1, we find that

‖f ‖Ln/(n−1),w . 1+ ‖f ‖1/n
Ln/(n−1),w ,

and therefore ‖f ‖Ln/(n−1),w . 1.
We complete the proof by removing the assumption that f ∈ L∞. Let

8N (s) =


s if |s| ≤ N,
N if s > N,

−N if s < −N,

and set fN := 8N (f ). By (0.3), we have ‖fN‖B ≤ 2‖f ‖B . In addition, fN is bounded
and thus satisfies (1.1), i.e.,∥∥∥∥fN −  

Q

fN

∥∥∥∥
Ln/(n−1),w

≤ 2Cn‖f ‖B . (1.18)

Using (1.13) and letting N →∞ in (1.18) yields (1.1) for every f ∈ B. ut

Proof of Proposition 3. Set

ϕ(x) = (1− |x|)+, ∀x ∈ Rn, Nm = 22m , ∀m ≥ 1.

Consider a sequence (bm)m≥1 of points such that the open balls B(bm, 2/Nm) are con-
tained in Q and mutually disjoint. (We may e.g. choose the points bm on a line segment
parallel to the x1-axis.) Set

fm(x) = N
n−1
m ϕ(Nm(x − bm)), ∀m ≥ 1, (1.19)

f (x) =
∑
m≥1

fm(x). (1.20)
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We will prove that f ∈ B and f 6∈ Ln/(n−1). Note that

supp fm = B(bm, 1/Nm),

and the sets supp fm, m ≥ 1, are mutually disjoint. Clearly,

‖fm‖L1(Q) = C/Nm, ∀m ≥ 1, (1.21)

and thus f ∈ L1(Q); here and in what follows we denote by C a generic constant de-
pending only on n. We have

‖fm‖
n/(n−1)
Ln/(n−1)(Q)

= C, ∀m ≥ 1,

so that f 6∈ Ln/(n−1)(Q).
Given 0 < ε < 1 and integers M1 = M1(ε) ≥ 1 and M2 = M2(ε) > M1(ε) to be

defined later, we write
f = S1 + S2 + S3, (1.22)

with
S1 =

∑
m≤M1

fm, S2 =
∑

M1<m≤M2

fm, S3 =
∑
m>M2

fm. (1.23)

We now estimate separately [S1]ε, [S2]ε and [S3]ε.

Estimate of [S1]ε. Here we use the fact that if h ∈ Lip(Q) then

M(h,Qε(a)) ≤
√
n ε‖h‖Lip, (1.24)

and thus [h]ε ≤
√
n ε‖h‖Lip. In particular,

[fm]ε ≤ Cε(Nm)
n. (1.25)

Using (1.25) and the fact that
∑p

i=1X
i
≤

Xp+1

X−1 for all X > 1, we deduce that

[S1]ε ≤ Cε2n 2M1
, ∀ε ∈ (0, 1). (1.26)

Estimate of [S2]ε. Applying (0.9) to fm yields

[fm]ε ≤ C, ∀m ≥ 1, ∀ε ∈ (0, 1),

and in particular
[S2]ε ≤ C(M2 −M1), ∀ε ∈ (0, 1). (1.27)

Estimate of [S3]ε. Clearly

[h]ε ≤
2
ε
‖h‖L1(Q), ∀h ∈ L1. (1.28)

From (1.21) we deduce that

[fm]ε ≤
C

εNm
. (1.29)
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Using (1.29) and the fact that
∑
∞

i=p Y
i
=

Yp

1−Y for all Y ∈ [0, 1), we see that

[S3]ε ≤
C

ε22M2
. (1.30)

We now explain how to choose M1(ε) and M2(ε). Given 0 < ε < 1, we denote by
M1 = M1(ε) the largest integer ` ≥ 1 such that

2n 2`
≤ 22n/ε. (1.31)

Equivalently, we have

2n 2M1
≤ 22n/ε, (1.32)

22n 2M1
> 22n/ε. (1.33)

Combining (1.26) and (1.32) yields

[S1]ε ≤ C, ∀ε ∈ (0, 1). (1.34)

From (1.32) and (1.33) we obtain

|M1(ε)− log2 log2(1/ε)| ≤ C, ∀ε ∈ (0, 1/2). (1.35)

Next we denote by M2 = M2(ε) the smallest integer ` ≥ 1 such that

22`
≥ 4/ε.

