DOI 10.4171/JEMS/562

J. Eur. Math. Soc. 17, [2453](#page-0-0)[–2471](#page-18-0) c European Mathematical Society 2015

Michele Bolognesi · Noah Giansiracusa

Factorization of point configurations, cyclic covers, and conformal blocks

Received September 10, 2012 and in revised form June 10, 2013

Abstract. We describe a relation between the invariants of n ordered points in projective d -space and of points contained in a union of two linear subspaces. This yields an attaching map for GIT quotients parameterizing point configurations in these spaces, and we show that it respects the Segre product of the natural GIT polarizations. Associated to a configuration supported on a rational normal curve is a cyclic cover, and we show that if the branch points are weighted by the GIT linearization and the rational normal curve degenerates, then the admissible covers limit is a cyclic cover with weights as in this attaching map. We find that both GIT polarizations and the Hodge class for families of cyclic covers yield line bundles on $\overline{M}_{0,n}$ with functorial restriction to the boundary. We introduce a notion of divisorial factorization, abstracting an axiom from rational conformal field theory, to encode this property and show that it determines the isomorphism class of these line bundles. Consequently, we obtain a unified, geometric proof of two recent results on conformal block bundles, one by Fedorchuk and one by Gibney and the second author.

Keywords. GIT, factorization, ramified cover, conformal blocks

1. Introduction

In this paper we study configuration spaces of points on the line and in higher-dimensional projective spaces, relating classical constructions to modern results.

1.1. Geometric invariant theory

A fundamental object in classical invariant theory is the ring of invariants for n ordered points in projective space up to projectivity. It is natural to view the points as being weighted and the invariants as living in a multigraded ring. Indeed, the ring of sections of all line bundles on $(\mathbb{P}^d)^n$, usually called the Cox ring, is graded by the Picard group \mathbb{Z}^n and the diagonal action of Aut(\mathbb{P}^d) preserves this grading. The invariants for this action in a given homogeneous component $c \in \mathbb{Z}^n$ define a projective embedding of the geometric invariant theory (GIT) quotient $(\mathbb{P}^d)^n/\!\!/_{\mathbb{C}}$ SL_{d+1}. Generators for this invariant ring are

M. Bolognesi: Institut de Recherche Mathematique de Rennes, Rennes, France; ´ e-mail: michele.bolognesi@univ-rennes1.fr

N. Giansiracusa: Department of Mathematics, University of Georgia, Athens, GA 30602, USA; e-mail: noahgian@uga.edu

Mathematics Subject Classification (2010): Primary 14H10; Secondary 14N20

given by tableau functions, which appear in many areas of mathematics, particularly rep-resentation theory and Schubert calculus [\[Ful97\]](#page-17-0). By tensoring with $\mathbb Q$ to allow fractional degrees, the space of possible weights is naturally a hypersimplex:

$$
\underline{c} \in \Delta(d+1,n) = \Big\{ (c_1,\ldots,c_n) \in \mathbb{Q}^n \ \Big| \ 0 \leq c_i \leq 1, \sum c_i = d+1 \Big\}.
$$

The ideal of relations for $d = 1$ and arbitrary multi-degree c has recently been determined in a landmark series of papers [\[HMSV12\]](#page-18-1). The first main result in this paper relates the invariants for $d > 1$ with those of smaller dimension, and shows in particular that even for a democratic weight vector c, nonsymmetric weights arise naturally in geometric settings:

Theorem 1.1. *Fix integers* $n = n_1 + n_2$ *and* $d = d_1 + d_2$ *with* $n_i \geq 2, d_i \geq 1$ *, and consider two generic linear subspaces* $\mathbb{P}^{d_i} \subseteq \mathbb{P}^d$ *. For any* $\underline{c} \in \Delta(d+1, n)$ such that

$$
d_1 \le \sum_{i=1}^{n_1} c_i \le d_1 + 1
$$
 and $d_2 \le \sum_{i=n_1+1}^{n} c_i \le d_2 + 1$,

the restriction of a multi-degree <u>c</u> invariant to $\mathbb{P}^{d_1} \cup \mathbb{P}^{d_2} \subseteq \mathbb{P}^{d}$ is the ten*sor product of multi-degree* $\underline{c}' := (c_1, \ldots, c_{n_1}, (\sum_{i=n_1+1}^{n} c_i) - d_2)$ *and* $\underline{c}'' :=$ $(c_{n_1+1}, \ldots, c_n, (\sum_{i=1}^{n_1} c_i) - d_1)$ *invariants for the* \mathbb{P}^{d_i} *.*

By studying the projective embedding induced by these invariants, we prove:

Theorem 1.2. *With notation as above, there is an "attaching" morphism*

$$
\gamma: (\mathbb{P}^{d_1})^{n_1+1}/\!\!/_{\underline{c'}} \operatorname{SL}_{d_1+1} \times (\mathbb{P}^{d_2})^{n_2+1}/\!\!/_{\underline{c''}} \operatorname{SL}_{d_2+1} \to (\mathbb{P}^{d})^n/\!\!/_{\underline{c}} \operatorname{SL}_{d+1}.
$$

The projective embedding of the codomain restricts to the Segre product of the projective embeddings of the domain quotients: $\gamma^* \mathcal{O}_{\underline{c}}(1) \cong \mathcal{O}_{\underline{c}'}(1) \boxtimes \mathcal{O}_{\underline{c}''}(1)$.

