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Abstract. Edge-reinforced random walk (ERRW), introduced by Coppersmith and Diaconis in
1986 [8], is a random process which takes values in the vertex set of a graph G and is more likely to
cross edges it has visited before. We show that it can be represented in terms of a vertex-reinforced
jump process (VRJP) with independent gamma conductances; the VRJP was conceived by Werner
and first studied by Davis and Volkov [10, 11], and is a continuous-time process favouring sites
with more local time. We calculate, for any finite graph G, the limiting measure of the centred
occupation time measure of VRIJP, and interpret it as a supersymmetric hyperbolic sigma model in
quantum field theory, introduced by Zirnbauer in 1991 [35].

This enables us to deduce that VRJP and ERRW are positive recurrent on any graph of bounded
degree for large reinforcement, and that the VRIJP is transient on 74, d > 3, for small reinforcement,
using results of Disertori and Spencer [15] and Disertori, Spencer and Zirnbauer [16].

Keywords. Self-interacting random walk, reinforcement, random walk in random environment,
sigma models, supersymmetry, de Finetti theorem

1. Introduction

Let (2, F,P) be a probability space. Let G = (V, E, ~) be a non-oriented connected
locally finite graph without self-loops (i.e. edges connecting a vertex to itself). Let (a.)ccE
be a sequence of positive initial weights associated to each edge e € E.

Let (X,),en be a random process that takes values in V, and let F,, = o (X, ..., X,)
be the filtration of its past. For any ¢ € E and n € N U {oo}, let

n
Zn(e) = ac +Z]l{{xk—l~xk}=e} (1.1)
k=1

be the number of crosses of e up to time n plus the initial weight a,.
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Then (X,,),en is called an Edge-Reinforced Random Walk (ERRW) with starting point

ip € V and weights (a.).cg if Xo = ip and, foralln € N,
Zy({Xn, j})
Y ix, Za((Xu kD)

The Edge-Reinforced Random Walk was introduced in 1986 by Diaconis [8]; on fi-
nite graphs it is a mixture of reversible Markov chains, and the mixing measure can be
determined explicitly (the so-called Coppersmith—Diaconis measure, or “magic formula”
[12], see also [17, 27]), which has applications in Bayesian statistics [14, 2, 3].

On infinite graphs, the research has focused so far on recurrence/transience criteria.
In their seminal work Diaconis and Coppersmith [8] conjectured that the ERRW could be
recurrent in any dimension.

On acyclic or directed graphs, the walk can be seen as a random walk in an inde-
pendent random environment [25], and a recurrence/transience phase transition was first
observed by Pemantle on trees [25, 18, 5]. In the case of infinite graphs with cycles, re-
currence criteria and asymptotic estimates were obtained by Merkl and Rolles on graphs
of the form Z x G, G a finite graph, and on a certain two-dimensional graph [22, 23, 24,
28], but recurrence on 72 was still unresolved.

Also, this original ERRW model [8] has triggered a number of similar models of self-
organization and learning behaviour; see for instance Davis [9], Limic and Tarres [20, 21],
Pemantle [26], Sabot [29, 30], Tarres [32, 33] and Té6th [34], with different perspectives
on the topic.

Our first result relates the ERRW to the Vertex-Reinforced Jump Process (VRIP),
conceived by Werner and studied by Davis and Volkov [10, 11], Collevecchio [6, 7] and
Basdevant and Singh [4].

We define a VRJP with conductances (W,).cg to be a continuous-time process
(Y1)r=0 on V, starting at time O at some vertex ip € V and such that if ¥ is at a ver-
tex i € V at time ¢, then, conditionally on (Y, s < f), the process jumps to a neighbour j
of i atrate Wy; jyL;(t), where

t
Li(t) =1 +/ Liy,=jy ds.
0

The main results of the paper are the following. In Section 2, Theorem 1, we represent
the ERRW in terms of a VRJP with independent gamma conductances. Section 3 is dedi-
cated to showing, in Theorem 2, that the VRJP is a mixture of time-changed Markov jump
processes, with a computation of the mixing law. In Section 6, we interpret that mixing
law with the supersymmetric hyperbolic sigma model introduced by Zirnbauer [35] and
Disertori, Spencer and Zirnbauer [16] and related to the Anderson model.

We prove positive recurrence of VRJP and ERRW in any dimension for large rein-
forcement in Corollaries 1 and 2, using a localization result of Disertori and Spencer [15],
and transience of VRJP in dimension d > 3 at small reinforcement in Corollary 4 using
a delocalization result of Disertori, Spencer and Zirnbauer [16]. Shortly after this paper
appeared electronically, Angel, Crawford and Kozma [1] proposed another proof of recur-
rence of ERRW and VRIJP under similar assumptions, without making the link with sta-
tistical physics (and using, for the VRIP, the representation as a mixture of time-changed
Markov jump processes proved in this paper).

P(Xnt1 = Jj1Fn) = Lij~x, (1.2)
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2. From ERRW to VR]JP

It is convenient here to consider a time changed version of (¥s)s>0: consider the positive
continuous additive functional of (¥;),>0,

A0 = [ = 3 oaLaon
0

L Yy (M) xeV
and the time changed process
X[ = YA—I )"

Let (T;(2));cv be the local time of the process (X;);>0,
1
T (t) = / Lix,=x) du.
0

Lemma 1. The inverse functional A" is given by

t
A7) =/ el dy =3 ("0 —1).
0

ieV
The law of the process X; is described by the following: conditioned on the past at time t,
if the process X; is at the position i, then it jumps to a neighbour j of i at rate

w; jeTi(l‘)-ﬁ-T/(f).

Proof. First note that
T (A(s)) = log(Lx(s)), (2.1

since

1

— Ly, =)
Ly, (s) {Yy=x}

(T (A)) = A'() (x4 =x) =

Hence,

(A_l(t))/ = = Ly, (A_l(t)) = eTXt(t)’

A'(A~H(D)

which yields the expression for A~!. It remains to prove the last assertion:

P(Xtvar = Jj | Fo) = P(YAfl(Hdt) =Jl|F)
= Wx, ; (A" (LA~ (1)dt
= Wi,jeTXt(t)eT-f(’)dt. O
In order to relate ERRW to VRIP, let us first define the following process (f(t),eR e

initially introduced by Rubin, Davis and Sellke [9~, 31], which we call here a continuous-
time ERRW with weights (a.).cg and starting at X := ig at time 0.
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e Define, on each edge ¢ € E, independent point processes (alarm times) as follows.
Let (r,f )ecE, kez, be independent exponential random variables with parameter 1 and

define
k—1

ve=Y"

=0 Ye

+lrf, Vk € N.

e Bachedge e € E has its own clock, denoted by T,(r), which only runs when the process
(X1)r>0 is adjacent to e. This means that if e = {i, j}, then T{; ;;(t) = T; (t) + T;(?),
where T; (¢) is the local time of the process X at vertex i and time 7. ~

e When the clock of an edge e € E rings, i.e. when T, (t) = Vke for some k > 0, then X,
crosses it instantaneously (of course, this can happen only when X is adjacent to e).

timeline of

: . e
145 V,°

: .. el
V! vy!

