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Abstract. This paper is devoted to the study of traveling waves for monotone evolution systems
of bistable type. In an abstract setting, we establish the existence of traveling waves for discrete
time and continuous-time monotone semiflows in homogeneous and periodic habitats. The results
are then extended to monotone semiflows with weak compactness. We also apply the theory to four
classes of evolution systems.
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1. Introduction

In this paper, we study traveling waves for monotone (i.e., order preserving) semiflows
{Qt }t∈T with the bistability structure on some subsets of the space C := C(H,X ) con-
sisting of all continuous functions from the habitat H (= R or Z) to the Banach lattice
X , where T = Z+ or R+ is the set of evolution times. Here the bistability structure is
generalized from a number of studies for various evolution equations. It means that the re-
stricted semiflow on X admits two ordered stable equilibria, between which all others are
unstable. We focus on the existence of traveling waves connecting these two stable equi-
libria, which we call bistable (traveling) waves. This setting allows us to study not only
autonomous and time-periodic evolution systems in a homogeneous habitat (medium), but
also those in a periodic habitat. Moreover, the results obtained can be extended to semi-
flows with weak compactness on some subsets of the space M of all monotone functions
from R to X .

To explain the concept of bistability structure, we recall some related works on typical
evolution equations. Fife and McLeod [19, 20] proved the existence and global asymptotic
stability of monotone traveling waves for the reaction-diffusion equation

ut = uxx + u(1− u)(u− a), x ∈ R, t > 0, (1.1)
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where a ∈ (0, 1). Clearly, the restriction of system (1.1) to X = R is the ordinary differ-
ential equation u′ = u(1−u)(u−a), which admits a unique unstable equilibrium between
two ordered and stable ones. The same property is shared by the nonlocal dispersal equa-
tion in [4, 16, 46] and the lattice equations in [3, 49, 50]. Chen [13] studied a general
nonlocal evolution equation ut = A(u(·, t)), which also possesses the above bistabil-
ity structure. Some related investigations on discrete-time equations can be found in [27,
15]. For the time-periodic reaction-diffusion equation ut = uxx + f (t, u), the spatially
homogeneous system is a time-periodic ordinary differential equation. In this case, the
equilibrium in the bistability structure should be understood as the time-periodic solution.
Under such bistability assumption, Alikakos, Bates and Chen [1] obtained the existence
of bistable time-periodic traveling waves. Recently, Yagisita [46] studied bistable travel-
ing waves for discrete-time and continuous-time semiflows on the space consisting of all
left-continuous and nondecreasing functions from R to X = R under the assumption that
there is exactly one intermediate unstable equilibrium. It should be mentioned that the
result in [46] for continuous-time semiflows requires an assumption on the existence of a
pair of upper and lower solutions.

Note that the restrictions to X = R of the aforementioned systems are all scalar
equations, and hence there is only one unstable equilibrium in between two stable ones.
But in the case where X = Rn, there may be multiple unstable equilibria. This is one of
the main reasons why some ideas and techniques developed for scalar equations cannot be
easily extended to higher dimensional systems. Volpert [36] established the existence and
stability of traveling waves for the bistable reaction-diffusion system ut = D1u+ f (u)

by using topological methods, where D is a positive definite diagonal matrix. Fang and
Zhao [18] further extended these results to the case where D is semi-positive definite via
the vanishing viscosity approach.

Consider the following parabolic equation in a cylindrical domain 6 = R×�:{
ut = 1u+ α(y)ux + f (u), x ∈ R, y = (y1, . . . , yn−1) ∈ �, t > 0,
∂u/∂ν = 0 on R× ∂�× (0,∞),

(1.2)

where f is of the same type as the nonlinearity in (1.1) and � is a bounded domain with
smooth boundary in Rn−1. Obviously, the restriction of the solution semiflow of (1.2) to
X = C(�̄,R) gives rise to the following x-independent system:{

ut = 1yu+ f (u), y ∈ �, t > 0,
∂u/∂ν = 0 on ∂�× (0,∞).

(1.3)

One can see from Matano [30] (or Casten and Holland [12]) that any nonconstant steady
state of (1.3) is linearly unstable when the domain � is convex. It follows that if �
is convex, then (1.2) admits the bistability structure: its x-independent system has two
(constant) linearly stable steady states, between which all others are linearly unstable.
In such a case, Berestycki and Nirenberg [11] obtained the existence and uniqueness
of bistable traveling waves. In the case where � is an appropriate dumbbell-shaped do-
main, Matano [30] constructed a counterexample to show that (1.3) has stable nonconstant
steady states, and Berestycki and Hamel [6] also proved the nonexistence of traveling
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waves connecting two stable constant steady states. For bistable traveling waves in time-
delayed reaction-diffusion equations, we refer to [31, 35, 29, 37]. For such an equation
with time delay τ > 0, one can choose X = C([−τ, 0],R) so that its solution semiflow
has the bistability structure.

Recently, there is an increasing interest in reaction-diffusion equations in periodic
habitats. A typical example is

ut = (dux)x + f (u), x ∈ R, t > 0, (1.4)

where d ∈ C1(R,R) is a positive periodic function with period r > 0. Define Y :=
C([0, r],R) and Cper(R,R) := {g ∈ C(R,R) : g(x + r) = g(x),∀x ∈ R}. It is easy to
see that

C(R,R) = {g ∈ C(rZ,Y) : g(ri)(r) = g(r(i + 1))(0), ∀i ∈ Z} =: K,

and that any element in Cper(R,R) is a constant function in K. Thus, the solution semi-
flow of (1.4) on C(R,R) can be regarded as a conjugate semiflow on K, and hence the
bistability structure should be understood as: the restriction of the solution semiflow of
(1.4) on Cper(R,R) has two ordered r-periodic steady states, between which all others
are unstable. Assuming that the function f is of bistable type, Xin [43] obtained the ex-
istence of a spatially periodic (pulsating) traveling wave as long as d is sufficiently close
to a positive constant in a certain sense (see also [44, 42]). However, whether the solu-
tion semiflow of (1.4) admits the bistability structure has remained an open problem. We
will give an affirmative answer in Section 6.3 and further improve Xin’s existence re-
sult. Meanwhile, a counterexample will be constructed to show that the solution semiflow
of (1.4) has no bistability structure in the general case of varying d(x). More recently,
Chen, Guo and Wu [14] proved the existence, uniqueness and stability of spatially peri-
odic traveling waves for one-dimensional lattice equations in a periodic habitat under the
bistability assumption. There are also other types of bistable waves (see, e.g., [7, 33]). For
monostable systems in periodic habitats, we refer to [5, 8, 9, 22, 23, 26] and references
therein.

In general, there are multiple intermediate unstable equilibria in between two stable
ones in the case where the space X is higher dimensional. Meanwhile, it is possible for
the given autonomous system to have intermediate unstable time-periodic orbits in X .
These make the study of bistable semiflows more difficult than that of monostable ones,
whose restrictions to X have only one unstable and one stable equilibrium. To overcome
these difficulties, we will show that all these unstable equilibria and all points in these pe-
riodic orbits are unordered in X under some appropriate assumptions. With this in mind,
a bistable system can be regarded as the union of two monostable systems, although such
a union is not unique. From this point of view, we establish a link between monostable
subsystems and the bistable system itself, which plays a vital role in the propagation of
bistable traveling waves. This link is stated in terms of spreading speeds of monostable
subsystems (see assumption (A6)). For spreading speeds of various monostable evolution
systems, we refer to [2, 8, 22, 25, 26, 28, 38, 39, 48] and references therein.

Next we use a diagram to outline the proofs. For case (I), we combine the above ob-
servations for general bistable semiflows and Yagisita’s [46] perturbation idea to prove
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Fig. 1. Scheme of the proof.

the existence of traveling waves. For case (III), we use the candidates φ±(x + c±,sn)
for bistable waves of the discrete-time semiflows {(Qs)

n
}n≥0 to approximate that of the

continuous-time semiflow {Qt }t≥0. This new approach heavily relies on an estimation of
the boundedness of (1/s)c±,s as s → 0, which is proved surprisingly by using the bista-
bility structure of the semiflow (see inequalities (3.9) and (3.10)). It turns out that our
result does not require the assumption on the existence of a pair of upper and lower solu-
tions as in [46]. In case (II), both the evolution time T and the habitat H are discrete, a
traveling wave ψ(i+ cn) of {Qn

}n≥0 cannot be well defined in the usual way because the
wave speed c, and hence the domain of ψ , is unknown. So we define it to be a traveling
wave on R of an associated map Q̃. However, Q̃ has much weaker compactness than Q.
To overcome this difficulty, we establish a variant of Helly’s theorem for monotone func-
tions from R to X in the Appendix, which is of independent interest. This discovery also
enables us to study monotone semiflows in a periodic habitat and with weak compact-
ness. Further, we can deal with case (IV) by a similar idea to that in case (III) because
now traveling waves in case (II) are defined on R. Traveling waves for a time-periodic
system can be obtained with the help of the discrete-time semiflow generated by the as-
sociated Poincaré map. Motivated by the discussions in [26, Section 5], we can regard a
semiflow in a periodic habitat as a conjugate semiflow in a homogeneous discrete habitat,
and hence we can employ the arguments for cases (II) and (IV) to establish the existence
of spatially periodic bistable traveling waves.

The rest of this paper is organized as follows. In Section 2, we present our main
assumptions as well as their explanations. In Section 3, we deal with discrete-time, contin-
uous-time, and time-periodic compact semiflows on some subsets of C. In Section 4, we
extend our results to compact semiflows in a periodic habitat. In Section 5, we further
investigate semiflows with weak compactness. In Section 6, we apply the abstract results
to four classes of evolution systems: a time-periodic reaction-diffusion system, a parabolic
system in a cylinder, a parabolic equation with periodic diffusion, and a time-delayed
reaction-diffusion equation. Finally, a short appendix section completes the paper.

2. Notation and assumptions

Throughout this paper, we assume that X is an ordered Banach space with the norm ‖·‖X
and the cone X+. Further, we assume that X is also a vector lattice with the following
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monotonicity condition:

|x|X ≤ |y|X ⇒ ‖x‖X ≤ ‖y‖X ,

where |z|X := sup{z,−z} denotes the least upper bound of z and −z. Such a Banach
space is often called a Banach lattice. We useC(M,Rd) to denote the set of all continuous
functions from the compact metric spaceM to the d-dimensional Euclidean space Rd . We
equip C(M,Rd) with the maximum norm and the standard positive cone consisting of all
nonnegative functions. Then C(M,Rd) is a special Banach lattice, which will be used in
this paper. For more general information about Banach lattices, we refer to the book [32].

Let the spatial habitat H be the real line R or the lattice

rZ := {. . . ,−2r,−r, 0, r, 2r, . . . }

for some positive number r . For simplicity, we let r = 1. We say a function φ : H→ X
is bounded if the set {‖φ(x)‖X : x ∈ H} is bounded. Throughout this paper, we always
use B to denote the set of all bounded functions from R to X , and C to denote the set of
all bounded and continuous functions from H to X . Moreover, any element in X can be
regarded as a constant function in B and C.

In this paper, we equip C with the compact-open topology, that is, a sequence φn
converges to φ in C if and only if φn(x) converges to φ(x) in X uniformly for x in any
compact subset of H. The following norm on C induces this topology:

‖φ‖C =
∞∑
k=1

max|x|≤k ‖φ(x)‖X
2k

, ∀φ ∈ C. (2.1)

Clearly, if H = Z, then φn→ φ with respect to the compact-open topology if and only if
φn(x)→ φ(x) pointwise in x ∈ Z.

We assume that Int(X+) is not empty. For any u, v ∈ X , we write u ≥ v provided that
u−v ∈ X+, u > v provided u ≥ v but u 6= v, and u� v provided that u−v ∈ Int(X+).
A subset in X is said to be totally unordered if no two elements are ordered. For any
φ,ψ ∈ C, φ ≥ ψ provided that φ(x) ≥ ψ(x) for all x ∈ H, φ > ψ provided that φ ≥ ψ
but φ 6= ψ , and φ � ψ provided that φ(x) � ψ(x) for all x ∈ H. For any γ ∈ X
with γ > 0, we define Xγ := {u ∈ X : γ ≥ u ≥ 0}, Cγ := {φ ∈ C : γ ≥ φ ≥ 0}
and Bγ := {φ ∈ B : γ ≥ φ ≥ 0}. For any φ,ψ ∈ C, the interval [φ,ψ]C is the set
{w ∈ C : φ ≤ w ≤ ψ}, [[φ,ψ]]C is the set {w ∈ C : φ � w � ψ}, and similarly for
[φ,ψ]]C and [[φ,ψ]C . For any u ≤ v in X , we define [u, v]X , [[u, v]]X , [[u, v]X and
[u, v]]X in a similar way.

Let β ∈ Int(X+) and Q be a map from Cβ to Cβ . Let E be the set of all fixed points
of Q restricted to Xβ .

Definition 2.1. For the map Q : Xβ → Xβ , a fixed point α ∈ E is said to be strongly
stable from below if there exist a number δ > 0 and a unit vector e ∈ Int(X+) such that

Q[α − ηe] � α − ηe for any η ∈ (0, δ]. (2.2)

Strong instability from below is defined by reversing the inequality in (2.2). Similarly, we
can define strong stability (and instability) from above.
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Given y ∈ H, define the translation operator Ty on B by Ty[φ](x) = φ(x − y). Assume
that 0 and β are in E. We impose the following hypotheses on Q:

(A1) (Translation invariance) Ty ◦Q[φ] = Q ◦ Ty[φ] for all φ ∈ Cβ and y ∈ H.
(A2) (Continuity) Q : Cβ → Cβ is continuous in the compact-open topology.
(A3) (Monotonicity) Q is order preserving in the sense that Q[φ] ≥ Q[ψ] whenever

φ ≥ ψ in Cβ .
(A4) (Compactness) Q : Cβ → Cβ is compact in the compact-open topology.
(A5) (Bistability) The fixed points 0 and β are strongly stable from above and below,

respectively, for the map Q : Xβ → Xβ , and the set E \ {0, β} is totally unordered.

Note that the above bistability assumption is imposed on the spatially homogeneous map
Q : Xβ → Xβ . We allow the existence of other fixed points on the boundary of Xβ so
that the theory is applicable to competitive evolution models. The unordering property
of E \ {0, β} can be obtained by the strong instability of all fixed points in this set if
the semiflow is eventually strongly monotone. More precisely, a sufficient condition for
hypothesis (A5) to hold is:

(A5′) (Bistability) Q : Xβ → Xβ is eventually strongly monotone in the sense that there
exists m1 ∈ Z+ such thatQm

[u] � Qm
[v] for all m ≥ m1 whenever u > v in Xβ .

Further, for the map Q : Xβ → Xβ , the fixed points 0 and β are strongly stable
from above and below, respectively, and each α ∈ E \ {0, β} is strongly unstable
from both below and above.

Figure 2 illustrates the bistability structures in (A5) and (A5′). Next we show that (A5′)
implies (A5). In applications, however, one may find other sufficient conditions for (A5)
to hold, weaker than (A5′).
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Fig. 2. Left: the set E satisfying (A5). Right: the set E satisfying (A5′).

Proposition 2.1. If (A5′) holds, then for any α1, α2 ∈ E \ {0, β}, we have α1 6< α2 and
α2 6< α1.

Proof. Without loss of generality, we only show α1 6< α2. Assume for contradiction that
α1 < α2. Then α1 = Qm1 [α1] � Qm1 [α2] = α2. Since α1 is strongly unstable from
above, there exist δα1 > 0 and eα1 ∈ Int(X+) such that u0 := α1 + δα1eα1 ∈ [[α1, α2]]X
and Q[u0] � u0. Define the recursion un+1 = Q[un], n ≥ 0. Then un is convergent
to some α ∈ X with α1 � α ≤ α2 due to hypothesis (A4). By the eventual strong
monotonicity of Q, we see that

un = Q
m1 [un−m1 ] � Qm1 [un+1−m1 ] = un+1 � Qm1 [α] = α, ∀n ≥ m1.
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Since α is strongly unstable from below, we can find δα > 0 and eα ∈ Int(X+) such that
Q[α − δeα] � α − δeα for all δ ∈ (0, δα]. Choose n1 ≥ m1 such that un1 ≥ α − δαeα .
Define η := sup{δ ∈ (0, δα] : un1 ≤ α − δeα}. Thus, un1 6� α − ηδα . On the other hand,

un1 � un1+1 = Q[un1 ] ≤ Q[α − ηeα] � α − ηeα,

a contradiction. ut

Due to assumption (A5), for any given α ∈ E \ {0, β}, we have two monostable subsys-
tems: {Qn

}n≥0 restricted to [0, α]C and [α, β]C , respectively. With this in mind, we next
construct an initial function φ−α so that we can define the leftward asymptotic speed of
propagation of φ−α , and then present our last assumption.

