
DOI 10.4171/JEMS/562

J. Eur. Math. Soc. 17, 2453–2471 c© European Mathematical Society 2015

Michele Bolognesi · Noah Giansiracusa

Factorization of point configurations,
cyclic covers, and conformal blocks

Received September 10, 2012 and in revised form June 10, 2013

Abstract. We describe a relation between the invariants of n ordered points in projective d-space
and of points contained in a union of two linear subspaces. This yields an attaching map for GIT
quotients parameterizing point configurations in these spaces, and we show that it respects the Segre
product of the natural GIT polarizations. Associated to a configuration supported on a rational
normal curve is a cyclic cover, and we show that if the branch points are weighted by the GIT
linearization and the rational normal curve degenerates, then the admissible covers limit is a cyclic
cover with weights as in this attaching map. We find that both GIT polarizations and the Hodge class
for families of cyclic covers yield line bundles on M0,n with functorial restriction to the boundary.
We introduce a notion of divisorial factorization, abstracting an axiom from rational conformal
field theory, to encode this property and show that it determines the isomorphism class of these
line bundles. Consequently, we obtain a unified, geometric proof of two recent results on conformal
block bundles, one by Fedorchuk and one by Gibney and the second author.
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1. Introduction

In this paper we study configuration spaces of points on the line and in higher-dimensional
projective spaces, relating classical constructions to modern results.

1.1. Geometric invariant theory

A fundamental object in classical invariant theory is the ring of invariants for n ordered
points in projective space up to projectivity. It is natural to view the points as being
weighted and the invariants as living in a multigraded ring. Indeed, the ring of sections of
all line bundles on (Pd)n, usually called the Cox ring, is graded by the Picard group Zn
and the diagonal action of Aut(Pd) preserves this grading. The invariants for this action
in a given homogeneous component c ∈ Zn define a projective embedding of the geomet-
ric invariant theory (GIT) quotient (Pd)n//c SLd+1. Generators for this invariant ring are
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given by tableau functions, which appear in many areas of mathematics, particularly rep-
resentation theory and Schubert calculus [Ful97]. By tensoring with Q to allow fractional
degrees, the space of possible weights is naturally a hypersimplex:

c ∈ 1(d + 1, n) =
{
(c1, . . . , cn) ∈ Qn

∣∣∣ 0 ≤ ci ≤ 1,
∑

ci = d + 1
}
.

The ideal of relations for d = 1 and arbitrary multi-degree c has recently been determined
in a landmark series of papers [HMSV12]. The first main result in this paper relates the
invariants for d > 1 with those of smaller dimension, and shows in particular that even for
a democratic weight vector c, nonsymmetric weights arise naturally in geometric settings:

Theorem 1.1. Fix integers n = n1 + n2 and d = d1 + d2 with ni ≥ 2, di ≥ 1, and
consider two generic linear subspaces Pdi ⊆ Pd . For any c ∈ 1(d + 1, n) such that

d1 ≤

n1∑
i=1

ci ≤ d1 + 1 and d2 ≤

n∑
i=n1+1

ci ≤ d2 + 1,

the restriction of a multi-degree c invariant to Pd1 ∪ Pd2 ⊆ Pd is the ten-
sor product of multi-degree c′ := (c1, . . . , cn1 , (

∑n
i=n1+1 ci) − d2) and c′′ :=

(cn1+1, . . . , cn, (
∑n1
i=1 ci)− d1) invariants for the Pdi .

By studying the projective embedding induced by these invariants, we prove:

Theorem 1.2. With notation as above, there is an “attaching” morphism

γ : (Pd1)n1+1//c′ SLd1+1×(Pd2)n2+1//c′′ SLd2+1 → (Pd)n//c SLd+1 .

The projective embedding of the codomain restricts to the Segre product of the projective
embeddings of the domain quotients: γ ∗Oc(1) ∼= Oc′(1)�Oc′′(1).

These GIT quotients have played an important role in a variety of subjects. For instance,
configurations on the line are involved in deep arithmetic constructions [DM86] and con-
figurations in the plane lead naturally to moduli spaces of del Pezzo surfaces [DO88,
Dor04]. By duality these quotients parameterize hyperplane arrangements, and studying
the modular compactifications one obtains in this context has revealed new insight into
the minimal model program [HKT06]. Another ubiquitous compactification of the con-
figuration space of points on the line is the moduli space of stable rational n-pointed
curves, M0,n. The interplay between this space and the GIT quotients (P1)n//SL2 has
been studied in [Kap93, AS12, Bol11].

By [Gia11, Theorem 1.1], for any 1 ≤ d ≤ n − 3 and c ∈ 1(d + 1, n) there is a
morphism ϕ : M0,n → (Pd)n//c SLd+1 sending a configuration of distinct points on P1

to the corresponding configuration under the d th Veronese map. The generic point of a
boundary divisor M0,n1+1 ×M0,n2+1 ⊆ M0,n gets sent to a configuration supported on a
union C1 ∪ C2 ⊆ Pd1 ∪ Pd2 of two rational normal curves with deg(Ci) = di and a node
at the point Pd1 ∩ Pd2 . We define a GIT bundle to be a line bundle on M0,n of the form
Gd,c := ϕ∗O(1), and from Theorem 1.2 we deduce:

Corollary 1.3. The restriction of a GIT bundle Gd,c to any boundary divisor in M0,n is
of the form Gd1,c′ � Gd2,c′′ .
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1.2. Cyclic covers and Hodge bundles

