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Abstract. Let Q be a bounded domain in RV, and Q0 = Q x (0, T). We study problems of the
model type

ur — Apu=p inQ,

u=2~0 ond2 x (0,7),

u(0) = ug in 2,

where p > 1, u € Mp(Q) and ug € L1(2). Our main result is a stability theorem extending the
results of Dal Maso, Murat, Orsina and Prignet for the elliptic case, valid for quasilinear operators
u — A(u) = div(A(x, t, Vu)).

Keywords. Quasilinear parabolic equations, measure data, renormalized solutions, stability,
Landes-time approximations, Steklov time-averages

1. Introduction

Let  be a bounded domain in RV, and Q = Q x (0, T), T > 0. We denote by M (Q)
and M, (Q) the sets of bounded Radon measures on 2 and Q respectively. We are con-
cerned with the problem

u; —div(A(x, t,Vu)) = n in Q,
u=~0 on Q2 x (0, 7), (1.1)
u(0) = uop in 2,

where 1 € My(Q), up € L'(2) and A is a Carathéodory function on Q x R¥ such that
forae. (x,7) € Q,andany &, ¢ € RV,

Alx, 1,6).6 > MIEIP, A, 1,8)] <a(x, )+ Ag[P7, A1, A2 >0,a€LP(Q),
(1.2)

(Ax, 1,8) = A, 1,0).6 =5) >0 if§ #, (1.3)
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for p > 1.This includes the model problem with div(A(x, t, Vu)) = Apu, where A, is
the p-Laplacian.
The corresponding elliptic problem

—Apu=p inQ, wu=0 onodL,

with u € M;(2), was studied in [10, 11] for p > 2 — 1/N, leading to the existence
of solutions in the sense of distributions. For any p > 1 and u € L'(S), existence and
uniqueness are proved in [2] in the class of entropy solutions. For any u € Mp(2) the
main work is done in [13, Theorems 3.1, 3.2], where not only existence is proved in the
class of renormalized solutions, but also a stability result, fundamental for applications.
Concerning problem (1.1), the first studies concern the case u € LP/(Q) and ug €
L2(2), where existence and uniqueness are obtained by variational methods (see [19]).
In the general case u € Mp(Q) and ug € My(S2), the pioneer results come from [10],
proving the existence of solutions in the sense of distributions for
2 ! 14
pP>pr= N+l (1.4)
(see also [9]). The approximate solutions of (1.1) lie in Marcinkiewicz spaces u €
LP%°(Q) and |Vu| € L™°(Q), where
pc:P_l‘i‘%v mc:p_NL—l—l. (1.5)
This condition (1.4) ensures that # and |Vu| belong to L'(Q), since me > 1 means
p > p1 and p. > 1 means p > 2N /(N + 1). Uniqueness follows in the case p = 2,
A(x,t, Vu) = Vu, by duality methods (see [21]).
For ;1 € L'(Q), uniqueness is obtained in new classes of entropy solutions, and
renormalized solutions (see [5, 26, 27]).
A larger set of measures is studied in [15]. The authors introduce a notion of parabolic
capacity initiated and inspired by [24], used later in [22, 23], defined by

cQ(E) = inf( inf  {Jullw:ueW, u> yyae.in Q})
EcU openCQ

for any Borel set E C Q, where setting X = L?((0, T); Wé’p(Q) N LA(Q)),
W ={z:z €X, z; € X'}, embedded with the norm |lu|w = |ullx + llu:]lx’

Let M(Q) be the set of Radon measures u on Q that do not charge the sets of zero
ch—capacity:
VE Borelset C 0, c¢Z(E)=0 = |ul(E) =0.

Then existence and uniqueness of renormalized solutions of (1.1) hold for any measure
w € Mp(Q) N Mo(Q), called a soft (or diffuse, or regular) measure, and ug € L'(S),
and p > 1. Equivalence to the notion of entropy solution is shown in [16]. For such a soft
measure, an extension to equations of type (b(u)); — Apu = p is given in [6]; another
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formulation is used in [23] for solving a perturbed problem obtained from (1.1) by adding
an absorption term.
Next consider an arbitrary measure u € Mp(Q). Let M;(Q) be the set of all

bounded Radon measures on Q with support on a set of zero c,,Q—capacity, also called
singular. Let ./\/l,j(Q), MS“(Q),M;F(Q) be the positive cones of My(Q), Mo(Q),
M (Q). From [15], i can be written (in a unique way) under the form

W=+ Mse  po € Mo(Q), ws=upl —py,  uliuy e ME(Q),  (1.6)

and o € Mo(Q) admits (at least) a decomposition under the form

po=f—divg+h, fel'(Q), ged @), hex, (17

and we write uo = (f, g, h). Conversely, any measure of this form, such that h € L*°(Q),
lies in Mo (Q) (see [23, Proposition 3.1]). The solutions of (1.1) are searched in a renor-
malized sense linked to this decomposition, introduced in [15, 22]. In the range (1.4) the
existence of a renormalized solution relative to the decomposition (1.7) is proved in [22],
using suitable approximations of ©o and wg. Uniqueness is still open, in the elliptic case
as well.

In all what follows we suppose that p satisfies (1.4). Then the embedding WOl Q) c
L%() is valid, so that

X =LP((0, T); Wy P(), X' =L"(0,T); W ().

In Section 2 we recall the definition of renormalized solutions, given in [22], which
we call R-solutions of (1.1), relative to the decomposition (1.7) of wg, and study some
of their properties. Our main result is a stability theorem for problem (1.1), proved in
Section 3, extending to the parabolic case the stability result of [13, Theorem 3.4]. In
order to state it, we recall that a sequence of measures u, € My(Q) converges to a
measure i € Mj(Q) in the narrow topology of measures if

im deun = fgwdu Yo € C(Q) N L®(Q).
Theorem 1.1. Let A : O x RN — RY satisfy (1.2), (1.3). Let ug € L' (Q) and
pw=f—divg+h +pf —u; € My(Q)
with f € L'(Q), g € (LP(Q)N, h € X and uf, uy € MF(Q). Let ug,, € L'(RQ) and
Pn = fn —divgn + (hn)t + pn — 10 € Mp(Q)
with f, € L'(Q), gu € (LP (Q)N, hy € X and py, 1, € M} (Q) such that
pn = pY—divoR+ pus,  Ma =) —divn? + .
with p,i, n,ﬁ e LY(Q), ,o,zl, n,% e (L” Q)N and Prss s € MT(Q). Assume that

sup [n|(Q) < oo,
n
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and {ug,,} converges to uq strongly in LY(), {fn} converges to f weakly in L (0), {gn}
converges to g strongly in (L? /(Q))N , {hn} converges to h strongly in X, {p,} converges
to ut and {n,} converges to u; in the narrow topology; and {,0,%}, {77;} are bounded in
L'(Q), and {p?}, (n?} bounded in (L (Q))V.

Let {u,} be a sequence of R-solutions of

Unit — le(A(-xa z, Vun)) = Un in Qv
u, =0 ondQ x (0, T), (1.8)
un (0) = ug,, in Q.

relative to the decomposition (f,, + p,% — n,l,, gn+ p,% — n,%, hyn) of n.o0. Let Uy, = uy — hy.

Then up to a subsequence, {u,} converges a.e. in Q to an R-solution u of (1.1), and
{U,} converges a.e. in Q to U = u — h. Moreover, {Vu,}, {VU,} converge respectively
to Vu, VU a.e. in Q, and {T(U,)} converges to Ty (U) strongly in X for any k > 0.

In Section 4 we check that any measure u € Mj(Q) can be approximated in the sense of
the stability theorem, hence we find again the existence result of [22]:

Corollary 1.2. Let ug € L'(Q) and ;v € My(Q). Then there exists an R-solution u to
problem (1.1) with data (., ug).

Moreover we give more precise properties of approximations of u© € M (Q), fundamen-
tal for applications (see Propositions 4.1 and 4.2). As in the elliptic case, Theorem 1.1 is
a key point in obtaining existence results for more general problems, and we give some
of them in [3, 4, 20], for measures u satisfying suitable capacitary conditions. In [3] we
study perturbed problems of order O, of type

ur—Apu+Gu)=p inQ, (1.9)

where G(u) is an absorption or a source term with a growth of power or exponential type,
and u is a good in time measure. In [4] we use potential estimates to give other existence
results in case of absorption with p > 2. In [20], one considers equations of the form

u; —div(A(x, t, Vu)) + G(u, Vu) = u

under (1.2), (1.3) with p = 2, and extends in particular the results of [1] to nonlinear
operators.

2. Renormalized solutions of problem (1.1)

2.1. Notation and definitions

For any f € L'(Q), we write /, 0 f instead of [, 0 f dxdt, and for any measurable set

E CQ, [, f instead of [, f dxdt. For any open set & in R and F € (L*(w)),
k e[l,00],m,veN*, weset[|[Flio = IFllk@m)-
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We set Ty (r) = max{min{r, k}, —k} for any k > 0 and r € R. We recall that if u is a
measurable function defined and finite a.e. in Q, such that 7y (1) € X for any k > 0, then
there exists a measurable function w from Q into RV such that VTj (u) = Xlu|<kW a.e.
in Q, and for any k > 0. We define the gradient Vu of u by w = Vu.

