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Abstract. A category of Brauer diagrams, analogous to Turaev’s tangle category, is introduced, a
presentation of the category is given, and full tensor functors are constructed from this category to
the category of tensor representations of the orthogonal group O(V ) or the symplectic group Sp(V )
over any field of characteristic zero. The first and second fundamental theorems of invariant theory
for these classical groups are generalised to the category-theoretic setting. The major outcome is
that we obtain presentations for the endomorphism algebras of the module V⊗r , which are new
in the classical symplectic case and in the orthogonal and symplectic quantum case, while in the
orthogonal classical case, the proof we give here is more natural than in our earlier work. These
presentations are obtained by appending to the standard presentation of the Brauer algebra of degree
r one additional relation. This relation stipulates the vanishing of a single element of the Brauer
algebra which is quasi-idempotent, and which we describe explicitly both in terms of diagrams and
algebraically. In the symplectic case, if dimV = 2n, the element is precisely the central idempotent
in the Brauer subalgebra of degree n+ 1, which corresponds to its trivial representation. Since this
is the Brauer algebra of highest degree which is semisimple, our generator is an exact analogue for
the Brauer algebra of the Jones idempotent of the Temperley–Lieb algebra. In the orthogonal case
the additional relation is also a quasi-idempotent in the integral Brauer algebra. Both integral and
quantum analogues of these results are given, the latter involving the BMW algebras.
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1. Introduction

The basic problems of classical invariant theory are to describe generators and relations
for invariants of group actions. Depending on the context, the problem may be formulated
in different ways. A linear formulation describes a spanning set of the vector space of in-
variant linear functionals on a module, and all the linear relations among the elements of
this set. A commutative algebraic formulation describes the invariants of the coordinate
ring of an appropriate module, where one seeks a presentation of the algebra of invari-
ant functions as a commutative algebra. A third formulation, which is more frequently
encountered in representation theory, is in terms of the non-commutative endomorphism
algebra of a module of tensors. In this context, the problem is to give a presentation of the
subalgebra of invariants as a generally non-commutative associative algebra.

The celebrated first and second fundamental theorems [W] of classical invariant
theory solve the problem for classical group actions on tensor modules in the linear
formulation, and on coordinate algebras of multi-copies of the natural modules in the
commutative-algebraic formulation. These two formulations are in fact equivalent. In the
endomorphism algebra formulation, the first fundamental theorem (FFT) [GW] describes
the endomorphism algebra as the homomorphic image of some known algebra, viz. the
group algebra of the symmetric group in the case of the general linear group following
Schur, and the Brauer algebra [Br] with appropriate parameters in the case of the orthog-
onal or symplectic group by work of Brauer.

However, for over three quarters of a century after Brauer’s work, there has been no
second fundamental theorem (SFT) in the endomorphism algebra formulation, except in
the case of type A (GLn). For the orthogonal or symplectic group, an SFT cannot be
simply deduced in any useful form from the SFTs in the other two formulations. This is
because one is seeking generators of an ideal of a non-commutative associative algebra,
and a knowledge of a linear spanning set is not very useful. It is the purpose of this
paper to address the second fundamental theorems for these classical groups in its third
formulation (as described above).
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In [LZ2, LZ3], the orthogonal group O(V ) over C with dimV = 3 was investigated
together with its quantum analogue at generic q. We obtained a single idempotent E in
the Brauer algebra of degree r ≥ 4, which generates a two-sided ideal that is equal to the
kernel of the algebra homomorphism from the Brauer algebra to the endomorphism alge-
bra EndO(V )(V

⊗r) (the kernel is trivial if r < 4). Thus EndO(V )(V
⊗r) can be presented

in terms of the standard generators and relations of the Brauer algebra with the single
additional relation E = 0.

Remarkably, the situation turned out to be the same for all the orthogonal groups
[LZ4] over any field K of characteristic zero. It was shown in [HX] that this should also
be the case for the symplectic group, even though the corresponding element E was not
explicitly constructed there.

In the present paper we develop a categorical approach to the invariant theory of the
orthogonal and symplectic groups, obtaining a unified treatment of the fundamental the-
orems in both the linear and endomorphism algebra formulations. This yields an explicit
formula for the generator E of the kernel of the algebra homomorphism from the Brauer
algebra to the endomorphism algebra EndSp(V )(V

⊗r) in the case of the symplectic group,
and provides new and more conceptual proofs of the main results of [LZ4] for the orthog-
onal group.

We then use integral forms of our main results, as well as the cellular structure of both
the Brauer algebras and the BMW algebras, to generalise these results to the quantum
group case in §8.

The methods used in the papers [LZ2, LZ3, LZ4] and [HX] are quite different. In
[LZ2, LZ3], an analysis of the radical of the Brauer algebra is performed, which makes
an extensive use of the theory of cellular algebras [GL96, GL03, GL04]. The paper [HX]
relied on results on the detailed structure and representations [DHW, HW, RS, X] of the
Brauer algebra and BMW algebra [BW]. In particular, it made essential use of a series of
earlier papers of Hu and collaborators. In contrast, invariant theory featured much more
prominently in [LZ4].

Our approach here is inspired by works on quantum invariants of links [J, T1, R,
RT, ZGB], as well as works such as [PM], which have discussed relationships between
certain diagram categories and representations of algebras, particularly those arising in
questions of statistical mechanics. Recall that a key algebraic result in quantum topology
is that the category of tangles is a strict monoidal category with braiding [FY1, FY2,
T1] (also see [RT, T2]) in the sense of Joyal and Street [JS]. The set of objects of this
category is N = {0, 1, 2, . . . }, and the vector spaces of morphisms have bases consisting
of non-isotopic tangle diagrams. We define a similar, but much simpler category B(δ),
the category of Brauer diagrams with parameter δ ∈ K . The space of morphisms of
B(δ) is spanned by Brauer diagrams (see Definition 2.1), which include the usual Brauer
diagrams [Br] as a special case, as endomorphisms of an object of the category. Similar
categories, such as the partition category, are discussed in [PM, §§4, 5, 6].

LetG be either the orthogonal group O(V ) or the symplectic group Sp(V ), and denote
by TG(V ) the full subcategory of the category of finite-dimensional G-representations
with objects V⊗r (r ∈ N). There exists an additive functor F : B(εm)→ TG(V ), which
is given by Theorem 3.4. Here εm = ε(G) dimV with ε(G) = 1 for O(V ) and −1
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for Sp(V ). The functor F is shown to be full in Theorem 4.8(1). This significantly gen-
eralises the FFTs for the orthogonal and symplectic groups. Both the linear and endo-
morphism algebra versions of FFT are now special cases of Theorem 4.8(1), and their
equivalence becomes entirely transparent.

For each pair of objects r, s in the category B(εm), the functor F induces a linear map
F sr : HomB(εm)(r, s) → HomTG(V )(V

⊗r , V⊗s). A simple description of the subspace
KerF sr is obtained in Theorem 4.8(2), which contains the linear version of SFT as a
special case.

When s = r , the domain of F rr is the Brauer algebra of degree r , the range is the
endomorphism algebra EndTG(V )(V

⊗r), and the map is an algebra homomorphism. In
this case, we want to understand the algebraic structure of the kernel of the map F rr .

We explicitly construct an element in the Brauer algebra which generates KerF rr as
a two-sided ideal (KerF rr 6= 0 only when r > d , see Theorem 4.6). The result for the
symplectic group is given in Theorem 5.9, and that for the orthogonal group in Theorem
6.10. This leads to a presentation of EndTG(V )(V

⊗r) upon imposing the condition that
this element vanishes.

The significance of the Brauer categorical approach may be described as follows.
As linear space, HomG(V

⊗r , V⊗s) depends only on r + s, which must be even for the
Hom space to be non-zero. But when s = r = (r + s)/2, this space additionally has the
structure of an associative algebra, and the calculus of diagrams in the category makes it
possible to economically transform linear relations into algebraic ones, involving compo-
sition.

In the case of O(V ), the generating element we obtain is shown to be equal to that
obtained in [LZ4]. In the symplectic case, the element anticipated by [HX] is a scalar
multiple of the one obtained here (Remark 5.10). However, our approach yields an ex-
plicit formula for the element, both in terms of generators and relations, and in terms
of diagrams; moreover we show that the element is (a multiple of) the central idempo-
tent corresponding to the trivial representation of the Brauer algebra on n + 1 strings, if
r = 2n. We note that Br(−2n) is semisimple if and only if r ≤ n + 1 (see §7 below).
Thus our generating element is an exact analogue of Jones’ ‘augmentation’ idempotent
[J, GL98].

Notwithstanding the fact that convenient formulae for our generating elements involve
rational numbers with large denominators, the elements are actually sums of diagrams
with coefficients ±1. This permits reduction modulo primes, and an approach to the case
of positive characteristic (§7).

2. The category of Brauer diagrams

We begin with a discussion on Brauer diagrams, which could be thought of as a highly
simplified version of the tangle diagrams of [FY1, FY2, T1] (also see [RT, T2]). Tangles
in this paper are neither oriented nor framed. In fact we shall find it easier to work with
the (equivalent) category of Brauer diagrams, with no reference to tangles.
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2.1. The category of Brauer diagrams

Let N = {0, 1, 2, . . . }.

Definition 2.1. For any pair k, ` ∈ N, a (k, `) Brauer diagram, or Brauer diagram from
k to `, is a partitioning of the set {1, . . . , k + `} as a disjoint union of pairs.

This is thought of as a diagram where k + ` points (the nodes, or vertices) are placed on
two parallel horizontal lines, k on the lower line and ` on the upper, with arcs drawn to
join points which are paired. We shall speak of the lower and upper nodes or vertices of
a diagram. The pairs will be known as arcs. If k = ` = 0, there is by convention just one
(0, 0) Brauer diagram. Figure 1 below is a (6, 4) Brauer diagram.

Fig. 1. A (6, 4) Brauer diagram.

Remark 2.2. Such a diagram may be thought of as the image of a tangle diagram (i.e.
ambient isotopy class of (k, `) tangles) under projection to a plane. It is straightforward
that if overcrossings and undercrossings are identified in a tangle projection, the only in-
variants of a tangle are the number of free loops and the set of pairs of boundary points,
each of which is the boundary of a connected component of the tangle. Hence the identi-
fication with Brauer diagrams. We shall therefore not use tangles explicitly.

There are two operations on Brauer diagrams: composition defined using concatenation
of diagrams and tensor product defined using juxtaposition (see below).

Definition 2.3. Let K be a commutative ring with identity, and fix δ ∈ K . Denote by
B`k (δ) the free K-module with a basis consisting of (k, `) Brauer diagrams. Note that
B`k (δ) 6= 0 if and only if k + ` is even, since the free K-module with basis the empty
set is zero. By convention there is one diagram in B0

0 (δ), viz. the empty diagram. Thus
B0

0 (δ) = K .

There are two K-bilinear operations on diagrams.

composition ◦ : B
p
` (δ)× B

`
k (δ)→ B

p
k (δ), and

tensor product ⊗ : Bqp (δ)× B`k (δ)→ B
q+`
k+p(δ)

(2.1)

These operations are defined as follows.

• The compositeD1 ◦D2 of the Brauer diagramsD1 ∈ B
p
` (δ) andD2 ∈ B

`
k (δ) is defined

as follows. First, the concatenation D1#D2 is obtained by placing D1 above D2, and
identifying the ` lower nodes of D1 with the corresponding upper nodes of D2. Then
D1#D2 is the union of a Brauer (k, p) diagram D with a certain number, f (D1,D2)

say, of free loops. The composite D1 ◦D2 is the element δf (D1,D2)D ∈ B
p
k (δ).
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• The tensor product D ⊗D′ of any two Brauer diagrams D ∈ Bqp (δ) and D′ ∈ B lk(δ) is
the (p+ k, q + l) diagram obtained by juxtaposition, that is, placing D′ on the right of
D without overlapping.

Both operations are clearly associative.

Definition 2.4. The category of Brauer diagrams, denoted by B(δ), is the following pre-
additive small category equipped with a bi-functor ⊗ (which will be called the tensor
product):

• the set of objects is N = {0, 1, 2, . . . }, and for any pair of objects k, l, HomB(δ)(k, l)
is the K-module B lk(δ); the composition of morphisms is given by the composition of
Brauer diagrams defined by (2.1);
• the tensor product k⊗l of objects k, l is k+l in N, and the tensor product of morphisms

is given by the tensor product of Brauer diagrams of (2.1).

It follows from the associativity of composition of Brauer diagrams that B(δ) is indeed a
pre-additive category.