[ e
V2 Vy?

[ 3

v vy?

Let 7, be the n-th jump time of (f( 1)1>0, With the convention that 7o := 0.

Lemma 2 (Davis [9], Sellke [31]). Let (X,)nen (resp. (f(,)tzo) be an ERRW (resp.
continuous-time ERRW) with weights (ac)ccp, starting at some vertex io € V. Then
(X+1,)n=0 and (X,)n>0 have the same distribution.

Proof. The argument is based on the memoryless property of exponentials, and on the
observation that if A and B are two independent random variables of parameters a and b,
then P[A < B] =a/(a + b). O

On each timeline the alarm times follow a so-called Yule process, which, by a result of
Kendall [19], can be described after an exponential change of time by a Poisson point pro-
cess with constant (but random Gamma distributed) intensity. This observation applies to
any discrete time random walk with linear reinforcement on its similarly defined con-
tinuous time version, and was initially made by Tarres for the vertex-reinforced random
walk [33]. Using that description and Lemma 1, we can deduce the following Theorem 1
linking up ERRW and VRIP.

Theorem 1. Let ()2,),20 be a continuous-time ERRW with weights (a.)eck. Then there
exists a sequence of independent random variables W, ~ Gamma(a,, 1), ¢ € E, such
that, conditionally on (W,)cE, ()N(,),Zo has the same law as the time modification (X;);>0
of the VRJP with weights (We)ecE.

In particular, the ERRW (X,,)n>0 is equal in law to the discrete time process associ-
ated to a VRJP with random independent conductances W, ~ Gamma(a,, 1).
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Proof. For any e € E, define the simple birth process {N/, t > 0} with initial population
size a, by
N/ :=a,+sup{k e N: V¢ <1}

This process is sometimes called the Yule process; by a result of D. Kendall [19], there
exists W, := lim N} e~!, with distribution Gamma(a,, 1), such that, conditionally on W,,
{N;W o= 0} is a Poisson point process with unit parameter, where

fw(@) :=1log(1 +t/W).

Let us now condition on (W,).cg: N¢ increases between times ¢ and ¢t + dt with
probability W.e' dt = ( fv;gl)/ () dt. A similar characterization of the timelines is also

used in [33, Lemma 4.7]. If X is at vertex x at time 7, it jumps to a neighbour y of x at
rate Wy ,eTxOFD (@), u]

3. The mixing measure of VRJP

Next we study VRIJP. Given fixed weights (W,).cg, we denote by (¥;);>0 the VRIP and
by (X;):>0 its time modification defined in the previous section, starting at site X¢ := ip
at time 0; and (7;(¢));cy denotes its local time.

It is clear from the definition that the joint process ®; = (X, (T;(¢))icv) is a time
continuous Markov process on the state space V x RK with generator L defined on C*
bounded functions by

~ d
L(HGT) = <ﬁf)(i, T)+ L(T)(f(, TG, VG T)eV xRY,

where L(T) is the generator of the jump process on V at frozen T defined for g € RV

L(T)()() = Y Wi e Ti(g(j) —g(i)). VieV.
jev

We denote by P;, 7 the law of the Markov process with generator L starting from the
initial state (ig, T').

Note that the law of (X;, T(t) — T) under IP;, 7 is equal to the law of the process
starting from (ip, 0) with conductances

T _w. ..Li+7T;
Wi’j—Wl’]el I,

For simplicity, we let P; := P; o.

‘We show, in Proposition 1, that for finite graphs the centred occupation times converge
a.s., and we calculate the limiting measure in Theorem 2(i). In Theorem 2(ii) we show
that the VRIP (¥s)s>0 (as well as (X;);>0) is a mixture of time-changed Markov jump
processes.
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This limiting measure can be interpreted as a supersymmetric hyperbolic sigma
model. We are grateful to a few specialists of field theory for their advice: Denis Per-
rot who mentioned that the limit measure of VRJP could be related to the sigma model,
and Krzysztof Gawedzki who pointed out reference [16], which actually mentions a pos-
sible link of their model with ERRW, suggested by Kozma, Heydenreich and Sznitman
(cf. [16, Section 1.5]).

Note that when G is a tree, if the edges are for instance oriented towards the root, and
we let V, = eY2~Ue then the random variables (V,) are independent and are distributed
according to an inverse Gaussian law. This was proved in previous works on VRIJP [10,
11,6,7,4].

Theorems 1 and 2 enable us to retrieve, in Section 5, the limiting measure of ERRWs,
computed by Coppersmith and Diaconis in [8] (see also [17]), by integration over the
random gamma conductances (W,).cg. This explains its renormalization constant, which
has remained mysterious so far.

Proposition 1. Suppose that G is finite and set N = |V|. For all i € V, the following
limits exist IP;-a.s.:
U; = lim (T;(t) —t/N).
—>00

Theorem 2. Suppose that G is finite and set N = |V|.
(i) Under Py, (U;)icv has the following density distribution on Ho={(u;) : ) _u; =0}:
N uj, —H(W,u)
me Oe D(W, M), (31)

where

HW.u)=2 Y W sinh2<%(ui -~ uj)>

{i.j}eE

and D(W, u) is any diagonal minor of the N x N matrix M(W, u) with entries

Wi jetitt ifi#j,
m; i = :
L] kai Wl‘,keui+uk lfl — ]
(i) Let C, resp. D, be positive continuous additive functionals of X, resp. Y, given by
Cty=Y (0 —1), D)= (Lis)— 1),
ieV ieV
and let
Z[ = Xc—l(t) (Z YD—I(I)).
Then, conditionally on (U;)icv, Z;: is a Markov jump process starting from io, with
Jjump rate from i to j equal to
%Wi,jeUf'_U" .
In particular, the discrete time process associated with (Ys)s>0 is a mixture of re-
versible Markov chains with conductances Wi, jeUi+Uf .
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N.B.: 1) The density distribution in (3.1) is with respect to the Lebesgue measure on H,,
which is HieV\{jo} du; for any choice of jp in V. We simply write du for any of the
[Tievy(jo) dui-

2) The diagonal minors of the matrix M (W, u) are all equal since the sum of the
entries in any line or column of the matrix is null. By the matrix-tree theorem, if we let 7
be the set of spanning trees of (V, E, ~), then D(W,u) = > ;.1 ]_[{i,j}eT Wi, jyetithi.