These GIT quotients have played an important role in a variety of subjects. For instance, configurations on the line are involved in deep arithmetic constructions [\[DM86\]](#page-17-1) and configurations in the plane lead naturally to moduli spaces of del Pezzo surfaces [\[DO88,](#page-17-2) [Dor04\]](#page-17-3). By duality these quotients parameterize hyperplane arrangements, and studying the modular compactifications one obtains in this context has revealed new insight into the minimal model program [\[HKT06\]](#page-18-2). Another ubiquitous compactification of the configuration space of points on the line is the moduli space of stable rational n -pointed curves, $\overline{M}_{0,n}$. The interplay between this space and the GIT quotients $(\mathbb{P}^1)^n / \mathbb{S}L_2$ has been studied in [\[Kap93,](#page-18-3) [AS12,](#page-17-4) [Bol11\]](#page-17-5).

By [\[Gia11,](#page-17-6) Theorem 1.1], for any $1 \le d \le n-3$ and $c \in \Delta(d+1, n)$ there is a morphism $\varphi : \overline{M}_{0,n} \to (\mathbb{P}^d)^n / \mathcal{L}_{\mathcal{L}} SL_{d+1}$ sending a configuration of distinct points on \mathbb{P}^1 to the corresponding configuration under the dth Veronese map. The generic point of a boundary divisor $\overline{M}_{0,n_1+1} \times \overline{M}_{0,n_2+1} \subseteq \overline{M}_{0,n}$ gets sent to a configuration supported on a union $C_1 \cup C_2 \subseteq \mathbb{P}^{d_1} \cup \mathbb{P}^{d_2}$ of two rational normal curves with $\text{deg}(C_i) = d_i$ and a node at the point $\mathbb{P}^{d_1} \cap \mathbb{P}^{d_2}$. We define a *GIT bundle* to be a line bundle on $\overline{M}_{0,n}$ of the form $\mathcal{G}_{d,\underline{c}} := \varphi^* \mathcal{O}(1)$, and from Theorem [1.2](#page-1-0) we deduce:

Corollary 1.3. *The restriction of a GIT bundle* $\mathcal{G}_{d,c}$ *to any boundary divisor in* $\overline{M}_{0,n}$ *is of the form* $\mathcal{G}_{d_1, \underline{c}'} \boxtimes \mathcal{G}_{d_2, \underline{c}''}$.

1.2. Cyclic covers and Hodge bundles

One can view a configuration of points on the line as the set of branch points for a ramified cover, and in this way moduli of points lead naturally to moduli of positive genus algebraic curves. More specifically, given integers $n \ge 4$, $r \ge 2$, and $c \in \mathbb{Z}^n$ with $c_i \ge 0$ and $r \mid \sum_{i=1}^{n} c_i$, there is a map $M_{0,n} \to M_g$ sending a configuration ($\mathbb{P}^1, p_1, \ldots, p_n$) to the degree r cyclic cover ramified over $\sum_{i=1}^{n} c_i p_i$. For $p_i = [x_i : 1]$, this is the regular model of the function field extension of $\mathbb{C}(x)$ given by $y^r = (x - x_1)^{c_1} \cdots (x - x_n)^{c_n}$. The genus of the cyclic cover is determined by the Riemann–Hurwitz formula:

$$
g = \frac{1}{2} \left(2 - 2r + \sum_{i=1}^{n} (r - \gcd(c_i, r)) \right).
$$
 (1.1)

This map was studied by Fedorchuk [\[Fed11\]](#page-17-7), who showed that it extends to a morphism $f_{c,r}$: $\overline{M}_{0,n} \to \overline{M}_g$. We prove here that the restriction to a boundary divisor is essentially a product of morphisms of the same type (cf. Fig. [3\)](#page-13-0):

Proposition 1.4. *For* $n = n_1 + n_2$ *with* $n_i \geq 2$ *, there is a commutative diagram*

$$
\overline{M}_{0,n_1+1} \times \overline{M}_{0,n_2+1} \longleftarrow \overline{M}_{0,n}
$$
\n
$$
\overline{(f_{\underline{c}',r}, f_{\underline{c}'',r})}
$$
\n
$$
\overline{M}_{g_1} \times \overline{M}_{g_2} \xleftarrow{\overline{M}_{g_1,s} \times \overline{M}_{g_2,s}} \overline{M}_{g_2,s} \xrightarrow{\rho} \overline{M}_{g}
$$
\n
$$
(1.2)
$$

where π *is the product of forgetful maps,* ρ *is an attaching map,* $s = g - (g_1 + g_2) + 1$, and $\underline{c}' = (c_1, \ldots, c_{n_1}, \sum_{i=n_1+1}^{n} c_i), \underline{c}'' = (c_{n_1+1}, \ldots, c_n, \sum_{i=1}^{n_1} c_i).$

Cyclic covers have a variety of applications—in string theory and mirror symmetry [\[Roh09\]](#page-18-4), arithmetic geometry [\[LM05\]](#page-18-5), dynamical systems [\[EKZ10,](#page-17-8) [McM13\]](#page-18-6), Chen– Ruan cohomology [\[Pag12\]](#page-18-7). They have been used to study special subvarieties in the moduli space of abelian varieties [\[Moo10,](#page-18-8) [MO13\]](#page-18-9) and curves and divisors in the moduli space of curves [\[Che10,](#page-17-9) [Fed11\]](#page-17-7). The restriction of the Hodge bundle \mathbb{E}_g on M_g to various cyclic cover loci plays an important role in several of these applications. By studying the Hodge bundles in the above theorem, we deduce:

Corollary 1.5. *The restriction of* det $f_{c,r}^* \mathbb{E}_g$ *to any boundary divisor in* $\overline{M}_{0,n}$ *is of the form* det f_{c}^* \mathcal{C}' , $\mathbb{E}_{g_1} \boxtimes \det f_{\mathcal{C}'}^*$ $e^{\prime\prime}$, E_{g_2} .