(Note that M2 > M1 since 22M1
< 4/ε.) Equivalently, we have

22M2
≥ 4/ε, (1.36)

22M2−1
< 4/ε. (1.37)

Combining (1.30) and (1.36) yields

[S3]ε ≤ C, ∀ε ∈ (0, 1). (1.38)

From (1.36) and (1.37) we obtain

|M2(ε)− log2 log2(1/ε)| ≤ C, ∀ε ∈ (0, 1/2). (1.39)

Therefore,
|M2(ε)−M1(ε)| ≤ C, ∀ε ∈ (0, 1). (1.40)

(Inequality (1.40) is deduced from (1.35) and (1.39) when ε ∈ (0, 1/2), and from (1.37)
when ε ∈ [1/2, 1).)

It follows from (1.27) and (1.40) that

[S2]ε ≤ C, ∀ε ∈ (0, 1). (1.41)

Putting together (1.34), (1.38) and (1.41) we conclude that [f ]ε ≤ C for all ε ∈ (0, 1),
and thus f ∈ B. ut
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2. Some properties of B0 and [f ]

Our first result is

Theorem 4. Let f be a Z-valued function on Q such that f ∈ B0. Then f is constant.

Combining Theorem 4 with (0.13) we obtain Theorem 1.
When n = 1 we have B0 = VMO and we may then invoke the fact that functions in

VMO(Q;Z) are constant (for any n ≥ 1); see [3, Comment 2, pp. 223–224]. Therefore
it suffices to prove Theorem 4 when n ≥ 2. Next, we observe that it suffices to prove
Theorem 4 when f = 1A for some A ⊂ Q. Indeed, let k ∈ Z be such that |f−1(k)| > 0.
Set A = f−1(k) and g = 1A. Clearly M∗(f,Qε) ≥ M∗(g,Qε) for every ε-cube Qε.
Since f ∈ B0, we deduce that g ∈ B0. If Theorem 4 holds for g, then g ≡ 1, and thus
f ≡ k.

Hence it remains to prove Theorem 4 when n ≥ 2 and f = 1A. In this case we have
the following quantitative improvement of Theorem 4.

Theorem 5. Let n ≥ 2. There exists a constant Cn such that if f = 1A with A ⊂ Q

measurable, then ∥∥∥∥f −  
Q

f

∥∥∥∥
Ln/(n−1)(Q)

≤ Cn[f ]. (2.1)

Remark 6. A much more precise result (see [1]) asserts that there exist two constants
0 < cn ≤ cn <∞ such that if f = 1A, then

cn min
{

1,
ˆ
Q

|∇f |

}
≤ [f ] ≤ cn min

{
1,
ˆ
Q

|∇f |

}
, (2.2)

with the convention that
´
Q
|∇f | = ∞ if f 6∈ BV. Note that∥∥∥∥f −  

Q

f

∥∥∥∥
Ln/(n−1)(Q)

≤ C

ˆ
Q

|∇f | (2.3)

by the Sobolev embedding, and clearly∥∥∥∥f −  
Q

f

∥∥∥∥
Ln/(n−1)(Q)

≤ 2 when f = 1A. (2.4)

Therefore ∥∥∥∥f −  
Q

f

∥∥∥∥
Ln/(n−1)(Q)

≤ Cmin
{

1,
ˆ
Q

|∇f |

}
≤ C′[f ] by (2.2).

In fact, using a variant of the definition (0.5) involving ε-cubes of general orientation, one
obtains a quantity [f ]∗ε satisfying

[f ]ε ≤ [f ]
∗
ε ≤ C1[f ]C2ε
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for some constants C1, C2 > 1 depending only on n (see [1]). The main result in [1]
asserts that if f = 1A, then

lim
ε→0
[f ]∗ε =

1
2

min
{

1,
ˆ
Q

|∇f |

}
; (2.5)

the ingredients of the proof of (2.5) are much more sophisticated than the arguments
presented below. We acknowledge that it was Theorem 5 which prompted one of us to
conjecture that (2.5) holds.

