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Abstract. We show that a surface group of high genus contained in a classical simple Lie group
can be deformed to become Zariski dense, unless the Lie group is SU(p, q) (resp. SO∗(2n), n
odd) and the surface group is maximal in some S(U(p, p) × U(q − p)) ⊂ SU(p, q) (resp.
SO∗(2n − 2) × SO(2) ⊂ SO∗(2n)). This is a converse, for classical groups, to a rigidity result
of S. Bradlow, O. Garcı́a-Prada and P. Gothen.
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1. Introduction

Free groups are obviously flexible. In particular, a generic free subgroup in a real alge-
braic group is Zariski dense. This already fails for surface groups, although they are very
flexible from other points of view. The first evidence came from the following result by
D. Toledo.

Theorem 1.1. (D. Toledo, 1979, 1989, [18]). Let 0 be a discrete cocompact subgroup of
SU(1, 1). Map SU(1, 1) as a 2 × 2 block in SU(1, n), n ≥ 2. Then every neighboring
homomorphism 0→ SU(1, n) is contained in a conjugate of S(U(1, 1)× U(n− 1)).

In fact, Toledo obtained a stronger, global result: a characterization of surface subgroups
of S(U(1, 1) × U(n − 1)) among surface subgroups of SU(1, n) by the value of a char-
acteristic class known as Toledo’s invariant, which we now define.

Let X be a Hermitian symmetric space with Kähler form � (the metric is normalized
so that the minimal sectional curvature equals −1). Let 6 be a closed surface of negative
Euler characteristic, and let 0 = π1(6) act isometrically onX. Pick a smooth equivariant
map f̃ : 6̃→ X.

Definition 1.2. Define the Toledo invariant of the action ρ : 0→ Isom(X) by

Tρ =
1

2π

∫
6

f̃ ∗�.
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Then

(1) Tρ depends continuously on ρ.
(2) There exists `X ∈ Q such that Tρ ∈ `XZ.
(3) |Tρ | ≤ |χ(6)| rank(X).

Inequality (3), known as the Milnor–Wood inequality for actions on Hermitian symmetric
spaces, is due to J. Milnor [15], V. Turaev [19], A. Domic and D. Toledo [6], J.-L. Clerc
and B. Ørsted [5].

Definition 1.3. Actions ρ such that |Tρ | = |χ(6)| rank(X) are called maximal represen-
tations.

The following result generalizes Theorem 1.1.

Theorem 1.4 (L. Hernández Lamoneda [12], S. Bradlow, O. Garcı́a-Prada, P. Gothen
[1], [2]). Maximal reductive representations of 0 to SU(p, q), p ≤ q, can be conjugated
into S(U(p, p)×U(q −p)). Maximal reductive representations of 0 to SO∗(2n), n odd,
can be conjugated into SO∗(2n− 2)× SO(2).

In turn, Theorem 1.4 is a special case of a more general result.

Definition 1.5. Say a Hermitian symmetric space is of tube type if it can be realized as a
domain in Cn of the form Rn + iC where C ⊂ Rn is a proper open cone.

Example 1.6. Siegel’s upper half-spaces and Grassmannians with isometry groups
PO(2, q) are of tube type.

The Grassmannian Dp,q , p ≤ q, with isometry group PU(p, q) is of tube type iff
p = q.

The Grassmannian Gn with isometry group SO∗(2n) is of tube type iff n is even.
The exceptional Hermitian symmetric space of dimension 27 is of tube type, the other

one (of dimension 16) is not.
Products of tube type spaces are of tube type, so polydisks are of tube type.

Remark 1.7. All maximal tube type subsymmetric spaces in a Hermitian symmetric
space are conjugate. For instance, the maximal tube type subsymmetric space in Dp,q
is Dp,p. The maximal tube type subsymmetric space in G2n+1 is G2n.

Theorem 1.8. (Burger, Iozzi, Wienhard [3]). Let 0 be a closed surface group and X
a Hermitian symmetric space. Every maximal representation 0 → Isom(X) stabilizes
a maximal tube type subsymmetric space Y . Conversely, for every tube type Hermitian
symmetric space X, Isom(X) admits Zariski dense maximal surface subgroups.

1.1. Results

Our main result is a converse of Theorem 1.4 (i.e. Theorem 1.8 for classical simple Lie
groups).
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Theorem 1. Let G be a classical real Lie group, i.e. a real form of SL(n,C), O(n,C)
or Sp(n,C). Let 0 be the fundamental group of a closed surface of genus ≥ 2dim(G)2.
A homomorphism φ : 0 → G can be approximated by Zariski dense representations,
unless the symmetric space X of G is Hermitian and not of tube type, and φ is maximal.

In other words, the exceptions are G = SU(p, q), q > p, and φ(0) is contained in a
conjugate of S(U(p, p)× U(q − p)) ⊂ SU(p, q), or G = SO∗(2n), n odd, and φ(0) is
contained in a conjugate of SO∗(2n− 2)× SO(2) ⊂ SO∗(2n).

The genus assumption is probably unnecessary, but we have been unable to remove it.

Question 1.9. Does Theorem 1 extend to exceptional simple Lie groups?

Since flexibility easily holds in compact and complex groups (see Proposition 4.3), and
the rank one example F−20

4 is treated in [13], there remain ten cases (E6
6 , E−14

6 , E−26
6 ,

E7
7 , E−5

7 , E−25
7 , E8

8 , E−24
8 , F 4

4 , G2
2) with at least one rigidity case (E−14

6 ). See [14], [16],
[11] for related results.

1.2. Scheme of proof

The proof relies on

• a necessary and sufficient condition for flexibility from [13] (see Theorem 2.2 below);
• tools from Burger, Iozzi and Wienhard’s theory of tight maps between Hermitian sym-

metric spaces, [4];
• a detailed analysis of centers of centralizers of reductive subgroups of classical simple

Lie groups.

This last analysis is based on bilinear and sesquilinear algebra. This is where exceptional
simple Lie groups elude us.

1.3. Plan of the paper

Section 2 recalls a result from [13]. Section 3 proves relevant consequences of the theory
of tight maps. Section 4 provides a description of classical real simple Lie groups as fixed
points of involutions, which helps in computing root space decompositions in the com-
plexified Lie algebra. This is done in Section 5 for sl(n,C) and in Section 6 for so(n,C)
and sp(n,C). The method consists in first computing the root space decomposition in the
standard representation of the complexified Lie algebra, and deducing the decomposition
in the adjoint representation. The theory of tight homomorphisms allows us to exclude
balancedness (with exceptions), first for real forms of SL(n,C) in Section 7, then for real
forms of SO(n,C) and Sp(n,C) in Section 8. Theorem 1 is proven in Section 9.

2. Flexibility criterion

As far as the flexibility of a homomorphism φ is concerned, a key role is played by the
center of the centralizer of the image of φ. It splits the complexified Lie algebra ofG into
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root spaces gλ. When the root λ is purely imaginary, gλ carries a natural nondegenerate
sesquilinear form defined as follows. Let (X,X′) 7→ X · X′ denote the Killing form on
g⊗ C. Then the sesquilinear form

sλ(X,X
′) = X̄ ·X′

is nondegenerate on gλ. Let �λ denote the imaginary part of sλ. It is a symplectic form
on gλ viewed as a real vector space. The representation of 0 on gλ gives rise to a homo-
morphism 0→ Sp(gλ, �λ), an isometric action on the Siegel domain, and thus a Toledo
invariant Tλ.

Definition 2.1. Let t ⊂ g be a torus, centralized by a homomorphism φ : 0 → G.
Among the roots of the adjoint action of t on g⊗C, let P be the subset of purely imaginary
roots λ such that 2Tλ = −χ(0) dimC(gλ), i.e. the symplectic 0 action on gλ is maximal
with positive Toledo invariant. Say t is balanced with respect to φ if 0 belongs to the
interior of the sum of the convex hull of the imaginary parts of elements of P and the
linear span of the real and imaginary parts of roots not in ±P .

Here is a necessary and sufficient condition for flexibility, for surface groups of suffi-
ciently large genus.

Theorem 2.2 ([13, Theorem 3]). Let G be a semisimple real algebraic group. Let 0 be
the fundamental group of a closed surface of genus ≥ 2 dim(G)2. Let φ : 0 → G be
a homomorphism with reductive Zariski closure. Then φ is flexible if and only if c, the
center of the centralizer of φ(0), is balanced with respect to φ.

The proof of Theorem 1 will rely on this criterion: we shall describe the centers of cen-
tralizers of reductive subgroups and their roots and pile up restrictions on the set P that
make nonbalancedness exceptional. The reduction from nonreductive to reductive homo-
morphisms will be explained in Section 9.

3. Tightness

In this section we collect properties related to maximality of representations. We start
with elementary facts. Deeper results will follow from tightness theory.

3.1. Preservation of maximality

We shall need that certain embeddings of Lie groups preserve maximality.

Definition 3.1. Let ρ : H → G be a homomorphism between reductive Hermitian
groups and F : Y → X denote an equivariant totally geodesic map between the cor-
responding Hermitian symmetric spaces. Let ωX (resp. ωY ) denote the Kähler form, nor-
malized so that the minimum sectional curvature equals −1. Say ρ (or F ) is positively
maximality preserving if

1
rank(X)

F ∗ωX =
1

rank(Y )
ωY .
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Say ρ (or F ) is merely maximality preserving if the above equality holds up to sign.

If ρ is positively maximality preserving, then for an equivariant map f : S̃ → Y ,∫
S

(F ◦ f )∗ωX =

∫
S

f ∗F ∗ωX =

∫
S

f ∗
rank(X)
rank(Y )

ωY ,

hence a homomorphism φ : 0 → H is maximal if and only if ρ ◦ φ is. Furthermore,
positively maximality preserving maps do not change the signs of Toledo invariants.

Lemma 3.2. Isometric and holomorphic embeddings between equal rank Hermitian
symmetric spaces are positively maximality preserving.

Example 3.3. The embedding Dp,p ↪→ Dp,q between Grassmannians, corresponding to
the embedding SU(p, p) ↪→ SU(p, q), is isometric and holomorphic, and thus positively
maximality preserving.

Example 3.4. The embedding Gn ↪→ Gn+1 of symmetric spaces, corresponding to the
embedding SO∗(2n) ↪→ SO∗(2n + 2), is isometric and holomorphic, and thus, if n is
even, positively maximality preserving.

Example 3.5. The embedding Sn ↪→ Sn+1 of symmetric spaces, corresponding to the
embedding Sp(2n,R) ↪→ Sp(2n + 2,R), is isometric and holomorphic, and thus never
maximality preserving.

We also need to understand when maximality is preserved under linear algebraic opera-
tions. Let us start with an easy case.

Lemma 3.6. Let 0 be a surface group. Let I0 be a unitary 1-dimensional representa-
tion of 0, and W a sesquilinear representation of 0. Then Hom(I0,W) is a maximal
representation if and only if W is.

Proof. Hom(I0,W) and W are isomorphic as projective representations. Since U(W)
acts on the symmetric space of SU(W) via its quotient PU(W), maximality is a projec-
tively invariant property. ut

But we shall need a more general case in Subsection 7.2. The following lemma is a prepa-
ration for Lemma 3.8.

Lemma 3.7. Let 0 be a surface group. Let W , W ′ be sesquilinear representations of 0.
Then

1. T (W̄ ) = −T (W).
2. T (W ⊕W ′) = T (W)+ T (W ′).

Proof. 1. Passing from W to W̄ changes the sign of the complex structure on the sym-
metric space X of SU(W). This changes the sign of the Kähler form, and thus the sign of
Toledo invariants.