Let u = po + us € Mp(Q), let (f, g, h) be a decomposition of wg given by (1.7),
and set ;tg = po — hy = f — div g. In the general case g ¢ M(Q), but we write, for
convenience,

/ wdy :=/(fw+g.Vw), Yw € XNL*(Q).
0] 0

Definition 2.1. Let ug € L'(Q) and u = po + s € Mp(Q). A measurable function
u is a renormalized solution, or an R-solution, of (1.1) if there exists a decomposition
(f, g, h) of ug such that

U=u—-—heL°(0,T7), WOI’U(Q)) NL>®(0,T); L' (), VYo e[l,m,),

2.1
Ty(U)e X, Vk=>0,

and:
(i) forany S € W2 (R) such that S’ has compact support in R, and S(0) = 0,

—/ S(uo)(p(O)dx—/ go,S(U)Jr/ S'(U)A(x,t, Vu).Ve
Q 0 0

+/ S"(U)pA(x, t, Vu).VU:/ SWediy  (2.2)
0 0

forany ¢ € X N L*(Q) such that ¢, € X'+ LY(Q)and ¢(-, T) = 0;
(i) forany ¢ € C(Q),

1
lim —/ PA(x, t, Vu).VU:/ pdul, (2.3)
m—=00 M Jim<U<2m} 0

1

lim —/ PA(x, t, Vu).VU:/ pdu; . (2.4)

m—=0o m {—m>U>—-2m} ]

Remark 2.2. As a consequence, S(U) € C([0,T]; LY(Q)) and S(U)(-,0) = S(ug)
in ; and u satisfies the equation

(S(U)), —div(S"(U)A(x, t, Vu)) + S"(U)A(x, t, Vu).VU
= fS'(U) —div(gS'(U)) + S"(U)g.VU, (2.5)

in the sense of distributions in Q (see [22, Remark 3]). Moreover assume that [—k, k] D
supp S’. Then from (1.2) and the Holder inequality, we find easily that

IS llxr 4110

< ClISlyzoege (| 1V 0167

Lo + IVul”xwisily o + V@I o

! 1
+llallyo + lal? o+ 1 flo + lghy.o[IVul” xiwi<i |2 + lgllr.0),  (2.6)
.0 1,0
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where C = C(p, Ay). We also deduce that, for any ¢ € X N L*°(Q) such that ¢; €
X'+ LY(0),

/S(U(T))w(T)dx—/ S(uo)w(O)dx—/ sz(U)+/ S'(U)A(x,t, Vu).Vy
Q Q ] 0
—i—/ S"(U)A(x, t, Vu).VUgo:/ S'(Wyedmg.  (2.7)
[0} 0

Remark 2.3. Let u, U satisfy (2.1). It is easy to see that the condition (2.3) (resp. (2.4))
is equivalent to

1
lim —f PA(x, t, W).W=/ pduf, (2.8)
m—=00 m Jim<U<2m} 0
resp.
1
lim —/ ¢A(x,t,Vu).Vu=/ pdug . 2.9)
m—=00 m Jim>U>—2m} 0

In particular, for any ¢ € L”' (Q),

1 1
lim —/ |Vulp =0, lim —/ [VU|p = 0. (2.10)
m=00 m Jm<|U|<2m m=00m Jm<|U|<2m

Remark 2.4. (i) Any function U € X such that U; € X' + L'(Q) admits a unique

ch -quasi continuous representative, defined ch -quasi a.e. in Q and still denoted U. Fur-
thermore, if U € L®(Q), then for any g € Mo(Q), we have U € L*°(Q, dug) (see
[22, Theorem 3 and Corollary 1]).

(i1) Let u be any R-solution of problem (1.1). Then U = u — h admits a c,,Q-quasi
continuous representative which is finite c,,Q -quasi a.e. in Q, and u satisfies Definition 2.1

for every decomposition ( f , 8, fz) suchthath — h € L*>(Q) (see [22, Proposition 3 and
Theorem 4]).

2.2. Steklov and Landes approximations

The main difficulty in proving Theorem 1.1 is the choice of admissible test functions (S, ¢)
in (2.2), valid for any R-solution. Because of a lack of regularity of these solutions, we
use two ways of approximation adapted to parabolic equations:

Definition 2.5. Lete € (0,7T) and z € LIIOC(Q). For any / € (0, &) we define the Steklov
time-averages [z];, [z]—; of z by

1 t+1
[z]i(x, 1) = ?/ z(x,s)ds forae. (x,1) e 2 x (0, T —¢),
t

t
[z]-i(x, 1) = ;/ z(x, s)ds fora.e. (x,1) € 2 x (¢, T).
1—l
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The idea to use this approximation for R-solutions can be found in [7]. Recall some
properties, givenin [23]. Lete € (0, T),and ¢ € C° (Qx[0,T)), ¢ € Cé’o(ﬁx 0, T))
with supp g1 C Qx[0,T —¢], supp ¢2 C Q x [g, T]. Then:
(1) If z € X, then g1 [z];, 2[z]-1 € W.
(i) fz € X and z; € X' + L'(Q), then, as I — 0, {¢1[z];} and {@2[z]_;} converge re-
spectively to ¢z and @2z in X, and a.e. in Q; and {(¢1[z]1)¢}, {(¢2[z]—1):} converge

t (¢12)1, (922); in X' + L1(Q).
(iii) If moreover z € L°°(Q), then any sequence {/,} — 0 has a subsequence {/,} such

that {[z];,} and {[z]—;, } converge to z, c,,Q—quasi everywhere in Q.

Next we recall the approximation used in [8, 12, 9], first introduced in [17].

Definition 2.6. Let k > 0, and let y € L*°(2) and Y € X be such that ||y||c.0 < k
and ||Y |lco,0 < k. For any v € N, a Landes-time approximation (Y), of the function Y is
defined as follows:

t
(Y)y(x, 1) = v/ Y(x,$)e'C D ds + e z,(x), V(x,t) € 0.
0

where {z,} is a sequence of functions in Wol’p(Q) N L°(2) such that ||zy|leo,@ < k, {zv}

converges to y a.e. in €2, and vz, Hsv“’(ﬂ) converges to 0.
0

We can verify that ((Y),); € X, (Y)» € X N L®(Q), I{¥lleo,0 < k and {(Y),}
converges to Y strongly in X and a.e. in Q. Moreover, ((Y),); = v(¥Y — (Y),) in the
sense of distributions in Q, and (Y),(0) = z, in 2. In this paper, we only use the Landes-
time approximation of the function ¥ = Ty (U), where y = Ty (ug).

2.3. First properties
We will use the following notation: for any nondecreasing function J € W1 (R) with
J(0) =0, we set
_ r r
J(r)=/ J(t)dr, J(r):/ J' (D)t dr. 2.11)
0 0
It is easy to verify that 7 (r) > 0 and
TN +JI@)=J@)r, T —T6) =s(J@r)—J(s) Vrs eR. (2.12)

In particular we define, for any k > O and r € R,

Ti(r) = /r Ti(v)dr, Ti(r) = /r T{(v)T dT, (2.13)
0 0

and we use several times a truncation applied in [13]:

2m — |s| — r
Hm(r) = X[—m,m](r) + TXm<|s|§2m(r)v Hm(r) = /0 Hm(f) dr. (214)

The next lemma allows us to extend the range of test functions in (2.2).
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Lemma 2.7. Let u be an R-solution of problem (1.1). Let J € WL°(R) be nondecreas-
ing with J(0) = 0, and J defined by (2.11). Then

/S/(U)A(x,t, W).V(gJ(S(U))Hf S"(U)A(x, t, Vu).VUEJ(SU))
0 0

—/QE(O)J(S(MO))S(MO)dx—/Qézj(S(U))S/QS’(U)SJ(S(U))dﬁB (2.15)

forany S € W>®(R) such that S’ has compact support on R and S(0) = 0, and for any
§eCl(ONWhe(Q) ¢ =0.

Proof. Let J be defined by (2.11). Let ¢ € Cg([O, T)) have values in [0, 1] and ¢, < O,
and let ¢ = ¢&[J(S(U))];. Clearly, ¢ € X N L*°(Q); we choose (¢, S) as a test function
in (2.2). From the convergence properties of Steklov time-averages, we will easily obtain
(2.15) if we prove that

lim <—/ (CE[J(S(U))]I)IS(U)> > —/ £J(S)).
[—0,.—1 0] Q
We can write —fQ &L (SWUNI,SW) = F + G, with

F= —/Q(Cé)r[J(S(U))]IS(U),

1
G= —/Q§§S(U)7(J(S(U))(x, t+10) = J(SW)(x,1)).
Using (2.12) and integrating by parts we have
1 0]
G > —/Q;‘E?(J(S(U))(x,tJrl) —J(SW)(x, 1)) = _ng‘gE([j(S(U))]Z)
=/Q(éf)z[J(S(U))]z+AZ(O)S(O)[J(S(U))]I(O)dx Z/Q(§$)t[j(S(U))]1,
since J (S(U)) > 0. Hence,

—/Q(CE[J(S(U))]z)zS(U) Z/Q(Zé)z[J(S(U))]z+F
= /Q CEO(TSWUNY = I (SWUNLS)).