Remark 1. Usually aresult like (ii) makes use of de Finetti’s theorem; here, we provide a
direct proof exploiting the explicit form of the density. In Section 5, we apply Theorems 1
and 2 to give a new proof of the Diaconis—Coppersmith formula including its de Finetti
part.

Remark 2. The fact that (3.1) is a density is not at all obvious. Our argument is proba-
bilistic: (3.1) is the law of the random variables (U;). This can also be explained directly
as a consequence of supersymmetry [16, (5.1)]. The fact that the measure (3.1) normalizes
at 1 is a fundamental property, which plays a crucial role in the proofs of the localization
and delocalization results of Disertori, Spencer and Zirnbauer [15, 16].

Remark 3. (ii) implies that the VRIP (Y;) is a mixture of Markov jump processes. More
precisely, let (U;);cy be a random variable distributed according to (3.1) and, condi-
tionally on U, let Z be the Markov jump process with jump rates from i to j given by
Ui=Ui, Then the time changed process (Z z-1(s))s>0 with

B =Y J1+1@®) -1,

ieV

s Wi, je

where (ll.Z (1)) is the local time of Z at time ¢, has the law of the VRIJP (Yy) with conduc-
tances W.

4. Proofs of Proposition 1 and Theorem 2

4.1. Proof of Proposition 1

By a slight abuse of notation, we also use the notation L(7') for the N x N matrix of that
operator in the canonical basis (which is equal to —M (W, T') of Theorem 2). Let 1 be the
N x N matrix with entries all equal to 1,1i.e.1; ; = 1 forall i, j € V, and let I be the
identity matrix.

Let us define, forall 7 € RV,

o(T) := — foo(e““’” —1/N)du, “.1)
0

which exists since (T converges towards 1/N at exponential rate.
Then Q(T) is a solution of the Poisson equation for the Markov chain L(T'), namely
L(T)Q(T)=Q(T)L(T)=1—-1/N.

Observe that L(T') is symmetric, and thus Q(7) is as well.
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Forall T € RY and i, jevV,let EI-T(rj) denote the expectation of the first hitting
time of site j for the continuous-time process with generator L(7"). Then

1
Q)i = B/ () + (1),
by the strong Markov property applied to (4.1). As a consequence, Q(T);, ; is non-positive

forall j, using ) ;. Q(T);j =0.
Let us fix I € V. We want to study the asymptotics of T;(¢) —t/N ast — oo:

t 1 t
Ti6) - = /0 (]l{xu=1} - N) du = /0 (L(T @) QT w))x, 1 du

o t a
_ /0 L)) (X, T(w)) du — / O(T (w))x, 1 du

o 0Tx,

t
=0T ®)x,.1 — CO)xg1 + M (1) —/

A aTXuQ(T(u))X”’ldM’ 4.2)

where
t
Mi(t) .= =0T (®)x,1 + Q) x,. +/0 L(QG)..)(Xy, T (w))du

is a martingale for all /. Recall that L is the generator of (X;, T'(¢)).

The following lemma shows in particular the convergence of Q(7'(¢))x,; for all k, [
as ¢ goes to infinity. It is a purely deterministic statement, which does not depend on the
trajectory of the process X, (as long as it only performs finitely many jumps in a finite
time interval), but only on the added local time in W7 .

Lemma 3. Forallk, 1 €V, Q(T(t))k, converges ast — 0o, and

du < 0.

>l 93
/0 'aT—XuQ(T(M))xu,l

Proof. Forall i, k,l € V, let us compute aiTiQ(T)k,lz by differentiation of the Poisson

equation,
d d
T QM = — (Q(T) (a_TlL) Q(T)>k,l.

Now, for any real function f on V,

9 Zj~i W,Tj(f(])—f(l)) ifk =i,
a1, O =YWL (@) = f(R) itk ~i, k#i,
l 0 otherwise.

Hence

ad
a7 LF ) = 3 W) = FO) Limty — L),

j~i



Edge-reinforced random walk 2361

and therefore

9 T
57 Qs =D Wl (Q(Twi = QM HQ(T)is = Q7))
l j"’l
=2 W0k, Qv 0 = 3 W0(T)w, 1k QT 1, (43)
J~t Jjr~i
where we use the notation f(V; ;) := f(j) — f(i) in the second equality, and the fact

that Q(T') is symmetric in the third one.
In particular, forall/ € V and t > 0,

d 0
41 QT O = 57 QT W)y =j§th Wy, j(Q(T)vy, ;1) @44

Now recall that Q(T (¢));,; is non-positive for all # > 0; therefore it must converge, and

fo 3 Wy, QT ()vy, 1) di = (Q(T(00)) — QO))11 < 00,

J~X:

The convergence of Q(7 (¢))r,; now follows from the Cauchy—Schwarz inequality, using
(4.3): forallt > s,

t
QT (@) — QT ()il = / 3" WL 0T W)y, k(T W)vy, .1 du

N ,/"’Xu

< V(QT () = QT )iv/ (Q(T (1)) — O(T ()11

thus Q(7 (t))«, is a Cauchy sequence, which converges as ¢ goes to infinity. Now, using
again the Cauchy—Schwarz inequality, we get

>l 9
/0 ‘BTXMQ(T(M))X,,,I

du = /0 | > WEL 0T @)y, ;x, QT @)vy, ;1| du

jNXll

< \/Z(Q(T(OO)) — Q(T(0))s/(Q(T (00)) = QT )11,
keV

which enables us to conclude the proof. O

Next, we show that (M (?));>0 converges, which will complete the proof of Proposition 1:
indeed, this implies that the size of the jumps in that martingale goes to O a.s., and there-
fore, by (4.2), Q(T (¢))x,,; must converge as well, again by (4.2).

