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Abstract. In recent papers we proved a special case of a variant of Pink’s Conjecture for a variety
inside a semiabelian scheme, namely for any curve inside anything isogenous to a product of two
elliptic schemes. Here we go beyond the elliptic situation by settling the crucial case of any simple
abelian surface scheme defined over the field of algebraic numbers, thus confirming an earlier con-
jecture of Shou-Wu Zhang. This is of particular relevance in the topic, also in view of very recent
counterexamples by Bertrand. Furthermore there are applications to the study of Pell equations over
polynomial rings; for example we deduce that there are at most finitely many complex t for which
there exist A,B 6= 0 in C[X] with A2

−DB2
= 1 forD = X6

+X+ t . We also consider equations
A2
−DB2

= c′X + c, where the situation is quite different.

Keywords. Torsion point, abelian surface scheme, Pell equation, Jacobian variety, Chabauty’s the-
orem

1. Introduction

Motivated by recent work on unlikely intersections, we consider here the following con-
jecture to be found in our recent article [MZ2].

Conjecture. Let S be a semiabelian scheme over a variety defined over C, and denote
by S[c] the union of its semiabelian subschemes of codimension at least c. Let V be an
irreducible closed subvariety of S. Then V ∩ S[1+dimV] is contained in a finite union of
semiabelian subschemes of S of positive codimension.

This is a variant of a conjecture stated by Pink [Pin] in 2005, which generalised the Zilber
Conjectures [Zi] of 2002 to schemes.

In [MZ2] (see also [MZ1] for a short version) we verified this conjecture in a special
case where S is the fibred square of the standard Legendre elliptic family, with coordinates
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(X1, Y1), (X2, Y2), and V is the curve defined by X1 = 2, X2 = 3. This amounted to the
finiteness of the set of complex numbers λ 6= 0, 1 such that the points(

2,
√

2(2− λ)
)
,

(
3,
√

6(3− λ)
)

(1.1)

both have finite order on the elliptic curve Eλ defined by Y 2
= X(X − 1)(X − λ).

In [MZ3] we generalised the result to any x-coordinates defined over an algebraic clo-
sure of C(λ); of course then the y-coordinates are also defined over this closure. (See the
paper [BD] of Baker and DeMarco for an analogue in the context of algebraic dynamics.)
It turns out that this is equivalent to the Conjecture above with S isogenous to the product
of two isogenous elliptic schemes and V a curve.

In [MZ4] we further generalised these results to any product of two elliptic schemes,
whether isogenous or not.

Here we settle the case of any simple abelian surface scheme defined over the field Q
of all algebraic numbers. Together with the previous results this will easily imply the
following result.

Theorem. Let A be an abelian surface scheme over a variety defined over Q, and let V
be an irreducible closed curve in A. Then V∩A[2] is contained in a finite union of abelian
subschemes of A of positive codimension.

This also confirms a conjecture stated in 1998 by Zhang [Zh, Remark 4a, p. 224]. Re-
cently Bertrand [Bert3] discovered a surprising counterexample when the surface scheme
is an extension of an elliptic scheme by the multiplicative group Gm, which is not abelian.
Thus it is reassuring to know that no such surprises exist for the abelian case. In a work
[BMPZ] with him and Pillay we have also shown that his are essentially the only coun-
terexamples for semiabelian surfaces. So this work completes the analysis of the above
Conjecture for schemes of relative dimension 2 over Q. See also the second author’s book
[Za, pp. 77–80]. And Harry Schmidt has investigated extensions of an elliptic scheme by
the additive group Ga (which are not even semiabelian). In this connection see also the
work [CMZ] with Corvaja.

In [MZ3] and [MZ4] we could treat schemes defined over C not just Q, so that be-
comes a natural problem here too; there are several very promising approaches involving
specialization to the above Theorem.

From [MZ4] we can assume that A is not isogenous to the product of two elliptic
schemes. We will soon see that the base variety can be assumed to be irreducible of
dimension at most one. If it is a point, then A is constant and we retrieve the classical
result of Manin–Mumford type in the special situation under consideration. In fact we
will appeal to the classical result to eliminate this case.

As in our previous papers we can give simple examples of our theorem for base curves.
Thus we get the finiteness of the set of complex numbers

λ 6= 0, 1,−1, i,−i,
−1+

√
−3

2
,
−1−

√
−3

2
(1.2)

such that the pair of points(
2,
√

2(2− λ)(2− λ2)(2− λ4)
)
,

(
3,
√

6(3− λ)(3− λ2)(3− λ4)
)

(1.3)
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on the curve defined by

Y 2
= X(X − 1)(X − λ)(X − λ2)(X − λ4) (1.4)

give—via the unique point at infinity on (1.4)—a point of finite order on the Jacobian
(compare with (1.1)).

We could have similar examples with a polynomial of degree 6 on the right of (1.4), as
the genus remains 2. But we could then replace (1.3) by the two points at infinity, where
the matter has been well-known since Abel [Ab] (see also Chebyshev [C1], [C2] and
Halphen [H]) to be related to the solvability of the Pell equation over polynomial rings.
Here D is given in say C[X] and we ask whether there exist A,B also in C[X] with

A2
−DB2

= 1, B 6= 0. (1.5)

A necessary condition is clearly that D has even degree. If the degree is 0 or 2, it is easy
to see that the answer is always yes. If it is 4, then the answer is usually no. For example,
introducing another parameter t (algebraically related to λ) we find that the answer is yes
forD = X4

+X+ t if and only if the point (0, 1) on the elliptic curve y2
= x3

− 4tx+ 1
(256t3 6= 27) is torsion. In [MZ2, pp. 1677, 1678] we showed that if λ in C is such that
just (2,

√
2(2− λ)) in (1.1) is torsion, then λ is in Q; and a similar argument holds for

the t here.
But if D has degree 6, then we are in a situation analogous to the full (1.1): there is

a point 5 on the Jacobian such that n5 = 0 for some positive integer n. In this way we
can handle one-parameter families. For the sake of illustration we shall restrict ourselves
to the example D = X6

+X + t , and we shall prove the following result.

Theorem P1. There are at most finitely many complex t for which there exist A and
B 6= 0 in C[X] with A2

− (X6
+X + t)B2

= 1.

There are some such t ; for example with t = 0 we have

(2X5
+ 1)2 − (X6

+X)(2X2)2 = 1, (1.6)

found quickly with continued fractions (see below). But we will show with the help of
calculations over the finite fields F3 and F5 by Olaf Merkert that (1.5) is not solvable with
t = 1 andX6

+X+1. In Theorem P2 below we will see that Theorem P1 is best possible
in the natural sense that its analogue for A2

− (X6
+ X + t)B2 of degree at most one is

false.
We can consider other one-parameter families of sextic D like F(X)(X− t) for fixed

quintic F in say Q[X], related to those considered by Ellenberg, Elsholtz, Hall and Kowal-
ski in [EEHK] and [EHK]. But the example D = X(X2

+ 1)(X3
+ X + t) has generic

solution
(2t−1X3

+ 2t−1X + 1)2 −D(2t−1)2 = 1

and so a solution for all complex t 6= 0. There is a more complicated example for

D = X(X5
− 10tX4

+ 35t2X3
− 50t3X2

+ 25t4X − t10
− 2t5 − 1)
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in McMullen’s paper [Mc, pp. 665, 666]. Some deep results of Nadel [N] suggest that
such identities are rare, and even for example that there might be an absolute upper bound
on the degrees of A and B in (1.5) for any sextic over C(t). Nevertheless the identities
show that at least one condition is needed to guarantee finiteness. This turns out to involve
the points at infinity. And we will see that the more subtle exampleD = X6

+X2
+t leads

to solvability again for an infinite but countable set of t , as for X4
+ X + t ; this gives

an extra condition which turns out to involve the simplicity of the Jacobian. To check
this, various methods are available; see especially the papers [K1], [K2] of Katz and the
work [St] of Stoll quoted in the book [CF] of Cassels and Flynn.

If D is generically not square-free, such as (X − t)2(X4
− 1) or more interestingly

X2(X4
+ X + t), then the problem reduces to one about extensions of elliptic schemes

by Gm, so the methods of [Bert3] and [BMPZ] are applicable (see also Section 3 of
Schinzel’s paper [Schi]).

The connection with integration of algebraic functions in elementary terms has also
been classically known since Abel (and his functions) and Chebyshev (for elliptic func-
tions, with his “pseudo-elliptic integrals”). In fact, our Theorem P1 for D = X6

+X + t

is equivalent to the assertion that there are at most finitely many complex t for which
there exists a non-zero E in C[X] of degree at most 4 such that E/

√
D is integrable in

elementary terms. As D′/
√
D integrates to 2

√
D, we cannot go up to degree 5 here. As

above, the example (1.6) for t = 0 leads to∫
5X2

√
X6 +X

dX = log
(

1
2
+X5

+X2
√
X6 +X

)
. (1.7)

It is interesting to compare this version of our Theorem P1 with one in the book [Dave]
of Davenport. His Theorem 7 (p. 90) says that if an algebraic function f (X, t) is not
generically integrable in elementary terms, then there are at most finitely many complex t
at which the specialised function is integrable in elementary terms. In fact, parts of his
proof are unclear and we intend to investigate this more fully in future work. Here it will
be necessary to go beyond semiabelian varieties.

Our Theorem P1 shows in particular that imitating the classical continued fraction
algorithm for the Pell equation over Z will not work for C[X]; a general fact also known
since Abel and Chebyshev (see also the article [PT] of van der Poorten and Tran which
also covers all the above connections, with illuminating examples). Through this link we
deduce that there are at most finitely many complex t such that the continued fraction of

√
X6 +X + t = X3

∞∑
k=0

(
1/2
k

)
(X−5

+ tX−6)k = X3
+

1
2
X−2
+
t

2
X−3
−

1
8
X−7
+ · · ·

in the quotient field C((X−1)) of the ring of power series in X−1 is periodic. In the usual
notation [a0; a1, a2, . . .] it starts

a0 = X
3, a1 = 2X2

−2tX+2t2, a2 = −
1

2t3
X−

1
2t2

, a3 = −8t6X+16t7 (t 6= 0).
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But for t = 0 as in (1.6) and (1.7) we find√
X6 +X = [X3

; 2X2, 2X3, 2X2, 2X3, 2X2, 2X3, 2X2, 2X3, . . .]

with period 2.
When solving a Pell equation a2

− db2
= 1 over Z, one notes that a/b must be a

good rational approximation to
√
d . But constructing such good approximations by the

Box Principle gives infinitely many solutions only of the equation a2
− db2

= m for
some fixed m, “almost the Pell equation”. To obtain m = 1 an extra application of the
Box Principle is needed.

Analogous considerations for generalD in C[X] of even degree, such as the continued
fraction algorithm or Padé approximation or linear algebra, will solve only

A2
−DB2

= M, (1.8)

where for D of degree 6 the polynomial M (which cannot be prescribed in advance) has
degree at most 2. Again for the sake of illustration we restrict ourselves toD = X6

+X+t ;
thus we get degree at most 0 for at most finitely many t . It is now natural to investigate
the intermediate situation of degree at most 1. Here we have a generic example

(X3)2 − (X6
+X + t)(1)2 = −X − t (1.9)

holding for all complex t . We take this into account first by proving

Theorem P2. There are infinitely many complex t for which there exist A and non-
constant B in C[X] and c′ 6= 0, c in C with A2

− (X6
+X + t)B2

= c′X + c.

This situation corresponds to a point 5 on the Jacobian of a curve such that n5 lies on a
fixed embedding of the curve, rather than n5 = 0 as for Theorem P1 above. In this sense
Theorem P1 is best possible.

Then we show the set of t in Theorem P2 is countable provided we stay away from
the generic example (1.9).

But this set seems more mysterious than that for X6
+ X2

+ t (or X4
+ X + t). We

have not even been able to prove that the above set is not the whole of Q! Suspecting a
link with Chabauty’s method for diophantine equations, we consulted Flynn, who very
quickly did this and even showed for example that the set does not meet 7Z except for
t = 0. With his kind permission we include his proof as an Appendix to the present paper.

Let us say something about our own proofs. That of our Theorem follows the general
strategy of [MZ1]–[MZ4] and [PZ], but several new issues arise. For example we can no
longer express the periods in terms of hypergeometric functions, so we have to live with
the period integrals. We have to study equations

z = xf+ yg+ uk+ vl (1.10)

where f, g,k, l are basis elements of the period lattice of A and z is an abelian logarithm.
Our coefficients x, y, u, v are real and their locus S in R4 is subanalytic, of dimension at
most 2 because a complex curve has real dimension 2. When z corresponds to a torsion
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point, say of order dividing some n, then we get a rational point in (1/n)Z4 on S. The
work of Pila [Pil] provides for any ε > 0 an upper bound for their number, of order at
most nε as n tends to infinity, provided we avoid connected semialgebraic curves inside S.

