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Abstract. We provide a new proof of a result of X. X. Chen and G. Tian [5]: for a polarized
extremal Kähler manifold, the minimum of the modified K-energy is attained at an extremal metric.
The proof uses an idea of C. Li [16] adapted to the extremal metrics using some weighted balanced
metrics.
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1. Introduction

Extremal metrics were introduced by Calabi [1]. Let (X, ω) be a Kähler manifold of
complex dimension n. An extremal metric is a critical point of the functional

g 7→

∫
X

(S(g))2
ωng

n!

defined on Kähler metrics g representing the Kähler class [ω], where S(g) is the scalar
curvature of the metric g. Constant scalar curvature Kähler metrics (CSCK for short), and
in particular Kähler–Einstein metrics, are extremal metrics. In this work we will focus
on the polarized case, assuming that there is an ample holomorphic line bundle L → X

with c1(L) = [ω]. In this special case, it has been conjectured by Yau in the Kähler–
Einstein case [29], and then in the CSCK case by the work of Tian [27] and Donaldson [9],
that the existence of a CSCK metric representing c1(L) should be equivalent to a GIT
stability of the pair (X,L). This conjecture has been extended to extremal metrics by
Székelyhidi [25] and Mabuchi [20].

Let (X,L) be a polarized Kähler manifold. Donaldson [8] has shown that if X admits
a CSCK metric in c1(L), and if Aut(X,L) is discrete, then the CSCK metric can be
approximated by a sequence of balanced metrics. This approximation result implies in
particular the unicity of a CSCK metric in its Kähler class. This method has been adapted
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by Mabuchi [19] to the extremal metric setting to prove unicity of an extremal metric up to
automorphisms in a polarized Kähler class. Then, Chen and Tian [5] proved unicity of an
extremal metric in its Kähler class up to automorphisms with no polarization assumption.

In a sequel to his work on balanced metrics [10], Donaldson shows that if Aut(X,L) is
discrete, a CSCK metric is an absolute minimum of the Mabuchi energy E, or K-energy,
introduced by Mabuchi [18]. The approximation result of Donaldson does not hold true
for CSCK metrics if the automorphism group is not discrete. There are counter-examples
of Ono, Yotsutani and the first author [21], or Della Vedova and Zuddas [6]. However,
Li [16] managed to show that even if Aut(X,L) is not discrete, a CSCK metric would
provide an absolute minimum of E.

By a theorem of Calabi [2], extremal metrics are invariant under a maximal con-
nected compact subgroup G of the reduced automorphism group Aut0(X) [11]. Any two
such compact groups are conjugate in Aut0(X) and the study of extremal metrics is done
modulo one such group. In the extremal setting, the modified K-energy EG (see Defi-
nition 2.5) plays the role of the K-energy for CSCK metrics. This functional has been
introduced independently by Guan [14], Simanca [24] and Chen and Tian [5] and is de-
fined on the space of G-invariant Kähler potentials with respect to a G-invariant metric.
In [5], Chen and Tian prove that extremal metrics minimize the modified K-energy up to
automorphisms of the manifold, with no polarization assumption. In this paper, we give
a different proof of this result in the polarized case. We generalize Li’s work to extremal
metrics, using some weighted balanced metrics, which are called σ -balanced metrics (see
Definition 2.6):

Theorem 1.1. Let (X,L) be a polarized Kähler manifold and G a maximal connected
compact subgroup of the reduced automorphism group Aut0(X). Then the minimum of
the modified K-energy EG is attained at each G-invariant extremal metric represent-
ing c1(L).

The proof relies on two observations. We will consider a sequence of Fubini–Study met-
rics ωk associated to Kodaira embeddings of X into higher and higher dimension pro-
jective spaces. The first observation is that if we define ωk to be the metric associated to
an extremal metric in c1(L) by the map Hilbk (see (2.3)), then ωk will be close to a σ -
balanced metric. The second point is that σ -balanced metrics, if they exist, are minimum
points of the functionals Zσk (see (2.8)) that converge to the modified Mabuchi functional.
Then a careful analysis of the convergence properties of the ωk and Zσk yields the proof
of our main result.

Remark 1.2. We mention that Guan [14] shows that extremal metrics are local minimum
points, assuming the existence of C2-geodesics in the space of Kähler potentials.

1.1. Plan of the paper

In Section 2, we review the definition of extremal metrics and recall quantization of CSCK
metrics. We then introduce σ -balanced metrics and the relevant functionals. Then in Sec-
tion 3, we prove the main theorem. In the Appendix, we collect some facts and proofs of
properties of σ -balanced metrics.
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2. Extremal metrics and quantization

2.1. Quantization

Let (X,L) be a polarized Kähler manifold of complex dimension n. Let H be the space
of smooth Kähler potentials with respect to a fixed Kähler form ω ∈ c1(L):

H = {φ ∈ C∞(X) | ωφ := ω +
√
−1 ∂∂φ > 0}.

For each k, we can consider the space Hk of Hermitian metrics on L⊗k . To each
h ∈ Hk one associates a metric −

√
−1 ∂∂ log(h) on X, identifying the spaces Hk to H.

Write ωh for the curvature of the Hermitian metric h on L. If we fix a base metric h0
in H1 such that ω = ωh0 , the correspondence reads

ωφ = ωe−φh0
= ω +

√
−1 ∂∂φ.

We denote by Bk the space of positive definite Hermitian forms on H 0(X,L⊗k). Let
Nk = dim(H 0(X,Lk)). The space Bk is identified with GLNk (C)/U(Nk) using the
base metric hk0. This symmetric space comes with a metric dk defined by the Rieman-
nian metric:

(H1, H2)h = Tr(H1H
−1
·H2H

−1).