Let us compute the quadratic variation of the martingale (M (t));>¢ at time #:

d

d
(M. M), = (g]E((Ml(t +e)— M) | E)>gzo

de
= R(T®))x,.

d
= (—E((Q(T(t +ENXypnd — Q(T(M)x,1)" | fz))

e=0
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where, forall (i,/,T) e V x V x RY, we let

R(T)ip = L(Q*().0)G, T) —2Q(T)i L(Q().NG, T);
here Q2(T) denotes the matrix with entries (Q(T) i j)2, rather than Q(7T') composed with
itself. But

. 0
LQ*().nG, T) = 2(Q(T))i,z<ﬁ Q(T)) + (L(T)QX(T).1 ()i

il

~ a
(M) L(Q()..0G, T) = (Q(T))i,l<ﬁ Q(T)> + ()i (L(T)Q(T).1(i))i 1

il
so that
R(T)iy = L(TY(Q*(T).)iy —2Q(T)i(L(T)Q(T).1)i
= 2 WL (QM);n* = (QM)i)?) =20(T)is 3 Wi, (Q(T);1 = Q(T)i)
J~i Jri
=Y wl(QTy,,.)" = %Q(T)z,z,
i i

where we have used (4.3) in the last equality. Thus
*® d
(Mp, Mj)oo = / EQ(T(M))z,zdu = Q(T(00)11 — Q)11 = —Q(0);; < 00.
0

Therefore (M;(t));>0 is a martingale bounded in L2, which converges a.s.

Remark 4. Once we know that T;(¢) — /N converges, then T;(co) = oo foralli € V,
hence Q(T(00));; = 0, and the last inequality is in fact an equality, i.e. (M;, M) =
=0@0).

4.2. Proof of Theorem 2(i)

Forig € V,T € RY, » € Hy, we consider

W (i, T,A):/ ehioe Mo W' u)du, (4.5)
Ho
where
dWT uy=e HV O/ DWT u), (4.6)

and W, = W; jei*Ti. We will prove that

m‘y(io, T,)) = IEz'o,T(ei()”’U>)

forallipe V,T € RY.
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Lemma 4. The function \V is a solution of the Feynman—Kac equation
ixigW (io, T, 1) + (LW) (i, T, 1) = 0.
Proof. Let Ti=T — % jev T;. With the change of variables #1; = u; +T;, we obtain
W(io, T, 1) = / o~ Tio el i=Th gy wT 7 _T)di. 4.7
Ho

Note that H(WT,ii — T) = H(WT,ii — T) since H(W7', u) only depends on the differ-
ences u; — u;. We observe that the entries of the matrix M (WT, u) only contain terms of
the form W; je*i tTitui+1; ‘hence

VDWT i —T) =N "VNLT /DWW, ).

Finally, (A, T) = (A, T) since A € Hg. This implies that
W(ip, T, 1) = / 2 Ti gltio=Tig i ii=T) g =HW.i=T) /15 (W "33) . (4.8)
Ho

‘We have

a T ~ a T T . 2 l ~ ~
G HOV i = 1) = T 2 Z W, "V sinh? (L — iy — T, + T,»)))
{i,jleE
= 2% Wi je 0™ (sinh? (3 @iy — it — Ty + T))) — & sinh(iiiy — ity — Tig + 7))
J~io
= Z Wi, jelotTi (e Hiot it i =Ti _ 1) = ¢=Cio=Ti) (T (") (i).
J~io
Hence,
- W(ip, T, )
ip
=/ (inige™0~To + L(T)(e" T (ip))eXi T et Wi T~ HWEi=D) /1y (W ) dii
Ho
=iy V(io, T, 1) + (L(T)W) (o, T, 1).
This gives the conclusion. O

Since W is a solution of the Feynman—Kac equation we deduce that forall ¢t > 0,ig € V,
reHy, T eRY,

W(ip, T, 1) = Eiy (¢! TONW(X,, T(1), 1)),

where we recall that T;(t) = T;(t) — t/N. Let us now prove that W(X;, T(¢), X) is
dominated and that PP;,-a.s.,

lim WX, T(0), 1) = Qr)N=D/2/N. 4.9)

We will need several times the computation of the following Gaussian integral.



2364 Christophe Sabot, Pierre Tarres

Lemma 5.
(271)(N*1)/2

NJDW,0)

Proof. Indeed, change variables to t; = u; — u;,. The Jacobian is

| 2
/ e~ 2 Ztijrev Wi jwi—up® g
Ho

det(ldy_; +1ny-1) = N. (4.10)

where 1y_1 is the matrix with all entries 1, and the integral becomes (with #;; = 0)

/ e‘% iigrev Wi Gi—1p)? (Hi#" i ) = ()N O
RV \lig) N N/ D(W,0)

By the matrix-tree theorem, denoting by 7 the set of spanning trees of G, and using again
the notation ¢ of (4.6), we have

. P T us
o (W', u) = etioe=HW 1) Z l_[ WiTje”tJr”J
AeT {i,jleA

1 T 2
< N maxiev |uil ;=2 Y jrev Wi wi—uj) D(WT,0)

< (DM e )em Doy M DT 0). @11)
ieV

This is a Gaussian integrand: for any real a and jo € V,
/ o ¢~ 2 Liipev Wi i=u)® /D wT 0) du
Ho
_ e—%azQ(T)jO,jo / ei% Y. jyev Wi (ui=aQ(T)jg ) —(uj—aQ(T)jy, ) /DWT, 0)du
Ho

where Q(T) is defined at the beginning of Section 4.1. Changing variables to i; =
u; —aQ(T)j,,; and using Lemma 5 gives

/H ¢ioe™ 2 Lipev W0 /D WT 0y du < =197 Dinvio ) VD2 N
0

Therefore for all ig € V and (T}) € RV,
27)(N=D)/2
Wi, 7] =23 B i
ieV N
By (4.4), Q(T (1)), ; increases in ¢, hence

N—-1)/2
@m™DR _1nzo0),

WX, T, £2) =

ieV
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for all # > 0. Let us now prove (4.9). We have

W(X,, T (1), A) = / ¢ ) g, =2 Xip e Wi Sin* G =) /BT @ ) i

/‘ i) ix, =2 X e Q2IN W,-,T,(” sinh? (L (u; —u)) /D(WT(’), wyeN=DUN gy,
Changing variables to i; = e'/Nu;, we deduce that W (X, T(1), A) equals

. _ ~ _ ~ T(r) . _ -~ - —
/ e Ny o Vi, =2 X e W, ¢!V sinh® (g I/N(u"fu"'))\/D(WT(t), e~t/Nit) dii.

Since lim,_, o T; (t) = U;, the integrand converges pointwise to the Gaussian integrand

o2 Ziijev W @i—ii)? D(WY,0).
By Lemma 5, its integral on Ho is (27)N=D/2/N.