Note that in (A5) we do not require α � 0 or α � β in X . But assumption (A5) is
sufficient to guarantee that α and β can be separated by two neighborhoods in [α, β]X ,
and a similar claim is valid for 0 and α (see Lemma 3.1). In view of assumption (A5), we
can find δβ > 0 and a unit vector eβ ∈ Int(X+) such that

Q[β − ηeβ ] � β − ηeβ , ∀η ∈ (0, δβ ]. (2.3)

Define
v−α := sup{α, β − δβeβ}. (2.4)

Hence, Q[v−α ] ≥ Q[β − δβeβ ] � β − δβeβ . This, together with the definition of v−α in
(2.4), implies that there exists a neighborhood N of Q[v−α ] in [α, β]X such that v−α < γ

for all γ ∈ N . Choose a nondecreasing initial function φ−α ∈ Cβ with

φ−α (x) = α, ∀x ≤ −1, and φ−α (x) = v
−
α , ∀x ≥ 0. (2.5)

It then follows from assumptions (A1), (A2) and (A5) that

lim
x→∞

Q[φ−α ](x) = Q[φ
−
α (∞)](0) = Q[v

−
α ],

and hence there exists σ > 0 such that

Q[φ−α ](x)� β − δβeβ and Q[φ−α ](x) ≥ v
−
α , ∀x ≥ σ − 1.

Define a sequence an,σ of points in X as follows:

an,σ = Q
n
[φ−α ](σn), n ≥ 1.

Then
a2,σ = Q

2
[φ−α ](2σ) = Q[Q[φ

−
α ](· + σ)](σ ) ≥ Q[φ

−
α ](σ ) = a1,σ .

By induction, we see that an,σ is nondecreasing in n. Thus, assumption (A4) implies that
an,σ tends to a fixed point e with e ≥ a1,σ � β − δβeβ . Therefore, e = β.

By the above observation, we have

β ≥ lim
n→∞, x≥σn

Qn
[φ−α ](x) ≥ lim

n→∞
Qn
[φ−α ](σn) = lim

n→∞
an,σ = β,
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and hence

(−∞,−σ ] ⊂ 3(φ−α ) :=
{
c ∈ R : lim

n→∞, x≥−cn
Qn
[φ−α ](x) = β

}
.

Define
c∗−(α, β) := sup3(φ−α ). (2.6)

Clearly, c∗−(α, β) ∈ [−σ,∞] and (−∞, c∗−(α, β)) ⊂ 3(φ−α ). We further claim that
c∗−(α, β) is independent of the choice of φ−α as long as φ−α has the property (2.5). In-
deed, for any given φ with the property (2.5), we have

φ−α (x − 1) ≤ φ(x) ≤ φ−α (x + 1), ∀x ∈ H.

It then follows that for any c ∈ 3(φ−α ) and ε > 0,

β = lim
n→∞, x≥−cn

Qn
[φ−α ](x) = lim

n→∞, x≥−(c−ε)n
Qn
[φ−α ](x − 1)

≤ lim
n→∞, x≥−(c−ε)n

Qn
[φ](x) ≤ lim

n→∞, x≥−(c−ε)n
Qn
[φ−α ](x + 1)

= lim
n→∞, x≥−cn

Qn
[φ−α ](x) = β,

which implies that c − ε ∈ 3(φ), and hence sup3(φ−α ) = sup3(φ). For convenience,
we may call c∗−(α, β) the leftward asymptotic speed of propagation of φ−α .

Following the above procedure, we can find δ0 > 0 and e0 ∈ Int(X+) such that

Q[ηe0] � ηe0, ∀η ∈ (0, δ0]. (2.7)

Here we emphasize that δ0, e0 above and δβ , eβ will play a vital role in the whole paper
because they describe the local stability of the fixed points 0 and β. Similarly, we can
define

v+α := inf{α, δ0e0}.

Let φ+α ∈ Cβ be a nondecreasing initial function with

φ+α (x) = α, ∀x ≥ 1, and φ+α (x) = v
+
α , ∀x ≤ 0.

For the same reason, we define

c∗+(0, α) := sup
{
c ∈ R : lim

n→∞, x≤cn
Qn
[φ+α ](x) = 0

}
, (2.8)

which is called the rightward asymptotic speed of propagation of φ+α . As showed above,
these two speeds are bounded below, but may be plus infinity. To better understand these
two spreading speeds, see Figure 3 (left).

Now we are ready to state our last assumption on Q:

(A6) (Counter-propagation) For each α ∈ E \ {0, β}, c∗−(α, β)+ c
∗
+(0, α) > 0.
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Assumption (A6) ensures that the two initial functions in the left part of Figure 3 will
eventually propagate in opposite directions although one of these two speeds may be neg-
ative. It is interesting to note that assumption (A6) is nearly necessary for the propagation
of a bistable traveling wave. Indeed, if a monotone evolution system admits a bistable
traveling wave, then it is usually unique (up to translation) and globally attractive (see,
e.g., Remark 6.2). This implies that the solution starting from the initial data 1

2 (φ
+
α +φ

−
α )

converges to a phase shift of the bistable wave. If c∗−(α, β)+ c
∗
+(0, α) < 0, then the com-

parison principle would force the solutions starting from φ±α to split the bistable wave.
Comparing this with the definition of spreading speeds (short for asymptotic speeds

of spread/propagation) for monostable semiflows (see, e.g., [2, 26]), one can find that the
leftward spreading speed of the monostable subsystem {Qn

}n≥0 restricted to [α, β]C is
shared by a large class of initial functions, and in many applications, it equals c∗−(α, β).
A similar observation holds for c∗+(0, α). Thus, for a specific bistable system, assumption
(A6) can be verified by using the properties of spreading speeds for monostable subsys-
tems.

Remark 2.1. If we consider the nonincreasing traveling waves, then we can similarly
define the numbers c∗+(α, β) and c∗−(0, α) (see Figure 3 (right)). Then (A6) should be
stated as c∗+(α, β)+ c

∗
−(0, α) > 0.

3. Semiflows in a homogeneous habitat

We say a habitat is homogeneous for the semiflow {Qt }t∈T on a metric space E ⊂ C if

Qt [φ](x − y) = Qt [φ(· − y)](x), ∀φ ∈ E, x, y ∈ H, t ∈ T .

In this section, we will establish the existence of bistable traveling waves for the semiflow
{Qt }t∈T on E in the following order: discrete-time semiflows in a continuous habitat,
discrete-time semiflows in a discrete habitat, time-periodic semiflows, continuous-time
semiflows in a continuous habitat, and continuous-time semiflows in a discrete habitat.

3.1. Discrete-time semiflows in a continuous habitat

In this case, time T is discrete and habitat H is continuous: T = Z+ and H = R. For
convenience, we use Q to denote Q1, and consider the semiflow {Qn

}n≥0, where Qn is
the n-th iteration of Q.
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Definition 3.1. ψ(x+ cn) with ψ ∈ C is said to be a traveling wave with speed c ∈ R of
the discrete semiflow {Qn

}n≥0 if Qn
[ψ](x) = ψ(x + cn) for all x ∈ R and n ≥ 0.

We say that ψ connects 0 to β if ψ(−∞) := limx→−∞ ψ(x) = 0 and ψ(∞) :=
limx→∞ ψ(x) = β.

We first show that 0 and β are two isolated fixed points of Q in Xβ if (A5) holds.

Lemma 3.1. Let δ0, e0 and δβ , eβ be chosen so that (2.7) and (2.3) hold, respectively.
Then E ∩ Xδ0e0 = {0} and E ∩ [β − δβeβ , β]X = {β}.

Proof. Assume for contradiction that 0 6= α ∈ E ∩ Xδ0e0 . Define

δ̄ := inf{δ ∈ (0, δ0] : α ∈ [0, δe0]X }.

Then α ≤ δ̄e0 but α 6∈ [0, δ̄e0]]X . However, by the monotonicity of Q and the fact that
0 is strongly stable,

α = Q[α] ≤ Q[δ̄e0] � δ̄e0.

This contradicts α 6∈ [0, δ̄e0]]X . Hence, E ∩Xδ0e0 = {0}. Similarly, E ∩ [β − δβeβ , β]X
= {β}. ut

Choose δ > 0 such that

δ < min{δ0, δβ} and δe0 � β − δeβ . (3.1)

Assume that ψ and ψ̄ are nondecreasing functions in C(R,Xβ) with

ψ(x) =

{
0, x ≤ 0,
β − δeβ , x ≥ 1,

and ψ̄(x) =

{
δe0, x ≤ −1,
β, x ≥ 0.

Clearly ψ ≤ ψ̄ . We have the following observation.

Lemma 3.2. Assume that Q satisfies (A1)–(A3) and (A5). Then there exists a positive
rational number c̄ such that for any c ≥ c̄, we have

Q[ψ](x) ≥ ψ(x − c) and Q[ψ̄](x) ≤ ψ̄(x + c) for any x ∈ R.

Proof. Assume that xn → ∞ is an increasing sequence in R. Then ψn := ψ(· + xn)

converges to β − δeβ in Cβ since ψ(x) = β − δeβ for all x ≥ 1. It then follows from
(A1)–(A2) and (A5) that

Q[ψ](∞) = lim
n→∞

Q[ψ](xn) = lim
n→∞

Q[ψ(· + xn)](0) = Q[β − δeβ ] � β − δeβ .

Therefore, there exists y0 > 0 such that Q[ψ](y0) ≥ β − δeβ . Note that Q[ψ](x) is
nondecreasing in x. Then for any c ≥ y0 we have

Q[ψ](x) ≥ Q[ψ](y0) ≥ β − δeβ ≥ ψ(x − c), ∀x ≥ y0,

and
Q[ψ](x) ≥ 0 = ψ(0) ≥ ψ(x − y0) ≥ ψ(x − c), ∀x < y0,



Bistable traveling waves for monotone semiflows 2253

which means Q[ψ](x) ≥ ψ(x − c) for all c ≥ y0. Similarly,

Q[ψ̄](−∞) = lim
n→∞

Q[ψ](−xn) = lim
n→∞

Q[ψ̄(· − xn)](0) = Q[δe0] � δe0 = ψ̄(−∞),

and hence there exists z0 > 0 such that Q[ψ̄](x) ≤ ψ̄(x + c) for all c ≥ z0. Choosing
c̄ = max{y0, z0} completes the proof. ut

Let κn := (n+ c̄)/n. Clearly, κn is a rational number for all n ≥ 1. For any ξ ∈ R, define
a map Aξ : B→ B by Aξ [φ](x) = φ(ξx) for all x ∈ R. Define ψn, ψ̄n ∈ Cβ by

ψn(x) = ψ(x − (n+ c̄)) and ψ̄n(x) = ψ̄(x + (n+ c̄)).

Lemma 3.3. Assume that Q satisfies (A1)–(A5). Then for each n ∈ N, Gn := Q ◦ Aκn
has a fixed point φn in Cβ such that φn is nondecreasing and ψn ≤ φn ≤ ψ̄n.

Proof. We first show that ψn ≤ Gn[ψn]. Indeed, when x < n we have

ψn(x + c̄) ≤ ψn(n+ c̄) = ψ(0) = 0 ≤ Aκn [ψn](x);

when x ≥ n we have

Aκn [ψn](x) = ψn(κnx) = ψn

(
x +

c̄

n
x

)
≥ ψn(x + c̄),

and hence ψn(x + c̄) ≤ Aκn [ψn](x) for all x ∈ R. Consequently, by the monotonicity
of Q and ψ(x) ≤ Q[ψ](x + c̄) (see Lemma 3.2) we obtain

ψn(x) ≤ Q[ψn](x + c̄) ≤ Q ◦ Aκn [ψn](x) = Gn[ψn](x).

Similarly, ψ̄n ≥ Gn[ψ̄n]. It follows that

ψn ≤ G
k
n[ψn] ≤ G

k
n[ψ̄n] ≤ ψ̄n, ∀k ∈ N. (3.2)

For any k ≥ 1, we have

Gkn[ψn] = Gn ◦G
k−1
n [ψn] ∈ Gn[Cβ ]. (3.3)

Since Gn is order preserving and ψn(x) is nondecreasing in x, we know that Gkn[ψn](x)
is nondecreasing in both k and x. Recall that Gn is compact due to assumption (A4).
It follows that Gkn[ψn] converges in Cβ . Denote the limit by φn. By (3.2), we also get
ψn ≤ φn ≤ ψ̄n. Moreover, φn(x) is nondecreasing due to Proposition 7.1(2). Obviously,

φn = lim
k→∞

Gk+1
n [ψn] = Gn

[
lim
k→∞

Gkn[ψn]
]
= Gn[φn].

This completes the proof. ut

The following lemma reveals a relation between the wave speeds of monostable traveling
waves in sub-monostable systems and the numbers defined in (2.6) and (2.8).
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Lemma 3.4. Let c∗−(α, β) and c∗+(0, α) be defined as in (2.6) and (2.8). Assume that Q
satisfies (A3). Then the following statements are valid:

(1) If ψ(x+ ct) is a monotone traveling wave connecting α to β of the discrete semiflow
{Qn
}n≥1, then c ≥ c∗−(α, β).

(2) If ψ(x + ct) is a monotone traveling wave connecting 0 to α of the discrete semiflow
{Qn
}n≥1, then c ≤ −c∗+(0, α).

Proof. We only prove (1) since the proof of (2) is similar. In view of Lemma 3.1, there
exists a neighborhood N of β in [α, β]X such that

v−α < γ, ∀γ ∈ N ,

where v−α is defined in (2.4). Since ψ(−∞) = α and ψ(∞) = β, there must exist a
translation of ψ , still denoted by ψ , such that φ−α ≤ ψ . Assume for contradiction that
c < c∗−(α, β). Choose q/p ∈ (c, c∗−(α, β)) with p, q ∈ Z. It follows from (2.6) that

β = lim
n→∞

Qpn
[φ−α ]

(
−
q

p
· pn

)
≤ lim
n→∞

Qpn
[ψ](−qn)

= lim
n→∞

ψ(−qn+ cpn) = ψ(−∞) = α,

a contradiction. Thus, c ≥ c∗−(α, β). ut

Now we are ready to prove the main result of this subsection.

Theorem 3.1. Assume that Q satisfies (A1)–(A6). Then there exists c ∈ R such that
the discrete semiflow {Qn

}n≥1 admits a nondecreasing traveling wave with speed c and
connecting 0 to β .

Proof. The proof is in three steps. Firstly, we construct φ+, φ− ∈ Cβ and c+ ≤ c− ∈ R
such that

Q[φ+](x) = φ+(x + c+) and Q[φ−](x) = φ−(x + c−)

with
φ−(0) ∈ (0, δe0]X and φ+(0) ∈ [β − δeβ , β)X .

Indeed, let φn be as in Lemma 3.3. Since 0 � ψ̄(−1) = δe0 � ψ(1) = β − δeβ � β

and ψn ≤ φn ≤ ψ̄n, we have

ψ̄(−1) = ψ̄n(−1− (n+ c̄)) ≥ φn(−1− (n+ c̄)),
ψ(1) = ψn(1+ (n+ c̄)) ≤ φn(1+ (n+ c̄)).

Now we define

an := sup
x∈R
{φn(x) ∈ [0, δe0]X }, bn := inf

x∈R
{φn(x) ∈ [β − δeβ , β]X }.

Then

−1− (n+ c̄) ≤ an ≤ bn ≤ 1+ (n+ c̄), φn(an) ≤ δe0 ≤ β − δeβ ≤ φn(bn).
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Define φ−,n(x) := φn(x + an) and φ+,n(x) := φn(x + bn). Then

φ−,n = φn(·+an) = Gn[φn](·+an) = Q[φn(κn·)](·+an) = Q[φn(κn(·+an))] ∈ Q[Cβ ].

Similarly, φ+,n = Q[φn(κn(· + bn))] ∈ Q[Cβ ]. Thus, there exists a subsequence (still
indexed by n), two nondecreasing functions φ−, φ+ ∈ Cβ and ξ−, ξ+ ∈ [−1, 1] with
ξ− ≤ ξ+ such that

lim
n→∞

an

n
= ξ−, lim

n→∞

bn

n
= ξ+, lim

n→∞
φ−,n = φ−, lim

n→∞
φ+,n = φ+.