Remark 2.5. The operations in B(δ) mirror the operations in the tangle category con-
sidered in [FY1, FY2, T1, RT, T2], and the category of Brauer diagrams is a quotient
category of the category of tangles in the sense of [M, §II.8].

2.2. Involutions

The category B(δ) has a duality functor ∗ : B(δ) → B(δ)op, which takes each object to
itself, and takes each diagram to its reflection in a horizontal line. More formally, for any
(k, `) diagram D, D∗ is the (`, k) diagram with precisely the same pairs identified as D.
Further, there is an involution ]

: B(δ) → B(δ) which also takes objects to themselves,
but takes a diagram D to its reflection in a vertical line. Formally, if the upper nodes of
the diagram D are labelled 1, . . . , ` and the lower nodes are labelled 1′, 2′, . . . , k′, we
apply the permutation i 7→ `+ 1− i, j ′ 7→ k + 1− j ′ to the nodes to get the arcs of D].
We shall meet the contravariant functor D 7→ ∗D := D∗◦] later.

It is easily checked that (D1 ◦ D2)
∗
= D∗2 ◦ D

∗

1 , (D1 ⊗ D2)
∗
= D∗1 ⊗ D

∗

2 , and that
(D1 ◦D2)

]
= D

]
1 ◦D

]
2 and (D1 ⊗D2)

]
= D

]
2 ⊗D

]
1.

2.3. Generators and relations

Generators and relations for tangle diagrams were described in [FY1, FY2, T1, RT, T2].
The next theorem is the corresponding result for Brauer diagrams.

Theorem 2.6. (1) The four Brauer diagrams

�
�
�
�

A
A
A
A

generate all Brauer diagrams by composition and tensor product (i.e., juxtaposition).
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We shall refer to these generators as the elementary Brauer diagrams, and denote
them by I , X, A and U respectively. Note that these diagrams are all fixed by ], and
that ∗ fixes I and X, while A∗ = U and U∗ = A.

(2) A complete set of relations among these four generators is given by the following,
and their transforms under ∗ and ]. This means that any equation relating two words
in these four generators can be deduced from the given relations.

I ◦ I = I, (I ⊗ I ) ◦X = X, A ◦ (I ⊗ I ) = A, (I ⊗ I ) ◦ U = U, (2.2)
X ◦X = I, (2.3)
(X ⊗ I ) ◦ (I ⊗X) ◦ (X ⊗ I ) = (I ⊗X) ◦ (X ⊗ I ) ◦ (I ⊗X), (2.4)
A ◦X = A, (2.5)
A ◦ U = δ, (2.6)
(A⊗ I ) ◦ (I ⊗X) = (I ⊗ A) ◦ (X ⊗ I ), (2.7)
(A⊗ I ) ◦ (I ⊗ U) = I. (2.8)

The relations (2.3)–(2.8) are depicted diagrammatically in Figures 2–4.

=

Double crossing

=

Braid relation
Fig. 2. Relations (2.3) and (2.4).

=

De-looping

= δ

Loop removal

Fig. 3. Relations (2.5) and (2.6).

=

Sliding

=

Straightening

Fig. 4. Relations (2.7) and (2.8).
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In principle, the proof of Theorem 2.6 may be deduced from of [T2, §I.4]. In the Ap-
pendix, we provide an independent proof of the completeness of the above relations,
which is purely algebraic.

2.4. Some useful diagrams

We shall find the following diagrams useful in later sections of this work. Let Aq = A ◦
(I⊗A⊗I ) . . . (I⊗(q−1)

⊗A⊗I⊗(q−1)),Uq = (I⊗(q−1)
⊗U⊗I⊗(q−1))◦· · ·◦(I⊗U⊗I )◦U

and Iq = I⊗q . These are depicted as diagrams in Figure 5.

Aq = ...
q

Uq =

q...
Iq =

...

q

Fig. 5. Aq , Uq and Iq .

We shall also need Xs,t , the (s + t, s + t) Brauer diagram shown in Figure 6.

...
s

...
t

Fig. 6. Xs,t .

D

...

...

Fig. 7. ∗D.

The following result is easy.

Lemma 2.7. (1) For any Brauer diagramsD1 ∈ B
r
k (δ) andD2 ∈ B

q
r (δ), we have Ir ◦D1

= D1 and D2 ◦ Ir = D2. That is, Ir = idr for any object r of B(δ).
(2) The following relation holds:

(Iq ⊗ Aq) ◦ (Uq ⊗ Iq) = (Aq ⊗ Iq) ◦ (Iq ⊗ Uq) = Iq .

Corollary 2.8. For all p, q and r , define the linear maps

Uqp = (−⊗ Iq) ◦ (Ip ⊗ Uq) : Brp+q(δ)→ B
r+q
p (δ),

Arq = (Ir ⊗ Aq) ◦ (−⊗ Iq) : B
r+q
p (δ)→ Brp+q(δ).

Then Uqp = Rq and Arq = Lq (see Definition A.5). These are mutually inverse.

This is clear since by Lemma A.6, L and R are mutually inverse.
Let ∗ : Bqp (δ) → B

p
q (δ) be the linear map defined for any D ∈ Bqp (δ) by ∗D =

(Ip⊗Aq) ◦ (Ip⊗D⊗ Iq) ◦ (Up⊗ Iq). Pictorially, ∗D is obtained fromD as in Figure 7.

Lemma 2.9. The map ∗ coincides with the anti-involution D 7→ ∗D := D∗◦] discussed
in §2.2.

This is easily seen in terms of diagrams.
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2.5. The Brauer algebra

For any object r in B(δ), the set Brr (δ) of morphisms from r to itself forms a unital
associative K-algebra under composition of Brauer diagrams. This is the Brauer algebra
of degree r with parameter δ, which we will denote by Br(δ). The first two results of the
following lemma are well known.

Lemma 2.10. (1) For i = 1, . . . , r − 1, let si and ei respectively be the (r, r) Brauer
diagrams shown in Figure 8 below. Then Br(δ) has the following presentation as a
K-algebra with anti-involution ∗. The generators are {si, ei | i = 1, . . . , r − 1}, and
relations

sisj = sj si, siej = ej si, eiej = ej ei if |i − j | ≥ 2,

s2
i = 1, sisi+1si = si+1sisi+1,

siei = eisi = ei,

e2
i = δei,

eiei±1ei = ei,

siei+1ei = si+1ei,

with the last five relations being valid for all applicable i.

...

i − 1

... ...

i − 1

...

Fig. 8. si (left) and ei (right).

(2) The elements s1, . . . , sr−1 generate a subalgebra of Br(δ), isomorphic to the group
algebra KSymr of the symmetric group Symr .

(3) The map ∗ of Lemma 2.9 restricts to an anti-involution of the Brauer algebra.

Parts (1) and (2) follow from Theorem 2.6, noting that any regular expression (see (A.1)
in the Appendix for the definition of this term) for a diagram in Br(δ) contains an equal
number of factors of type A and U . The stated relations are precise analogues of the
relations in Theorem 2.6(2). Part (3) is easy to prove. However, we note that ∗si = sr+1−i
and ∗ei = er+1−i . This is different from the standard cellular anti-involution ∗ of the
Brauer algebra.

We remark that multiplying the last relation above by ei on the left and using two of
the earlier relations, we obtain

eisi+1ei = ei,

a relation which we shall often use, together with its transform under ∗: eisi−1ei = ei .

Now we prove some technical lemmas for later use.
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...

r

...

Fig. 9. 6ε(r).

Lemma 2.11. Let 6ε(r) =
∑
σ∈Symr

(−ε)|σ |σ ∈ Br(δ), where ε = ±1 and |σ | is the
length of σ . Represent 6ε(r) pictorially by Figure 9.

Then the following relations hold for all r .

(1) r

· · ·

· · ·

= r − 1

· · ·

· · ·

− ε(r − 2)!−1

r − 1

· · ·

r − 1

· · ·

· · ·

(2) r

· · ·

· · ·

= −ε(r − 1− εδ) r − 1

· · ·

· · ·

(3) r

· · ·

· · ·

=
∑r−1
i=0 (−ε)

i r − 1

· · ·

... ...
i

Proof. Part (1) generalises [LZ4, Lemma 5.1(i)] and is a simple consequence of the dou-
ble coset decomposition of Symr into Symr−1 q Symr−1sr−1Symr−1. Part (2) immedi-
ately follows from (1). Statement (3) can be obtained from (1) by induction on r . ut

Remark 2.12. Symmetry considerations easily show that the second diagram on the right
hand side of Lemma 2.11(1) is a (r − 2)!-multiple of a Z-linear combination of Brauer
diagrams; thus the second term is still defined over Z despite having the coefficient 1

(r−2)! .
The same remark applies to similar terms appearing in Lemma 2.13 and its proof.

Lemma 2.13. Set ε = −1. Then for all k ≥ 0,

r

· · ·

... ...
k

= 4k(r + δ
2 − k − 1) r − 2

· · ·

... ...
k − 1

+ (r − 2− 2k)!−1

r − 2

...
...
k

r − 2k

· · ·

· · ·

(2.9)
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Proof. For k = 0, the formula is an identity. The important case is k = 1, where the
formula becomes

r

· · ·

· · ·

= 4(r − 2+ δ/2) r − 2

· · ·

· · ·

+ (r − 4)!−1

r − 2

· · ·

r − 2

· · ·

· · ·

(2.10)

To prove it, we first obtain from Lemma 2.11(1) with ε = −1 the following relation.

r

· · ·

· · ·

= r − 1

· · ·

· · ·

+ (r − 2)!−1

r − 1

· · ·

r − 1

· · ·

· · ·

Using Lemma 2.11(2) for the first diagram on the right hand side, and applying Lemma
2.11(3) and the corresponding relation under the anti-involution ∗ to the second diagram,
we obtain (2.10).

The general case can be proven by induction on k. From (2.9) at k, we obtain

r

· · ·

... ...
k + 1

= 4k(r + δ/2− k − 1) r − 2

· · ·

... ...
k

+ (r − 2− 2k)!−1

r − 2

...
...
k

r − 2k

· · ·

...

Using (2.10) in the second term on the right hand side, we arrive at the k+1 case of (2.9).
This completes the proof. ut

3. A covariant functor

Let K be a field. Let V = Km be an m-dimensional vector space with a non-degenerate
bilinear form (−,−), which is either symmetric or skew symmetric. When the form is
skew symmetric, non-degeneracy requires m = 2n to be even. Let G denote the isometry
group of the form, so that G = {g ∈ GL(V ) | (gv, gw) = (v,w),∀v,w ∈ V }. Then G
is the orthogonal group O(V ) if the form is symmetric, and the symplectic group Sp(V )
if the form is skew symmetric.

Given a basis {b1, . . . , bm} for V , let {b̄1, . . . , b̄m} be the dual basis of V , identified
with V ∗ via the map v(∈ V ) 7→ φv (∈ V

∗) where φv(x) := (v, x); thus (b̄i, bj ) = δij .
For any positive integer t , the space V⊗t is a G-module in the usual way:

g(v1 ⊗ · · · ⊗ vt ) = gv1 ⊗ · · · ⊗ gvt . Moreover the form on V induces a non-degenerate
bilinear form [−,−] on V⊗t , given by [v1 ⊗ · · · ⊗ vt , w1 ⊗ · · · ⊗ wt ] :=

∏t
i=1(vi, wi),

which permits the identification of V⊗t with its dual space V⊗t∗ = HomK(V
⊗t ,K).
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Define c0 ∈ V ⊗ V by c0 =
∑m
i=1 bi ⊗ b̄i in V ⊗ V . Then c0 is canonical in

that it is independent of the basis, and is invariant under G. We shall consider various
G-equivariant maps β : V⊗s → V⊗t for s, t ∈ Z≥0. Among these we have the following.

P : V ⊗ V → V ⊗ V, v ⊗ w 7→ w ⊗ v,

Č : K → V ⊗ V, 1 7→ c0,

Ĉ : V ⊗ V → K, v ⊗ w 7→ (v,w).

(3.1)

They have the following properties.

Lemma 3.1. Let ε = ε(G) be 1 (resp. −1) if G = O(V ) (resp. Sp(V )). Denote the
identity map on V by id.