If V itself is contained in an abelian subscheme of A of positive codimension, there
is nothing to prove. Otherwise we are able to show that there are no connected semialge-
braic curves inside S. This follows from the algebraic independence of the two compo-
nents of z over the field generated by the components of f, g,k, l in (1.10). Here the re-
mark of Bertrand mentioned in [MZ3] and [MZ4] is especially valuable in circumventing
the question of dependence relations already holding between these components, which
would depend for example on the type of complex multiplication of A. In [MZ2] the anal-
ogous independence was proved with relatively simple arguments involving monodromy
on just f and g so essentially SL2(Z). Extending these arguments in [MZ3] to f, g, z, w
was a rather more complicated matter; we deduced the required independence from a re-
sult of Bertrand, and we also gave a self-contained proof involving SL4(Z). In [MZ4] we
had to appeal to more general work of André [An] (see also Bertrand’s paper [Bert1]);
and this suffices here too.

We conclude the proof as in [MZ2]–[MZ4] by appealing to Silverman’s Specialization
Theorem [Si1]; however, now the new abelian situation requires a result of David [Davi]
on degrees of torsion points of the corresponding fibre of A. If this fibre is itself simple
then we deduce by contrast that the number of rational points is of order at least nδ for
some δ > 0. But the fibre could well be non-simple. Such obstacles did not arise in
our earlier work. Perhaps this situation could be controlled with the help of conjectures
(or even theorems) of André–Oort type. However, here we can avoid such problems by
exploiting an escape clause in [Davi] arising from the “obstruction subgroups” in the
transcendence method. We can then use some comparatively elementary estimates from
the first author’s work [MW1] with Wüstholz to reduce to a pair of elliptic curves, which
can be handled as in [MZ2]–[MZ4] to get nδ as well. Comparison of this lower bound with
the above upper bound leads to an estimate for n which suffices to prove the Theorem.

Here is a brief section-by-section account of this paper.
In Section 2 we show how to reduce our Theorem to a Proposition involving the

special case of a curve C in A = Jλκθ , the Jacobian of the hyperelliptic curve Hλκθ of
genus 2 defined by

Y 2
= X(X − 1)(X − λ)(X − κ)(X − θ). (1.11)

Then in Section 3 we recall the main result of [Pil] on subanalytic sets. Our own set is
constructed from elliptic logarithms defined in Section 4. The relevant algebraic indepen-
dence result is then proved in Section 5 (or Appendix A). This then leads in Section 6 to
the non-existence of Pila’s semialgebraic curves in our set. Then in Sections 7 and 8 we
record the consequences of the work of David and Silverman for our purposes, and the
proof of the Proposition is completed in Section 9.

In Section 10 we check the example (1.3) and prove Theorem P1, explaining in more
detail the connections with integration and continued fractions. In Section 11 we prove
Theorem P2, and finally in Section 12 we make some further remarks. The Appendix by
Victor Flynn contains a proof of his results mentioned above.
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2. Reduction to a hyperelliptic curve

We noted in [MZ3, Section 2] that the above Conjecture is isogeny invariant in the follow-
ing sense. Let S,S ′ be semiabelian schemes defined over varieties over C and suppose
that there is an isogeny ι from S to S ′. Then the Conjecture for S ′ implies the Conjecture
for S . In fact the argument holds with C generalised to any algebraically closed field K
of zero characteristic, and for possible later use we maintain this generality in the present
short section.

Now every simple abelian surface is isogenous to the Jacobian of a curve of genus 2
(see for example [LB, p. 348]), and every such curve is well-known to be hyperelliptic.
The latter can easily be put in the form Hλκθ of (1.11) above (here λ, κ, θ are sometimes
called the Rosenhain coordinates). Thus we have an isogeny ι from the S = A of our The-
orem to some S ′ = Jλκθ as above. We may think of points of the Jacobian as unordered
pairs {P,Q} of points P = (X, Y ), Q = (U, V ) on Hλκθ corresponding to the divisor
(P )+ (Q)−2(∞), where∞ is the unique point at infinity on the curve, together with the
unordered pairs {P,∞} and the group origin {∞,∞} = O. Here all {(X, Y ), (X,−Y )}
are identified with O. This can be compared with the analogous symbol in the book [CF]
of Cassels and Flynn (p. 3); however they have a sextic polynomial on the left-hand side
of (1.11).

Let V be a curve in S. Then ι(V) in Jλκθ is a curve C in the affine space A7 with coor-
dinatesX, Y,U, V, λ, κ, θ . We will regard it as being parametrised by (ξ, η, µ, ν, λ, κ, θ)
with ξ, η, µ, ν, λ, κ, θ functions in K(C).

If the points P = (ξ, η),Q = (µ, ν) satisfy n{P,Q} = O for some positive integer n,
then the whole of ι(V) lies in the corresponding zero-dimensional abelian subscheme, so
the Theorem is trivial for S ′. Thus we are entitled to assume n{P,Q} 6= O for all such
integers.

If λ, κ, θ are constant on C, then the base variety can be considered as a point and the
Theorem for S ′ follows from Manin–Mumford as mentioned in the Introduction.

From all these considerations, we see that our Theorem for A is implied by the fol-
lowing statement.

Proposition. Let C in A7 be a curve defined over Q and parametrised by

c = (ξ, η, µ, ν, λ, κ, θ)

in Q(C)7, and suppose that the Jacobian Jλκθ of the curve Hλκθ of genus 2 is simple and
non-constant. Suppose that the points

P = (ξ, η), Q = (µ, ν)

lie onHλκθ and the point {P,Q} is not identically torsion on Jλκθ . Then there are at most
finitely many points c in C(C) such that for

P(c) = (ξ(c), η(c)), Q(c) = (µ(c), ν(c))

the point {P(c),Q(c)} is torsion on Jλ(c)κ(c)θ(c).
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We note that the functions

λ, λ− 1, κ, κ − 1, θ, θ − 1, λ− κ, κ − θ, θ − λ (2.1)

are all identically non-zero by our genus assumption. In fact we can also assume the same
about

ξ, ξ − 1, ξ − λ, ξ − κ, ξ − θ, µ,µ− 1, µ− λ,µ− κ, µ− θ. (2.2)

If say ξ = λ identically then 2{P,Q} = {Q,Q} (the function X − λ then having divisor
2(P )− 2(∞)). This is not identically torsion either, and so by doubling the original point
in the Proposition we end up with the new ξ = µ. Now if say µ = 1 identically then
{Q,Q} = O, contradicting the fact that the original point is not identically torsion.

3. Rational points

In this section we record the basic result of Pila [Pil] that we shall use in the algebraic
case. We recall from [MZ2, Section 3] that a naive-m-subanalytic subset of Rs is a finite
union of θ(D), where each D is a closed ball in Rm and each θ is real analytic from an
open neighbourhood of D to Rs . We also refer there for the definition of Strans.

Lemma 3.1. Suppose S is a naive-2-subanalytic subset of Rs . Then for any ε > 0 there
is a c = c(S, ε) with the following property. For each positive integer n there are at most
cnε rational points of Strans in (1/n)Zs .

Proof. See [MZ2, Lemma 2.1, p. 1680].

4. Functions

We will construct our naive-2-subanalytic subset S by means of the following functions.
With λ, κ, θ in C(C) as in the Proposition andX, Y as in (1.11), we consider the standard
integrals (∫

dX

Y
,

∫
X dX

Y

)
(4.1)

over loops. By the remark about (2.1) the set of c in C(C) not satisfying

λ(c) 6= 0, 1,∞, κ(c) 6= 0, 1,∞, θ(c) 6= 0, 1,∞, λ(c) 6= κ(c) 6= θ(c) 6= λ(c) (4.2)

is at most finite. We pick any c∗ satisfying (4.2) and then pick four loops onHλ(c∗)κ(c∗)θ(c∗)
generating the homology. These by (4.1) define functions f, g,k, l to C2 at c∗. We may
extend them, at least locally, to the set of all c in C with (4.2), and they are analytic
in λ = λ(c), κ = κ(c), θ = θ(c). It is well-known that they are basis elements of a
period lattice of Jλκθ with respect to

(
dX
Y
, X dX

Y

)
. In particular, if we write expλκθ for the

associated exponential function from C2 to Jλκθ (C), we have

expλκθ (f) = expλκθ (g) = expλκθ (k) = expλκθ (l) = O.
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Next let P = (ξ, η), Q = (µ, ν) be as in the Proposition with ξ, η, µ, ν in C(C). We
would like to define

z =
(∫ P

∞

dX

Y
+

∫ Q

∞

dX

Y
,

∫ P

∞

X dX

Y
+

∫ Q

∞

X dX

Y

)
(4.3)

as an abelian logarithm of {P,Q} which is analytic in a suitable sense. This is also pos-
sible everywhere locally apart from finitely many exceptional points. In fact the remarks
about (2.2) together with the discussion in [MZ3, Section 4], which replaces the curve
integral with an X-integral, lead without difficulty to the following.

Write Ĉ for the set of points c of C(C) with (4.2) and

ξ(c), µ(c) 6= 0, 1,∞, λ(c), κ(c), θ(c)

as in (2.2). The points not in Ĉ still form at most a finite set. Then for any c∗ in Ĉ and any
sufficiently near c in Ĉ we can express the first component of z in (4.3) as a quadruple
power series in

λ(c)− λ(c∗), κ(c)− κ(c∗), θ(c)− θ(c∗), ξ(c)− ξ(c∗),

and the second component as a quadruple power series in

λ(c)− λ(c∗), κ(c)− κ(c∗), θ(c)− θ(c∗), µ(c)− µ(c∗).

Also
expλκθ (z) = {P,Q}. (4.4)

5. Algebraic independence

In this section we consider the point c∗ of Ĉ to be fixed. Then f, g,k, l, z are well-defined
on a small neighbourhood N∗ of c∗. In order to prove Strans

= S we will need the follow-
ing result.

Lemma 5.1. The coordinates of z are algebraically independent over C(f, g,k, l) onN∗.

Proof. This follows from [An, Theorem 3, p. 16], which actually specifies the transcen-
dence degree of K(z, z̃) over K = C(C)(f, g,k, l, f̃, g̃, k̃, l̃), where the extra functions
are the corresponding integrals of the second kind with respect to say X2 dX

Y
, X

3 dX
Y

. It
is the dimension of the Ũ appearing in [An, Proposition 1, p. 5], or at least its relative
counterpart in the context of [An, Section 4]. The E there is Jλκθ over C, for which our
simplicity hypothesis implies that the only non-zero proper connected algebraic subgroup
is O. And because {P,Q} is not identically torsion, the E′ there is also E, with rational
homology isomorphic to Q4. Further because of simplicity the F there is a division al-
gebra. And u(X ) there is from Z to Z{P,Q}. So F.u(X ) is isomorphic to F . Thus we
find dimension 4; and the present lemma follows on throwing away all the extra functions.
See also Bertrand’s article [Bert1, end of Section 4, p. 2786] as well as [Bert2, Theorem
4.3, p. 16].
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6. A naive-2-subanalytic set

We now describe our naive-2-subanalytic subset S. First we construct local functions from
C to R4. Recall that Ĉ is obtained from C(C) by the removal of at most a finite set of
points. Fix c∗ in Ĉ, choose c in Ĉ and then a path from c∗ to c lying in Ĉ. We can continue
f, g,k, l taking care to keep a homology basis.

The continuation of the functions z,w is a bit more troublesome, and it is convenient
to also remove the singular points ofC. LetC0 be the finite subset which we have removed
so far, and write Ĉ for what remains. We can then speak of functions analytic on Ĉ. Now
the discussion in [MZ3, Section 6], with expλκθ instead of expλ and z2 = xf+ yg+uk+
vl+z1 instead of z2 = xf +yg+z1, shows that we can continue the function (f, g,k, l, z)
from a small neighbourhood of c∗ to a small neighbourhoodNc of c in Ĉ. The end result is
a function (fc, gc,kc, lc, zc) analytic on Nc. Write �c for the period lattice of Jλ(c)κ(c)θ(c)
with respect to

(
dX
Y
, X dX

Y

)
.

Lemma 6.1. The coordinates of zc are algebraically independent over C(fc, gc,kc, lc)
on Nc. Further �c = Zfc + Zgc + Zkc + Zlc on Nc.