We note the structural similarity between these determinant line bundles and the GIT line bundles discussed earlier. This is explained in the following framework.

1.3. Factorization rules

The Wess–Zumino–Witten (WZW) model provides an important class of 2-dimensional conformal field theories. It associates to each algebraic curve of a given genus a vector space, known as a space of conformal blocks, fitting together to form an algebraic vector bundle on the moduli stack $\overline{\mathcal{M}}_{g,n}$. These conformal block bundles were widely studied in the 90s due to their connections with mathematical physics, algebraic geometry, and representation theory [\[TUY89,](#page-18-10) [Fal94,](#page-17-10) [Bea96,](#page-17-11) [Uen97,](#page-18-11) [Wit91,](#page-18-12) [Pau96,](#page-18-13) [LS97,](#page-18-14) [Loo05\]](#page-18-15). Of particular interest was the Verlinde formula, which computes their rank as a function of the discrete parameters involved. Most proofs of the formula are rooted in the factorization rules, describing for instance the vector space over an irreducible curve in terms of the vector spaces over the components of a reducible curve it degenerates to (cf. $\S 2.4$). A key insight was that by abstracting the factorization rules to a numerical function encoding the dimensions under this degeneration process, one can form a ring, called the fusion ring, whose representation theory encodes the information of the Verlinde formula and provides an elegant way to access it (cf. [\[Bea96\]](#page-17-11)).

In recent years there has been a renewed flurry of activity in the WZW model, in large part due to Fakhruddin's formulae for the Chern classes of conformal block bundles [\[Fak09\]](#page-17-12). These formulae provide an intersection-theoretic method for determining the isomorphism class of the associated determinant line bundles. This has revealed much insight into the geometry of these objects, particularly in the case of genus zero [\[Fak09,](#page-17-12) [AGSS12,](#page-17-13) [AGS14,](#page-16-0) [Swi11,](#page-18-16) [Fed11,](#page-17-7) [Gia11,](#page-17-6) [GG12,](#page-17-14) [GJMS12\]](#page-17-15).

We introduce an abstraction of WZW factorization that is in a sense orthogonal to that of fusion rules: the latter encode the rank of conformal block vector bundles under degeneration while discarding any extraneous information, whereas our framework only applies to rank one bundles but it encodes the isomorphism class of these line bundles. We define a *divisorial factorization system* $\mathcal L$ to be a collection of line bundle classes on $\overline{M}_{0,n}$, for $3 \le n < \infty$, such that the restriction of any $L \in \mathcal{L}$ to any boundary divisor $\overline{M}_{0,m+1} \times \overline{M}_{0,n-m+1} \subseteq \overline{M}_{0,n}$ is of the form $L_1 \boxtimes L_2$ for $L_i \in \mathcal{L}$ (see [§2.2\)](#page-5-0). Typically, the members of such a system are indexed by vectors assigning some weight datum to each marked point. We define a *divisorial factorization rule* to be a collection of functions that encode how these weights transform upon restriction to the boundary (Definition [2.4\)](#page-5-1).

Proposition 1.6. *If two systems admit the same divisorial factorization rule, then their line bundles are isomorphic for all* $n \geq 4$ *if they are for* $n = 4$ *.*

The GIT linearization c provides a notion of weights for the marked points in the context of GIT bundles $\mathcal{G}_{d,c}$ on $\overline{M}_{0,n}$, and by Corollary [1.3](#page-1-1) these line bundles form a divisorial factorization system. Similarly, the ramification vector for a cyclic cover yields weights for points on the line and Corollary [1.5](#page-2-0) implies that the restrictions of the Hodge class to these weighted cyclic cover loci form another factorization system. These Hodge classes are closely related to line bundles studied by Fedorchuk [\[Fed11\]](#page-17-7), defined by first taking a μ_r -eigenbundle decomposition of the restricted Hodge bundle and then considering the determinants of these direct summands. In this paper we prove that these line bundles, which we call *cyclic bundles*, also form a divisorial factorization system, and moreover the following remarkable property holds: the divisorial factorization rule for GIT bundles, cyclic bundles, and a certain class of conformal block line bundles all coincide. Consequently, we obtain a new proof of the following:

Theorem 1.7. *Fix* $n \geq 4$, $r \geq 2$, and $\underline{c} \in \mathbb{Z}^n$ *with* $0 \leq c_i < r$ *and* $r \mid \sum_{i=1}^n c_i$. *The following line bundles on* $\overline{M}_{0,n}$ *are isomorphic:*

- (i) the level one, \mathfrak{sl}_r conformal block bundle with fundamental weights $(\omega_{c_1}, \ldots, \omega_{c_n})$;
- (ii) the pullback of $\mathcal{O}(1)$ along the map $\overline{M}_{0,n} \to (\mathbb{P}^{|\underline{c}|/r-1})^n/\!\!/_{\underline{c}} \text{SL}_{|\underline{c}|/r}$ sending a config*uration of points on the line to the corresponding configuration on a rational normal curve;*
- (iii) the rth tensor power of the determinant of the unit character μ_r -eigenbundle of the *Hodge bundle on the locus of ramified degree* r *cyclic covers with branch points weighted by* c*.*

Indeed, standard results apply for the case $\overline{M}_{0,4} \cong \mathbb{P}^1$, so we simply apply Proposition [1.6.](#page-3-0) The identification of conformal block bundles with GIT bundles was first proven in [\[GG12,](#page-17-14) Theorem 3.2], whereas the identification with cyclic bundles was first proven in [\[Fed11,](#page-17-7) Theorem 4.5]. In both cases the proof relies on computing the degree of the restriction to rational curves in the boundary, known as F-curves. Once the formulae for these degrees are obtained, the problem reduces to a completely numerical/combinatorial one, namely, showing that the three degree formulae coincide. Beyond this previously observed numerical coincidence of divisor classes, our proof using factorization shows that the isomorphisms in Theorem [1.7](#page-3-1) reflect a common functoriality in these three constructions.