There are maps
Hilbk : H→ Bk, FSk : Bk → H

defined by

∀h ∈ H, s ∈ H 0(X,L⊗k), ‖s‖2Hilbk(h) =

∫
X

|s|2
hk
dµh

and

∀H ∈ Bk, FSk(H) =
1
k

log
(

1
Nk

∑
α

|sα|
2
hk0

)
,

where {sα} is an orthonormal basis of H 0(X,L⊗k) with respect to H and dµh = ωnh/n!
is the volume form. Note that ωFSk(H) is the pull-back of the Fubini–Study metric on
CPNk−1 under the projective embedding induced by {sα}. A result of Tian [26] states that
any Kähler metric ωφ in c1(L) can be approximated by projective metrics, namely

lim
k→∞

FSk ◦ Hilbk(φ) = φ

where the convergence is uniform on C2(X,R) bounded subsets of H.
Metrics satisfying

FSk ◦ Hilbk(φ) = φ

are called balanced metrics, and the existence of such metrics is equivalent to the Chow
stability of (X,Lk) by the results of Zhang [31] and Wang [28]. Let Aut(X,L) be the
group of automorphisms of the pair (X,L). From the work of Donaldson [8], if X admits



2292 Yuji Sano, Carl Tipler

a CSCK metric in the Kähler class c1(L), and if Aut(X,L) is discrete, then there are
balanced metrics ωφk for k sufficiently large with

FSk ◦ Hilbk(φk) = φk,

and these metrics converge to the CSCK metric on C∞(X,R) bounded subsets of H.
In the proof of these results, the density of state function plays a central role. For

any φ ∈ H and k > 0, let {sα} be an orthonormal basis of H 0(X,Lk) with respect to
Hilbk(φ). The kth Bergman function of φ is defined to be

ρk(φ) =
∑
α

|sα|
2
hk
.

It is well known that a metric φ ∈ Hilbk(H) is balanced if and only if ρk(φ) is constant.
A key result in the study of balanced metrics is the following expansion:

Theorem 2.1 ([3], [23], [26], [30]). The following uniform expansion holds:

ρk(φ) = k
n
+ A1(φ)k

n−1
+ A2(φ)k

n−2
+ · · ·

where A1(φ) =
1
2S(φ) is half of the scalar curvature of the Kähler metric ωφ and for

any l and R ∈ N, there is a constant Cl,R such that∥∥∥ρk(φ)−∑
j≤R

Ajk
n−j

∥∥∥
Cl
≤ Cl,Rk

n−R.

As a corollary, if φk = FSk ◦ Hilbk(φ), then φk − φ = 1
k

log(ρk(φ))→ 0 as k →∞. In
particular we have the convergence of metrics,

ωφk = ωφ + O(k−2). (2.1)

By integration over X we also deduce∫
X

ρk(φ) dµφ = k
n

∫
X

dµφ + k
n−1 1

2

∫
X

S(φ) dµφ + O(kn−2)

where S(φ) is the scalar curvature of the metric gφ associated to the Kähler form ωφ .
Thus

Nk = k
n Vol(X)+ 1

2 Vol(X)Skn−1
+ O(kn−2), (2.2)

where

S = 2nπ
c1(L) ∪ [ω]

n−1

[ω]n

is the average of the scalar curvature and Vol(X) is the volume of (X, c1(L)).
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2.2. The relative setup

In order to find a canonical representative of a Kähler class, Calabi suggested [1] to look
for minima of the functional

Ca : H→ R, φ 7→

∫
X

(S(φ)− S)2 dµφ .

In fact, critical points for this functional are local minimum points, called extremal met-
rics. The associated Euler–Lagrange equation is equivalent to the fact that gradωφ (S(φ))
is a holomorphic vector field, and constant scalar curvature metrics, CSCK for short, are
extremal metrics.

By a theorem of Calabi [2], the connected component of the identity of the isometry
group of an extremal metric is a maximal compact connected subgroup of Aut0(X). As
all these maximal subgroups are conjugate, the quest for extremal metrics can be done
modulo a fixed group action. Note that Aut0(X) is isomorphic to Aut0(X,L), the con-
nected component of the identity of Aut(X,L). As we will see later, it will be useful to
consider a less restrictive setup, working modulo a circle action. We then define the rele-
vant functionals in a general situation, and we fix a compact subgroup G of Aut0(X,L)
and denote by g its Lie algebra.

2.2.1. Space of potentials. We extend the quantization tools to the extremal metrics
setup.

Replacing L by a sufficiently large tensor power if necessary, we can assume that
Aut0(X,L) acts on L (see e.g. [15]). Then the G-action on X induces a G-action on the
space H 0(X,Lk) of sections. This action in turn provides a G-action on the space Bk of
positive definite Hermitian forms on H 0(X,Lk), and we define BGk to be the subspace of
G-invariant elements. The space BGk is totally geodesic in Bk for the distance dk . Define
HG to be the space of G-invariant potentials with respect to a G-invariant base point ω.
We see from their definitions that we have the induced maps

Hilbk : HG
→ BGk , FSk : BGk → HG. (2.3)

2.2.2. Modified K-energy. For a fixed metric g, we say that a vector field V is a Hamil-
tonian vector field if there is a real valued function f such that

V = J∇gf or equivalently ω(V, ·) = −df.

For any φ ∈ HG, let PGφ be the space of normalized (i.e. mean value zero) Killing
potentials with respect to gφ whose corresponding Hamiltonian vector fields lie in g,
and let5Gφ be the orthogonal projection from L2(X,R) to PGφ given by the inner product

(f, g) 7→

∫
fg dµφ .

Note that G-invariant metrics satisfying S(φ)− S −5Gφ S(φ) = 0 are extremal.
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Definition 2.2 ([13, Section 4.13]). The reduced scalar curvature SG with respect to G
is defined by

SG(φ) = S(φ)− S −5Gφ S(φ).

The extremal vector field VG with respect to G is defined by the equation

VG = ∇g(5
G
φ S(φ))

for any φ in HG and does not depend on φ (see e.g. [13, Proposition 4.13.1]).

Remark 2.3. Note that by definition the extremal vector field is real-holomorphic and
lies in Jg where J is the almost complex structure of X, while JVG lies in g.

Remark 2.4. When G = {1} we recover the normalized scalar curvature. When G is
a maximal compact connected subgroup, or a maximal torus of Aut0(X), we find the
reduced scalar curvature and the usual extremal vector field initially defined by Futaki
and Mabuchi [12].