Obviously, φ−(0) = limn→∞ φn(an) and φ+(0) = limn→∞ φn(bn). By the definitions of
an and bn, we immediately have φ−(0) 6= 0 and φ+(0) 6= β, and hence 0 < φ−(0) ≤
ψ̄(−1) = δe0 and β − δeβ = ψ(1) ≤ φ+(0) < β. Define c− := −c̄ξ− and c+ := −c̄ξ+.
Obviously, c− ≥ c+ because ξ− ≤ ξ+.

We only prove Q[φ−](x) = φ−(x + c−) because the proof of the other identity is
similar. Note that the following limit is uniform for x in any bounded subset M ⊂ R:

lim
n→∞

κn(x + an)− an = lim
n→∞

(
x + c̄ ·

x + an

n

)
= x − c−.

Hence for any x ∈ R,

φ−(x+c−) = lim
n→∞

φ−,n(x+c−) = lim
n→∞

φn(x+c−+an) = lim
n→∞

Gn[φn](x+c−+an)

= lim
n→∞

Q[φn(κn·)](x+c−+an) = lim
n→∞

Q[φn(κn(·+an))](x+c−)

= lim
n→∞

Q[φ−,n(κn(·+an)−an)](x+c−) = Q[φ−](x), (3.4)

where the last equality is obtained from Proposition 7.2(2) and the continuity of Q.
Secondly, we prove that φ±(x) obtained in the first step have the following properties:

(i) φ−(−∞) = 0 and φ+(∞) = β;
(ii) φ−(∞) and φ+(−∞) are ordered.

Indeed, let xn→∞ be an increasing sequence in R. Note that φ−(xn) = Q[φ−(· − c−+
xn)](0) ∈ Q[Cβ ](0), which is precompact in Xβ . Therefore, there exists a subsequence
{nl} and v ∈ Xβ such that liml→∞ φ−(xnl ) = v, which, together with the fact that φ−
is nondecreasing and Proposition 7.2(1), implies that φ−(∞) := limx→∞ φ−(x) = v.
Moreover, from (3.4) we see that φ+(∞) ∈ Xβ is a fixed point of Q. Similar results
hold for φ−(−∞) and φ+(±∞). Recall that φ−(−∞) ≤ φ−(0) ≤ δe0 and φ+(∞) ≥
φ+(0) ≥ β − δeβ , which, together with the choice of δ, implies that φ−(−∞) = 0 and
φ+(∞) = β. Further, since any two real numbers are ordered, there exist sequences

{n}n≥0 ⊃ {n1m}m≥1 ⊃ {n2m}m≥2 ⊃ · · · ⊃ {nkm}m≥1 ⊃ · · ·

such that for each k ≥ 1,

k + ankm ≤ −k + bnkm , ∀m ≥ 1, or k + ankm ≥ −k + bnkm , ∀m ≥ 1.
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Define 01 := {k ∈ N : k + ankm ≤ −k + bnkm ,∀m ≥ 1} and 02 := N \ 01. Then either
01 or 02 has infinitely many elements. If 01 does, then

φ−,nkm(k) = φnkm(k + ankm) ≤ φnkm(−k + bnkm) = φ+,nkm(−k), ∀k ∈ 01, m ∈ N.

This implies that φ−(k) ≤ φ+(−k) for all k ∈ 01, and hence φ−(∞) ≤ φ+(−∞). If
02 has infinitely many elements, then φ−(∞) ≥ φ+(−∞) by a similar argument. Thus,
φ−(∞) and φ+(−∞) must be ordered in Xβ .

Finally, we prove that either φ− or φ+ connects 0 to β. Indeed, we have shown in the
second step that φ−(∞) and φ+(−∞) are ordered. It then follows from the bistability
assumption (A5) that there are only three possibilities:

(i) β = φ−(∞) ≥ φ+(−∞);
(ii) φ−(∞) ≥ φ+(−∞) = 0;

(iii) φ−(∞) = α = φ+(−∞) for some α ∈ E \ {0, β}.

We further claim that the possibility (iii) cannot happen: Otherwise, Lemma 3.4 implies
that c+ ≥ c∗−(α, β) and c− ≤ −c∗+(0, α). Since c− ≥ c+, it then follows that

0 ≥ c+ + (−c−) ≥ c∗−(α, β)+ c
∗
+(0, α),

which contradicts (A6). Thus, either (i) or (ii) holds, completing the proof. ut

3.2. Discrete-time semiflows in a discrete habitat

In this case, both T and H are discrete: T = Z+ and H = Z. Without confusion, we
consider the semiflow {Qn

}n≥0 in a metric space E ⊂ C. Since the habitat is discrete,
we cannot use the definition of traveling waves with an unknown speed as in Definition
3.1. This is because the wave profile ψ(x) may not be well defined for all x ∈ R. So we
modify the definition of traveling waves in a discrete habitat.

Definition 3.2. ψ(x + cn) with ψ ∈ B is said to be a traveling wave with speed
c ∈ R of the discrete semiflow {Qn

}n≥0 if there exists a countable set 0 ⊂ R such
that Q[ψ(· + x)](i) = ψ(i + x + c) for all i ∈ Z and x ∈ R \ 0.

By Definition 3.2 and Proposition 7.3, there exists x0 ∈ R such that Qn
[ψ(· + x0)](i) =

ψ(i + x0 + cn) for all i ∈ Z and n ≥ 0. Define φ(x) := ψ(x + x0) for all x ∈ R. Then,
with a little abuse of notation, Qn

[φ](i) = φ(i + cn) for all i ∈ Z and n ≥ 0. There-
fore, Definition 3.2 is a generalized version of the classical one, which is an analogue of
Definition 3.1.

Let β � 0 be a fixed point of Q. Define Q̃ : Bβ → Bβ by

Q̃[φ](x) = Q[φ(· + x)](0), ∀x ∈ R.

Then we see from [25, Lemma 2.1] that Q̃ satisfies (A1)–(A3) and (A5) withQ = Q̃ and
Cβ = Bβ ifQ itself satisfies (A1)–(A3) and (A5). Further, ifQ satisfies (A4), then the set
Q̃[Bβ ](x) ⊂ Xβ is precompact for any x ∈ R.

For Q̃ : Bβ → Bβ , we have similar results to Lemmas 3.2 and 3.3.
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Lemma 3.5. Assume that Q satisfies (A1)–(A3) and (A5). Then there exists a positive
rational number c̄ such that for any c ≥ c̄, we have

Q̃[ψ](x) ≥ ψ(x − c) and Q̃[ψ̄](x) ≤ ψ̄(x + c) for any x ∈ R.

Lemma 3.6. Assume that Q satisfies (A1)–(A5). Then for each n ∈ N, G̃n := Q̃ ◦ Aκn
has a fixed point φ̃n in Bβ such that φ̃n is nondecreasing and ψn ≤ φ̃n ≤ ψ̄n.

Proof. By the same arguments as in the proof of Lemma 3.3, we can obtain a similar
inequality to (3.2):

ψn ≤ G̃
k
n[ψn] ≤ G̃

k
n[ψ̄n] ≤ ψ̄n, ∀k ∈ N.

Define wn,1 := ψn and wn,k+1 := G̃n[wn,k], k ≥ 1. Then

wn,k+1(x) = Q̃ ◦ Aκn [wn,k](x) = Q̃[wn,k(κn·)](x) = Q[wn,k(κn(· + x))](0). (3.5)

Note that Q[Cβ ] is compact and wn,k is nondecreasing in k. Hence, for any fixed
x ∈ R, wn,k(x) converges in Xβ . Denote the limit by φ̃n(x). Then φ̃n(x) is nonde-
creasing in x ∈ R and ψn ≤ φ̃n ≤ ψ̄n. Letting k → ∞ in (3.5), we arrive at
φ̃n(x) = Q[φ̃n(κn(· + x))](0). Consequently,

φ̃n = Q̃[φ̃n(κn·)] = Q̃ ◦ Aκn [φ̃n] = G̃n[φ̃n].

This completes the proof. ut

Due to the lack of compactness for Q̃, we will use the properties of monotone functions
established in the Appendix to show the convergence of a sequence in Q̃[Bβ ].

Theorem 3.2. Assume that X = C(M,Rd) andQ satisfies (A1)–(A6). Then there exists
c ∈ R such that the semiflow {Qn

}n≥1 on Cβ admits a nondecreasing traveling wave
ψ(x+cn) with speed c and connecting 0 to β. Further,ψ is either left or right continuous.

Proof. As in the proof of Theorem 3.1, we define

ãn := sup
x∈R
{φ̃n(x) ∈ [0, δe0]X }, b̃n := inf

x∈R
{φ̃n(x) ∈ [β − δeβ , β]X }.

Then −1− (n+ c̄) ≤ ãn ≤ b̃n ≤ 1+ (n+ c̄). Note that for any x ∈ R, we have

φ̃n(x) = G̃n[φ̃n](x) = Q̃[φ̃n(κn ·)](x) = Q[φ̃n(κn(· + x))](0) ∈ Q[Cβ ](0).

Since Q[Cβ ](0) is precompact in Xβ , for any x ∈ R the limits φ̃n(x−) := limy↑x φ̃n(y)

and φ̃n(x+) := limy↓x φ̃n(y) both exist. Hence, by the definitions of ãn and b̃n,

φ̃n(ã
−
n ) ≤ δe0 ≤ β − δeβ ≤ φ̃n(b̃

+
n ),

but
φ̃n(ã

+
n ) 6∈ [0, δe0]]X and φ̃n(b̃

−
n ) 6∈ [[β − δeβ , β]X .
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Define φ̃−,n(x) := φ̃n(x + ãn) and φ̃+,n(x) := φ̃n(x + b̃n). Then

φ̃−,n(0−) ≤ δe0 ≤ β − δeβ ≤ φ̃+,n(0+),

but
φ̃−,n(0+) 6∈ [0, δe0]]X and φ̃+,n(0−) 6∈ [[β − δeβ , β]X .

Since φ̃n = G̃n[φ̃n], we have

φ̃−,n(x) = G̃n[φ̃n](x + ãn) = Q[φ̃n(κn(· + ãn + x))](0) ∈ Q[Cβ ](0).

Similarly, φ̃+,n(x) = Q[φ̃n(κn(· + b̃n + x))](0) ∈ Q[Cβ ](0). Let Q be the set of all
rational numbers, and {xl}l≥1 ⊂ Q be an increasing sequence converging to x. Using
φ̃n = G̃n[φ̃n] again, we see that for any i ∈ Z and l ≥ 1,

φ̃n(κn(i + ãn + xl)) = Q[φ̃n(κn(· + κn(i + ãn + xl)))](0) ∈ Q[Cβ ](0).

Similarly, φ̃n(κn(i + b̃n + xl)) ∈ Q[Cβ ](0). Note that Q[Cβ ](0) is precompact in Xβ and
Q is countable. Hence there exists a subsequence (still indexed by {n}) and ξ− ≤ ξ+ ∈ R
such that limn→∞ ãn/n = ξ−, limn→∞ b̃n/n = ξ+ and for any x ∈ Q, i ∈ Z and l ≥ 1,
the sequences φ̃±,n(x), φ̃n(κn(i + ãn + xl)) and φ̃n(κn(i + b̃n + xl)) converge in Xβ .
Hence, the limits

lim
l→∞

lim
n→∞

φ̃−,n(xl) = lim
l→∞

lim
n→∞

Q[φ̃n(κn(· + ãn + xl))](0),

lim
l→∞

lim
n→∞

φ̃+,n(xl) = lim
l→∞

lim
n→∞

Q[φ̃n(κn(· + b̃n + xl))](0)

both exist. This means the limits

lim
y∈Q, y↑x

lim
n→∞

φ̃±,n(y) and lim
y∈Q, y↓x

lim
n→∞

φ̃±,n(y)

exist for all x ∈ R. Define

φ̂−(x) :=

{
limn→∞ φ̃−,n(x), x ∈ Q,
limy∈Q, y↑x limn→∞ φ̃−,n(x), x ∈ R \Q,

φ̂+(x) :=

{
limn→∞ φ̃+,n(x), x ∈ Q,
limy∈Q, y↓x limn→∞ φ̃+,n(x), x ∈ R \Q.

Clearly, φ̂± are nondecreasing functions in Bβ and for any x ∈ R \ Q, φ̂±(x±) all exist.
Hence, we see from Theorem 7.1 that there exists a countable subset 01 of R such that
φ̃±,n(x) converges to φ̂±(x) for all x ∈ R \ 01. Define

φ̃−(x) := lim
y∈Q, y↑x

lim
n→∞

φ̃−,n(y), φ̃+(x) := lim
y∈Q, y↓x

lim
n→∞

φ̃+,n(y), ∀x ∈ R.

Thus, φ̃−(x) is left continuous and φ̃+(x) is right continuous. Note that φ̃±(x) = φ̂±(x)
for all x ∈ R \Q. It then follows that φ̃±,n(x) converges to φ̃±(x) for x ∈ R \ 02, where
02 := Q ∪ 01 is also countable.
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Let yk ∈ R \ 02 be an increasing sequence converging to 0 and zk ∈ R \ 02 be an
increasing sequence converging to 1. Note that

φ̃−(0) = lim
k→∞

φ̃−(yk) = lim
k→∞

lim
n→∞

φ̃−,n(yk) ≤ δe0,

φ̃−(1) = lim
k→∞

φ̃−(zk) = lim
k→∞

lim
n→∞

φ̃−,n(zk) 6∈ [0, δe0]]X .

Similarly, φ̃+(0) ≥ β − δeβ but φ̃+(−1) 6∈ [[β − δeβ , β]X . Define c− := −c̄ξ− and
c+ := −c̄ξ+. Obviously, c− ≥ c+ since ξ− ≤ ξ+.

Now we want to prove Q[φ̃−(· + x)](0) = φ̃−(x + c−) for all x ∈ R \ 02. Note that

lim
n→∞

κn(x + ãn)− ãn = lim
n→∞

(
x + c̄ ·

x + ãn

n

)
= x − c−.

It follows that

φ̃−(x+c−) = lim
n→∞

φ̃−,n(x+c−) = lim
n→∞

φ̃n(x+c−+ ãn) = lim
n→∞

G̃n[φ̃n](x+c−+ ãn)

= lim
n→∞

Q̃[φ̃n(κn·)](x+c−+ ãn) = lim
n→∞

Q̃[φ̃n(κn(·+an))](x+c−)

= lim
n→∞

Q̃[φ̃−,n(κn(·+ ãn)− ãn)](x+c−)

= lim
n→∞

Q[φ̃−,n(κn(·+x+c−+ ãn)− ãn)](0).

In view of Proposition 7.5, we obtain φ̃−(x + c−) = Q[φ̃−(· + x)](0) for all x ∈ R \ 02.
A similar result holds for φ̃+.

Now, the same argument as in the proof of Theorem 3.1 completes the proof. ut

3.3. Time-periodic semiflows

Let ω ∈ T , where T = R+ or Z+. Recall that a family {Qt }t∈T of mappings is said to
be an ω-time periodic semiflow on a metric space E ⊂ C provided that:

(i) Q0[φ] = φ for all φ ∈ E .
(ii) Qt ◦Qω[φ] = Qt+ω[φ] for all t ≥ 0 and φ ∈ E .

(iii) Qt [φ] is jointly continuous in (t, φ) on [0,∞)× E .

The mapping Qω is called the Poincaré map associated with this periodic semiflow.

Definition 3.3. (i) In the case where H = R, U(t, x + ct) is said to be an ω-time
periodic traveling wave with speed c of the semiflow {Qt }t∈T if Qt [U(0, ·)](x) =
U(t, x + ct) and U(t, x) = U(t + ω, x) for all t ∈ T and x ∈ R.

(ii) In the case where H = Z, U(t, x + ct) is said to be an ω-time periodic traveling
wave with speed c of {Qt }t∈T if there exists a countable subset 0 ⊂ R such that
Qt [U(0, ·+x)](0) = U(t, x+ct) for all t ∈ T and x ∈ R, andU(t, x) = U(t+ω, x)
for all t ∈ T and x ∈ R \ 0.
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Theorem 3.3. Let β(t) be a strongly positive ω-time periodic orbit of {Qt }t∈T restricted
to X . Assume that Q := Qω satisfies hypotheses (A1)–(A6) with β = β(0). Then
{Qt }t∈T admits a traveling wave U(t, x + ct) with U(t,−∞) = 0 and U(t,∞) = β(t)
uniformly for t ∈ T . Furthermore, U(t, x) is nondecreasing in x ∈ R.