Remark 1.8. One can extend our notion of divisorial factorization to higher rank vector bundles and to positive genus $\overline{\mathcal{M}}_{g,n}$ by mimicking the statement of WZW factorization in that setting. It would be interesting to find geometric constructions of vector bundles that factorize and to compare them with conformal block vector bundles, as in the case of Theorem [1.7](#page-3-1) for rank one and genus zero.

2. Factorization of line bundles on $\overline{M}_{0,n}$

We introduce here the notion of divisorial factorization, prove that it encodes Picard group classes, and provide examples coming from the WZW model.

2.1. Preliminaries

For any $I \subseteq \{1, ..., n\}$ with $2 \leq |I| \leq n-2$, there is a boundary divisor inclusion map $\partial_I : \overline{M}_{0,|I|+1} \times \overline{M}_{0,|I^c|+1} \hookrightarrow \overline{M}_{0,n}$, where $I^c := \{1, \ldots, n\} \setminus I$ is the complementary index set. This yields a restriction homomorphism

$$
\partial_I^* : \mathrm{Pic}(\overline{M}_{0,n}) \to \mathrm{Pic}(\overline{M}_{0,|I|+1} \times \overline{M}_{0,|I^c|+1}).
$$

Another map of Picard groups that we will use throughout is

$$
\operatorname{Pic}(\overline{M}_{0,|I|+1}) \times \operatorname{Pic}(\overline{M}_{0,|I^{c}|+1}) \to \operatorname{Pic}(\overline{M}_{0,|I|+1} \times \overline{M}_{0,|I^{c}|+1})
$$

defined by $(L, L') \mapsto L \boxtimes L'$. This latter map is an isomorphism, as one can check with the Künneth formula, though we will not need this fact.

Convention 2.1. Unless otherwise specified, we assume for notational convenience that an index set I of cardinality m is of the form $I = \{1, \ldots, m\}$.

2.2. Main definitions

Definition 2.2. A *divisorial factorization system* is a subset

$$
\mathcal{L} \subseteq \bigcup_{n \geq 3} \mathrm{Pic}(\overline{M}_{0,n})
$$

that is closed under boundary restriction: if $L \in \mathcal{L}$ is in Pic($\overline{M}_{0,n}$) for some $n \geq 4$, and $I \subseteq \{1, ..., n\}$ satisfies $2 \leq |I| \leq n-2$, then $\partial_I^* L = L' \boxtimes L''$ for some $L', L'' \in \mathcal{L}$. Given a set S, we say that the system $\mathcal L$ is S-weighted if there exists

$$
\Phi = (\Phi_3, \Phi_4, \ldots) \in \prod_{n \geq 3} \text{Hom}_{\text{Set}}(S^n, \text{Pic}(\overline{M}_{0,n}))
$$

such that $\mathcal{L} = \bigcup_{n \geq 3} \text{Im } \Phi_n$. We then call Φ an *S*-*weighting* for \mathcal{L} .

Remark 2.3. To define an S-weighting on a system, we will frequently describe the maps $\Phi_n: S^n \to \text{Pic}(\overline{M}_{0,n})$ only for certain vectors $\underline{s} \in S^n$; we then implicitly take the trivial line bundle class as the image of all other vectors.

The interpretation of this definition is that an S-weighting provides a way of specifying a line bundle on $\overline{M}_{0,n}$ by specifying an element of S for each marked point. The restriction of this line bundle to a boundary divisor is then determined by an element of S for each marked point as before, plus elements of S for each of the two attaching points. Note, however, that we do not require the weights determining this restricted line bundle to be unique.

The following definition provides a method for keeping track of the weighting data with respect to boundary restriction.

Definition 2.4. Given an S-weighted system (L, Φ) , a *divisorial factorization rule* is a collection of pairs of maps (ϕ_I, ψ_I) , for each $n \geq 4$ and I as above, where ϕ_I : $S^n \to S^{|I|+1}$ and $\psi_I : S^n \to S^{|I^c|+1}$, satisfying

$$
\partial_I^* \circ \Phi_n = (\Phi_{|I|+1} \circ \phi_I) \boxtimes (\Phi_{|I^c|+1} \circ \psi_I).
$$

2.3. Inductive structure

Proposition 2.5. If two S-weighted systems (L, Φ) and (L', Φ') admit the same diviso*rial factorization rule, and* $\Phi_4 = \Phi'_4$ *, then* $\Phi_n = \Phi'_n$ *for every* $n \geq 4$ *.*

Proof. Fix $s \in S^n$. Keel [\[Kee92\]](#page-18-17) proved that the Chow groups of $\overline{M}_{0,n}$ are generated by the boundary strata and that rational equivalence coincides with numerical equivalence, so two line bundles are isomorphic if they have the same degree on every F-curve $C \subseteq M_{0,n}$. Since C is an intersection of boundary divisors, the fact that $\mathcal L$ and $\mathcal L'$ are closed under boundary restriction implies that $\Phi_n(\underline{s})|_C = \Phi_4(\underline{u})$ for some $\underline{u} \in S^4$, and similarly $\Phi'_n(\underline{s})|_C = \Phi'_4(\underline{v}), \underline{v} \in S^4$. The hypothesis that Φ and Φ' admit the same factorization rule implies that we can choose <u> $u = v$ </u>, so $\Phi_n(\underline{s})|_C = \Phi'_n(\underline{s})|_C$ by the assumption about $n = 4.$