Now, J(S(U)), J(SU)) € C([0, T1; L' (). so {(¢&): ([T (S@)]; — [T (S@)]; S (u))}
converges to —(¢&),;J(S(u)) in L'(Q) as | — 0. Therefore,

lim (—/Q(;“S[J(S(U))],),S(U)) > li_m(—/Q(CE)J(S(U)))

[—0,.—>1 c—1
z—/&ﬂawx
0

which completes the proof. O
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Next we give estimates of the function and its gradient, following the first estimates of [9],
inspired by those of the elliptic case in [2]. In particular we extend and make more precise
the a priori estimates of [22, Proposition 4] given for solutions with smooth data; see also
[15, 18].

Proposition 2.8. If u is an R-solution of problem (1.1), then there exists C; =
Ci1(p, A1, A2) such that, for any k > 1 and £ > 0,

/ |Vu|P +/ IVUI? < CikM, (2.16)
L<|U|<l+k (<|U|<t+k

1T Lo (0. 7y);L1 (@) = C1(M + (L), (2.17)
where M = ||Mo||1,Q+IMsI(Q)+||f||1,Q+IIgIIZ/,Q+||h||’;+||a||f,’/,Q-AsaCOnsequence,
foranyk > 1,

meas{|U| > k} < CoMk™P¢, meas{|VU| > k} < CoMyk™"™¢, (2.18)
meas{|u| > k} < CoMyk™P¢,  meas{|Vu| > k} < CoMpyk™ ", (2.19)
where C» = Co(N, p, A1, A2), My = (M+|Q)P'N M and M» = My + M.
Proof. Foranyr € R,andm, k, £ > 0, set

Tee(r) = max{min{r — £, k}, 0} + min{max{r + £, —k}, 0}.

&m > k+ £, we can choose (J, S, &) = (Tk., H_m, &) as test functions in (2.15), where
H, is_deﬁned in(2.14)and £ € CL([0, T) with values in [0, 1], independent on x. Since
Tk, (Hyu(r)) = Ty ¢(r) for all r € R, we obtain

- /Q £(0) T (o) Hyr () dx — /Q & Te (Hn(U)) + f{z EA(x. 1, Vi).VU

<|U|<t+k)

k _—
_K EA(x. 1, Vi).VU < / Ho(U)ETy o (U) d .
m Jim<|U|<2m) 0

And

f Ho(U)ETk (V) dTs

0]
k
- f Ha(U)ET, o(U) f + [ EVU.g— = EVU.g.
0] {e<|U|<t+k} m Jim<|U|<2m)}

Let m — oo; then, for any k > 1, since U € L'(Q) and from (2.3), (2.4), and (2.10), we
find

- / ETer(U) + / EAGe. 1, Vi) VU

0 {¢<|U|<t+k}

< / EVU.g +k(lluolly.q + lusl(@) + I fll1,0).  (2.20)
{£<|U|<t+k}
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Next, we take £ = 1. We verify that
A , ,
A(x,t,Vu).VU —VU.g zT(Wulp +|VUIP) —c1(lgl” + VAP +al?)

for some ¢; = ci(p, A1, Az) > 0. Hence (2.16) follows. Thus, from (2.20) and the
Holder inequality, we get, for any £ € C! ([0, T']) with values in [0, 1],

- / &Tyo(U) < cokM
0

for some ¢, = c2(p, A1, Az) > 0. Thus [, Tx ¢(U) (1) dx < c2kM for ae.t € (0, T).
We deduce (2.17) by taking k = 1, £ = 0, since m(r) =Ti(r) > |r| — 1 forany r € R.

Next, from the Gagliardo—Nirenberg embedding theorem (see [14, Proposition 3.1]),
we have

N
[ @ < I 1y [ VTP

where ¢3 = ¢3(N, p). Then, from (2.16) and (2.17) we get, for any k > 1,
meas{|U| > k} < kfp(NH)/N/ T (U PN +DIN
0]

=alUl

p/N —p(N+1)/N P ~Pe
LOO((O’T);LI(Q))k /Q |VT]<(U)| =< C4M1k s

with ¢4 = ¢4(N, p, A1, A2). We obtain

1 [k
meas{|VU| > k} < . meas{|VU|? > s}ds
0

1 [
< meas([U] = kYD) 42 meas(IVU 17 > 5, (U] < KV ds

1
<Mk + — IVUIP < csMak™"¢,
kP J iy <iN/av+D

with ¢s = ¢s(N, p, A1, Az). Furthermore, for any k > 1,
meas{|h| > k} + meas{|Vh| > k} < c6k_"’||h||§,
where cg = c6(N, p). Therefore, we easily get (2.19). m]

Remark 2.9. If © € L'(Q) and a = 0 in (1.2), then (2.16) holds for all k > 0 and the
term |€2| in inequality (2.17) can be removed, where M = ||uol|1,o+|1|(Q). Furthermore,
(2.19) can be written as follows:

N
meas{|u| > k} < CoM™% k=P, meas{|Vu| > k} < CoMMTk~™ ¥k > 0. (2.21)
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with Co = C2(N, p, A1, A2). The last inequality can be seen in the following way:

meas{|VU| > k} < meas{|U| > MﬁkNLH}
kP .

+ T meas{|VU|? > s, |U| < Mﬁlkwﬂ}ds
0

< CuM Vg,
Proposition 2.10. Let {i,} C Mp(Q) and {uo n} C LY(Q) be such that

sup |[un|(Q) < o0 and  sup |lugnallie < oo.
n n

Let u, be an R-solution of (1.1) with data @, = pno0 + ns and ug p, relative to a
decomposition (fn, gn. hyn) of n,0, and U, = u, — hy,. Assume that { f,} is bounded in
LY(Q), {gn} bounded in (LP (Q))N and {h,} bounded in X.

Then, up to a subsequence, {U,} converges a.e. to a function U € L*®((0, T); L'()),
such that Ty(U) € X forany k > 0and U € L° ((0, T); Wé’g(Q))for any o € [1,m,).
Moreover:

(1) {U,} converges to U strongly in L° (Q) for any o € [1, m.), and
Sup [|Unll oo 0,7y 2.1 (22)) < ©©

(i) supg-osup, 7 fo IVTk(UnIP < o0,
(i) {Tx(Uy)} converges to Ti,(U) weakly in X, for any k > 0,
@iv) {A(x,t, V(Tx(Uy) + hy))} converges to some Fy weakly in (L? o)V.

Proof. Take § € W2°(R) such that S’ has compact support on R and S(0) = 0. We
combine (2.6) with (2.16) to deduce that {S(U,),} is bounded in X’ + L! (Q) and {S(U,)}
bounded in X. Hence, {S(U,)} is relatively compact in Ll(Q). On the other hand, we
choose S = S such that Si(z) = z if |z] < k, and S(z) = 2ksignz if |z] > 2k. From
(2.17), we obtain

meas{|U, — Uy | > o} < meas{|U,| > k} + meas{|U,,| > k}
+ meas{| S (Uy,) — Sk (Up)| > o}

< % + meas{| Sk (Un) — Sk (Un)| > o},

where ¢ does not depend on n, m. Thus, up to a subsequence, {u,} is a Cauchy se-
quence in measure, and converges a.e. in Q to a function u. Thus, {7 (U,)} con-
verges to Tx(U) weakly in X, since sup, || Tx(Uy)llx < oo for any k > 0. And
(IV(Te(Up) + hp)|P~2V (T (Uy) + hy)} converges to some Fy weakly in (L? (Q))V.
Furthermore, from (2.18), {U,} strongly converges to U in L° (Q), forany o < p.. O
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3. The convergence theorem

We first recall some properties of measures (see [22, Lemma 5]), [13].

Proposition 3.1. Let u; = pnf — uy € Mp(Q), where uf and u; are concentrated,
respectively, on two disjoint sets E™ and E~ of zero ch -capacity. Then, for any § > 0,

there exist two compact sets K;r CEtand K s S E™ such that
ui (EY\K) <68, pi(E7\Ky) <3,

and there exist w;r, Y5 € Cc1 (Q) with values in [0, 1] such that Iﬂ;, Y is 1 respectively
on K;', Ky, and supp(l/f;) N supp(Y¥; ) = @, and

1 I+ 1D iniio) <8 W5 I + 165 lxrpoi) < 6.

There exist decompositions (Yr5); = (Y5 + (Y3)? and (Y5)e = (Wy)) + (Y57 in
X' + LY (Q) such that

IO <83, 12 e <8/3, 1w Nx <8/3, 165 .0 < 8/3.

3.1
Both {1,0;'} and {5 } converge to 0, weak-* in L°°(Q) and strongly in LY(Q), and up to
subsequences, a.e. in Q, as § tends to 0. Moreover if p, and n, are as in Theorem 1.1,
then for any 8, 81, 82 > 0,

[ vidons [ wran=oms. [ wran s [ wiae s 62
0] ) ) o

/ (0 = Y5 )dpn = 0(n, 81, 82), / (A —yiyHydud <81+, (33)
0 0
[ a-vivndn =omss. [ a-viupde <hivn G4
0 0
Hereafter, if n,e,...,v are real numbers, and a function ¢ depends on n,¢,...,v
and other parameters o, §,...,y, and we let n — ng, ¢ — €, ..., Vv — 1y,
th_en we writ_e ¢ :_a)(n,e,...,v) to mean that, for fixed o, §8,...,y, we have
lim,_,,,...limg_ 5 lim,_,, [¢| = O. In the same way, ¢ =< w(n,&6,...,v)
means limy_,y, ... limg_¢ lim,—,y ¢ < 0, and ¢ > w(n,e,...,v) means —¢ <
w(n,e,...,v).