Proof. Assume that H = R. SinceQω satisfies (A1)–(A6), there exist c ∈ R and a nonde-
creasing function φ ∈ C connecting 0 to β(0) such that Qω[φ](x) = φ(x + cω). Clearly,
TcωQω[φ] = φ. Define U(t, x) := TctQt [φ](x). Then U(t, x + ct) = Qt [φ](x) =

Qt [U(0, ·)](x), and

U(t + ω, x) = Tct+cωQt+ω[φ](x) = TctQtTcωQω[φ](x) = TctQt [φ](x) = U(t, x).

Note thatQt [β(0)] = β(t) and φ is nondecreasing and connects 0 to β(0). It follows that
U(t,−∞) = 0 and U(t,∞) = β(t).

Assume now H = Z. Since Qω satisfies (A1)–(A6), there exists c ∈ R, a countable
subset 0 ⊂ R and a nondecreasing function φ ∈ B connecting 0 to β(0) such that
Q̃ω[φ](x) = φ(x+cω) for all x ∈ R\0. Clearly, TcωQ̃ω[φ](x) = φ(x) for all x ∈ R\0.
Define U(t, x) := TctQ̃t [φ](x). Thus,

U(t, x + ct) = Q̃t [φ](x) = Q̃t [U(0, ·)](x) = Qt [U(0, · + x)](0), ∀x ∈ R,

and

U(t + ω, x) = Tct+cωQ̃t+ω[φ](x) = TctQ̃tTcωQ̃ω[φ](x) = TctQ̃t [φ](x) = U(t, x)

for all x ∈ R \ 0. Note that Qt [β(0)] = β(t) and φ is nondecreasing and connects 0
to β(0). Hence U(t,−∞) = 0 and U(t,∞) = β(t). ut

3.4. Continuous-time semiflows in a continuous habitat

In this subsection, we consider continuous-time semiflows in the continuous habitat
H = R. Recall that a family {Qt }t≥0 of mappings Qt : E → E is said to be a semi-
flow on a metric space E ⊂ C provided that

(1) Q0[φ] = φ for all φ ∈ E .
(2) Qt ◦Qs[φ] = Qt+s[φ] for all t, s ≥ 0 and φ ∈ E .
(3) Qt [φ] is jointly continuous in (t, φ) on [0,∞)× E .

Before moving to the study of traveling waves of {Qt }t≥0, we first investigate the spatially
homogeneous system, that is, the system restricted to X . Let β � 0 be an equilibrium
in X . For each t > 0, we use6t to denote the set of all fixed points ofQt restricted to Xβ .
Clearly, the equilibrium set of the semiflow is 6 :=

⋂
t>06t , which is a subset of 6t for

any t > 0. The subsequent result indicates that the instability of intermediate equilibria
of the semiflow implies the unordering property of all intermediate fixed points of each
time-t map.

Proposition 3.1. For any given t > 0, if the map Qt satisfies the bistability assumption
(A5′) with E = 6, then Qt satisfies (A5) with E = 6t .
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Proof. Let t0 > 0 be given. We first show that any two points u ∈ 6 \ {0, β} and v ∈
6t0 \ {0, β} are unordered. Assume for contradiction that u and v are ordered, say u < v.
Then the eventual strong monotonicity implies that u � v. Since u is strongly unstable
from above, there exist a unit vector e ∈ Int(X+) and δ > 0 such thatQt0 [u+δe] � u+δe

with u+ δe ∈ [[u, v]]X . From [34, Theorem 1.2.1], (Qt0)
n
[u+ δe] is eventually strongly

increasing and converges to some α ∈ 6. Note that α ∈ [[u, v]X is strongly unstable
from below. Hence, by the same arguments as in the proof of Proposition 2.1, we obtain
a contradiction.

Next we show that 6t0 \ 6 is unordered. By the first step it suffices to prove that for
any two ordered elements u < v in 6t0 \6, [u, v]X ∩6 6= ∅. Indeed, by eventual strong
monotonicity, we have u � v. Thus, we can choose a sequence {un} on the segment
connecting u and v such that u � un � un+1 � v for all n ≥ 1. By [34, Theorem
1.3.7], ω(u) ≤ ω(un) ≤ ω(un+1) ≤ ω(v) for all n ≥ 1. Clearly, ω(u) = {Qtu : t ∈

[0, t0]} and ω(v) = {Qtv : t ∈ [0, t0]}, and hence u ≤ ω(un) ≤ v for all n ≥ 1. Note
that

⋃
n≥1 ω(un) is contained in the compact set Qt0 [Xβ ]. In the compact metric space

consisting of all nonempty compact subsets of Qt0 [Xβ ] with Hausdorff distance dH , the
sequence {ω(un) : n ≥ 1} has a convergent subsequence. Without loss of generality, we
assume that for some nonempty compact set$ ⊂ Qt0 [Xβ ], limn→∞ dH (ω(un),$) = 0.
Since each ω(un) is invariant for the semiflow {Qt }t≥0, so is the compact set $ , that
is, Qt$ = $ for all t ≥ 0. For any given x, y ∈ ω, there exist sequences of points
xn, yn ∈ $(un) such that xn → x and yn → y as n → ∞. Since ω(un) ≤ ω(un+1),
we have xn ≤ yn+1 and yn ≤ xn+1 for all n ≥ 1. Letting n → ∞, we then have x ≤ y
and y ≤ x, and hence x = y. This implies that $ is a singleton, that is, $ = {α}. By
the invariance of $ for the semiflow, α is an equilibrium. Since u ≤ ω(un) ≤ v for all
n ≥ 1, it follows that α ∈ [u, v]X. ut

For a continuous-time semiflow {Qt }t≥0, we need the following definition of traveling
waves.

Definition 3.4. ψ(x + ct) with ψ ∈ C is said to be a traveling wave with speed c ∈ R of
the continuous-time semiflow {Qt }t≥0 if Qt [ψ](x) = ψ(x + ct) for all x ∈ R and t ≥ 0.
We say that ψ connects 0 to β if ψ(−∞) = 0 and ψ(∞) = β.

Theorem 3.4. Assume that for each t > 0, the map Qt satisfies assumptions (A1) and
(A3)–(A5) with E = 6t , and the time-one mapQ1 satisfies (A6) with E = 6. Then there
exists c ∈ R such that {Qt }t≥0 admits a nondecreasing traveling wave with speed c and
connecting 0 to β .

Proof. Let e0, eβ and δ be chosen as in (2.7), (2.3) and (3.1), respectively. We proceed in
three steps.

Firstly, we show that there exists sk ↓ 0 such that each discrete semiflow {Qn
sk
}n≥0

admits nondecreasing traveling waves ψ±,sk (x + c±,skn) with c−,sk ≥ c+,sk and

0 < ψ−,sk (0) ≤ δe0 and β − δeβ ≤ ψ+,sk (0) < β,

but
ψ−,sk (0) 6∈ [0, δe0]]X and ψ+,sk (0) 6∈ [[β − δeβ , β]X .
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Indeed, since for each s > 0 the map Qs satisfies (A1)–(A5), from the first two steps of
the proof of Theorem 3.1 we see that for the discrete semiflow {(Qs)

n
}n≥0, there exist

two nondecreasing traveling waves φ±,s(x + c±,s t) with the following properties:

(1) φ−,s connects 0 to some α−,s ∈ Es \ {0} and φ+,s connects some α+,s ∈ Es \ {β}
to β;

(2) α−,s and α+,s are ordered and c−,s ≥ c+,s .

By a similar argument to that in [47, Theorem 1.3.7], both α±,s have subsequences α±,sk
which tend to two equilibria of the semiflow as sk → 0, say α− and α+. Since α−,s and
α+,s are ordered, it follows from Proposition 3.1 that there are only three possibilities for
the relation of α− and α+:

(i) β = α− ≥ α+; (ii) α− ≥ α+ = 0; (iii) α− = α+ ∈ E \ {0, β}.

If α− = β, then for sufficiently large k we can define

ask := sup{x ∈ R : φ−,sk (x) ∈ [0, δe0]X },

bsk := inf{x ∈ R : φ−,sk (x) ∈ [β − δeβ , β]X }.

Hence, ψ−,s(x) := ψs(x + as) and ψ+,s(x) := ψs(x + bs) are the required traveling
waves. If α+ = 0, then for sufficiently large k we can define

ask := sup{x ∈ R : φ+,sk (x) ∈ [0, δe0]X },

bsk := inf{x ∈ R : φ+,sk (x) ∈ [β − δeβ , β]X }.

Hence, ψ−,sk (x) := φ+,sk (x + ask ) and ψ+,sk (x) := φ+,sk (x + bsk ) are the required
traveling waves. If α− = α+ ∈ E \ {0, β}, then by Lemma 3.1 we have α− = α+ ∈

E \ {[0, δe0]X ∪ [β − δeβ , β]X }. Consequently, for sufficiently large k we can define

ask := sup{x ∈ R : φ−,sk (x) ∈ [0, δe0]X },

bsk := inf{x ∈ R : φ−,sk (x) ∈ [β − δeβ , β]X }.

Hence, ψ−,sk (x) := φ−,sk (x + ask ) and ψ+,sk (x) := φ−,sk (x + bsk ) are the required
traveling waves.

Secondly, we show that there exists a subsequence, still denoted by sk , such that
ψ±,sk → ψ± in Cβ and (1/sk)c±,sk → c± ∈ R. Indeed, for each sk > 0, there exists
an integer mk > 0 such that mksk > 2. Then

ψ−,sk = Tmkcsk ◦Qmksk [ψ−,sk ] = Q2 ◦Qmksk−2 ◦Tmkcsk [ψ−,sk ] ∈ Q1 ◦Q1[Cβ ]. (3.6)

Clearly, the compactness ofQ1 implies thatQ1 ◦Q1[Cβ ] is precompact in Cβ . Thus, there
exists a subsequence, still denoted by sk , and nonincreasing functions ψ−, ψ+ ∈ Cβ with
0 < ψ−(0) ≤ δe0 and β − δeβ ≤ ψ+(0) < β such that ψ−,sk → ψ− and ψ+,sk → ψ+
in Cβ . Also we claim that ψ±,sk (±∞) all exist. Indeed, from (3.6) there exists φsk ∈ Cβ
such thatQ1◦Q1[φsk ] → ψ−. Note that {Q1[φsk ]}k≥1 also has a convergent subsequence
with limit φ ∈ Cβ . Hence, by the uniqueness of limit we have Q1[φ] = ψ−. Note that
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ψ−(k) = Q1[φ](k) = Q1[φ(· + k)](0) and {Q1[φ(· + k)]}k≥1 has a convergent subse-
quence. Hence, ψ−(±∞) exist because ψ− is nonincreasing. Similarly, ψ+(±∞) exist.
Also,

ψ−(−∞) ≤ ψ−(0) ≤ δe0 and ψ+(∞) ≥ ψ+(0) ≥ β − δeβ , (3.7)

but
ψ−(0) 6∈ [0, δe0]]X and ψ+(0) 6∈ [[β − δeβ , β]X .

Consequently, by the monotonicity of ψ±,

ψ−(x) 6∈ [0, δe0]]X , ∀x > 0, and ψ+(x) 6∈ [[β − δeβ , β]X , ∀x < 0. (3.8)

Since ψ− and ψ+ are the limits of sequences of monotone functions with different trans-
lations, we can employ the same arguments as in the second step of the proof of Theo-
rem 3.1 to show that ψ−(∞) and ψ+(−∞) are ordered.

To prove that (1/sk)c±,sk have convergent subsequences, we only need to prove that
(1/sk)c−,sk is bounded above and (1/sk)c+,sk is bounded below because c−,sk ≥ c+,sk .
Assume for contradiction that some subsequence, still say (1/sk)c−,sk , tends to∞. Note
that for each s > 0 there exists ns ∈ Z+ such that the integer part of 1/s, denoted by
〈1/s〉, equals ns and 1/(ns + 1) < s ≤ 1/ns . Hence, s〈1/s〉 → 1 as s → 0. Then

lim
k→∞

〈
1
sk

〉
c−,sk = lim

k→∞

1
sk
c−,sk · sk

〈
1
sk

〉
= lim
k→∞

1
sk
c−,sk = ∞.

Thus, using the first observation in (3.8), we have

Q1[δe0] ≥ Q1[ψ−(−∞)] = Q1[ψ−(−∞)](0) = lim
x→−∞

Q1[ψ−(· + x)](0)

= lim
x→−∞

Q1[ψ−](x) = lim
x→−∞

lim
k→∞

(Qsk )
〈1/sk〉[ψ−,sk ](x)

= lim
x→−∞

lim
k→∞

ψ−,sk

(
x +

〈
1
sk

〉
c−,sk

)
≥ lim
x→−∞

lim
y→∞

lim
k→∞

ψ−,sk (y)

= lim
y→∞

ψ−(y) = ψ−(∞) 6∈ [0, δe0]]X , (3.9)

which contradicts Q1[δe0] � δe0. Similarly, if (1/sk)c+,sk → −∞, then the second
observation in (3.8) implies that

Q1[β − δeβ ] ≤ Q1[ψ+(∞)] = Q1[ψ+(∞)](0) = lim
x→∞

Q1[ψ+(· + x)](0)

= lim
x→∞

Q1[ψ+](x) = lim
x→∞

lim
k→∞

(Qsk )
〈1/sk〉[ψ+,sk ](x)

= lim
x→∞

lim
k→∞

ψ+,sk

(
x +

〈
1
sk

〉
c+,sk

)
≤ lim
x→∞

lim
y→−∞

lim
k→∞

ψ+,sk (y)

= lim
y→−∞

ψ+(y) = ψ+(−∞) 6∈ [[β − δeβ , β]X , (3.10)

which contradicts Q1[β − δeβ ] � β − δeβ . Consequently, (1/sk)c±,sk are bounded.
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Finally, we show that either ψ−(x + c−t) or ψ+(x + c+t) established in the second
step is a traveling wave connecting 0 to β. Indeed, for any t > 0, there exist mk ∈ Z and
rk ∈ [0, sk) such that t = mksk − rk . Clearly, rk → 0 as k→∞. Then

Qt [ψ±] = lim
k→∞

Qt+rk [ψ±,sk ] = lim
k→∞

Qmksk [ψ±,sk ] = lim
k→∞

ψ±,sk (· +mkc±,sk )

= lim
k→∞

ψ±,sk

(
· + (t + rk)

1
sk
c±,sk

)
= ψ±(· + c±t),

where the last equality follows from Proposition 7.2(2). From the equality Qt [ψ±] =

ψ±(· + ct) for all t ≥ 0, we see that ψ(±∞) are equilibria. Recall that ψ−(−∞) ≤
δe0 ≤ ψ(∞) and ψ+(∞) ≥ β − δeβ ≥ ψ+(−∞). Then ψ−(−∞) = 0, ψ+(∞) = β,
and there are only three possibilities for ψ−(∞) and ψ+(−∞):

(i) β = ψ−(∞) > ψ+(−∞);
(ii) ψ−(∞) > ψ+(−∞) = 0;

(iii) ψ−(∞) = α = ψ+(−∞) for some α ∈ 6 \ {0, β}.

Since the time-one map Q1 satisfies (A6) with E = 6, we can employ the same argu-
ments as in the proof of Lemma 3.4 to exclude (iii). Thus, either (i) or (ii) holds, complet-
ing the proof. ut

3.5. Continuous-time semiflows in a discrete habitat

In this case, T = R+ and H = Z. Let β � 0 be an equilibrium of the semiflow {Qt }t≥0.
We start with the definition of traveling waves for this case.

Definition 3.5. ψ(i+ct) with ψ ∈ Bβ is said to be a traveling wave with speed c ∈ R of
the continuous-time semiflow {Qt }t≥0 if Qt [ψ](i) = ψ(i + ct) for all i ∈ Z and t ≥ 0.
Clearly, ψ is continuous if c 6= 0.

For each t > 0, define Q̃t : Bβ → Bβ by Q̃s[φ](x) = Qs[φ(· + x)](0). Then it is easy
to see the following result holds.

Lemma 3.7. {Q̃t }t≥0 has the following properties:

(i) Q̃0[φ] = φ for all φ ∈ B.
(ii) Q̃t ◦ Q̃s[φ] = Q̃t+s[φ] for all t, s ≥ 0 and φ ∈ B.

(iii) For fixed x ∈ R, if tn → t and φn(i + x) → φ(i + x) in X for any i ∈ Z, then
Q̃tn [φn](x)→ Q̃t [φ](x) in X .

We combine the ideas in the proofs of Theorems 3.2 and 3.4 to prove the following result
for continuous-time semiflows in a discrete habitat.