2.4. Examples from WZW

For any simple complex Lie algebra g, level $\ell \in \mathbb{N}$, and n-tuple λ of dominant integral weights of level ℓ , the WZW model produces an algebraic vector bundle on $\overline{\mathcal{M}}_{g,n}$, which we denote by $\mathbb{V}(\mathfrak{g}, \ell, \underline{\lambda})$. The fiber of this bundle over a pointed curve $[C, p_1, \ldots, p_n]$ $\in \overline{\mathcal{M}}_{g,n}$, called a space of *conformal blocks*, is a finite-dimensional complex vector space that can be realized as a space of generalized parabolic theta functions if C is smooth, and which in general is constructed as a space of covariants [\[LS97,](#page-18-14) [Pau96,](#page-18-13) [TUY89,](#page-18-10) [Uen97,](#page-18-11) [Wit91\]](#page-18-12).

The rank of these bundles is computed by the Verlinde formula, though in many cases it is more convenient to use factorization, which we state here for genus $g = 0$:

Theorem 2.6 ([\[Fak09,](#page-17-12) Proposition 2.4]). *For any* \mathfrak{g}, ℓ , *and weights* $\lambda_1, \ldots, \lambda_n$, *there is a natural isomorphism*

$$
\partial_I^* \mathbb{V}(\mathfrak{g}, \ell, (\lambda_1, \ldots, \lambda_n)) \cong \bigoplus_{\mu \in P_\ell} \mathbb{V}(\mathfrak{g}, \ell, (\lambda_1, \ldots, \lambda_m, \mu)) \boxtimes \mathbb{V}(\mathfrak{g}, \ell, (\lambda_{m+1}, \ldots, \lambda_n, \mu^*))
$$

where P_ℓ *is the set of weights of level* ℓ *and* $*$ *is the natural involution on this set.*

Example 2.7. For $\ell = 1$ and g simply laced, the conformal block bundles of this type form a divisorial factorization system. Indeed, in this situation $\mathbb{V}(\mathfrak{g}, 1, \underline{\lambda})$ has rank at most one [\[Fak09,](#page-17-12) §5], so the direct sum in Theorem [2.6](#page-6-1) has at most one nonzero term, thus a conformal block line bundle pulls back to a product of conformal block line bundles.

Example 2.8. To illustrate weight data and factorization rules, let us fix $\ell = 1$ and $g = sf_r$. The level 1 dominant integral weights are then the fundamental weights ω_i , $1 \le i \le r-1$, and the zero weight ω_0 corresponding to the trivial representation. We also set $\omega_r := \omega_0$. With this convention, the involution is given by $\omega_i^* = \omega_{r-i}$. The rank of $\mathbb{V}(\mathfrak{sl}_r, 1, (\omega_{c_1}, \ldots, \omega_{c_n}))$ is ≤ 1 , and it is nonzero if and only if the sum of the weights lies in the root lattice: $\sum_{i=1}^{n} c_i \in r\mathbb{Z}$. From this description it is easy to see that the following defines a $\mathbb{Z}/r\mathbb{Z}$ -weighted factorization system and divisorial factorization rule:

$$
\Phi_n(c_1, \ldots, c_n) := \mathbb{V}(\mathfrak{sl}_r, 1, (\omega_{c_1}, \ldots, \omega_{c_n})) \quad \text{for } \sum_{i=1}^n c_i \in r\mathbb{Z},
$$

$$
\phi_I(c_1, \ldots, c_n) := \left(c_1, \ldots, c_m, \sum_{i=m+1}^n c_i \mod r\right),
$$

$$
\psi_I(c_1, \ldots, c_n) := \left(c_{m+1}, \ldots, c_n, \sum_{i=1}^m c_i \mod r\right).
$$

3. Point configurations

Here we prove Theorems [1.1](#page-1-2) and [1.2.](#page-1-0) The main idea is to embed the GIT quotients in one projective space and then compare the invariant functions that manifest these embeddings. After concluding the proof, we deduce Corollary [1.3.](#page-1-1)

3.1. Stability

Recall that a fractional linearization for the diagonal SL_{d+1} -action on $(\mathbb{P}^d)^n$ is the choice of an ample class $\underline{c} \in \mathbb{Q}_{>0}^n \subseteq \mathbb{Q}^n \cong \text{Pic}(\mathbb{P}^d)^n)_{\mathbb{Q}}$. We think of this as assigning a positive weight to each point in the configuration. It is customary to rescale so that $|c| = d + 1$. In this case, a configuration (p_1, \ldots, p_n) , $p_i \in \mathbb{P}^d$, is semistable if and only if, for every linear subspace $W \subseteq \mathbb{P}^d$, the inequality $\sum_{p_i \in W} c_i \le \dim W + 1$ holds; the configuration is stable if and only if this inequality is strict [\[DH98,](#page-17-16) Example 3.3.24].

The closure of the space of linearizations with nonempty semistable locus is the hypersimplex $\Delta(d + 1, n)$. Taking the closure allows weights to be zero. If $c_i = 0$ for some i , then the GIT quotient is defined by first applying the basepoint-free complete linear system $\mathcal{O}(\underline{c})$ on $(\mathbb{P}^d)^n$, which contracts the *i*th copy of \mathbb{P}^d : points with zero weight are "forgotten" in the quotient.