2. Let Y, Y ′ be the symmetric spaces of SU(W) and SU(W ′) respectively. When Y×Y ′

is mapped to the symmetric space X of SU(W ⊕W ′), the Kähler form ωX of X restricts
on the complex totally geodesic manifold Y × Y ′ to ωY + ωY ′ , so the Toledo invariants
add up. ut
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Lemma 3.8. Let 0 be a surface group. Let V be a unitary representation of 0, and W
a sesquilinear representation of 0. Then Hom(V ,W) is a maximal representation of 0 if
and only if W is.

Proof. Let φ : 0 → U(Hom(V ,W)) denote the Hom of the two given representations.
Changing the given action on V into the trivial representation gives rise to a represen-
tation ψ : 0 → U(Hom(V ,W)). Let us show that φ and ψ have equal Toledo in-
variants. Split W = W+ ⊕ W− into positive definite and negative definite subspaces.
Then Hom(V ,W+) is a maximal positive definite subspace of Hom(V ,W), i.e. a point
in the Hermitian symmetric space X associated to SU(Hom(V ,W)). Its U(V )× U(W)-
orbit Y is totally geodesic in X, and thus contractible. Therefore, one can choose an
equivariant map f̃ : 6̃ → X whose image is contained in Y . Note that the action of
(A,B) ∈ U(V )× U(W) on Hom(V ,W) is

(A,B,N) 7→ B−1NA,

hence U(V ) leaves invariant the subspace Hom(V ,W+) (see the proof of Lemma 3.14
below). Therefore U(V ) fixes Y pointwise, and f̃ is equivariant with respect to both φ
and ψ . Therefore the corresponding Toledo invariants are the same. Since ψ is a direct
sum of dim(V ) copies of the action on W , Lemma 3.7 applies, so T (Hom(V ,W)) =
dim(V )T (W). Since rank(X) equals dim(V ) times the rank of the symmetric space asso-
ciated to SU(W), ψ , and thus φ, is maximal if and only if the original 0 action on W is.

ut

3.2. Tightness

Tightness theory is a way to draw strong consequences from the existence of maximal
representations.

Definition 3.9 (Burger, Iozzi, Wienhard [4]). Let G be a reductive Hermitian group,
i.e. a connected reductive Lie group in which the center is compact and such that the
symmetric spacesXi associated to all simple noncompact factors is Hermitian. Normalize
the metric onXi so that the minimum holomorphic sectional curvature equals−1. Let κbG
denote the bounded continuous cohomology class onG defined by integrating the Kähler
form of X =

∏
Xi on triangles with geodesic sides. Let 0 be locally compact group. Say

a continuous homomorphism φ : 0→ G is tight if

‖φ∗κbG‖ = ‖κ
b
G‖.

Example 3.10. Maximal homomorphisms of surface groups to reductive Hermitian
groups are tight.

3.3. Maximality preserving versus tight

Here is the basic mechanism which makes tightness enter our arguments: if φ : 0→ G is
maximal and factors through ρ : H → G, then ρ is tight. There is a converse statement.
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Proposition 3.11. Let H , G be reductive Hermitian groups. Assume that the symmetric
space associated to H is irreducible. Let ρ : H → G be a continuous homomorphism.
Then ρ is maximality preserving if and only if ρ is tight.

Proof. This follows from [4, Proposition 2.12]. ut

Example 3.12 ([4, Example 8.7]). The obvious embeddings SU(n, n)→ Sp(4n,R) and
SO∗(4n)→ Sp(8n,R) are tight. It follows that SO∗(4n)→ SU(2n, 2n) is tight. All three
embeddings are thus maximality preserving.

Direct proofs of these facts will be given in the appendix (Lemmas 10.2 and 10.3).

3.4. Consequences of tightness

Lemma 3.13. 1. Let H ⊂ G be connected real algebraic groups. If G is reductive Her-
mitian and the embedding H ↪→ G is tight, then H is reductive Hermitian too.

2. Let ρ : G→ G′ be a tight homomorphism between reductive Hermitian groups. If the
kernel of ρ is compact and G′ is of tube type, so is G.

Proof. This is a combination of Theorems 7.1 and 6.2 of [4]. ut

Lemma 3.14. Let V , V ′ be vector spaces equipped with nondegenerate sesquilinear
forms. Assume that Hom(V , V ′) equipped with the natural sesquilinear form

(f, f ′) 7→ Trace(f ∗ ◦ f ′)

(here f ∗ denotes the adjoint with respect to the sesquilinear forms on V and V ′)

has vanishing signature. Assume that the induced homomorphism U(V ) × U(V ′) →

U(Hom(V , V ′)) is tight (see Definition 3.9). Then one of V and V ′ is definite and the
other has vanishing signature.

Proof. Since U(Hom(V , V ′)) is Hermitian of tube type, Lemma 3.13 implies that
U(V ) × U(V ′) is of tube type, up to compact groups. This implies that each of the
sesquilinear vector spaces V and V ′ is either of vanishing signature or definite. Clearly,
if both are definite, U(V )× U(V ′) is compact and tightness is impossible.

Let us show that V ′ and V ′ cannot both have vanishing signature, i.e. one of them must
be definite. For this, we use the tightness criterion of [4, Corollary 8.2]. Let JV denote
the generator of the center of the maximal compact subgroup of U(V ) which defines the
complex structure on the symmetric space of U(V ). In a splitting V = V + ⊕ V − into a
sum of positive (resp. negative) definite subspaces we have

JV =

(
i
2IdV /2 0

0 −
i
2IdV /2

)
.

Use a similar splitting V ′ = V ′+ ⊕ V ′− and split accordingly Hom(V , V ′), whose ele-
ments become block matrices N =

(
A B
C D

)
.
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For a basis {ei} of V such that J = (Bv(ei, ej )) is diagonal with entries ±1, and a
basis {di} of V ′ such that J ′ = (BV ′(di, dj )) is diagonal with entries ±1, we have

Trace(f ∗ ◦ f ′) = Trace(JA∗J ′B)

where A,B are matrices for f and f ′. The action of U × U ′ ∈ U(V ) × U(V ′) is
(U,U ′, N) 7→ U ′−1NU . It is easy to see that this action preserves the natural sesquilinear
form on Hom(V , V ′).

The linearized action is (U,U ′, N) 7→ −U ′N + NU . The image of (JV , JV ′) under

the linearized action is N 7→
( 0 −iB
iC 0

)
, a map whose matrix is

( 0 0 0 0
0 0 0 0
0 0 −i 0
0 0 0 i

)
in a splitting

of Hom(V , V ′) into a positive subspace Hom(V +, V ′+)⊕Hom(V −, V ′−) and a negative
subspace Hom(V +, V ′−)⊕Hom(V −, V ′+). Therefore the inner product with the element

JHom(V ,V ′) =


i
2Id 0 0 0
0 i

2Id 0 0
0 0 −

i
2Id 0

0 0 0 −
i
2Id

 ,
where d = dHom(V ,V ′)/4, vanishes. According to [4, Corollary 8.2], the homomorphism
U(V ) × U(V ′) → U(Hom(V , V ′)) is not tight. We conclude that one of V and V ′ has
vanishing signature and the other one is definite. ut

The following example of nontight embedding will be useful in the proof of Corollary 8.7.

Lemma 3.15. The injection ι : O(2, 2) ↪→ U(2, 2) is not tight.

Proof. O(2, 2) ⊂ U(2, 2) is the fixed point set of conjugation σ , i.e. σ ◦ ι = σ . Now, σ
induces an orientation reversing isometry of the symmetric space X of U(2, 2), which
changes the sign of the Kähler form, σ ∗ωX = −ωX. Moreover, ι induces a totally
geodesic embedding of symmetric spaces, still denoted by ι : Y → X. Since ι∗ωX =
ι∗σ ∗ωX = −ι

∗ωX, we have ι∗ωX = 0, hence ι∗ is not isometric in bounded continuous
cohomology, so ι is not tight. ut

3.5. Alternative definition of balancedness

One may replace symplectic structures by sesquilinear structures in the definition of bal-
ancedness.

Proposition 3.16. LetG be a semisimple real algebraic group. Let 0 be a surface group.
Let φ : 0→ G be a homomorphism. Let c denote the center of the centralizer of φ(0). Let
ZG(c) denote its centralizer in G. Let λ be a purely imaginary root of the adjoint action
of c on g⊗ C. Let gλ denote the corresponding root space, equipped with a sesquilinear
form sλ and its imaginary part, the symplectic form �λ. Then the symplectic representa-
tion 0→ Sp(gλ, �λ) is maximal with positive Toledo invariant if and only if

• sλ has vanishing signature;
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• the sesquilinear representation 0→ U(gλ, sλ) is maximal with positive Toledo invari-
ant.

If this is the case, then the homomorphism ZG(c)→ U(gλ, sλ) is tight.

Proof. Assume that 0 → Sp(gλ, �λ) is maximal. It factors through U(gλ, sλ). Thus the
inclusion U(gλ, sλ) ↪→ Sp(gλ, �λ) is tight. Lemma 3.13 implies that U(gλ, sλ) has tube
type, i.e. the signature of sλ vanishes.

According to Example 3.12, the embedding U(gλ, sλ) ↪→ Sp(gλ, �λ) is positively
maximality preserving, so maximality and positivity of Toledo invariant do not change
when passing from symplectic to unitary groups.

The maximal representation 0→ U(gλ, sλ) factors via the homomorphism ZG(c)→
U(gλ, sλ), which must be tight itself. ut

Now we can explain how balancedness will be analyzed in what follows. For classical
simple Lie groups, the root spaces gλ turn out to be expressible as Hom(V , V ′) spaces,
and the centralizers ZG(c) are products of classical simple Lie groups. Proposition 3.16,
combined with Lemmas 3.13 and 3.14, restricts the possible groups involved, as will be
seen in Sections 7 and 8.

4. Classical simple Lie groups

4.1. Definition

Classical simple real Lie groups are special linear groups of division ringsD with center R
and special unitary groups of nondegenerate binary forms over D (see [17, appendix]).

There are only three such division rings: R, C and H, leading to three special linear
groups, SL(n,R), SL(n,C), and SL(n,H).

Let ι be a continuous (anti-)automorphism ofD: ι can be the identity, complex conju-
gation or quaternionic conjugation. Let ε = ±1. By a (ι, ε)-symmetric binary1 form on a
right D-vector space V , we mean a D-valued R-bilinear map h : V × V → D such that

(1) for all v, v′ ∈ V and all q ∈ D, h(v, v′q) = h(v, v′)q;
(2) for all v, v′ ∈ V , h(v′, v) = ει(h(v, v′)).

Note that from (2), if ι is a conjugation, it follows that h(vq, v′) = q̄h(v, v′). Say h is
nondegenerate if the only v ∈ V such that h(v, v′) = 0 for all v′ ∈ V is 0.

The group U(V, h) consists of right D-linear self maps of V which preserve h. We
are interested in the special unitary group SU(V , h) = U(V, h) ∩ SL(V ,D).

When D = R, the only choice for ι is the identity, leading to

• if ε = 1, real special orthogonal groups, indexed by dimension and signature and
denoted by SO(p, q), where p + q = dimR(V );
• if ε = −1, real symplectic groups, indexed by dimension only and denoted by Sp(n,R),

where n = dimR(V ) is even.

1 To avoid confusion, we keep the words Hermitian for positive definite forms, and sesquilinear
for the complex case.
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When D = C there are two choices for ι. If ι is the identity, this leads to complex
special orthogonal (if ε = 1) and symplectic (if ε = −1) groups, indexed by dimension
and denoted respectively by SO(n,C) and Sp(n,C). If ι is complex conjugation, ε = ±1
lead to groups called special unitary groups, indexed by dimension and signature and
denoted by SU(p, q), where p + q = dimC(V ).