Proof. We could continue an algebraic dependence relation backwards to get the same
relation between f, g,k, l, z on a neighbourhood of c∗; however, this would contradict
Lemma 5.1. The assertions about�c follow because we kept a homology basis during the
continuation.

It follows that we can define xc, yc, uc, vc on Nc by the equation

zc = xcfc + ycgc + uckc + vclc (6.1)

and its complex conjugate

zc = xcfc + ycgc + uckc + vclc

so that xc, yc, uc, vc are real-valued.
Now we can define S. We use the standard maximum norm on C7. For small δ > 0

(to be specified later) we define Cδ as the set of c in C satisfying |c| ≤ 1/δ and

|c− c0| ≥ δ

for each c0 in the finite set C0.
Shrinking Nc if necessary, we can choose a local analytic isomorphism ϕc from Nc to

an open subset of C (i.e. R2). Choose any closed disc Dc inside ϕc(Nc) centred at c, and
define

θc = (xc, yc, uc, vc) ◦ ϕ
−1
c

fromDc to R4. By compactness there is a finite set5 of c such that the ϕ−1
c (Dc) coverCδ .

Then our naive-2-subanalytic subset S = Sδ in R4 is defined as the union of all θc(Dc)
over c ∈ 5.

Lemma 6.2. We have Strans
= S.
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Proof. Because every semialgebraic surface contains semialgebraic curves, it will suffice
to deduce a contradiction from the existence of a semialgebraic curve Bs lying in S. Now
Bs is Zariski-dense in its Zariski-closure B, a real algebraic curve. Thus we can find a
subset B̂ of B, also Zariski-dense in B, contained in some θc(Dc). It will suffice to know
that B̂ is infinite. Then B̂ = θc(E) for some infinite subset E of Dc.

Now (6.1) shows that the components of zc lie in 8 = C(xc, yc, uc, vc, fc, gc,kc, lc).
But if we restrict to ϕ−1

c (E), then 8 has transcendence degree at most 1 over
C(fc, gc,kc, lc). It follows that the components of zc are algebraically depen-
dent over C(fc, gc,kc, lc) on ϕ−1

c (E). More precisely, with independent variables
Tf,Tg,Tk,Tl,Tz, there exists a polynomial A in C[Tf,Tg,Tk,Tl,Tz] such that the re-
lation A(fc, gc,kc, lc, zc) = 0 holds on ϕ−1

c (E) and A(fc, gc,kc, lc,Tz) is not identically
zero in C(fc, gc,kc, lc)[Tz]. By a standard principle for analytic functions (“Identity The-
orem” or [L, p. 85]) this relation persists on all of Nc. And now we have a contradiction
with Lemma 6.1. Thus the present lemma is proved.

We are all set up for an efficient application of Lemma 3.1. It will turn out that every c
in our Proposition leads to many rational points on S, and of course we have to estimate
their denominator. This we do in the next short section.

7. Orders of torsion

We use the standard absolute Weil height

h(α) =
1

[Q(α) : Q]
∑
v

log max{1, |α|v}

of an algebraic number α, where v runs over a suitably normalized set of valuations; and
also the standard extension to vectors using the maximum norm. See for example [Si2,
p. 208].

Lemma 7.1. There is a constant c = c(C) with the following property. Suppose that for
some a in Ĉ the point {P(a),Q(a)} on Jλ(a)κ(a)θ(a) has finite order n. Then a is algebraic,
and

n ≤ c[Q(a) : Q]7(1+ h(a))6.

Proof. It is clear that a is algebraic, otherwise {P,Q} would be identically torsion on C,
contradicting a hypothesis of the Proposition.

As for the upper bound, if the (principally polarized) J = Jλ(a)κ(a)θ(a) is simple, then
a result of David [Davi, Théorème 1.2, p. 121] gives

n1/2

log n
≤ c1d5(d

3/2
J log dJ )max{1, h}3/2

where dJ is the degree of a field of definition k of J over Q, d5 is the degree of a
field of definition of {P(a),Q(a)} over k, h is the semistable Faltings height of J , and
c1 is an absolute constant. We can take k = Q(λ(a), κ(a), θ(a)) and so dJ ≤ c2D for
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D = [Q(a) : Q] with c2 independent of a. Also since λ, κ, θ are not all constant, if for
example λ is not constant, then each of the coordinates ξ, η, µ, ν of P and Q is algebraic
over Q(λ). Thus at c = a we deduce d5 ≤ c2. And then h ≤ c3(1 + h(a)) by well-
known properties of the Faltings height (see for example the discussion [Davi, p. 123]).
The required result follows, with slightly smaller exponents.

But what if J is not simple? It may then be that certain conjectures of André–Oort
type lead anyway to at most finitely many possibilities for a, as required in our original
Proposition. But in the absence of proofs we can reduce to an elliptic situation as follows.

Our J , being the Jacobian of a curve of genus 2, can be embedded in projective P15;
see for example [CF, p. 8] after applying a fractional linear transformation to replace the
quintic by a sextic. This is more or less the same embedding that David uses for A(τ)
in his work (but the quintic itself gives embeddings in P8—see for example Grant [G,
p. 101]). Thus consulting [Davi, equation (28), p. 156] we find an algebraic subgroup
B 6= J of J . In fact Philippon’s multiplicity estimate used there (p. 159) guarantees that
B is connected. IfB = 0 then we can deduce equation (29) of [Davi, p. 156] and this leads
to a much better bound, say n ≤ c[Q(a) : Q]4(1+ h(a))3. So it remains only to treat the
case that B is an elliptic curve. We note by [MW1, Lemma 2.2, p. 414] that B is defined
over an extension of k of degree at most 3256. And we get the estimate T1L ≤ c4(LN

2)2

for the degree 1 of B in the embedding, where T ,L,N are defined in [Davi, p. 152] and
again c4 is absolute. We find 1 ≤ c5(D logD)2h2 for absolute c5.

We can now apply [MW1, Lemma 1.4, p. 413] to find another elliptic curve B ′ in J
(so also defined over an extension of k of degree at most 3256) together with an isogeny φ
from B×B ′ to J of degree at most12. The dual isogeny ψ from J to B×B ′ has degree
at most 16. Thus by standard properties of Faltings heights we have

h(B) ≤ h(B × B ′)+ c7 ≤ h+
1
2 log(16)+ c7 ≤ c8(1+ logD + h(a)) (7.1)

with the same bound for h(B ′). We can reduceB to Weierstrass formE without increasing
the field of definition; also h(E) = h(B). Now the argument of [MZ3, Lemma 7.1] shows
that the order m of the projection of ψ({P(a),Q(a)}) on E through B satisfies

m ≤ c8(D max{1, h(jE)} +D logD)

for the corresponding j -invariant. It is well-known that h(jE) is of the same order of
magnitude as h(E), so appealing to (7.1) we deduce m ≤ c9D(1+ h(a)+ logD).

We get the same bound for the order m′ of the projection of ψ({P(a),Q(a)}) on B ′.
Thus ψ({P(a),Q(a)}) has order at most mm′. Applying φ back shows finally that n ≤
12mm′; and putting everything together gives the required result.

We could use more directly the factorisation estimates of [MW2] to get B,B ′ and φ,
but the exponents involved would be astronomical.

8. Heights

In view of the following result we can eliminate the height dependence in Lemma 7.1.
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Lemma 8.1. There is a constant c = c(C) with the following property. Suppose that for
some a in Ĉ the point {P(a),Q(a)} has finite order. Then h(a) ≤ c.

Proof. This is a consequence of Silverman’s Specialization Theorem [Si1, p. 197], be-
cause {P(c),Q(c)} is not identically of finite order; note that our family of abelian sur-
faces has no non-trivial constant part because it is generically simple.

Another advantage of bounded height is the following easy remark, already found in
[MZ4], concerning the sets C0 and Cδ of Section 6.

Lemma 8.2. Let K be a number field containing the coordinates of the points of C0. For
any constant c there is a positive δ = δ(C,K, c) depending only on C,K and c with the
following property. Suppose a is algebraic on C, not in C0, with h(a) ≤ c. Then there are
at least 1

2 [K(a) : K] conjugates of a over K lying in Cδ .

Proof. See [MZ4, Lemma 8.2].

9. Proof of Proposition

We will need the following result from [MZ3].

Lemma 9.1. Suppose f0, f1, . . . , fs are analytic in an open neighbourhood N of a
compact set K in C and f0 is linearly independent of f1, . . . , fs over C. Then there is
c = c(f0, f1, . . . , fs) with the following property. For any complex numbers a1, . . . , as
the function F = f0 + a1f1 + · · · + asfs has at most c different zeros on K.

Proof. See [MZ3, Lemma 9.1, p. 463].

To prove our Proposition we fix any positive ε < 1/7. We use c, c1, c2, . . . for positive
constants depending only on C. We have to show that there are at most finitely many a
such that5(a) = {P(a),Q(a)} has finite order on Jλ(a)κ(a)θ(a). By Lemma 7.1 each such
a is algebraic, say of degree D = [Q(a) : Q], and thanks to Lemma 8.1 and the Northcott
property it will suffice to prove that D ≤ c. We will actually argue with a single a.

Next, Lemma 7.1 together with Lemma 8.1 shows that there is a positive integer

n ≤ c1D7 (9.1)

such that
n5(a) = O. (9.2)

Fix a number field K containing a field of definition for the curve C. By Lemmas 8.1
and 8.2 the algebraic a has at least 1

2 [K(a) : K] conjugates over K in some Cδ; here
δ = c2. Now Cδ is contained in the union of at most c3 closed sets ϕ−1

c (Dc), and so
there is c such that ϕ−1

c (Dc) contains at least c4[K(a) : K] conjugates σ(a). And the
corresponding conjugate point σ(5(a)) = 5(σ(a)) also satisfies n5(σ(a)) = O.

We claim that each point 2σ = θc(ϕc(σ (a))) lies in Q4 and even that n2σ lies in Z4.
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Now the function θc arises from continuations fc, gc,kc, lc, zc of the functions in Sec-
tion 6. We deduce from (4.4) that

expλ(c)κ(c)θ(c)(zc) = {P(c),Q(c)} (9.3)

on Nc. At σ(a) this implies

expλ(σ(a))κ(σ (a))θ(σ (a))(nzc(σ (a))) = O. (9.4)

It follows that nzc(σ (a)) lies in the period lattice �λ(σ(a))κ(σ (a))θ(σ (a)), which by Lemma
6.1 is just Zfc(σ (a))+ Zgc(σ (a))+ Zkc(σ (a))+ Zlc(σ (a)). Thus (6.1) shows that

nxc(σ (a)), nyc(σ (a)), nuc(σ (a)), nvc(σ (a))

lie in Z. Hence indeed n2σ lies in Z4 as claimed.
So now each 2σ in the set S of Section 6 has common denominator dividing n. By

Lemmas 3.1 and 6.2, the number of such values 2σ is at most c5n
ε . By (9.1) this is at

most c6D7ε . Let2=(x, y, u, v) be one of these values. For any σ with θc(ϕc(σ (a)))=2
the expression zc(σ (a)) is

xc(σ (a))fc(σ (a))+ yc(σ (a))gc(σ (a))+ uc(σ (a))kc(σ (a))+ vc(σ (a))lc(σ (a)),

which is
xfc(σ (a))+ ygc(σ (a))+ ukc(σ (a))+ vlc(σ (a)).

Lemma 6.1 implies that for example the first coordinate of zc is linearly independent of
the first coordinates of fc, gc,kc, lc. So Lemma 9.1 shows that the number of σ for each
2 is at most c7.

Thus the total number of σ(a) is at most c8D7ε . Now this contradicts the lower
bound c4D noted just after (9.2), provided D is sufficiently large. As observed near the
beginning of this section, that suffices to prove our Proposition.

10. Examples and the Pell equation

It was shown in [M3, p. 294] that the Jacobian of (1.4) is identically simple (and even that
the endomorphism ring is Z). It has good reduction at all the points (1.2). By the equiv-
alence of (a),(b) in Theorem 1 of Serre–Tate [ST, p. 493] any torsion point is unramified
outside (1.2). However the point arising from (1.3) is ramified for example at λ = 2, as
this is already true of the bisymmetric function√

2(2− λ)(2− λ2)(2− λ4)
√

6(3− λ)(3− λ2)(3− λ4).