One can view a configuration of points on the line as the set of branch points for a ramified
cover, and in this way moduli of points lead naturally to moduli of positive genus algebraic
curves. More specifically, given integers n ≥ 4, r ≥ 2, and c ∈ Zn with ci ≥ 0 and
r |
∑n
i=1 ci , there is a map M0,n → Mg sending a configuration (P1, p1, . . . , pn) to the

degree r cyclic cover ramified over
∑n
i=1 cipi . For pi = [xi : 1], this is the regular model

of the function field extension of C(x) given by yr = (x−x1)
c1 · · · (x−xn)

cn . The genus
of the cyclic cover is determined by the Riemann–Hurwitz formula:

g =
1
2

(
2− 2r +

n∑
i=1

(r − gcd(ci, r))
)
. (1.1)

This map was studied by Fedorchuk [Fed11], who showed that it extends to a morphism
fc,r : M0,n→ Mg . We prove here that the restriction to a boundary divisor is essentially
a product of morphisms of the same type (cf. Fig. 3):

Proposition 1.4. For n = n1 + n2 with ni ≥ 2, there is a commutative diagram

M0,n1+1 ×M0,n2+1
� � //

**
(fc′,r ,fc′′,r )

��

M0,n

fc,r

��

(Mg1,s ×Mg2,s)/Ss

((tt
Mg1 ×Mg2 Mg1,s ×Mg2,sπ

oo
ρ

//

OO

Mg

(1.2)

where π is the product of forgetful maps, ρ is an attaching map, s = g − (g1 + g2)+ 1,
and c′ = (c1, . . . , cn1 ,

∑n
i=n1+1 ci), c

′′
= (cn1+1, . . . , cn,

∑n1
i=1 ci).

Cyclic covers have a variety of applications—in string theory and mirror symmetry
[Roh09], arithmetic geometry [LM05], dynamical systems [EKZ10, McM13], Chen–
Ruan cohomology [Pag12]. They have been used to study special subvarieties in the mod-
uli space of abelian varieties [Moo10, MO13] and curves and divisors in the moduli space
of curves [Che10, Fed11]. The restriction of the Hodge bundle Eg onMg to various cyclic
cover loci plays an important role in several of these applications. By studying the Hodge
bundles in the above theorem, we deduce:

Corollary 1.5. The restriction of det f ∗c,rEg to any boundary divisor in M0,n is of the
form det f ∗

c′,r
Eg1 � det f ∗

c′′,r
Eg2 .

We note the structural similarity between these determinant line bundles and the GIT line
bundles discussed earlier. This is explained in the following framework.

1.3. Factorization rules

The Wess–Zumino–Witten (WZW) model provides an important class of 2-dimensional
conformal field theories. It associates to each algebraic curve of a given genus a vector
space, known as a space of conformal blocks, fitting together to form an algebraic vector
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bundle on the moduli stack Mg,n. These conformal block bundles were widely studied
in the 90s due to their connections with mathematical physics, algebraic geometry, and
representation theory [TUY89, Fal94, Bea96, Uen97, Wit91, Pau96, LS97, Loo05]. Of
particular interest was the Verlinde formula, which computes their rank as a function of
the discrete parameters involved. Most proofs of the formula are rooted in the factoriza-
tion rules, describing for instance the vector space over an irreducible curve in terms of
the vector spaces over the components of a reducible curve it degenerates to (cf. §2.4).
A key insight was that by abstracting the factorization rules to a numerical function en-
coding the dimensions under this degeneration process, one can form a ring, called the
fusion ring, whose representation theory encodes the information of the Verlinde formula
and provides an elegant way to access it (cf. [Bea96]).

In recent years there has been a renewed flurry of activity in the WZW model, in
large part due to Fakhruddin’s formulae for the Chern classes of conformal block bundles
[Fak09]. These formulae provide an intersection-theoretic method for determining the
isomorphism class of the associated determinant line bundles. This has revealed much
insight into the geometry of these objects, particularly in the case of genus zero [Fak09,
AGSS12, AGS14, Swi11, Fed11, Gia11, GG12, GJMS12].

We introduce an abstraction of WZW factorization that is in a sense orthogonal to
that of fusion rules: the latter encode the rank of conformal block vector bundles under
degeneration while discarding any extraneous information, whereas our framework only
applies to rank one bundles but it encodes the isomorphism class of these line bundles.
We define a divisorial factorization system L to be a collection of line bundle classes on
M0,n, for 3 ≤ n < ∞, such that the restriction of any L ∈ L to any boundary divisor
M0,m+1×M0,n−m+1 ⊆ M0,n is of the form L1 �L2 for Li ∈ L (see §2.2). Typically, the
members of such a system are indexed by vectors assigning some weight datum to each
marked point. We define a divisorial factorization rule to be a collection of functions that
encode how these weights transform upon restriction to the boundary (Definition 2.4).

Proposition 1.6. If two systems admit the same divisorial factorization rule, then their
line bundles are isomorphic for all n ≥ 4 if they are for n = 4.

The GIT linearization c provides a notion of weights for the marked points in the context
of GIT bundles Gd,c on M0,n, and by Corollary 1.3 these line bundles form a divisorial
factorization system. Similarly, the ramification vector for a cyclic cover yields weights
for points on the line and Corollary 1.5 implies that the restrictions of the Hodge class to
these weighted cyclic cover loci form another factorization system. These Hodge classes
are closely related to line bundles studied by Fedorchuk [Fed11], defined by first taking
a µr -eigenbundle decomposition of the restricted Hodge bundle and then considering the
determinants of these direct summands. In this paper we prove that these line bundles,
which we call cyclic bundles, also form a divisorial factorization system, and moreover
the following remarkable property holds: the divisorial factorization rule for GIT bundles,
cyclic bundles, and a certain class of conformal block line bundles all coincide. Conse-
quently, we obtain a new proof of the following:

Theorem 1.7. Fix n ≥ 4, r ≥ 2, and c ∈ Zn with 0 ≤ ci < r and r |
∑n
i=1 ci . The

following line bundles on M0,n are isomorphic:
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(i) the level one, slr conformal block bundle with fundamental weights (ωc1 , . . . , ωcn);
(ii) the pullback of O(1) along the mapM0,n→ (P|c|/r−1)n//c SL|c|/r sending a config-

uration of points on the line to the corresponding configuration on a rational normal
curve;

(iii) the r th tensor power of the determinant of the unit character µr -eigenbundle of the
Hodge bundle on the locus of ramified degree r cyclic covers with branch points
weighted by c.