(1) The element c0 belongs to (V ⊗ V )G and satisfies P(c0) = εc0.
(2) The maps P , Č and Ĉ are all G-equivariant, and

P 2
= id⊗2, (P ⊗ id)(id⊗ P)(P ⊗ id) = (id⊗ P)(P ⊗ id)(id⊗ P), (3.2)

P Č = εČ, ĈP = εĈ, (3.3)

ĈČ = ε dimV, (Ĉ ⊗ id)(id⊗ Č) = id = (id⊗ Ĉ)(Č ⊗ id), (3.4)

(Ĉ ⊗ id) ◦ (id⊗ P) = (id⊗ Ĉ) ◦ (P ⊗ id), (3.5)

(P ⊗ id) ◦ (id⊗ Č) = (id⊗ P) ◦ (Č ⊗ id). (3.6)

Proof. Equation (3.2) reflects standard properties of permutations, and the relations (3.3)
are evident. We prove the other relations. Consider for example ĈČ = Ĉ(

∑
i bi ⊗ b̄i) =∑

i(bi, b̄i). The far right hand side is
∑
i ε = ε dimV . This proves the first relation of

(3.4). The proofs of the remaining relations are similar, and therefore omitted. ut

Definition 3.2. We denote by TG(V ) the full subcategory of G-modules with ob-
jects V⊗r (r = 0, 1, . . . ), where V⊗0

= K by convention. The usual tensor product
of G-modules and of G-equivariant maps is a bi-functor TG(V ) × TG(V ) → TG(V ),
which will be called the tensor product of the category. We call TG(V ) the category of
tensor representations of G.

Note that HomG(V
⊗r , V⊗t ) = 0 unless r + t is even. The zero module is not an object

of TG(V ), thus the category is only pre-additive but not additive.

Remark 3.3. The category TG(V ) is also a strict monoidal category with a symmet-
ric braiding in the sense of [JS], where the braiding is given by the permutation maps
V⊗r ⊗ V⊗t → V⊗t ⊗ V⊗r , v ⊗ w 7→ w ⊗ v.

We have the following result.

Theorem 3.4. There is a unique additive covariant functor F : B(εm) → TG(V ) of
pre-additive categories with the following properties:
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(i) F sends the object r to V⊗r and morphismD : k→ ` to F(D) : V⊗k → V⊗l where
F(D) is defined on the generators of Brauer diagrams by

F

  = idV , F

  = εP,
F

  = Č, F

  = Ĉ;
(3.7)

(ii) F respects tensor products, so that for any objects r, r ′ and morphisms D,D′ in
B(εm),

F(r ⊗ r ′) = V⊗r ⊗ V⊗r
′

= F(r)⊗ F(r ′), F (D ⊗D′) = F(D)⊗ F(D′).

Proof. We want to show that the functor F is uniquely defined, and gives rise to an
additive covariant functor from B(εm) to TG(V ).

By Lemma 3.1, the linear maps in (3.7) are all G-module maps, and by Theorem
2.6(1), the above requirements define F on all objects of B(εm); it is clear that F respects
tensor products of objects. As a covariant functor, F preserves composition of Brauer
diagrams, and by (ii) F respects tensor products of morphisms. It remains only to show
that F is well defined.

To prove this, we need to show that the images of the generators satisfy the relations
in Theorem 2.6(2). This is precisely the content of equations (3.4)–(3.6) in Lemma 3.1(2).

Hence for any morphism D in B(εm), F(D) is indeed a well defined morphism
in TG(V ). ut

Remark 3.5. The functor F is a tensor functor between braided strict monoidal cate-
gories.

Lemma 3.6. Let H t
s = HomG(V

⊗s, V⊗t ) for all s, t ∈ N.

(1) The K-linear maps

FUqp := (−⊗ id⊗qV )(id⊗pV ⊗ F(Uq)) : H
r
p+q → H

r+q
p ,

FArq := (id
⊗r
V ⊗ F(Aq))(−⊗ id⊗qV ) : H

r+q
p → H r

p+q

are well defined and are mutually inverse isomorphisms.
(2) For each pair k, ` of objects in B(εm), the functor F induces a linear map

F `k : B
`
k (εm)→ H `

k = HomG(V
⊗k, V⊗`), D 7→ F(D), (3.8)

and the following diagrams are commutative:

B
r+q
p (εm)

Arq //

F
r+q
p

��

Brp+q(εm)

F rp+q

��
H
r+q
p

FArq // H r
p+q

Brp+q(εm)
Uqp //

F rp+q

��

B
r+q
p (εm)

F
r+q
p

��
H r
p+q

FUqp // H r+q
p
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Proof. Part (1) follows by applying the functor F to Corollary 2.8, using Theorem 3.4.
Now for anyD ∈ Br+qp (εm), Arq(D) = (Ir ⊗Aq)◦ (D⊗ Iq). Since F preserves both

composition and tensor product of Brauer diagrams,

F(Arq(D)) = (id
⊗r
V ⊗ F(Aq))(F (D)⊗ id⊗qV ) = FArq(F (D)).

This proves the commutativity of the first diagram in part (2). The commutativity of the
other diagram is proved in the same way. ut

We shall require the next lemma, which is surely well known. Nevertheless, we supply a
proof by adapting some computations in [ZGB] to the present context.

Lemma 3.7. For any endomorphism L ∈ EndK(V⊗r), define the Jones trace J (L) by

J (L) = F(Ar) ◦ (L⊗ id⊗rV ) ◦ F(Ur) ∈ EndK(K) ' K, (3.9)

where Ar and Ur are the capping and cupping operations defined above. Then

Tr(L, V⊗r) = εrJ (L).

In particular, if L = F(D), then for D ∈ Brr (εm), we have

Tr(F (D), V⊗r) = εrF(Ar ◦ (D ⊗ Ir) ◦ Ur) =: J (D).

The map J : Brr (εm)→ K is referred to as the Jones trace on the Brauer algebra.

Proof. Let L ∈ EndK(V⊗r). Since (3.9) is linear in L, it suffices to prove the conclusion
for L = L1 ⊗ · · · ⊗ Lr , where Li ∈ EndK(V ) for each i. Now observe that if we write
0 : EndK(V⊗i)→ EndK(V⊗(i−1)) for the map defined by

0(M) = (id⊗(i−1)
V ⊗ F(A)) ◦ (M ⊗ idV ) ◦ (id

⊗(i−1)
V ⊗ F(U)),

then J (L) = 0r(L). We therefore compute 0(L). We have

0(L)(v1 ⊗ · · · ⊗ vr−1)

= (id⊗(r−1)
V ⊗ F(A)) ◦ (L⊗ idV ) ◦ (id

⊗(r−1)
V ⊗ Č)(v1 ⊗ · · · ⊗ vr−1 ⊗ 1)

= (id⊗(r−1)
V ⊗ F(A)) ◦ (L⊗ idV )(v1 ⊗ · · · ⊗ vr−1 ⊗ c0)

= (id⊗(r−1)
V ⊗ F(A))

(
L1v1 ⊗ · · · ⊗ Lr−1vr−1 ⊗

∑
i

Lrbi ⊗ b̄i

)
= (id⊗(r−1)

V ⊗ Ĉ)
(
L1v1 ⊗ · · · ⊗ Lr−1vr−1 ⊗

∑
i

Lrbi ⊗ b̄i

)
=

∑
i

(Lrbi, b̄i)(L1v1 ⊗ · · · ⊗ Lr−1vr−1)

= ε Tr(Lr , V )(L1v1 ⊗ · · · ⊗ Lr−1vr−1).

It follows that 0(L1⊗ · · · ⊗Lr) = ε Tr(Lr , V )L1⊗ · · · ⊗Lr−1, and hence by induction
J (L) = 0r(L) = εr Tr(L, V⊗r). The result follows. ut
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4. Theory of invariants of the orthogonal and symplectic groups

Henceforth we assume that K is a field of characteristic zero.

4.1. The fundamental theorems of invariant theory

LetG be either the orthogonal group O(V ) or the symplectic group Sp(V ). For any t ∈ N,
the space V⊗t is aG-module, and hence so is its dual space V⊗t∗ = HomK(V

⊗t ,K). The
space of invariants (V⊗t∗)G = HomG(V

⊗t ,K) consists of linear functions on V⊗t which
are constant on G-orbits. One formulation of the first fundamental theorem of classical
invariant theory for the orthogonal and symplectic groups [W, GW] is as follows.

Theorem 4.1. The space (V⊗t∗)G is zero if t is odd. If t = 2r is even, any element of
(V⊗t

∗
)G is a linear combination of maps of the form γα (α ∈ Sym2r), where

γα : v1 ⊗ · · · ⊗ v2r 7→

r∏
i=1

(vα(2i−1), vα(2i)). (4.1)

Now Sym2r evidently acts transitively on the set of γα through its action on V⊗r by place
permutations: for π ∈ Sym2r , π.γα := γα ◦ π

−1
= γπα . Moreover the centraliser H in

Sym2r of the involution (12)(34) . . . (2r−1, 2r), which is isomorphic to Symrn(Z/2Z)r ,
clearly takes γ1 to ±γ1. Hence if Tr := Sym2r/(Symr n (Z/2Z)r) is a left transversal of
Symr n (Z/2Z)r in Sym2r , it follows that each function γα is equal to ±γβ , with β ∈ Tr ,
and hence we obtain

Corollary 4.2. With notation as in Theorem 4.1, and writing Tr for the transversal above,
(V⊗t

∗
)G is spanned by {γα | α ∈ Tr}.

Remark 4.3. Note that since Tr := Sym2r/(Symrn(Z/2Z)r) is evidently identified with
the set of all pairings of the elements of {1, . . . , 2r}, Tr is in bijection with the diagrams
in Brr (εm).

For any subset S ⊆ [1, t], let Sym(S) be the symmetric group of S, regarded as the
subgroup of Symt which fixes all elements in [1, t] \ S. The next lemma provides some
linear relations among the γα .

Lemma 4.4. Let S be any subset of [1, t] with |S| = m + 1. Then for any γ = γα as in
(4.1), we have

∑
π∈Sym(S)(−1)|π |πγ = 0. In particular, for α ∈ Tr ,∑

π∈Sym(S)

(−1)|π |γαπ = 0. (4.2)

Proof. For any S ⊂ [1, t] of cardinality m+ 1 and γ ∈ (V⊗t∗)G, we have∑
π∈Sym(S)

(−1)|π |πγ (v1 ⊗ · · · ⊗ vt ) =
∑

π∈Sym(S)

(−1)|π |γ (π−1(v1 ⊗ · · · ⊗ vt ))

= γ
( ∑
π∈Sym(S)

(−1)|π |π−1(v1 ⊗ · · · ⊗ vt )
)
= 0, (4.3)



2326 G. I. Lehrer, R. B. Zhang

since Sym(S) acts onm+1 positions, and therefore the alternating sum has a factor which
is an element of 3m+1(V ), which is zero since m = dim(V ). ut

Remark 4.5. (i) When the form is symmetric, the inner sum in the second line of (4.3)
may be zero for the trivial reason that an involution in S might fix γ . Thus some of the
relations above are trivial in the orthogonal case.

(ii) Although απ may not be in Tr above, it is always the case that γαπ = ±γβ for
some β ∈ T . Thus the lemma does provide linear relations among the γα for α ∈ Tr .

The second fundamental theorem for the orthogonal and symplectic groups [W] may be
stated as follows [GW].

Theorem 4.6. Write m = dim(V ) and let d = m if G = O(V ), and d = m/2 if
G = Sp(V ). If r ≤ d , the linear functions {γα | α ∈ Tr} of Corollary 4.2 form a basis of
the space of G-invariants on V⊗2r . If r > d, any linear relation among the functionals
γα is a linear consequence of the relations in Lemma 4.4.

4.2. Categorical generalisations of the fundamental theorems

We now return to the category B(εm) of Brauer diagrams with parameter εm (where
ε = ε(G)) and the covariant functor F : B(εm) → TG(V ). Recall that the group al-
gebraKSymr is embedded in the Brauer algebra Br(εm) of degree r . In particular,6ε(r)
belongs to Brr (εm). Let φr = F(6ε(r)) ∈ EndG(V⊗r) = H r

r . Then for any r vectors vi
in V ,

φr(v1 ⊗ · · · ⊗ vr) =
∑

σ∈Symr

(−1)|σ |vσ(1) ⊗ · · · ⊗ vσ(r).

In particular, if r = m+ 1, then φr = 0 as an element in Hm+1
m+1 .

Definition 4.7. Denote by 〈6ε(m + 1)〉 the subspace of
⊕

k,` B
`
k (εm) spanned by the

morphisms in B(εm) obtained from 6ε(m + 1) by composition and tensor product. Set
〈6ε(m+ 1)〉`k = 〈6ε(m+ 1)〉 ∩ B`k (εm).

The first and second fundamental theorems of classical invariant theory for the orthogonal
and symplectic groups can be respectively interpreted as parts (1) and (2) of the following
theorem.