Observe that the vectors \underline{c}' and \underline{c}'' in Theorem [1.2](#page-1-0) are scaled appropriately:

$$
|\underline{c}'| = \left(\sum_{i=1}^{n_1} c_i\right) + \left(\sum_{i=n_1+1}^{n} c_i\right) - d_2 = |\underline{c}| - d_2 = (d+1) - d_2 = d_1 + 1,
$$

and similarly $|c''| = d_2 + 1$. Moreover, the bounds on $\sum_{i=1}^{n_1} c_i$ and $\sum_{i=n_1+1}^{n} c_i$ ensure that $\underline{c}' \in \Delta(d_1 + 1, n_1 + 1)$ and $\underline{c}'' \in \Delta(d_2 + 1, n_2 + 1)$.

3.2. Attaching map

Let $U \subseteq (\mathbb{P}^{d_1})^{n_1+1} \times (\mathbb{P}^{d_2})^{n_2+1}$ be the closed subset defined by the coordinate matrices [\(3.1\)](#page-7-0) below. Consider the map $\tilde{\gamma}: U \to (\mathbb{P}^d)^n$ defined as follows:

$$
\left(\begin{bmatrix} x_{01} & \cdots & x_{0n_1} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ x_{d_1-1,1} & \cdots & x_{d_1-1,n_1} & 0 \\ x_{d_11} & \cdots & x_{d_1n_1} & 1 \end{bmatrix}, \begin{bmatrix} x_{0,n_1+1} & \cdots & x_{0n} & 1 \\ x_{1,n_1+1} & \cdots & x_{1n} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ x_{d_2,n_1+1} & \cdots & x_{d_2n} & 0 \end{bmatrix}\right) (3.1)
$$
\n
$$
\mapsto \begin{bmatrix} x_{01} & \cdots & x_{0n_1} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{d_1-1,1} & \cdots & x_{d_1-1,n_1} & 0 & \cdots & 0 \\ x_{d_11} & \cdots & x_{d_1n_1} & x_{0,n_1+1} & \cdots & x_{0n} \\ 0 & \cdots & 0 & x_{1,n_1+1} & \cdots & x_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & x_{d_2,n_1+1} & \cdots & x_{d_2n} \end{bmatrix}.
$$
\n(3.2)

Geometrically, $\widetilde{\gamma}$ uses the fixed $(n_i + 1)$ th point in \mathbb{P}^{d_i} to attach these two subspaces ambed them in \mathbb{P}^{d} where the attaching point then has coordinates and embed them in \mathbb{P}^d , where the attaching point then has coordinates

$$
q := [0 : \cdots : 0 : 1 : 0 : \cdots : 0] = \mathbb{P}^{d_1} \cap \mathbb{P}^{d_2} \subseteq \mathbb{P}^d.
$$

Fig. 1. The map $\tilde{\gamma}: U \to (\mathbb{P}^3)^9$, where $U \subseteq (\mathbb{P}^1)^{4+1} \times (\mathbb{P}^2)^{5+1}$ denotes the set of configurations such that the attaching points have coordinates $[0:1]$ and $[1:0:0]$ respectively such that the attaching points have coordinates $[0:1]$ and $[1:0:0]$, respectively.

Lemma 3.1. If $U_{ss} := U \cap ((\mathbb{P}^{d_1})_{ss}^{n_1+1} \times (\mathbb{P}^{d_2})_{ss}^{n_2+1})$ denotes the semistable locus with *respect to both* SL_{d_i+1} *-actions, then* $\widetilde{\gamma}(U_{ss}) \subseteq (\mathbb{P}^d)_{ss}^n$.

Proof. Let $W \subseteq \mathbb{P}^d$ be a linear subspace, and first consider the case $q \notin W$. Then

$$
\dim W = \dim(W \cap \mathbb{P}^{d_1}) + \dim(W \cap \mathbb{P}^{d_2}) + 1,
$$

where by convention dim $\emptyset := -1$. Therefore,

$$
\sum_{p_i \in W} c_i = \sum_{p_i \in W \cap \mathbb{P}^{d_1}} c_i + \sum_{p_i \in W \cap \mathbb{P}^{d_2}} c_i
$$

$$
\leq (\dim(W \cap \mathbb{P}^{d_1}) + 1) + (\dim(W \cap \mathbb{P}^{d_2}) + 1) = \dim W + 1,
$$

as required.

Next, suppose that $q \in W$. Then

 pi

$$
\sum_{j \in W \cap \mathbb{P}^{d_1}} c_i \le \dim(W \cap \mathbb{P}^{d_1}) + 1 - \left(\left(\sum_{i=n_1+1}^n c_i \right) - d_2 \right)
$$

because a semistable configuration in $(\mathbb{P}^{d_1})^{n_1+1}$ has weight $\leq \dim(W \cap \mathbb{P}^{d_1}) + 1$ in the linear subspace $W \cap \mathbb{P}^{d_1}$, and applying $\widetilde{\gamma}$ has the effect of dropping the extra point of weight $(\sum_{i=n_1+1}^n c_i) - d_2$. The analogous inequality holds for $W \cap \mathbb{P}^{d_2}$, so

$$
\sum_{p_i \in W} c_i \leq \sum_{p_i \in W \cap \mathbb{P}^{d_1}} c_i + \sum_{p_i \in W \cap \mathbb{P}^{d_2}} c_i
$$

$$
\leq \dim(W \cap \mathbb{P}^{d_1}) + \dim(W \cap \mathbb{P}^{d_2}) + 2 + (d_1 + d_2) - \sum_{i=1}^n c_i.
$$

But $d_1 + d_2 = d$, $\sum_{i=1}^{n} c_i = d + 1$, and $\dim(W \cap \mathbb{P}^{d_1}) + \dim(W \cap \mathbb{P}^{d_2}) = \dim W$, so the right side of the preceding inequality reduces to dim $W + 1$, as required.