Consider U; = Sup;> T;(t) and U; = inf;>¢ T; (t). Proceeding as in (4.11) we can
dominate the integrand for all # by

eNe_’/N max;ey \ﬁile*% D jrev W;,T_;t)(’;i*’;j)z /D(Wf(t)’ 0)
- ~ v ~ - —
< (Z Ny e‘N”")e‘% Ziwnev Wi @ [ p(wT 0,
ieV

which is integrable, yielding (4.9) by dominated convergence.

4.3. Proof of Theorem 2(ii)

The same change of variables as in (4.8), applied to 7; = log A;, implies that, for any
Jjo € V and (A;);ey positive reals,
[Ticv 2

1 1
| =) Sj—up) 2
_Aiev i ujo—log(hig) g2 Xyijrer Wijhiki @™ ik —e 20X 00?1y Wy
(zﬂ)(Nfl)/Z ’

is the density of a probability measure, called v*/0 (we use the fact that (3.1) defines a
probability measure). Note that this density can be rewritten as
[Tiey Ai

(27)N=D/2 i =108(hig) =3 Xos Xjmi Wirj 7T =20 [y ).
Yy

Let (U;) be a random variable distributed according to (3.1), and, conditionally on U, let
(Z;) be the Markov jump process starting at iy, and with jump rates from i to j equal to

%W," jeUf_U". Let (]-",Z )i>0 be the filtration generated by Z, and let EIU be the law of the
process Z starting at i, conditionally on U.
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We denote by (/;(¢));cy the vector of local times of the process Z at time ¢, and
consider the positive continuous additive functional of Z given by

1+1(t) — 1),

B(,)_/tl %1 = _(V1+1®
- 0 2 1—}—12“(14 ieV

and the time changed process _
YS = ZB—I(S).

Let us first prove that the law of U conditioned on F7 is
LU | FF) =04, (4.12)

where A; (1) = 4/1 +[;(¢). Indeed, letr > 0;if 71, ..., Tk () denote the jumping times of
the Markov process Z; up to time ¢, then for any positive test function ¥,

E-U(df(l'l, e TK([), Zrlv ey Z'L’K([)))

Ui—
_Z Z (1_[ sz 41 / W((fj (lj))eU’k U’Oe 2Z (ij ipje’! 1)(’l+1*fl)

—0i1,. =0 dty ---dty

with the convention #;41 = 7. Hence, for any test function G,

f?—to G(u)euz,e—H(W,u)—% YievCjmi Wi,jeu-ffui)lf(t)\/mdu
fHO oz o= HWa) =5 Yy (s Wi s ™", O DOV, ) du ’

E(GU) | FF) =

Using the fact that we can write H(W, u) = % Yoiev ijl. W j(e"i~* — 1), and intro-
ducing suitable constants in the numerator and denominator we have

EGW) | F) =
@m)~N=D/2 [ Gy ([T )tz ~loehz o XX Wi s G2 0M0) B
0
@m)~N=D/2 [, ([T ap)etze 108 rz =3 T i Wi G029 = 01D D7y g

(recall that A; (t) = +/1 + [; (¢)). The denominator is 1 since it is the integral of the density
of v*®)-Zt This proves (4.12).
Subsequently, by (4.12), conditioned on (]—',Z ), if the process Z is at i at time ¢, then
it jumps to a neighbour j of i with rate
1

A(t),0
EWI jEU ( U U,) —

1 Aj (t)
2 Wi @)
In order to conclude, we now compute the corresponding rate for Y: by definition,

1

1
2 T+ig @)

B'(t) =
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Therefore, similarly to the proof of Lemma 1,

PYsas = j | FP) =P(Zg-1(yya5) = i | FL)
I S B C B O)
27 B/(B7()) Ay, (B~(9))
= Wy, j»j(B~'(s)) ds.

Let (fi (s)) be the local time of the process Y. Then

GBWY =B Oy, =30 +60)" Lz,
This implies
LB®) =1+ —1 (4.13)
and

P(Fyras = j | FE) = Wy (1+ () ds.

This means that the annealed law of ¥ is the law of a VRJP with conductances (Wi, ;)
(this is the content of Remark 3).

Therefore, the process defined, for all # > 0, by ?A—I(I) = Z(40B)- (1) 1s equal in law
to (X;);>0; let us denote by T its local time, and show that 7;(¢) — /N converges to U;
as t — 0o, which will complete the proof.

First note, using (2.1) and (4.13), that, foralli € V,

T;((A o B)(1) = log(i(B(®)) + 1) = log(1 + i (1)) /2.

On the other hand, conditionally on U, the Markov chain Z has invariant measure
(CeZUi)ieV, C = (Ziev ewi)_l, so that /; (t)/(CeZU"t) converges to 1 as t — oo, for
alli e V.

Therefore, foralli € V,

1+1;((Ao B)~'(1)) >

1
L) =Ty =3 1°g<1 (Ao B)-1(1))

which converges to U; — Uj, as t — 00, enabling us to conclude the proof.

5. Back to Diaconis—Coppersmith formula

It follows from de Finetti’s theorem for Markov chains [13, 27] that the law of the ERRW
is a mixture of reversible Markov chains; its mixing measure was explicitly described by
Coppersmith and Diaconis ([8], see also [17]).

Theorems 1 and 2 enable us to retrieve this so-called Coppersmith—Diaconis formula,
including its de Finetti part: they imply that the ERRW (X},),cn follows the annealed law
of a reversible Markov chain in a random conductance network x; j = W;, jeU" +Ui where
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W, ~ Gamma(a,, 1), ¢ € E, are independent random variables and, conditioned on W,
the random variables (U;) are distributed according to the law (3.1).