Thus the point is not identically torsion and our result applies.
To deal with the Pell equation A2

− DB2
= 1 with squarefree D of degree 6 we

choose any field K (not of characteristic 2) over which D is defined, and we consider
the hyperelliptic curve HD defined by Y 2

= D(X). This is singular at infinity with two
points∞+,∞− on a non-singular model; we may fix them by stipulating that the function
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X3
± Y has a zero at ∞±. We pass to a non-singular model in the standard way by

selecting any three zeros of D, and finding the fractional linear transformation taking
them to 0, 1,∞. With λ, κ, θ as the other three images this gives a birational map β
from HD to Hλκθ . Of course this might no longer be defined over K , but certainly over a
splitting field of D. We may then speak of β(∞±) as points on Hλκθ (whose Jacobian is
Jλκθ as in the discussion of Section 2). We now record the following fairly well-known
result.

Lemma 10.1. (i) Suppose there are A,B in K[X] and c 6= 0 in K with A 6= 0 of
degree d such that A2

− DB2
= c. Then for n = ±d the function A(X) + YB(X)

on HD has a zero of order n at∞+ and a pole of order n at∞−, and no other zeros
or poles.

(ii) Suppose there are A,B inK(X) with A 6= 0 and n such that A(X)+YB(X) onHD
has a zero of order n at∞+ and a pole of order n at∞−, and no other zeros or poles.
Then n = ±d and A,B are in K[X] with A of degree d such that A2

− DB2
= c

for some c 6= 0 in K .
(iii) Suppose D splits completely over K . Then there are A,B in K[X] with B 6= 0 and

c 6= 0 in K such that A2
− DB2

= c if and only if the point {β(∞+), β(∞+)} is
torsion on Jλκθ .

Proof. In the situation of (i) we have f+f− = c for the functions f+ = A(X)+YB(X),
f− = A(X) − YB(X) on HD . So the only possible zeros and poles are at ∞+,∞−.
Since the number of zeros equals the number of poles, there is an integer n such that f+

has a zero of order n at∞+ and a pole of order n at∞−. Now f+ + f− = 2A has poles
of order |n| at∞+,∞− and no other poles. Thus |n| = d , and this proves (i).

In the situation of (ii) with f+= A(X)+YB(X)we deduce that f−= A(X)−YB(X)
has a pole of order n at ∞+ and a zero of order n at ∞−. Thus f+f− is a constant
c, non-zero because A 6= 0. Also f+ + f− = 2A has no poles at finite points, so it
must be a polynomial. And finally because D is squarefree we see from DB2

= A2
− c

that B is also a polynomial. This brings us back to (i) and thereby completes the proof
of (ii).

Finally in the situation of (iii) the existence of A,B with B 6= 0 implies A is not
constant, so this gives from (i) a function f+ = A(X) + YB(X) from which we derive
a function g on Hλκθ with a zero of order n at P+ = β(∞+) and a pole of order n at
P− = β(∞−). Here d ≥ 1 so n 6= 0. If P+ = (x, y) then P− = (x,−y) so there is an
obvious linear function l with simple zeros at P+, P− and a double pole at∞ on Hλκθ .
So looking at gln shows that n{P+, P+} = O. And conversely if n{P+, P+} = O for
say n ≥ 1 then going backwards we find a function on HD with a zero of order n at∞+

and a pole of order n at∞−. This can be written as f+ = A(X)+ YB(X) 6= 0 for A,B
in K(X); here both A 6= 0 and B 6= 0 otherwise f+ could have no genuine zero at∞+,
and so we are back to (ii). This completes the proof of the present lemma.

Of course if K is algebraically closed then for any c 6= 0 the solvability of

A2
−DB2

= c, B 6= 0 (10.1)
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is equivalent to the solvability of Pell (1.5). But actually this holds for any K , because
(10.1) implies A 6= 0 and then A2

1 − DB
2
1 = 1 for A1 = c−1(A2

+ DB2) and B1 =

2c−1AB 6= 0.
We already noted in Section 1 that the solvability is equivalent to the periodicity of

the functional continued fraction of
√
D; this was observed by Abel [Ab], where also the

restriction to degree 6 is not essential. See also Chapter XIV of [H] as well as [PT] and
the works [AR] of Adams and Razar, [Berr] of Berry, [P] of Paysant-Le Roux, [Schi] of
Schinzel and [Schm] of Wolfgang Schmidt (however, we could not consult the paper [HL]
of Hellegouarch and Lozach). See also [BC] of Bombieri and Cohen for connections with
the arithmetic behaviour of Padé approximants.

And it is also equivalent to the existence of a non-zero polynomial E of degree at
most 4 such that E/

√
D is integrable in elementary terms. In that case, E must have

degree 2, and it must be proportional to A′/B, and we have∫
E(X)
√
D(X)

dX = log(A(X)+ B(X)
√
D(X)). (10.2)

This also mutatis mutandis is not restricted to degree 6; see [Ab], [C1], [C2], [H] and
again [PT].

Now we prove Theorem P1 for D = X6
+ X + t . We start by showing that there are

no A,B 6= 0 in K[X] with A2
− DB2

= 1 for K = C(t) (see also [Za, Remark 3.4.2,
p. 85]).

Otherwise taking conjugates of the f+ = A+ YB of Lemma 10.1(i) over C(t) (over
whichHD,∞+,∞− are defined) would give (f+)σ = Aσ +YBσ with the same divisor.
So (f+)σ = cf+ for some non-zero c in K . This implies (f−)σ = cf−, and taking the
product shows that c2

= 1. Writing (A + YB)2 = A1 + YB1 for A1 = A2
+ DB2,

B1 = 2AB we deduce that A1, B1 6= 0 are in C(t)[X] also with A2
1−DB

2
1 = 1. Clearing

denominators we find A2, B2 6= 0 in C[t, X] and c2 in C[t] with A2
2 − (X

6
+ X + t)B2

2
= c2. If c2 is in C we get an immediate contradiction on examining the coefficients of the
highest power of t . Otherwise specializing t to a zero t0 of c2 would show thatX6

+X+t0
is a square in C(X), clearly impossible.

It follows from Lemma 10.1(iii) that the point {β(∞+), β(∞+)} is not identically
torsion. We are all set up to apply our Theorem, or more conveniently the Proposition
directly, with C a suitable curve corresponding to the splitting field of X6

+X+ t (in fact
a 720-fold cover of A deprived of the 5 points with 46656t5 = 3125). But first we should
know that the Jacobian is generically simple, and it suffices to show that the Jacobian JD
of Y 2

= X6
+ X + t is generically simple. We will do this by showing that there are

infinitely many t0 such that the Jacobian of Y 2
= X6

+X + t0 is simple.
We use the criterion of Stoll [St] explained (with a misprint) in [CF, p. 158]. The curve

Y 2
= X6

+ X + 1 has discriminant −43531 not divisible by 7. It has 9 points over the
finite field F7 (including∞+,∞−). Similarly it has 67 points over F49. In the notation of
[CF] we calculate a7 = −1, b7 = 9 leading to the test polynomial

C(T ) = T 4
+

5
7T

3
−

3
7T

2
+

5
7T + 1.
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So a2
7 − 4(b7 − 14) = 21 is not a square in Q. And it is easily checked that C(ζ ) 6= 0

for any root of unity ζ with ζ n = 1 for n = 1, 2, 3, 4, 5, 6, 8, 10, 12 (for example the
resultants with T n − 1 are non-zero). Thus the Jacobian of Y 2

= X6
+ X + 1 is simple.

But the same calculation shows that this also holds for any Y 2
= X6

+X+ t0 with t0 con-
gruent to 1 modulo 7. This suffices for the identical simplicity (where incidentally [ST] is
implicitly used in the form of the isogeny-invariance of good reduction, as in Corollary 2
(p. 493) there, to see that the possible elliptic curves whose product is isogenous to the
Jacobian both have good reduction themselves).

This completes the proof of Theorem P1 that there are at most finitely many complex
values of t for which the Pell equation forD = X6

+X+ t is solvable. As pointed out in
(1.6), this holds for t = 0. We mentioned that it does not hold for t = 1; here is a proof.

When k is a finite field, the continued fraction method over k[X] does work just as
for Z (see for example [PT, p. 157]); the expansions of square roots are always periodic
and the Pell equation (1.5) is always solvable. Olaf Merkert has calculated the minimal
solutions for k = F3 and k = F5 with D = X6

+X + 1. For F3 he finds

A = 2X14
+X12

+X10
+X9

+X8
+X7

+ 2X6
+ 2X5

+ 2X4
+X3

+X2
+ 2

of degree 14 and
B = 2X11

+X9
+X7

+ 2X4
+X.

For F5 he finds

A = 2X31
+X30

+3X29
+X28

+X25
+2X24

+3X22
+3X21

+3X20
+X19

+4X17
+X16

+4X15
+4X13

+2X12
+2X11

+X10
+X8

+3X7
+X6

+3X5
+2X4

+3X3
+2X2

+4

of degree 31 and

B = 2X28
+X27

+ 3X26
+X25

+ 4X23
+ 2X22

+ 3X20
+ 4X16

+ 2X15
+ 4X13

+ 2X12
+ 2X11

+X10
+X8

+ 3X7
+ 3X6

+ 4X5
+ 2X3

+X2
+ 4X.

Now suppose (1.5) is solvable over C[X] forD = X6
+X+1. Then A is not constant

and so by Lemma 10.1(i) with K = C the point 50 on the Jacobian JD corresponding to
the divisor (∞+)− (∞−) is torsion; let n0 be its order.

Write n0 = 3em for a non-negative integer e and an integerm prime to 3, and consider
the point 30 = 3e2850 on JD . As the discriminant −43531 above is not divisible by 3,
we can reduce modulo 3 to get 3̃0 = 3e(285̃0) on the abelian variety J̃D . However,
by Merkert’s calculation and Lemma 10.1(i) with K = F3 we see that 285̃0 = 0. Thus
3̃0 = 0. But30 has order dividingmwhich is prime to 3; hence again by [ST] we deduce
that30 = 0 (see for example [ST, Lemma 2, p. 495] and the short paragraph immediately
following the proof). Therefore the order n0 divides 3e28.

A similar argument over F5 shows that n0 divides 5f 62 for some non-negative inte-
ger f .

It follows that n0 divides 2, so that 250 = 0. But then there is a function A(X) +
YB(X) on HD with a zero of order 2 at∞+ and a pole of order 2 at∞−, and no other
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zeros or poles. Now Lemma 10.1(ii) withK = C yields A,B in C[X] with A of degree 2
such that A2

−DB2
= c for some c 6= 0 in C, a clear impossibility.

We get the same conclusion for the t for which the continued fraction of√
X6 +X + t = X3

∞∑
k=0

(
1/2
k

)
(X−5

+ tX−6)k = X3
+

1
2
X−2
+
t

2
X−3
−

1
8
X−7
+ · · ·

(10.3)
is periodic. In the usual notation [a0; a1, a2, . . .] it starts

a0 = X
3, a1 = 2X2

−2tX+2t2, a2 = −
1

2t3
X−

1
2t2

, a3 = −8t6X+16t7 (t 6= 0)

(10.4)

(so it is not “continuous in t”). And we get the same conclusion for the t for which there
exists a non-zero complex polynomialE of degree at most 4 such thatE(X)/

√
X6+X+ t

is integrable in elementary terms.
It is rather likely that similar arguments could be carried out for D = D(X) =

F(X)(X− t) with fixed quintic F defined over the field of algebraic numbers. The family
Y 2
= D(X) is isomorphic to the family y2

= f (x)(x − s) via

x =
1

X − α
, y =

Y

(X − α)3
, s =

1
t − α

for any zero α of F , with quartic f (x) = x5F(1/x + α). In [EEHK] Ellenberg, Elsholtz,
Hall and Kowalski show for example that the Jacobian of the second family is identically
simple (and even that the endomorphism ring is Z).

But what goes wrong for D = X6
+ X2

+ t? The argument above still shows that
Pell’s equation is not solvable identically. However, by [CF, Theorem 14.1.1(i), p. 155]
we see that the Jacobian is not identically simple. In fact there are maps β1, β2 defined by

β1(X, Y ) = (X1, Y1) = (X
2, Y ), β2(X, Y ) = (X2, Y2) = (X

2, XY )

from HD to elliptic curves E1, E2 defined respectively by

Y 2
1 = X

3
1 +X1 + t, Y 2

2 = D2(X2) = X
4
2 +X

2
2 + tX2.