Indeed, standard results apply for the case M0,4 ∼= P1, so we simply apply Proposi-
tion 1.6. The identification of conformal block bundles with GIT bundles was first proven
in [GG12, Theorem 3.2], whereas the identification with cyclic bundles was first proven
in [Fed11, Theorem 4.5]. In both cases the proof relies on computing the degree of the
restriction to rational curves in the boundary, known as F-curves. Once the formulae for
these degrees are obtained, the problem reduces to a completely numerical/combinatorial
one, namely, showing that the three degree formulae coincide. Beyond this previously
observed numerical coincidence of divisor classes, our proof using factorization shows
that the isomorphisms in Theorem 1.7 reflect a common functoriality in these three con-
structions.

Remark 1.8. One can extend our notion of divisorial factorization to higher rank vector
bundles and to positive genus Mg,n by mimicking the statement of WZW factorization
in that setting. It would be interesting to find geometric constructions of vector bundles
that factorize and to compare them with conformal block vector bundles, as in the case of
Theorem 1.7 for rank one and genus zero.

2. Factorization of line bundles on M0,n

We introduce here the notion of divisorial factorization, prove that it encodes Picard group
classes, and provide examples coming from the WZW model.

2.1. Preliminaries

For any I ⊆ {1, . . . , n} with 2 ≤ |I | ≤ n − 2, there is a boundary divisor inclusion map
∂I : M0,|I |+1 ×M0,|I c|+1 ↪→ M0,n, where I c := {1, . . . , n} \ I is the complementary
index set. This yields a restriction homomorphism

∂∗I : Pic(M0,n)→ Pic(M0,|I |+1 ×M0,|I c|+1).

Another map of Picard groups that we will use throughout is

Pic(M0,|I |+1)× Pic(M0,|I c|+1)→ Pic(M0,|I |+1 ×M0,|I c|+1)

defined by (L,L′) 7→ L� L′. This latter map is an isomorphism, as one can check with
the Künneth formula, though we will not need this fact.

Convention 2.1. Unless otherwise specified, we assume for notational convenience that
an index set I of cardinality m is of the form I = {1, . . . , m}.
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2.2. Main definitions

Definition 2.2. A divisorial factorization system is a subset

L ⊆
⋃
n≥3

Pic(M0,n)

that is closed under boundary restriction: if L ∈ L is in Pic(M0,n) for some n ≥ 4, and
I ⊆ {1, . . . , n} satisfies 2 ≤ |I | ≤ n − 2, then ∂∗I L = L′ � L′′ for some L′, L′′ ∈ L.
Given a set S, we say that the system L is S-weighted if there exists

8 = (83,84, . . .) ∈
∏
n≥3

HomSet(S
n,Pic(M0,n))

such that L =
⋃
n≥3 Im8n. We then call 8 an S-weighting for L.

Remark 2.3. To define an S-weighting on a system, we will frequently describe the maps
8n : S

n
→ Pic(M0,n) only for certain vectors s ∈ Sn; we then implicitly take the trivial

line bundle class as the image of all other vectors.

The interpretation of this definition is that an S-weighting provides a way of specifying a
line bundle on M0,n by specifying an element of S for each marked point. The restriction
of this line bundle to a boundary divisor is then determined by an element of S for each
marked point as before, plus elements of S for each of the two attaching points. Note,
however, that we do not require the weights determining this restricted line bundle to be
unique.

The following definition provides a method for keeping track of the weighting data
with respect to boundary restriction.

Definition 2.4. Given an S-weighted system (L,8), a divisorial factorization rule is
a collection of pairs of maps (φI , ψI ), for each n ≥ 4 and I as above, where φI :
Sn→ S|I |+1 and ψI : Sn→ S|I

c
|+1, satisfying

∂∗I ◦8n = (8|I |+1 ◦ φI )� (8|I c|+1 ◦ ψI ).

2.3. Inductive structure

Proposition 2.5. If two S-weighted systems (L,8) and (L′,8′) admit the same diviso-
rial factorization rule, and 84 = 8

′

4, then 8n = 8′n for every n ≥ 4.

Proof. Fix s ∈ Sn. Keel [Kee92] proved that the Chow groups of M0,n are generated by
the boundary strata and that rational equivalence coincides with numerical equivalence, so
two line bundles are isomorphic if they have the same degree on every F-curve C ⊆ M0,n.
Since C is an intersection of boundary divisors, the fact that L and L′ are closed under
boundary restriction implies that 8n(s)|C = 84(u) for some u ∈ S4, and similarly
8′n(s)|C = 8′4(v), v ∈ S

4. The hypothesis that 8 and 8′ admit the same factorization
rule implies that we can choose u = v, so 8n(s)|C = 8′n(s)|C by the assumption about
n = 4. ut
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2.4. Examples from WZW

For any simple complex Lie algebra g, level ` ∈ N, and n-tuple λ of dominant integral
weights of level `, the WZW model produces an algebraic vector bundle on Mg,n, which
we denote by V(g, `, λ). The fiber of this bundle over a pointed curve [C,p1, . . . , pn]

∈Mg,n, called a space of conformal blocks, is a finite-dimensional complex vector space
that can be realized as a space of generalized parabolic theta functions if C is smooth, and
which in general is constructed as a space of covariants [LS97, Pau96, TUY89, Uen97,
Wit91].