Theorem 4.8. Assume that K has characteristic 0 and write d = m if G = O(V ), and
d = m/2 if G = Sp(V ), where m = dim(V ).

(1) The functor F : B(εm)→ TG(V ) is full. That is, F is surjective on Hom spaces.
(2) The map F `k is injective if k + ` ≤ 2d, and KerF `k = 〈6ε(m+ 1)〉`k if k + ` > 2d .

Proof. It follows from Lemma 3.6 that we have a canonical isomorphism B`k ' B0
k+`,

and the study of F `k is equivalent to that of F 0
k+`. Hence without loss of generality, we

may assume that ` = 0. When ` = 0, the theorem is true trivially when k is odd. Thus we
only need to consider the case ` = 0 and k = 2r .
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(1) By Corollary 4.2, every element of H 0
2r is a linear combination of functionals γα

for α ∈ Tr . As remarked in Remark 4.3, the elements of Tr are in canonical bijection with
pairings of the set [1, 2r], i.e. the partitioning of [1, 2r] into a disjoint union of pairs. Let
D be the diagram corresponding to α ∈ Tr . Then F(D) = γα . Thus F 0

2r is surjective, and
so is also F `k for all k and `. This proves part (1) of the theorem.

(2) Note that every (2r, 0) Brauer diagram is mapped by F to a γα of the form (4.1).
Thus if r ≤ d, then KerF 0

2r = 0 by Theorem 4.6, the second fundamental theorem.
Now consider the case r > d. By Theorem 4.6 it suffices to show that every relation

of the form (4.2) arises by applying F 0
2r to an element of 〈6ε(m+ 1)〉02r . Fix α ∈ Tr , and

let D ∈ B0
2r be the diagram such that F(D) = γα . This is the diagram corresponding to

α ∈ Tr by Remark 4.3.
Write γα(S) =

∑
π∈Sym(S)(−1)|π |γαπ for the left side of (4.2).

If σ ∈ Sym2r satisfies {σ([1, m + 1])} = S, then Sym(S) = σSym([1, m+ 1])σ−1.
Now regard Sym2r as embedded in B2r

2r (εm), and define the element

DS :=
∑

π∈Sym([1,m+1])

(−ε)|π |D ◦ σ ◦ π ◦ σ−1

in B0
2r(εm). Then γα(S) = F(DS), and since we have

DS = D ◦ σ ◦6ε(m+ 1) ◦ σ−1
∈ 〈6ε(m+ 1)〉02r ,

it follows that γα(S) ∈ F(〈6ε(m+ 1)〉02r).
By Theorem 4.6, all relations among invariant functionals on V⊗2r are linear con-

sequences of the relations γα(S) = 0. Using the bijection between diagrams and Tr , it
follows that KerF 0

2r is spanned by elements of the form DS .
Conversely, it is evident that 〈6ε(m+ 1)〉02r ⊂ KerF 0

2r since φm+1 = F(6ε(m+ 1))
= 0. This proves part (2) for r > d, completing the proof of the theorem. ut

Remark 4.9. Theorem 4.8(1) with k = 2r, ` = 0 yields the linear version of FFT, while
the endomorphism algebra formulation arises from the case k = ` = r . The equivalence
of the two versions is an obvious consequence of Lemma 3.6.

Corollary 4.10. If k + ` ≤ 2d , then 〈6ε(m+ 1)〉`k = 0.

Proof. Since φm+1 = 0, 〈6ε(m + 1)〉`k is contained in KerF `k . But KerF `k = 0 for
k + ` ≤ 2d , and the lemma follows. ut

5. Structure of the endomorphism algebra: the symplectic case

Recall from Section 2.5 that Brr (εm) is the Brauer algebra of degree r . Thus KerF rr is a
two-sided ideal of Brr (εm), and Brr (εm)/KerF rr is canonically isomorphic to the endo-
morphism algebra EndG(V⊗r) by Theorem 4.8(2). In order to understand the algebraic
structure of EndG(V⊗r), we need to understand that of KerF rr , and this is what we shall
do in this section and the next.

Here we take G = Sp(V ) with dimV = 2n and ε = −1. Denote 6−1(r) by 6(r).
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5.1. Generators of the kernel

For any s < r , there is a natural embedding Bss (−2n) ↪→ Brr (−2n), b 7→ b⊗ Ir−s , of the
Brauer algebra of degree s in that of degree r as associative algebras. Thus we may regard
Bss (−2n) as the subalgebra of Brr (−2n) consisting of all elements of the form b ⊗ Ir−s .

Let D(p, q) denote the element of the Brauer algebra Bkk (−2n) of degree k = 2n +
1− p + q shown in Figure 10.

D(p, q) =

...
p − q

...

...
q

2n+ 1

...

...
p

Fig. 10

Proposition 5.1. Assume that r > n. As a two-sided ideal of the Brauer algebra
Brr (−2n), KerF rr is generated by D(p, q) and ∗D(p, q) with p + q ≤ r and p ≤ n.

Proof. Let A be a single (2r, 0) Brauer diagram with r > n. Then F(A) is some func-
tional γ on V⊗2r defined by (4.1). For any π ∈ Sym2r ⊂ B

2r
2r (−2n), A ◦ π is defined.

Note that A has only one row of vertices at the bottom, which will be labelled 1, . . . , 2r
from left to right. Choose a subset S of [1, 2r] of cardinality 2n+ 1 as in Lemma 4.4, and
consider SymS ⊂ Sym2r ⊂ B

2r
2r (−2n). Define

AS =
∑

π∈SymS

A ◦ π. (5.1)

Then by Theorem 4.6, or equivalently Theorem 4.8(2), KerF 0
2r is spanned by AS for all

A and S. Given AS , we define

A
\
S = AS ◦ (Ir ⊗ Ur) ∈ B

r
r (−2n).

Then KerF rr is spanned by A\S for all A and S by Lemma 3.6(2).
We can considerably simplify the description of KerF 0

2r and KerF rr . There exist ele-
ments σ = (σ1, σ2) in the parabolic subgroup Symr × Symr of Sym2r , which map S to
S′ = {i+1, i+2, . . . , i+2n+1} ⊂ [1, 2r] for some i ≤ 2r−2n−1. Let σ−τ2 = ∗(σ−1

2 ),
where ∗ is the anti-involution of Brr (−2n). Then

σ−τ2 ◦ A
\
S ◦ σ

−1
1 = (AS ◦ σ

−1)\, AS ◦ σ
−1
=

∑
π∈SymS′

(A ◦ σ−1) ◦ π. (5.2)

By appropriately choosing σ , we can ensure that A ◦ σ−1 is of the form shown in
Figure 11. The vertices labelled by • are those in S′, which all appear in the middle, and
the other vertices all appear at the left end and right end. Here t denotes the number of
edges inA◦σ−1 with both vertices in {1, . . . , i}, and t ′ that of the edges with both vertices
in {i + 2n+ 2, i + 2n+ 3, . . . , 2r}. Note that after such a σ is chosen, π ∈ SymS′ acting
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...

...
t

...
t ′• •

...
• •

... ...
• •

... ...

Fig. 11

on A ◦ σ−1 permutes only vertices labelled by •. Thus every term on the right hand side
of (5.2) is of the form of Figure 11 with the same t and t ′.

Now (AS◦σ−1)\ can be expressed asD1⊗D2, whereD1 ∈ B
r1
r1 (−2n) for r1 maximal,

D2 ∈ B
k
k (−2n) with k > n satisfying r1 + k = r . There are several possibilities for D2

depending on i, t and t ′. Assume i+2n+1 > r . If t = t ′, thenD2 is as shown in Figure 12.

2n+ 1

...
q

p − q
... ...

...

...
p

Fig. 12

If t < t ′, thenD2 = E◦(Is⊗D3) for some s, whereD3 is as shown in Figure 12, andE is
the product of some ei’s composed with a permutation in Sym2n+1+q−p (D3 and E may
not be unique). Analogously, D2 = (D3 ⊗ Is) ◦E if t > t ′. Assume that i + 2n+ 1 ≤ r .
Then D2 = E ◦ (Is1 ⊗6(2n+ 1)⊗ Is2) for some E in Bkk (−2n), and fixed non-negative
integers s1 and s2 satisfying s1 + s2 + 2n+ 1 = k.

Therefore, KerF rr is generated as a two-sided ideal of Brr (−2n) by elements of the
form of Figure 12 with 2n + 1 + q − p ≤ r . If p > n, we apply the anti-involution ∗
of Bkk (−2n) to the element of Figure 12 to obtain the element shown in Figure 13, which
we denote by D. Recall the element Xs,t of Figure 6, which belongs to Syms+t , where
Syms+t is regarded as embedded in Bs+ts+t (−2n). Then X2n+1−p,q ◦D ◦X2n+1−2p+q,p is
of the form shown in Figure 12, but with p replaced by 2n+ 1− p ≤ n.

2n+ 1

...q
p − q

...

......
p

...

Fig. 13

Therefore, we only need to consider Figure 12 with p ≤ n and its ∗ image. Post-
composing X2n+1−p,q to Figure 12 turns the latter into the form shown in Figure 10.
Since X2n+1−p,q is invertible in Brr (−2n), KerF rr as a two-sided ideal of Brr (−2n) is
generated by elements ofD(p, q) and ∗D(p, q) with 2n+1+q−p ≤ r and p ≤ n. ut
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5.2. The element 8

For each k such that 0 ≤ k ≤ [(n+ 1)/2], define the element E(k) =
∏k
j=1 en+2−2j of

Bn+1
n+1 (−2n), where E(0) is the identity by convention. Then define

4k = 6(n+ 1)E(k)6(n+ 1),

which may be represented pictorially as

...

n+ 1

... ...
k...

n+ 1

...

Now define the following element of Bn+1
n+1 (−2n):

8 =

[(n+1)/2]∑
k=0

ak4k with ak =
1

(2kk!)2(n+ 1− 2k)!
. (5.3)

Lemma 5.2. The element 8 is the sum of all the Brauer diagrams in Bn+1
n+1 (−2n). In

particular 8 is defined over the ring Z of integers.

Proof. Note that 4k =
∑
(π,σ )∈(Symn+1)

2 πE(k)σ is simply the sum of all the diagrams
with t = n+1−2k through strings, each one occurring with coefficient equal to the order
of the centraliser in (Symn+1)

2 of E(k). But this order is evidently a−1
k . ut

We have the following result.

Lemma 5.3. The element 8 has the following properties:

(1) ei8 = 8ei = 0 for all ei ∈ Bn+1
n+1 (−2n);

(2) 82
= (n+ 1)!8;

(3) ∗8 = 8;
(4) 8 ∈ KerF n+1

n+1 .

Proof. Part (3) follows from the fact that ∗4k = 4k for all k. Part (2) immediately
follows from (1).

Since ∗(ei ◦8) = 8 ◦ en+1−i , we only need to show that ei ◦8 = 0 for all i in order
to prove part (1). In view of the symmetrising property of 6(n + 1), it suffices to show
that en ◦8 = 0. Consider (In−1 ⊗ A1) ◦4k , which can be shown to be equal to
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−4k2

...

n− 1

... ...
k-1...

n+ 1

. . .

+ (n+ 1− 2k)(n− 2k)

...

n− 1

... ...
k...

n+ 1

. . .

(5.4)

by using Lemma 2.13 with δ = −2n. Note that each Brauer diagram summand of the
first term has n + 1 − 2k through strings, while the summands in the second term have
n− 1− 2k through strings. Using (5.4) one shows by simple calculation that∑

ak(In−1 ⊗ A1) ◦4k = 0.

Hence (In−1 ⊗ A1) ◦8 = 0, which implies statement (1).
To prove part (4), we note that the trace of F(8)/(n+ 1)! is equal to the dimension of

the subspace F(8)(V⊗(n+1)), since F(8)/(n+ 1)! is an idempotent by part (2). In order
to evaluate tr(F (8)/(n+ 1)!), we first consider tr(F (4k)/(n+ 1)!), which is given by

(−1)n+1
n+ 1

...k

...
k

... = (−1)n+1 (2n− 2k)!
(n− 1)! 2k

...k

...
k

where the last step uses Lemma 2.11(2) with ε = −1. Using (2.10), one can show that

2k

...k

...
k

= (−1)k22k n!k!

(n− k)!

Putting these formulae together, we arrive at

tr
(
F(8)

(n+ 1)!

)
=

n!

(n− 1)!

[(n+1)/2]∑
k=0

ak(−1)k22k k!(2n− 2k)!
(n− k)!

=

[(n+1)/2]∑
k=0

(−1)k
(
n

k

)(
2n− 2k
n− 1

)
.