Remark 3.2. We recall a convergence property used in [13]: If {b; ,} is a sequence in
L'(Q) converging to b; weakly in L'(Q), and {b2.,} is a bounded sequence in L*°(Q)
converging to b, a.e. in Q, then lim, fQ binbyn = fQ b1bs.

Next we prove Theorem 1.1.

Scheme of the proof. Let {i,}, {uo n} and {u,} satisfy the assumptions of Theorem 1.1.
Then we can apply Proposition 2.10. Set U,, = u, — h,. Then up to subsequences, {u,}
converges a.e. in Q to some function u, and {U,} converges a.e. to U = u — h such that
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Tx(U) € X forany k > 0,and U € L° ((0, T); WOI’”(Q))HLOO((O, T): LY()) for every
o € [1, m.). Moreover, {U,} satisfies conclusions (i) to (iv) of Proposition 2.10. We have

tn = (fo = div gy + (b)) + (o, — div o) — (0, = div i) + pns — M
= Un,0+ (lon,s - 7771,5)+ - (pn,s - nn,s)_:

where

Mn,0 = )\n,O + 0n,0 — Mn,0 with )\n,O = fn —div &n + (hp)s, Pn,0 = )Oyll — div /0,%,
o = Ny — div 2. (3.5)

Hence
Pn,0s 0 € MF(Q) N Mo(Q) and  py = pu0. M = N0 (3.6)

Let E*, E™ be the sets where, respectively, u:r and g are concentrated. For 1, 8, > 0,
let Iﬂ(;q, 1//(;; and w(;l, 1//(;2 be as in Proposition 3.1 and set

D55, = %Wg; + Vs, Vs, -

Suppose that we can prove two estimates: near E,
I = / Ds,,5,A(x, 1, Vuy). V(U — (Tx(U))y) < w(n, v, 81, 82), (3.7)
{IUn|=<k}
and far from E,
I = / (1 = ®s,,5,)Alx, 1, Vuy). VU, — (T (U))y) < w(n,v,81,8). (3.8)
{IUn|<k}

Then it follows that

lim A(x,t, Vu,).V(U, — (Tr(U)),) <0, (3.9)
v {1Un 1<k}
which implies
lim A(x, t,Vu,).V(U, — Tr(U)) <0, (3.10)

"0 J{|Un | <k}
since {(Tx(U)), } converges to Ty (U) in X. On the other hand, from the weak convergence
of {Tx(U,)} to Tx(U) in X, we verify that
/ A(x, 1, V(T (U) + hp) V(T (Up) — T (U)) = w(n).
{1Un1<k}

Thus we get

/ (ACx, 1, Vup) = A(x, t, V(Ti(U) + 1))V (up — (Te(U) + hp)) = w(n).
{1Un1=k}
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Then it is easy to show that, up to a subsequence,

{Vu,} converges to Vu  a.e.in Q. 3.11)
Therefore, {A(x,t, Vuy)} converges to A(x,t, Vu) weakly in (Lr"/(Q))N; and from
(3.10) we find

lim A(x,t,Vun).VTk(Un)ff A(x,t, Vu)VTi(U).
0 0

n—oo

Moreover, {A(x, t, V(Tx(Uy) + hy))} converges weakly in (LP' (Q))Nto some Fy, from
Proposition 2.10, and we obtain Fy = A(x, t, V(T (U) + h)). Hence

lim [ A(x,t, V(Tx(Uy) + b))V Tk (Uy) + hy)
[¢)

n—o00

n—oo

< lim | A(x,t, Vu,).VTx(U,) + lim / Ax,t, V(Ti(Uy) + hy)).Vh,
Q n—>oo Q

< / Alx,t, V(T (U) + h)). V(T (U) + h).
Q

As a consequence,
{Tv(U,)} converges to Tx(U) strongly in X, Vk > 0. (3.12)

Thus to finish the proof we have to check that u is a solution of (1.1). m}

In order to prove (3.7) we need a lemma, inspired by [13, Lemma 6.1]. It extends the
results of [22, Lemmas 6 and 7] to sequences of solutions with smooth data:

Lemma 3.3. Let {15, Y25 € Cl(Q) be uniformly bounded in W1’°°(Q) with values
in [0, 1], and such that fQ Visduy < 8and fQ Vosdul < 8. Let {u,)} satisfy the
assumptions of Theorem 1.1, and U, = u,, — h,,. Then

1 1
— IVup|P2s = @(n,m,8), — VU P25 = w(n, m, 8),
m Jim<uU,<2m)} m Jim<u,<2m)}

(3.13)

1 1
—/ IVup| P15 = w(n,m, ), —/ VU P Y15 = w(n,m,$),
m J om<U,<—m m J _om<U,<—m

(3.14)

and for any k > 0,

/ |Vuﬂ|p1/f2,8 Zw(nam’8)7 / |VUn|p1/f2,8 Zw(nam’8)7
{m<U, <m+k} {m<U, <m+k}
(3.15)

/ IV, |15 = w(n, m, ), / VU P Y15 = w(n,m,$).
{(—m—k<U,<—m)} {(—=m—k<U,<-m}
(3.16)
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Proof. (1) Proof of (3.13), (3.14). For any r € R and any m, £ > 1 set

" —m+T dm~+2h—t
Sme(r) = / ( X[m,2m](T)+X(2m,2m+[](f)+—X(2m+2,4m+2h](f)> dr,
0 m 2m—+4L

"(—m+T
Sim(r) = / < " Xim,2m) (T) + X(2m,oo)(77)) dr, vr eR.
0

Note that Sr’,’hz: Xim2ml/M — X2m+0,2@m+01/(2m + £€). We choose (§,J,S5) =
(¥2.5, T1, Sm.¢) as test functions in (2.15) for u,, and observe that, from (3.5),

im0 = tn0 — (h)t = 2on0 4 Pn0 — Mn0 = fon — iV gy + pno — mmo.  (3.17)

Thus we can write Z?:1Ai < Zl-li7A,~, where
Ay = _/QWZ,B(O)TI(Sm,Z(MO,n))Sm,Z(MO,n)dxv Ay = —/;(Wz,a)tﬁ(sm,z(Un)),
Az = /Q Syt U T1 (S e (Un)) A(x, 1, Vi)V 5,
Ag = /Q(S,/ﬂ,z(Un))zlh,aTl/(Sm,z(Un))A(X, 1, Viup) VU,
1

As = — V2,8 T1(Sm,e(Un))A(x, t, Vuy,)VU,,
m J{m<U,<2m)}

=7
2m + £ Jiom+e<v, <22m+0))

A7 = /Q S e UDT1(Sm e (U Va5 fu,  Ag = /Q St (Ui (St (Un))gn-V2.5,

WZ,SA()Q t,Vu,)VUy,,

A9=fQ(S,/n,z(Un))le/(Sm,[(Un))wz’sgn.VUn’

1
A = —/ T1(Sim,e(Un))V2,58n.- VU,
m Jm<U,<2m

i
2m + € Jomte<v,<22m+0))

Ap = / Spn.e Un) T1 (S, (Un)) 2,5 d (0,0 — 1n,0)-
0

A =— Y2,68n-VUy,

Since ||Sm.e (o) 1,0 < f{m<u0 } U0, dx,we find A = w(¢, n, m). Moreover,

Un, |A3|s||¢z,s||wl,oo(g)/ (lal+A2| Vit [P,

{m=<Uy,}

A2l = sl [

{m=<U,}

which implies A» = w(¢, n, m) and Az = w (¢, n, m). Using (2.3) for u,,, we have

Ag = _f wZ,S d(pn,x - nn,s)+ + o) =, n,m,d).
0
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Hence Ag = w (¢, n, m, §), since (p, s — nn,s)+ converges to ,u,;* asn — o0 in the narrow
topology, and fQ Y25 d,u;" < 6. We also obtain A1 = w(¥£) from (2.10).
Now:
{80, e (Un)T1(Sim,e(Un))}e converges to Sy, (Un) T1 (S (Un)),
{83 (Un) T1 (S (Un))}n converges to S, (U)T1 (S (U)),
{S,, (U)T1(Sn(U))}m converges to 0 weak-* in L°(Q),
{f} converges to f weakly in L'(Q), {g,} converges to g strongly in (L”/(Q))N.

From Remark 3.2, we obtain

Ay = /Q S (Un)T1 (S (Un)) W25 for + 0(€) = /Q S UV S (@)W f -+ (L)
=w,n,m),

Ag = /Q S (Un)T1 (S (Un))gn- V2,6 + @ (£)
= /Q Su(NT1(Su(U))g- Vi s + o, n) = o, n,m).