Theorem 3.5. Let X = C(M,Rd). Assume that for each t > 0, the map Qt satisfies
(A1) and (A3)–(A5) with E = 6t , and the time-one map Q1 satisfies (A6) with E = 6.
Then there exists c ∈ R such that {Qt }t≥0 admits a nondecreasing traveling wave with
speed c and connecting 0 to β.
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Proof. Let δ, e0, eβ be chosen as in (3.1), (2.7) and (2.3). We proceed in three steps.
Firstly, since for any s > 0 the map Qs satisfies (A1)–(A5), the proofs of Theorems

3.2 and 3.4 show that there exists sk ↓ 0 such that {(Qsk )
n
}n≥0 admits two nondecreasing

traveling waves ψ̃±,sk (x + c±,skn) with c−,sk ≥ c+,sk , that is, there exists a countable
subset 2k such that

Q̃sk [ψ̃±,sk ](x) = ψ̃±,sk (x + c±,sk ), ∀x ∈ R \2k.

Furthermore, ψ̃−,sk is left continuous and ψ̃+,sk is right continuous, with

0 < ψ̃−,sk (0) ≤ δe0 and β − δeβ ≤ ψ̃+,sk (0) < β,

but
ψ̃−,sk (0) 6∈ [0, δe0]]X and ψ̃+,sk (0) 6∈ [[β − δeβ , β]X .

Secondly, we show that for the above sequence sk , there exist a countable set 0̃ ⊂ R
and a subsequence, still denoted by sk , such that (1/sk)c±,sk → c± ∈ R and ψ̃±,sk (x)
converges in X for all x ∈ R \ 0̃. Indeed, let 2 =

⋃
∞

k=12k . Hence, 2 is countable and

Q̃sk [ψ̃±,sk ](x) = ψ̃±,sk (x + c±,sk ), ∀k ≥ 1, x ∈ R \2.

From Proposition 7.4, there exists another countably dense set 0 ⊂ R such that 0 ∩ 2
= ∅. By the same arguments as in the proof of Theorem 3.2, the limits

ψ̃−(x) := lim
y∈0,y↑x

lim
k→∞

ψ̃−,sk (y), ψ̃+(x) := lim
y∈0,y↓x

lim
k→∞

ψ̃+,sk (y), ∀x ∈ R,

are well defined and all ψ̃±(±∞) exist. Furthermore, ψ̃−(∞) and ψ̃+(−∞) are ordered
in X , and

ψ̃−(−∞) ≤ ψ−(0) ≤ δe0 and ψ̃+(∞) ≥ ψ̃+(0) ≥ β − δeβ ,

but
ψ̃−(0) 6∈ [0, δe0]]X and ψ̃+(0) 6∈ [[β − δeβ , β]X .

Further, ψ̃±(x±) exist for all x ∈ R \ 0. Hence, Theorem 7.1 yields a countable subset 0̃
of R such that

ψ̃±,sk (x)→ ψ̃±(x), ∀x ∈ R \ 0̃. (3.11)

By similar arguments to the second step of the proof of Theorem 3.4, (1/sk)c±,sk are
bounded.

Finally, we prove that either ψ̃−(x+c−t) or ψ̃+(x+c+t) is a nondecreasing traveling
wave connecting 0 to β. Indeed, from (3.11) and Proposition 7.3, there exists a countable
subset 01 of R such that

ψ̃±,sk (i + x)→ ψ̃±(i + x), ∀i ∈ Z, x ∈ R \ 01.
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Hence, for any x ∈ R \ 01 and t > 0,

Q̃t [ψ̃−](x) = Qt [ψ̃−(· + x)](0) = lim
k→∞

Qt+rk [ψ̃−,sk (· + x)](0)

= lim
k→∞

Qmksk [ψ̃−,sk (· + x)](0) = lim
k→∞

Q̃mksk [ψ̃−,sk ](x)

= lim
k→∞

(Q̃sk )
mk [ψ̃−,sk ](x) = lim

k→∞
ψ̃−,sk (x +mkc−,sk )

= lim
k→∞

ψ̃−,sk

(
x + (t + rk)

1
sk
c−,sk

)
. (3.12)

If c− = 0, we can choose x0 such that

Qt [ψ̃−(x0 + ·)](i) = lim
k→∞

ψ̃−,sk

(
x + (t + rk)

1
sk
c−,sk

)
= ψ̃−(x0 + i), ∀i ∈ Z.

If c− 6= 0, there exists a countable subset 02 of R such that

Q̃t [ψ̃−](x) = lim
k→∞

ψ̃−,sk

(
x+(t+rk)

1
sk
c−,sk

)
= ψ̃−(x+c−t), ∀x 6∈ 01, x+c−t ∈ 02.

Without loss of generality, we assume that c− > 0. For any y ∈ R, we can choose x0 ∈ R
and t0 ≥ 0 such that x0 + c−t0 = y and ψ̃−(x) is continuous at x = x0 + i for all i ∈ Z.
Now one can find x±,k ∈ R \ 01 and t±,k → t0 with y±,k := x± + c−t±,k ∈ R \ 02 such
that y−,k ↑ y and y+,k ↓ y. Note that

ψ̃−(y
−) := lim

k→∞
ψ̃−(y−,k) = lim

k→∞
Qt−,k [ψ̃−(· + x−,k)](0) = Qt0 [ψ̃−(· + x0)](0),

ψ̃−(y
+) := lim

k→∞
ψ̃−(y+,k) = lim

k→∞
Qt+,k [ψ̃−(· + x+,k)](0) = Qt0 [ψ̃−(· + x0)](0).

Thus, ψ̃−(x) is continuous in x ∈ R. Hence, again by Proposition 7.5 and (3.12), we have
Q̃t [ψ̃−](x) = ψ̃−(x+c−t) for all x ∈ R and t ≥ 0. Therefore, ψ̃−(x+c−t) is a traveling
wave connecting 0 to some α− ∈ 6 \ {0}. Similarly, we can construct the traveling wave
ψ̃+(x+ c+t) connecting some α+ ∈ 6 \ {β} to β. Moreover, α− and α+ are ordered. The
rest of the proof is essentially the same as for Theorem 3.4. ut

4. Semiflows in a periodic habitat

A typical example of evolution systems in a periodic habitat is

ut = (d(x)ux)x + f (u), t > 0, x ∈ R, (4.1)

where d(x) is a positive periodic function of x ∈ R. Under the assumption that f has
exactly three ordered zeros 0 < a < 1 with f ′(0) < 0, f ′(a) > 0 and f ′(1) < 0,
Xin [43] employed perturbation methods to obtain the existence of a spatially periodic
traveling wave V (x + ct, x) with V (−∞, ·) = 0 and V (∞, ·) = 1 provided that d(x)
is sufficiently close to a positive constant in a certain sense (see also [42]). For a general
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positive periodic function d(x), the existence of such a traveling wave remains open.
We will revisit this problem in Subsection 6.3. Below we extend the previous results in
homogeneous habitats to periodic ones.

A mapQ : E → E ⊂ C is said to be spatially periodic with a positive period r ∈ H if
Q◦Tr = Tr ◦Q, where Tr is the r-translation operator. Similarly, a semiflow {Qt }t∈T on
E ⊂ C is said to be spatially periodic with a positive period r ∈ H if Qt ◦ Tr = Tr ◦Qt

for all t ∈ T , where H = Z or R and T = Z+ or R+.

Definition 4.1. (i) An r-periodic function β(x) is said to be an r-periodic steady state
of the map Q [semiflow {Qt }t∈T ] if Q[β] = β [Qt [β] = β for all t ∈ T ].

(ii) V (x + ct, x) is said to be a spatially r-periodic traveling wave with speed c of the
semiflow {Qt }t∈T if Qt [V (·, ·)](x) = V (x + ct, x) and V (·, x) is r-periodic in x.
Moreover, we say that V (ξ, x) connects 0 to β(x) if limξ→−∞ ‖V (ξ, x)‖X = 0 and
limξ→∞ ‖V (ξ, x)− β(x)‖X = 0 uniformly for x ∈ H.

Motivated by [26, Section 5], we can regard a spatially periodic semiflow on E ⊂ C as a
spatially homogeneous semiflow on another phase space. For any positive h ∈ H, define
[0, h]H := {l ∈ H : 0 ≤ l ≤ h}. We use Y to denote C([0, r]H,X ) and S to denote
the set of all bounded functions from rZ to Y . Clearly, Y can be regarded as a subspace
of S. Let Y+ = C([0, r]H,X+) and S+ be the set of all bounded functions from rZ
to Y+. We equip Y with the norm ‖u‖Y = max{‖u(x)‖X : x ∈ [0, r]H}, and S with the
compact-open topology. Thus, Y is a Banach lattice with the norm ‖·‖Y and the cone Y+.

Let
K := {f ∈ S : f (ri)(r) = f (r(i + 1))(0), ∀i ∈ Z}.

It is easy to see that

K ∩ Y = {f ∈ S : f (ri) ≡ f (rj) and f (ri)(0) = f (ri)(r), ∀i, j ∈ Z}.

For any φ ∈ C, define φ̃ ∈ S by

φ̃(ri)(y) = φ(ri + y), ∀i ∈ Z, y ∈ [0, r]H.

Then we have the following observation.

Lemma 4.1. For any f ∈ K, there exists a unique φf ∈ C such that φ̃f = f . Further, if
f ∈ K ∩ Y , then φf is r-periodic.

Proof. For any x ∈ H, we can find i ∈ Z and y ∈ [0, r]H such that x = ri + y. It
is easy to see that this decomposition of x is unique when x ∈ H \ rZ, and is in two
possible ways when x ∈ rZ. More precisely, each x ∈ rZ can be decomposed into either
x = r(i + 1) + 0 or x = ri + r for some i ∈ Z. Note that f (r(i + 1))(0) = f (ri)(r).
Thus φf (x) = φf (ri + y) := f (ri)(y) is a well defined function in C. Clearly, φ̃f = f .
If f (ri) = u for all i ∈ Z, then φf (ri) = u for all i ∈ Z, which implies that φf is
r-periodic. ut

If we define F : C → K by F(φ) = φ̃, then F is a homeomorphism between C and K.
Let β(x) be a strongly positive r-periodic steady state of {Qt }t≥0. With a little abuse of
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notation, we use Cβ to denote the set {φ ∈ C : 0 ≤ φ ≤ β}. Now we can define a semiflow
{Pt }t∈T on Kβ̃ := {f ∈ K : 0 ≤ f ≤ β̃} by

Pt [f ] = F ◦Qt [φf ], ∀f ∈ Kβ̃ , t ∈ T . (4.2)

Clearly, Pt ◦ F = F ◦ Qt for all t ∈ T , which implies that the semiflows {Qt }t∈T and
{Pt }t∈T are topologically conjugate. Moreover, {Pt }t∈T is spatially homogeneous and
β̃ is its equilibrium. Thus, {Qt }t∈T on Cβ has a spatially r-periodic traveling wave if
{Pt }t∈T on Kβ̃ has a traveling wave. Before stating the main result, we first introduce the
bistability assumption. Let β(x) � 0 be an r-periodic steady state of {Qt }t∈T . Assume
that 0 is a trivial steady state. Define

5β := {φ ∈ C : φ(x) = φ(x + r), 0 ≤ φ(x) ≤ β(x), ∀x ∈ H}.

As in Definition 2.1, we can define the strong stability of periodic steady states for a
map Q in the space of periodic functions.

Definition 4.2. A steady state α ∈ 5β is said to be strongly stable from below for the
map Q : 5β → 5β if there exist δ+α > 0 and a strongly positive element e+α ∈ 5β such
that

Q[α − ηe+α ] � α − ηe+α , ∀η ∈ (0, δ+α ]. (4.3)

The strong instability from below is defined by reversing the inequality (4.3). Similarly,
we can define strong stability (and instability) from above.

We need the following bistability assumption on the spatially r-periodic map Q.

(A5′′) (Bistability) 0 and β � 0 are strongly stable r-periodic steady states from above
and below, respectively, for Q : 5β → 5β , and the set of all intermediate
r-periodic steady states is totally unordered in 5β .

We note that a sufficient condition for the unordering property of all intermediate
r-periodic steady states is: Q : 5β → 5β is eventually strongly monotone and all inter-
mediate fixed points are strongly unstable from both above and below.

Theorem 4.1. Let X = C(M,Rd). Assume that for any t > 0, the map Qt satisfies
(A2)–(A4) and the bistability assumption (A5′′). Further, assume that the map P1 :=

FQ1F
−1 satisfies assumption (A6) with C and β replaced by K and β̃, respectively. Then

the spatially r-periodic semiflow {Qt }t∈T has an r-periodic traveling wave V (x, x+ ct).
Moreover, V (x, ξ) is nondecreasing in ξ and connects 0 to β(x).

Proof. Fix t ≥ 0 and define Pt as in (4.2). Then it is easy to see that Pt satisfies (A1)–(A5)
with Cβ replaced by Kβ̃ . From Theorems 3.2 and 3.5, {Pt }t∈T admits a traveling wave

U(x + ct) with U connecting 0 to β̃. By the definitions of traveling waves in a discrete
habitat (see Definitions 3.2 and 3.5), we can find x0 ∈ R such that g := U(· + x0) ∈ Kβ̃
and Pt [g](ri) = U(ri + ct + x0) for all i ∈ Z. By Lemma 4.1, we can find ψ, ht ∈ C
such that ψ̃ = g and h̃t = U(· + ct + x0), and hence Pt [ψ̃] = h̃t . By the topological
conjugacy of Qt and Pt , we have Qt [ψ] = ht . Note that ψ̃ = g = U(· + x0) = h̃0.
Lemma 4.1 yields ψ = h0. If c = 0, then Qt [ψ] = ht ≡ h0 = ψ , which implies that
ψ is a traveling wave with speed zero. If c 6= 0, then we define V (ξ, x) := h(ξ−x)/c(x).
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Consequently,

V (x + ct, x) = ht (x) = Qt [ψ](x) = Qt [h0](x) = Qt [V (·, ·)](x), ∀x ∈ H, t ≥ 0.

This completes the proof. ut

Remark 4.1. In applications of Theorem 4.1, to verify assumption (A6) for the map
P1 it suffices to show that for any intermediate periodic steady state α, the sum of the
rightward spreading speed of Q1 : [0, α]C → [0, α]C and the leftward spreading speed
of Q1 : [α, β]C → [α, β]C is positive since P1 and Q1 are topologically conjugate.

To finish this section, we note that the bistability structure can be obtained for equation
(4.1) under appropriate conditions so that the existence result in [43, 42] is improved (see
the details in Subsection 6.3). Further, Theorem 4.1 with H = Z and X = R can be used
to rediscover the existence result of [14] for a one-dimensional lattice equation under the
bistability assumption.

5. Semiflows with weak compactness

In assumption (A4) of Section 2, we assume thatQ : Cβ → Cβ is compact with respect to
the compact-open topology. In this section, we establish the existence of bistable waves
under some weaker compactness assumptions.

Fix τ > 0. It is well known that the time-t solution map of time-delayed reaction-
diffusion equations such as

∂u

∂t
=
∂2u

∂x2 + f (u(t, x), u(t − τ, x)) (5.1)

is compact in the compact-open topology if and only if t > τ , where the phase space
C is chosen as C(R, C([−τ, 0],R)). The first purpose of this section is to show that our
results are still valid for this kind of evolution equations by introducing an alternative
assumption (A4′).

To state it, we need some notation for time-delayed evolution systems. Let τ ∈ T , let
F be a Banach lattice with the positive cone F+ having nonempty interior, β ∈ Int(F+),
and Xβ = C([−τ, 0],Fβ). Any φ ∈ Cβ can be regarded as an element in C([−τ, 0] ×
H,F+). For any subset B of [−τ, 0] ×H, we define φ|B as the restriction of φ to B.

(A4′) (Compactness) There exists s ∈ (0, τ ] such that:

(i) Q[φ](θ, x) = φ(θ + s, x) whenever θ + s ≤ 0.
(ii) For any ε ∈ (0, s), the set Q[Cβ ]|[−s+ε,0]×H is precompact.

(iii) For any subset J ⊂ Cβ with J (0, ·) ⊂ C(H,Yβ) being precompact, the set
Q[J ]|[−s,0]×H is precompact.