The rank of these bundles is computed by the Verlinde formula, though in many cases
it is more convenient to use factorization, which we state here for genus g = 0:

Theorem 2.6 ([Fak09, Proposition 2.4]). For any g, `, and weights λ1, . . . , λn, there is
a natural isomorphism

∂∗IV(g, `, (λ1, . . . , λn)) ∼=
⊕
µ∈P`

V(g, `, (λ1, . . . , λm, µ))� V(g, `, (λm+1, . . . , λn, µ
∗))

where P` is the set of weights of level ` and ∗ is the natural involution on this set.

Example 2.7. For ` = 1 and g simply laced, the conformal block bundles of this type
form a divisorial factorization system. Indeed, in this situation V(g, 1, λ) has rank at most
one [Fak09, §5], so the direct sum in Theorem 2.6 has at most one nonzero term, thus a
conformal block line bundle pulls back to a product of conformal block line bundles.

Example 2.8. To illustrate weight data and factorization rules, let us fix ` = 1 and
g = slr . The level 1 dominant integral weights are then the fundamental weights ωi ,
1 ≤ i ≤ r−1, and the zero weight ω0 corresponding to the trivial representation. We also
set ωr := ω0. With this convention, the involution is given by ω∗i = ωr−i . The rank of
V(slr , 1, (ωc1 , . . . , ωcn)) is≤ 1, and it is nonzero if and only if the sum of the weights lies
in the root lattice:

∑n
i=1 ci ∈ rZ. From this description it is easy to see that the following

defines a Z/rZ-weighted factorization system and divisorial factorization rule:

8n(c1, . . . , cn) := V(slr , 1, (ωc1 , . . . , ωcn)) for
n∑
i=1

ci ∈ rZ,

φI (c1, . . . , cn) :=
(
c1, . . . , cm,

n∑
i=m+1

ci mod r
)
,

ψI (c1, . . . , cn) :=
(
cm+1, . . . , cn,

m∑
i=1

ci mod r
)
.

3. Point configurations

Here we prove Theorems 1.1 and 1.2. The main idea is to embed the GIT quotients in one
projective space and then compare the invariant functions that manifest these embeddings.
After concluding the proof, we deduce Corollary 1.3.
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3.1. Stability

Recall that a fractional linearization for the diagonal SLd+1-action on (Pd)n is the choice
of an ample class c ∈ Qn>0 ⊆ Qn ∼= Pic((Pd)n)Q. We think of this as assigning a positive
weight to each point in the configuration. It is customary to rescale so that |c| = d + 1.
In this case, a configuration (p1, . . . , pn), pi ∈ Pd , is semistable if and only if, for every
linear subspace W ⊆ Pd , the inequality

∑
pi∈W

ci ≤ dimW + 1 holds; the configuration
is stable if and only if this inequality is strict [DH98, Example 3.3.24].

The closure of the space of linearizations with nonempty semistable locus is the hy-
persimplex 1(d + 1, n). Taking the closure allows weights to be zero. If ci = 0 for
some i, then the GIT quotient is defined by first applying the basepoint-free complete
linear system O(c) on (Pd)n, which contracts the ith copy of Pd : points with zero weight
are “forgotten” in the quotient.

Observe that the vectors c′ and c′′ in Theorem 1.2 are scaled appropriately:

|c′| =
( n1∑
i=1

ci

)
+

( n∑
i=n1+1

ci

)
− d2 = |c| − d2 = (d + 1)− d2 = d1 + 1,

and similarly |c′′| = d2 + 1. Moreover, the bounds on
∑n1
i=1 ci and

∑n
i=n1+1 ci ensure

that c′ ∈ 1(d1 + 1, n1 + 1) and c′′ ∈ 1(d2 + 1, n2 + 1).

3.2. Attaching map

Let U ⊆ (Pd1)n1+1
× (Pd2)n2+1 be the closed subset defined by the coordinate matrices

(3.1) below. Consider the map γ̃ : U → (Pd)n defined as follows:


x01 · · · x0n1 0
...

...
...

xd1−1,1 · · · xd1−1,n1 0
xd11 · · · xd1n1 1

 ,

x0,n1+1 · · · x0n 1
x1,n1+1 · · · x1n 0
...

...
...

xd2,n1+1 · · · xd2n 0


 (3.1)

7→



x01 · · · x0n1 0 · · · 0
...

...
...

...

xd1−1,1 · · · xd1−1,n1 0 · · · 0
xd11 · · · xd1n1 x0,n1+1 · · · x0n

0 · · · 0 x1,n1+1 · · · x1n
...

...
...

...

0 · · · 0 xd2,n1+1 · · · xd2n


. (3.2)

Geometrically, γ̃ uses the fixed (ni + 1)th point in Pdi to attach these two subspaces
and embed them in Pd , where the attaching point then has coordinates

q := [0 : · · · : 0 : 1 : 0 : · · · : 0] = Pd1 ∩ Pd2 ⊆ Pd .
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Fig. 1. The map γ̃ : U → (P3)9, where U ⊆ (P1)4+1
× (P2)5+1 denotes the set of configurations

such that the attaching points have coordinates [0 : 1] and [1 : 0 : 0], respectively.

Lemma 3.1. If Uss := U ∩ ((Pd1)
n1+1
ss × (Pd2)

n2+1
ss ) denotes the semistable locus with

respect to both SLdi+1-actions, then γ̃ (Uss) ⊆ (Pd)nss.