We have β1(∞
±) = ∞1, β2(∞

±) = ∞±2 for the point at infinity on E1 and the two
points at infinity on E2. Thus (∞+) − (∞−) projects down to something identically
torsion on E1, and to (∞+2 ) − (∞

−

2 ) on E2. This enables us to use the arguments of
Lemma 10.1 for genus 1 instead of 2. In fact if some A2(X2) − Y2B2(X2) has suitable
zeros and poles at∞±2 on E2 then we can pull it back to get A2(X

2) − XYB2(X
2) with

suitable zeros and poles at∞±; and indeed from 1 = A2(X2)
2
−D2(X2)B2(X2)

2 we get

1 = A2(X
2)2 −D2(X

2)B2(X
2)2 = A2

− (X8
+X4

+ tX2)B2(X
2)2

= A2
− (X6

+X2
+ t)B2

for A = A2(X
2), B = XB2(X

2).
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Incidentally it may be shown that the map ι from Jλκθ to E1 × E2 defined by

ι({P,Q}) =
(
β1(β

−1(P ))+ β1(β
−1(Q)), β2(β

−1(P ))+ β2(β
−1(Q))

)
is an isogeny (compare [CF, p. 155]). A simple calculation shows it is of degree 4. And
the curves E1, E2 are not isogenous; for example their j -invariants are

j1 =
6912

27t2 + 4
, j2 = −

256
t2(27t2 + 4)

,

so j2 cannot be integral over C[j1] (as would be predicted by the classical theory) because
of its pole at t = 0.

It is not difficult to see that there are infinitely many complex values of t for which
(∞+2 )− (∞

−

2 ) is torsion on E2; several methods are discussed in [Za, Notes to Chapter 3,
p. 92]. So there are also infinitely many complex values of t for which the Pell equation

A2
− (X6

+X2
+ t)B2

= 1

is solvable. For example we can reduce to Weierstrass form with the map ζ defined by

ζ(X2, Y2) = (W,Z) =

(
t

X2
+

1
3
,
tY2

X2
2

)
from E2 to the curve E defined by Z2

= W 3
+ uW + v for u = −1/3, v = t2 + 2/27.

We have ζ(∞±2 ) = P± = (1/3,±t). In terms of the denominator Bn(W, u, v) of the
classical rational function describing multiplication on E by n, the t are precisely the
zeros of Bn(1/3,−1/3, t2 + 2/27) (n = 1, 2, . . .)

A reasonable explicit value is t = i/2 with n = 5. This comes from the function
g+ = a+ bW + cW 2

+Z(d + eW) with a zero of order 5 at P+ and a pole of order 5 at
infinity, where

a = 10i, b = 3i, c = −18i, d = −24, e = 18.

Thus g− = a+ bW + cW 2
−Z(d + eW) has a zero of order 5 at P− and a pole of order

5 at infinity. So g+/g− has a zero of order 5 at P+ and a pole of order 5 at P−. Pulling
this back to E2 and then to HD , we end up with

A = 16iX10
+ 16X8

+ 12iX6
+ 8X4

+ 4iX2
+ 1, B = 16iX7

+ 16X5
+ 4iX3

+ 4X

satisfying
A2
− (X6

+X2
+ i/2)B2

= 1,

with A of degree 10 as predicted by Lemma 10.1. Or in terms of continued fractions, with
the usual notation for the period,√

X6 +X2 + i/2 = [X3
; 2X, iX,−4iX3, iX, 2X, 2X3].
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Truncating before the final 2X3 gives A,B as above. But truncating before the −4iX3

leads to the smaller solution

A0 = (2− 2i)X5
− (1+ i)X3

+ (1− i)X, B0 = (2− 2i)X2
− (1+ i)

of degree 5, and the solution above is up to sign the “square”.
And indeed∫
−(10X2

+2i)√
X6+X2+ i

2

dX = log
(
A+B

√
X6+X2+

i

2

)
= 2 log

(
A0+B0

√
X6+X2+

i

2

)

(up to constants) as predicted by (10.2).

11. Almost the Pell equation

When solving a Pell equation a2
− db2

= 1 over Z one notes that a/b must be a good
rational approximation to

√
d . But constructing such good approximations by the Box

Principle gives infinitely many solutions only of the equation a2
− db2

= m for some
fixed m, “almost the Pell equation”. To obtain m = 1 an extra application of the Box
Principle is needed.

Analogous considerations for A2
− DB2

= 1 over K[X] lead also to an equation
A2
− DB2

= M; but here M is not fixed, merely of degree at most 2. See for example
[PT, p. 157]. Now there is no general way to obtainM = 1, and indeed we have seen that
this is impossible for D = X6

+X + t for all but finitely many complex values of t .
Indeed in this parametric situation the resulting M , listed somehow as Mn (n =

1, 2, . . .), can be assumed to have the form c′′n(t)X
2
+c′n(t)X+cn(t) for cn(t), c′n(t), c

′′
n(t)

in K(t). Then we would have to solve the equations c′′n(t) = c
′
n(t) = 0 for t . This is an-

other illustration of the term “unlikely intersection”, such as in the very simplest example
tn = (1− t)n = 1 in G2

m, and does indeed lead to a solution set that is at most finite.
However, the equations c′′n(t) = 0 alone, just like tn = 1, are not unlikely in this

sense; and one would expect them to have infinitely many solutions as n varies. For our
special D above this leads to

A2
− (X6

+X + t)B2
= c′X + c. (11.1)

For us this is “almost the Pell equation” over C[X], as in Theorem P2.
A simple example is t = 0 with A = X3, B = 1 and

A2
− (X6

+X)B2
= −X. (11.2)

Less simple is t = 5
√

1/12 with

A = 24t3X7
− 48t4X6

+ 6X5
− 6tX4

+ 6t2X3
+ 12t3X2

− 12t4X + 1,

B = 24t3X4
− 48t4X3

+ 6X2
− 6tX + 6t2,
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and

A2
− (X6

+X + t)B2
= 12t4X − 2.

It may be shown that such values of t are precisely those that occur as poles of the partial
quotients in a1, a2, . . . in (10.4). We see at once that t = 0 in a2, and also t = 5

√
1/12 by

going further to

a4 = −
X

2t3(12t5 − 1)
+

16t5 − 1
4t2(12t5 − 1)

.

Similar issues occurred in the problems considered in [MZ1], [MZ2]; the pencil of
abelian surfaces of this paper was there replaced by the square of the Legendre family.
There the unlikely intersection corresponded to the equations

n
(
2,
√

2(2− λ)
)
= n

(
3,
√

6(3− λ)
)
= 0

on the Legendre elliptic curve as in (1.1). And there we also considered a “likely inter-
section” with n(2,

√
2(2− λ)) = 0 alone. We proved that there are infinitely many λ

using a very special case of Siegel’s theorem on integral points on curves over function
fields. Other proofs were later presented (see [Za, pp. 92, 93]), but the matter, although
not difficult, seemed not completely obvious.

In this case of a simple abelian surface family, things appear to be more complicated.
The approach through Siegel’s theorem seems to require a deeper analogue for integral
points in affine subsets of abelian variety. (This is due to Faltings in the number field
case. Here we would need the function field analogue; presumably, although less deep,
this should be still much more difficult compared to Siegel’s theorem.) On the other hand,
the elliptic case admitted also an analytical approach (working on complex tori rather
than on algebraic models), which was simple and moreover gave additional information.
It is an approach of this nature that we shall adopt here.

We now start the proof of Theorem P2. More precisely, we shall prove that given
any d0, there are infinitely many complex t for which there exist complex c′ 6= 0, c and
A,B in C[X] with A of degree at least d0 and (11.1).

We start with an analogue of Lemma 10.1 for (11.1), as there over K[X], where now
D is squarefree of degree 6. We embed Hλκθ in Jλκθ by mapping R to

j (R) = {β(∞+), β(∞+)} − {β(∞+), R}. (11.3)

Write Vλκθ for the image j (Hλκθ ); it is an algebraic curve but we do not need to know
this. It contains the origin j (β(∞+)); and after removing this we write temporarily V̂λκθ
for what is left.

Lemma 11.1. (i) Suppose there are A,B in K[X] and c′ 6= 0, c in K with A 6= 0 of
degree d such that A2

− DB2
= c′X + c. Then for n = d or 1 − d the function

A(X) + YB(X) on HD has a zero of order n − 1 at∞+, a pole of order n at∞−,
and one other zero γ+ 6= ∞+ at which c′X + c also vanishes.
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(ii) Suppose there are A,B in K(X) and n such that A(X)+ YB(X) on HD has a zero
of order n − 1 at ∞+, a pole of order n at ∞−, and one other zero γ+ 6= ∞+.
Then n = d or 1 − d for some integer d ≥ 0 and A,B are in K[X] with A 6= 0 of
degree d such that A2

−DB2
= c′X + c for some c′ 6= 0, c in K such that c′X + c

also vanishes at γ+.
(iii) Suppose D splits completely over K . There are A,B in K[X] and c′ 6= 0, c in K

with A 6= 0 of degree d such that A2
−DB2

= c′X + c if and only if d ≥ 1 and the
point d{β(∞+), β(∞+)} is in V̂λκθ .

Proof. In the situation of (i) we have f+f− = c′X + c for the functions f+ = A(X)+
YB(X), f− = A(X) − YB(X) on HD . So the only possible zeros and poles are at
∞
+,∞− and the two zeros γ+, γ− (possibly coinciding) of c′X + c. Since the number

of zeros is the number of poles, there is an integer n such that f+ has a zero of order
n− 1 at∞+, a simple zero at γ+, and a pole of order n at∞−. Now f++ f− = 2A has
poles of order n or 1 − n at∞+,∞− and no other poles. Thus this order is d, and that
proves (i).

In the situation of (ii) with f+ = A(X) + YB(X) we deduce that f− = A(X) −

YB(X) has a pole of order n at ∞+, a zero of order n − 1 at ∞−, and a simple zero
at γ−. Thus f+f− = c′X+ c for constants c′ 6= 0, c. Also f+ + f− = 2A has no poles
at finite points, so it must be a polynomial, clearly non-zero because c′ 6= 0. And finally
because D is squarefree we see from DB2

= A2
− c′X − c that B is also a polynomial.

This brings us back to (i) and thereby completes the proof of (ii).
We may note that in the above situations the points γ± = (X0,∓A(X0)/B(X0)) for

X0 = −c/c
′ are defined over K .

Finally in the situation of (iii) the existence of A,B clearly implies d ≥ 1 and gives
from (i) a function f+ = A(X) + YB(X) from which we derive a function g on Hλκθ
with a zero of order n − 1 at P+ = β(∞+), a pole of order n at P− = β(∞−), and
a simple zero at Q+ = β(γ+) 6= P+. Here n = d or 1 − d; but by changing the sign
of B we can assume n = d . Looking at gln as in the proof of Lemma 10.1 now shows
that n{P+, P+} = j (Q+). And conversely if n{P+, P+} = j (Q) for some n = d ≥ 1
and some Q 6= P+, then going backwards we find a function on HD with a zero of order
n− 1 at∞+, a simple zero at γ+ = β−1(Q) 6= ∞+, and a pole of order n at∞−. This
can be written as f+ = A(X)+ YB(X) for A,B in K(X), and we are back to (ii). That
completes the proof of the present lemma.

Now for the proof concerning (11.1) we see that we are in a situation like that of
the Proposition, except that the condition of the point {P(c),Q(c)} being torsion on
Jλ(c)κ(c)θ(c), that is, n{P(c),Q(c)} = O, is replaced by n{P(c),Q(c)} lying on the curve
V̂λ(c)κ(c)θ(c) (for n ≥ 1). Here of course P(c) = Q(c) = β(∞+). The latter curve being
of positive dimension, the corresponding condition is much less stringent and we will
prove that for each n0 it holds for infinitely many c in C with some n ≥ n0. In fact it
would suffice to land in the hatless Vλ(c)κ(c)θ(c) (subsequently written V (c) for brevity) in
Jλ(c)κ(c)θ(c) (subsequently written J (c) for brevity) because of Theorem P1; however, we
prefer not to evoke this rather deeper result here. Incidentally, we do not need to assume
anything for the generic point of C as we did in the Proposition, because some n ≥ 1 with
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n{P,Q} in Vλκθ identically now works in our favour: by specialization it gives infinitely
many c with the same n. In fact the identity (1.9), which for convenience we display again
as

A2
− (X6

+X + t)B2
= −X − t (11.4)

with A = X3, B = 1, is an example of this with n = 3. We will verify later on that this
is essentially the only generic example; thus one cannot obtain c with n ≥ 4 simply by
this sort of specialization (e.g. to t = 0 as in (11.2) above).

Our general strategy may be sketched as follows. We work near some suitable fixed
point c∗ on C. First we find a large n with n{P(c∗),Q(c∗)} near zero in V (c∗). Then we
perturb c∗ by an amount of order 1/n, staying on C, to some c∗∗. As “nf (x + y/n) is
about nf (x) + yf ′(x)” we can by suitable choice of c∗∗ bring n{P(c∗∗),Q(c∗∗)} near
a better behaved point of V (c∗) and so near a better behaved point of V (c∗∗). Then an-
other perturbation to c places n{P(c),Q(c)} exactly on V (c) (but non-zero) as required
in Lemma 11.1(iii); this last step involves some form of implicit function theorem which
requires the better behaviour.