Moreover, A1y < fQ V2.5 dpy, and {fQ V2.6 dpy} converges to fQ Vosdu, thus Ajp <
wl,n,m,?d).
Using the Holder inequality and (1.2), we have

8n.VU, — A(x, 1, Viup).VU, < c1(lgnl? + [Via|? + |al?)

with ¢; = ¢1(p, A1, A2), which implies
Ag— As ¢ / (S o UD T{ St U235 (8al” + Il + al”) = (€, n, m).
0

Similarly we also show that Ajg — As/2 < w(¥, n, m). Combining the estimates, we get
As/2 < w(€,n, m, ). Using the Holder inequality we have

A ,
A(x, 1, Vup).VU, > 71|wn|" —ca(jal” + Vi, |P)

with ¢» = ca(p, A1, A2), which implies

1
— Vi, |P2 sT1 (Sp,e(Un)) = 0 (€, n, m, §).
m Jim<U,<2m)

Note that for all m > 4, S, ¢(r) > 1forany r € [3m/2, 2m]; hence T1(Sp ¢(r)) = 1. So,
1

- |Vun|pw2,5 :w(zvn’maa)'
m J{3m/2<U, <2m}

Since |VU,|? < 2P~ Vu,|P + 2P~1|Vh,|P, we also have
1

- |VUn|plp2,5 Zw(£5n9m78)'
m {3m/2<U, <2m}
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We deduce (3.13) by summing on each set {(4/3)im < U, < (4/3)'T'm} fori =0, 1, 2.
Similarly, we can choose (¢, ¥, S) = (Y15, 11, S‘m’e) as test functions in (2.15) for u,,
where S‘m,g(l") = Sy.¢(—r), and we obtain (3.14).

(@i1) Proof of (3.15), (3.16). We set, for any k, m, € > 1,

2k+L+m)—<

drt,
Jar— X(k-+m+2,2(k-+m—+£)])

.
Skom,e(r) = /o (Ti (v — T (D)) X ktm+e) + K

Sem () = fo Te(t — To(0)) xpm.o0) .

We choose (¢, ¥, S) = (Y25, T1, Sk,m.¢) as test functions in (2.15) for u,. In the same
way we also obtain

/ IV |2 sT1 (Skm,e(Un)) = 0 (€, n, m, §).
{m<U, <m+k}

Note that 71 (Sk m.¢(r)) = 1 for any r > m + 1, thus -/{m+l<U,1<m+k} |[Vun|Pyns =
w(n, m, 8), which implies (3.15) by changing m to m — 1. Similarly, we obtain (3.16).
O

Next we look at the behaviour near E.

Lemma 3.4. Estimate (3.7) holds.
Proof. We have
il =f 5,5, Ax, 1, Vun)-VTk(Un)—/ 5,5, Ax, 1, Vi) V(T (U)), .
o {|Un|=k}

From Proposition 2.10Gv), {A(x, ¢, V(Tx (U,) + h,)).V{(Tx(U)),} converges weakly in
LY(Q) to FyV(Tx(U)),. Moreover, {x{u, 1<k} converges to xju|<k a.e. in Q, and Ps, s,
converges to 0 a.e. in Q as §; — 0, and ®s, 5, takes its values in [0, 1]. From Remark
3.2, we have

[ A V) O,
{IUnl=<k}
= /QX{U,,gk}Cbal,azA(x,t, V(T (Un) + hp)). V(T (U)),
= /QX|U|§k®81,82Fk-V<Tk(U)>u +wn) =w(n,v,d).
Therefore, if we prove that
/Q Ds,.5,A(x, t, Vuy). VI (Uy) < 0, 81, 82), (3.18)

then we can deduce (3.7). As noticed in [13, 22], it is precisely for this estimate that we
need the double cut ws‘r 1//55. Now, forany m > k > 0 and r € R, we set

Sgm(r) = fo (k — Ty (v)) Hp (7) d,
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where H,, is defined at (2.14). Hence supp S'k,m C [—2m, k], and Slg”mz —X[=ki] T

(2k/m) x[—2m,—m]- We choose (¢, S) = (wgwgg, Sk,m) as test functions in (2.2). From
(3.17), we can write

A1+ Ay — A3+ A4+ As+ Ag =0,

where
Ar=— /Q W5 i), SkmUn),
Ay = /Q (k = T(Un) Ha (U A, 1, V).V (0035,

As =/ ViU A £, Vi) VT (Un),
0

2%

Ay = Yy v A(x, 1, V). VU,,

m J{—2m<U,<—m)

As = — fQ (k = Te(Un) Ho (U)W 5 dior,
Ag = /Q (k — Tk(U,,))Hm(U,,)wgwg'; d(Mn,0 = Pn,0)-

We first estimate Aj. As in [22, p. 585], since {S’k,m(U,,)} converges to .SA’k,m(U)
weakly in X, and S’k’m(U) € L*°(Q), using (3.1) we find

wr== [ D@ = [ V0D, S ®) 00 = 0w 3.

Next we consider Aj. Notice that U, = T3,,(U,) on supp H,,(U,). From Propo-
sition 2.10(iv), the sequence {A(x,?, V(T2,(U,) + hn)).V(w;%';)} converges to

Fzm.V(zp;]’ w;;) weakly in L'(Q). From Remark 3.2 and the convergence of w(;]“w;; in X
to0asd; — 0, we find

Ay = / (k = Ti(U))Hp (U) Fan N (Y5 05) + 0(n) = o(n, 8).
0
Then we consider A4. For some ¢1 = c1(p, Az), we have
2k p P Pyt
|Ag| < c1— (IVup|? + VUL + al )1/f51‘//32-
m {(—2m<U,<—m}

Since 1//;1' takes its values in [0, 1], from Lemma 3.3, we get in particular Ay =
a)(n, 51, m, 52).

Now we estimate As. The sequence {(k — Tk(Un))Hm(Un)l/f;llﬂ;g} converges to
(k — Tk(U))Hm(U)W;—l//;z_ weakly in X, and {(k — Tx(U,))H,(U,)} converges to
(k — Tx(U))H,, (U) weak-* in L°°(Q) and a.e. in Q. Moreover { f,} converges to f
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weakly in L! (Q), and {g,} converges to g strongly in (LI’,(Q))N . From Remark 3.2 and
the convergence of wg 1//;; to0in X and a.e. in Q as §; — 0, we deduce that

As = _/Q (k = TeUn) Hu (U505 dTo + (1) = o (n, 81),

where vy = f — div g.
Finally A¢ < 2k fQ 1//3{1#3; dny; using (3.2) we also find Ag < w(n, 81, m, §). Since
A3z does not depend on m, we obtain

A3 =/ Vsl Wah Ax, 1, Viy) VT(Up) < o(n, 81, 82).
0

Arguing as before with (w({lwa—z, S’k,m) as a test function in (2.2), where S'k,m(r) =

—§k,m(—r), we get in the same way
f Yy Uy, A 1, Vi) VTi(Uy) < (0, 81, 82).
0

Thus, (3.18) holds. ]

Next we look at the behaviour far from E.

Lemma 3.5. Estimate (3.8) holds.

Proof. Here we estimate I; we can write
L= f (I = @, 5,)A(x, 1, Vun). V(T (Up) — (T (U))y).
{1Un|<k}

Following the ideas of [25], used also in [22], we define, for any r € R and £ > 2k > 0,
Rn,v,E = T(Z+k(Un - <Tk(U)>v) - TZ—k(Un - Tk(Un))~
Recall that [[(Tx(U))vllco,0 < k, and observe that
Ruve = 2ksign(Uy) in {|U,| = £ + 2k},
|Rn,v,€| < 4k, Rn,v,( =w(n,v, ) ae.inQ,
lim Ry ve =Tk (U — (Tx(U)),) — To—k (U — Tt (U)) a.e.in Q and weakly in X.
n—oo
(3.20)

(3.19)

Next consider & ,, € C°([0,7T)) and & ,, € C°((0, T]) with values in [0, 1] such

that (§1,0,)r < 0 and (52.n,)r > 05 {§1.0, (1)} (resp. {§1.4,(1)}) converges to 1 for any
t €0, T) (resp. t € (0, T]); and moreover, for any a € C([0, T]; LI(Q)), {fQ a1,n),}

and {fQ a(&2,n,),} converge respectively to — [, a(-, T)dx and [ a(-, 0) dx. We set

© = Onnynaly ot = 1,0 (1 — Doy s [Tk (Un — (T (U)))]y,
— &, (1 — @y 5,)[Te—k (Up — Tk (Up)) ]ty
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‘We observe that
¢ — (1 =@ 5)Ryv¢=w(1,l2,n1,n2) innormin X and a.e.in Q. (3.21)

We can choose (¢, S) = (@n.ny.ny.0y 1r.6» Hm) as test functions in (2.7) for u,, where H,,
is defined at (2.14), with m > £ + 2k. We obtain

Al + Ay + A3+ As+ As = Ag + Ag,

with

A= /Q oY Hy(Un(TY) dx, Ay = — fQ (O Fp(utn,) dx.
Az =— fQ @ Hn(Uy), Ay= /Q Hy(Un)A(x, 1, Vuy,).Ve,

As = /Q OH!(UDAG. 1, Vity) VU, Ag = /Q Ho(Un)p din,
Ay = /Q H(Un)g d(pg — 1n0)-

Estimate of A4. This term allows us to study /. Indeed, {H,,(U,)} converges to 1 a.e.
in Q. From (3.19)—(3.21), we have

Ay =/ (1 — ®5,,.6,)A(x, 1, Vuy).VRy vy —/ Ry v eAx, t, Vu,).Vos, s,
0 0
+ o, l,n1,n2,m)