There is a binomial coefficient identity stating that the far right hand side is equal to zero.
Hence F(8) is the zero map on V⊗(n+1). ut

The corollary below follows from Lemma 6.2 and the fact that π6(n+ 1)π ′ = 6(n+ 1)
for all π, π ′ ∈ Symn+1.
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Corollary 5.4. The element 8/(n + 1)! is the central idempotent in Bn+1
n+1 (−2n) which

corresponds to the trivial representation ρ1 of Bn+1
n+1 (−2n), defined by ρ1(si) = 1 and

ρ1(ei) = 0 for all i. It generates a 1-dimensional two-sided ideal of Bn+1
n+1 (−2n).

Remark 5.5. Another formula for 8/(n+ 1)! was given in terms of Jucys–Murphy ele-
ments in [IMO].

5.3. The main theorem

Recall the natural embedding of the Brauer algebra of degree s in that of degree t for any
t > s.

Definition 5.6. For each r > n, let 〈8〉r be the two-sided ideal in the Brauer algebra
Brr (−2n) generated by 8.

Remark 5.7. A priori, elements such as (Ir−q ⊗ Aq ⊗ Iq)(z ⊗ Xq,q)(Ir−q ⊗ Uq ⊗ Iq)
are not included in 〈8〉r even if z ∈ 〈8〉r .

We have the following result.

Lemma 5.8. The element 6(2n+ 1) belongs to 〈8〉2n+1.

Proof. Consider Brr (−2n) for r > n. Let Err (k) =
∏k
j=1 er−2j+1, and define

ϒ(r)k = 6(r)E
r
r (k)6(r), k ≥ 1,

ϒ(r)≥k = linear span of 〈8〉r ∪ {ϒ(r)i | i ≥ k}.

We first want to show that

6(r) ∈ ϒ(r)≥[(r+1−n)/2]. (5.5)

From the formula for 8, we obtain

r!(n+ 1)!6(r) = 6(r)
((
8−

[(n+1)/2]∑
k=1

ak4k

)
⊗ Ir−n−1

)
6(r).

Thus 6(r) ∈ ϒ(r)≥1.
Note that for any z ∈ ϒ(r − 2k)≥1, 6(r)(z ⊗ I2k)E

r
r (k)6(r) belongs to ϒ(r)≥k+1.

We can always rewrite ϒ(r)k as

ϒ(r)k =
1

(r − 2k)!
6(r)(6(r − 2k)⊗ I2k)E

r
r (k)6(r).

If r − 2k > n, then 6(r − 2k) ∈ ϒ(r − 2k)≥1. This implies that ϒ(r)k ∈ ϒ(r)≥k+1 if
r − 2k > n. Hence ϒ(r)≥1 = ϒ(r)≥2 = · · · = ϒ(r)≥[(r+1−n)/2], and (5.5) is proved.

Now consider 6(2n + 1). It follows from (5.5) that 6(2n + 1)2 can be expressed as
a linear combination of elements in 〈8〉2n+1 and also elements of the form

6(2n+ 1)E2n+1
2n+1(i)6(2n+ 1)E2n+1

2n+1(j)6(2n+ 1), i, j ≥ 1+ [n/2].
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Using the symmetrising property of 6(2n + 1), we can write this element as 6(2n + 1)
· (I2n+1−2i ⊗ Ui)9ij (I2n+1−2j ⊗ Aj )6(2n+ 1) with

9ij = (I2n+1−2i ⊗ Ai)6(2n+ 1)(I2n+1−2j ⊗ Uj ).

By Corollary 4.10,9ij = 0 for all i, j ≥ 1+[n/2]. Hence6(2n+1)2 belongs to 〈8〉2n+1,
and so does also 6(2n+ 1). ut

The following is one of the main results of this paper.

Theorem 5.9. The algebra homomorphism F rr : B
r
r (−2n) → HomSp(V )(V

⊗r , V⊗r) is
injective if r ≤ n. If r ≥ n+ 1, then KerF rr is the two-sided ideal of the Brauer algebra
Brr (−2n) which is generated by the element 8 defined by (5.3).

Proof. Only the second statement requires proof. Thus we assume that r ≥ n + 1. Con-
sider first the case r = n+ 1. Then there is only one D(p, q) with p = n and q = 0 (see
Figure 10). Using 6(n+ 1) = 8−

∑[(n+1)/2]
k=1 ak4k , we have

D(n, 0) =
D(n, 0)8
(n+ 1)!

−

[(n+1)/2]∑
k=1

ak
D(n, 0)4k
(n+ 1)!

.

Note that

D(n, 0)4k
(n+ 1)!

=

n ...

2n+ 1

... ...
k...

...
n

n+ 1

...

where the dotted line indicates that the diagram is the composition of the two diagrams
above and below the line. The diagram above the dotted line is the tensor product of an
element in 〈6(2n + 1)〉1n+1−2k with In. Since 〈6(2n + 1)〉1n+1−2k = 0 for all k ≥ 1 by
Corollary 4.10, we have D(n,0)4k

(n+1)! = 0. This proves D(n, 0) ∈ 〈8〉n+1.
Now we use induction on r to show that the theorem holds for r > n + 1. If p = 0,

the diagram corresponds to6(2n+1), which belongs to 〈8〉2n+1 by Lemma 5.8. Assume
n ≥ p ≥ 1, and let r = 2n+ 1− p+ q. Consider D(p, q) ◦6(2n+ 1− p) by using the
the formula

6(2n+ 1− p) =
((
8−

[(n+1)/2]∑
k=1

ak4k

)
⊗ In−p

)6(2n+ 1− p)
(n+ 1)!

.

We obtain an expression for D(p, q) of the form

D(p, q) =
∑
k≥1

ckD(p, q; k)+D
0, (5.6)

where ck are scalars, D0
∈ 〈8〉r , and
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D(p, q; k) =

...
p − q...

2n+ 1

... ...
k...

...
p

2n+ 1− p

... ...
q

The diagram D(p, q; k) is the composition of

D′ ⊗ | =

...
p − q...

...
q

2n+ 1

...

...
p − 1

with the following element of Br(−2n):

...
k......

2n+ 1− p

...
...
q

D
D
D
D
D
D
D
DD

D
D
D
D
D
D
D
DD

Note that D′ belongs to KerFr−1. Thus D′ ∈ 〈8〉r−1 by the induction hypothesis and it
follows that D(p, q; k) ∈ 〈8〉r . This completes the proof. ut

Remark 5.10. Any element which generates the kernel KerF n+1
n+1 = 〈8〉n+1 must be a

non-trivial scalar multiple of 8. It was proved in [HX] that for all r ≥ n + 1, KerF rr
is generated by a single generator belonging to KerF n+1

n+1 . Therefore, our 8 provides an
explicit formula for this generator (up to a scalar multiple). In particular, our Lemma 5.2
shows that limq→1 Yn+1 is the sum of all the Brauer diagrams in Bn+1(−2n), up to a
scalar multiple, where Yn+1 is as in [HX].

6. Structure of the endomorphism algebra: the orthogonal case

We now study the algebraic structure of KerF rr in the case of the orthogonal group.
Throughout this section, we take G = O(V ) with dimV = m and ε = 1.

6.1. Generators of the kernel

For p = 0, 1, . . . , m+ 1, let Em+1−p denote the element of the Brauer algebra Bm+1
m+1 (m)

of degree m+ 1 shown in Figure 14.
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Em+1−p =

...

...
p

m+ 1

...

...
p

Fig. 14

Lemma 6.1. For all 0 ≤ k ≤ m+ 1, the elements Ek are linear combinations of Brauer
diagrams over Z.

This is evident from the definition of these elements. They also have the following prop-
erties.

Lemma 6.2. (1) ∗Ep = Em+1−p for all p.
(2) FpEp = EpFp = p!(m+ 1− p)!Ep.
(3) eiEp = Epei = 0 for all i ≤ m.

Proof. Both (1) and (2) follow easily from the pictorial representation of Ep given in
Figure 14. If i 6= p, then eiFp = Fpei = 0. Thus (3) holds for all i 6= p. The i = p case
of (3) follows from the fact that

m+ 1

· · ·

· · ·

= 0

which is implied by Lemma 2.11(2) when r = m+ 1 and ε = 1. ut

The arguments used in the proof of [LZ4, Corollary 5.13] lead to

Corollary 6.3 ([LZ4]). Let D be any diagram in Bm+1
m+1 (n) which has fewer than m+ 1

through strings. Then DEi = EiD = 0 for all i.

Note that E0 = Em+1 = 6+1(m+ 1).

Problem 6.4. Assume r > m. As a two-sided ideal of the Brauer algebra Brr (m), KerF rr
is generated by Ep for all 0 ≤ p ≤ m+ 1.

Proof. The proof of Proposition 5.1 can easily be modified to prove the assertion above.
The two required modifications are that for any (2r, 0) Brauer diagram A with associated
invariant functional γ = F(A), (i) the definition (5.1) of AS needs to be changed to

AS =
∑

π∈SymS

(−1)|π |A ◦ π;

(ii) we only need to consider subsets S of [1, 2r] which will not lead to the trivial vanish-
ing of AS discussed in Remark 4.5(i). With these modifications, the arguments following
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m+ 1

...
p

...

...

...
p

Fig. 15

(5.1) may be repeated verbatim, leading to the conclusion that KerF rr is generated as a
two-sided ideal of Brr (−2n) by elements of the form of Figure 15.

Postmultiplying the diagram in Figure 15 by the invertible element Xm+1−p,p , we
obtain Figure 14 up to a sign. This completes the proof. ut

Remark 6.5. Figure 15 is the p = q analogue of Figure 12. In the present case, diagrams
of the form Figure 12 with p > q vanish identically, since 6+1(m + 1) is the total
antisymmetriser in Symm+1.

6.2. Formulae for the Ei

If k, l are integers such that 1 ≤ k < l, write A(k, l) := 6+1(Sym{k,k+1,...,l}) for the
total antisymmetriser in Sym{k,k+1,...,l}. By convention, A(k, l) = 1 if k ≥ l. Represent
A(1, t)A(t + 1, t + s) in B t+st+s (m) pictorially by

t

...

...

s

...

...

The lemma below is the graphical reformulation of some of the computations in the proofs
of [LZ4, Corollary 5.2 and Theorem 5.10].

Lemma 6.6. For all k = 0, 1, . . . , i,

i

...

... ...
k

m+ 1− i

...

...

= k2 i − 1

...

... ...
k − 1

m− i

...

...

+ ζi,k

i − 1 m− i

i − k j

... ...

... ...

... ...

... k

(6.1)
where j = m+ 1− i − k and ζi,k = 1

(i−k−1)!(m−i−k)! .
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Proof. When k = 0, (6.1) is an identity.
We use Lemma 2.11(1) twice to obtain

t

...

... ...

...

s =ψt,s t − 1

...

...

s − 1

...

...

+ φt,s

t − 1 s − 1

t − 1 s − 1

... ...

... ...

... ...
(6.2)

where

ψt,s = m+ 2− t − s, φt,s =
1

(t − 2)!(s − 2)!
.

The case k = 1 of (6.1) can be obtained by setting t = i and s = m+ 1− i.
Now use induction on k. Postcomposing Ii−k−1 ⊗ U ⊗ Im−i−k to (6.1) we obtain

i

...

... ...
k + 1

m+ 1− i

...

...

= k2 i − 1

...

... ...
k

m− i

...

...

+ ζi,k

i − 1 m− i

i − k j

... ...

... ...

... ...

... k

By using (6.2) in the bottom half of the second diagram on the right hand side, we obtain
(6.1) for k + 1, completing the proof. ut

Following [LZ4, §4.2], we introduce the elements

Fp := A(1, p)A(p + 1, m+ 1)

of Bm+1
m+1 (m) for p = 0, 1, . . . , m + 1, where F0 is interpreted as A(1, m + 1). For

j = 0, 1, . . . , i, define ei(j) = ei,i+1ei−1,i+2 . . . ei−j+1,i+j . Note that ei(0) = 1 by
convention. We have the following formulae for the Ei .

Lemma 6.7. For i = 0, 1, . . . , m+ 1, let mini = min(i,m+ 1− i). Then

Ei =

mini∑
j=0

(−1)j ci(j)4i(j) with 4i(j) = Fiei(j)Fi, (6.3)

where ci(j) =
(
(i − j)!(m+ 1− i − j)!(j !)2

)−1.