Let us compute the law it induces on the random variables (x.). The random vari-
able (x.) is only significant up to a scaling factor, hence we consider a 0-homogeneous
bounded measurable test function ¢; by Theorem 2,

E@((xe)))
N

= 2n)-D2 /REX%")(X)(H

ecE

) dw
We“eefw")e"’o D(W,u)e HW-w Z_ gy
I'(a,) w

where we write dWW =11 ecE dwl:. Changing coordinates to u; = u; — u;,, the Jacobian

being N (cf. (4.10)), we get

ae ;= We') ;= 2izig Ui = _uwam W _
C(a) /MxRV\Uold)(x)(H Wiee )e 0"/ D(W,n)e W du

ecE

s = — 1 1
with dit =[], ,; du; and C(a) = G [leck - But
1 _ _ _
=D Wem HW.i) === ) Wi e (e 4 720,
ecE 2 {i,jleE
The change of variables
((xij = Wi je" i) ek, (vi = fmi)ieV\{io})
with v;; = 1 implies
W HOW D = 2 3 v,
b 2 ¢
ek ieV

where x; = ij‘ x;,j» and E(¢ ((x.))) is equal to the integral

C/(a)/¢(x)(l—[ xéh)(l_[ vl_(ai+1)/2)vi;1/2 /D(x)e—%Ziev Vix; <l—[ dXe> <l—[ @)
eckE ieV

ecE Ye / Nigjy Vi

witha; =) j~i Qi D(x) the determinant of any diagonal minor of the N x N matrix

e — —Xi,j ifi # j,
i,j = p .
Dok Xik ifi=j,

and
—N+1 1

C (a) = (27-[)(1\/—1)/2 3! F(ae).
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Let ¢¢ be a fixed edge; we normalize the conductance to be 1 at ey by changing variables

to
X,
((ye = —e) ,(zi = xeovi)iev),
Xeg e#eq

with y,, = 1. Now, observe that

5 () = (IS e)
<eeE Xe J \isj, Vi ccE. estey Ve / Niey %

We deduce that E(¢ ((x.))) equals the integral

c@ /Rv E\{ep} ¢(y)<l_[ y3e> (l_[ Z?[/z)zi_ol/z\/ D(y)e_% Liev 2 d_yd_z
+ xRy ecE

ieV Yy z

with d)—y =11 De and dz—? = [liev d% Therefore, integrating over the variables z;

i eF#ey Ty,
yields
a,
12 e dy
E(¢((x)) = C"(a) / ey SO (me—’iaLW)¢D<y> =,
€0 . . y
Ry HIEV Yi
where
. 2 N-Neerae T(aiy/2) [T, T(ai + 1)/2)
C(a) = ,
7 (V-D72 Mecr @)
which is the Diaconis—Coppersmith formula: the extra term (|E| — 1)! in [17, 14] arises
from the normalization of (x.)ecp on the simplex A = {d x, = 1} (see [14, Sec-
tion 2.2]).

6. The supersymmetric hyperbolic sigma model

We first relate VRIJP to the supersymmetric hyperbolic sigma model studied by Disertori,
Spencer and Zirnbauer [16, 15].

Let us start by a description of the measures defined in [16, 15]. Again let G =
(V,E,~)be agraph. Let §; ;,i,j € V,i ~ j, be some positive weights on the edges,
and ¢ = (g&;);cy be a vector of non-negative reals, ¢ # 0. Let /J,‘;’ﬂ be a generalization of
the measure studied in [15, (1.1)-(1.7)], namely

dt; : p €
d,ui/’ﬂ(t) = (1_[ —2]]-[)(3_ Zjev t/g_FV(Vt)e_MV(t)\/m

jev

di > “FBevny —me@) | ep
= — e v e \4 detD ;
(1;[, N2 v

J
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where A &8 _ AeP and Ds B — DoP are defined, for all i, j € V, by
0, i~ jandi # j,
Afj»ﬂ — el‘i Df/?ﬂetf — _,Bl_jet,'-i—tj’ i~ j7
Yimiey Bie T+ giel, i = j,
FJ(Vt):= Y Bij(cosh(t; — ;) — 1)
{i,j}€E
M (1) == Zei(coshti —1.
ieV
The fact that M‘;’ﬂ is a probability measure can be seen as a consequence of supersymme-
try (see [16, (5.1)]). This is also a consequence of Theorem 2(i), as we explain next.
The measure /f{,’ﬂ is directly related to the measure (3.1) defined in Theorem 2 as

follows. Let us add an extra point § to V/, V = V U {8}, and extra edges {i, §} connecting
any site i € V such thate; > 0to§, i.e.

Ev=Eyu [J f{i.é}
ieV,e>0
Consider the VRIP on this new graph with vertices V, starting at § and with conductances
Wi j=p8jifi~jinV,and W;5 =¢;if g > 0.

Let us again write (U;), .y for the limiting centred occupation times of VRJP on 1%
starting at §, and consider the change of variables, from H into RV, which maps u; to
t; = u; — ug (the Jacobian is |V| + 1, cf. (4.10)). Then, by Theorem 2, for any test
function ¢, letting ¢ be the canonical injection RV — ]RV we have

1
EY (p(U — Us)) = o |):—/\/2/ ¢ — us)e"se W0 /DWW, u)du
W/ B (t)e ievliog=HW.LO) /D w (1)) (gdti)
= ui @ @),

which means that U — Uy is distributed according to ui}ﬁ . Indeed, A7, is the restriction
to V x V of the matrix M (W, ¢(t)) (which is defined on V x \7) (so that det Ai, =
D(W, (1)), and Fy (V1) + My, (1) = H(W, 1(1)).

We will be interested in the VRJIP on finite subsets of G = (V, E, ~) starting at
vertex ig. Forall x, y € G, letd(x, y) be the canonical distance between x and y on G, i.e.
the minimal number of edges linking x to y. In order to directly apply results from [15],
we consider the VRJP on G with an extra point § uniquely connected to iy and with
Wio,S = &jy = 1 and Wi,j = ﬂi,j ifi ~ J in G.

Clearly, the trace on G of the VRIP starting from § has the law of the VRIP on G
starting from ig. When V contains i, the limiting occupation time U; — Us of the VRJP

~ . e e . . 8igs . .
on V = V U {8} starting at § is distributed according to d pLVO ﬁ, where §;, is the Dirac
measure at igp.
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For all 8 > 0, set o gy
Iz = :3 / e—ﬁ(cosht—l)’
s =B v

which is strictly increasing in 8. Let B/ be defined as the unique solution to the equation
Igr P2 —1) =1

forallr > 2,and B :=oc0ifr =1, 2.

Theorem 2 in [15] implies that the VRJP over any graph of degree bounded by r is
recurrent if B, < B/ for all e € E (i.e. for large reinforcement). This fact is stated in
[15] on Z¢ and with fixed Be, but it can readily be generalised. The reader will find in
Proposition 2 below a self-contained proof of a close variant of estimate (6.1) below (see
in particular (6.5), Lemma 6 and (6.10)).