This assumption was motivated by [25, Assumption (A6′)]. Let us use equation (5.1) to
explain (A4′). For any t > τ , one can directly verify that the solution map Qt satisfies
(A4) by rewriting (5.1) in integral form (see, e.g., [41]); and for any t ∈ (0, τ ], one can
show that Qt satisfies (A4′)(i) & (ii) by the same arguments. For (A4′)(iii), we provide a
proof below.
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Let T (0) = I , and for any t ∈ (0, τ ], let T (t) be the time-t map of the heat equation
ut = 1u. Then (5.1) can be written as

u(t, x;φ) = T (t)φ(x)+

∫ t

0
T (t − s)f (u(s, u(s − τ)))(x) ds,

and hence Qt [φ](θ, x) = u(t + θ, x). Note that for any φ ∈ Cβ , T (t)φ → φ in
the compact-open topology as t → 0. It then follows from the triangular inequality
and the absolute continuity of integrals that for any compact subset H1 ⊂ R, the set
Qt [J ]|[−t,0]×H1 is equicontinuous, and hence Q[J ]|[−t,0]×R is precompact in Cβ .

Lemma 5.1. Let Aξ , ξ ≥ 1, be defined as in Section 3 and let β ∈ Int(F+).
Assume that the map Q : Cβ → Cβ satisfies (A4′). Then there exists an inte-
ger m0 such that

⋃
ξ∈[1,1+δ](Q ◦ Aξ )

m0 [Cβ ] ⊂ Cβ is precompact when H = R, and⋃
ξ∈[1,2](Q̃ ◦ Aξ )

m0 [Bβ ](x) ⊂ Xβ is precompact for any x ∈ R when H = Z.

Proof. We only handle the case H = R since the proof for H = Z is essentially sim-
ilar. Let s and τ be as in (A4′). There exists m0 ∈ N such that s ∈

( 1
m0+1τ,

1
m0
τ
]
. By

assumption (A4′)(i), for any ξ ≥ 1 and φ0 ∈ Cβ ,

φ
ξ
1 (θ, x) := Q ◦ Aξ [φ0](θ, x) =

{
φ0(θ + s, ξx), θ + s ≤ 0,
Q[φ0(ξ ·)](θ, x), θ + s > 0

This implies that for any ξ ≥ 1 and ε < s − 1
m0+1τ ,⋃

ξ∈[1,2]

Q ◦ Aξ [Cβ ]|[−s+ε,0]×R ⊂ Q[Cβ ]|[−s+ε,0]×R.

Since Q[Cβ ]|[−s+ε,0]×R is precompact, as assumed in (A4′)(ii), it then follows that⋃
ξ∈[1,2]Q ◦ Aξ [Cβ ](0, ·) ⊂ C(R,Yβ) is precompact. By (A4′)(iii) and similar argu-

ments, we have

φ
ξ
2 (θ, x) := Q ◦ Aξ [φ

ξ
1 ](θ, x) =

{
φ
ξ
1 (θ + s, ξx), θ + s ≤ 0,
Q[φ

ξ
1 (ξ ·)](θ, x), θ + s > 0,

=


φ0(θ + 2s, ξ2x), θ + 2s ≤ 0,
Q[φ0(ξ ·)](θ + s, ξx), 0 < θ + 2s ≤ s,
Q[φ

ξ
1 (ξ ·)](θ, x), θ + s > 0,

This implies that
⋃
ξ∈[1,2](Q◦Aξ )

2
[Cβ ]|[−2s+ε,0]×R is precompact. Consequently, the set⋃

ξ∈[1,2](Q ◦ Aξ )
2
[Cβ ](0, ·) ⊂ C(R,Yβ) is compact. By induction, we have

φ
ξ
m0+1(θ, x) := Q ◦ A[φ

ξ
m0
](θ, x) =

{
φ
ξ
m0(θ + s, ξx), θ + s ≤ 0,
Q[φ

ξ
m0(ξ ·)](θ, x), θ + s > 0,

= · · ·
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=



Q[φ0(ξ ·)](θ + (m0 + 1)s, ξm0x), 0 < θ + (m0 + 1)s ≤ s,
Q[φ

ξ
1 (ξ ·)](θ +m0s, ξ

m0−1x), 0 < θ +m0s ≤ s,

· · ·

Q[φ
ξ
m0−1(ξ ·)](θ + s, ξx), 0 < θ + s ≤ s,

Q[φ
ξ
m0 ](θ, x), θ + s > 0.

This implies that
⋃
ξ∈[1,2](Q ◦ Aξ )

m0 [Cβ ] is precompact in Cβ . ut

Theorem 5.1. All results in Theorems 3.1-3.5 and 4.1 are valid if we replace (A4)
with (A4′).

Proof. Following the proof of these theorems, we only need to modify the parts where
we use the compactness assumption (A4). At these parts, we apply Lemma 5.1. ut

Note that the solution maps of the nonlocal dispersal equation

ut = J ∗ u− u+ f (u)

satisfy neither (A4) nor (A4′). The second purpose of this section is to modify our theory
so that it applies to such integro-differential systems in a homogeneous habitat.

Let M denote the set of all nondecreasing functions from R to X , and β ∈ X+.
We equip M with the compact-open topology. Assume that Q maps Mβ to Mβ . Let E
denote the set of fixed points of Q restricted to Xβ . Suppose that 0 and β are in E. We
impose the following assumptions on Q:

(B1) (Translation invariance) Ty ◦Q[φ] = Q ◦ Ty[φ] for all φ ∈Mβ and y ∈ R.
(B2) (Continuity) Q : Mβ → Mβ is continuous in the sense that if φn → φ in Mβ ,

then Q[φn](x)→ Q[φ](x) in Xβ for almost all x ∈ R.
(B3) (Monotonicity) Q is order preserving in the sense that Q[φ] ≥ Q[ψ] whenever

φ ≥ ψ in Mβ .
(B4) (Weak compactness) For any fixed x ∈ R, the set Q[Mβ ](x) is precompact in Xβ .
(B5) (Bistability) The fixed points 0 and β are strongly stable from above and below,

respectively, for the map Q : Xβ → Xβ , and the set E \ {0, β} ⊂ Xβ is totally
unordered.

(B6) (Counter-propagation) For each α ∈ E \ {0, β}, c∗−(α, β)+ c
∗
+(0, α) > 0.

Comparing assumptions (A1)–(A6) and (B1)–(B6), one can find that the assumptions
of translation invariance, monotonicity, bistability and counter-propagation are the same.
The difference lies in the assumptions of continuity and compactness. Clearly, the com-
pactness assumption (B4) is much weaker than (A4).

Theorem 5.2. Let X = C(M,Rd) and assume Q : Mβ → Mβ satisfies (B1)–(B6).
Then there exist c ∈ R and ψ ∈Mβ connecting 0 to β such that Q[ψ](x) = ψ(x + c)
for all x ∈ R.

Proof. We combine the proofs of Theorems 3.1 and 3.2. More precisely, one can repeat
the proof of Theorem 3.1 except for the parts where the compactness assumption (A4) is
used. For these parts, one needs to use the idea in Theorem 3.2, where Q̃ has the same
compactness property as Q. ut
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In the rest of this section, we say {Qt }t≥0 is a semiflow on Mβ provided that Q0 = I ;
Qt ◦Qs = Qt+s for all t, s > 0; andQtn [φn](x)→ Qt [φ](x) in Xβ for almost all x ∈ R
whenever tn→ t and φn→ φ in Mβ .

Theorem 5.3. Let X = C(M,Rd). Assume that {Qt }t≥0 is a semiflow on Mβ , and for
any t > 0, the mapQt satisfies (B1) and (B3)–(B6). Then there exist c ∈ R and ψ ∈Mβ

connecting 0 to β such that Qt [ψ](x) = ψ(x + ct) for all x ∈ R.
Proof. As in the proof of Theorem 5.2, we need to combine the proofs of Theorems 3.4
and 3.5. ut

Similarly, we can define ω-time periodic semiflows on Mβ and obtain the following
result.

Theorem 5.4. Let X = C(M,Rd). Assume that {Qt }t≥0 is an ω-time periodic semiflow
on Mβ . Let β(t) be a strongly positive periodic solution of {Qt }t≥0 restricted to Xβ .
Further, assume that the Poincaré map Qω satisfies (B1) and (B3)–(B6) with β = β(0).
Then there exist c ∈ R and φ(t, x) with φ(t,−∞) = 0 and φ(t,∞) = β(t) such that
Qt [ψ](x) = ψ(t, x+ct) for all x ∈ R. Moreover, φ(t, ·) ∈Mβ and φ(t, ·) is ω-periodic
in t ≥ 0.

6. Applications

In this section, we apply the abstract results to four kinds of monotone evolution systems:
a time-periodic reaction-diffusion system, a parabolic system in a cylinder, a parabolic
equation with variable diffusion, and a nonlocal and time-delayed reaction-diffusion
equation.

6.1. A time-periodic reaction-diffusion system

Consider the time-periodic reaction-diffusion system
∂u

∂t
= A1u+ f (t, u), x ∈ R, (6.1)

where u= (u1, . . . , un)
T , A= diag{d1, . . . , dn} with each di > 0 and f = (f1, . . . , fn)

T

is ω-periodic in t ≥ 0 (i.e., f (t, ·) = f (t + ω, ·)). The existence of periodic bistable
traveling waves of (6.1) with n = 1 was proved in [1]. Here we generalize this result to
n ≥ 1.

Let f ∈ C1(R+×Rn,Rn). In order to apply Theorem 3.3 to system (6.1), we choose
C := C(R,Rn),X := Rn, and E ⊂ C to be the set of all bounded functions from R
to Rn. Using the solution maps {T (t)}t≥0 of the heat equation ∂u

∂t
= A1u, we write (6.1)

in integral form:

u(t;φ) = T (t)φ +

∫ t

0
T (t − s)f (s, u(s;φ)) ds. (6.2)

Define Qt [φ] := u(t;φ) for all φ ∈ E . Let 0 and β � 0 be two fixed points of the
Poincaré map Qω in X , and let E be the set of all spatially homogeneous fixed points of
Qω in Xβ . We impose the following assumptions:
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(C1) The Jacobian matrixDf (t, u) (D = Du) is cooperative and irreducible for all t ≥ 0
and u ≥ 0. For any ω-periodic solution p(t) of u′ = f (t, u) with 0 < p(0) < β,
every off-diagonal entry of Df (t, p(t)) is either strictly positive for all t or identi-
cally zero.

(C2) The spatially homogeneous system u′ = f (t, u) is of bistable type, that is, 0 and β
are stable fixed points ofQω in the sense that s

(
d
du
Qω[0]

)
<0 and s

(
d
du
Qω[β]

)
<0,

and any α ∈ E \ {0, β} is unstable in the sense that s
(
d
du
Qω[α]

)
> 0, where

s(M) is the stability modulus of the matrix M defined by s(M) = max{Re λ :
λ is an eigenvalue}.

Theorem 6.1. Assume that (C1)–(C2) hold, and let β(t) be the periodic solution of u′ =
f (t, u) with β(0) = β. Then there exists c ∈ R such that (6.1) admits a time-periodic
traveling wave U(t, x + ct) connecting 0 to β(t).

Proof. It is easy to see that the discrete semiflow {Qn
ω}n≥1 on Cβ satisfies (A1)–(A5) with

Q = Qω. Next we show that (A6) holds with Q = Qω.
Note that for any α ∈ E \ {0, β}, {Qn

ω}n≥1 : [α, β]C → [α, β]C has monostable
dynamics, where α is unstable and β is stable. By the theory developed in [26],Qω admits
leftward and rightward spreading speeds c∗−(α, β) and c∗+(α, β). Since Qω is reflectively
invariant, we further have c∗−(α, β) = c

∗
+(α, β) =: c

∗(α, β), which is called the spreading
speed of this monostable subsystem. Note that {Qn

ω}n≥1 : [0, α]C → [0, α]C also has
monostable dynamics, where 0 is stable and α is unstable. Similarly, this monostable
subsystem also admits a spreading speed c∗(0, α).

Denote the periodic solution Qt [α] by α(t), and define

f̄ (t, u) = f (t, α(t)+ u)− f (t, α(t)). (6.3)

Clearly, α(0) = α and f̄ (t, 0) ≡ 0. Then the semiflow Qt has the same dynamics on
[α, β]C as the semiflow Q̄t on Cβ−α associated with

ut = A1u+ f̄ (t, u). (6.4)

In particular, these two semiflows share the spreading speed c∗(α, β).
To give a lower bound on c∗(α, β), we employ a similar idea to that in the proof of

[40, Lemma 4.1]. Choose ρ > 0 such that the diagonal entries of Df̄ (t, 0) + ρI are
strictly positive. We define for each i the projection

{5i[u]}j =

{
uj if {Df̄ (t, 0)+ ρI }ij > 0,
0 if {Df̄ (t, 0)+ ρI }ij = 0,

(6.5)

and

σ(t) = min
{
∂f̄i

∂uj
(t, 0)+ ρIij :

∂f̄i

∂uj
(t, 0)+ ρIij > 0

}
.

It is easy to see from assumption (C1) that 5i is independent of t ∈ [0, ω], and σ :=
inf{σ(t) : t ∈ [0, ω]} is positive. Further,

u ≥ 5i[u] and f̄i(t, u) ≥ f̄i(t,5i[u]), ∀t ≥ 0, u ≥ 0. (6.6)



2274 Jian Fang, Xiao-Qiang Zhao

By the differentiability of f̄ = (f̄1, . . . , f̄n), for any ε ∈ (0, 1), there exists η = η(ε)� 0
in Rn such that

f̄i(t,5i[u]) ≥ ∇f̄i(t, 0) ·5i[u] − σε‖5i[u]‖, ∀t ∈ [0, ω], u ∈ [0, η]. (6.7)

Note that
∇f̄i(t, 0) ·5i[u] = (Df̄ (t, 0)u)i, ∀u ∈ Rn, (6.8)

and

‖5i[u]‖ ≤
∑
j

(5i[u])j ≤
∑
j

(Df̄ (t, 0)+ ρI)ij
σ

(5i[u])j

=

∑
j

∇f̄i(t, 0) ·5i[u] + ρ(5i[u])i
σ

= σ−1(Df̄ (t, 0)u+ ρu)i, ∀u ≥ 0. (6.9)

Combining (6.6)–(6.9), we obtain

f̄ (t, u) ≥ Df̄ (t, 0)u− ε[Df̄ (t, 0)u+ ρu], ∀t ∈ [0, ω], u ∈ [0, η]. (6.10)

For the above η = η(ε), there exists γ = γ (ε)� 0 in Rn such that

Q̄t [φ] ≤ Q̄t [γ ] ≤ η, ∀φ ∈ Cγ , t ∈ [0, ω]. (6.11)

Thus, the comparison theorem implies that

Q̄t [φ] ≥ M
ε
t [φ], ∀φ ∈ Cγ , t ∈ [0, ω], (6.12)

where Mε
t is the solution map of

ut = A1u+Df̄ (t, 0)u− ε(Df̄ (t, 0)+ ρI)u. (6.13)

Let ρε(µ) be the principal Floquet multiplier of the linear periodic cooperative and irre-
ducible system

dv

dt
= [µ2A+Df̄ (t, 0)]v − ε(Df̄ (t, 0)+ ρI)v. (6.14)

Since limε→0+ ρε(0) = ρ0(0) > 1, we can fix an ε ∈ (0, 1) such that ρε(0) > 1.
Let v(t, w) be the solution of (6.14) satisfying v(0, w) = w ∈ Rn. It is easy to see
that u(t, x) = e−µxv(t, w) is a solution of the linear periodic system (6.13). Define
8ε(µ) := ln ρε(µ)/µ. From [25, Theorem 3.10] and (6.12), we have

c∗(α, β) ≥ inf
µ>0

8ε(µ). (6.15)
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Now we prove that 8ε(∞) = ∞. Let λε(µ) = (1/ω) ln ρε(µ). By Floquet theory,
there exists a positive ω-periodic function ξ(t) := (ξ1(t), . . . , ξn(t))

T such that v(t) :=
eλε(µ)tξ(t) is a solution of (6.14). In particular,

ξ ′1(t) = (d1µ
2
− λε(µ)− ερ)ξ1(t)+ (1− ε)

n∑
i=1

∂

∂ui
f̄1(t, 0)ξi(t).

Dividing by ξ1(t) and integrating from 0 to ω gives

0 = (d1µ
2
− λε(µ)− ερ)ω + (1− ε)

∫ ω

0

n∑
i=1

∂

∂ui
f̄1(t, 0)ξi(t)/ξ1(t) dt, ∀µ > 0.

Since the matrix Df̄ (t, 0) is cooperative and ξ(t) is positive, we obtain

0 ≥ (d1µ
2
− λε(µ)− ερ)ω + (1− ε)

∫ ω

0

∂

∂u1
f̄1(t, 0) dt.