= / (1 — ®5,,.5,)A(x, 1, Vuy) . VRy v e + (1, la,ny,n2,m,n, v, £)
o

= 12 + / (1 - q)(S[,(Sz)A(x’ l? Vui‘l)'an,V.[ + a)(lls 121 nls n29 mv nv V, K)
{IUn|>k}

=L+ B+ By +w(, h,ny,ny,m,n, v, f),

where

By = / (1 = D@s.0) (XU~ (T (U)), | <l+k — XUyl —k|<t—k) A(X, £, Vuy).VUy,
{1Un|>k}
By = —/ (1 — @s,,6,) X|U— (T (U)), | <4k A (X, 2, Vuy) V(T (U)),,.
{lUn|>k}
Now {A(x, t, V(Te42k(Up) + hn)).V(Ti(U)), } converges to Fr12¢ V{(Ti(U)), weakly in
L'(Q). Moreover {X|u, >k X|Un—(Tx(U)), | <tk } CONVETZES 1O X|U/|=k X|U— (T (U)), | <t+k A-E.

in Q, and {{Tx(U)),} converges to T;(U) strongly in X. From Remark 3.2 we get

By = —/ (1 — D5, 6,) X|U >k XWU—(Ti(U)), | <t+k Fe2k - V(TR (U)), + o (n)
o

= —/ (I = @5, 5,) XU |5k XU =T ()| <tk Foa2k VT (U) + 0 (n, v) = w(n, v),
o
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since VT (U) xju|>« = 0. Moreover, we see that, for some ¢; = ¢1(p, A2),
1B, < clf (1= @p, 5)(Vunl? + VU, P + lal?”),
(6—2k<|U, |<t+2k}
Using (3.3) and (3.4) and applying (3.15) and (3.16) to 1 — ®;, s,, we obtain, for k > 0,
/ (IVun|? + [VUP) (1 = @5, 5,) = w(n, m, 81, 82). (3.22)
{m<|U, |<m+4k}

Thus, By = w(n, v, £, 81, 62), hence By + By = w(n, v, £, 81, 87). Therefore
Ay =Db+owl,b,n,n,mn,v, L, 381, 08). (3.23)

Estimate of As. For m > ¢ + 2k, since |¢| < 2¢, and (3.21) holds, we get, from the
dominated convergence theorem,

As = / (1 = @5, 5,) Ry v, Hy, (U A(x, 1, Vity). VU, + o(l1, b, 1, n2)
0

2k
= - (1 - q)Sl,tsz)A(x’ t, V”n)~VUn + C()(l], 125 ni, ”2);

m J{m<|U,|<2m}

here, the final equality follows from the relation, since m > ¢ + 2k,
/ 2k .
Rn,u’gHm(Un) = _meEWMSZm a.e.in Q. (3.24)
Next we let m — o0, by using (2.3), (2.4) for u,, with ¢ =1 — ®s, 5,. We obtain
As = —Zk/ (1 = @s,.6,) d((Pns — M)t + (s — Mns) ™) + @1, I, ny, na, m).
o

Then, from (3.3) and (3.4), we get A5 = w(ly, [, n1,ny, m,n, v, £, 81, 82).
Estimate of Ag. Again, from (3.21),

Ag = / Ho(Un)of n + / 0.V (Hn (Un)@)
0 0

= / Hy, (Uy)(1 — ¢8|,82)Rn,v,€fn +/ 8n-V(Hyu (Uy)(1 — ¢81,82)Rn,v,£)
o 0]

+w(l, lr,ny, ny).

Thus we can write Ag = D1 + D2 + D3 + D4 + w(ly, I, ny, n2), where

Dl :/ Hm(Un)(l - cDél,éz)Rn,v,Kfn,
0

D; =/ - (Dﬁl,éz)Rn,v,eHn/;(Un)gn'VUn,
0

D3 = / Hy (Uy)(1 — ®81,52)gn'VRn,v,Z, Dy = _/ Hm(Un)Rn,u‘Egn'VqD(S],(ST
0] ]
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Since {f,} converges to f weakly in Ll(Q), and (3.19)—(3.20) hold, we get, from Re-
mark 3.2,

D) = /;(1 — ¢51,82)(T€+k(U — (T (U)),) — Ty (U — Tk(U)))f + w(m, n)
=w(m,n,v, ).

We deduce from (2.10) that Dy = w(m). Next we consider D3. Note that H,, (U,) =
14+w(m), and (3.20) holds, and {g,,} converges to g strongly in (L? (Q))", and (T (U)),
converges to T (U) strongly in X. Then we obtain successively

D; = /Q(l — ®5,,5,)8-V (T (U — (T (U)),) — Te—i (U — Ti(U))) + w(m, n)

= / (1 — ®5,.5,)8.V(Ti3x (U = Te(U)) — T (U — Te(U))) + w(m, n, v)
o
=w(m,n,v,l).
Similarly we also get D4 = w(m, n, v, £). Thus A¢ = w(l1, lp, n1,n2,m,n, v, £, 81, 62).

Estimate of A;. We have

|A7| = ‘/ S (Un) (1 — @5, 5,) Ry v.e d(pn,0 — Mn0)| + @i, l2, n1, n2)
(@)

< 4k/ (1 — ®5,.5,) d(pn + np) + (1, 2, n1, n2).
(@)

From (3.3) and (3.4) we get A7 = w(ly, 2, n1,n3, m,n, v, £, 681, 82).
Estimate of A| + Ay + Az. We set
J@r) =T (r — Ti(r)), VreR,

and use the notations J and 7 of (2.11). From the definitions of &1.n,> &1,ny, We can see
that

A+ Ay = - fg J(Un(T)) Hyy (U (T)) dx — /Q Tk (o,n — 20) Hn (100,0) dx
+o(l, 12, n1, n2)
= - /Q JUn(T)HU(T)dx — /Q Totk(uon — zv)uo,n dx
+o(l1, la, n1, n2, m), (3.25)

where z, = (Tx(U)),(0). We can write Az = F| + F;, where

Fi=- /Q (60, (1 = B, ) [ Task (Un — (TeUWDI,), B (Un),

Py = /Q (Eny (1 = sy 5[ Te—k (U = Ti(Un))1_p,), Hiu (Un).
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Estimate of F,. We write F, = G| + G + G3 with
Gi=— /Q (©31.50),En ok Un — Te(Un)) ]y, Fon (U,
Gy = /Q (1 — ®5,.6,) Eny) [ Te—k U — Ti(Un))]_p, Hu(Un),
Gs = /Q Eny (1 = @5, ) (Te—k (Un — Te(Un))1_,), Hin (Un).
We find easily that
G =- /Q (®5,,5,), JU)Uyp + @ (ly, Iz, n1,n2, m),
Gy = /Q (1= Bs,.5)60y), d Un i (Uy) + (11 o)
= /gz J (o n)uondx +w(ly, b2, ny1, na, m).
Next consider G3. Setting b = H,, (U,), from (2.13) and (2.12) we obtain
b(-,1)

([T D) -1,)ib) (-, 1) = l-—;t(J(b)(n N —=Jb)(t =1)).

Hence

(Te—k(Un = Te(Ua)1_1) Hu(Un) = (LT (Hin(Un)]—1)e = (LT Un)]—p,)s

since 7 is constant in {|r| > m + £ + 2k}. Integrating by parts in G, we find
Gs > /Q 2.0, (1 — B, ) (LT Un)]_),
- /Q Emy (1 — By, ), [T U], + /Q 2.1, (T (Un)]_1,(T) dix
— - /Q E2m), (1 — B, )T (Un) + /Q £2.0, (3, 5,), T (Un)
+ /Q £2.1, (1) T (Un(TY) dx + (i1, 1)
= — /;2 J (o) dx + /Q (Qalﬁgz)tj(Un) + /Q JWU,(T))dx +w(ly, lh,ny, ny).

Therefore, since J(U,) — J(U)U, = —J(Uy,) and J (ug.n) = J (o n)tto.n — J (10,1,
we obtain

P> / T(wo) dx — / (@3,.5,), T (U) + / TWa(TY) dx + oy, Iy, 1. ny. m).
Q 0 Q
(3.26)
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Estimate of F;. Since m > £ + 2k, we have
Tosk(Un — (Te(U)),) = Toi (Hp (Up) — (T (Hu (U))),)

on supp H_m(U,,). Hence we can write F1 = L1 + Lo, with

Li=- /Q (10, (1 = B3, 5 Tyt Fn (U) — (T (U], ),
X (Hy(Up) = (Tk(Hp (U)),,)

Ly=— / (61, (1 = @5 ) Tok (Hyn (Un) = (T (Hn (U)))];,) Tk (Hin (U))),-
0
Integrating by parts we have, by definition of Landes-time approximation,

L= /Q E1m, (1 = @5, s) [Tk (H (Up) — (Te(Hn (U )], (Te (Hin (U))),),
+ /Q E1ny O Tei (Hin (Un) — (Te (H (U))),)];, ) Ti (H, (U))),,(0) dx
=v /Q (1 = @5, 5,) Terk (Un — (Ti(U)),)(Tk(U) — (Tr(U)),,)
+ /Q To+k(Uo.n — 2v)2vdx + w(ly, l2, ny, ny). (3.27)
We decompose L into L1 = K1 + K> + K3, where