We are now able to define the relative Mabuchi K-energy, introduced by Guan [14], Chen
and Tian [5], and Simanca [24]:

Definition 2.5 ([13, Section 4.13]). The modified Mabuchi K-energy EG (relative to G)
is defined, up to a constant, as the primitive of the following one-form on HG:

φ 7→ −SG(φ) dµφ .

If φ ∈ HG, then the modified K-energy admits the expression

EG(φ) = −

∫
X

φ

(∫ 1

0
SG(tφ) dµtφ dt

)
.

As for CSCK metrics, G-invariant extremal metrics whose extremal vector field lie in Jg
are critical points of the relative Mabuchi energy.

2.2.3. The σ -balanced metrics. We present a generalization of balanced metrics adapted
to the relative setting of extremal metrics.

Definition 2.6. Let σk(t) be a one-parameter subgroup of Aut0(X,Lk). Let φ ∈ H. Then
φ is a kth σk-balanced metric if

ωkFSk◦Hilbk(φ) = σk(1)
∗ωkφ . (2.4)

Conjecturally, the σ -balanced metrics would provide a generalization of the notion of bal-
anced metric and would approximate an extremal Kähler metric. Indeed, in one direction,
assume that we are given σk-balanced metrics ωφk with σk ∈ Aut0(X,Lk) such that the
ωk converge to ω∞. Suppose that the vector fields k d

dt

∣∣
t=0σk(t) converge to a vector field

V∞ ∈ h0. A simple calculation implies that ω∞ must be extremal.
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We now define the functionals that play the role of finite-dimensional versions of the
modified Mabuchi K-energy on BGk and FSk(BGk ) respectively. First define Ik = log ◦ det
on BGk . This functional is defined up to an additive constant when we see BGk as a space
of positive Hermitian matrix once a suitable basis ofH 0(X,Lk) is fixed. It is shown in [4]
that Ik gives a quantization of the Aubin functional I . However, in the extremal case, we
need a modified version of the Aubin functional defined by the first author in order to fit
with the balanced metrics. Let V ∈ Lie(Aut0(X,L)) and denote by σ(t) the associated
one-parameter subgroup of Aut0(X,L). Define up to a constant for each φ ∈ H the
function ψσ,φ by

σ(1)∗ωφ = ωφ +
√
−1 ∂∂ψσ,φ . (2.5)

We will see how to suitably choose a normalization constant for these potentials. We then
consider a modified I functional defined up to a constant by its differential:

δIσ (φ)(δφ) =

∫
X

δφ(1+1φ)eψσ,φ dµφ

where 1φ = −g
ij
φ

∂
∂zi

∂
∂zj

is the complex Laplacian of gφ . We will also need to consider

the potentials φ as metrics on the tensor powers L⊗k , we thus consider the normalized
vector fields Vk = −V/(4k) and the associated one-parameter groups σk(t). We choose
the normalization ∫

X

exp (ψσk,φ) dµφ =
Nk

kn
. (2.6)

Then we define, for each k,

δIσk (φ)(δφ) =

∫
X

kδφ(1+1φ/k)eψσk,φkn dµφ .

Remark 2.7. If σ is the identity, we recover the usual Aubin functional.

Remark 2.8. This one-form integrates along paths in HG to a functional Iσk (φ) on HG,
which is independent of the path used from 0 to φ. The proof of this fact is given in the
Appendix (Proposition 4.1).

We define Lσk on HG and Zσk on BGk by

Lσk = Ik ◦ Hilbk + Iσk , (2.7)
Zσk = I

σ
k ◦ FSk + Ik − kn log(kn)Vol(X). (2.8)

We will show in the following that these functionals converge to the modified K-energy
in some sense. Note also that σk-balanced metrics are critical points for Lσk (Proposi-
tion 3.4), and if FSk(Hk) is a σk-balanced metric for some Hk ∈ BGk , then Hk is a mini-
mum point for Zσk (Proposition 3.9).
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3. Minima of the modified K-energy

The aim of this section is to prove Theorem 1.1. For the convenience of the reader we first
give a sketch of the proof.

We will choose a special group G corresponding to the Killing field JV ∗ associated
to the extremal vector field V ∗ of the extremal Kähler metric ω∗ = ωφ∗ . We know that the
metrics ω∗k = ω+

√
−1 ∂∂φ∗k with Kähler potentials φ∗k = FSk◦Hilbk(φ∗) converge to ω∗

([26], [3] and [30]). We begin our proof by showing that the functionals Lσk converge to
the modified Mabuchi functional on the space HG. Then we show that Zσk ◦Hilbk and Lσk
converge to the same functional, thus Zσk gives a quantization of the modified Mabuchi
functional and we reduce our problem to studying the minimum points of Zσk . However,
the metrics ω∗k constructed above are not in general critical points of Zσk , as there is no
reason for these metrics to be σk-balanced. We use instead an idea of Li [16] relying on
the Bergman kernel expansion to show that these metrics ω∗k are almost σk-balanced in
the sense that Hilbk(ω∗k ) is a minimum point of the functional Zσk up to an error which
goes to zero when k tends to infinity.

Let V ∗ be the extremal vector field of the class c1(L). In the polarized case, the
vector field JV ∗ generates a periodic action [12] by a one-parameter subgroup of au-
tomorphisms of (X,L). Fix G to be the one-parameter subgroup of Aut(X,L) associ-
ated to JV ∗. This group is isomorphic to S1 or trivial by the theorem of Futaki and
Mabuchi [12]. This will be a group of isometries for each of our metrics.

Remark 3.1. The modified K-energy EGm is defined to be the modified Mabuchi func-
tional with respect to a maximal compact connected subgroupGm of Aut(X,L). Assume
thatG is contained in such aGm. ThenEGm is equal toEG when restricted to the space of
Gm-invariant potentials. Indeed, the projection of anyGm-invariant scalar curvature to the
space of holomorphy potentials of Lie(Gm) gives a potential for the extremal vector field
by definition. Thus a minimum point of EG which is invariant under the Gm-action, such
as an extremal metric, will be a minimum point of the usual modified Mabuchi functional.