This implies that

8ε(µ) =
ωλε(µ)

µ
≥ d1µω +

1
µ

[
−ερω + (1− ε)

∫ ω

0

∂

∂u1
f̄1(t, 0) dt

]
,

and hence 8ε(∞) = ∞. By [25, Lemma 3.8], we have infµ>08ε(µ) > 0. Therefore,
c∗(α, β) > 0. Similarly, we can prove that c∗(0, α) > 0. Thus, assumption (A6) with
Q = Qω holds. Consequently, Theorem 3.3 completes the proof. ut

6.2. A reaction-diffusion-advection system in a cylinder

In this subsection, we consider the system{
∂u
∂t
= A ∂2u

∂x2 + B1yu+ E(y)
∂u
∂x
+ f (u), x ∈ R, y ∈ � ⊂ Rm−1, t > 0,

∂u
∂ν
= 0 on (0,∞)× R× ∂�,

(6.16)

whereA,B are positive definite diagonal n×nmatrices,E is a diagonal matrix of smooth
functions of y, � is a bounded and convex open subset in Rm−1 with smooth boundary
∂�, 1y =

∑m−1
i=1 ∂

2/∂y2
i , and ν is the outer unit normal vector to ∂�× R.

The existence of bistable traveling waves for (6.16) with n = 1 was obtained in [11].
Here we extend this result to the case n ≥ 2. Assume that f ∈ C1(Rn,Rn) satisfies the
following conditions:

(D1) The Jacobian matrix Df (u) is cooperative and irreducible for all u ≥ 0.
(D2) f is of bistable type in the sense that it has exactly three ordered zeros: 0 < a < β

and s(Df (0)) < 0, s(Df (a)) > 0, s(Df (β)) < 0.

Theorem 6.2. Assume that (D1)–(D2) hold. Then there exists c ∈ R such that system
(6.16) admits a traveling wave connecting 0 to β with speed c.
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Proof. In order to employ Theorem 3.4, we choose X := C(�̄,Rn) and C := C(R,X )
with the standard cones X+ and C+, respectively. LetG(t, x, y,w) be the Green function
of the linear equation{

∂u
∂t
= A ∂2u

∂x2 + B1yu+ E(y)
∂u
∂x
, x ∈ R, y ∈ �, t > 0,

∂u
∂ν
= 0 on (0,∞)× R× ∂�.

(6.17)

Then the solution of (6.17) with initial value u(0, ·) = φ(·) ∈ C can be expressed as

u(t, x, y;φ) =

∫
R

∫
�

G(t, x − z, y,w)φ(z,w) dw dz.

Define T (t)φ = u(t, ·;φ) for φ ∈ Cβ . Using the variation of constants formula, we write
(6.16) subject to u(0, ·) = φ(·) ∈ Cβ as an integral equation

u(t, x, y;φ) = T (t)[φ](x, y)+

∫ t

0
T (t − s)f (u(s, x, y)) ds. (6.18)

By linear operator theory, for any φ ∈ Cβ , system (6.16) has a unique solution u(t;φ)with
u(0;φ) = φ, which exists globally on [0,∞). Define Qt [φ] := u(t, φ). Then {Qt }t≥0 is
a subhomogeneous semiflow on Cβ (see [25, Section 5.3]). Also, assumption (D1) ensures
that the semiflow {Qt }t≥0 restricted to Xβ is strongly monotone (see [34]). Further, it is
easy to see thatQt , t ≥ 0, satisfies assumptions (A1)–(A4). Since the domain� is convex,
it follows from the result in [24] that any nonconstant steady state of the x-independent
system {

∂u
∂t
= B1yu+ f (u), y ∈ �, t > 0,

∂u
∂ν
= 0 on (0,∞)× ∂�,

is linearly unstable. This then implies thatQt satisfies (A5′). Now it remains to show that
(A6) holds for Q1.

For each x-independent steady state α = α(y) in [[0, β]]X , system (6.16) has mono-
stable dynamics on [α, β]C . To better understand the dynamics of this subsystem, we
make the transform u = w+ α and define g(w, y) := f (w+ α(y))− f (α(y)). Then the
dynamics is equivalent to that of the following system on [0, β − α]C :{

∂w
∂t
= A ∂2w

∂x2 + B1yw + E(y)
∂w
∂x
+ g(w, y), x ∈ R, y ∈ �, t > 0,

∂w
∂ν
= 0 on (0,∞)× R× ∂�.

(6.19)

System (6.19) has exactly two x-independent steady states S1 := 0 and S2 := β−α � 0.
By the theory developed in [26], (6.19) has a leftward spreading speed ĉ∗− in a strong
sense. Let c∗−(α, β) be defined as in (2.6) with Q = Q1. Then c∗−(α, β) ≥ ĉ

∗
−.

To verify (A6) for Q1, we first estimate the speed ĉ∗−. Consider the linearized system
of (6.19) at the equilibrium S1:{

∂w
∂t
= A ∂2w

∂x2 + B1yw + E(y)
∂w
∂x
+

∂g(0,y)
∂w

w, x ∈ R, y ∈ �, t > 0,
∂w
∂ν
= 0 on (0,∞)× R× ∂�.

(6.20)
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Suppose w(t, x, y) := eµxv(t, y) is a solution of (6.20). Then v(t, y) satisfies the µ-pa-
rameterized linear parabolic equation{

∂v
∂t
= B1yu+

[
µ2A+ µE(y)+

∂g(0,y)
∂w

]
v, y ∈ �, t > 0,

∂v
∂ν
= 0 on (0,∞)× ∂�.

(6.21)

Let λ−(µ) be the principal eigenvalue of (6.21). Then by the results in [25, Section 3], it
follows that ĉ∗− ≥ infµ>0 λ

+(µ)/µ, and λ−(µ) is convex in µ. Moreover, it is easy to see
that limµ→∞ λ

−(µ)/µ = ∞ and limµ→0+ λ
−(µ)/µ = ∞, and hence λ−(µ)/µ attains

its infimum at some µ1 ∈ (0,∞).
Similarly, system (6.16) has monostable dynamics on [0, α]C . To better understand

this dynamics of this subsystem, we make the transformw = α−u and define h(w, y) :=
f (α(y))− f (α(y)−w). Then the dynamics is equivalent to that of the following system
on [0, α]C :{

∂w
∂t
= A ∂2w

∂x2 + B1yw + E(y)
∂w
∂x
+ h(w, y), x ∈ R, y ∈ �, t > 0,

∂w
∂ν
= 0 on (0,∞)× R× ∂�.

By the same arguments, this system has a rightward spreading speed ĉ∗+ and
c∗+(0, α) ≥ ĉ∗+. Also, by a similar procedure, we define λ+(µ) as the principal eigen-
value of the problem{

∂v
∂t
= B1yu+

[
µ2A− µE(y)+

∂g(0,y)
∂w

]
v, y ∈ �, t > 0,

∂v
∂ν
= 0 on (0,∞)× ∂�.

(6.22)

Then ĉ∗+ ≥ infµ>0 λ
+(µ)/µ, and λ+(µ)/µ attains its infimum at some µ2 ∈ (0,∞).

Clearly, λ+(µ) = λ−(−µ) because ∂g(0,y)
∂w
=

∂h(0,y)
∂w
= f ′(α(y)).

From assumption (D2), we see that S1 [S2] is a linearly unstable [stable] steady state
of the x-independent system{

∂w
∂t
= B1yw + g(w, y), y ∈ �, t > 0,

∂w
∂ν
= 0 on (0,∞)× ∂�.

(6.23)

More precisely, letting λ0 be the principal eigenvalue of the linearized equation at S1, we
have λ0 > 0. Obviously, equations (6.21) and (6.22) with µ = 0 are the same, and hence
λ+(0) = λ0 = λ

−(0) > 0.
With the information above, now we can show that Q1 satisfies (A6). Let θ = µ2

µ1+µ2

and λ+(µ) = λ−(−µ). Note that θµ1 + (1− θ)(−µ2) = 0. Hence,

c∗−(α, β)+ c
∗
+(0, α) ≥

λ−(µ1)

µ1
+
λ+(µ2)

µ2
=
µ1 + µ2

µ1µ2
[θλ−(µ1)+ (1− θ)λ−(−µ2)]

≥
µ1 + µ2

µ1µ2
λ−(θµ1 + (1− θ)(−µ2))

=
µ1 + µ2

µ1µ2
λ−(0) =

µ1 + µ2

µ1µ2
λ0 > 0. (6.24)

Consequently, Theorem 3.4 completes the proof. ut
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6.3. A parabolic equation with periodic diffusion

In this subsection, we study the existence of spatially periodic traveling waves of the
parabolic equation

ut = (d(x)ux)x + f (u), t > 0, x ∈ R, (6.25)

where f (u) = u(1 − u)(u − a), a ∈ (0, 1), and d(x) is a positive, C1, and r-periodic
function on R for some real r > 0.

For any φ ∈ C(R, [0, 1]), equation (6.25) admits a unique solution u(t;φ) with
u(0;φ) = φ. Define Qt : C(R, [0, 1]) → C(R, [0, 1]) by Qt [φ] = u(t;φ). Then
{Qt }t≥0 is a continuous, compact and monotone semiflow on C(R, [0, 1]) equipped with
the compact-open topology. Let Cper(R, [0, 1]) be the set of all continuous and r-periodic
functions from R to [0, 1]. Then the semiflow {Qt }t≥0 restricted to Cper(R, [0, 1]) is
strongly monotone. Choosing H = R and X = R in Theorem 4.1, one can easily verify
that {Qt }t≥0 satisfies assumptions (A2)–(A4). If (6.25) admits the bistability structure,
then Proposition 3.1 implies (A5′′) and a similar argument to that in the previous section
shows that (A6) also holds. Thus, we focus on finding sufficient conditions on d(x) under
which (6.25) admits the bistability structure.

Let ū be an r-periodic steady state of (6.25). As in [10], we define λ1(ū, d) as the
largest number such that there exists a function φ > 0 which satisfies{

(dφx)x + f
′(ū)φ = λ1(ū, d)φ, x ∈ R,

φ is r-periodic and ‖φ‖∞ = 1.
(6.26)

We call λ1(ū, d) the principal eigenvalue of ū, and φ the corresponding eigenfunction.
We say ū is linearly unstable if λ1(ū, d) > 0, and linearly stable if λ1(ū, d) < 0. Define

W := {ψ ∈ C1(R,R) : ψ(x) = ψ(x + r), ∀x ∈ R}

and equip it with the topology induced by the maximum norm. We say ψ ∈ W has
property (P) if every possible nonconstant r-periodic steady state of (6.25) with d = ψ
is linearly unstable, that is, (6.25) with d = ψ admits no nonconstant r-periodic steady
state ū such that λ1(ū, ψ) ≤ 0. Define

Y := {ψ ∈ W : ψ(x) > 0 and ψ has property (P)}.

Lemma 6.1. Any positive constant function is in Y .

Proof. Let d(x) ≡ d̄ be given. If (6.25) has no nonconstant r-periodic steady state, we
are done. Let ū be a nonconstant r-periodic steady state of (6.25). We need to prove
λ1(ū, d̄) > 0. Assume for contradiction that λ1(ū, d̄) ≤ 0. Let φ be the positive eigen-
function associated with λ1(ū, d̄). Define M := max0≤x≤r{|ūx |/φ} and ψ(x, t) :=
e−γ t (|ūx |

2/φ −M2φ). It is easy to see that ψ(t, x) ≤ 0 for all x and t . Let ξ := |ūx |2/φ
and η := M2φ. Then

ξx = (|ūx |
2φ−1)x = 2ūx ūxxφ−1

− |ūx |
2φ−2φx,

ξxx = 2φ−3
[ūxxφ − ūxφx]

2
+ φ−3

[2ūx ūxxxφ2
− |ūx |

2φφxx].



Bistable traveling waves for monotone semiflows 2279

Note that
0 = [d̄ūxx + f (ū)]x = d̄ūxxx + f ′(ū)ūx .

It follows that

eγ t
(
ψt − d̄ψxx + [γ − f

′(ū)]ψ
)

= −[d̄ξxx + f
′(ū)ξ ] + λ1(ū, d̄)η

= −2d̄φ−3
[ūxxφ − ūxφx]

2
− d̄φ−3

[2ūx ūxxxφ2
− |ūx |

2φφxx] − f
′(ū)|ūx |

2φ−1

+ λ1(ū, d̄)η

≤ d̄|ūx |
2φ−2φxx + f

′(ū)φ−1
|ūx |

2
− 2f ′(ū)|ūx |2φ−1

− 2d̄φ−1ūx ūxxx + λ1(ū, d̄)η

= λ1(ū, d̄)ξ + λ1(ū, d̄)η − 2ūxφ−1
[f ′(ū)ūx + d̄ūxxx] = λ1(ū, d̄)[ξ + η].

Hence, ψt − d̄ψxx + [γ − f ′(ū)]ψ ≤ 0 because λ1(ū, d̄) ≤ 0.
Since ū is not a constant andψ(t, x) is r-periodic in x ∈ R, we can choose x0 such that

ψ(x0, t) = ψ(x0 + r, t) = minx∈R ψ(x, t) < 0, and hence ψx |x=x0 = ψx |x=x0+r = 0.
Thus, ψ(t, x) with x ∈ [x0, x0 + r] satisfies the equation{

ψt − d̄ψxx + [γ − f
′(ū)]ψ ≤ 0, x ∈ (x0, x0 + r),

ψx |x=x0 = ψx |x=x0+r = 0,
(6.27)

and ψ(t, x) attains its maximum 0 at (x∗, t) with x∗ ∈ (x0, x0 + r). By the strong max-
imum principle, we see that ψ(t, x) ≡ 0, which implies that ūx/φ is a constant. Since
ūx/φ is r-periodic, it follows that ūx ≡ 0, and hence ū is a constant, a contradiction. ut

Remark 6.1. By the proof above, the conclusion of Lemma 6.1 is valid for any f ∈ C1.

Lemma 6.2. Y is nonempty and open in W .

Proof. Clearly, Lemma 6.1 implies that Y 6= ∅. Let d∗ ∈ Y . We need to show that
d∗ is an interior point of Y . Assume for contradiction that there is a sequence of points
dn ∈ W \ Y such that dn → d∗ in W as n → ∞. Then (6.25) with d = dn admits
a nonconstant r-periodic steady state un with the principal eigenvalue λ1(un, dn) ≤ 0.
Using the transformation vn = dn(un)x , we see that (un, vn) is a periodic solution of the
ordinary differential system {

(un)x = vn/dn,

(vn)x = −f (un).
(6.28)

By elementary phase plane arguments, it then follows that

0 ≤ inf
x∈R

un(x) ≤ a ≤ sup
x∈R

un(x) ≤ 1, ∀n ≥ 1, x ∈ R. (6.29)

Thus, the sequence of functions ((un)x, (vn)x) is uniformly bounded and equicontinuous,
and hence (un, vn) has a uniformly convergent subsequence, still denoted by (un, vn).
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Let (u∗, v∗) be the limiting function of (un, vn). Then u∗ is an r-periodic steady state of
(6.25) with d = d∗. It is easy to see from (6.29) that u∗ is not the constant function 0 or 1.

Let φn be the positive eigenfunction associated with λ1(un, dn). Then

(dn(φn)x)x + f
′(un(x))φn = λ1(un, dn)φn. (6.30)

Dividing (6.30) by φn and integrating from 0 to r , we obtain∫ r

0

dn[(φn)x]
2

φ2
n

dx +

∫ r

0
f ′(un(x)) dx = λ1(un, dn)r ≤ 0. (6.31)

Since f ∈ C1 and f ′(a) > 0, we see that u∗ cannot be the constant a: otherwise, the
uniform convergence of un to a implies that f ′(un(x)) > 0 for all x ∈ [0, r] and suffi-
ciently large n, which contradicts (6.31). Thus, u∗ is a nonconstant r-periodic function.
Since d∗ ∈ Y , we have λ1(u

∗, d∗) > 0.
Note that un → u∗ in C(R,R) and dn → d∗ in W . By the variational charac-

terization of the principal eigenvalue λ1(un, dn) (see [10, (5.2)]), it then follows that
0 ≥ λ1(un, dn)→ λ1(u

∗, d∗) > 0, a contradiction. ut

The following counter-example shows that the parabolic equation (6.25) admits no bista-
bility structure for the general periodic function d(x).

Lemma 6.3. Let either f (u) = u(1−u2), or f (u) = u(1−u)(u−1/2). Then there exists
a positive function d ∈ W such that (6.25) admits a pair of linearly stable, nonconstant,
and r-periodic steady states.

Proof. We only consider the case where f (u) = u(1 − u2) since the other one can
be obtained under appropriate scalings. Our proof is based on the main result in [21,
Theorem 3]. Without loss of generality, we assume that r = 4. In what follows, we use
some notation of [21].