Remark 6.8. For 0 ≤ i ≤ [(m+ 1)/2], the lemma states that the Ei are the elements
defined in [LZ4, Definition 4.2] with the same notation.
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Proof. We have ∗4i(j) = 4m+1−i(j). For i ≤ [m/2],

∗

(mini∑
j=0

(−1)j ci(j)4i(j)
)
=

mini∑
j=0

(−1)j cm+1−i(j)4m+1−i(j),

since ci(j) = cm+1−i(j). Therefore, equation (6.3) will hold for all i by Lemma 6.2(1),
if we can show that it holds for 0 ≤ i ≤ [m/2]. This will be done in two steps.

(i) We first show that for each i ≤ [m/2], there exist scalars xi(j) such that

Ei =

i∑
j=0

xi(j)4i(j).

The case i = 0 is obvious as we have E0 = A(1, m + 1). Thus we only need to
consider the case with i ≥ 1.

Let us label the vertices of Ei (see Figure 14) in the bottom row by 1, . . . , m + 1
from left to right, and those in the top row by 1′, . . . , (m+ 1)′ from left to right. Let L =
{1, . . . , i}, R = {i + 1, . . . , m+ 1}, L′ = {1′, . . . , i′} and R′ = {(i + 1)′, . . . , (m+ 1)′}.
Since A(1, m + 1) has through strings only, a Brauer diagram in Ei can only have the
following types of edges (an edge is represented by its pair of vertices):

(a, t) ∈ L× R, (a′, t ′) ∈ L′ × R′,

(a′, b) ∈ L′ × L, (s′, t) ∈ R′ × R,

and the numbers of edges in L × R and in L′ × R′ must be equal. Thus it follows from
Lemma 6.2(2) and the antisymmetrising property of A(1, i) and A(i + 1, m+ 1) that Ei
is a linear combination of 4i(j).

(ii) To determine the scalar xi(0), we observe that the terms in A(1, m+ 1) which do
not contain si make up Fi = A(1, i)A(i + 1, m+ 1). Note that

p

...

...

= p

...

...

Thus xi(0)4i(0) = A(1, i)A(i+1, m+1), and hence xi(0) = (i!(m+1−i)!)−1
= ci(0).

Now we determine the xi(k) for all k > 0. By Lemma 6.2(3), eiEi = 0. Using (6.1)
in this relation, we obtain

(k + 1)2xi(k + 1)+ (i − k)!(m+ 1− i − k)!ζi,kxi(k) = 0, 0 ≤ k ≤ i.

The recurrent relation with xi(0) = ci(0) yields xi(k) = (−1)j ci(k). ut

The following result is an easy consequence of Lemma 6.7. Recall the elements Xs,t ∈
Syms+t shown in Figure 6.

Corollary 6.9. For all i = 0, 1, . . . , m+ 1, we have Xi,m+1−iEiXm+1−i,i = Em+1−i .

Proof. It is easy to show pictorially that Xi,M+1−i4i(j)Xm+1−i,i = 4m+1−i(j) for all
j ≤ i. Since ci(j) = cm+1−i(j), this proves the claim of the corollary. ut
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6.3. The main theorem

The following theorem is Theorem 4.3 in [LZ4], which is the main result of that paper.

Theorem 6.10 ([LZ4]). The algebra map F rr : B
r
r (m) → HomO(V )(V

⊗r , V⊗r) is in-
jective if r ≤ m. If r > m, the two-sided ideal KerF rr of the Brauer algebra Brr (m) is
generated by the element E = E` with ` = [(m+ 1)/2].

Proof. Only the second part of the theorem needs explanation. By Proposition 6.4 and
Corollary 6.9, the elements Ei with i = 0, 1, . . . , ` = [(m+ 1)/2] generate KerF rr .
Using some general properties of the symmetric group and Corollary 6.3, we showed in
[LZ4, §7] that Ei−1 is contained in the ideal generated by Ei for each i = 1, . . . , `. The
theorem follows. ut

7. The case of positive characteristic

The following statement is an immediate consequence of [RS, Theorem 2.3].

Lemma 7.1. Let n, r ∈ Z>0. The following are equivalent for the Brauer algebras
over Z.

(1) The Brauer algebra Br(n) is semisimple.
(2) The Brauer algebra Br(−2n) is semisimple.
(3) r ≤ n+ 1.

It follows from this that n + 1 is the largest value of r such that Br(n) and Br(−2n)
are semisimple. The idempotents we have found are thus each in the ‘last’ Brauer algebra
which is semisimple. This is in complete analogy with the situation in the Temperley–Lieb
algebra when q is a root of unity, where the radical of the Jones trace function is the idem-
potent corresponding to the trivial representation of the ‘last’ semisimple Temperley–Lieb
algebra (see [GL96, Cor. 3.7, Remark 3.8]).

Note that our basic setup in this paper remains the same over the ring Z of integers.
Since we will deal with the orthogonal and symplectic groups simultaneously in this
section, we write the functor F as Fε : B(εm) → TG(V ), and F lk as F lε,k for easy
reference. Recall that m = dimV and ε = −1 if G = Sp(V ) and ε = 1 if G = O(V ).
We also set d = m/2 if ε = −1, and d = m if ε = 1.

By Lemmas 5.2 and 6.1, the element8 defined by equation (5.3) and the elements Ek
(0 ≤ k ≤ [(m+ 1)/2]) of Lemma 6.2 are linear combinations of Brauer diagrams over Z.

Lemma 7.2. We have 8 ∈ KerF r
−1,r and Ek ∈ KerF r1,r ( for all k) over any field K .

Proof. For the elementsEk , the claim immediately follows from their definition and from
Theorem 7.3(2) below. It was also proved in [LZ4].

Next note that by Lemma 5.2, 8 is defined over Z. It follows from Lemma 7.1 that
Br(−2n) is semisimple over K , and KerF r

−1,r is the two-sided ideal of Br(−2n) cor-
responding to the one-dimensional simple module. The element 8 is a central quasi-
idempotent contained in this two-sided ideal. ut
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The following result is a generalisation of Theorem 4.8 to fields of positive characteristic.

Theorem 7.3. Over any field K with char(K) ≥ m+ 2,

(1) the functor Fε : B(εm)→ TG(V ) is full;
(2) the map F `ε,k is injective if k + ` ≤ 2d , and KerF `ε,k = 〈6ε(m+ 1)〉`k if k + ` > 2d.

Proof. In the orthogonal case, this was proved in [LZ4, Theorem 9.4] as an application
of [Ri, Prop. 21]. Although the symplectic case is surely in the literature, we have been
unable to find it, and therefore we provide the following sketch of the argument, which
may be found in [ALZ]. Note that it gives a proof of the second fundamental theorem in
positive characteristic for the symplectic groups.

Let R = Z[((m + 1)!)−1
]. Then we may consider the symplectic Lie algebra GR

over R, and the corresponding R-forms VR and BR = (Br(−m))R . Note that by Lemma
5.2 we may regard 8 as an element of BR . It is shown in [ALZ] that if M is a tilt-
ing module for GR and K is a field with φ : R → K a ring homomorphism, then
EndGK

(M ⊗R K) ' EndGR
(M) ⊗R K . It also follows from [ALZ] that VR ⊗ V ∗R

is a tilting module. This implies (cf. [ALZ, Cor. 3.4]) that dimK(BR/〈8〉) ⊗R K =

dimC(Br(−m)/〈8〉) = dim EndGK
(V⊗rK ), and the result follows. ut

Scholium 7.4. Let K be a field with char(K) ≥ m + 2. Then the kernel of the algebra
homomorphism F rε,r : Br(εm)→ EndG(V⊗r) as a two-sided ideal in the Brauer algebra
is generated by8 in the case of the symplectic group (i.e., ε = −1), and by E = E` with
` = [(m+ 1)/2] in the case of the orthogonal group (i.e., ε = 1).

Remark 7.5. Recent results of Hu and Xiao show that Scholium 7.4 is valid for all fields
K such that char(K) > 2.

8. Quantum analogues

8.1. Background

Let U+q (resp. U−q ) be the quantised enveloping algebra in the sense of [LZ1, §6] of the
Lie algebra om(C) (see [LZ1, 8.1.2] for the definition) (resp. spm(C)), over the field
K = C(q), where in the latter case we require that m = 2n is even. Write Aq for the
subring of C(q) consisting of all rational functions with no pole at q = 1. Denote by
Vq = Km the quantum analogue of the natural representation of Uq . The study of the
endomorphism algebras EndUq (V

⊗r
q ) is closely analogous to the classical case we have

been considering, which may be thought of as the limit as q → 1 of the quantum case, in
a way we shall shortly make precise.

In particular, there are homomorphisms from certain specialisations of the Birman–
Murakami–Wenzl algebra BMWr(q) to EndUq (V

⊗r
q ), and the classical case is essentially

the limit of the quantum case in the sense that limq→1 BMWr(q) = Br , the Brauer alge-
bra. Let us recall the details (see [LZ2, §4]). Let y, z be indeterminates over C and write
A = C[y±1, z]. The BMW algebra BMWr(y, z) over A is the associative A-algebra with
generators g±1

1 , . . . , g±1
r−1 and e1, . . . , er−1, subject to the following relations:
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• the braid relations for the gi :

gigj = gjgi if |i − j | ≥ 2,
gigi+1gi = gi+1gigi+1 for 1 ≤ i ≤ r − 1;

(8.1)

• the Kauffman skein relations:

gi − g
−1
i = z(1− ei) for all i; (8.2)

• the de-looping relations:
giei = eigi = yei,

eig
±1
i−1ei = y

∓1ei,

eig
±1
i+1ei = y

∓1ei .

(8.3)

The next four relations are easy consequences of the previous three:

eiei±1ei = ei, (8.4)

(gi − y)(g
2
i − zgi − 1) = 0, (8.5)

ze2
i = (z+ y

−1
− y)ei, (8.6)

−yzei = g
2
i − zgi − 1. (8.7)

It is easy to show that BMWr(y, z) may be defined using the relations (8.1), (8.3),
(8.5) and (8.7) instead of (8.1), (8.2) and (8.3), i.e. that (8.2) is a consequence of (8.5)
and (8.7).

8.2. Specialisations and integral forms

Now in both the orthogonal and symplectic cases, Vq is the simple Uq -module corre-
sponding to the highest weight ε1 using the standard notation for the weights as in [Bour],
and we have the following decomposition of V⊗2

q :

Vq ⊗ Vq = L2ε1 ⊕ Lε1+ε2 ⊕ L0, (8.8)

where Lλ is the simple module corresponding to the dominant weight λ, and L0 is the
trivial module. The eigenvalues of the R-matrix Ř on the respective components are as
follows (see [LZ1, (6.12)]):

Uq(om) : q,−q−1, q1−m
; Uq(spm) : q,−q

−1,−q−1−m.

Now define two C-algebra homomorphisms ψ± : A → Aq as follows: ψ+(y) =
q1−m, ψ+(z) = q − q−1, ψ−(y) = −q−1−m, ψ−(z) = q − q−1. We then obtain
two Aq -algebras BMW±r (q) := Aq ⊗ψ± BMWr(y, z), and we write BMW±r (K) :=
K⊗ι BMW±r (q), where ι is the inclusion of Aq into K.

It follows from (8.6) that in these two specialisations, we have e2
i = δ

±(q)ei , where
δ+(q) = [m− 1]q + 1 and δ−(q) = −([m+ 1]q − 1). Here we use the standard notation
for q-numbers: for any integer t , [t]q =

q t−q−t

q−q−1 .
It is a consequence of [LZ1, Theorem 7.5] that we have surjective homomorphisms

BMW±r (K)
ηq
−→ EndU±q (V

⊗r
q ). (8.9)
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To relate the above statement to the classical (q = 1) case, it was shown in [LZ1,
§8.2] that Uq and the modules V⊗rq have Aq -forms Uq(Aq), V⊗rq (Aq) such that Uq(Aq)

acts on V⊗rq (Aq), and the projections to the components in (8.8) are defined over Aq ,
so that the decomposition (8.8) is compatible with the Aq forms. We may therefore take
limq→1 := C ⊗ψ1 − of all Aq -modules in (8.9), where ψ1 : Aq → C takes q to 1. It
is well known that limq→1 Uεq = spm(C) if ε = −1, and om(C) if ε = +1, and that
limq→1 BMWε

r (q) = Br(εm). In the proof of the next result we shall make extensive
use of the cellular structure of BMWε

r (q) and its relationship to the cellular structure of
Br(εm), as described in [LZ2, Proposition 7.1].

We therefore recall the following facts.

Lemma 8.1 ([LZ2, Proposition 7.1]).