Let σk be the element of Aut(X,L) associated to the vector field−V ∗/(4k). We will also
need to define for each φ in HG the function θ(φ) to be the normalized (i.e. mean value
zero) holomorphy potential of the vector field V ∗ with respect to the metric ωφ :

gφ(V
∗, ·) = dθ(φ)

or
θ(φ) = 5Gφ (S(φ)).

3.1. The functionals Lσk converge to EG

In this section we prove the following fact:

Proposition 3.2. There are constants ck such that
2
kn

Lσk + ck → EG

as k→∞, where the convergence is uniform on Cl(X,R) bounded subsets of HG.
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Proof. We show that
2
kn
δLσk → δEG

uniformly on Cl(X,R) bounded subsets of HG. First we compute δLσk . Following [10],
we have

δ(Ik ◦ Hilbk)φ(δφ) = −
∫
X

δφ(1φ + k)ρk(φ) dµφ

and by definition

δ(Iσk )φ(δφ) = k
n

∫
X

δφ(k +1φ)e
ψk(φ) dµφ

where we set ψk(·) = ψσk,·. Then

δ(Lσk )φ(δφ) = −

∫
X

δφ(1φ + k)(ρk(φ)− k
neψk(φ)) dµφ . (3.1)

We need an expansion for the potential ψk:

ψk(φ) =
θ(φ)+ S

2k
+ O0(k

−1),

whose proof is postponed to Lemma 3.3. Then by the expansions of ψk(φ) and ρk(φ),

(1φ + k)(ρk(φ)− k
neψk(φ)) = kn(1φ + k)

·

(
1+

S(φ)

2k
+ O(k−2)− 1−

θ(φ)+ S

2k
+ O0(k

−1)

)
= kn

(
S(φ)− S − θ(φ)

2
+ O(k−1)

)
,

and
δ(Lσk )φ

kn
→

1
2
δEGφ .

As the expansions of ψk(φ) and ρk(φ) are uniform on bounded subsets of Cl(X,R), the
result follows. ut

The following lemma will be useful:

Lemma 3.3. The following expansion holds uniformly in Cl(X,R) for l � 1:

ψk(φ) =
θ(φ)+ S

2k
+ O0(k

−1) (3.2)

where O0(k
−1) denotes k−1 times a function ε(k) on X with ε(k) → 0 in Cl(X,R) as

k→ 0.
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Proof. By definition

σk(1)∗ω(φ)− ω(φ) =
√
−1 ∂∂ψk(φ),

so

σ1(1/k)∗ω(φ)− ω(φ) =
√
−1 ∂∂ψk(φ),

where σ1(1/k) is equal to exp
(
−

1
4kV

∗
)
. Dividing by 1/k, and letting k go to infinity, we

get

L
−

1
4V
∗ω(φ) =

√
−1 ∂∂ lim

k→∞
kψk(φ).

Then by Cartan’s formula,

L
−

1
4V
∗ω(φ) = −

1
4dωφ(V

∗, ·) = − 1
4dgφ(V

∗, J ·),

and by definition of holomorphy potentials,

L
−

1
4V
∗ω(φ) = −

1
4dd

cθ(φ) = 1
2

√
−1 ∂∂θ(φ),

thus

lim
k→∞

kψk(φ) =
θ(φ)+ c

2

for some constant c. By the normalization (2.6) of the function ψk(φ) we deduce

Nk

kn
=

∫
X

exp (ψσk,φ) dµφ =
∫
X

(
1+

θ(φ)+ c

2k
+ O(k−2)

)
dµφ .

Recall that we choose θ(φ) normalized to have mean value zero. Using formula (2.2) to
expand Nk = dim(H 0(X,Lk)), we conclude that c = S. ut

From the above computations we also deduce the following:

Proposition 3.4. Let φ ∈ H be a kth σk-balanced metric. Then φ is a critical point of Lσk .

Proof. By equation (2.4) of σk-balanced metrics and by definition (2.5) of ψk(φ) we
deduce

ρk(φ) = C exp(ψk(φ))

for some constant C. Integrating over X and using the expansions (2.2) and (3.2) we
deduce

ρk(φ) = k
n exp(ψk(φ)).

The result follows from the computation of the differential of Lσk (equation (3.1)). ut

A direct computation implies the similar result for Zσk (see Corollary 3.9).
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3.2. Comparison of Zσk and Lσk

The aim of this section is to show that Zσk ◦Hilbk and Lσk converge to the same functional.
We will need the following two lemmas:

Lemma 3.5. The second derivative of Iσk along a path φs ∈ HG is equal to

d2

ds2 I
σ
k (φs) = k

n

∫
X

(
φ′′ −

1
2
|dφ′|2

)
(k +1φs )e

ψk(φs ) dµφs .

Proof. The proof of this result is given in the Appendix, Section 4.2. ut

Lemma 3.6. Let φ ∈ HG. Then there exists an integer k0, depending on φ, such that for
each k ≥ k0, the functional Iσk is concave along the path

[0, 1] → HG, s 7→ φ +
s

k
log(ρk(φ)).

Proof. By Lemma 3.5, the second derivative of Iσk along the path φk(s) = φ +
s
k

log(ρk(φ)) is

kn
∫
X

(
φ′′k −

1
2
|dφ′k|

2
)
(k +1φk(s))e

ψk(φk(s)) dµφk(s).

As φ′k =
1
k

log(ρk(φ)) and φ′′k = 0, this expression simplifies:

d2

ds2 I
σ
k (φk(s)) = −k

n

∫
X

1
2

∣∣∣∣d 1
k

log(ρk(φ))
∣∣∣∣2(k +1φk(s))eψk(φk(s)) dµφk(s).

We compute the leading term in the above expression as k goes to infinity. To simplify
notation, let Tk(φ) = FSk ◦ Hilbk(φ). Note that ωφ1 = ωTk(φ). From (2.1),

ωφ0 − ωφ1 = O(k−2).

Thus we have the estimates

1φk(s) = 1φ +O(k−1), dµφk(s) = dµφ +O(k−1), ψk(φk(s)) = ψk(φ)+O(k−1).