When D = H there are two choices for ι. If ι is the identity, no nonzero (ι, ε)-
symmetric forms exist. If ι is quaternionic conjugation, this leads to

• if ε = 1, quaternionic unitary groups, indexed by dimension and signature and denoted
by Sp(p, q), p + q = dimH(V );
• if ε = −1, quaternionic skew-unitary groups, indexed by dimension only and denoted

by SO∗(2n), where n = dimH(V ) is even.

4.2. Real forms of complex groups

We shall be mainly concerned with the seven families of noncomplex groups, three at-
tached to binary forms on real vector spaces, one on complex vector spaces and three on
quaternionic vector spaces. Each of these groups is obtained as the fixed point set of an
anti-C-linear involutive automorphism σ of a complex Lie group, as we now explain.

Consider first the complex unitary family U(p, q). Here, the data is a nondegenerate
sesquilinear form s on a complex vector space V . For f ∈ GL(V ), let f ∗ denote the
s-adjoint of f , defined by

∀v, v′ ∈ V, s(f (v), v′) = s(v, f ∗(v′)).

Then σ(f ) = (f ∗)−1 is an anti-C-linear involutive automorphism of GL(V ) and of
SL(V ). The fixed point set of σ in SL(V ) is SU(V , s).

The six remaining families admit a common construction.
Given a real vector space VR, let V = VR ⊗ C and let τ = conjugation. Note that

τ−1
= τ . If b is a nondegenerate quadratic or symplectic form on VR, let B = b ⊗ C.

Given a right quaternionic vector space VH, pick a basis (1, i, j, k) of H, and use right
multiplication by i to turn VH into a complex vector space denoted by V . Let τ be right
multiplication by j . Note that τ−1

= −τ . For q = a + jb ∈ H with a, b ∈ C, denote
C(q) = a. If h is a nondegenerate (¯, ε)-symmetric binary form on VH, let, for v, v′ ∈ V ,

B(v, v′) = C(h(vj, v′)).

Then B is a nondegenerate (−ε)-symmetric C-bilinear form on V .
In both cases, τ is anti-C-linear, τ−1

= ητ for some η ∈ ±1, and

B(τ(v), τ (v′)) = B(v, v′).

For f ∈ EndC(V ), set
σ(f ) = τ ◦ f ◦ τ−1.

Then σ is an anti-C-linear involutive automorphism of the algebra gl(V ) = EndC(V ) and
of its subgroups SL(V ) and O(V,B). The fixed point set of σ in SL(V ) is SL(VR) (resp.
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SL(VH)). The fixed point set of σ in O(V,B), i.e., τ ◦ f = f ◦ τ , is U(VR, b) (resp.
U(VH, h)). This construction yields six of the seven families of noncomplex classical
groups.

4.3. Consequences for roots

The special form of the involution σ for six of the seven families of noncomplex groups
has the following consequence.

Lemma 4.1. LetG belong to one of the above six families of classical simple Lie groups.
Let H ⊂ G be a reductive subgroup. Let c ⊂ g be the center of its centralizer. Let `
be a root of c on V . Let I` denote the corresponding root space. Then ¯̀ is a root and
I ¯̀ = τ(I`). Furthermore,

• if G = SL(n,R), O(p, q) or Sp(n,R), then I ¯̀ = I`;
• if G = SL(n,H), SO∗(2n) or Sp(p, q), then I` + I ¯̀ is a quaternionic subspace;
• if ` 6= 0, then I` and I0 are orthogonal with respect to the (¯, ε)-symmetric binary form
h, and therefore I0 is nondegenerate.

Proof. We let C act on V on the right. Let Z ∈ c and v ∈ I`. Then

Z(τ(v)) = τ(Z(v)) = τ(v`(Z)) = τ(v)`(Z),

showing that I ¯̀ = τ(I`). For the three real families, τ is conjugation, thus I ¯̀ = I`. For
the three quaternionic families, τ is right multiplication by j , so I` + I ¯̀ is stable by right
multiplication by i and j , i.e. a quaternionic subspace.

Since h is G-invariant, for all v, v′ ∈ V and Z ∈ c we have h(Z(v), v′)+ h(v, Z(v′))
= 0. If v ∈ I` and v′ ∈ I0, then

0 = h(Z(v), v′)+ h(v, Z(v′)) = h(v`(Z), v′) = `(Z)h(v, v′).

This implies that h(v, v′) = 0 if ` 6= 0. This shows that I0 is h-orthogonal to the sum of
all other root spaces. Therefore the restriction of h to I0 is nondegenerate. ut

4.4. Killing form

Here is a formula for the sesquilinear structure appearing in Theorem 2.2, valid in all
cases.

Lemma 4.2. Let gC ⊂ sl(n,C) be a complex Lie subalgebra of sl(n,C). Let σ be an
anti-C-linear involutive automorphism of gC, with fixed point set g. The natural sesqui-
linear form s on g⊗ C arising from the Killing form of g (see Section 2) is proportional
to

s(X,X′) = Trace(σ (X) ◦X′).
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Proof. Since σ is anti-C-linear, we have σ(if ) = −iσ (f ) = −if for f ∈ g. It follows
that the −1-eigenspace of σ in gC is ig. The map

gC→ g⊗ C, X 7→

(
X + σ(X)

2
,
X − σ(X)

2i

)
,

is an isomorphism. It pulls back conjugation on g ⊗ C to σ on gC, thus it pulls back
the sesquilinear form X̄ · X of g ⊗ C to σ(X) · X on gC. The Killing form on gC is
proportional to the restriction to gC of the Killing form of sl(n,C), whence the formula
Trace(σ (X) ◦X) follows. ut

4.5. Flexibility of compact and complex Lie groups

For completeness’ sake, we recall here the treatment of compact and complex Lie groups
from [13].

Proposition 4.3. Let G be a compact or complex semisimple Lie group. Let c ⊂ g be the
center of the centralizer of a reductive subgroup. Then c is balanced.

Proof. Let X ∈ g ⊗ C, X = f + ig. Then s(X,X) = X̄ · X = f · f + g · g. If G is
compact, the Killing form is negative definite, and so is s. For all roots λ of c in the adjoint
representation, the sesquilinear form sλ on the root space gλ is negative definite. No root
has vanishing signature. According to Proposition 3.16, P is empty so c is balanced.

If G is complex, then centralizers are complex Lie subgroups, c is a complex vector
subspace, and roots λ are C-linear maps. None of them is purely imaginary (i.e. takes
purely imaginary values on c). Thus P is empty so c is balanced. ut

5. Complexified centers of centralizers in SL(n,C)

The first step is to list the possible complexified centers c ⊗ C and describe the root
structure. This depends only on the complexified Lie algebra.

Lemma 5.1. Let g be a real Lie algebra. Let H ⊂ g be a subset. Let ZZg(H) denote the
center of its centralizer. Then

ZZg(H)⊗ C = ZZg⊗C(H).

Our approach consists in using the standard complex representation V of g⊗C. The root
space decomposition of V under c ⊗ C = ZZg⊗C(H) is obtained from the isotypical
decomposition of V under H . This easily provides us with the decomposition of End(V )
under c⊗ C, and then of the invariant subspace g⊗ C ⊂ End(V ).

In this section, we treat the model case of SL(n,C), and in the next section, the more
elaborate cases O(n,C) and Sp(n,C).
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5.1. H -modules

Definition 5.2. Let H be a group. The data of a finite-dimensional complex vector space
and a homomorphism of H onto a reductive real algebraic subgroup of GL(V ) is called
an H -module.

Note that H -invariant subspaces of H -modules are again H -modules. An H -module is
irreducible if it has no proper H -submodules.

Definition 5.3. Let E(H) denote the set of equivalence classes of H -modules. Given an
H -module V and π ∈ E(H), let Iπ , the π -isotypical component of V , be the sum of all
submodules of V belonging to the equivalence class π .

The following lemma is well known, but we give a full proof since it serves as a model
for orthogonal, symplectic and unitary versions of it given in the next section.

Lemma 5.4. Any H -module V splits as a direct sum of its isotypical components,

V =
⊕

π∈E(H)

Iπ .

Proof. Let W ⊂ Iπ be an irreducible invariant subspace. Since H is reductive, for each
invariant subspace Z of Iπ belonging to the class π there exists an H -invariant com-
plement to Z, thus an H -invariant projector pZ : Iπ → Z. Since such submodules Z
generate Iπ , for at least one such Z we have pZ(W) 6= 0, thus pZ(W) = Z and W
belongs to π .

More generally, if F ⊂ E(H) is a subset, andW ⊂
∑
π∈F Iπ is an irreducible invari-

ant subspace, then W belongs to one of the classes in F . Indeed, otherwise pZ(W) = 0
for all invariant subspaces Z whose class belongs to F , and these generate

∑
π∈F Iπ .

In particular, for every π ∈ E(H), Iπ ∩
∑
π ′ 6=π Iπ ′ = {0}, which shows that the sum∑

π∈E(H) Iπ is direct.
Since H is reductive, the invariant subspace

⊕
π∈E(H) Iπ admits an invariant

complement, which contains an irreducible subspace. This is a contradiction unless⊕
π∈E(H) Iπ = V . ut

5.2. Centers of centralizers in SL(n,C)

Lemma 5.5. Let H ⊂ SL(n,C) be a reductive subgroup. Let c ⊂ sl(n,C) be the center
of its centralizer. Let L denote the set of nonzero roots of c in the standard representa-
tion of sl(n,C), and d` the dimensions of the corresponding eigenspaces. Then L has
dim(c)+ 1 elements, which satisfy exactly one linear relation,∑

`∈L

d`` = 0.

Furthermore, the map

L× L \ diagonal→ 3, (`, `′) 7→ `− `′,

is one-to-one and onto the set 3 of nonzero roots of c in the adjoint representation of
sl(n,C).
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Proof. Since H is reductive, the standard action of H on Cn splits into irreducibles. Let
us group them into isotypical components I`; each I` is the direct sum of k` isomorphic
irreducible summands. According to Schur’s Lemma, the group of H -automorphisms
(i.e. automorphisms which commute with H ) of the representation I` is isomorphic to
GL(k`,C). Then

ZGL(n,C)(H) =
∏
`∈L

ZGL(I`)(H|I`) '
∏
`∈L

GL(k`,C),

whose center is (C∗)L, acting on Cn by multiplication by a different constant on each I`.
Pick a basis of Cn adapted to the splitting Cn =

⊕
` I`. Then the center c of ZSL(n,C)(H)

consists of diagonal matrices diag(a1, . . . , an) whose entries corresponding to basis vec-
tors from the same I` are equal, and which sum to 0. It follows that the elements of L
generate c∗ and satisfy only one linear relation,

∑
`∈L d`` = 0. In particular, if (`, `′) and

(m,m′) are distinct ordered pairs of distinct elements of L, then `− `′−m+m′ does not
vanish identically on c. This shows that the map

L× L \ diagonal→ 3, (`, `′) 7→ `− `′,

which is clearly surjective onto the set of nonzero roots of the adjoint action on sl(n,C), is
injective as well. Furthermore, note that sl(n,C)⊂Hom(Cn,Cn)=Hom(

⊕
` I`,

⊕
`′ I`′)

and the root space for `− `′ is Hom(I`, I`′). ut

6. Centralizers in orthogonal, symplectic or unitary groups

In this section, the root space decomposition of g under the center of the centralizer of a
reductive subgroup is given, when g = so(n,C) or sp(n,C). This is a first step in handling
real forms of these Lie algebras. With little extra effort, one can treat simultaneously the
case of g = su(p, q). This will help treating this particular real form of sl(n,C).