The main tool in the proof of Theorem 5 is

Lemma 7. Let n ≥ 2. Let U =
⋃
j∈J Qε(aj ) be a union of ε-cubes. ThenQ\U contains

a connected set S of measure ≥ 1 − αn(#J )n/(n−1)εn, for some positive constant αn
depending only on n.

Here, the ε-cubes are not necessarily mutually disjoint, and we do not assume that they
are completely contained in Q.

Remark 8. The conclusion of Lemma 7 is optimal. Indeed, consider a ball B ⊂ Q of
(small) radius R. We may cover the sphere 6 = ∂B by a union of ε-cubes as above with
#Jεn−1

' Rn−1. Then |B| ' Rn ' (#J )n/(n−1)εn.

Granted Lemma 7, we turn to

Proof of Theorem 5. Let f = 1A, with A ⊂ Q. Fix any λ ∈ (0, 1/2), e.g. λ = 1/4. In
view of (2.4), we may assume that

0 ≤ [f ] < 2λ(1− λ), (2.6)

for otherwise the conclusion is clear with Cn = 1/(λ(1− λ)). Note that, by (0.4),

M(f,Qε) = 2fQε (1− fQε ).

Therefore,

M(f,Qε) < 2λ(1− λ) ⇒ either fQε < λ, or fQε > 1− λ. (2.7)

With ε small and Q̃ = (ε, 1 − ε)n, consider a maximal family J = Jε of points a ∈ Q̃
such that the cubes Qε(a) are mutually disjoint and satisfy

M(f,Qε(a)) ≥ 2λ(1− λ), ∀a ∈ J. (2.8)

Let ν > 0 (to be chosen arbitrarily small later). We claim that for ε sufficiently small
(depending on ν) we have

#J ≤ δ/εn−1 with δ =
[f ] + ν

2λ(1− λ)
. (2.9)
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Indeed, we first see that, for ε sufficiently small,

#J ≤ 1/εn−1. (2.10)

Otherwise, we may choose a subfamily J̃ such that #J̃ = I (1/εn−1), where I (t) denotes
the integer part of t . Then

[f ]ε ≥ ε
n−1(#J̃ )2λ(1− λ) ≥ εn−1

(
1

εn−1 − 1
)

2λ(1− λ),

which, by (2.6), is impossible for ε small. From (2.10) and the definition of [f ]ε we have

[f ]ε ≥ ε
n−1(#J )2λ(1− λ),

which yields (2.9) for ε sufficiently small.
Set U :=

⋃
a∈J Q2ε(a). By Lemma 7 and a scaling argument, Q̃ \ U contains a

connected set S = Sε such that

|Sε| ≥ (1− 2ε)n − α′nδ
n/(n−1), (2.11)

where α′n = 2nαn. We next note that (by the maximality of J ) U contains the set

V = Vε := {b ∈ Q̃; M(f,Qε(b)) ≥ 2λ(1− λ)}, (2.12)

and thus S ⊂ Q̃ \ V . We consider the continuous function

fε : Q̃→ R, fε(a) = fQε(a).

By (2.7) and (2.12), on the set Q̃ \ V the function fε takes values in [0, λ) ∪ (1 − λ, 1].
S ⊂ Q̃ \ V being connected, we find that either fε < λ, or fε > 1− λ in S.

We assume e.g. that fε < λ in Sε along a sequence εm→ 0. Clearly,ˆ
A∩Q̃

|1− fε| → 0 as ε→ 0,

and thus
(1− λ)|Sεm ∩ A| ≤

ˆ
Sεm∩A

(1− fεm)→ 0 as m→∞. (2.13)

On the other hand, by (2.11) and (2.13) we have

|A| = |Sεm ∩A| + |(Q̃ \ Sεm) ∩A| + |(Q \ Q̃) ∩A| ≤ α
′
nδ
n/(n−1)

+ o(1) as m→∞,

and thus |A| ≤ α′nδ
n/(n−1), so that

|A|(n−1)/n
≤ α′′nδ = α

′′
n

[f ] + ν

2λ(1− λ)
with α′′n = (α

′
n)
(n−1)/n.