Hence

d2

ds2 I
σ
k (φk(s)) = −k

n

∫
X

1
2

∣∣∣∣d 1
k

log(ρk(φ))
∣∣∣∣2(k +1φ)eψk(φ) dµφ + O(kn−4).

From this we deduce that the leading term as k tends to infinity is

−
kn−3

8

∫
X

|dS(φ)|2 dµφ < 0,

where once again we used the expansions of the Bergman kernel and of ψk(φ) from
Lemma 3.3. ut

Now we can prove the main result of this section:
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Proposition 3.7. For each potential φ ∈ HG, we have

lim
k→∞

k−n(Lσk (φ)− Z
σ
k ◦ Hilbk(φ)) = 0,

Proof. By definition,

k−n(Lσk (φ)− Z
σ
k ◦ Hilbk(φ)) = −k−n

(
Iσk (Tk(φ))− I

σ
k (φ)− k

n log(kn)Vol(X)
)

where Tk = FSk ◦ Hilbk . From Lemma 3.6, for k large enough, the functional Iσk is
concave along the path

s 7→ φ +
s

k
log(ρk(φ))

going from φ to Tk(φ) in HG. Thus

(δIσk )φ

(
1
k

log ρk(φ)
)
≥ Iσk (Tk(φ))− I

σ
k (φ) ≥ (δI

σ
k )Tk(φ)

(
1
k

log ρk(φ)
)
. (3.3)

We deduce from the definitions that

k−n(Lσk (φ)−Z
σ
k ◦Hilbk(φ)) ≥ −k−n(δIσk )φ

(
1
k

log ρk(φ)
)
+ log(kn)Vol(X), (3.4)

−k−n(δIσk )Tk(φ)

(
1
k

log ρk(φ)
)
+ log(kn)Vol(X)

≥ k−n(Lσk (φ)− Z
σ
k ◦ Hilbk(φ)), (3.5)

and it remains to show that the right hand side of (3.4) and the left hand side of (3.5) tend
to zero. First,

k−n(δIσk )φ

(
1
k

log ρk(φ)
)
− log(kn)Vol(X)

=

∫
X

(
1
k

log(ρk(φ))
)
(k +1φ)e

ψk(φ) dµφ − Vol(X) log(kn)

=

∫
X

(
log(kn)+

S(φ)

2k
+ O(k−2)

)(
1+

1φ

k

)(
1+

θ(φ)+ S

2k
+ O0(k

−1)

)
dµφ

− Vol(X) log(kn)

by the expansion of the Bergman kernel and Lemma 3.3. It follows that

k−n(δIσk )φ

(
1
k

log ρk(φ)
)
− log(kn)Vol(X)

= Vol(X) log(kn)+ O(k−1)− Vol(X) log(kn)→ 0 as k→∞.

Note that we did not make use of the fact that the derivative δIσk was evaluated at φ,
so the above argument extends to the last term of the inequality (3.5), evaluated at Tk(φ),
which thus tends to zero as well. ut



Extremal metrics and lower bound of the modified K-energy 2301

3.3. The metrics Hilbk(ω∗) are almost σ -balanced

Lemma 3.8. The functional Zσk is convex along geodesics in BGk .

Proof. We follow [10, proof of Proposition 1] (also [22, Lemma 3.1]). Here we abbre-
viate the subscript k. Take a geodesic {H(s)}s∈R in BG. By choosing an appropriate
orthonormal basis {τα} of H(0), one can represent H(s) by

H(s) = diag(e2λαs), λα ∈ R,
∑
α

λα = 0, (3.6)

with respect to the basis {τα}. We denote the associated one-parameter subgroup of
SL(H 0(M,L)) by %(s). We define the Kähler potential φs = FS(H(s)) by

φs = log
(∑
α

|%(s) · τα|
2/
∑
β

|τβ |
2
)
.

First of all, we will show the first variation of Zσ along φs . From (4.3), we have

dZσ

ds
(s) =

∫
X

φ′s(1+1FS(H(s)))e
ψs dµFS(H(s))

=

∫
X

(
φ′se

ψs +
d

ds
eψs
)
dµFS(H(s))

=

∫
X

{∑
α 2λα|%(s) · τα|2∑
β |%(s) · τβ |

2

∑
γ |%(s) · σ

∗τγ |
2∑

β |τβ |
2

+
d

ds

(∑
γ |%(s) · σ

∗τγ |
2∑

β |%(s) · τβ |
2

)}
dµFS(H(s))

=

∫
X

∑
α 2̃λα|%(s) · σ ∗τα|2∑

β |%(s) · τβ |
2 dµFS(H(s)), (3.7)

where ψs denotes ψσ,FS(H(s)). In (3.7), H(s) is represented by

H(s) = diag(e2̃λαs), λα ∈ R,
∑
α

λ̃α = 0,

with respect to the basis {σ ∗τα}. Let

ϕ′s :=

∑
α 2̃λα|%(s) · (σ ∗τα)|2∑

β |%(s) · τβ |
2 .

Then
d2Zσ

ds2 (0) =
∫
X

{ϕ′′0 − (∇ϕ
′

0,∇φ
′

0)} dµFS(H(0)). (3.8)

Here we denote the connection of type (1, 0) by∇. Following [10], it is sufficient to prove
that the integrand of (3.8) is equal to∑

α

|(∇φ′0,∇(σ
∗τα))− (2̃λα − φ′0)(σ

∗τα)|
2
FS(H(0)) (3.9)
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pointwise on X. Expanding out (3.9) yields∑
α

|(∇φ′0,∇(σ
∗τα))|

2
FS(H(0)) − 2

∑
α

(2̃λα − φ′0)((∇φ
′

0,∇(σ
∗τα)), σ

∗τα)

+

∑
α

(2̃λα − φ′0)
2
|σ ∗τα|

2
FS(H(0)). (3.10)

The second term of (3.10) is equal to

− 2
∑
α

(2̃λα − φ′0)(∇φ
′

0, (σ
∗τα,∇(σ

∗τα)))

= −2
∑
α

(2̃λα − φ′0)(∇φ
′

0,∇(|σ
∗τα|

2
FS(H(0))))

= −2(∇φ′0,∇ϕ
′

0)+ 2φ′0(∇φ
′

0,∇e
ψ0)

= −2(∇φ′0,∇ϕ
′

0)+ 2φ′0ψ
′

0e
ψ0

= −2(∇φ′0,∇ϕ
′

0)+ 2φ′0(ϕ
′

0 − φ
′

0e
ψ0). (3.11)

Above, we use (4.3) of the Appendix and

ψ ′0e
ψ0 =

d

ds

∣∣∣∣
s=0
eψs = ϕ′0 − φ

′

0e
ψ0 .