Let (V , B) be a complex vector space equipped with a nondegenerate binary form B

of one of the following three types:

• symmetric bilinear,
• skew-symmetric bilinear,
• symmetric sesquilinear,

which we denote by (ι, ε)-symmetric, ε = ±1, ι = 1 or ¯ (identity or conjugation). Note
that the combination (ι, ε) = (¯,−1) makes perfect sense but does not bring anything
new, since if B is a skew-symmetric sesquilinear form, then iB is symmetric sesquilinear.
Let O = O ι,ε(V , B) denote its automorphism group (note that if B is skew-symmetric
bilinear (resp. sesquilinear), this is a symplectic (resp. unitary) rather than an orthogonal
group, whence the notation O ι,ε). Let H ⊂ O be a reductive real algebraic subgroup. In
this section, we describe the center of the centralizer of H in O.
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6.1. Bilinear and sesquilinear forms

Notation 6.1. Let ι be a continuous automorphism of C, i.e. either conjugation or the
identity. Let ε ∈ {−1, 1}. Let V be a complex vector space. A (ι, ε)-symmetric form on
V is a real bilinear form B : V × V → C such that for λ, λ′ ∈ C and v, v′ ∈ V ,

• B(λv, λ′v′) = ι(λ)λ′B(v, v′);
• B(v′, v) = ειB(v, v′).

In other words, if ι = 1 and ε = 1, B is symmetric bilinear. If ι = 1 and ε = −1, B is
skew-symmetric bilinear. If ι = ¯ and ε = 1, B is symmetric sesquilinear. If ι = ¯ and
ε = −1, B is skew-symmetric sesquilinear. We shall ignore the fourth case, since if B is
a skew-symmetric sesquilinear form, then iB is symmetric sesquilinear.

Notation 6.2. Let ι be a continuous automorphism of C, i.e. either conjugation or the
identity. Let V be a complex vector space. Then V ι means V if ι = 1, and V̄ if ι = ¯ .
Also, V ι,∗ means the dual vector space V ∗ if ι = 1, and V̄ ∗ (i.e. the space of anti-C-linear
forms on V ) if ι = ¯ .

Let B be a (ι, ε)-symmetric form on V . Let ]B : V → V ι,∗ denote the C-linear map
which maps v ∈ V to the anti-C-linear functional

]B(v) : v
′
7→ B(v′, v).

Say that B is nondegenerate if ]B is an isomorphism. If not, its kernel is called the
nullspace of B.

Notation 6.3. Given a linear mapL : V→ V ι,∗, there is an adjoint mapLι,> : V→ V ι,∗

defined by
〈Lι,>(v′), v〉 = 〈L(v), v′〉,

where 〈v∗, v〉 denotes the evaluation of the linear or anti-linear form v∗ on the vector
v ∈ V .

If L is ε-symmetric, i.e. Lι,> = ειL, the formula

B(v, v′) = 〈L(v′), v〉

defines a (ι, ε)-symmetric form such that ]B = L. Therefore B and ]B are equivalent
data.

Example 6.4. Let W be a complex vector space. Then the tautological isomorphism of
V = W ×W ι,∗ to V ι,∗ gives rise to a tautological (ι, ε)-symmetric form on V ,

(v, v∗) · (w,w∗) = ει(〈v∗, w〉)+ 〈w∗, v〉.

Any two nondegenerate (1, ε)-symmetric forms are isomorphic. On the other hand, (ι, 1)-
symmetric forms, i.e. symmetric sesquilinear forms, take real values on the diagonal, so
sign and signature issues arise: two nondegenerate (ι, 1)-symmetric forms are isomor-
phic if and only if they have the same signature. For instance, the tautological form of
Example 6.4 has vanishing signature.
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6.2. Bilinear and sesquilinear H -modules

Definition 6.5. Let H be a group. The data of a finite-dimensional complex vector space
equipped with a bilinear (either symmetric or skew-symmetric) or sesquilinear form and a
homomorphism ofH onto a reductive real algebraic subgroup of its automorphism group
will be called a (ι, ε)-linear H -module.

Lemma 6.6. Let W be an irreducible H -module. The space of H -invariant bilinear
(resp. sesquilinear) forms on W has dimension at most 1. A nonzero H -invariant bi-
linear (resp. sesquilinear) form is automatically nondegenerate, and in the bilinear case,
it is either symmetric or skew-symmetric.

Proof. Let b be an H -invariant bilinear form on W . Its nullspace is H -invariant. There-
fore b is either zero or nondegenerate. Assume b is nonzero and denote by ]b : W → W ι,∗

the corresponding isomorphism (in the sesquilinear case, ι = conjugation, W ι,∗
= W̄ ∗).

Let b′ be another H -invariant bilinear form on W . Then L = (]b)
−1
◦ ]b′ is an H -

equivariant endomorphism of W , thus L is a multiple of identity (Schur’s Lemma). This
shows that b′ is a multiple of b. Now, b has a symmetric and a skew-symmetric compo-
nent. They have to be linearly dependent; in the bilinear case (ι = 1), this implies that
one of them vanishes. Therefore b is either symmetric or skew-symmetric. ut

Definition 6.7. Say anH -module is (ι, ε)-orthogonal if it admits an invariant nondegen-
erate (ι, ε)-symmetric form.

Corollary 6.8. The classification of irreducible (ι, ε)-linear H -modules can be deduced
from the classification of irreducible H -modules: the forgetful map E(ι,ε)(H) → E(H)

is onto, the fiber of an equivalence class of irreducible H -modules contains one or two
elements depending on whether it is (ι, ε)-orthogonal or not.

Lemma 6.9. Let (V , B) be a (ι, ε)-linear H -module. Let W and W ′ be distinct irre-
ducible H -invariant subspaces. Assume that W ′ is not orthogonal to W . Then W ′ is iso-
morphic, as an H -module, to the (conjugate-)dual W ι,∗ of W (in the sesquilinear case,
W ι,∗

= W̄ ∗).

Proof. The map v 7→ (]B(v))|W , W ′ → W ι,∗, is H -equivariant. According to Schur’s
Lemma, such a map is either zero or an isomorphism, and all such maps are proportional.
By assumption, it does not vanish, thus W ′ and W ι,∗ are isomorphic H -modules. ut

Definition 6.10. Let H be a group and V an H -module. Say V is bi-isotypical if their
exists an irreducible H -module Z such that every irreducible invariant subspace W ⊂ V
is isomorphic either to Z or to Zι,∗.

Corollary 6.11. Let (V , B) be a nondegenerate (ι, ε)-linear H -module. Then V canoni-
cally splits as an orthogonal direct sum of its bi-isotypical components,

V =
⊕
π

Iπ,π ι,∗ ,
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where, given an equivalence class π of irreducible H -modules, Iπ,π ι,∗ = Iπ + Iπ ι,∗ is
the sum of all irreducible invariant subspaces of V isomorphic either to π or to π ι,∗.
Furthermore, Iπ,π ι,∗ is nondegenerate, and the centralizer ZO(V,B)(H) of H in the auto-
morphism group is isomorphic to a direct product,

ZO(V,B)(H) =
∏
π

ZO(Iπ,πι,∗ )(H).

6.3. Examples of bi-isotypical bilinear/sesquilinear H -modules

From now on, we analyze nondegenerate bi-isotypical (ι, ε)-linear H -modules. Here are
two examples.

Example 6.12. Let Z = π⊕r be an isotypical H -module. Set V = Z × Zι,∗, and equip
it with the canonical (ι, ε)-symmetric form

(v, v∗) · (w,w∗) = ει(〈v∗, w〉)+ 〈w∗, v〉.

Then the centralizer of H in O(ι,ε)(V , ·) is isomorphic to an orthogonal, symplectic or
unitary group if π and π ι,∗ are equivalent:

ZO(ι,ε)(V ,·)(H)
∼= O

(ι,ε)(2r,C) :=


O(2r,C) if ι = 1, ε = 1,
Sp(2r,C) if ι = 1, ε = −1,
U(r, r) if ι = ¯, ε = 1,

and otherwise to a general linear group,

ZO(ι,ε)(V ,·)(H)
∼= GL(r,C).

Proof. Pick a basis ei of W and take r copies of it to form a basis of Z. Take the image
of this basis under ]B to get a basis of Zι,∗, i.e. for ε = 1, choose B(ei, ei) = 1 and
e∗i = ]B(ei), and then take {e1, . . . ; e

∗

1, . . . } as a basis for V . For ε = −1, choose
e1, . . . , e2k so that B(ei, ei+k) = 1 = −B(ei+k, ei) and B(ei, ej ) = 0 otherwise. Choose
a basis for V in this case to be {e1, . . . , ek, ek+1, . . . , e2k, e

∗

k+1, . . . , e
∗

2k, e
∗

1, . . . , e
∗

k }. This
gives a basis of V in which the matrix of the bilinear/sesquilinear form B equals

(
0 1
ε 0

)
(blocks have size rd where d = dim π ). In this basis, the matrix of an element g of H
splits into blocks of size d, with the first r diagonal blocks equal to π(g) and the last r
equal to π(g−1)ι,>; all other blocks vanish.

If π and π ι,∗ are equivalent, then endomorphisms of V which commute with H have
matrices whose blocks of size d are scalar, i.e. proportional to the unit d × d matrix. In
other words, they can be written as A⊗ 1 where A ∈ GL(2r,C). Such a matrix preserves
B if and only if

(A⊗ 1)ι,>
((

0 1
ε 0

)
⊗ 1

)
(A⊗ 1) =

(
0 1
ε 0

)
⊗ 1,

i.e. A belongs to O(2r,C) if ε = 1, to Sp(2r,C) if ε = −1 and to U(r, r) if ι =
conjugation. In other words,

ZO(ι,ε)(V ,·)(H)
∼= O

(ι,ε)(2r,C).
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If π and π ι,∗ are not equivalent, then endomorphisms of V which commute with H
preserve the splitting V = Iπ ⊕ Iπ ι,∗ and have matrices whose blocks of size d are scalar,
i.e. proportional to the unit d×d matrix. In other words, they can be written as (A⊕A′)⊗1
whereA,A′ ∈ GL(r,C). Such a matrix preserves B if and only ifA′ = (Aι,>)−1. In other
words,

ZO(ι,ε)(V ,·)(H)
∼= GL(r,C). ut

Example 6.13. Let V = π⊕r be an isotypicalH -module such that π is (ι, ε)-orthogonal,
i.e. preserves a nondegenerate (ι, ε)-symmetric form b. Let D be a real diagonal invert-
ible r × r matrix. Set B = b ⊗ D, i.e. (V , B) is an orthogonal direct sum of r real
multiples of the same nondegenerate (ι, ε)-linear H -module. Then the centralizer of H
in Oε(V , b ⊗D) is isomorphic to an orthogonal/unitary group,

ZOι,ε(V ,b⊗D)(H) ∼= O
ι(Cr ,D).

Note that in the bilinear case, O(Cr ,D) = O(r,C) is a genuine orthogonal group, even
when ε = −1, i.e. when we deal with skew-symmetric forms. In the sesquilinear case,
O ι(Cr ,D) = U(p, q) where p − q = sign(D).

Proof. Repeat the same basis of π to get a basis of V . The matrix of B = b ⊗ D is
block diagonal with diagonal blocks of size d = dim π , each equal to a real multiple
of b. Element g ∈ H acts by a block diagonal matrix, with d × d diagonal blocks equal
to π(g). The centralizer of H in GL(V ) consists of matrices with scalar d × d blocks, i.e.
of the form A⊗ 1 for A ∈ GL(r,C). (ι, ε)-orthogonal matrices satisfy

(A⊗ 1)ι,>(b ⊗D)(A⊗ 1) = b ⊗ (Aι,>DA) = b ⊗D,

i.e. Aι,>DA = D. Thus
ZOε(V ,B)(H) ∼= O

ι(Cr ,D). ut

6.4. Classification of bi-isotypical bi/sesquilinear H -modules

There are three cases, depending on whether π is (ι, ε)-orthogonal, (ι,−ε)-orthogonal,
or neither. In each case, we will need the following lemma.