Proof. Let W ⊆ Pd be a linear subspace, and first consider the case q /∈ W . Then

dimW = dim(W ∩ Pd1)+ dim(W ∩ Pd2)+ 1,

where by convention dim∅ := −1. Therefore,∑
pi∈W

ci =
∑

pi∈W∩Pd1

ci +
∑

pi∈W∩Pd2

ci

≤ (dim(W ∩ Pd1)+ 1)+ (dim(W ∩ Pd2)+ 1) = dimW + 1,

as required.
Next, suppose that q ∈ W . Then∑

pi∈W∩Pd1

ci ≤ dim(W ∩ Pd1)+ 1−
(( n∑

i=n1+1

ci

)
− d2

)
because a semistable configuration in (Pd1)n1+1 has weight ≤ dim(W ∩ Pd1) + 1 in the
linear subspace W ∩ Pd1 , and applying γ̃ has the effect of dropping the extra point of
weight (

∑n
i=n1+1 ci)− d2. The analogous inequality holds for W ∩ Pd2 , so∑
pi∈W

ci ≤
∑

pi∈W∩Pd1

ci +
∑

pi∈W∩Pd2

ci

≤ dim(W ∩ Pd1)+ dim(W ∩ Pd2)+ 2+ (d1 + d2)−

n∑
i=1

ci .

But d1+ d2 = d ,
∑n
i=1 ci = d + 1, and dim(W ∩Pd1)+ dim(W ∩Pd2) = dimW , so the

right side of the preceding inequality reduces to dimW + 1, as required. ut

3.3. Invariants and embeddings

We may assume that the linearization vectors in Theorem 1.2 are integral, since the hy-
pothesis and conclusion are invariant under scaling. Specifically, choose k ∈ Z such that
kc ∈ Zn, and write k := kc, so that ki = kci . The condition c ∈ 1(d + 1, n) implies
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that |k| = k(d + 1), which in turn implies that there exist invariant functions on (Pd)n of
multi-degree k. Indeed, it is well-known [Dol03, §11.2] that the invariant functions

T := H0((Pd)n,O(k))SLd+1 ∼= (S
k1Cd+1

⊗ · · · ⊗ SknCd+1)SLd+1

generate the ring of SLd+1-invariants and this linear system induces the composition

(Pd)nss → (Pd)n//k SLd+1 ↪→ P(T ∗).

If we choose a (d + 1) × n matrix of homogeneous coordinates for (Pd)n, then a basis
for T is given by the multi-degree k products of minors of this matrix. More precisely,
a basis is the set of semistandard tableau functions of size (d + 1) × k with entries in
{1, . . . , n} such that i appears ki times. Each column of a tableau represents the minor
of the coordinate matrix determined by the numbers appearing in the tableau column;
juxtaposition of columns indicates the product of the corresponding minors. The semi-
standardness means that the entries decrease weakly across the rows and strongly down
the columns. See [Dol03, §5.6], [Muk03, §8.1(C)], and [Ful97] for more background.

Define k′ := kc′, T1 := H0((Pd1)n1+1,O(k′))SLd1+1 , and similarly for k′′, T2. Then
the linear system T1 � T2 induces the composition

(Pd1)n1+1
ss × (Pd2)n2+1

ss → (Pd1)n1+1//k′ SLd1+1×(Pd2)n2+1//k′′ SLd2+1

↪→ P(T ∗1 )× P(T ∗2 ) ↪→ P(T ∗1 ⊗ T
∗

2 ).

Combining this with the attaching map defined above, we obtain the diagram

Uss // //

γ̃

��

(Pd1)n1+1//k′ SLd1+1×(Pd2)n2+1//k′′ SLd2+1
� � // P(T ∗1 ⊗ T

∗

2 )

(Pd)nss
// (Pd)n//k SLd+1

� � // P(T ∗)

(3.3)

where surjectivity of the top-left arrow follows from the fact that every orbit for the
SLd1+1×SLd2+1-action has a representative in U .

Let T1⊗T2|U := {f |U : f ∈ T1⊗T2} and similarly for T |γ̃ (U). Note that T1⊗T2|U ∼=

T1 ⊗ T2, since all these functions are invariant and their orbits are represented in U . The
following is a refinement of, and immediately implies, Theorem 1.1:

Proposition 3.2. There is a surjection T |γ̃ (U) � T1 ⊗ T2|U . The composition

T � T |γ̃ (U) � T1 ⊗ T2|U →̃ T1 ⊗ T2

induces a linear embedding P(T ∗1 ⊗ T
∗

2 ) ↪→ P(T ∗) making diagram (3.3) commute.

Proof. Denote by A1 and A2 the matrices in (3.1) parameterizing U , and number their
columns (1, . . . , n1 + 1) and (1, . . . , n2 + 1), respectively. Denote by B the matrix in
(3.2) parameterizing γ̃ (U), with columns (1, . . . , n). We call the first n1 columns of B
the first block, and the next n2 columns the second block.
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Given a (d + 1) × 1 tableau function on (Pd)n, its restriction to γ̃ (U) is zero unless
its entries specify d1 + 1 columns from the first block and d2 from the second block, or
d1 from the first and d2 + 1 from the second. In this case, the restriction is the product of
a (d1 + 1)× 1 tableau on A1 and a (d2 + 1)× 1 tableau on A2. The entry n2 + 1 appears
exactly once in the A2 tableau if the original tableau specifies d1 + 1 columns from the
first block and d2 from the second, and vice versa for n1 + 1. For example,

if f =

1
...

d1 + 1
n1 + 1
...

n1 + d2

, then f |γ̃ (U) =

1
...

d1 + 1

⊗

1
...

d2
n2 + 1

.