The third term of (3.10) is equal to∑
α

4̃λ2
α|σ
∗τα|

2
FS(H(0)) − 2ϕ′0φ

′

0 + (φ
′

0)
2eψ0 . (3.12)

Substituting (3.11) and (3.12) into (3.10) shows that (3.10) is equal to∑
α

|(∇φ′0,∇(σ
∗τα))|

2
FS(H(0)) − 2(∇φ′0,∇ϕ

′

0)− (φ
′

0)
2eψ0 +

∑
α

4̃λ2
α|σ
∗τα|

2
FS(H(0)).

Since
ϕ′′0 =

∑
α

4̃λ2
α|σ
∗τα|

2
FS(H(0)) − ϕ

′

0φ
′

0,

it remains to prove that∑
α

|(∇φ′0,∇(σ
∗τα))|

2
FS(H(0)) = (∇φ

′

0,∇ϕ
′

0)+ (φ
′

0)
2eψ0 − ϕ′0φ

′

0. (3.13)

In the computation in (3.11), we found

−(φ′0)
2eψ0 + ϕ′0φ

′

0 = (∇φ
′

0, φ
′

0∇e
ψ0).

Hence, (3.13) is equivalent to∑
α

|(∇φ′0,∇(σ
∗τα))|

2
FS(H(0)) = (∇ϕ

′

0,∇φ
′

0)− (∇φ
′

0, φ
′

0∇e
ψ0). (3.14)
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This follows from the definition of the restriction ωFS(H(0)) of the Fubini–Study metric.
To see (3.14), recall that the Fubini–Study metric is given by∑

i dz
i
∧ dzi

1+
∑
|zk|2

−
(
∑
zidzi) ∧ (

∑
zjdzj )

1+
∑
|zk|2

in the coordinate chart U0 = {(1, z2, . . . , zN ) ∈ CPN−1
}. Then

|(∇φ′0,∇τα)|
2
FS(H(0)) =

(λ2
α + (φ

′

0)
2
− 2φ′0λα)|τα|

2∑
β |τβ |

2 , (3.15)

(∇φ′0,∇|τα|
2
FS(H(0))) =

(λα − φ
′

0)|τα|
2∑

β |τβ |
2 , (3.16)

(∇φ′0, φ
′

0∇|τα|
2
FS(H(0))) =

φ′0λα|τα|
2
− (φ′0)

2
|τα|

2∑
β |τβ |

2 . (3.17)

We get (3.14) by substituting (3.15) into the left hand side of (3.14), and (3.16) and (3.17)
into the right hand side of (3.14). ut

The following corollary is fundamental for understanding the idea of this paper, although
we do not use as it stands in the proof of the main theorem.

Corollary 3.9. If FSk(Hk) is a σk-balanced metric for some Hk ∈ BGk , then Hk is a
minimum point of Zσk on BGk .

Proof. Since Hk is a σk-balanced metric, {c(σ ∗τα)}α is an orthonormal basis with re-
spect to T (Hk) for some c > 0. From (3.7), Hk is a critical point of Zσk on BGk . From
Lemma 3.8, this is an absolute minimum point of Zσk . ut

Proposition 3.10. Let φ ∈ HG. Then there are functions εφ(k) such that

k−n(Zσk ◦ Hilbk(φ)) ≥ k−n(Zσk ◦ Hilbk(φ∗))+ εφ(k)

and limk→∞ εφ(k) = 0 in Cl(X,R) for l � 1.

Proof. We follow Li’s proof of [16, Lemma 3.3], adapted to our more general setting.
Below, C will stand for a constant depending on φ, φ∗ and the volume of the polarized
manifold (X,L), but independent of k. The precise value of this constant might change
but it will not be important for us.

Set H ∗k = Hilbk(φ∗) and Hk = Hilbk(φ). We choose an orthonormal basis {τ (k)α }
of H ∗k in which H ∗k is represented by the identity and

Hk = diag(e2λ(k)α ).

Then evaluating Hk on the orthonormal vectors eλ
(k)
α τ

(k)
α gives

e−2λ(k)α =

∫
X

|τ (k)α |
2
hk0
dµ0. (3.18)
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Comparing the metrics we have the existence of C > 0 such that

C−khkφ∗ ≤ h
k
0 ≤ C

khkφ∗ ,

from which we deduce with (3.18) the following estimate:

|λ(k)α | ≤ Ck. (3.19)

Consider the one-parameter subgroup

s 7→ Hk(s) = diag(e2sλ(k)α )

of BGk . It is a geodesic that goes from H ∗k to Hk in BGk , thus by Lemma 3.8,

k−n(Zσk (Hk)− Z
σ
k (H

∗

k )) ≥ k
−nf ′k(0) with fk(s) = Z

σ
k (Hk(s)).

We need to show that limk→∞ k
−nf ′k(0) = 0. By a straightforward computation,

k−nf ′k(0) = 2k−n
∑
α

λ(k)α −
2
k

∫
X

ρλk

ρk
(k +1)eψk dµ

where ρλk =
∑
α λ

(k)
α |τ

(k)
α |

2
hk0

and the quantities ρk , 1, ψk and dµ are computed with

respect to the extremal metric ωφ∗ . Then

2−1k−nf ′k(0) = k
−n
∑
α

λ(k)α −

∫
X

ρλk

ρk
eψk dµ−

1
k

∫
X

ρλk

ρk
1eψk dµ. (3.20)

We first show that the last term in of (3.20) tends to zero. First note that |ρλk /ρk| ≤ Ck
from (3.19), thus ∣∣∣∣1k

∫
X

ρλk

ρk
1eψk dµ

∣∣∣∣ ≤ C ∫
X

|1eψk | dµ,

and using Lemma 3.3 we deduce that this term goes to zero as k tends to infinity.
Then consider the second term on the right hand side of (3.20). Using the expansions

of ψk and ρk we deduce that

ρ−1
k eψk = k−n

(
1−

S

2k
+ O(k−2)

)(
1+

θ + S

2k
+ O0(k

−1)

)
.