Lemma 6.14. Let V = W ⊕W ′ be a (ι, ε)-linearH -module whereW ,W ′ are isotropic,
isotypic, and the map L : W ′ → W ι,∗, L(v′) = (]B(v′))|W , is an isomorphism. Then V
is isomorphic to Example 6.12.

Proof. The H -map (w+w′) 7→ (w,L(w′)) is an isometryW ⊕W ′→ W ×W ι,∗, since

(v, L(v′)) · (w,L(w′)) = ει(〈L(v′), w〉)+ 〈L(w′), v〉 = ει(〈]B(v
′), w〉)+ 〈]B(w

′), v〉

= ει(B(w, v′))+ B(v,w′) = B(v′, w)+ B(v,w′)

= B(v + v′, w + w′). ut

Proposition 6.15. Let (V , B) be a nondegenerate bi-isotypical bilinear H -module. As-
sume π and π ι,∗ are not isomorphic. Then (V , B) is isomorphic to Example 6.12.



Flexibility of surface groups in classical groups 2227

Proof. Irreducible invariant subspaces of V belong to either π or π ι,∗, which do not ad-
mit nondegenerate invariant bilinear/sesquilinear forms, thus all are isotropic. Lemma 6.9
implies that any two distinct irreducible invariant subspaces of Iπ are orthogonal. Thus
Iπ is isotropic, and so is Iπ ι,∗ . Since V is nondegenerate, ]B : V → V ι,∗ induces isomor-
phisms L : Iπ → (Iπ ι,∗)

ι,∗ and L′ : Iπ ι,∗ → (Iπ )
ι,∗ related by L⊥ = εL′. According

to Lemma 6.14, this shows that V is isomorphic, as a (ι, ε)-linear H -module, to Exam-
ple 6.12. ut

Proposition 6.16. Let V = Iπ be an isotypical H -module equipped with a nondegener-
ate ε-symmetric bilinear form B. Assume π is (−ε)-orthogonal. Then (V , B) is isomor-
phic to Example 6.12.
Proof. Since π is not ε-orthogonal, all irreducible H -submodules of V are isotropic.
Let W be one of them. An H -invariant complement to W⊥ contains an irreducible H -
submodule W ′, which is not orthogonal to W . The H -map L : W ′ → W ∗, v′ 7→
(]B(v

′))|W , is nonzero, thus an isomorphism, and Lemma 6.14 implies that W ⊕ W ′

is isomorphic to Example 6.12, in particular, it is nondegenerate. Its orthogonal is again
nondegenerate, isotypic, modeled on a (−ε)-orthogonal H -module. By induction on di-
mension, V is an orthogonal direct sum of copies of Example 6.12, thus isomorphic to
Example 6.12. ut

Proposition 6.17. Let V = Iπ be an isotypical H -module equipped with a nondegen-
erate (ι, ε)-symmetric bilinear form B. Assume π is (ι, ε)-orthogonal. Then (V , B) is
isomorphic to Example 6.13.
Proof. Let us show that V contains at least one nondegenerate irreducible invariant sub-
space. Pick an irreducible H -submodule W of V . If it is nondegenerate, we are done.
Otherwise, W is isotropic. An H -invariant complement to W⊥ contains an irreducible
H -submodule W ′, which is not orthogonal to W . If W ′ is nondegenerate, we are done.
Otherwise,W ′ is isotropic too. ThenW⊕W ′ is isomorphic toW×W ι,∗ equipped with the
canonical (ι, ε)-symmetric form. Indeed, the H -map L : W ′ → W ι,∗, v′ 7→ (]B(v

′))|W ,
is nonzero, thus an isomorphism, and Lemma 6.14 applies. By assumption, there exists
an ε-symmetric H -isomorphism M : W → W ι,∗. Then the graph Z = {(w,M(w)) |
w ∈ W } of M is nondegenerate. Indeed, for v, w ∈ W ,

(v,M(v)) · (w,M(w)) = ει(〈M(v),w〉)+ 〈M(w), v〉 = 2ε(〈M(v),w〉)

cannot vanish for all w, unless v = 0. Thus Z is a nondegenerate irreducible (ι, ε)-linear
H -submodule of W × W ι,∗, which embeds isometrically into V , so this is the required
subspace.

The proof of the proposition is concluded by induction on dimension. If V is irre-
ducible, we are done. Otherwise, we have just shown that V has at least one nondegener-
ate irreducible submodule, say W . Then the induction hypothesis applies to its orthogo-
nal W⊥. ut

Corollary 6.18. Let (V , B) be a nondegenerate bi-isotypical (ι, ε)-linear H -module.
Then (V , B) is isomorphic either to Example 6.12 or to Example 6.13. The centralizer
of H in the automorphism group of (V , B) is isomorphic to a general linear group in the
former case, an orthogonal group in the latter.
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6.5. Centers of centralizers in unitary groups

In this case, we directly get information on a real form.

Proposition 6.19. Let (V , B) be a nondegenerate symmetric sesquilinearH -module. Let
c denote the center of the centralizer of H in U(V,B). Then root spaces of V under c
correspond to isotypical components Iπ underH . They fall into bi-isotypical components
BIπ which are pairwise orthogonal. If Iπ = BIπ , then the corresponding root of c is
purely imaginary. If Iπ 6= BIπ , then BIπ = Iπ ⊕ Iπ̄∗ , the corresponding roots `π and `π̄∗
satisfy `π + `π̄∗ = 0. The linear relations between roots are generated by `π + `π̄∗ = 0,
π 6= π̄∗.

Let N be a set which contains exactly one element of each pair {(π, π̄∗)} of equiva-
lence classes of irreducible sesquilinear H -modules occurring in V , such that π 6= π̄∗.
Then the map (`π )π∈N : c→ CN is onto.

Proof. If Iπ = BIπ , then, as a sesquilinearH -module, BIπ is isomorphic to Example 6.13
and contributes a unitary factor to the centralizer ofH , whose center is a purely imaginary
subgroup of SL(n,C). It acts on BIπ by multiplication by a purely imaginary number.
Thus BIπ is a root space for a purely imaginary root. Otherwise, BIπ is isomorphic to
Example 6.12 and contributes a general linear group factor to the centralizer. Its center
is a complex subgroup of SL(n,C), it acts on Iπ (resp. Iπ̄∗ ) by multiplication by an
unrestricted complex number (resp. the opposite of the conjugate number). This produces
a subspace c′ of c which admits a complex structure, the corresponding roots are C-linear
and half of them (to avoid the relations `π + `π̄∗ = 0) provide complex coordinates on c′.

ut

Corollary 6.20. Let L be the set of roots, and LI the subset of roots which take only
purely imaginary values. Then for every ` ∈ L \ LI , − ¯̀ is again a root. Let LN be a set
which contains exactly one element of each pair {`,− ¯̀} with ` ∈ L \ LI . Then

• I` and I`′ are orthogonal unless `′ = − ¯̀;
• if ` ∈ LI , then I` is nondegenerate;
• the map (`)`∈LN : c→ CLN is onto.

6.6. Centers of centralizers in ε-orthogonal groups

We continue our convention that

Oε(n,C) =

{
O(n,C) if ε = 1,
Sp(n,C) if ε = −1.

Note that in the latter case, n has to be even.

Proposition 6.21. Let (V , B) be a nondegenerate bilinear H -module. Let c denote the
center of the centralizer of H in Oε(V , B). Under c, V splits into root spaces as follows.
Each isotypical component Iπ , where π is an irreducible H -module which is not equiva-
lent to its contragredient π∗, is a root space for a nonzero root `π . It is isotropic. The sum
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of all other isotypical components constitutes the 0 root space. Bi-isotypical components
Iπ + Iπ∗ are pairwise orthogonal. Relations among nonzero roots are generated by

`π + `π∗ = 0.

Thus the number of nonzero roots is 2 dim(c). Let L be a set containing exactly one
element of each pair (π, π∗). Then (`π )π∈L : c→ CL is a linear bijection.
Proof. Let L′ be the set of equivalence classes of irreducible H -modules which are iso-
morphic to their contragredient. Then

ZOε(V ,B)(H) =
∏
π∈L

GL(rπ ,C)×
∏
π∈L′

Oε(2rπ ,C),

thus
ZZOε(V ,B)(H) =

⊕
π∈L

C(idIπ − idIπ∗ ),

i.e. (`π )π∈L : c → CL is a linear bijection. Furthermore, if π ∈ L, the bi-isotypical
component Iπ ⊕ Iπ∗ splits into two root spaces relative to roots `π and `π∗ = −`π . ut

Corollary 6.22. Let L̃ denote the set of roots of c on Cn. The roots of c in its adjoint
action on soε(V , B) are exactly all differences `−`′ for `, `′ ∈ L̃, including 2` if ε = −1
or dim(I`) > 1, and excluding 2` if I` is 1-dimensional and ε = 1.

In other words, if L is a set of representatives of pairs {−`, `} of nonzero roots, the
roots of c in the adjoint representation include 0, all sums ±` ± `′ for distinct `, `′ ∈ L,
sometimes ±2` (depending on ε and dim(I`)), and, if 0 is also a root of c on Cn, all ±`
for ` ∈ L.
Proof. The Lie algebra so(V , B) is the space of B-skew-symmetric endomorphisms of V ,
i.e. C-linear maps f : V → V satisfying, for all v, v′ ∈ V ,

B(f (v), v′)+ B(v, f (v′)) = 0.

The roots of c in the adjoint representation are differences λ = ` − `′ of roots of c
in Cn. If `′ 6= ±`, the root space relative to ` − `′ is the subspace of B-skew-symmetric
elements of Hom(I`, I`′) ⊕ Hom(I−`′ , I−`). It never vanishes. Indeed, for every f ∈
Hom(I`, I`′), there is a unique g ∈ Hom(I−`′ , I−`) such that (f, g) isB-skew-symmetric.
The formula for g is

g = −]−1
B ◦ f

>
◦ ]B .

Here is an alternative description of so(V , B): mapping f ∈ End(V ) to the bilinear
form b(v, v′) = B(f (v), v′) identifies End(V ) with the space V ∗ ⊗ V ∗ of C-bilinear
forms on V and so(V , B) with the subspace 3εV ∗ of (−ε)-symmetric C-bilinear forms
on V . The adjoint action of Z ∈ so(V , B) is

Zb(v, v′) = B([Z, f ](v), v′) = −b(v, Zv′)− b(Zv, v′).

If v ∈ I`, v′ ∈ I`′ and Z ∈ c, then

Zb(v, v′) = −(`+ `′)(Z)b(v, v′).

Therefore the root space relative to 2` identifies with 3εI ∗` . It vanishes if and only if
ε = 1 and dim(I`) = 1. ut
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7. Real forms of SL(n,C)

7.1. Flexibility in SL(n,R) and SL(n,H)

Proposition 7.1. Let c ⊂ sl(n,R) (resp. sl(n/2,H)) be the center of the centralizer of a
reductive subgroup of SL(n,R) (resp. SL(n/2,H)). Let λ be a purely imaginary root of
c in its adjoint action on sl(n,C). Then the signature of the Killing form restricted to gλ
does not vanish. It follows that c is balanced.

Proof. Let Cn denote the standard representation of sl(n,C). As in Subsection 4.2, let
τ(v) = v̄ in the complex case, and τ(v) = vj in the quaternionic case (here, Cn = Hn/2
is viewed as a right quaternionic vector space). For f ∈ sl(n,C) let σ(f ) = τ ◦ f ◦ τ−1.
Then Fix(σ ) = g = sl(n,R) (resp. sl(n/2,H)).

Under c, Cn splits into root spaces Cn =
⊕

` I`, dim(I`) = d`. Roots are either real
or come in pairs {`, ¯̀} (Lemma 4.1). According to Lemma 5.5, every nonzero root λ of c
in its adjoint action on sl(n,C) can be uniquely written in the form `− `′. Such a root is
purely imaginary if and only if `′ = ¯̀, i.e. λ = `− ¯̀. The corresponding root space is

gλ = Hom(I`, I ¯̀).