As mentioned above, a basis for T is given by certain (d + 1)× k tableau functions.
Since these are a k-fold product of (d+1)×1 tableau functions, their restriction to γ̃ (U)
is zero unless the entries of each column are distributed across the columns of B as in the
preceding paragraph. Therefore, there is a linear map

µ : T →
⊕

(m1,m2)∈Nn+2

H0(U,O(m1)�O(m2)|U )

defined by first restricting each basis element to γ̃ (U) and then expressing the restriction
as a tensor product of a (d1 + 1)× k tableau on A1 and a (d2 + 1)× k tableau on A2. We
claim that the image of µ is T1 ⊗ T2|U .

Since |k′| = k|c′| = k(d1 + 1) and |k′′| = k(d2 + 1), the image under µ of a basis
tableau of T (with nonzero restriction) has the same dimensions as the basis elements of
T1⊗T2|U . Moreover, the fact that the original tableau is semistandard immediately implies
that the tableau functions in the restriction are semistandard with entries in {1, . . . , n1+1}
and {1, . . . , n2 + 1}.

We claim that:

(1) the index i occurs exactly kci times in the A1 factor, for i ≤ n1, and kcn1+i times in
the A2 factor, for i ≤ n2;

(2) n1 + 1 occurs k(
∑n
i=n1+1 ci)− kd2 times in the A1 factor;

(3) n2 + 1 occurs k(
∑n1
i=1 ci)− kd1 times in the A2 factor.

By the definition of k′ and k′′, this is the form of the basis elements of T1 ⊗ T2|U , so
this will prove that µ(T ) ⊆ T1 ⊗ T2|U .

If i ≤ n1, then i occurs kci times in the original tableau, and by our explicit descrip-
tion above we see that i occurs kci times in the restriction. Similarly, if i ≥ n1 + 1 then
it occurs kci−n1 times in the original and hence kci times in the restriction. This verifies
part (1) of the claim.

By the nonzero restriction to U assumption, each column of the original (d + 1)× k
tableau has d1+ 1 entries from the first block and d2 from the second, or d1 from the first
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and d2 + 1 from the second. We saw that the index n2 + 1 occurs once in the restriction
in the first case and n1 + 1 occurs once in the second case. If we denote by α the number
of columns of the original tableau of the first type, and by β the number of the second,
then the multiplicity of n2 + 1 is α and the multiplicity of n1 + 1 is β. The total number
of entries in the tableau corresponding to columns in the first block is by assumption∑n1
i=1 kci . On the other hand, this number is also α(d1+1)+βd1, since α columns of the

tableau have d1 + 1 such entries and β columns have d1 such entries. Clearly α + β = k,
the total number of columns, so

n1∑
i=1

kci = α(d1 + 1)+ βd1 = α + kd1,

which implies that n2 + 1 indeed has multiplicity α = k(
∑n1
i=1 ci) − kd1. Analogously,

one sees that n1 + 1 has multiplicity β = k(
∑n
i=n1+1 ci) − kd2, verifying parts (2) and

(3) of the claim.
Moreover, it follows from this discussion that the containment µ(T ) ⊆ T1 ⊗ T2|U

is in fact an equality, since any pair of semistandard tableau functions with entries as in
parts (1), (2) and (3) of the claim is the restriction of a basis element of T .

Finally, the fact that the map P(T ∗ ⊗ T ∗2 ) ↪→ P(T ∗) induced by µ renders diagram
(3.3) commutative is clear from construction. ut

3.4. Concluding the proof of Theorem 1.2

Proposition 3.2 yields an embedding

(Pd1)n1+1//k′ SLd1+1×(Pd2)n2+1//k′′ SLd2+1 ↪→ P(T ∗),

and it follows from commutativity of diagram (3.3), appended by the map in Proposition
3.2, and surjectivity of the horizontal map fromUss there that the image of this embedding
is contained in the image of the embedding (Pd)n//k SLd+1 ↪→ P(T ∗). Therefore, we
obtained the desired morphism γ in the statement of Theorem 1.2:

(Pd1)n1+1//k′ SLd1+1×(Pd2)n2+1//k′′ SLd2+1

γ

��

� � // P(T ∗1 ⊗ T
∗

2 )� _

��
(Pd)n//k SLd+1

� � // P(T ∗)

Moreover, the statement about polarizations follows immediately since the inclusion
P(T ∗1 ⊗ T

∗

2 ) ↪→ P(T ∗) is linear and all the GIT quotients involved inherit their hy-
perplane class from their embeddings in these projective spaces. ut

3.5. Factorization

We are now in a position to deduce the following, which is an explicit version of Corollary
1.3 stated in the introduction:
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Corollary 3.3. Let Gd,c := ϕ∗d,cO(1), where ϕd,c : M0,n → (Pd)n//c SLd+1 and O(1) is
the GIT polarization. Then, with notation as in Theorem 1.2 and §2.1,

∂∗I Gd,c ∼= Gd1,c′ � Gd2,c′′ .

Proof. By Theorem 1.2, it is enough to show that the following is commutative:

M0,n1+1 ×M0,n2+1
� � //

(ϕd1,c
′ ,ϕd2,c

′′ )

��

M0,n

ϕd,c

��
(Pd1)n1+1//c′ SLd1+1×(Pd2)n2+1//c′′ SLd2+1 // (Pd)n//c SLd+1

By separatedness, to check that this diagram commutes, it is enough to consider the re-
striction to M0,n1+1 ×M0,n2+1. On this open locus, traversing the diagram in either di-
rection corresponds to sending a nodal curve C = C1 ∪ C2 to a union of two rational
normal curves in Pd1 ∪ Pd2 ⊆ Pd with a node at the attaching point Pd1 ∩ Pd2 . It follows
from the explicit description of γ and of the morphisms in [Gia11, §4.1] that the resulting
configurations are projectively equivalent. ut

4. Cyclic covers

In this section we prove Proposition 1.4 and Corollary 1.5 and discuss the eigenbundle
determinants studied by Fedorchuk.