Ki=-— /Q E1n), (1 = By, ) Tos (i (Uy) — (T U],

x (Hy(Uyp) — (Te(Hn (U))),)
Ky = /Q E1ny (Ps.5,) [ Tek (H (Un) = (Ti (Hi (U], (Hi (Un) = (Te (H (U))),)

K3 =— /Q Ein, (1 — D5, 5)) ([ Tk (H (Uy) — (Tk(H_m(U))>u)]11),
X (Hp(Up) = (Tk(Hp (U)),).
Then we check easily that
Ky = fQTHk(Un — (L @) Up — (T (W), (T) dx + (i, I, ny, na, m),

Ky = /Q (®5,.8), Te-txk (Un — (T (U)),))(Up — (T (U)),) + oy, 2, n1, na, m).
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Nextﬂnsider K3. Here we use the function 7; defined at (2.13). We set b = H,,(U,) —
(Tx (H,,(U))), . Hence from (2.12),
b(-, 1)
([ Tex D)D), 1) = T(Tz+k(b)(~, t4+17) — T (b)(-, 1))

1
< E(ﬁ+k(b)((-, t+1)) = Tesk B, 1) = (Tesx (D)
Thus

[Tk (Hp (Up) — <Tk(H_m(U))>v)][])t(H_m(Un) — (Tk(Hn (U)),)
< ([Tesx (Un = (T (U)o 11p)1 -
Then

K> - fQ 1.0, (1= Dy, ) (o (Un — (T )
- fQ E1n), (1= oy ) [T (U — (U
- /Qél,nl(q’al,sz),[ﬁ+k(Un — (T (W) )]y
+ /Q 1.0, O)[ T4 (Un — (Te@)),)], (0) dx
- /Q Toee(Un(T) — {TL(U)),(T)) dx — /Q (©5,.00), T 45 Un — (Te(U))y)

+/ Tetk(uon — zv) dx + w(ly, o, ni, na).
Q
We find by adding, since Ty (r) — To4x(r) = T 44 (r) forany r € R,

Ly = /Q7Z+k(uo,n —2zy)dx +/QTZ+k(Un(T) — (T (U)),(T)) dx

+ /Q (@8,.), T ek (Un — (Te))) + 0, b nyongm).  (3.28)

From (3.26)—(3.28), we deduce
Az > f J (o) dx +/ Toqk(uon —zv) dx +/ Tok(uon — 20)zvdx
Q Q Q
+/QT€+I¢(Un(T) - (Tk(U)>U(T))dx+/QJ(Un(T))dx
+ /Q (@5,.,), Tk (Un — (Te(U)),) — T(U))

+ /Qa — ®p,5) Tesk (Un — (T (U)))(Tk(U) — (T (U))) + o1, Lo, 1, na m).
(3.29)
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Next we add (3.25) and (3.29). Note that J (U, (T)) — J(Uy(T)U,(T) = — T (Uy(T)),
and also

Totk(on — z2v) — Toak Wo,n — 20) (@0 —u0,n) = =T ¢4k (00 — 20).

Then we find
AL+ Ar+As > /Q (T wo.m) — Teskluon — 22) dx
+ /Q (T4 Un(T) = (Ti(U)),(T)) = J(Un(T))) dx
+ [Q (@550, (T Uy — {TL(U)),) — T(Un)
+ v/Qu — @5,.5)Tek (U — (i) (Te(U) — (Ti(U)),) + (1, I, 1, na, m).
Notice that Ty (r —s) — J(r) > 0 for any r, s € R such that |s| < k; thus
fQ (T ek (Un(T) = (Ti(U)),(T)) — J(Un(T))) dx > 0.

Moreover {ug, ,} converges to ug in LY(Q) and {U,} converges to U in L (Q) from Propo-
sition 2.10. Thus we obtain

A1+ Ay + Az

> /Q (J (o) = Tkt — zv)) dx + /Q (@5,,8) (T ek (U = (Tk(U)),) — J(U))
+ V/Q(l = @5,,5) Tek (U — (T (U)), ) (Te (U) — (Tke(U)),) + (1, l2, ny, n2, m, n).
Moreover Ty (r — s)(Ti(r) — s) > 0 for any r, s € R such that |s| < k, hence
Al +Ar+ A3 > /Q (J (o) — Tex(uo — 20)) dx
+ fQ (@5,,8,), (T4 (U = (Tk(U)),) = J(U) + (., b, ny, ma, m, ).
As v — 00, {z,} converges to Ty (ug) a.e. in 2, thus we get
A+t Ay = [ T = Toastuo = Tituo) d

+/Q(¢81,82),(T€+k(U _ TUY) = TWUY) + oy, by, iy nay mn, v).
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Finally |T o (r — Ti(r)) — J(r)| < 2k|r|x(r=¢} for any r € R, thus
Al+Ay+ A3 > w(y, lp,ny,n2,m,n, v, £).

Combining all the estimates, we obtain I» < w(ly,ly,n1,ny, m,n,v, £, 81, 82), which
implies (3.8), since /> does not depend on Iy, [>, ny, na, m, £. O

Next we conclude the proof of Theorem 1.1:

Lemma 3.6. The function u is an R-solution of (1.1).

Proof. (i) First we show that u satisfies (2.2). Here we proceed as in [22]. Let ¢ € X N
L>®(Q) be such that ¢, € X' + L'(Q), ¢(-,T) = 0, and § € W>*(R) such that S’
has compact support on R and S(0) = 0. Let M > 0 be such that supp S’ C [-M, M].
Taking successively (¢, S) and ((pl/fai, S) as test functions in (2.2) applied to u,, we can
write

A1+Ar+A3+Ay = As+Ac+A7,  Ars++A3s++Ass+ = Ass++A6s5++A75+,

where

A= / o) S(uon) dx, Az = — / 0 SWUn)  Args = — / (V) S (U,
Q 0 0

Ay = / S UDAG, 1, Vi) Vo,  Ayss = / S (UDAG. 1, Vitn) V(o E),
0 0

Ay = / S U@AG. 1, Vitp) Uy, Agps = f S" U UEA, 1, Vi) VU,
[ 0

As = / S (Un)pdino,  Ag = f S'Ungdono, A1 =— / S (Un)p dn o,
o 0 [

Ass.+ =/‘QS/(Un)<ﬂ1ﬂ§Ed?;,\o, Ag,s,+ =/QS/(Un)<P1ﬁ5idPn,o,

Arss = — /Q S (Un) gV dnmo-

Since {ug ,} converges to up in LY(), and {S(U,)} converges to S(U) strongly in X and
weak-* in L*°(Q), we have, from (3.2),

Al = —/ng(O)S(uo)dx—i—a)(n), Ay = —/Qw,S(U)er(n), Ay 5y = @0, 9).

Moreover Ty (Uy,) converges to Ty (U), then Ty (U,) + h, converges to Tx(U) + h
strongly in X, thus

As = f S/ (U AG, 1, V(Tot (Un) + b))V
0
=f S'(U)AG. 1, V(Ty(U) + ).V + o)
0

= / S'(U)A(x,t, Vu).Vo + o(n);
0
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and

Ayq =/ S"(Un)@Ax, 1,V (Ty (Uy) + hy)).VTy(Un)
0
= / S" (WA (x,t, V(Ty (U) + h).VTy (U) + w(n)
0
=/ S"(W)pA(x,t, Vu).VU + w(n).
0
In the same way, since 1/f8i converges to 0 in X,
A3+ = / S'(U)A(x, ¢, Vu).V(g)gbgt) +whn) =wh,d),
0
Ags+ = / S”(U)(pwgtA(x, t,Vu).VU + w(n) = w(n, §).
0
Moreover {g,} strongly converges to g in (Lp/(Q))N , thus
As :/ S (Un)@ fa +/ S/(Un)gn-V§0+/ S"(Un)9gn-VTy(Uy)
0 0 0
:/ s/(U)<pf+/ S’(U)g.V<p+/ S"(U)pg . VTy(U) + w(n)
0 0 0
=/ S (e dig + o).
0

Now As 5.4+ = jQ S’(U)(,otpgt d);,\o +w(m) =whn,d). Then A s+ + A75+ = w(n, ).

From (3.2) we verify that A7 5 + = w(n, §) and Ag 5, = w(n, §). Moreover, from (3.6)

and (3.2),

|Ae — Ags,+] < /Q 1S" WUl (1 =¥ ) dpno < 1SIw2ee ) 19lloo.0 /Q (1 — 5" dpn
= w(n,d).

Similarly, |A7 — A75,—| < w(n, §). Hence Ag = w(n) and A7 = w(n). Therefore, we
finally obtain (2.2):

—/ (p(O)S(uo)dx—/ (p,S(U)—i-/ S'(UYA(x,t, Vu).Ve
Q 0 Qo
—i—/ S”(U)(pA()C,t,VM).VU:/ S'(Wyedmy.  (3.30)
0

o

(ii) Next, we prove (2.3) and (2.4). We pick ¢ € C2°(Q) and take (1 — V5 )¢, Hy)
as test functions in (3.30), with H,, as in (2.14). We can write Dijm+ Dy = D3 +
D4y + D5y, where
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D= — /Q (1 = ¥;)0), Fm ().