Let f ∈ Hom(I`, I ¯̀), σ(f ) = f̄ ∈ Hom(I ¯̀, I`). Pick a basis of I` and take its image
under τ as a basis of I ¯̀. LetM denote the matrix of f in the chosen basis of Cn. Then the
matrix of σ(f ) is σ(M), and Trace(σ (f ) ◦ f ) = Trace(M̄M). Write M = S + A where
S is symmetric and A is skew-symmetric. Then

Trace(M̄M) = Trace(S̄S)+ Trace(ĀA) = Trace(S∗S)− Trace(A∗A)

has signature dim({S}) − dim({A}) = d`(d` + 1)/2 − d`(d` − 1)/2 = d`, which is
nonzero. ut

7.2. Flexibility in SU(p, q)

Proposition 7.2. Let 0 be a surface group, let φ : 0→ SU(p, q) a reductive homomor-
phism, and let c be the center of the centralizer of φ(0). Assume that c is not balanced
with respect to φ. Then, up to conjugacy, φ(0) is contained in S(U(p, p) × U(q − p)),
and φ is maximal.

Proof. Under c, the standard representation of sl(n,C) splits into root spaces, Cn =⊕
` I`. The roots of c in the adjoint representation are differences `− `′, and all of them

indeed occur. Following Corollary 6.20, split the set of roots as L̃ = LI ∪ LN ∪ −LN ,
where LI is the subset of purely imaginary roots. If ` ∈ LN , then 2` is a root in the
adjoint representation, and it is not purely imaginary. If ` ∈ LI and `′ ∈ LN , then `− `′

is not purely imaginary. If ` and `′ ∈ LN , then `− `′ is not purely imaginary either, since
it factors through a surjective map c→ CLN and a C-linear form CLN → C. So if LN is
nonempty, then the non-purely imaginary roots span c∗, and c is balanced, a contradiction.
So LN is empty, all roots on Cn are purely imaginary, and the corresponding root spaces
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I` are nondegenerate and pairwise orthogonal. In what follows, we shall replace roots by
their imaginary parts without expressing it in the notation.

Each root λ in the adjoint representation can be expressed in a unique way as λ =
`− `′, and

gλ = Hom(I`, I`′).

A calculation shows that the signature of the natural Hermitian form on Hom(I`, I`′)
equals − sign(I`) sign(I`′). This time, the signature is not automatically nonzero. So dif-
ferent arguments, based on [4], are needed.

Assume that the sesquilinear action of 0 on gλ is maximal. The situation we are
considering is as follows: sinceH = φ(0) preserves I` and preserves a sesquilinear form
on it, we have φ(0) ⊂ U(I`), and similarly for I`′ , hence φ(0) → U(I`) × U(I`′) and
we obtain

φ(0) ⊂ ZG(c)
� � //
� x

f

**VVVV
VVVV

VVVV
VVVV

VV
U(I`)× U(I`′)

��
U(gλ) = U(Hom(I`, I`′)) = U(I` ⊗ I ∗`′)

where f is tight. According to Proposition 3.16, the sesquilinear space Hom(I`, I`′)must
have vanishing signature. Also, the homomorphism ZG(c) → U(Hom(I`, I`′)) must be
tight. Lemma 3.14 implies that one of I` and I`′ has vanishing signature and the other
one is definite. Say I` is definite, for instance. According to Lemma 3.8, maximality of
Hom(I`, I`′) implies maximality of the 0 action on I`′ , with Tλ = dim(I`)T (I`′). If
instead I`′ is definite, then Tλ = −T (I`) dim(I`′).

Let D (resp. E, resp. O) denote the set of roots ` such that I` is definite (resp. has
vanishing signature, resp. has nonvanishing signature). As in Definition 2.1, let P denote
the set of roots λ such that ρλ is maximal with positive Toledo invariant, or equivalently,
of differences `− `′ with ` ∈ D and `′ ∈ E such that I`′ is maximal with positive Toledo
invariant. Let N be the complement of ±P .

Let us show that if O is nonempty, then c is balanced with respect to φ. Indeed, let
`0 ∈ O. Then for all `′ 6= `0, if we set λ = `0 − `

′, then ρλ is not maximal, thus
`0 − `

′
∈ N . Since the roots ` span c∗ ⊗ C and satisfy the extra equation

∑
` d`` = 0,

it follows that spanC({`0 − `
′
| `′ 6= `0}) = c∗ ⊗ C. Since spanC(N) = c∗ ⊗ C, c is

balanced with respect to φ.
From now on, we assume that O is empty. If D or E is empty, there is no room for

pairs (`, `′) for ` ∈ D and `′ ∈ E, so P is empty, hence balanced. Therefore we assume
that both D and E are nonempty. Let LD (resp. LE) denote the span of all differences
`− `′ for ` ∈ D and `′ ∈ D (resp. for ` ∈ E and `′ ∈ E). Then dim(LD) = card(D)− 1
and dim(LE) = card(E) − 1 by Lemma 5.5. Since LD ⊂ spanC(D), LE ⊂ spanC(E)
and spanC(D) ∩ spanC(E) is the line generated by

∑
`∈D d``, we have LD ∩ LE = {0},

thus dim(LD + LE) = card(D) + card(E) − 2 = dim(c) − 1. In the quotient space
c∗ ⊗ C/LD + LE , all elements of D (resp. of E) are mapped to the same vector `D
(resp. `E), and `D 6= `E . Again, if one of the ` − `′, ` ∈ D, `′ ∈ E, belongs to N , then
c∗ ⊗ C/N vanishes, so c is balanced with respect to φ, a contradiction.
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Therefore, all ` − `′ with ` ∈ D and `′ ∈ E belong to ±P . If there exist two pairs
(`, `′), ` ∈ D, `′ ∈ E, such that =m(` − `′) have opposite signs in c∗/=m(LD + LE),
then c is balanced with respect to φ, a contradiction.

Otherwise, all ` − `′, ` ∈ D, `′ ∈ E, belong to ±P and those which belong to +P
project to c∗/=m(LD+LE) with equal signs. This implies that the direct sum representa-
tion

⊕
`∈E I` is maximal. In other words, φ(0) ⊂ U(p, p)×U(q − p) is maximal. The

symmetric spaces Dp,p and Dp,q corresponding to SU(p, p) and G = SU(p, q) have
equal ranks and the embedding Dp,p ↪→ Dp,q is isometric and holomorphic. Therefore
Example 3.3 implies that, viewed as a homomorphism 0→ G, φ is maximal as well. ut

7.3. Rigidity in SU(p, q)

The centralizer of SU(p, p) in SU(p, q) with q > p is U(q − p) with center c = u(1)
generated by

Z =

(
−

2pi
p+q

Iq−p 0
0 (q−p)i

p+q
I2p

)
.

There is only one nonzero pair of roots ±i, giving rise to the root space
HomC(Cq−p,C2p). The sesquilinear form si on HomC(Cq−p,C2p) is, in an SU(p, p)-
invariant manner, the direct sum of q−p copies of the U(p, p)-invariant Hermitian form
on C2p. Therefore the corresponding Toledo invariant is equal to q − p times the Toledo
invariant obtained for q = p + 1. In this case, the centralizer of c is U(1) × SU(p, p),
acting on the real root space via the standard complex representation of its second factor.
The representation ρi induced on a surface subgroup 0 ⊂ U(1)×SU(p, p) is maximal if
and only if the projection of 0 to SU(p, p) is maximal. Thus a maximal surface subgroup
of SU(p, p) is not flexible in SU(p, q) with q > p, as is well known. Such subgroups
exist (Theorem 1.8) and are known to be automatically discrete [1], [3].

8. Real forms of O(n,C) and Sp(n,C)

8.1. Non-purely imaginary roots

Lemma 8.1. Let G be a real form of Oε(n,C). Let H ⊂ G be a reductive subgroup. Let
c ⊂ g be the center of its centralizer. If one of the roots of c on Cn is not purely imaginary,
then c is balanced.

Proof. Assume that c is not balanced and at least one of the roots of c on Cn is not purely
imaginary. Consider the torus c⊗C ⊂ soε(n,C) and the set L∪−L of its nonzero roots
on Cn (Proposition 6.21). Write L = LI ∪ LN where LI ⊂ L denotes the set of roots
whose restriction to c takes only purely imaginary values, and LN its complement. By
assumption, LN is nonempty.

Assume first that LI is nonempty too. None of the roots λ = ±`± `′ with ` ∈ LI and
`′∈LN is purely imaginary, so none of them belongs to±P . They generate span(L)=c∗,
thus c is balanced, a contradiction. Therefore, L = LN .
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If every root of the adjoint action is non-purely imaginary, it is balanced. Hence they
do not span c∗, which implies that there exists v ∈ c such that λ(v) = 0 for all roots λ of
c in the adjoint representation which are not purely imaginary. For any distinct `, `′ ∈ L,
one of `− `′ and `+ `′ is not purely imaginary, thus `′(v) = ±`(v).

Assume that there exists ` ∈ L such that ` or 2` is a root of the adjoint action;
then `(v) = 0 as well, which implies that `′(v) = 0 for all `′ ∈ L, and v = 0. In other
words, in that case, non-purely imaginary roots span c∗, and c is balanced, a contradiction.
Therefore,

• 0 is not a root of c on Cn (i.e., all root spaces correspond to elements of ±L);
• for every root ` ∈ L, 2` is not a root of c in the adjoint representation.

This implies that ε = 1 and all root spaces I` have dimension 1, i.e. c⊗ C is a maximal
torus of so(n,C). Its centralizer in so(n,C) is abelian, and so are ZG(c) and H , up to
finite index. A homomorphism from an abelian group cannot be tight, so no symplectic
action on root spaces can be maximal, P is empty, and c is balanced again, a contradiction.

ut

8.2. The sesquilinear structure

Proposition 8.2. LetG be a real form of Oε(n,C). LetH ⊂ G be a reductive subgroup.
Let c ⊂ g be the center of its centralizer.

1. Let ` be a purely imaginary root of c on Cn. Let I` denote the corresponding root
space. Then I` inherits a ZG(c)-invariant nondegenerate sesquilinear form s`.

2. Assume that all roots of c on Cn are purely imaginary. Then the centralizer ZG(c) is a
product of the fixator of the orthogonal of the 0 root space I0 and of unitary groups,

ZG(c) ∼= GI⊥0
×

∏
`∈L

U(I`, s`).

Proof. 1. Let s`(v, v′) = B(τ(v), v′). This is an ηε-symmetric sesquilinear form. It is
nondegenerate on I` because B is and all root spaces but I−` = τ(I`) are B-orthogonal
to I`. If g ∈ ZG(c), i.e. g belongs to G and commutes with c, then g leaves all root
spaces I±` invariant, commutes with τ , and is isometric for B, thus it is isometric for s`.

2. Let g ∈ G commute with c. Let g0 ∈ GL(n,C) be the element which coincides
with g on I0 and fixes the sum of all I` with ` ∈ ±L, i.e. I⊥0 . Then g0 ∈ G. Indeed, g0
commutes with τ and preserves B. Also, restrict g to each I` with ` ∈ L. This yields an
injective homomorphism ZG(c)→ GI⊥0

×
∏
`∈L U(I`, s`).

Conversely, let g0 ∈ G fix all I`. For each ` ∈ L, pick g` ∈ U(I`, s`), extend
it to I−` so that g` = τ ◦ g` ◦ τ

−1, extend this map trivially to other I`′ and to I0.
The resulting linear map belongs to ZG(c). Indeed, it preserves B, commutes with τ
and preserves each I`. Multiplying g0 with the g`’s yields the inverse isomorphism
GI⊥0
×
∏
`∈L U(I`, s`)→ ZG(c). ut

Lemma 8.3. Let G be a real form of Oε(n,C). Let H ⊂ G be a reductive subgroup.
Let c ⊂ g be the center of its centralizer. Let `, `′ be distinct purely imaginary roots of c
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on Cn, and λ = `− `′ the corresponding purely imaginary root of c in its adjoint action
on g. Let I`, I`′ and gλ denote the corresponding root spaces.