4.1. Attaching maps and Hodge bundles

Let us denote the Hodge bundle over Mg by Eg . For any integers g1, g2 ≥ 0 and s ≥ 1,
there is a natural attaching map ρ : Mg1,s ×Mg2,s → Mg , where g = g1 + g2 + s − 1,
defined by glueing two curves of genus g1, g2 along their s marked points. See Figure 2
for an example. We will also consider the product of forgetful maps π : Mg1,s×Mg2,s →

Mg1 ×Mg2 .

•

•

•

•

•

•

•

•

Fig. 2. The attaching map ρ : M3,4 ×M2,4 → M8.

Lemma 4.1. There is an isomorphism of vector bundles

ρ∗Eg ∼= π∗((Eg1 �OMg2
)⊕ (OMg1

� Eg2))⊕O⊕s−1
Mg1,s×Mg2,s

.

Proof. This follows from [Mum83, §5], as developed in [FP00, equations (17) and (18)]
and [CY10, equation (23)]. ut
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4.2. Admissible covers

The cyclic cover morphisms fc,r mentioned in §1.2 are most easily defined on the interior
M0,n, and Fedorchuk [Fed11, §2] describes two ways to see the extension to the stable
compactification M0,n. One method is via orbicurves and essentially shows that the ex-
tension is obtained by taking a degree r cyclic cover of the universal curve not of M0,n
itself but of a DM-stack lying overM0,n, namely Fedorchuk’s moduli space of r-divisible
curves. These r-divisible curves are orbicurves whose coarse moduli space is a marked
stable rational curve. The second method to see the extension is via the Harris–Mumford
theory of admissible covers: to compute the limit of a family of cyclic covers, take the
limit in the compactified Hurwitz scheme of admissible covers [HM82]. We will use the
latter perspective to prove Proposition 1.4. To begin, let us see what happens to smooth
cyclic covers as they degenerate in the simplest possible way:

Lemma 4.2. Let C0 → D0 = P1
∪{q} P1 be the admissible cover obtained as the limit of

cyclic covers Ct → P1 ramified over
∑n
i=1 cipi as (P1, p1, . . . , pn) ∈ M0,n tends to the

generic point (P1
∪{q}P1, p1, . . . , pn) of a boundary divisorM0,n1+1×M0,n2+1 ⊆ M0,n.

Let C′ t C′′ → C0 and D′ t D′′ → D0 denote the normalizations, so D′ = P1 with
markings p1, . . . , pn1 , q and D′′ = P1 with markings pn1+1, . . . , pn, q. Then

(1) C′→ D′ is a cyclic cover ramified over
∑n1
i=1 cipi + (

∑n
i=n1+1 ci)q;

(2) C′′→ D′′ is a cyclic cover ramified over
∑n
i=n1+1 cipi + (

∑n1
i=1 ci)q;

(3) the fiber of C0 → D0 over the node q consists of s = gcd(
∑n
i=n1+1 ci, r) =

gcd(
∑n1
i=1 ci, r) distinct points;

(4) the genus g of Ct satisfies g = g1 + g2 + s − 1, where g1 is the genus of C′ and g2 is
the genus of C′′.

-
1

Fig. 3. The limit of a degree r = 4 cover with weights c = (2, 1, 3, 3, 1, 2) is obtained by gluing
covers with weights c′ = (2, 1, 3, 2) and c′′ = (2, 3, 1, 2) at two points lying over the branch node.

Proof. The restricted maps C′ → D′ and C′′ → D′′ are degree r cyclic covers of P1,
ramified over a weighted sum of the marked points and the attaching point q. The weight
on the attaching point is as stated, since the sum of the weights for each of the two cyclic
covers, and the original cover, is divisible by r .
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The genus of Ct is independent of t and is given by the Riemann–Hurwitz formula:

g = 1− r +
1
2

n∑
i=1

(r − gcd(ci, r)).

On the other hand, applying Riemann–Hurwitz to C′ and C′′ yields

g1 = 1− r +
1
2

n1∑
i=1

(r − gcd(ci, r))+
1
2

(
r − gcd

( n∑
i=n1+1

ci, r
))
,

g2 = 1− r +
1
2

n∑
i=n1+1

(r − gcd(ci, r))+
1
2

(
r − gcd

( n1∑
i=1

ci, r
))
.

Since gcd(
∑n
i=n1+1 ci, r) = gcd(

∑n1
i=1 ci, r), and we call this common number s, which

is the number of nodes in the fiber over the node q, we see that g1+ g2 = g− s+ 1. This
concludes the proof of the third and fourth claims. ut

Let 1 ⊆ Mg denote the image of the attaching map ρ : Mg1,s × Mg2,s → Mg from
§4.1. The normalization of 1 is (Mg1,s × Mg2,s)/Ss . It follows from Lemma 4.2 that
the restriction of the cyclic cover morphism fc,r : M0,n → Mg to the boundary divisor
M0,n1+ ×Mn2+1 has image contained in 1. Since M0,n1+ ×Mn2+1 is normal, this re-
striction factors through (Mg1,s ×Mg2,s)/Ss . We thus have a diagram as in Proposition
1.4 which is commutative except possibly at the triangle on the left:

M0,n1+1 ×M0,n2+1
� � //

))
(fc′,r ,fc′′,r )

��

M0,n

fc,r

��

(Mg1,s ×Mg2,s)/Ss

''uu
Mg1 ×Mg2 Mg1,s ×Mg2,sπ

oo
ρ
//

OO

Mg

However, to check this remaining commutativity we can restrict to the dense open subset
M0,n1+1×M0,n2+1 ⊆ M0,n1+1×M0,n2+1, where commutativity follows from Lemma 4.2.
This completes the proof of Proposition 1.4.