Do = /Q Ho(U)A(x. 1, V). V(1 — ¥)),

D3 /QHm(U)(l—wgwd/To, (3.31)

D4,m

1

—/ (I = ¥5)pAx, 1, Vu).VU,

m Jm<U<2m
1

Ds = ——/ (I =95 )pA(x,t, Vu).VU.
m J _o2m<U<—m

Taking the same test functions in (2.2) applied to u,, DY , +D5 , = D3, +Djy , +D5 .
where

Dy, =— /Q (1 = ¥5)9), Hu(Uy),
DI, = /Q Ho(Un) ACx, 1, Vi) V(1 = Y)p),

D}’l

3,m

/Q Ho(Un) (1 = )0 d (o + 0 — 1n.0), (332)
1
DZm = —/ (1-— Iﬂa_)gDA(x, t,Vu,).VU,,
’ m m<U<2m

1 _
Dy = ——/ (1 = y;)@A(x, 1, Vity). VU,
’ m J _om<U,<—m

In (3.32), we let m — o0. Since {ﬁm(Un)} converges to U, and {H,,(U,)} converges
to 1 a.e. in Q, and since {V H,,(U,)} converges to 0 weakly in (L”(Q))N , we obtain the
relation Di’ + DE’ = Dg + D" where

D! —fQ((l—wg>go>,Un, D'g:/QA(x,t, Vi)V (1 =)o),

Dy = [ a-viwdin,
0
D" = /Q(l - llfg_)(pd(pn,o —Mn,0) + /Q (1- %_ﬂp d((pn,s — 77n,s)+ — (Pn,s — NMnys)™)
= / (I = ¥5)ed(pn — ).
0

Clearly, D; ,, — D;’ = w(n,m) fori = 1,2,3. From Lemma 3.3 and (3.2)—(3.4), we
obtain Ds ,, = w(n, m, §), and

1 _

— Y5 9A(x,t, Vu).VU = w(n, m, §),

m J{im<U<2m)}
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thus,
1
Dy = — 9A(x,t, Vu).VU + w(n, m, §).

m Jim<U<2m}
Since | [, (1=¥;)@diml < ¢lloc,0 fo (1=¥5) dnn, it follows that [, (1= )e dny,
= w(n,m,8) from (3.4). Moreover |fQ Vs 9dpal < l¢llos,0 fQ Vs dpy, thus, from

(3.2), fQ (1 — vy )edp, = fQ pdpf +w(n,m,s). Then D" = fQ pduf +w(n,m,s).
Therefore by subtracting, we get successively

1
— pA(x,t, Vu).VU:/ pduf +omn,m,s),
m {m<U<2m} (%)

1
lim —f PA(x, t, w).Vsz pdut, (3.33)
m—=00 m Jim<U<2m} 0

which proves (2.3) when ¢ € C2°(Q). Next assume only ¢ € C*® (Q). Then
) 1
lim — pA(x,t,Vu).VU

Mm=>00 M J{m<U<2m}

1
= lim — oY A(x, t, Vu)VU

m—=00 M J{m<U<2m)

1
+ lim — (1 — Y HAx, t, Vu).VU

Mm=>00 M J{m<U<2m)

1
=/ oYy dut + lim — gp(l—w;')A(x,t,Vu).Vsz pdul + D,
0 0

m—=00 M Jim<U<2m}

where

n—oo m

1
D= / (1 =y Hdut + lim —/ o(1 =y H A, t, Vu).VU = w(8).
o {m<U<2m}

Therefore, (3.33) still holds for ¢ € COO(E), and we deduce (2.3) by density, and simi-
larly for (2.4). This completes the proof of Theorem 1.1. O

4. Approximation of measures

Corollary 1.2 is a direct consequence of Theorem 1.1 and the following approximation
property:

Proposition 4.1. Let pu = po + 115 € M (Q) with jg € M (Q) and py € M (Q).

() There is a decomposition o = (f, g, h) with f € L'(Q), g € (LP (Q)N, h € X
such that

Ifll1.0 +1Igllp.o + I1hlix + 1s(82) < 21(Q). 4.1



Stability properties for quasilinear parabolic equations with measure data 2133

(ii) Furthermore, there exist sequences of measures Lo, = (fu, 8ns hn), s.n Such that
fu> &n, hn € C2°(Q) strongly converge to f, g, h in L'(Q), (Lp/(Q))N, X respec-
tively; (s € (C;’O(Q))‘|r converges 1o [Lg; [y ‘= [o.n + MUs.n CONVeErges to [ in the
narrow topology, with |, |(Q) < u(Q); and

I fulli,0 + lIgnllp .0 + hnllx + psn(Q) < 2(Q). (4.2)
Proof. (1) Step 1: u has compact support in Q. By [15], we can find a decomposition
wo = (f, g, h) with f, g, h having compact support in Q. Let {¢, } be a sequence of molli-
fiers in RY*!. Then Ho.n = @n ¥ o € CX°(Q) for n large enough. We see that g ,(Q) =
1o(Q) and wo , admits the decomposition (o, = (fn, 8ns in) = (Pn * f, Pn* g, @ xh).
Since {f,}, {gn}, {h,} strongly converge to f, g, h in L'(Q), (Lp/(Q))N, X respectively,
for ng large enough we have

1 = faollo + 18 = &nollpr.0 + I8 = agll ooy r ey < 3H0(Q)-
LP((©.7): Wy’ ()

Then we obtain a decomposition yu = (f, g, fz) = (Uny + f — fng» & — &ny» I — hnyy) such
that

1f .0 + 1810 + Ihlx + 1£5(Q) < 31(Q). (4.3)
Step 2: General case. Let {0,} be a nonnegative, nondecreasing sequence in C2°(Q)
which converges to 1 a.e. in Q. Set fig = 6o and i, = (6, — 6,—1)u for n > 1. Since
fin = flon + fisn € Mo(Q) N M (Q) has compact support with jig,, € Mo(Q) and
fs.n € Ms(Q), by Step 1 we can find a decomposition fig, = (fn, &n» h,) such that

I fullt0 + 18l 0 + nllx + fsn () < 37in(Q).

Let f, = Y- f_k, Bn = Dt 8k hn =i I and fisn = ) j_g sk Clearly,
Ontto = (fy &n» An)s Onphs = s and {fn}, {8n}, {hn}, {its.n} converge strongly to
some f, g, h, s respectively in L'(Q), (L” (Q)Y, X, M, (), and

Il + 1Zallp.0 + IEnllx + fisn(Q) < 31(Q).

Therefore, uo = (f, g, h), and (4.1) holds. _
(ii) We take a sequence {m,} in N such that f, = @m, * [, &0 = Om, * 8y, hn =
POm,, * hy, DPm, * Hs.n € (CSO(Q))+3 _fQ Pm, * Hs.n dxdt = Hs.n(Q) and

_ B _ 1
/o — Fulli,0 + 180 — &ullpr.0 + lhn — hallx < mM(Q)-

Let Ho,n = Pm, * Ouo) = (fu, &ns hn), Hs.n = Pm, * lls,n and u, = Hon + Ms,n-
Therefore, { f,,}, {gn}, {hn} strongly converge to f, g, h in L' (Q), (LP/(Q))N, X respec-
tively, and (4.2) holds. Furthermore, {15}, {itn} converge to ug, u in the weak topology
of measures, and 45, (Q) = [, 0n dits, tn(Q) = [, 0n dp converge to py(Q), 1(Q),
thus {its n}, {itn} converge to pg, p in the narrow topology and |, [(Q) < pn(Q). ]

Observe that part (i) of Proposition 4.1 was used in [22], even if there was no explicit
proof. Moreover part (ii) is a key point for applications to the stability theorem. Note also
a very useful consequence for approximation by nondecreasing sequences:
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Proposition 4.2. Let u € MZ(Q) and ¢ > 0. Let {i1,,} be a nondecreasing sequence in

MZ(Q) converging to i in Mp(Q). Then there exist f,, f € Ll(Q), gn, 8 € (L”/(Q))N
and hy, h € X, pn.s, s € M (Q) such that

w=f—divg +h + pus, Mn = fn —divg, + (hy): + tns,

and {f,}, {gn}, {hn} strongly converge to f, g, h in L'(Q), (LI’,(Q))N, X respectively,
and {1, s} converges to s (strongly) in Mp(Q) and

I fallt.o + Ignllp,0 + Ianllx + pn,s(€2) < 2u(Q). 4.4

Proof. Since {u,} is nondecreasing, so are {i, 0}, {in,s}. Clearly, | — unllpm,0) =
e — mn0ll Myc0) + I1its — tnsll My (0)- Hence, {un s} converges to g and {i,,0} con-
verges to j1o (strongly) in M(Q). Set fZo,0 = wo,0, and fin,0 = fn,0 — Ua—1,0 for any
n > 1. By Proposition 4.1(i), we can find fn e LY(Q), g € (Lpl(Q))N and hi, € X such
that in,0 = (fu, &n, hn) and

1fallt. + 18l 0 + Nnllx < 2/in0(Q).

Let fu = Y 4o fv» Gn = Y j_o & and hy, = 3}_o hx. Clearly, 11,0 = (fu, gn, hn) and
the convergence properties hold with (4.4), since

I fallt.o + lgnllpr,0 + Anllx < 210(Q). o
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