1. If `′ 6= −`, then, as a sesquilinear ZG(c)-module, gλ is isomorphic to Hom(I`, I`′)
equipped with the natural sesquilinear form

(f, f ′) 7→ Trace(f ∗ ◦ f ′),

where f ∗ ∈ Hom(I`′ , I`) is the adjoint of f with respect to the sesquilinear forms s`
and s`′ .

2. If `′ = −`, then, as a sesquilinear ZG(c)-module, gλ is isomorphic to the subspace of
(−ε)-symmetric forms in the space I ∗` ⊗ I

∗

` of C-bilinear forms on I`, equipped with
its natural sesquilinear form

(b, b′) 7→ Trace((]s`)
−1
◦ (]b)

>
◦ (]s`)

−1
◦ ]b′).

Proof. 1. Assume first that ` and `′ are linearly independent. According to Corollary 6.22,
gλ is the space of B-skew-symmetric elements of Hom(I`, I`′)⊕ Hom(I−`′ , I−`). Given
f ∈ Hom(I`, I`′) and g ∈ Hom(I−`′ , I−`), X = (f, g) being B-skew-symmetric means
that for all v ∈ I` and w ∈ I−`′ ,

B(f (v), w)+ B(v, g(w)) = 0.

Since ]B identifies I−` with the dual of I`, given f ∈ Hom(I`, I`′), there exists a unique
g ∈ Hom(I−`′ , I−`) such that X = (f, g) is B-skew-symmetric. This shows that, as a
ZG(c)-module, g`−`′ is isomorphic to Hom(I`, I`′).

Since σ(X) = (τ ◦ g ◦ τ−1, τ ◦ f ◦ τ−1), we have

σ(X) ◦X = η(τ ◦ g ◦ τ ◦ f, τ ◦ f ◦ τ ◦ g),

and therefore

Trace(σ (X) ◦X) = η Trace(τ ◦ g ◦ τ ◦ f )+ η Trace(τ ◦ f ◦ τ ◦ g)
= 2η Trace(τ ◦ g ◦ τ ◦ f ).

If v ∈ I`, then

s`(v, τ ◦ g ◦ τ ◦ f (v)) = B(τ(v), τ ◦ g ◦ τ ◦ f (v)) = B(v, g ◦ τ ◦ f (v))

= −B(f (v), τ ◦ f (v)) = −ε B(τ ◦ f (v), f (v))

= −ε s`(f (v), f (v)) = −ε s`(v, f ∗ ◦ f (v)).

Summing over an orthogonal basis for s` yields

Trace(τ ◦ g ◦ τ ◦ f ) = −ε Trace(f ∗ ◦ f ),

hence the Killing sesquilinear form on gλ is proportional to Trace(f ∗ ◦ f ).
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2. Let f ∈ Hom(I`, I−`). Then f belongs to so(V , B) (f is B-skew-symmetric) if
and only if f ∗ = −σ(f ). Indeed,

∀v,w ∈ I`, B(f (v), w)+ B(v, f (w)) = 0

⇔ ∀v,w ∈ I`, s−`(f (v), τ (w))+ s`(v, τ ◦ f (w)) = 0

⇔ ∀v ∈ I`, ∀v
′
∈ I−`, s−`(f (v), v

′)+ s`(v, τ ◦ f ◦ τ
−1(v′)) = 0

⇔ f ∗ = −τ ◦ f ◦ τ−1.

Thus, for B-skew-symmetric f ,

Trace(σ (f ) ◦ f ) = Trace(τ ◦ f ◦ τ−1
◦ f ) = −Trace(f ∗ ◦ f ).

Now f is B-skew-symmetric if and only if the bilinear form b(v, v′) = B(f (v), v′) on I`
is (−ε)-symmetric. Since ]B = f> ◦ ]B = ηf> ◦ τ> ◦ ]s` and f ∗ = (]s`)

−1
◦ (f )> ◦ ]s` ,

we have

f ∗ ◦ f ′ = η(]s`)
−1
◦ (]b)

>
◦ (]s`)

−1
◦ ]b′ . ut

Lemma 8.4. Let V be an n-dimensional complex vector space equipped with a nonde-
generate sesquilinear form of signature s. Then the signatures of the induced sesquilinear
forms on V ∗⊗V ∗, S2V ∗ and32V ∗ are equal to s2, (s2

+n)/2 and (s2
−n)/2 respectively.

Proof. Fix a basis of V . If D denotes the matrix of the sesquilinear form S in this ba-
sis, and b, b′ the matrices of two bilinear forms on V , the induced sesquilinear form on
V ∗ ⊗ V ∗ is

Trace(b̄>D−1b′D−1).

One can assume that S is diagonal with entries dm = 1 (p times) and −1 (q times),
n = p + q, s = p − q. Then

Trace(b̄>D−1b′D−1) =
∑
m,m′

dmdm′ |bmm′ |
2

is diagonal again. The signature of the whole space V ∗ ⊗ V ∗ is
∑
m,m′ dmdm′ = s

2. The
signature of the subspace 32V ∗ of skew-symmetric forms is

∑
m<m′

dmdm′ =
p(p − 1)

2
+
q(q − 1)

2
− pq =

s2
− n

2
.

The signature of the subspace S2V ∗ of symmetric forms is

∑
m≤m′

dmdm′ = n+
∑
m<m′

dmdm′ =
s2
+ n

2
. ut
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8.3. Unbalanced centers of centralizers

Recall that when c ⊂ g is the center of the centralizer of a homomorphism of a sur-
face group to G, P denotes the set of roots λ in the adjoint representation such that the
sesquilinear action on the root space gλ is maximal with positive Toledo invariant.

Lemma 8.5. Let G be a real form of Oε(n,C). Let φ : 0 → G be a reductive ho-
momorphism. Let c ⊂ g be the center of its centralizer. Assume all the roots are purely
imaginary. Let `, `′ be distinct nonzero purely imaginary roots of c on Cn, and λ = `− `′

the corresponding purely imaginary root of c in its adjoint action on g.

1. If `′ 6= −` and λ ∈ ±P , then one of s` and s`′ has vanishing signature and the other
is definite.

2. If `′ = −`, then λ = 2` either is not a root or does not belong to ±P .

Proof. If λ ∈ P , then gλ has vanishing signature. So does U(Hom(I`, I`′)) (resp.
U(3ε(I`))) with its natural sesquilinear form, according to Lemma 8.3. In particular,
these groups are of tube Hermitian type. Furthermore, the ZG(c) action on gλ is tight.
According to Proposition 8.2, ZG(c) is a product of groups.

1. If `′ 6= −`, then among the factors, only U(I`, s`) and U(I`′ , s`′) act nontrivially
on gλ, thus the morphism

U(I`)× U(I`′)→ U(Hom(I`, I`′))

must be tight. Lemma 3.14 applies and one of the left hand groups is compact and the
other has vanishing signature.

2. If `′ = −`, then among the factors, only U(I`, s`) acts nontrivially on gλ, thus the
morphism

U(I`)→ U(3ε(I`))

must be tight. Lemma 3.13 implies that U(I`) is of tube type, so s` has vanishing sig-
nature. Lemma 8.4 shows that the signature of 3ε(I`) is ± dim(I`)/2, which does not
vanish, a contradiction. We conclude that if 2` is a root, it does not belong to ±P . ut

Proposition 8.6. LetG be a real form of Oε(n,C). Let φ : 0→ G be a reductive homo-
morphism. Let c ⊂ g be the center of its centralizer. Then c is balanced with respect to φ
unless ε = 1, dim(c) = 1, c∗ is generated by a root ` with a 1-dimensional root space I`,
the sesquilinear form on I0 has vanishing signature, GI⊥0 is reductive Hermitian of tube
type and tightly embedded in U(I0), and the homomorphism 0→ U(I0) is maximal.

Proof. Assume that c is not balanced. From Lemma 8.1, we know that roots have to be
purely imaginary. We take their imaginary parts without explicit mention.

If ε = −1 or if all I`, ` ∈ L, have dimension > 1, then all 2` are roots and do not
belong to ±P , so they all belong to the complement N of P (Lemma 8.5). Since they
generate c∗, c is balanced, a contradiction. So ε = 1 and the set D of roots ` ∈ L such
that dim(I`) = 1 is nonempty.

Assume that D has at least two elements. According to Lemma 8.5, all combinations
±`± `′ for `, `′ ∈ D belong to N . Since they span span(D), and the multiples 2`′′ with



Flexibility of surface groups in classical groups 2237

`′′ /∈ D span span(L \ D), it follows that N spans c∗ and c is balanced, a contradiction.
So D has exactly one element, denoted by `0.

Assume that L 6= D. If ` /∈ D, then 2` /∈ ±P , hence 2` ∈ N . Since `0 ∪ {` /∈ D} are
all roots, dim(c∗/span(N)) = 1, and for all ` ∈ L \D, all combinations ±`0 ± ` belong
to ±P . Since 0 does not belong to the convex hull of the image of P in c∗/span(N), this
convex hull contains exactly one of `0 and−`0, say `0. Then `0−` and `0+` belong to P .
Thus the sesquilinear representation of 0 in Hom(I`0 , I` ⊕ I−`) is maximal. Lemma 3.6
allows us to replace Hom(I`0 , I` ⊕ I−`) with I` ⊕ I−`. However, as a sesquilinear vector
space, I−` is isomorphic to I`, so, by Lemma 3.7,

T (I` ⊕ I−`) = T (I`)+ T (I−`) = T (I`)− T (I`) = 0,

contradicting maximality. So L = D and dim(c) = 1.
Assume that 0 is not a root of c on Cn. Then dim(V = I`0 ⊕ I−`0) = 2 and ZG(c) =

U(I`0)
∼= U(1), which cannot have any maximality property. So 0 is a root on Cn and

±`0 are roots of c in the adjoint representation. Since 0 does not belong to the convex hull
of P in c∗, exactly one of±`0 belongs to P , say `0 ∈ P . Then Hom(I`0 , I0) is a maximal
sesquilinear representation of 0, and so is I0, by Lemma 3.6. In particular, the signature of
(I0, s0) vanishes, i.e. U(I0) has tube type. Also, the morphism ZG(c)→ PU(I0) is tight.
ZG(c) = GI⊥0

×U(I`0) acts on I0 via the group GI⊥0 , so the injection GI⊥0 → PU(I0) is
tight. This implies that GI⊥0 is reductive Hermitian and has tube type (Lemma 3.13). ut

Corollary 8.7. Let G be a real form of Oε(n,C). Let φ : 0 → G be a reductive homo-
morphism. Let c ⊂ g be the center of its centralizer. Then c is balanced with respect to φ
unless G = SO∗(2n), n odd, φ(0) ⊂ SO∗(2n− 2)× SO∗(2) and φ is maximal.

Proof. In view of Proposition 8.6, it merely remains to determine which pairs (G,GI⊥0 )
can lead to unbalanced centralizers when G is a real form of O(N,C), i.e. G = O(p, q)
or G = SO∗(2n).

In the real case, I0 is real, and GI⊥0 is a real orthogonal group O(p, q), which tightly
injects into U(I0, s0) = U(p, q). We also know that the signature p − q of s0 vanishes.
O(p, p) is reductive Hermitian only if p = 2. But Lemma 3.15 states that the inclu-
sion O(2, 2) ↪→ U(2, 2) is not tight. So c is always balanced if G = O(p, q) is a real
orthogonal group.