Let l ∈ (0, 1) be fixed and c0 be the step function on [−1, 1] defined by

c0(x) =

{
1, x ∈ [−1,−l] ∪ (l, 1],
0, x ∈ (−l, l].

(6.32)

Define D := {(x, y) : x = ±l, y ∈ [0, 1]} ∪ graph of c0. By [21, Theorem 3], for any
positive even function c ∈ C1([−1, 1],R+) which is sufficiently close to c0 (in the sense
that the distance between D and the graph of c is small enough), the Neumann boundary
problem {

ut = (cux)x + u(1− u2), x ∈ (−1, 1),
ux(t,±1) = 0,

(6.33)

admits an odd increasing steady state uc which is linearly stable. That is, there exist
λ1 < 0 and φ > 0 such that{

(cφx)x + f
′(uc)φ = λ1φ, x ∈ (−1, 1),

φx(±1) = 0.
(6.34)
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In particular, we can choose c such that cx(−1) = cx(1) = 0. Since c is even and f
is odd, we see that vc(x) := uc(−x) is also a steady state, and λ1 is the corresponding
eigenvalue with the positive eigenfunction φ(−x).

Now we can construct a linearly stable 4-periodic steady state of (6.25). Define two
4-periodic functions by

d̃(x) =

{
c(x), x ∈ [−1, 1],
c(2− x), x ∈ (1, 3),

w1(x) =

{
uc(x), x ∈ [−1, 1],
uc(2− x), x ∈ (1, 3).

Then w1(x) is a 4-periodic steady state of (6.25) with d = d̃ . Let the positive 4-periodic
function ρ(x) be defined by

ρ(x) =

{
φ(x), x ∈ [−1, 1],
φ(2− x), x ∈ (1, 3).

Then λ1 and ρ solve the eigenvalue problem{
(d̃ρx)x + f

′(w1)ρ = λ1ρ, x ∈ R,
ρ is r-periodic.

This implies that w1 is a linearly stable periodic steady state of (6.25) with d = d̃ . Simi-
larly, so is w2(x) := w1(x + 2). ut

As a consequence of Theorem 4.1, together with Lemmas 6.1 and 6.2, we have the fol-
lowing result on the existence of bistable traveling waves for (6.25).

Theorem 6.3. Let d̄ be a given positive constant. Then there exists δ0 > 0 such that
for any d ∈ W with ‖d − d̄‖W < δ0, (6.25) admits a spatially periodic traveling wave
solution u(t, x) := V (x+ ct, x) with some speed c ∈ R and connecting 0 to 1. Moreover,
V (ξ, x) is nondecreasing in ξ .

We remark that Theorem 6.3 is a C0-perturbation result in W , and hence it improves the
existence result in [42, Theorem 3.1], where H s-perturbation is used for some s > 2.

6.4. A nonlocal and time-delayed reaction-diffusion equation

Fix τ > 0. Choose X := C([−τ, 0],R),Y := C(R,R) and C := C([−τ, 0],Y). We
equip X with the maximum norm, and Y and C with norms similar to (2.1). Define Y+ :=
C(R,R+). Let d be the metric in C(Y) induced by the norm. We are interested in bistable
traveling waves of the nonlocal and time-delayed reaction-diffusion equation{

∂u(t,x)
∂t
=

∂2u(t,x)
∂x2 + f (ut )(x), t > 0, x ∈ R,

u0 = φ ∈ C,
(6.35)

where f : C → Y is Lipschitz continuous and for each t ≥ 0, ut ∈ C is defined by

ut (θ, x) := u(t + θ, x), ∀θ ∈ [−τ, 0], x ∈ R.
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If the functional f takes the form f (φ)(x) = F(φ(0, x), φ(−τ, x)), then (6.35) becomes
a local and time-delayed reaction-diffusion equation

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2 + F(u(t, x), u(t − τ, x)). (6.36)

The bistable traveling waves of (6.36) were studied in [31]. If f (φ)(x) = −dφ(0, x) +∫
R b(φ(−τ, y))k(x − y) dy, then (6.35) becomes a nonlocal and time-delayed reaction-

diffusion equation

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2 − du(t, x)+

∫
R
b(u(t − τ, y))k(x − y) dy. (6.37)

The existence, uniqueness and stability of bistable waves of (6.37) were established
in [29].

Note that R can be regarded as a subspace of X , and the latter can also be regarded as
a subspace of C. Define f̄ : X → R by f̄ (ϕ) = f (ϕ) and f̂ : R→ R by f̂ (ξ) = f (ξ). In
order to obtain the existence of bistable waves for system (6.35), we impose the following
assumptions on the functional f :

(E1) 0 < α < β are three equilibria and there are no other equilibria between 0 and β.
(E2) The functional f : Cβ → Y is quasi-monotone in the sense that

lim
h→0+

1
h
d
(
[φ(0)− ψ(0)] + h[f (φ)− f (ψ)];Y+

)
= 0 whenever φ ≥ ψ in Cβ .

(E3) The equilibria 0 and β are stable, and α is unstable in the sense that f̂ ′(0) < 0,
f̂ ′(α) > 0 and f̂ ′(β) < 0.

(E4) For each ϕ ∈ Xβ , the derivative L̄(ϕ) := Df̄ (ϕ) of f̄ can be represented as

L̄(ϕ)χ = a(ϕ)χ(0)+
∫ 0

−τ

χ(θ) dθη(ϕ) =: a(ϕ)χ(0)+ L1(ϕ)χ,

where η(ϕ) is a positive Borel measure on [−τ, 0] and η(ϕ)([−τ,−τ + ε]) > 0 for
all small ε > 0.

(E5) For any small ε > 0, there exists δ ∈ (0, β) and a linear operator Lε : Cβ → Y
such that Lεφ→ Df (α)φ for all φ ∈ Cβ as ε → 0 and

f (α + φ) ≥ Lε(φ) and f (α − φ) ≤ −Lε(φ), ∀φ ∈ Cδ.

Using the solution maps {T (t)}t≥0 generated by the heat equation ∂u(t,x)
∂t
=

∂2u(t,x)
∂x2 , we

write system (6.35) in integral form{
u(t, ·) = T (t)φ(0, ·)+

∫ t
0 T (t − r)f (ur(·, ·)) dr, t > 0,

u(θ, ·) = φ(θ, ·), θ ∈ [−τ, 0].
(6.38)

Note that traveling waves of system (6.38) are those of system (6.35). It then remains to
show that (6.38) admits a bistable traveling wave.
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Theorem 6.4. Under assumptions (E1)–(E5), system (6.35) admits a nondecreasing
traveling wave φ(x + ct) with φ(−∞) = 0 and φ(∞) = β.

Proof. From assumptions (E1)–(E2), we see that system (6.38) generates a monotone
semiflow {Qt }t≥0 on Cβ with

Qt [φ](θ, x) = ut (θ, x;φ), ∀(θ, x) ∈ [−τ, 0] × R,

where u(t, x;φ) is the unique solution of system (6.38) satisfying u0(·, ·;φ) = φ ∈ Cβ .
By similar arguments to those in Section 5, the map Qt satisfies (A4) if t > τ and (A4′)
if t ∈ (0, τ ].

Let Q̄t be the restriction of Qt to Xβ . Denote the derivative DQ̄t [0̂] of Q̄t by M̄0,t .
Then M̄0,t is the solution map of the functional equation

du

dt
= L̄(0)ut = a(0)u(t)+ L1(0)ut . (6.39)

By assumptions (E2) and (E4), system (6.39) admits a principal eigenvalue s0 with an as-
sociated eigenfunction v0 := e

s0θ (see [34, Theorem 5.5.1]). More precisely, M̄0,t [v0] =

es0tv0. Furthermore, [34, Corollary 5.5.2] implies that s0 < 0 since f̂ ′(0) < 0. Therefore,
there exists δ0(t) > 0 such that

Q̄t [δv0] = Q̄t [0] +DQ̄t [0][δv0] + o(δ
2) = δM̄0,t [v0] + o(δ

2)

= δes0tv0 + o(δ
2) = δv0 + δ[e

s0t − 1]v0 + o(δ
2)� δv0, ∀δ ∈ (0, δ0(t)].

Similarly, there exist δα(t), vα and δβ(t), vβ such that

Q̄t [β − δvβ ] � β − δvβ , ∀δ ∈ (0, δβ(t)],

and

Q̄t [α + δvα] � α + δvα, Q̄t [α − δvα] � α − δvα, ∀δ ∈ (0, δα(t)].

It remains to show that (A6) is also true. Indeed, from [25, Theorem 2.17] the solution
semiflows {Qt }t≥0 restricted to [0, α]C and [α, β]C admit spreading speeds c∗(0, α) and
c∗(α, β), respectively. Let M t

ε be the solution maps of the linear system{
u(t, ·) = T (t)φ(0, ·)+

∫ t
0 T (t − r)Lε(ur(·, ·)) dr, t > 0,

u(θ, ·) = φ(θ, ·), θ ∈ [−τ, 0].

Then assumption (E5) guarantees that Qt [φ] ≥ Mε
t [φ] when φ ∈ Cδ , where δ = δ(ε)

is defined in (E5). Therefore, we see from [25, Theorem 3.10] that c∗(0, α) ≥ c̄ and
c∗(α, β) ≥ c̄, where c̄ is a positive number determined by the linearized system of (6.35)
at u ≡ α, and hence (A6) holds. Consequently, Theorem 5.1 completes the proof. ut

Remark 6.2. At this moment we are unable to present a general result on the uniqueness
and global attractivity of bistable waves under the current abstract setting. However, one
may use the convergence theorem for monotone semiflows (see [47, Theorem 2.2.4]) and
similar arguments to the proofs of [47, Theorem 10.2.1] and [45, Theorem 3.1] to obtain
the global attractivity (and hence uniqueness) of bistable waves for the four examples in
this section.
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7. Appendix

In this appendix, we present certain properties of Banach lattices and countable subsets
of R, and some convergence results for sequences of monotone functions, including an
abstract variant of Helly’s theorem.

Proposition 7.1. Every Banach lattice X has the following properties:

(1) For any u, v ∈ X with v ∈ X+, if −v ≤ u ≤ v, then ‖u‖X ≤ ‖v‖X .
(2) If uk → u and vk → v in X with uk ≥ vk , then u ≥ v.

Proposition 7.2. The space C has the following properties:

(1) Let φ be a monotone function in C. If xk ∈ H nondecreasingly tends to x ∈ H ∪ {∞}
and limk→∞ φ(xk) = u ∈ X , then limy↑x φ(y) = u. A similar result holds if xk
nonincreasingly tends to x ∈ H ∪ {−∞}.

(2) Assume that h, hk : H → H are continuous and φk → φ in C. If hk(x) → h(x)

uniformly for x in any bounded subset of H, then φk ◦ hk → φ ◦ h in C.

We omit the easy proofs of Propositions 7.1 and 7.2.

Proposition 7.3. Assume that D is a countable subset of R. Then for any c ∈ R, there
exists another countable subset A of R such that (R \A)+ cm ⊂ R \D for all m ∈ Z+.

Proof. It suffices to show the set A := {x ∈ R : there exists m such that x + cm ∈ D} is
countable. Indeed, we have A =

⋃
∞

m=1(D − cm). This implies A is countable. ut

Proposition 7.4. For any countable subset 01 of R, there exists another countable set 02
that is dense in R and 01 ∩ 02 = ∅.

Proof. Since 01 is countable and
⋃
α∈R(α + Q) = R, there must exist a sequence αn

such that 01 ⊂
⋃
∞

n=1(αn+Q). Note that
⋃
∞

n=1(αn+Q) is countable. Hence, there exists
α ∈ R such that α 6∈

⋃
∞

n=1(αn + Q). This means that α − αn 6∈ Q for all n ≥ 1, and
hence (α +Q) ∩ (αn +Q) = ∅ for all n ≥ 1. Define 02 := α +Q. We then see that 02
is countable and dense in R, and 01 ∩ 02 = ∅. ut

Proposition 7.5. Assume that f, fn : R→ X are nondecreasing and the set D is dense
in R. If sn → 0, f (s) is continuous on D and fn(s) → f (s) for every s ∈ D, then
fn(s + sn)→ f (s) for every s ∈ D.

Proof. Let s ∈ D be fixed. For any δ > 0, since D − s is dense in R, we can choose
δ+ ∈ (D − s) ∩ (0, δ) and δ− ∈ (D − s) ∩ (−δ, 0). Clearly, s + δ+, s + δ− ∈ D. Thus,
there exists an integer Nδ such that s + sn ∈ (s + δ−, s + δ+) for all n ≥ Nδ . Since

fn(s+ δ−)− fn(s+ δ+) ≤ fn(s+ sn)− fn(s) ≤ fn(s+ δ+)− fn(s+ δ−), ∀n ≥ Nδ,

we have

‖fn(s + sn)− fn(s)‖X ≤ ‖fn(s + δ+)− fn(s + δ−)‖X , ∀n ≥ Nδ.
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It then follows that

‖fn(s + sn)− f (s)‖X ≤ ‖fn(s + sn)− fn(s)‖X + ‖fn(s)− f (s)‖X
≤ ‖fn(s + δ+)− fn(s + δ−)‖X + ‖fn(s)− f (s)‖X
≤ ‖f (s + δ+)− fn(s + δ+)‖X + ‖f (s + δ+)− f (s + δ−)‖X
+‖fn(s + δ−)− f (s + δ−)‖X + ‖fn(s)− f (s)‖X

for all n ≥ Nδ . Now the pointwise convergence of fn in D and the continuity of f on D
complete the proof. ut

To end this section, we prove a convergence theorem for sequences of monotone functions
from R to the special Banach lattice C(M,Rd) defined in Section 2, which is a variant of
Helly’s theorem [17, p. 165] for sequences of monotone functions from R to R.

Theorem 7.1. Let D be a dense subset of R and fn, n ≥ 1, be a sequence of nonde-
creasing functions from R to the Banach lattice X := C(M,Rd). Assume that:

(i) For any s ∈ D, fn(s) is convergent in X .
(ii) There exists a countable set D1 ⊂ R such that for any s ∈ R \ D1, the limits

limm→∞ limn→∞ fn(s±,m) exist in X , where s−,m ↑ s and s+,m ↓ s with s±,m ∈ D.

Then fn(s) is convergent in X for almost all s ∈ R.

Proof. Due to assumption (ii), we can define f : R→ X by

f (s) :=

{
limx↑s limx∈D, n→∞ fn(x), s ∈ R \D1,

any value, s ∈ D1.
(7.1)

We first show that the set of discontinuity points of f is at most countable. Define

A := {s ∈ R \D1 : f (s
−), f (s+) both exist}, B := {s ∈ A : f (s−) < f (s+)}.

For any s ∈ B, there are x1 ∈ M and 1 ≤ i ≤ d such that (f (s−)(x1))i < (f (s+)(x1))i .
Recall that M is compact, so there is a countable dense subset M1. It then follows that
there must be x2 ∈ M1 such that (f (s−)(x2))i < (f (s+)(x2))i . Therefore,

B =

m⋃
i=1

⋃
x∈M1

{s ∈ A : (f (s−)(x))i < (f (s+)(x))i}.

Since for each fixed i and x, (f (s)(x))i is a nondecreasing function from R \ D1 to R,
the set {s ∈ A : (f (s−)(x))i < (f (s+)(x))i} is at most countable, and hence so is B.

Now we can prove the conclusion. Assume that s ∈ R is a continuity point of f . For
any δ > 0, choose δ− ∈ D ∩ (s − δ, s) and δ+ ∈ D ∩ (s, s + δ). Then we have

fn(δ−)− fn(δ+) ≤ fn(s)− fn(δ−) ≤ fn(δ+)− fn(δ−), ∀n ≥ 1,

which, together with Proposition 7.1(2), implies that

‖fn(s)− fn(δ−)‖X ≤ ‖fn(δ+)− fn(δ−)‖X , ∀n ≥ 1. (7.2)
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On the other hand, by (7.2) and the triangular inequality we have

‖fn(s)− f (s)‖X ≤ ‖fn(s)− fn(δ−)‖X + ‖fn(δ−)− f (s)‖X
≤ ‖fn(δ+)− fn(δ−)‖X + ‖fn(δ−)− f (s)‖X
≤ ‖fn(δ+)− f (δ+)‖X + ‖f (δ+)− f (δ−)‖X
+ ‖f (δ−)− fn(δ−)‖X + ‖fn(δ−)− f (δ−)‖X
+ ‖f (δ−)− f (s)‖X , ∀n ≥ 1.

Now the pointwise convergence of fn in D and the continuity of f at s complete the
proof. ut
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