Here we use our crucial assumption, that ωφ∗ is extremal, so S = θ + S and thus

ρ−1
k eψk = k−n(1+ O0(k

−1)).

Then ∫
X

ρλk

ρk
eψk dµ =

∫
X

ρλk

kn
(1+ O0(k

−1)) dµ.
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As ∫
X

ρλk

kn
dµ = k−n

∑
α

λ(k)α ,

the only remaining term to control at infinity in k−nf ′k(0) is∫
X

ρλk

kn
O0(k

−1) dµ.

Using (3.19), we obtain ∣∣∣∣ρλkkn O0(k
−1)

∣∣∣∣ ≤ CkNkk−n|O0(k
−1)|.

By (2.2), Nkk−n is bounded and as O0(k
−1) = k−1ε(k) with some ε(k) → 0, we con-

clude that

lim
k→∞

∫
X

ρλk

kn
O0(k

−1) dµ = 0 and lim
k→∞

k−nf ′k(0) = 0. ut

3.4. Conclusion: proof of Theorem 1.1

We show the following stronger theorem, which implies Theorem 1.1 by Remark 3.1:

Theorem 3.11. Let (X,L) be a polarized manifold that carries extremal metrics repre-
senting c1(L). The modified Mabuchi functional with respect to the G-action induced by
the extremal vector field of c1(L) attains its minimum at extremal metrics.

Proof. Let φ ∈ HG and let φ∗ be the potential of an extremal metric. Since

Lσk (φ) = Z
σ
k ◦ Hilbk(φ)+ (Lσk (φ)− Z

σ
k ◦ Hilbk(φ)),

by Proposition 3.10 we have

Lσk (φ) ≥ Z
σ
k ◦ Hilbk(φ∗)+ knεφ(k)+ (Lσk (φ)− Z

σ
k ◦ Hilbk(φ)).

Then
Lσk (φ) ≥ Lσk (φ

∗)+ (Zσk ◦ Hilbk(φ∗)− Lσk (φ
∗))

+ knεφ(k)+ (L
σ
k (φ)− Z

σ
k ◦ Hilbk(φ)). (3.21)

To conclude, from Proposition 3.7,

k−n(Zσk ◦ Hilbk(φ∗)− Lσk (φ
∗))→ 0 and k−n(Zσk ◦ Hilbk(φ)− Lσk (φ))→ 0

as k tends to infinity. So does εφ(k) by construction (see Proposition 3.10). Thus the result
follows from Proposition 3.2, after multiplying by k−n and letting k→∞ in (3.21). ut
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4. Appendix

We give the proof of the results concerning σ -balanced metrics. We denote by (·, ·) any
of the following Hermitian pairings:

T ∗X × (T ∗X × L)→ L, L× (T ∗X × L)→ T ∗X,

L× L→ C, T ∗X × T ∗X→ C,

obtained from φ ∈ H and ωφ . We denote the connection of type (1, 0) on the holomorphic
tangent bundle T ′X by ∇.

4.1. The definition of Iσ

Proposition 4.1. Iσ (φ) is independent of the choice of a path from 0 to φ.

Proof. Since Iσ (φ) satisfies the cocycle property

Iσ (φ1, φ3) = I
σ (φ1, φ2)+ I

σ (φ2, φ3)

by definition, it is sufficient to prove that ∂2

∂s∂t
Iσ (φ0,0, φt,s) is symmetric with respect to s

and t for any family of paths

{8 = φt,s | (s, t) ∈ [0, 1] × [0, 1], φ0,s = φ1,s ≡ 0}

in H. Indeed,

∂2

∂s∂t
Iσ (φ0,0, φt,s) =

∂

∂s

∫
X

(
(1+18)

∂8

∂t

)
eψσ,8 dµ8

=

∫
X

((
∂

∂s
18

)
∂8

∂t

)
eψσ,8 dµ8 +

∫
X

(
(1+18)

∂28

∂s∂t

)
eψσ,8 dµ8

+

∫
X

(
(1+18)

∂8

∂t

)(
∂eψσ,8

∂s

)
dµ8−

∫
X

(
(1+18)

∂8

∂t

)
eψσ,8

(
18

∂8

∂s

)
dµ8. (4.1)

The first term on the right hand side of (4.1) is∫
X

(
∇∇

∂8

∂t
,∇∇

∂8

∂s

)
eψσ,8 dµ8,

which is symmetric. The second term is obviously symmetric. The third term is∫
X

∂8

∂t

(
∇ψσ,8,∇

∂8

∂s

)
eψσ,8 dµ8+

∫
X

(
18

∂8

∂t

)(
∇ψσ,8,∇

∂8

∂s

)
eψσ,8 dµ8. (4.2)

Here we use the following equality.

Lemma 4.2.
∂ψσ,8

∂s
=

(
∇ψσ,8,∇

∂8

∂s

)
. (4.3)
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Proof. Let v be the gradient vector field of ∂8
∂s

, i.e.,

v = gradω8

(
∂8

∂s

)
=

∑
i,j

gij̄
∂

∂z̄j

(
∂8

∂s

)
∂

∂zi
. (4.4)

We have

∂

∂s
(σ (1)∗ω8 − ω8) = Lv(σ (1)∗ω8 − ω8) =

√
−1

2π
dιv∂∂̄ψσ,8

=

√
−1

2π
∂∂̄

(
∇ψσ,8,∇

∂8

∂s

)
where Lv is the Lie derivative along v. Now, there exists some constant c such that

∂ψσ,8

∂s
=

(
∇ψσ,8,∇

∂8

∂s

)
+ c. (4.5)

Recall that
∫
X
ψσ,8 dµ8 is constant with respect to s, t by normalization of ψσ,8. Since

0 =
∂

∂s

∫
X

ψσ,8 dµ8 =

∫
X

(
∂ψσ,8

∂s
−

(
∇ψσ,8,∇

∂8

∂s

))
dµ8,

the constant c in (4.5) is zero. Hence, (4.3) is proved. ut

The fourth term on the right hand side of (4.1) is

−

∫
X

eψσ,8
∂8

∂t
18

∂8

∂s
dµ8 −

∫
X

eψσ,818
∂8

∂t
18

∂8

∂s
dµ8. (4.6)

The sum of the first term in (4.2) and the first term in (4.6) is

−

∫
X

∂8

∂t

(
18

∂8

∂s
+

(
∇ψσ,8,∇

∂8

∂s

))
eψσ,8 dµ8.