In the quaternionic case, I0 is quaternionic and carries a nondegenerate (¯,−1)-binary
form (Lemma 4.1) (see also Subsection 4.2). Therefore GI⊥0 is a quaternionic skew-
unitary group SO∗(2p) with p = dimH(I0). Let ` denote the unique nonzero root of c
on C2n. Then I⊥0 = I` ⊕ I−` is a 2-dimensional complex vector space, thus a 1-dimen-
sional quaternionic vector space, therefore n = p + 1. Since GI⊥0 has tube type, p is
even and n is odd. The homomorphism 0 → U(I0) ∼= U(p, p) is maximal. According
to Lemma 10.3, the homomorphism 0 → GI⊥0

∼= SO∗(2p) is maximal as well. The
symmetric spaces Gp and Gp+1 corresponding to GI⊥0 and G have equal ranks and the
embedding Gp ↪→ Gp+1 is isometric and holomorphic. Therefore Example 3.4 implies
that, viewed as a homomorphism 0→ G, φ is maximal as well. ut



2238 Inkang Kim, Pierre Pansu

9. Proof of Theorem 1

For homomorphisms 0→ Gwith reductive Zariski closure, the conclusion of Theorem 1
follows from Theorem 2.2, the classification of classical simple Lie groups and the case
by case analysis of balancedness in Sections 7 and 8.

Here is how the problem is reduced to the case of reductive homomorphisms. Theo-
rem 2 of [13] asserts that if genus(0) ≥ 2 dim(G)2 andG is semisimple, then Hom(0,G)
falls into two types of connected components: in some of them, Zariski dense homomor-
phisms are dense; others do not contain any Zariski dense homomorphism (call them
rigid). Let φ : 0 → G be an arbitrary homomorphism. If φ cannot be approximated by
Zariski dense homomorphisms, then it belongs to a rigid component C. Proposition 8.3
of [13] asserts that C contains a reductive homomorphism ψ . The reductive case of The-
orem 1 implies that G is Hermitian of nontube type and ψ is maximal. Since Toledo
invariants are constant on connected components of Hom(0,G), φ is maximal as well.

10. Appendix

For the reader’s convenience, we give proofs of the maximality preserving property of
two embeddings between reductive Hermitian groups (Example 3.12).

We start with a preliminary observation.

Lemma 10.1. Let F : Y → X be an equivariant totally geodesic map between Hermi-
tian symmetric spaces. Assume Y is irreducible. Let P ⊂ X and Q ⊂ Y be maximal
polydisks such that F(Q) ⊂ P . Then F is positively maximality preserving if and only
F|Q : Q→ P is.

Proof. Since Y is irreducible, F is homothetic, i.e. there exists a constant c such that
F ∗ωX = c ωY . Sectional curvature achieves its minimum along maximal polydiscs, so

(ωX)|P = ωP , (ωY )|Q = ωQ.

Since rank(P ) = rank(X) and rank(Q) = rank(Y ), F is positively maximality preserving
if and only if

c =
rank(X)
rank(Y )

⇔ c =
rank(P )
rank(Q)

⇔ (F|Q)
∗ωP =

rank(P )
rank(Q)

ωQ

if and only if F|Q is positively maximality preserving. ut

Lemma 10.2. The embedding SU(n, n) ↪→ Sp(4n,R) is positively maximality preserv-
ing.

Proof. Let Y = Dn,n (resp. X = S2n) denote the symmetric space associated to H =
SU(n, n) (resp. G = Sp(4n,R)). Let ι : Y → X denote the corresponding embedding of
symmetric spaces. We must show that

ι∗ωX = 2ωY .
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Let us first study the case when n = 1. Let VC = C2 be equipped with the standard
symmetric sesquilinear form v · v′ = v̄>v′. Let S =

( 0 i
−i 0

)
. The symmetric sesquilin-

ear form s(v, v′) = v · (Sv′) on VC has vanishing signature. It is easy to show that
s(Av,Av′) = s(v, v′) for v, v′ ∈ C2, and A ∈ SL(2,R) by a direct calculation. Hence
the group H = SU(VC, s) coincides with SL(2,R) acting on VC = R2

⊗ C. Its maximal
compact subgroup L is generated by J =

( 0 1
−1 0

)
.

Let VR denote VC viewed as a real vector space equipped with the symplectic form
�(v, v′) = =m(s(v, v′)). Then H = SU(VC, s) is a subgroup of the larger symplectic
group G = Sp(VR, �). Let ρ : SU(VC, s) ↪→ Sp(VR, �) denote the inclusion homomor-
phism. Then J ′ = ρ(J ) is the block diagonal 4× 4 matrix with 2× 2 blocks

( 0 1
−1 0

)
. As

J ′ is a complex structure compatible with� and tamed by�, its centralizer in Sp(VR, �)
is a maximal compact subgroup K of Sp(VR, �). The adjoint actions of J on h/l and
of J ′ on g/k define the complex structures of the symmetric spaces Y and X associated to
H andG, so the ρ-equivariant embedding ι : Y ↪→ X mapping L into K is holomorphic.

Let us view VC as R2
⊗C. Then VR = R2

⊕ iR2. In these coordinates, SL(2,R) acts
diagonally. The stabilizer of this decomposition in G is the standard SL(2,R)× SL(2,R)
in Sp(4,R). By Example 3.5, the embedding of symmetric spaces Y = S1 ↪→ S2
corresponding to each SL(2,R) ↪→ G is isometric and holomorphic, so SL(2,R) ×
SL(2,R) ↪→ G gives rise to an isometric and holomorphic map of Y × Y onto a maxi-
mal polydisk P of X = S2. The image ρ(H) sits diagonally in the product SL(2,R) ×
SL(2,R), so ι : Y → P factors through the diagonal 1 : Y → Y × Y . This shows that
Kähler forms fit up to a factor of 2, i.e.

ι∗ωP = 1
∗(pr∗1 ωP + pr∗2 ωP ) = 2ωY .

In general, let (VC, s) be the orthogonal direct sum of n copies of the n = 1 example
just studied. Then s has vanishing signature. Each factor gives rise to a homomorphism
SU(1, 1) ↪→ H = SU(VC, s) and a map D1,1 = S1 ↪→ Y = Dn,n which, according to
Example 3.3, is isometric and holomorphic. The product map Dn

1,1 ↪→ Y is isometric and
holomorphic onto a maximal polydisk Q of Y .

Let VR be VC viewed as a real vector space equipped with the symplectic structure
� = =m(s). Each factor of VC is the complexification of a real 2-dimensional vector
space. This gives rise to commuting embeddings SL(2,R) ↪→ Sp(4n,R), and the corre-
sponding map S2n

1 ↪→ X = S2n is a holomorphic isometry onto a maximal polydisk P
of X. The restriction of ι : Y → X to Q is the direct product of n copies of the n = 1
case, so again

ι∗ωP = 2ωQ.
With Lemma 10.1, since rank(X) = 2 rank(Y ), this shows that ι is positively maximality
preserving. ut

Lemma 10.3. Let h be a nondegenerate ( ¯ ,skew)-symmetric binary form on a 2n-dimen-
sional quaternionic vector space VH (see Subsection 4.1). Use right multiplication by i
to turn VH into a complex 4n-dimensional vector space VC. Let C(q) = a denote the
complex part of a quaternion q = a + jb. Then

s(v, v′) = C(h(v, v′))
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is a nondegenerate sesquilinear form of vanishing signature on VC. Then the correspond-
ing embedding of groups ρ : SO∗(4n) := SU(VH, h) ↪→ SU(2n, 2n) := SU(VC) is
positively maximality preserving.

Proof. Let ι : Y = G2n → X = D2n,2n be the corresponding embedding of Hermitian
symmetric spaces. Since rank(G2n) = n and rank(D2n,2n) = 2n, we shall show that
Kähler forms match up to a factor of 2, i.e. ι∗ωX = 2ωY . Following Lemma 10.1, it
suffices to understand the restriction of ι to maximal polydisks.

Let v · v′ = v̄>v′ denote the standard positive definite ¯-symmetric binary form
on H2n. Let h(v, v′) = v · iv′. Then h is (¯ , skew)-symmetric and nondegenerate, so
we can take VH = (H2n, h). The embedding ρ : SO∗(4n) ↪→ SU(2n, 2n) consists
in taking a quaternionic matrix X, splitting it as X = M + jM ′ where M and M ′

have complex entries, and letting X act on the quaternionic vector v = a + jb where
(a, b) ∈ (C2n)2 = C4n. Thus

Xv = (M + jM ′)(a + jb) = Ma −M ′b + j (M ′a + M̄b),

i.e.

ρ(X) =

(
M −M ′

M ′ M̄

)
. (1)

Let J ∈ GL(2n,H) denote left multiplication by i. Elements of Sp(2n) which commute
with J (i.e. matrices with entries in C ⊂ H) form a group L isomorphic to U(2n). It
is a maximal compact subgroup in SO∗(4n). Under ρ, this subgroup is mapped to the
maximal compact subgroup K = S(U(2n) × U(2n)) by M 7→ (M, M̄). The map J
belongs to the Lie algebra h = so∗(4n), it generates the center of the Lie algebra l of L.
Therefore the complex structure on G2n arises from the adjoint action of J on h/l. For
the same reason, the complex structure on D2n,2n arises from the adjoint action of J ′ =
diag(i, . . . , i,−i, . . . ,−i) on g/k. Note that at the Lie algebra level we have ρ(J ) = J ′,
thus ι is holomorphic.

Let us first study the case when n = 1. The Lie algebra

so∗(4) =
{
A

∣∣∣∣ A∗ (i 0
0 i

)
+

(
i 0
0 i

)
A = 0

}
is isomorphic to su(1, 1)⊕ su(2), it consists of matrices of the form(

iα jx

−jx iα

)
+

(
iβ y

−ȳ −iβ

)
where α, β ∈ R and x, y ∈ C. The first matrix belongs to a subalgebra q isomorphic to
su(1, 1). A computation based on formula (1) gives

ρ

(
iα jx

−jx iα

)
=


iα 0 0 −x̄

0 iα x̄ 0
0 x −iα 0
−x 0 0 −iα

 .
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We see that ρ(q) is contained in the subalgebra

p =



iα 0 0 −x̄

0 iα′ −x′ 0
0 −x′ −iα′ 0
−x 0 0 −iα


∣∣∣∣∣∣∣∣α, α

′
∈ R, x, x′ ∈ C

 ,
which is isomorphic to su(1, 1) ⊕ su(1, 1) and embedded in the standard (block diago-
nal) manner in su(2, 2). The map ρ|q : q → p is the graph of an inner automorphism
of su(1, 1). Geometrically, this means that ι maps Q = G2 (a complex line of constant
curvature −1) holomorphically into a maximal polydisk P of D2,2. Now, P is holomor-
phically isometric to Q × Q and ι|Q : Q → P is the graph of an isometry I of Q. It
follows that

ι∗ωP = (id, I )∗(pr∗1 ωQ + pr∗2 ωQ) = 2ωQ.

Let us map SO∗(4) as a diagonal 2 × 2 block in SO∗(4n). This yields an embedding
G2 ↪→ G2n = Y which, according to Example 3.4, is isometric and holomorphic. Splitting
VH = H2n as an orthogonal direct sum of 2-dimensional quaternionic vector spaces yields
an isometric and holomorphic embedding of Gn2 onto a maximal polydiskQ ⊂ G2n. Then
ι(Q) is contained in the standard maximal polydisk P ⊂ D2n,2n = X, and ι|Q : Q→ P

is a product of n copies of the map of the previous paragraph. Therefore

ι∗ωP =

n∑
i=1

ι∗ωPi =

n∑
i=1

ωQi = 2ωQ.

Since rank(X) = 2 rank(Y ), this shows that ι (and thus ρ) is positively maximality pre-
serving. ut
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