Since ν > 0 can be chosen arbitrarily small, we deduce that

|A|(n−1)/n
≤

α′′n[f ]

2λ(1− λ)
. (2.14)
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Finally, we note that∥∥∥∥f −  
f

∥∥∥∥
Ln/(n−1)

=
(
|A|(1− |A|)n/(n−1)

+ (1− |A|)|A|n/(n−1))(n−1)/n

≤ 2 min{|A|(n−1)/n, |Ac|(n−1)/n
}. (2.15)

Combining (2.14) and (2.15) yields (2.1). ut

For further use, let us note that the proof of Theorem 5 leads to the following result.

Lemma 9. Let n ≥ 2 and λ ∈ (0, 1/2). Let A ⊂ Q be measurable and set f := 1A.
Assume that there exists a sequence εm→ 0 and families

Jm ⊂ Q̃
m
:= (3εm, 1− 3εm)n

of points a with the following property: If b ∈ Q̃m
\
⋃
a∈Jm

Q2εm(a), then M(f,Qεm(b))

< 2λ(1− λ). Let

δ := lim
m→∞

(εm)
n−1#Jm.

Then either |A| ≥ 1− c̃nδn/(n−1), or |Ac| ≥ 1− c̃nδn/(n−1).

Proof of Lemma 7. Recall a standard “relative” isoperimetric inequality. Let B ⊂ Q

satisfy |B| ≤ 1/2. By (2.3) (applied with f = 1B ) and (2.15), we have

|B| ≤ cn

(ˆ
Q

|∇1B |

)n/(n−1)

= cn[P(B)]
n/(n−1), (2.16)

where P(B) represents the perimeter of B relative to Q. When B is a Lipschitz domain
(which will be the case in what follows), P(B) is the (surface) measure of ∂B ∩Q.

We now turn to the proof of the lemma. Set δ = (#J )εn−1. Let (Ai)i∈I be the con-
nected components of the open set Q \

⋃
j∈J Qε(aj ). Note that each Ai is Lipschitz, and⋃

i∈I

(∂Ai ∩Q) ⊂
⋃
j∈J

(∂Qε(aj ) ∩Q). (2.17)

Let

Gj := {x ∈ ∂Qε(aj ) ∩Q; x does not belong to the (n− 2)-skeleton of ∂Qε(aj )}.

Note that [
⋃
i∈I (∂Ai ∩Q)] \ [

⋃
j∈J Gj ] has zero Hn−1-measure. Since a point x ∈ Gj

belongs to at most one ∂Ai , we find, using (2.17), that∑
i∈I

P(Ai) ≤
∑
j∈J

P(Qε(aj )) ≤ c
′
nδ. (2.18)
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A1

A2

A3

1

Fig. 1. The components of Q \
⋃
j∈J Qε(aj ).

We claim that if δ < δn (a positive number depending only on n), then there exists
some i0 ∈ I such that |Ai0 | > 1/2. Indeed, assume that |Ai | ≤ 1/2 for all i ∈ I . By
(2.16) and (2.18), we have

1− |U | = |Q \ U | =
∑
i∈I

|Ai | ≤ cn
∑
i∈I

[P(Ai)]
n/(n−1)

≤ cn

[∑
i∈I

P(Ai)
]n/(n−1)

≤ cn(c
′
nδ)

n/(n−1)
= c′′nδ

n/(n−1). (2.19)

On the other hand
|U | ≤ (#J )εn = δε < δ. (2.20)

Combining (2.19) and (2.20) we obtain

1 ≤ δ + c′′nδ
n/(n−1)

;

this is impossible when δ < δn, where δn is the solution of 1 = δn + c′′n(δn)
n/(n−1), and

thus the claim is established when δ < δn.
Set S = Ai0 , which is clearly connected and contained in Q \ U . Applying (2.16) to

B = Sc we find (using (2.18))

1− |S| ≤ cn[P(Sc)]n/(n−1)
= cn[P(S)]

n/(n−1)
≤ c′′nδ

n/(n−1),

which is the desired conclusion when δ < δn.
Finally, we observe that

1−
1

(δn)n/(n−1) δ
n/(n−1)

≤ 0

when δ ≥ δn, and therefore Lemma 7 holds with αn = max{c′′n, 1/(δn)n/(n−1)
}. ut
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3. An extension of Theorem 5 to Z-valued functions

Our main result in this section is

Theorem 10. Let n ≥ 2. There exists a positive constant c (independent of n) such that
if f is a Z-valued function in B and [f ] < c, then f ∈ Ln/(n−1)(Q) and∥∥∥∥f −  

Q

f

∥∥∥∥
Ln/(n−1)(Q)

≤ Cn[f ], (3.1)

for some constant Cn depending only on n.