This is symmetric, because the operator 18 + (∇ψσ,8,∇) is self-adjoint with respect to
the weighted volume form eψσ,8 dµ8. The remainder is the second term in (4.2), equal to

−

∫
X

(
∇∇ψσ,8,∇

∂8

∂t
∇
∂8

∂s

)
eψσ,8 dµ8

−

∫
X

(
∇
∂8

∂t
,∇ψσ,8

)(
∇
∂8

∂s
,∇ψσ,8

)
eψσ,8 dµ8,

which is symmetric. ut
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4.2. Second derivative of Iσk

Proof of Lemma 3.5. We have

d2

ds2 I
σ
k (φs) = k

n d

ds

∫
X

(k +1φ)φ
′eψσ,φ dµφ

= kn
∫
X

(∇∇φ′,∇∇φ′)eψσ,φ dµφ + k
n

∫
X

(k +1φ)φ
′′eψσ,φ dµφ

+ kn
∫
X

((k +1φ)φ
′)ψ ′σ,φe

ψσ,φ dµφ − k
n

∫
X

((k +1φ)φ
′)eψσ,φ1φφ

′ dµφ . (4.7)

From (4.3), the third term on the right hand side of (4.7) is equal to

kn
∫
X

((k +1φ)φ
′)(∇ψσ,φ,∇φ

′)eψσ,φ dµφ . (4.8)

By integration by parts, the fourth term in (4.7) is equal to

− kn+1
∫
X

|∇φ′|2eψσ,φ dµφ − k
n+1

∫
X

φ′eψσ,φ (∇ψσ,φ,∇φ
′) dµφ

− kn
∫
X

(∇1φφ
′,∇φ′)eψσ,φ dµφ − k

n

∫
X

(1φφ
′)(∇ψσ,φ,∇φ

′)eψσ,φ dµφ . (4.9)

Note that the sum of the second and fourth terms in (4.9) cancels (4.8). The third term in
(4.9) is

− kn
∫
X

(∇∇φ′,∇∇φ′)eψσ,φ dµφ − k
n

∫
X

(∇∇φ′,∇ψσ,φ∇φ
′)eψσ,φ dµφ

= −kn
∫
X

(∇∇φ′,∇∇φ′)eψσ,φ dµφ − k
n

∫
X

|∇φ′|21φψσ,φe
ψσ,φ dµφ

+ kn
∫
X

|∇φ′|2|∇ψσ,φ |
2eψσ,φ dµφ

= −kn
∫
X

(∇∇φ′,∇∇φ′)eψσ,φ dµφ − k
n

∫
X

|∇φ′|21φe
ψσ,φ dµφ . (4.10)

Substituting (4.8)–(4.10) into (4.7), we get the desired conclusion. ut
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[17] Lichnerowicz, A.: Géométrie des groupes de transformations. Travaux et recherches math. 3,
Dunod (1958) Zbl 0096.16001 MR 0124009

[18] Mabuchi, T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. 38, 575–593
(1986) Zbl 0619.53040 MR 0867064

[19] Mabuchi, T.: Uniqueness of extremal Kähler metrics for an integral Kähler class. Int. J. Math.
15, 531–546 (2004) Zbl 1058.32017 MR 2078878

[20] Mabuchi, T.: Relative stability and extremal metrics. J. Math. Soc. Japan 66, 535–563 (2014)
Zbl 1301.53072 MR 3201825

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0487.53057&format=complete
http://www.ams.org/mathscinet-getitem?mr=0645743
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0574.58006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0780039
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0941.32002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1699887
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1252.53084&format=complete
http://www.ams.org/mathscinet-getitem?mr=3220438
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1182.32009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2434691
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.32033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2958945
http://www.ams.org/mathscinet-getitem?mr=1622931
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1052.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1916953
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1074.53059&format=complete
http://www.ams.org/mathscinet-getitem?mr=1988506
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1159.32012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2161248
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0367.32004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0481142
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0831.53042&format=complete
http://www.ams.org/mathscinet-getitem?mr=1314584
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0968.53050&format=complete
http://www.ams.org/mathscinet-getitem?mr=1739213
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0246.53031&format=complete
http://www.ams.org/mathscinet-getitem?mr=0355886
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1236.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2806561
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0096.16001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0124009
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0619.53040&format=complete
http://www.ams.org/mathscinet-getitem?mr=0867064
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1058.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2078878
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1301.53072&format=complete
http://www.ams.org/mathscinet-getitem?mr=3201825


2310 Yuji Sano, Carl Tipler

[21] Ono, H., Sano, Y., Yotsutani, N.: An example of an asymptotically Chow unstable man-
ifold with constant scalar curvature. Ann. Inst. Fourier (Grenoble) 62, 1265–1287 (2012)
Zbl 1255.53057 MR 3025743

[22] Phong, D. H., Sturm, J.: Stability, energy functionals, and Kähler–Einstein metrics. Comm.
Anal. Geom. 11, 565–597 (2003) Zbl 1098.32012 MR 2015757

[23] Ruan, W.-D.: Canonical coordinates and Bergmann metrics. Comm. Anal. Geom. 6, 589–631
(1998) Zbl 0917.53026 MR 1638878

[24] Simanca, S. R.: A K-energy characterization of extremal Kähler metrics. Proc. Amer. Math.
Soc. 128, 1531–1535 (2000) Zbl 0951.58019 MR 1664359
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