In fact we linearize the procedure using tangent spaces. Thus we will need the period
functions f, g,k, l of Section 4 together with an abelian logarithm z of {P,Q} as in (4.3).
These were defined first at all c near some c∗ as in (4.2). For each c these periods generate
the lattice � = �(c) over Z. We will work with the inverse image Z(c) of V (c) under
the exponential map; by (11.3) and (4.3) this consists of

zR(c) =
(∫ P(c)

R

dX

Y
,

∫ P(c)

R

X dX

Y

)
taken over all possible R and all possible paths. By Riemann’s Theorem it is the zero-set
of a suitable theta-function ϑ . In fact we have

ϑ
( 1

2z∞(c)−
1
2zR(c); T

)
= 0 (11.5)

for some matrix T = T (c) in the Siegel upper half-space (see for example [G, p. 98]).
Thus Z(c) is a complex analytic curve in C2 containing �(c), and it is everywhere
smooth, being locally analytically isomorphic to V (c) and so to H(c) = Hλ(c)κ(c)θ(c)
(or by Riemann’s Singularity Theorem for genus 2). It is known to be connected.

For the moment we will work with just J (c∗), V (c∗),�(c∗), Z(c∗), which for further
brevity we will denote by J∗, V∗, �∗, Z∗ respectively. By adjusting c∗ we can assume that
J∗ is simple (for example we could use the t0 obtained from Stoll’s criterion in Section 10,
or a general result [M2] of the first author). Later on we will make another adjustment of
this type.

Lemma 11.2. Given u 6= 0 in C2 there is z∗ in Z∗ \ �∗, and also in the topological
closure of Cu+�∗, such that the tangent space of Z∗ at z∗ does not contain z∗ + u.

Proof. The closure U of Cu+�∗ in C2 (i.e. R4), as for any group in a real vector space,
must have the formG+S for a groupG and a real vector subspace S, of dimension say s,
with G discrete in R4/S. As U contains �∗ we see that S contains a subgroup of �∗ of
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rank s. As U contains Cu, we must have s ≥ 2. But s = 2 would give an elliptic curve
in J∗, contradicting its simplicity.

First we want to show that Z∗ ∩ S modulo �∗ is infinite. This is clear if s = 4, so we
assume s = 3.

Now the removal of S (i.e. R3) disconnects C2 (i.e. R4). As Z∗ is connected and
contains �∗, it follows that Z∗ ∩ S is not empty. If this were finite modulo �∗ then it
would be a discrete set of points in C2, and removing these from Z∗ would still leave a
connected set Ẑ∗. This still contains some translate of�∗, and the argument above would
give something in the empty set Ẑ∗ ∩ S. Thus indeed Z∗ ∩ S modulo �∗ is infinite; and
we can find an infinite subset T of Z∗ ∩ S lying in a compact subset of C2.

Now if the complex tangent line of Z∗ through t contains t+ u for all t in T \�∗ then
this would be the case identically in z on the complex analytic curveZ∗. That would imply
that Z∗ is a complex line. But then it cannot contain �∗ (for example by the simplicity
of J∗). This completes the proof.

We will choose u (and so z∗ in Z∗) later on; they will depend only on the choice of c∗.
We choose in a similar way also a small ε > 0, say with ε ≤ 1. The lemma implies that
there is a period w∗ in �∗ and τ in C with

|z∗ − τu− w∗| < ε. (11.6)

As 0 is a cluster point of Nu modulo �∗, we can adjust τ by an integer so that |τ | ≥ 1.
Now Nz(c∗) also clusters near 0 modulo �∗, and so there are infinitely many natural

numbers n for which there exists a period w]∗n in �∗ with

|nz(c∗)− w]∗n| < ε. (11.7)

We can assume that n ≥ n0 for our prescribed n0, and we can also assume that

n ≥ (1+ |τ |2)/ε. (11.8)

We are now going to move c on C slightly away from c∗; we do this by choosing
any non-constant function on C—the coefficient in X6

+ X + t will do perfectly—and
regarding c = c(t) as a function of t near t∗ = t (c∗). Thus we shall write z̃(t) = z(c(t))
etc. The point is that a first approximation to nz̃(t∗ + τ/n) is nz̃(t∗)+ τ z̃′(t∗), where the
prime denotes d/dt ; thus although the perturbation τ/n on t may be small, the effect on
nz̃ may not be. We have in fact

nz̃(t∗ + τ/n) = nz̃(t∗)+ τ z̃′(t∗)+O(|τ |2/n) (11.9)

where the implicit constant, as all such constants below, is independent of τ, ε and espe-
cially n. In fact it will be seen that they can be taken as absolute constants, provided t∗ is
chosen in a fixed way (and we can almost certainly take t∗ = 2, for example).

This enhanced perturbation will enable us to deduce from (11.7) that nz̃(t∗ + τ/n)
is close not to zero but to z∗ in Z∗, at least up to periods. However, we must take into
account the effect of perturbing the lattice. Writing

w]∗n = pn f̃(t∗)+ qng̃(t∗)+ rnk̃(t∗)+ sn l̃(t∗)
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for integers pn, qn, rn, sn we therefore define

w]n = pn f̃(t∗ + τ/n)+ qng̃(t∗ + τ/n)+ rnk̃(t∗ + τ/n)+ sn l̃(t∗ + τ/n)

in �̃(t∗+τ/n). To estimate w]n−w]∗n we have to be careful about the sizes of pn, qn, rn, sn.
In fact we can write

z̃(t∗) = x f̃(t∗)+ yg̃(t∗)+ uk̃(t∗)+ vl̃(t∗) (11.10)

for real x, y, u, v, and from (11.7) it follows (since period lattices are discrete) that

pn = nx +O(ε), qn = ny +O(ε), rn = nu+O(ε), sn = nv +O(ε). (11.11)

We find that
w]n = w]∗n + τh+O(|τ |2/n)+O(|τ |ε/n) (11.12)

where
h = x f̃′(t∗)+ yg̃′(t∗)+ uk̃′(t∗)+ vl̃′(t∗) (11.13)

may possibly be related to quasi-periods. An analogous construction produces wn in
�̃(t∗+τ/n) from w∗ in (11.6) but now with coefficientsO(|τ |) instead of those in (11.11),
and we find

wn = w∗ +O(|τ |2/n). (11.14)

We now choose
u = z̃′(t∗)− h. (11.15)

By bad luck it may happen that u = 0, but if so we can just modify the choice of t∗
to get u 6= 0. We postpone the details of this step until later; they rely on our algebraic
independence result (Lemma 5.1). Anyway, when we combine (11.7) with (11.6), (11.9),
(11.12), (11.14) we see that nz̃(t∗ + τ/n) is close to z∗ modulo �̃(t∗ + τ/n); and using
(11.8) to tidy up the error terms we end up with

nz̃(t∗ + τ/n) = z∗ + w]n − wn +O(ε). (11.16)

Here z∗ was on Z∗ = Z̃(t∗). The last step is to make an additional perturbation from
t∗ + τ/n to

tn = t∗ + τ/n+ ζn/n (11.17)

so as to have nz̃(tn) actually on Z̃(tn), at first modulo periods but then since the Z̃(t) are
periodic this is good enough. Here |ζn| ≤ 1 to start with.

For this we use the fact that near (z∗, t∗) the set of (z, t) in C2
× C with z in Z̃(t)

is defined locally by an analytic equation f (z, t) = 0. This seems to be well-known; for
example the T = T (c) in (11.5) is analytic in c (see also [G, p. 97]) and so in t . Again
we must adjust the lattice, and so first we define the periods

w]n(ζ ) = pn f̃ (tn)+ qng̃ (tn)+ rnk̃(tn)+ sn l̃(tn)
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and analogously wn(ζ ) in �̃(tn). Then we define

Fn(ζ ) = f (nz̃(tn)− w]n(ζ )+ wn(ζ ), tn).

Note that the estimates (11.9), (11.12), (11.14) with τ + ζ in place of τ , together with
(11.16), show that the first expression in f is

nz̃ (tn)− w]n(ζ )+ wn(ζ ) = z∗ +O(|ζ |)+O(ε); (11.18)

and the second expression is even t∗ + O(ε). So Fn is well-defined provided ζ, ε are
sufficiently small.

We wish to find ζn with Fn(ζn) = 0. We apply the Rouché theorem (see for example
[L, p. 158]) to the functions Fn(ζ ) and Fn(ζ ) − Fn(0); if we can verify that |Fn(0)| <
|Fn(ζ )− Fn(0)| on |ζ | = ρ for a suitable radius ρ ≤ 1, then because the second function
has the zero ζ = 0, we get the required zero of the first function.

To start with, by (11.16) we have

Fn(0) = O(ε). (11.19)

Next with gn being the first derivative of Fn(ζ ) at ζ = 0 we can verify that

Fn(ζ )− Fn(0) = ζgn +O(|ζ |2) (11.20)

when for safety |ζ | ≤ 1/2—for example by using the Cauchy integral formula for
ζ 2

2πi

∫
Fn(z) dz

z2(z−ζ )
over |z| = 3/4 and estimating Fn(z) = O(1). Here gn is given by

df (nz̃(t∗+τ/n)−w]n+wn, t∗+τ/n) ·(z̃′(t∗+τ/n)−(w]n)
′(0)+w′n(0))+

1
n
ft (t∗+τ/n),

where df is the gradient with respect to v, ft the derivative with respect to t , and the dot
is the scalar product. By (11.16) and (11.8) we have

df (nz̃(t∗ + τ/n)− w]n + wn, t∗ + τ/n) = df (z∗, t∗)+O(ε).

And again using (11.11) and the definition (11.15) of u we get

z̃′(t∗ + τ/n)− (w]n)
′(0)+ w′n(0) = u+O(ε).

Thus we find gn = θ +O(ε) for θ = df (z∗, t∗) · u.
Now by Lemma 11.2 we know θ 6= 0. Thus if ε is small enough we have |gn| ≥ 1

2 |θ |,
and now (11.19) and (11.20) yield for |ζ | = ρ ≤ 1/2 the inequality

|Fn(ζ )− Fn(0)| − |Fn(0)| ≥ 1
2 |θ |ρ −O(ε)−O(ρ

2).

Here the right-hand side can be made strictly positive by choosing ρ to be a sufficiently
large multiple of ε and then again ε small enough.

Thus indeed there exists ζn with Fn(ζn) = 0, and by the definition of f this means
that nz̃(tn) lies on Z̃(tn). Exponentiating, we see that n{P(cn),Q(cn)} lies in V (cn) for
cn = c(tn). As n ≥ n0 this seems at first sight to complete the proof.
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But why is n{P(cn),Q(cn)} 6= 0? If this were false then nz̃(tn) would be in �̃(tn).
Then by (11.18) the point z∗ would be within O(ε) of a period of �̃(tn). Writing this
period as an integral linear combination of f̃(tn), g̃(tn), k̃(tn), l̃(tn) we see easily that the
coefficients are O(1). It follows that z∗ is within O(ε) of the corresponding linear com-
bination of f̃(t∗), g̃(t∗), k̃(t∗), l̃(t∗). But if ε is small enough, this contradicts the choice
of z∗ in Lemma 11.2.

And also why do we get infinitely many different tn as n varies, as required in (11.1)?
Simply because in (11.17) we had |τ | ≥ 1 and ζn = O(ε), so τ/n dominates if ε is
sufficiently small.

And finally why is u 6= 0 in (11.15)? Well, the x, y, u, v in (11.10) are real-analytic
functions x(t), y(t), u(t), v(t) at t = t∗, and (11.15) and (11.13) give u = u(t∗) for

u(t) = z̃′(t)− x(t)f̃′(t)− y(t)g̃′(t)− u(t)k̃′(t)− v(t)l̃′(t).

Of course here
z̃(t) = x(t)f̃(t)+ y(t)g̃(t)+ u(t)k̃(t)+ v(t)l̃(t). (11.21)

If now by some bad luck u(t∗) = 0 then we just move t∗ slightly. We can do this provided
u(t) is not identically zero. But if it were, then from (11.21) we would deduce

δ(x(t))f̃(t)+ δ(y(t))g̃(t)+ δ(u(t))k̃(t)+ δ(v(t))l̃(t) = 0,

where δ denotes the derivative with respect to either the real or the imaginary part of t .
From this it would follow that the real coefficients δ(x(t)), δ(y(t)), δ(u(t)), δ(v(t)) are
zero, and so x(t), y(t), u(t), v(t) would be constant. But then (11.21) would contradict
Lemma 5.1 on algebraic independence. This really does finish the proof of Theorem P2
in the slightly stronger form with A of arbitrarily large degree.