Theorem 3 (Disertori and Spencer [15, Theorem 2]). Let G = (V, E, ~) be a graph of
degree bounded by r > 2. Then there exists a constant Co :=r/(r — 1) > 0 such that, for
every finite connected subset A C 'V containing ig and x, if 0 < B, < B forall e € E,
for some B > 0, then

Sin s _ .
0P @2y < ColyLpeP T2 (r — 10,

More precisely, if Ty is the set of non-intersecting paths from iy to x in A, then

Mr(;\é,-o,ﬂ(e;x/z) <1, Z l_[ ePe 1_[ Ig,. 6.1)

yely e~y ecy

Corollary 1. Let G be a graph of degree bounded by r > 2, and assume 0 < B, < B
forall e € E, for some B < B.. Let (Y,) be the discrete time process associated with
the VRIP on G starting from iy with conductances (Be)ecg. Then (Yy) is a mixture of
reversible positive recurrent Markov chains.

Corollary 2. The ERRW on a graph of degree bounded by r > 2 starting at io with initial
weights a, € (0, a), e € E, is a mixture of positive recurrent Markov chains for a < al,
for some al. > 0 sufficiently small.

Proof of Corollary 1. We prove this for the VRJP on G with an extra point § connected
to iy only, and conductances Wy y = B, y and W;, s = 1, which is clearly stronger. On a
finite connected subset A € V containing i, we know from Theorem 2 that (¥},),en, the
discrete-time process associated with (¥s)s>0, is a mixture of reversible Markov chains
. ig»
with conductances ¢y, = By, ye™* T, where (fx)xea has law  ,° ﬂ.
. . Big» . .
Now Theorem 3 implies that u AO ﬁ((ce /cs, io)l/ 4) decreases exponentially with the
distance from e to ip: indeed, by the Cauchy—Schwarz inequality,

iy B iy B iy, B 4
A ((exyfesi) V) < BV (PO (et ~lio) /)12

< /31/4C[ui°’ﬁ(et‘/2)ui°’ﬁ(e%(COSh("'O)_l)e”/z)]l/z

<24 CTuy” (@ Py ()2
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for some C > 0 such that |z| < 4logC + cosh(z) — 1. This implies that there exist

constants ¢y, ¢co > 0 such that /LA[VO’ ((cx,y/cs,iy) > e“'lm) < e~k Following [23,
proof of Lemma 5.1] this implies that (Y,) is a mixture of positive recurrent Markov
chains. O

Proof of Corollary 2. For any connected finite set A containing iy, by Theorems 1 and 2,
the ERRW on A starting at ip and with initial weights a,, e € E, is a mixture of reversible
Markov chains with conductances ¢y y = By, yetﬁ"}', where S, are Gamma(a,, 1) inde-
pendent random variables for e € E; let [E be the expectation with respect to the variables
Be, e € E. As above add an extra vertex é and edge {ip, 6}, and assume B;, s = 1. As in
Corollary 1, there exist constants C, C’, C” > 0 such that, for all ¢ < 1/4,

8iy. B 8iy. B ) iy /2,8
E( " ((cx,y/¢5.i0)5)) < CIE((Bry) 30" (€ NIV E((Br, ) 10" (2112
8iy-B 8iy/2.8

< CIE((Br, )X (130 ()2 E((Br, )2 ()0 (/%)) %) 112

<ce[Y 1 &+ 1 #]”

y€lx e~y e#{x,y} ey, e#{x,y}
1/2
<E[> T &% [ ]
vely e~y, e#{x,y} ecy, e£{x,y}

< C”[(r _ 1)gr72h]d(i0’x)

where g = sup,.z E(e**) and h = sup,.p ]E(Iéj ). We use Jensen’s inequality in the
second inequality, and (6.1) in the third inequality. Now Ig < (log 8 —1 /B for B < 0.15
(see [15, (1.22)]), and Ig < 1 forall B > 0, so that & — O when a = sup,.ga. — 0.
Hence, if £ < 1/4 and « is sufficiently small, then (r — 1)g" "2k < 1. The rest of the
proof is similar to the proof of Corollary 1. O

.. .. . Sig>
We give in Proposition 2 another estimate of unA of (e"*/?) (better for large conductances

than (6.1)), which enables us to deduce in Corollary 3 positive recurrence for any mix-
ture of VRJPs where the conductances ., ¢ € E, are independent random variables
such that sup E(8)) is sufficiently small. Again, E denotes the expectation with respect
to the environment of conductances. The same Corollary 3 implies for the ERRW that

Bigys . . . .
IE,unA 0 ﬂ((ce /cs. ,-0)1/ 4) decreases exponentially with the distance from e to ip.
Given ¢ > 0 and independent positive random variables S, e € E, let

I, = sup E(Iée), Je = sup E((max(ﬂe, l)emin(ﬂ”’l))g).

ecE ecE

Proposition 2. Let G = (V, E, ~) be a graph of degree bounded by r > 2. For every
finite connected subset A C V containing iy and x, if I'y is the set of non-intersecting
paths from ig to x in A, then

w0 ey <1, 3 (1_[ mem(ﬂ‘””)(n I’Se)'

yely e~y ecy
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Corollary 3. Let G = (V, E, ~) be a graph of degree bounded by r > 2, and assume
that the conductances B,, ¢ € E, are independent random variables. Denote by E the
expectation with respect to the random variables (Be)ecr. Then there exists a constant
C > O such that, foralle < 1/4, all x,y € V with x ~ y, and every finite connected
subset A C V containing i,
n8iy.B A Ao
E(uy " ((ex,y/c5,ig))) < CLOr = Dlag (Jag) 14000,

In particular, if for some & < 1/4, E(BY) is sufficiently small, then the VRJP with random
conductances (B.)ccE is a mixture of positive recurrent Markov chains.

Corollary 3 follows from Proposition 2, similarly to the proof of Corollary 2.

Proof of Proposition 2. The strategy is to follow the proof of [15, Theorem 2], and to
truncate the random variables S, at suitable positions. For convenience we provide a self-
contained proof but the only new input compared to [15, Theorem 2] lies in the truncating
argument (6.6)—(6.8) below. Let us define, for any A C Z% and & = (gj)ien € Rﬁ

dti B &
dvf\’ﬁ(t) = (H —)e_FA(Vt)e_MA(t),
ieA VY 2

which is not a probability measure in general.

We now fix a finite connected subset A C 74 containing ip and x. Let ' be the set
of non-intersecting paths in A from iy to x. For notational purposes, any element y in
I’y is defined here as the set of non-oriented edges in the path. We let A, and A; be
respectively the set of vertices in the path and its complement. We say that an edge e is
adjacent to the path y if e is not in y and has one adjacent vertex in y, i.e. if e = {i, j}
withi € Ay, j & Ay; we writee ~ y.

We first proceed similarly to [15, Lemma 2, (3.1)—(3.4)]. For a subset A C 74 we
denote by E the set of edges with both extremities in A. Let 75 be the set of spanning
trees of A.