Theorem 5 can be deduced from Theorem 10. Indeed, let f = 1A. Then either [f ] ≤ c,
and Theorem 10 applies, or [f ] > c, and then∥∥∥∥f −  

Q

f

∥∥∥∥
Ln/(n−1)(Q)

≤ 2 ≤ (2/c)[f ].

The smallness condition on [f ] in Theorem 10 is essential, as shown by the following
improvement of Proposition 3.

Proposition 11. Let n ≥ 2. There exists a Z-valued function f ∈ B such that f 6∈
Ln/(n−1)(Q).

Proof of Theorem 10. The proof is divided into several steps.

Step 1: Decomposition of f as a sum of characteristic functions. We temporarily assume
that f ≥ 0. Then f is a sum of characteristic functions. Indeed, set

Ak := {x ∈ Q; f (x) ≥ k}, ∀k ∈ N∗,

and let gk := 1Ak . Then we claim that

f =
∑
k>0

gk (3.2)

and
|f (x)− f (y)| =

∑
k>0

|gk(x)− gk(y)|, ∀x, y ∈ Q. (3.3)

Indeed, on the one hand (3.2) follows from∑
k>0

gk(x) =
∑

0<k≤f (x)

1 = f (x).

On the other hand, assuming e.g. that f (x) ≥ f (y), we have gk(x) = gk(y) provided
either k ≤ f (y) or k > f (x), and thus∑

k>0

|gk(x)− gk(y)| =
∑

f (y)<k≤f (x)

|gk(x)− gk(y)| =
∑

f (y)<k≤f (x)

1 = f (x)− f (y)

= |f (x)− f (y)|;

that is, (3.3) holds.
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We next note that (3.3) implies

M∗(f,Qε) =
∑
k>0

M∗(gk,Qε), (3.4)

and in particular
M(gk,Qε) ≤ M

∗(f,Qε), ∀k > 0. (3.5)

Step 2: Construction of maximal families of “bad” cubes. Fix some λ ∈ (0, 1/2) and
consider a sequence εm → 0. Let Q̃m

:= (3εm, 1 − 3εm)n. Let Jm be a maximal family
of points a ∈ Q̃m such that the cubes Qεm(a), a ∈ Jm, are mutually disjoint and satisfy
M∗(f,Qεm(a)) ≥ 2λ(1− λ).

By the maximality of Jm and by (3.5), we have

M(gk,Qεm(b)) ≤ M
∗(f,Qεm(b)) < 2λ(1− λ), ∀b ∈ Q̃m \

⋃
a∈Jm

Q2εm(a). (3.6)

We next associate to each k an appropriate subfamily extracted from Jm. More specif-
ically, let

J km := {a ∈ Jm; 32nM∗(gk,Q3εm(a)) ≥ 2λ(1− λ)}. (3.7)
We claim that

M(gk,Qεm(b)) < 2λ(1− λ), ∀b ∈ Q̃m \

⋃
a∈J km

Q2εm(a). (3.8)

Indeed, (3.6) implies that (3.8) holds for b ∈ Q̃m \
⋃
a∈Jm

Q2εm(a).
It remains to establish (3.8) when b ∈ Q2εm(a) for some a ∈ Jm \ J km. In this case,

we have Qεm(b) ⊂ Q3εm(a) and thus

M∗(gk,Qεm(b)) ≤ 32nM∗(gk,Q3εm(a)) < 2λ(1− λ).

This completes the proof of (3.8).