(1) For each r , the algebras BMWε
r (q) and Br(εm) have a cellular structure with the

same cell datum (3,M,C).
(2) The structure constants of Br(εm) are obtained from those of BMWε

r (q) by putting
q = 1.

(3) For each λ ∈ 3, denote the cell module of BMWε
r (q) by Wq(λ) and that of Br(εm)

by W(λ). Then W(λ) = limq→1Wq(λ) = C⊗ψ1 Wq(λ); further, the Gram matrix of
the canonical form on W(λ) is obtained from that of Wq(λ) by setting q = 1, as is
the matrix of limq→1 b ∈ Br(εm) from that of b.

The main result of this section is the following.

Theorem 8.2. (i) With notation as above, suppose 8 is an idempotent in Br(εm) such
that the ideal 〈8〉 is equal to Ker(η : Br(εm)→ EndG(V⊗r)). Suppose that 8q ∈
BMWε

r (q) is such that

(1) 82
q = f (q)8q where f (q) ∈ Aq .

(2) limq→18q = c8, where c 6= 0.

Then 8q generates Ker(ηq : BMWε
r (q)→ EndUq (V

⊗r
q )).

(ii) In the symplectic case, BMW−d+1(K) is semisimple, and the kernel of ηq is gener-
ated by the idempotent corresponding to the trivial representation of BMW−d+1(K),
where m = 2d.

(iii) In the orthogonal case, there is an idempotent in BMW+m+1(q) which generates
Ker(ηq).

Proof. It is clear from Lemma 8.1 that rankAq
〈8q〉 ≥ dimC〈8〉 (this also follows from

the fact that limq→1 BMWε
r (q)8qBMWε

r (q) = Br(εm)8Br(εm)), and hence

dimK(BMWε
r (K)/〈8q〉) ≤ dimC(Br(εm)/〈8〉).

It follows that if we knew that 8q ∈ Ker(ηq), then

dimC(Br(εm)/〈8〉) ≥ dimK(BMWε
r (K)/〈8q〉)

≥ dimK(BMWε
r (K)/Ker(ηq)) = dimC(Br(εm)/〈8〉),

whence (i) follows. Hence we turn to the proof that 8q ∈ Ker(ηq).
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Let Mq = V⊗rq and M = V⊗r = limq→1Mq . We wish to show that 8qMq = 0.
Now limq→18qMq = c8M = 0. It follows that 8qMq ⊆ (q − 1)Mq . We shall show
that 8qMq ⊆ (q − 1)iMq for each integer i, which will show that 8qMq = 0.

Assume that 8qMq ⊆ (q − 1)iMq ; then operating by 8q , we obtain 82
qMq =

f (q)8qMq ⊆ (q − 1)i+1Mq . But f (q) is not divisible by q − 1, since limq→18
2
q =

c28 = f (1)8 6= 0. Hence 8qMq ⊆ (q − 1)i+1Mq , and it follows by induction that
8qMq ⊆ (q − 1)iMq for all i, completing the proof of (i).

(ii) We are now in the symplectic case, and by Theorem 5.9, the idempotent 8 ∈
Bd+1(−m) which corresponds to the trivial representation generates Ker(η). Since the
Gram matrix G(W(λ)) of the cell module W(λ) of Bd+1(−m) is obtained from the
Gram matrix G(Wq(λ)) of the corresponding cell module of BMW−d+1(q) by taking
limq→1, it follows that since the former is non-singular for each λ, so is the latter. Hence
BMW−d+1(q) is semisimple. Hence there is a central idempotent 8̃q ∈ BMW−d+1(K)
which corresponds to the trivial representation. This is characterised by the property
that ei8̃q = 8̃qei = 0 and gi8̃q = 8̃qgi = q8̃q for all i. Now there is an element
f (q) ∈ Aq such that f (q)8̃q ∈ BMW−d+1(q) and f (1) 6= 0. Write8q = f (q)8̃q . Using
an argument by descent similar to that used above, it is easily shown that limq→18q 6= 0,
i.e. 8q 6∈ (q − 1)BMW−d+1(q).

If we write σi ∈ Br(−m) for the transposition (i, i + 1), then with a slight abuse of
notation, we have limq→1(gi) = σi and limq→1 ei = ei . Taking limits, the relations above
show that 81 := limq→18q is central in Bd+1(−m) and satisfies ei81 = 81ei = 0 and
σi81 = 81σi = 81 for all i. It follows that 81 = c8, for some non-zero scalar c, and
hence by (i), that 8q generates Ker(ηq).

(iii) In the orthogonal case, it follows from Theorem 6.10 that Ker(η) is generated
by an idempotent element 8 ∈ Bm+1(m), which may be taken to be a scalar multiple
of E`. Now Bm+1(m) is semisimple, and hence there are primitive central idempotents
I1, . . . , Is ∈ Bm+1(m) such that I1 + · · · + Is = 1. Hence 8 = 8I1 + · · · + 8Is .
Suppose without loss of generality that 8Ij 6= 0 if j ≤ t , and 8Ij = 0 if j > t .
Then the ideal generated by 8 is equal to that generated by 9 := I1 + · · · + It . For
clearly 〈8〉 ⊆ 〈I1 + · · · + It 〉, but conversely if 8Ij 6= 0, the two-sided ideal generated
by8Ij includes the simple ideal generated by Ij , and hence Ij itself. So 〈I1+· · ·+ It 〉 ⊆

〈I1, . . . , It 〉 ⊆ 〈8〉.
We shall show that there is an element 9q ∈ BMW+m+1(q) with properties analogous

to those of 8q in (i), but for 9. First observe that by the same agrgument as in (ii) (using
Lemma 8.1) the algebra BMW+m+1(q), and hence BMW+m+1(K), whose cell modules
have the same Gram matrices, is semisimple. It follows that there are unique primitive
central idempotents 81,q , . . . , 8t,q ∈ BMW+m+1(K) which correspond to the same cells
as 81, . . . , 8t respectively (recall that 3 parametrises the cells of both BMW+m+1(K)
and Bm+1(m), and hence also their minimal two-sided ideals). For each i, there is an
element fi(q) ∈ Aq such that fi(q)9i,q ∈ BMW+m+1(q). Using the same argument as
in (ii), one may choose fj (q) so that limq→1 fj (q)9j,q = fj (1)Ij 6= 0. Then 9q :=
f1(q) . . . ft (q)(81,q + · · · + 8t,q) ∈ BMW+m+1(q), and satisfies: (i) 92

q = F(q)9q ,
where F(q) = f1(q) . . . ft (q) and (ii) limq→19q = F(1)9. It now follows from (i) that
9q generates Ker(ηq). ut
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We remark finally that Hu and Xiao [HX] have also contributed to the subject of this
section.

8.3. Further comments

The invariant theory of quantum groups [D, L] in a broad sense has been extensively
studied. One aspect of it is the quantum group theoretical construction [R, RT, ZGB] (see
[T2] for a review) of the Jones polynomial of knots [J] and its cousins. It was in this
context that the braided monoidal category structure of the category of quantum group
representations rose to prominence.

In the quantum case, the appropriate replacement for the category of Brauer diagrams
is the category of (non-directed) ribbon graphs [RT, T2], also known as the category of
framed tangles. The Reshetikhin–Turaev functor [RT] gives rise to a full tensor functor
from this category to the category of tensor representations of the symplectic quantum
group, or the orthogonal quantum group defined in [LZ1]. This is the quantum analogue
of Theorem 4.8(1).

The FFT of invariant theory for quantum groups is best understood in terms of endo-
morphism algebras (see e.g. [DPS, LZ1]). However, in order to establish a quantum ana-
logue of FFT in the polynomial formulation, one has to go beyond commutative algebra
and consider quantum group actions on noncommutative algebras. This was developed
in [LZZ].

Appendix. Proof of Theorem 2.6

We first prove (1). The fact that the elementary Brauer diagrams I,X, A and U generate
all Brauer diagrams under the operations of ◦ and⊗may be seen as follows. Fix the nodes
of an arbitrary diagram D from k to `, and draw all the arcs as piecewise smooth curves,
in such a way that there are at most two arcs through any point, and no two crossings or
turning points have the same vertical coordinate. We may now draw a set of horizontal
lines (possibly after a small perturbation of the diagram) such that

(i) no line is tangent to any of the arcs,
(ii) between successive lines there is precisely one crossing or turning point.

Then the part of the diagram between successive lines may be thought of as the⊗-product
of the four generators, all except one being equal to I . Thus we have exhibitedD as a word
in the generators, of the form D = D1 ◦ · · · ◦Dn, where each Di is of the form

Di = I
⊗r
⊗ Y ⊗ I⊗s, (A.1)

with Y being one of A, U or X. Such an expression will be called a regular expression,
and the factors Di elementary diagrams. A product of elementary diagrams in which
Y = X for each factor will be called a permutation diagram. An example of a particular
regular expression is given in Figure 16.

This completes the proof of (1).
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... ... ...

Fig. 16. Regular expression.

We now turn to the proof that the stated relations form a complete set. Observe first
that any expression for a diagram D as a word in the generators provides a regular ex-
pression for D by repeated use of the relation (2.2) and its dual. Accordingly we say that
two regular expressions D,D′ are equivalent, and write D ∼ D′, if one can be obtained
from the other by a sequence of applications of the relations in part (2) of the theorem.
This is clearly an equivalence relation on regular expressions.

However, a word in the generators does not in general yield a Brauer diagram, but
rather a diagram multiplied by δk for some non-negative integer k, where k is the number
of deleted loops. For any Brauer diagram D and any N ∈ Z+, the above argument shows
that we can always represent δND as a word in the generators, and hence also as a regular
expression. We therefore need to work with morphisms of the form δND, where D is a
diagram. We refer to such a morphism as a scaled Brauer diagram, or simply a scaled
diagram. Every Brauer diagram is clearly a scaled diagram.

The discussion above shows that to prove the theorem, it will suffice to show that

any two regular expressions for a scaled diagram are equivalent. (A.2)

We shall extend the notion of equivalence to any expression of the formD1 ◦ · · · ◦Dn,
where the Di are diagrams.

Definition A.1. The two compositions D1 ◦ · · · ◦ Dn and D′1 ◦ · · · ◦ D
′
m are said to be

equivalent if one can be obtained from the other using only the relations in Theorem
2.6(2), and the properties of ◦ and ⊗.

To prove (A.2) we require some analysis of regular expressions and equivalence. We shall
return to the proof after carrying this out.

Definition A.2. (1) The valency of a scaled diagram D ∈ B lk is the pair (k, l).
(2) IfD = I⊗r ⊗ Y ⊗ I⊗s is elementary, the abscissa a(D) ofD is r + 1, while the type

t (D) = Y (= A,U or X).
(3) The length of a regular expression E1 ◦ · · · ◦ En is n.

We shall repeatedly apply the following elementary observation, which we refer to as the
‘commutation principle’.

Remark A.3. (1) Let E1, E2 be elementary diagrams such that E1 ◦ E2 makes sense.
If |a(E1) − a(E2)| > 1 then E1 ◦ E2 ∼ E

′

1 ◦ E
′

2, where t (E′1) = t (E2) and t (E′2)
= t (E1).
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(2) IfD,D′ are scaled diagrams of valency (k, l) and (k′, l′) respectively, thenD⊗D′ =
(I⊗l ⊗D′) ◦ (D ⊗ I⊗k

′

) = (D ⊗ I⊗l
′

) ◦ (I⊗k ⊗D′).

Part (2) of the remark states the obvious relations among diagrams depicted in Figure 17.

...

D

...

...

D′

...

=

...

D
...

...

D′

...

=

...

D

...

...

D′

...

Fig. 17. Commutativity.

This follows from the fact that (A ⊗ B) ◦ (A′ ⊗ B ′) ∼ (A ◦ A′) ⊗ (B ◦ B ′) for
A,A′, B, B ′ of appropriate valency, and the relation (2.2).

The next two results will be used in the reduction of the proof of Theorem 2.6(2) to a
single case.

Lemma A.4. Let P,Q be permutation diagrams of valency (l, l) and (k, k) respectively
and let D ∈ B lk be a scaled diagram. If any two regular expressions for P ◦ D ◦Q are
equivalent, then so are any two regular expressions for D.

Proof. Let D, D′ be two regular expressions for D, and suppose for the moment that P
is an elementary permutation diagram. Then P ◦D and P ◦D′ are regular expressions for
P ◦D, and hence are equivalent by hypothesis. Now P ◦P ◦D is a regular expression, and
it is evident that P ◦P ◦D is equivalent to P ◦P ◦D′. But from (2.3), P ◦P ◦D ∼ D and
P ◦P ◦D′ ∼ D′, whence D and D′ are equivalent. This proves the lemma for elementary
P and Q = id.