If we use clusterpoints of Nz(c∗) other than 0, then the argument proves more about the
set of integers n such that some c exists. We leave it to the interested reader to explore
what can be extracted from the proof.

As anticipated, we now start on the proof that (11.4) is essentially the only example
of (11.1), even when A,B, c′, c are defined over the algebraic closure C(t), that is, up to
multiplication by non-zero elements of this field.

Lemma 11.3. Suppose that ϕ,ψ are in C(t) with ψ2
= ϕ6

+ ϕ + t . Then ϕ = −t and
ψ = ±t3.

Proof. We easily deduce ϕ = U/W,ψ = V/W 3 for U,V,W in C[t] with both U,W
and V,W coprime. Thus

V 2
= U6

+ (U + tW)W 5. (11.22)

Now if degU ≤ degW then tW 6 would dominate on the right-hand side of (11.22),
incompatible with the left-hand side V 2. So degU ≥ 1+ degW . Now U6 dominates on
the right, and so degV = 3 degU ≥ 3+ 3 degW . Thus the maximal degree of the three
terms in (11.22) is N = 2 degV .
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If U,V are coprime then we can apply abc to (11.22). The number of distinct zeros
is at most

degV + degU + deg(U + tW)+ degW ≤ 1
2N +

1
3N +

1
3 (N/2− 3) < N,

a contradiction.
Thus we can assume that U,V have a common factor, which must be t up to units. So

t does not divide W . Writing U = tU1, V = tV1 we deduce from (11.22) that

V 2
1 = t

4U6
1 +

U1 +W

t
W 5,

where (U1 +W)/t must be a polynomial. Now degV1 = 2 + 3 degU1 ≥ 2 + 3 degW .
Certainly U1, V1 are coprime; and if further t, V1 are coprime, then we can again apply
abc. With now N1 = 2 degV1 as the maximal degree we find that the number of distinct
zeros is at most

degV1 + (1+ degU1)+ (deg(U1 +W)− 1)+ degW

≤
1
2N1 +

2
3 (N1/2− 2)+ 1

3 (N1/2− 2) < N1,

another contradiction.
Next suppose t divides V1 but t2 does not, so V1 = tV2 with t, V2 coprime and

V 2
2 = t

2U6
1 +

U1 +W

t3
W 5

where again (U1 +W)/t
3 must be a polynomial. Now degV2 = 1 + 3 degU1 ≥ 1 +

3 degW , and with N2 = 2 degV2 the zero count is

degV2 + (1+ degU1)+ (deg(U1 +W)− 3)+ degW

≤
1
2N2 +

2
3 (N2/2− 4)+ 1

3 (N2/2− 1) < N2,

yet another contradiction.
Finally, if t2 divides V1 so V1 = t

2V3 then

V 2
3 = U

6
1 +

U1 +W

t5
W 5

with coprime terms and degV3 = 3 degU1 ≥ 3 degW , and with N3 = 2 degV3 the zero
count is

degV3+degU1+(deg(U1+W)−5)+degW ≤ 1
2N3+

2
3 (N3/2−15/2)+ 1

3 (N2/2) < N2,

apparently yet another contradiction. But now there is a way out: all the terms could
be constant (this was not possible for the first three applications of abc). But then U1,W

would be constant. As U1+W is divisible by t , it must vanish. This leads back to ϕ = −t ,
ψ = ±t3, and the present lemma is proved.
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Now we can prove indeed that (11.1) must be essentially (11.4). Clearly A 6= 0. By
the generic insolvability of the Pell equation over C(t) proved in Section 10 just after
(10.2), we can assume that c′ 6= 0.

In fact by [PT, Proposition 3.6, p. 161] with g = 2 the quotientA/B is a convergent in
the continued fraction expansion of (10.3) over C(t). Thus we can suppose thatA,B (and
so c′, c) are over C(t) (and even Q(t) but we will not use this). Substituting X = −c/c′

we obtain ϕ,ψ in C(t) with ψ2
= ϕ6

+ ϕ+ t . By Lemma 11.3 we deduce ϕ = −t . Thus
c′X + c = c′(X + t).

Now we go back to Lemma 11.1 with K = C(t). By (i) the function A(X)+ YB(X)
has for some n a zero of order n− 1 at∞+, a pole of order n at∞−, and one other zero
γ+ 6= ∞+ at which c′(X + t) also vanishes. So γ+ = (−t,±t3); and by changing the
sign of B we may suppose that γ+ = (−t, t3).

Also X3
+ Y has a zero of order 5 at ∞+, a pole of order 6 at ∞−, and one other

zero at this γ+. So g = A(X)+YB(X)

X3+Y
has a zero of order n − 6 at ∞+, a pole of order

n−6 at∞−, and no other zeros or poles. By Lemma 10.1(ii) this forces n = 6 because of
generic Pell insolvability. Thus g must be constant, showing indeed thatA,B are constant
multiples of X3, 1 as claimed. The above sign change means that also X3,−1 turns up.

12. Further remarks

We close this paper with more comments on “likely intersections”.
We have shown in Theorem P2 the infinitude of the set T of complex t for which

(11.1) is solvable for some A,B in C[X] with the degree of A not 3 and some c′ 6= 0, c
in C. Equivalently, it is the set of complex t for which there exists a non-negative integer
n 6= 6 such that

np(t) lies in V̂ (t), (12.1)

where p(t) is a certain point on the Jacobian of a certain hyperelliptic curve and V̂ (t)
is a certain embedding of the curve in the Jacobian (omitting the origin), all depending
algebraically on t . This is an analogue of the second sentence of the very first paper
[BMZ1] on the subject of likely and unlikely intersections. There it was easy to see that
there are infinitely many t for which there exist r, s in Z, not both zero, with

t r(1− t)s = 1; (12.2)

so easy, in fact, that we did not say how. And without much difficulty we went further to
determine some structure and found explicitly the t in Z and the t in Q; also we considered
the t in some fixed number field using Faltings’s Theorem, and noted the “sparseness” of
the t with fixed degree over Q using a general result of the first author [M1].

Surprisingly, none of these structure results seems to be clear for our present infinite
set T . It is at least obvious that T is in Q. But it is not at all obvious even that T 6= Q!

In this connection we may note that for any specific t = t∗ (apart from those in the
finite set for which the Pell equation is solvable) there are at most finitely manyA,B, c′, c
in (11.1) up to proportionality. For otherwise by (12.1) we would get infinitely many
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points in V (t∗) defined over Q(t∗), also contradicting Faltings’s Theorem. Now these
points have a special cyclic group structure, and for such small rank, simpler results of
Chabauty may suffice for the same finiteness conclusion.

These results of Chabauty are proved with p-adic methods, and so we asked Victor
Flynn if perhaps similar arguments could be applied with varying t∗, maybe p-adically
constrained. He replied very quickly in the affirmative; he shows for example that no
non-zero element of 7Z is in T (by (1.6) and (11.2) we see that t = 0 is in T ). His work
appears in the Appendix.

The first main result of [BMZ1] implies that the t in (12.2) have absolute height
bounded from above. Thus for us the next natural question is whether this holds for the
elements of T . It is of course obvious for the very simplest problem tn = 1; but already
for n(2,

√
2(2− t)) = 0 it requires Silverman’s Theorem, unfortunately not applicable to

our T or (12.1).
One may ask several related questions, for example: does T contain only finitely many

roots of unity?

Acknowledgments. We heartily thank both Daniel Bertrand for his interest in and help on these
matters and Victor Flynn for allowing us to include his work. We are also grateful to Olaf Merkert
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Appendix (by E. V. Flynn): An application of Chabauty’s theorem to a family of
curves

In this appendix, we shall consider the family of genus 2 curves

Ht : Y
2
= X6

+X + t, (1)

where t ∈ C is such that X6
+ X + t has only simple roots. Since the discriminant of

this sextic with respect to X is 3125 − 46656t5, this condition is equivalent to requiring
that t avoids any 5th root of 3125/46656, and in particular the condition is satisfied by
any t ∈ Q. Any such Ht is of genus 2; let Jt denote the Jacobian of Ht . The above curve
is defined over K = Q(t). Let∞+,∞− denote the points on the non-singular curve that
lie over the singular point at infinity, which should be regarded as members of Ht (K),
since the coefficient of X6 is in (K∗)2. We shall adopt the customary shorthand notation
{P1, P2} to denote the divisor class [P1+P2−∞

+
−∞

−
], which is in Jt (K)when P1, P2

are points on Ht and either P1, P2 are both K-rational, or they are quadratic over K and
conjugate. Consider the following embeddings:

µ : Ht (K) ↪→ Jt (K) : P 7→ [P −∞
+
] = {P,∞−},

µ′ : Ht (K) ↪→ Jt (K) : P 7→ [P −∞
−
] = {P,∞+}.

(2)

Further define
qt := [∞

−
−∞

+
] = {∞

−,∞−} ∈ Jt (K), (3)

which is in the image of µ. Making use of the divisor of the function Y + X3, it is
straightforward to compute 2qt , and then all nqt for −3 ≤ n ≤ 3:

−3qt = {(−t, t3),∞+}, −2qt = {(−t, t3),∞−}, −1qt = {∞+,∞+},

0qt = {∞+,∞−},

1qt = {∞−,∞−}, 2qt = {(−t,−t3),∞+}, 3qt = {(−t,−t3),∞−}.

(4)

Clearly nqt ∈ imµ for n = −2, 0, 1, 3 and nqt ∈ imµ′ for n = −3,−1, 0, 2.
We are interested in finding sufficient conditions on t (which we wish to include

infinitely many t ∈ Q) such that nqt 6∈ imµ for |n| > 3. It turns out to be more elegant
to rephrase this as: nqt 6∈ imµ ∪ imµ′ for |n| > 3.

When t is algebraic over Q, so that K is a number field, this is a problem that should
be amenable to constructive Chabauty techniques, which provide explicit bounds on the
order of the intersection of an embedding of a curve C of genus g into its Jacobian J , and
a rank r subgroup of the Mordell–Weil group J (K), provided that r < g. In this case,
the genus of Ht is g = 2 and we are trying to find the intersection of µ(Ht (K)) with the
rank 1 subgroup of Jt (K) generated by qt . There is a substantial literature on applications
of Chabauty techniques, which we shall not attempt to list here; for genus 2, there are
different styles used to find explicit bounds, such as those in [1], [2], [4], [5], [6], and there
is an implementation for numerical genus 2 examples, due to Michael Stoll, in Magma [8]
(see also [3] for the original article of Chabauty). We shall follow the methodology of [6]
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and [2, Chapter 13] using explicit local parameters to find power series over Zp. We shall
give the details below, and have provided a Maple file mzf.map at [7] which checks all of
the following steps.

The first step towards applying these techniques is to find a multiple of qt which is in
the kernel of the reduction map modulo some prime p. Using the multiples of qt in (2)
and adding 2qt + 3qt , we find

Et := 5qt = {(−t,−t3), (−t,−t3)}. (5)

We now impose the condition that

t = t0 6= 0, where t0 is algebraic over Q and there exists p > 5
and an embedding of Q(t0) into Qp with |t0|p < 1.

(6)

We represent this by setting

t = t0 = u0p
k, where |u0|p = 1 and k ≥ 1. (7)

This forces Et to be in the kernel of reduction modulo p. Note that this condition on t0
includes all a/b ∈ Q with a 6= 0, b ∈ Z and hcf(a, b) = 1 such that there exists a prime
p > 5 with p | a (which in turn include all members of Z outside a set of density 0). It
also includes algebraic numbers t0 of arbitrary degree over Q such as, for any k ∈ N not
divisible by 11, t0 = 121/k

− 1, which is of degree k over Q and for which there is an
embedding into Q11 with |t0|11 < 1.

What is somewhat surprising is that we shall find condition (6), which merely
places Et in the kernel of the reduction map modulo p, already to be sufficient to give
our desired result about multiples of qt0 using a p-adic Chabauty technique, when nor-
mally one might expect further congruence conditions to be required. Although there are
a number of worked examples using these techniques in the literature, we shall neverthe-
less give an outline of the details here, on the grounds that the naive bound is insufficient,
and so there is a finesse required towards the end of the argument, for which it is helpful
to see the actual power series.