Step 3: A first estimate of ‖f −
ffl
Q
f ‖Ln/(n−1) . By (2.15), (3.8), and Lemma 9, we have∥∥∥∥gk −  

Q

gk

∥∥∥∥
Ln/(n−1)

≤ 2(̃cn)(n−1)/n lim
m→∞

(εm)
n−1#J km. (3.9)

Thus ∑
k>0

∥∥∥∥gk −  
Q

gk

∥∥∥∥
Ln/(n−1)

≤ 2(̃cn)(n−1)/n lim
m→∞

(εm)
n−1

∑
k>0

#J km, (3.10)

and therefore ∥∥∥∥f −  
Q

f

∥∥∥∥
Ln/(n−1)

≤ 2(̃cn)(n−1)/n lim
m→∞

(εm)
n−1

∑
k>0

#J km. (3.11)

Step 4: A second estimate of ‖f −
ffl
Q
f ‖Ln/(n−1) . In this step, we assume that

[f ] < d := λ(1− λ) with λ chosen as in Step 2. (3.12)

Under this assumption, we will prove that

c′n lim
m→∞

(εm)
n−1

∑
k>0

#J km ≤ [f ] for some constant c′n > 0. (3.13)
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Granted this estimate, we obtain (using (3.11))∥∥∥∥f −  
Q

f

∥∥∥∥
Ln/(n−1)

≤ C̃n[f ] with C̃n = 2(̃cn)(n−1)/n/c′n. (3.14)

We now proceed to the proof of (3.13). We first note that (by (0.3)) we have

M(f,Qεm(a)) ≥ λ(1− λ), ∀a ∈ Jm. (3.15)

Repeating the proof of (2.10) (and using (3.12) and (3.15)), for large m we have

#Jm ≤ 1/(εm)n−1. (3.16)

We next rely on the following lemma, well-known to experts, whose proof is omitted.

Lemma 12. Let {Qε(a); a ∈ J } be a family of mutually disjoint ε-cubes. Then there
exists a constant N = N(n) such that

1. J = J 1
∪ · · · ∪ JN .

2. For every j , the cubes Q3ε(a), a ∈ J j , are mutually disjoint.
3. For every j , we have #J j ≤ #J/3n−1.

By Lemma 12, for every family of mutually disjoint ε-cubesQε(a), a∈J ⊂(3ε, 1−3ε)n,
such that #J ≤ 1/εn−1, we have

(3ε)n−1
∑
a∈J

M(h,Q3ε(a)) ≤ N [h]3ε, ∀h : Q→ R. (3.17)

In particular, for large m we have (using (3.16) and (3.17))

(εm)
n−1

∑
a∈Jm

M(f,Q3εm(a)) ≤ (N/3
n−1)[f ]3εm . (3.18)

Combining (3.18) with (0.3), we see that

(εm)
n−1

∑
a∈Jm

M∗(f,Q3εm(a)) ≤ 2(N/3n−1)[f ]3εm . (3.19)

We now use successively (3.19), (3.4) and (3.7) to obtain

[f ]3εm ≥
3n−1

2N
(εm)

n−1
∑
a∈Jm

M∗(f,Q3εm(a))

=
3n−1

2N
(εm)

n−1
∑
a∈Jm

∑
k>0

M∗(gk,Q3εm(a))

≥
3n−1

2N
(εm)

n−1
∑
k>0

∑
a∈J km

M∗(gk,Q3εm(a))

≥
λ(1− λ)
3n+1N

(εm)
n−1

∑
k>0

#J km = c
′
n(εm)

n−1
∑
k>0

#J km, (3.20)

with c′n := λ(1− λ)/(3
n+1N). We derive (3.13) by letting m→∞ in (3.20).
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Step 5: Removing the assumption f ≥ 0. We note that f = f+ − f−, and

|f±(x)− f±(y)| ≤ |f (x)− f (y)|, ∀x, y ∈ Q. (3.21)

By (0.3) and (3.21), we have

M∗(f±,Qε) ≤ M
∗(f,Qε) ≤ 2M(f,Qε),

and thus [f±] ≤ 2[f ]. By the first part of the proof of this theorem, we have∥∥∥∥f± −  
Q

f±
∥∥∥∥
Ln/(n−1)

≤ C̃n[f
±
] ≤ 2C̃n[f ], (3.22)

provided [f ] < c := d/2. Finally, (3.22) implies that∥∥∥∥f −  
Q

f

∥∥∥∥
Ln/(n−1)