Applying the above statement repeatedly, we see that for any permutation diagram P ,
if any two regular expressions for P ◦D are equivalent, the same is true for D. A similar
argument applies to prove the corresponding statement for D ◦ Q, for any permutation
diagram Q. ut

It follows that in proving (A.2), we may pre- and postmultiplyD by arbitrary permutation
diagrams, and replace D by the resulting scaled diagram.

For the second reduction, we require the following definitions.

Definition A.5. (1) Define R : B lk → B l+1
k−1 (for k ≥ 1) (the raising operator) by

R(D) = (D ⊗ I ) ◦ (I⊗(k−1)
⊗ U), and (the lowering operator) L : B lk → B l−1

k+1
by L(D) = (I⊗(l−1)

⊗ A) ◦ (D ⊗ I ).
(2) If D = D1 ◦ · · · ◦ Dn is a regular expression for the scaled diagram D ∈ B lk , define

the regular expression R(D) for R(D) by R(D) = (D1 ⊗ I ) ◦ · · · ◦ (Dn ⊗ I ) ◦

(I⊗k−1
⊗ U), and similarly define the regular expression L(D) for L(D). Note that

if E is elementary, then so is E ⊗ I , so that the above definition makes sense.

Lemma A.6. (1) For any regular expression D for a scaled diagram D ∈ B lk , we have
R ◦ L(D) ∼ D and L ◦ R(D) ∼ D.
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(2) Suppose D is a scaled diagram of valence (k, l) with k ≥ 1. The regular expressions
D,D′ for D are equivalent if and only if L(D) and L(D′) (or R(D) and R(D′)) are
equivalent.

Proof. To prove (1), let D = E1 ◦ · · · ◦ En be a regular expression for D ∈ B lk . Then

R ◦ L(D) = R
(
(I⊗(l−1)

⊗ A) ◦ (E1 ⊗ I ) · · · ◦ (En ⊗ I )
)

= (I⊗(l−1)
⊗ A⊗ I ) ◦ (E1 ⊗ I ⊗ I ) · · · ◦ (En ⊗ I ) ◦ (I

⊗k
⊗ U)

∼ (I⊗(l−1)
⊗ A⊗ I ) ◦ (I⊗l ⊗ U) ◦ E1 ◦ · · · ◦ En by several applications of A.3

∼ I⊗l ◦ E1 ◦ · · · ◦ En by (2.8)
∼ E1 ◦ · · · ◦ En by (2.2)
= D.

Thus R ◦ L(D) ∼ D, and the proof that L ◦ R(D) ∼ D is similar.
Now to prove (2), suppose first that D,D′ are equivalent regular expressions for D.

Then the same sequence of moves using the relations in Theorem 2.6(2) which convert
D into D′ may be applied to L(D) to convert it into L(D′). This shows that if D,D′ are
equivalent regular expressions for D, then L(D), L(D′) are equivalent regular expres-
sions for L(D). A similar argument proves the corresponding statement for R(D).

To prove the converse, suppose that any two regular expressions for R(D) are equiv-
alent, and that D1 and D2 are two regular expressions forD. Then R(D1) and R(D2) are
two regular expressions for R(D), and hence by hypothesis are equivalent. Hence by the
above, L ◦ R(D1) and L ◦ R(D2) are two equivalent regular expressions for L ◦ R(D),
which is equal to D by (1). But by (1), L ◦ R(D1) ∼ D1 and L ◦ R(D2) ∼ D2, whence
D1 ∼ D2. ut

The following lemma is the key computation involving the relations in Theorem 2.6(2).

Lemma A.7. Let Ts := Es ◦Es−1 ◦ · · · ◦E0 be a regular expression, where t (E0) = U ,
a(E0) = a, t (Ei) = X and a(Ei) = a + i for i ≥ 1. The diagram Ts is shown in
Figure 16. Let E be an elementary diagram of type A or X which does not ‘commute
with’ Es ◦ Es−1 ◦ · · · ◦ E0, i.e. such that a − 1 ≤ a(E) ≤ a + s + 1. Then

(1) If t (E) = A, then E ◦ Ts is equivalent to a shorter regular expression unless s = 0
and a(E) = a(E0). In the latter case, E ◦ Ts is the identity multiplied by δ.

(2) Suppose t (E) = X. Then

(i) If a+ 1 ≤ a(E) ≤ a+ s − 1, then E ◦Ts ∼ Ts ◦E
′ for an elementary diagram

E′ of type X. (Thus E may be ‘moved through’ E ◦ Ts .)
(ii) If a(E) = a or a + s, then E ◦ Ts is equivalent to a shorter regular expression.

(iii) If a(E) = a − 1 or a + s + 1 then E ◦ Ts ∼ Ts+1.

(3) Let Ts be as above and let E be elementary of type A orX. Then E ◦Ts is equivalent
to a shorter regular expression ( possibly multiplied by δ) or to Ts ◦ E

′ for some
elementary E′, or to Ts+1.
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Proof. Consider first the case where t (E) = A.
If s = 0 and a(E) = a(E0), the claim follows from the loop removal relation (2.6).
If a(E) = a + s + 1, then (2.7) yields E ◦ Es ∼ E′ ◦ E′s , where t (E′) = t (E) = A,

t (E′s) = t (Es) = X, a(E′) = a + s and a(E′s) = a + s + 1. It now follows by repeated
application of Remark A.3 about commutation that E ◦ Ts ∼ E′′ ◦ Ts−1 ◦ E

′′′, where
t (E′′) = A and a(E′′) = a + s. Repeating this argument s times, we see that E ◦ Ts is
equivalent to a regular expression of length s+1 which includes F ◦E0 as a subexpression,
where t (F ) = A and a(F ) = a + 1. By (2.8), we see that F ◦ E ∼ I⊗k for some k, and
hence E ◦ Ts is equivalent to a regular expression of length s − 1.

If a(E) = a + s, then by (2.5), E ◦ Es ∼ E, and we have again shortened E ◦ Ts .
If a ≤ a(E) ≤ a + s − 1, then by commutation, E ◦ Ts is equivalent to a regular

expression with a subexpression of the form E ◦Ei ◦Ei−1, where t (Ei) = X and a(E) =
a(Ei) − 1. Applying (2.8), this is equivalent to an expression E′ ◦ E′i ◦ Ei−1, where
a(E′i) = a(Ei−1), and t (E′i) = X. Using either (2.3) (if i > 1) or the ∗ of (2.5), we again
reduce the length to show that E ◦ Ts is equivalent to a shorter regular expression.

Finally, if a(E) = a − 1, we use commutation to show that E ◦ Ts is equivalent to
a regular expression of length s + 1 with a subexpression of the form E′ ◦ E0, where
t (E′) = A and a(E′) = a − 1 = a(E0)− 1. Applying (2.8), we see that E′ ◦ E0 ∼ I

⊗k

for some k, and this completes the proof of (1).
Now consider the case where t (E) = X.
If a + 1 ≤ a(E) ≤ a + s − 1, then after applying the commutation rule, we see that

E ◦ Ts is equivalent to a regular expression of length s + 1 which has a subexpression of
the form E ◦ Ea(E)+1 ◦ Ea(E). But the braid relation (2.4) implies that this is equivalent
to E′ ◦ Ea(E) ◦ Ea(E)+1, where E′ = Ea(E)+1. Again using commutation, we may now
move the last factor below E0 (since a(E)+ 1 ≥ a+ 2). It follows that E ◦Ts ∼ Ts ◦E

′,
where t (E′) = X. This proves (i).

If a(E) = a + s + 1 then evidently E ◦ Ts = Ts+1. If a(E) = a + s, the relation
X ◦X = I ⊗ I (2.3) shows that E ◦Es ∼ I⊗r for some r , and hence E ◦Ts is equivalent
to a shorter regular expression. If a(E) = a − 1, then we may use commutation to see
that E ◦ Ts ∼ Es ◦ · · · ◦ E1 ◦ E ◦ E0. Using (2.7) we see that this is equivalent to
Es ◦ · · ·◦E1 ◦E1 ◦E

′

0, where t (E′0) = U . Applying (2.3), we see that E ◦Ts is equivalent
to a shorter regular expression. Finally, if a(E) = a, we again use commutation to see
that E ◦Ts is equivalent to Es ◦Es−1 ◦ · · · ◦E ◦E1 ◦E0. Again applying (2.7), we obtain
a factor E ◦ E, and applying (2.3), we again shorten the regular expression E ◦ Ts . This
completes the proof of (2).

The statement (3) is a summary of the previous two statements. ut

Completion of the proof of Theorem 2.6(2). It remains to prove (A.2). It follows from
Lemmas A.6 and A.4 that to complete the proof of the theorem, it suffices to prove (A.2)
for any scaled diagram which can be obtained fromD by raising or lowering, or multipli-
cation by a permutation diagram. It follows that we may take D to be the scaled diagram
D = δNU⊗r (N ∈ Z+). Hence we shall be done if we prove the following result:

Any two regular expressions for D = δNU⊗r are equivalent. (A.3)
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We shall prove (A.3) by induction on r , starting with r = 0. For convenience, we
adopt the following local convention:

• scaled diagrams will be simply called ‘diagrams’;
• a regular expression D is said to be δ-equivalent to another regular expression D′ if it

can be changed to δkD′ for some k ∈ Z+ by the relations in Theorem 2.6(2).

Let r = 0 and suppose D := D1 ◦ · · · ◦ Dn is a regular expression for the empty scaled
diagram δN in B0

0 . We need to show that D is δ-equivalent to the empty regular expres-
sion; we do this by showing that every non-empty regular expression for the empty scaled
diagram is δ-equivalent to one of shorter length.

Now by valency considerations, we must have D1 = A and Dn = U . Let i be the
least integer such that t (Di) = U ; then for all j < i, t (Dj ) = A or X. Applying Lemma
A.7 repeatedly, we see that since at least one of the Dj for j < i is of type A, D is
δ-equivalent to a shorter regular expression. This proves the result for r = 0.

Now take r > 0 and let D = D1 ◦ · · · ◦Dn be a regular expression for D. Then since
at least r of the Di must have type U , we have n ≥ r . Moreover if n = r , which can
happen only if N = 0, then the Di are all of type U , and have odd abscissa, and any such
regular expression represents D. Any two such regular expressions (which will be called
minimal) are equivalent by the commutation rule (see Remark A.3).

It therefore suffices to show that if n > r , then D is δ-equivalent to a shorter regular
expression.

Clearly we have t (Dn) = U ; if t (D1) = U then D′ := D2 ◦ · · · ◦ Dn is a regular
expression for U⊗(r−1), and we conclude by induction on r that D′ is δ-equivalent to a
shorter regular expression. Thus we are finished. Let p = p(D) be the least index such
that Dp is of type U . We have seen that if p = 1 then we are finished by induction. It
will therefore suffice to show that D is either equivalent to a regular expression D′ with
p(D′) < p(D), or is δ-equivalent to a shorter regular expression D′.

Thus we take p > 1; then t (Dp) = U , and t (Di) = A or X for i < p. We now apply
Lemma A.7 to conclude that either we may commute one of the Di (i < p) past Dp, or
D1 ◦ · · · ◦ Dp ∼ Tp−1 or at least one of the Di (i < p) is of type A. In the first case,
we obtain a regular expression with small p-value; in the second case, in the diagram
D1 ◦ · · · ◦Dn if the nodes are numbered 1, . . . , 2r from left to right, node a(Dp) would
be joined to node a(Dp)+ p. Hence p = 1, which has been excluded.

In the third case, suppose i is the largest index such that 1 ≤ i ≤ p − 1 and Di is of
type A. Then either some Dj (i ≤ j ≤ p − 1) can be commuted past Dp by application
of Remark A.3, or else we are in the situation of Lemma A.7(1). In the former case, we
have reduced p; in the latter, by the same remarkDi ◦ · · · ◦Dp is δ-equivalent to a shorter
regular expression.

We have now shown that either D is δ-equivalent to a shorter regular expression, or
equivalent to a regular expression which has the same length as D but a smaller p value.

This completes the proof of (A.3), and hence of Theorem 2.6. ut

Remark A.8. We note that to prove part (2) of the theorem, we could have proceeded
by regarding B(δ) as a quotient category of the category of (unoriented) tangles (see
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Remark 2.5) and deduce the relations among the generators of Brauer diagrams from a
complete set of relations among the generators of tangles given in [T1, §3.2] (suppressing
information about orientation). This way we obtain all relations except the one which
enforces the removal of free loops and multiplication by powers of δ, i.e., (2.6).
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