By the matrix-tree theorem,

n8iy.B . iy
det(A ") =neo 3 [T Puje™.
TeTp {i,jleT

In a spanning tree T there is a unique path between ip and x € A. Decomposing this sum
depending on this path we deduce

det(A ") = pe'o Z( [T Bipe™ ) > IT Bune ™

yely fi.jley T'eT] i j}eT’

where TX is the set of subsets T C E, \ y such that y U T’ is a spanning tree. By the
matrix-tree theorem, we have

Yo T Bupe™ =det(A§;f:) (6.2)

T'eT) {i, jIeT’
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where (&;);¢ AS is the vector defined by

> Bune*.  VieAS.

ke k~i

It follows that us: B p
i — &,
det D) 0" = g 37 (]_[ ﬂe) det DL (6.3)

yely e€y

Let us define, similarly to [15, (2.12), (2.14)], for ¢, = 1A, the restriction of ¢ to the
vertices on the path y,

V.8 M8 e.p —FF (v
Z)e (1) = wpe” (/detDAie ar Y1)

ny(w) = > Brj(cosh(t; — 1) — 1).

keNy, JENS, k~]

(6.4)

Now

n& B2 77, né; ﬁ n8iy.B B
0 (et/) 0 (,/dtD 0 ):ﬁvAo ( ZnﬁedetDig)

y€ely eey

VDY (]_[ \/E)VZBJO"S(ZX’; (1)), 6.5)

yel"x ecy

using (6.3) in the second equality and, in the inequality, the fact that for all y € Iy,
Vl io B (t) = Vl io B (t)d 18 :0 (t)e_FaV(Vt).

The new argument compared to Theorem 3 which allows us to handle the case of
random parameters § is the following truncation. Given y € I'y, let (8.) be the set of
random variables defined by

; _ [min(B.. 1) ife~y,
fe = {,36 otherwise. (6.6)
First note that, trivially,
I < T, ©6.7)

On the other hand, identity (6.2) implies that

B Ep
det(Df\;) < det(Df\i ) e|~y| max(B,, 1), (6.8)
where (£;);¢ AS is the vector defined by

g = Z B{i,k}etk, Vi € A)C/.

ke, i~k
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(In the last argument we have used the fact that 8; ; = ,3,-, jmax(1, g; ;) for any {i, j}
adjacent to y.) Therefore

Zt ) < z[(;f (1) [] max(Be. D 6.9)

e~y
with ij\}ﬁ (t,) defined as in (6.4) with ¢, B replaced by &, B. Hence we can replace S by B
v
at the cost of the term He~y J/max(B,, 1).

The following lemma, which adapts [15, Lemma 3], provides an upper bound of
z,(;f (t)).
Lemma 6. For any configuration of t, = t|a,,, ZIJ(;B () < eXe~r 56.
Proof. We have
205, = / ( I1 ﬂ)eFf‘y'(v')ny(v')\/m.
’ JEAS, \/E ’

Let t* = max{# : k € A, }. We translate the variables, t; — t; +¢* for j € A;; then in

the previous integral the term F p « (Vt) does not change, the term F. f v (Vt) becomes
14

Z Brj(cosh(tj + t* — 1) — 1),

keA,y, jeA;;,k~j
- —f*"’ ~
and the term det(Df\’f) is replaced by det(Df\c g’ﬁ). Since t* — #;, > 0, we have
Y Y

cosh(tj +1* — ) — 1 > etk_’*(cosh(tj) “ D+ (e’k_’* — .

This implies that

~ —r¥= ~ f—t*
Yo Bylcosh(+rr—m)—D =M fO+ Y B =,
kehy, jeAS k~] keA,, jeAS, k~j
and

- . G _otg—t* I -
Z0B (1) < eXheny jeng i Pri=e) e TEB () o Xy e
Y Y

¥~
since ,uf\c “Fisa probability measure. O
Y

Combining (6.5), (6.9), Lemma 6, and integration over the variables (V#,.).c), we obtain

LBy < 3 (1—[ \/memin(ﬁe,l))<l_[ 1/3@)' (6.10)
ecy

yely e~y
O
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Fix d > 3. Theorem 1 of [16] (see also the remark above its statement) implies transience
of VRJP with constant conductance 8, = g > 0, e € E, sufficiently large on Zd, d >3
the result is stated for constant pinning, but its proof does not require that assumption, as
we checked through careful reading.

Let A, = {i € Z? : |illoo < n} be the ball centred at 0 with radius n and A, =

{i € Z% : ||i|loo = n} its boundary.

Theorgm 4 (Disertori, Spencer and~Zirnbauer [16, Theorem 1]). For any m > O, there
exists B.(m) such that, for any B > B.(m), and alln € Nand x, y € A,

w30 (cosh™ (1, — 1)) < 2. 6.11)

Corollary 4. For any d > 3, there exists B.(d) such that, for all § > B.(d), the VRJP
on 7% with constant conductance B is transient.

Proof. Let E, be the set of edges contained in A,. We consider the VRJP on 74 with
constant conductances W; ; = 8 and denote by IP’g (+) its law starting from 0. We denote by

Py the law of the Markov chain with conductances ¢; ; = Be'it starting from 0, where
(t;) is distributed according to M(j&;ﬁ . Let Hya, be the first hitting time of the boundary

dA, and I:Io be the first return time to the point §. Let R(0, 0 A;) (resp. R(0, A, ¢)) be
the effective resistance between 0 and d A, for conductances 1 (resp. ¢;, ;). Classically

1

coR(0, 8Ap,¢) = —
Py (Hya, < Ho)

with ¢ = Z

j~0 €0,j- By Theorem 2 and Jensen’s inequality,

1 o —
—————— < WV (P (Han, < H) ™) < w7 (0RO, 9An. ). (6.12)
Py (Hya, < Ho)

Let us now show that for all 8 > 50(2),
WP LeoR(0, A, ©)] < 16dR(0, 8 A,). (6.13)

This will enable us to conclude the proof: since limsup R(0, 90A,) < oo, (6.12) and
(6.13) imply that P5 (Hy = 00) > 0.
Indeed, let 6 be the unit flow from O to d A, which minimizes the L? norm. Then

1
RO.080) < Y —60%0 ). RO.9A)= D 6°G.)).
(i.j}eE, I (i./1€E,

Now, for all 8 > 56(2), using identity (6.11), we obtain

80, 80, —t; 80, —t;
wfeofei) = Y w0 2P 212 < 16d. 0
~0
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