≤ Cn[f ] provided [f ] < c,

with Cn := 4C̃n.
The proof of Theorem 10 is complete. ut

Proof of Proposition 11. We use the same notation and the same strategy as in the proof
of Proposition 3, with some minor modifications. Set

gm(x) = I (fm(x)), ∀m ≥ 1, g(x) =
∑
m≥1

gm(x)

(recall that I (t) denotes the integer part of t). Clearly,

‖gm‖L1(Q) ≤ ‖fm‖L1(Q) = C/Nm (3.23)

(by (1.21)), so that g ∈ L1(Q). On the other hand

‖gm‖
n/(n−1)
Ln/(n−1)(Q)

≥ ‖fm − 1‖n/(n−1)
Ln/(n−1)([fm>1]) ≥ α > 0, ∀m ≥ 1,

and thus g 6∈ Ln/(n−1)(Q).
We will now prove that g ∈ B. Write

g = T1 + T2 + T3, T1 =
∑
m≤M1

gm, T2 =
∑

M1<m≤M2

gm, T3 =
∑
m>M2

gm,

whereM1 = M1(ε) andM2 = M2(ε) are defined exactly as in the proof of Proposition 3.

Estimate of [T1]ε. Since gm 6∈ Lip(Q), we need to modify the argument. We claim that,
for sufficiently small ε (depending only on n), given any cube Qε(a) there exists at most
one integer m ≤ M1(ε) such that

Qε(a) ∩ (supp gm) 6= ∅. (3.24)
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Indeed, if (3.24) holds, then Qε(a) ∩ B(bm, 1/Nm) 6= ∅, and thus

Qε(a) ⊂ B(bm, 2/Nm) (3.25)

provided
1/Nm +

√
n ε ≤ 2/Nm, ∀m ≤ M1. (3.26)

On the other hand, (1.32) implies that NM1 ≤ 4/ε1/n, and thus (3.26) holds when

ε ≤ ε0 :=
1

4n/(n−1)nn/[2(n−1)] .

We deduce the claim using (3.25) and the fact that the balls B(bm, 2/Nm) are mutually
disjoint.

Therefore, for ε ≤ ε0 we have

M(T1,Qε(a)) ≤

 
Qε(a)

 
Qε(a)

|gm(y)− gm(z)| dy dz (3.27)

for some m ≤ M1(ε).
If y, z ∈ Qε(a), we have

|fm(y)− fm(z)| ≤ |y − z| ‖fm‖Lip ≤ (Nm)
n
√
n ε ≤ C

(by (1.32)). Hence
|gm(y)− gm(z)| ≤ C, (3.28)

since |I (t)− I (s)| ≤ |t − s| + 1 for all t, s.
Combining (3.27) and (3.28) yields M(T1,Qε(a)) ≤ C and therefore

[T1]ε ≤ C, ∀ε ∈ (0, ε0). (3.29)

For ε ∈ [ε0, 1), we use (1.28) to assert that

[T1]ε ≤
2
ε0
‖T1‖L1(Q) ≤

2
ε0
‖g‖L1(Q). (3.30)

Combining (3.29) with (3.30) we deduce that

[T1]ε ≤ C, ∀ε ∈ (0, 1). (3.31)

Estimate of [T2]ε. We claim that
ˆ
Q

|∇gm| ≤ C, ∀m ≥ 1, (3.32)

and this implies via (0.9) that

[gm]ε ≤ C, ∀m ≥ 1, ∀ε ∈ (0, 1),

so that
[T2]ε ≤ C(M2 −M1) ≤ C, ∀ε ∈ (0, 1) (3.33)
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(by (1.40)). In order to prove (3.32), note that

ˆ
Q

|∇gm| =

(Nm)
n−1∑

k=1

Hn−1([fm = k]) = C

(Nm)
n−1
−1∑

k=1

(
1−

k

(Nm)n−1

)n−1 1
(Nm)n−1

= C

(Nm)
n−1
−1∑

`=1

(
`

(Nm)n−1

)n−1 1
(Nm)n−1 ≤ C.

Estimate of [T3]ε. The technique for estimating [S3]ε in the proof of Proposition 3 gives

[T3]ε ≤ C, ∀ε ∈ (0, 1). (3.34)

Combining (3.31), (3.33) and (3.34) yields g ∈ B. ut
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