Recall from [2, Chapter 2] that for a general curve of genus 2,

Y 2
= f6X

6
+ f5X

5
+ f4X

4
+ f3X

3
+ f2X

2
+ f1X + f0, (8)

there is an embedding of the Jacobian variety into P15, where D = {(x1, y1), (x2, y2)} is
mapped to a = (a0, . . . , a15) with

a15 = (x1 − x2)
2, a14 = 1, a13 = x1 + x2, a12 = x1x2, a11 = x1x2(x1 + x2),

a10 = (x1x2)
2, a9 = (y1 − y2)/(x1 − x2), a8 = (x2y1 − x1y2)/(x1 − x2),

a7 = (x
2
2y1 − x

2
1y2)/(x1 − x2), a6 = (x

3
2y1 − x

3
1y2)/(x1 − x2),

a5 = (F0(x1, x2)− 2y1y2)/(x1 − x2)
2,

a4 = (F1(x1, x2)− (x1 + x2)y1y2)/(x1 − x2)
2,

a3 = (x1x2)a5, a2 = (G0(x1, x2)y1 −G0(x2, x1)y2)/(x1 − x2)
3,

a1 = (G1(x1, x2)y1 −G1(x2, x1)y2)/(x1 − x2)
3, a0 = a

2
5,

(9)
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where

F0(x1, x2) = 2f0 + f1(x1 + x2)+ 2f2(x1x2)+ f3(x1x2)(x1 + x2)

+ 2f4(x1x2)
2
+ f5(x1x2)

2(x1 + x2)+ 2f6(x1x2)
3,

F1(x1, x2) = f0(x1 + x2)+ 2f1(x1x2)+ f2(x1x2)(x1 + x2)+ 2f3(x1x2)
2

+ f4(x1x2)
2(x1 + x2)+ 2f5(x1x2)

3
+ f6(x1x2)

3(x1 + x2),

G0(x1, x2) = 4f0 + f1(x1 + 3x2)+ f2(2x1x2 + 2x2
2)+ f3(3x1x

2
2 + x

3
2)

+ 4f4(x1x
3
2)+ f5(x

2
1x

3
2 + 3x1x

4
2)+ f6(2x2

1x
4
2 + 2x1x

5
2),

G1(x1, x2) = f0(2x1 + 2x2)+ f1(3x1x2 + x
2
2)+ 4f2(x1x

2
2)+ f3(x

2
1x

2
2 + 3x1x

3
2)

+ f4(2x2
1x

3
2 + 2x1x

4
2)+ f5(3x2

1x
4
2 + x1x

5
2)+ 4f6(x

2
1x

5
2).

(10)

With respect to this embedding,

0qt = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
1qt = [0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0],

2qt = [0, 0, 0, 0, 0, 0, 0, t2,−t, 1, t2,−t, 0, 0, 0, 1],

Et = 5qt =
[
(12t5 − 1)2

16t12 ,
40t10

− 16t5 + 1
8t8

,
−(56t10

− 18t5 + 1)
8t9

,

−(12t5 − 1)
4t4

,
10t5 − 1

4t5
,
−(12t5 − 1)

4t6
,

1
2
,

2t5 − 1
2t

,

−(4t5 − 1)
2t2

,
6t5 − 1

2t3
, t4,−2t3, t2,−2t, 1, 0

]
.

(11)

We recall from [2, Chapter 7] that s1 = a1/a0 and s2 = a2/a0 give a pair of local
parameters; there is a formal group law, defined over Z[f0, . . . , f6], and the formal loga-
rithm power series log1, log2 and formal exponential power series exp1, exp2 (available at
local/log and local/exp in [7]), up to terms of total degree 5 in s1, s2 are, when specialised
to our curve Ht in (1):

log1 = s1 +
1
3 s

3
2 + 12ts3

1s
2
2 + 5s4

1s2 + terms of degree ≥ 7,

log2 = s2 + 4s3
1s

2
2 + 12ts2

1s
3
2 + terms of degree ≥ 7,

exp1 = s1 −
1
3 s

3
2 − 5s4

1s2 − 12ts3
1s

2
2 + terms of degree ≥ 7,

exp2 = s2 − 4s3
1s

2
2 − 12ts2

1s
3
2 + terms of degree ≥ 7.

(12)

For each of these power series, the denominator occurring in any term of total degree n
divides n!. Computing the local parameters s1(Et ) = a1/a0 and s2(Et ) = a2/a0 for Et
in (11) and using the condition on t in (7), we see that
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s1(Et ) = 2t4(40t10
− 16t5 + 1)/(12t5 − 1)2

= 2u4
0p

4k(1+ 8u5
0p

5k
+ 88u10

0 p
10k
+O(p15k)),

s2(Et ) = −2t3(56t10
− 18t5 + 1)/(12t5 − 1)2

= −2u3
0p

3k(1+ 6u5
0p

5k
+ 56u10

0 p
10k
+O(p15k)),

(13)

where O(pr) denotes upr for some u ∈ Zp with |u|p ≤ 1. Applying exp(m logEt ), by
combining (12), (13) and taking account of the denominators in (12) gives the following
pair of local parameters for mE:

s1(mEt ) =
2
3mu

4
0p

4k(3+ 4m2u5
0p

5k
+ 20u5

0p
5k

+ 72m2u10
0 p

10k
+ 192u10

0 p
10k
+O(p15k)),

s2(mEt ) = −2mu3
0p

3k(1+ 6u5
0p

5k
+ 56u10

0 p
10k
+O(p15k)).

(14)

Using the local power series local/local.coordinates at [7] (and described in [2, Chap-
ter 7]), we can find the P15 embedding of any point in the kernel of reduction, given a
pair of local parameters; substituting (14) into these gives the following P15 embedding
[a0(mEt ), . . . , a15(mEt )] for mEt :

a0(mEt ) = 1,

a1(mEt ) =
2
3mu

4
0p

4k(3+4m2u5
0p

5k
+20u5

0p
5k

+72m2u10
0 p

10k
+192u10

0 p
10k
+O(p15k)),

a2(mEt ) = −2mu3
0p

3k(1+6u5
0p

5k
+56u10

0 p
10k
+O(p15k)),

a3(mEt ) =
4
9m

2u8
0p

8k(9−12m2u5
0p

5k
+120u5

0p
5k

−272m2u10
0 p

10k
+1552u10

0 p
10k
+16m4u10

0 p
10k
+O(p15k)),

a4(mEt ) = −
4
3m

2u7
0p

7k(3+4m2u5
0p

5k
+38u5

0p
5k

+480u10
0 p

10k
+96m2u10

0 p
10k
+O(p15k)),

a5(mEt ) = −4m2u6
0p

6k(−1−12u5
0p

5k
−148u10

0 p
10k
+4m2u10

0 p
10k
+O(p15k)),

a6(mEt ) = 8m3u12
0 p

12k(1+20u5
0p

5k
+4m2u5

0p
5k
+O(p15k)),

a7(mEt ) = −
8
3m

3u11
0 q

11k(3+8m2u5
0p

5k
+58u5

0p
5k
+O(p10k)),

a8(mEt ) =
8
3m

3u10
0 p

10k(3+56u5
0p

5k
+4m2u5

0p
5k
+O(p10k)),

a9(mEt ) = −8m3u9
0p

9(1+18u5
0p

5k
+O(p10k)),

a10(mEt ) = 16m4u16
0 p

16k(1+O(p5k)), a11(mEt ) = 32u15
0 p

15km4(−1+O(p5k)),

a12(mEt ) = 16m4u14
0 p

14(1+O(p5k)), a13(mEt ) = −32u13
0 p

13km4(1+O(p5k)),

a14(mEt ) = 16m4u12
0 p

12k(1+O(p5k)), a15(mEt ) = m
6u20

0 O(p
20k).

(15)

We also recall, from [2, Chapter 3], that forD = {(x1, y1), (x2, y2)} there is an embedding
of the Kummer surface given by (k1, k2, k3, k4), where

k1 = 1, k2 = x1 + x2, k3 = x1x2, k4 = a5, (16)
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where a5 is the function given in (9). We observe that any D in the image of either µ
or µ′ must have k1 = 0. We also recall from [2, Chapter 3] (available from jaco-
bian.variety/bilinear.forms at [7]) that if a,b are on the Jacobian variety, given as mem-
bers of P15 using the embedding in (9), there are bilinear forms φij (a,b) which give
ki(a− b)kj (a+ b). The bilinear form φ31(a,b), when specialised to our curve Ht in (1),
is

φ31 = −2a8b1 + 2a7b2 − 4a4b4 + 2b7a2 − 2b8a1 + b0a12 + a5b3 + a3b5

+ a0b12 + 2ta5b14 + a13b5 + a5b13 − 4ta9b9 + 2ta14b5 − 2a4b14

−2a8b9 − 2a14b4 − 2a9b8 + 16tb15a12 + 68ta12b12 + 4ta15b15

+ 2b10a3 + 4a6b6 + 2a10b3 + 8b11a12 + 8b12a11 − 2a13b10

+ 2a15b11 − 2a10b13 + 2a11b15 − 2a14b14 − 4ta13b11

+ 16ta15b12 − 4ta11b13. (17)

Now define

ψ0(m) = φ31(0qt , mEt ) = m4u14
0 p

14k(16+O(p5k)),

ψ1(m) = φ31(1qt , mEt ) = mu3
0p

3k(4+O(p5k)),

ψ2(m) = φ31(2qt , mEt ) = 8
3mu

5
0p

10k(u5
0(m+ 1)(2m+ 1)+O(p5k)

)
,

(18)

all of which are members of Zp[[m]], for which the coefficient of mr tends to 0 in Zp as
r →∞. From the above discussion, we see that, for any ` = 0, 1, 2,

`qt +mEt ∈ imµ ∪ imµ′ ⇒ ψ`(m) = 0. (19)

We are now in a position to prove our main result.

Theorem. Let Ht be as in (1), letµ,µ′ be as given in (2), let qt be as in (3) and let t = t0
satisfy the condition given in (6), (7) for some prime p > 5. Then for n ∈ Z and n > 3,
we have nqt 6∈ imµ ∪ imµ′.

Proof. First note that any nqt , for n ∈ Z, must be one of: mEt , qt + mEt , 2qt + mEt ,
−qt +mEt ,−2qt +mEt , for somem ∈ Z. We wish to show that nqt ∈ imµ∪ imµ′ (for
n ∈ Z) only when |n| ≤ 3. Since Et = 5qt , and since this condition is invariant under ±,
this is equivalent to showing that (for m ∈ Z): mEt ∈ imµ ∪ imµ′ only when m = 0,
qt + mEt ∈ imµ ∪ imµ′ only when m = 0, and 2qt + mEt ∈ imµ ∪ imµ′ only when
m = 0,−1. The first two of these follow immediately from (18), (19), since the power
series 16+O(p5k), 4+O(p5k) each have constant term with | |p = 1, which is strictly
greater than for the coefficients of all subsequent powers of m, and so there are no further
roots m ∈ Zp (and so no further roots m ∈ Z) of ψ0(m), ψ1(m) apart from m = 0.

The interesting case is that of ψ2(m). We know m = 0,−1 to be solutions (since 2qt ,
2qt − Et are indeed in imµ ∪ imµ′), so that

ψ2(m) =
8
3m(m+ 1)u5

0p
10k(u5

0(2m+ 1)+O(p5k)).

http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
http://people.maths.ox.ac.uk/flynn/genus2/jacobian.variety/bilinear.forms
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In this case, the number of possible solutions m ∈ Zp is bounded above by 3, which is
strictly greater than the number of known solutions m = 0,−1 ∈ Z, and the Chabauty
bound fails in this case. However, there is a finesse in this case which allows us to identify
this third solution m ∈ Zp. By Hensel’s Lemma (keeping in mind that t = t0 satisfies the
condition (6), (7)), there is a rootwt ∈ Zp of the sexticX6

+X+ t withwt ≡ −t (mod p)
and so Dt := {(−t,−t3), (wt , 0)} is in the kernel of reduction modulo p, and satisfies
2Dt = Et . This can be regarded as 1

2Et (within the kernel of reduction), in the sense
that m = 1/2 gives Dt when inserted into exp(m logEt ). This means that 2qt − 1

2Et =

{∞
+, (−t,−t3)} + {(w, 0), (−t, t3)} = {∞+, (w, 0)} ∈ imµ′, and so −1/2 ∈ Zp must

be a root of ψ2(m). Therefore ψ2(m) =
8
3m(m+ 1)(2m+ 1)u5

0p
10k(u5

0 +O(p
5k)), and

the complete list of solutions in Zp is given by m = 0,−1,−1/2. Therefore the only
solutions in Z are m = 0,−1, as required.
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