3.3. Invariants and embeddings

We may assume that the linearization vectors in Theorem [1.2](#page-1-0) are integral, since the hypothesis and conclusion are invariant under scaling. Specifically, choose $k \in \mathbb{Z}$ such that $k \leq \mathbb{Z}^n$, and write $\underline{k} := k \underline{c}$, so that $k_i = k c_i$. The condition $\underline{c} \in \Delta(d+1, n)$ implies

that $|\underline{k}| = k(d+1)$, which in turn implies that there exist invariant functions on $(\mathbb{P}^d)^n$ of multi-degree k . Indeed, it is well-known [\[Dol03,](#page-17-17) §11.2] that the invariant functions

$$
T := \mathrm{H}^0((\mathbb{P}^d)^n, \mathcal{O}(\underline{k}))^{\mathrm{SL}_{d+1}} \cong (S^{k_1} \mathbb{C}^{d+1} \otimes \cdots \otimes S^{k_n} \mathbb{C}^{d+1})^{\mathrm{SL}_{d+1}}
$$

generate the ring of SL_{d+1} -invariants and this linear system induces the composition

$$
(\mathbb{P}^d)^n_{ss} \to (\mathbb{P}^d)^n / \mathbb{Z} \operatorname{SL}_{d+1} \hookrightarrow \mathbb{P}(T^*).
$$

If we choose a $(d + 1) \times n$ matrix of homogeneous coordinates for $(\mathbb{P}^d)^n$, then a basis for T is given by the multi-degree k products of minors of this matrix. More precisely, a basis is the set of semistandard tableau functions of size $(d + 1) \times k$ with entries in $\{1, \ldots, n\}$ such that *i* appears k_i times. Each column of a tableau represents the minor of the coordinate matrix determined by the numbers appearing in the tableau column; juxtaposition of columns indicates the product of the corresponding minors. The semistandardness means that the entries decrease weakly across the rows and strongly down the columns. See [\[Dol03,](#page-17-17) §5.6], [\[Muk03,](#page-18-18) §8.1(C)], and [\[Ful97\]](#page-17-0) for more background.

Define $\underline{k}' := k\underline{c}', T_1 := H^0((\mathbb{P}^{d_1})^{n_1+1}, \mathcal{O}(\underline{k}'))^{\text{SL}_{d_1+1}}$, and similarly for \underline{k}'', T_2 . Then the linear system $T_1 \boxtimes T_2$ induces the composition

$$
(\mathbb{P}^{d_1})_{ss}^{n_1+1} \times (\mathbb{P}^{d_2})_{ss}^{n_2+1} \to (\mathbb{P}^{d_1})^{n_1+1} / \mathbb{Z} \times SL_{d_1+1} \times (\mathbb{P}^{d_2})^{n_2+1} / \mathbb{Z} \times SL_{d_2+1}
$$

$$
\hookrightarrow \mathbb{P}(T_1^*) \times \mathbb{P}(T_2^*) \hookrightarrow \mathbb{P}(T_1^* \otimes T_2^*).
$$

Combining this with the attaching map defined above, we obtain the diagram

$$
U_{ss} \longrightarrow (\mathbb{P}^{d_1})^{n_1+1} / \mathcal{L}^{\prime} \operatorname{SL}_{d_1+1} \times (\mathbb{P}^{d_2})^{n_2+1} / \mathcal{L}^{\prime} \operatorname{SL}_{d_2+1} \longrightarrow \mathbb{P}(T_1^* \otimes T_2^*)
$$

\n
$$
\widetilde{\gamma} \Big|_{(\mathbb{P}^{d})_{ss}^n} \longrightarrow (\mathbb{P}^{d})^n / \mathcal{L} \operatorname{SL}_{d+1} \longrightarrow \mathbb{P}(T^*)
$$
\n(3.3)

where surjectivity of the top-left arrow follows from the fact that every orbit for the $SL_{d_1+1} \times SL_{d_2+1}$ -action has a representative in U.

Let $T_1 \otimes T_2|_{U} := \{f |_{U} : f \in T_1 \otimes T_2\}$ and similarly for $T |_{\widetilde{\gamma}(U)}$. Note that $T_1 \otimes T_2|_{U} \cong$
 \sum_{ν} ginea all these functions are invariant and their orbits are represented in U. Then $T_1 \otimes T_2$, since all these functions are invariant and their orbits are represented in U. The following is a refinement of, and immediately implies, Theorem [1.1:](#page-1-2)

Proposition 3.2. *There is a surjection* $T|_{\widetilde{\gamma}(U)} \to T_1 \otimes T_2|_U$ *. The composition*

$$
T \twoheadrightarrow T|_{\widetilde{\gamma}(U)} \twoheadrightarrow T_1 \otimes T_2|_U \stackrel{\sim}{\rightarrow} T_1 \otimes T_2
$$

 $induces a linear embedding $\mathbb{P}(T_1^* \otimes T_2^*) \hookrightarrow \mathbb{P}(T^*)$ making diagram (3.3) commute.$ $induces a linear embedding $\mathbb{P}(T_1^* \otimes T_2^*) \hookrightarrow \mathbb{P}(T^*)$ making diagram (3.3) commute.$ $induces a linear embedding $\mathbb{P}(T_1^* \otimes T_2^*) \hookrightarrow \mathbb{P}(T^*)$ making diagram (3.3) commute.$

Proof. Denote by A_1 and A_2 the matrices in (3.1) parameterizing U, and number their columns $(1, \ldots, n_1 + 1)$ and $(1, \ldots, n_2 + 1)$, respectively. Denote by B the matrix in [\(3.2\)](#page-7-1) parameterizing $\widetilde{\gamma}(U)$, with columns $(1, \ldots, n)$. We call the first n_1 columns of B the *first block*, and the next n_2 columns the *second block*.