4.3. Determinants and eigenbundles

Following [Fed11, §4], we define the cyclic bundle 6r,c by splitting the Hodge bundle on
the cyclic cover locus into µr -eigenbundles,

f ∗c,rEg ∼=
r−1⊕
i=1

E(i)g ,

and then taking the determinant of the first eigenbundle: 6r,c := detE(1)g .
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Corollary 4.3. With notation as above, we have ∂∗I6r,c ∼= 6r,c′ �6r,c′′ .
Proof. By Proposition 1.4 and Lemma 4.1, the restriction of f ∗c,rEg to the boundary divi-
sorM0,n1+1×M0,n2+1 ⊆ M0,n coincides with the pullback of Eg1 ⊕Eg2 ⊕O⊕s−1 along
the product morphism (fc′,r , fc′′,r) : M0,n1+1 ×M0,n2+1 → Mg1 ×Mg2 . The µr -action
is compatible with this decomposition, and determinants commute with base change, so

∂∗I6r,c
∼= detE(1)g1

⊗ detE(1)g2
⊗ det((O⊕s−1)(1)).

But over a complete variety every direct summand of a trivial bundle is trivial, since
endomorphisms are simply constant matrices, so the last factor on the right-hand side
vanishes and we obtain the desired result. ut

5. Conclusion

Here we use the results from the previous sections to derive Theorem 1.7, restated below
for the convenience of the reader:

Theorem 5.1. Fix n ≥ 4, r ≥ 2, and c ∈ Zn with 0 ≤ ci < r and r |
∑n
i=1 ci . The

following line bundles on M0,n are isomorphic:
(i) the conformal block bundle V(slr , 1, (ωc1 , . . . , ωcn));

(ii) the GIT bundle G|c|/r−1,c;
(iii) the r th tensor power of the cyclic bundle 6r,c.

This is done by showing that all three classes of line bundles form divisorial factorization
systems admitting the same factorization rule. Once this is demonstrated, all that remains
is to analyze the case n = 4 and apply Proposition 2.5.

Proposition 5.2. For each n, r and c as above, if 8CBn (c) := V(slr , 1, (ωc1 , . . . , ωcn)),
8G
n (c) := G |c|

r
−1,c, and 86n (c) := 6⊗rr,c , then these three assignments form divisorial

factorization systems that all admit the following factorization rule:

φI (c1, . . . , cn) :=
(
c1, . . . , cm,

n∑
i=m+1

ci mod r
)
,

ψI (c1, . . . , cn) :=
(
cm+1, . . . , cn,

m∑
i=1

ci mod r
)
,

where the mod r representative is taken in {1, . . . , r} for φI and in {0, . . . , r − 1} for ψI .
By convention, we set Gd,c = O if d /∈ {1, . . . , n− 3}.

Remark 5.3. By definition, the representative of the remainder is irrelevant for the con-
formal block and cyclic bundles, but for GIT we must break the symmetry, as we will see
in the proof below.
Proof of Proposition 5.2. That this holds for 8CB and 86 was established in Exam-
ple 2.8 and Corollary 4.3, respectively, so all that remains is establishing it for the GIT
system 8G . For this, we must show that

∂∗I G|c|/r−1,c ∼= G|c′|/r−1,c′ � G|c′′|/r−1,c′′ ,
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where c′ := (c1, . . . , cm,
∑n
i=m+1 ci mod r) and c′′ := (cm+1, . . . , cn,

∑m
i=1 ci mod r).

By rescaling the GIT polarizations, it clearly suffices to prove that

∂∗I G|b|−1,b ∼= G|b′|−1,b′ � G|b′′|−1,b′′ ,

where b := (1/r)c, b′ := (1/r)c′, and b′′ := (1/r)c′′. Define d := |b|−1, d1 := |b
′
|−1,

and d2 := |b
′′
| − 1, and observe that these d, d1, d2 are all integers. We can assume that

they are all positive, for if not then the corresponding GIT bundle is defined to be the
trivial line bundle; since any restriction of a trivial bundle is trivial, this is compatible
with the above factorization rules. Then b ∈ 1(d + 1, n), b′ ∈ 1(d1 + 1, m + 1), and
b′′ ∈ 1(d2+1, n−m+1). Our convention on representatives of the remainder modulo r
implies that d1 + d2 = d . The result then follows immediately from Corollary 3.3. ut

5.1. The case n = 4

Since M0,4 ∼= P1 and Pic(M0,4) ∼= Z, the isomorphism class of any line bundle here is
simply its degree. To complete the proof of Theorem 1.7, by applying Proposition 2.5,
we must show that the three types of line bundles occurring have the same degree for
n = 4. Although this is by no means trivial, the computation of these degrees has already
appeared in the literature:

Theorem 5.4. With notation as in Proposition 5.2, and assuming for notational conve-
nience that c ∈ Z4 satisfies c1 ≤ · · · ≤ c4 ≤ r , we have:

• deg8CB4 (c) =


c1 if |c| = 2r and c2 + c3 ≥ c1 + c4,

r − c4 if |c| = 2r and c2 + c3 ≤ c1 + c4,

0 otherwise

[Fak09, Lemma 5.1];

•
1
r

deg8G
4 (c) =

{
min

{ 1
r
c1, 1− 1

r
c4
}

if 1
r
|c| = 2,

0 otherwise

[GG12, Lemma 2.6], [AS12, Lemma 2.2];

• deg864 (c) =

{
min{c1, r − c4} if |c| = 2r ,
0 otherwise

[Fed11, Proposition 4.2], [BM10, EKZ10].

As observed in the above-cited papers, these three formulae clearly coincide.
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