Given a $(d + 1) \times 1$ tableau function on $(\mathbb{P}^d)^n$, its restriction to $\tilde{\gamma}(U)$ is zero unless precify $d + 1$ columns from the first block and defrom the second block, or its entries specify $d_1 + 1$ columns from the first block and d_2 from the second block, or d_1 from the first and $d_2 + 1$ from the second. In this case, the restriction is the product of a $(d_1 + 1) \times 1$ tableau on A_1 and a $(d_2 + 1) \times 1$ tableau on A_2 . The entry $n_2 + 1$ appears exactly once in the A_2 tableau if the original tableau specifies $d_1 + 1$ columns from the first block and d_2 from the second, and vice versa for $n_1 + 1$. For example,

$$
\text{if } f = \frac{\frac{1}{d_1 + 1}}{\frac{n_1 + 1}{\vdots}}, \quad \text{then } f|_{\widetilde{\gamma}(U)} = \frac{1}{\frac{1}{d_1 + 1}} \otimes \frac{\frac{1}{\vdots}}{\frac{d_2}{n_2 + 1}}.
$$

As mentioned above, a basis for T is given by certain $(d + 1) \times k$ tableau functions. Since these are a k-fold product of $(d + 1) \times 1$ tableau functions, their restriction to $\tilde{\gamma}(U)$ is zero unless the entries of each column are distributed across the columns of B as in the preceding paragraph. Therefore, there is a linear map

$$
\mu: T \to \bigoplus_{(\underline{m}_1, \underline{m}_2) \in \mathbb{N}^{n+2}} \mathrm{H}^0(U, \mathcal{O}(\underline{m}_1) \boxtimes \mathcal{O}(\underline{m}_2)|_U)
$$

defined by first restricting each basis element to $\tilde{\gamma}(U)$ and then expressing the restriction as a tensor product of a $(d_1 + 1) \times k$ tableau on A_1 and a $(d_2 + 1) \times k$ tableau on A_2 . We claim that the image of μ is $T_1 \otimes T_2|_U$.

Since $|\underline{k}'| = k|\underline{c}'| = k(d_1 + 1)$ and $|\underline{k}''| = k(d_2 + 1)$, the image under μ of a basis tableau of T (with nonzero restriction) has the same dimensions as the basis elements of $T_1 \otimes T_2|_U$. Moreover, the fact that the original tableau is semistandard immediately implies that the tableau functions in the restriction are semistandard with entries in $\{1, \ldots, n_1+1\}$ and $\{1, \ldots, n_2 + 1\}.$

We claim that:

- (1) the index *i* occurs exactly kc_i times in the A_1 factor, for $i \leq n_1$, and kc_{n_1+i} times in the A_2 factor, for $i \leq n_2$;
- (2) $n_1 + 1$ occurs $k(\sum_{i=n_1+1}^{n} c_i) kd_2$ times in the A_1 factor;
- (3) $n_2 + 1$ occurs $k(\sum_{i=1}^{n_1} c_i) kd_1$ times in the A_2 factor.

By the definition of \underline{k}' and \underline{k}'' , this is the form of the basis elements of $T_1 \otimes T_2|_U$, so this will prove that $\mu(T) \subseteq T_1 \otimes T_2|_U$.

If $i \leq n_1$, then i occurs kc_i times in the original tableau, and by our explicit description above we see that *i* occurs kc_i times in the restriction. Similarly, if $i \geq n_1 + 1$ then it occurs kc_{i-n_1} times in the original and hence kc_i times in the restriction. This verifies part (1) of the claim.

By the nonzero restriction to U assumption, each column of the original $(d + 1) \times k$ tableau has $d_1 + 1$ entries from the first block and d_2 from the second, or d_1 from the first and $d_2 + 1$ from the second. We saw that the index $n_2 + 1$ occurs once in the restriction in the first case and $n_1 + 1$ occurs once in the second case. If we denote by α the number of columns of the original tableau of the first type, and by β the number of the second, then the multiplicity of $n_2 + 1$ is α and the multiplicity of $n_1 + 1$ is β . The total number of entries in the tableau corresponding to columns in the first block is by assumption $\sum_{i=1}^{n_1} k c_i$. On the other hand, this number is also $\alpha(d_1 + 1) + \beta d_1$, since α columns of the tableau have $d_1 + 1$ such entries and β columns have d_1 such entries. Clearly $\alpha + \beta = k$, the total number of columns, so

$$
\sum_{i=1}^{n_1} kc_i = \alpha(d_1 + 1) + \beta d_1 = \alpha + kd_1,
$$

which implies that $n_2 + 1$ indeed has multiplicity $\alpha = k(\sum_{i=1}^{n_1} c_i) - kd_1$. Analogously, one sees that $n_1 + 1$ has multiplicity $\beta = k(\sum_{i=n_1+1}^{n} c_i) - kd_2$, verifying parts (2) and (3) of the claim.

Moreover, it follows from this discussion that the containment $\mu(T) \subseteq T_1 \otimes T_2|_U$ is in fact an equality, since any pair of semistandard tableau functions with entries as in parts (1) , (2) and (3) of the claim is the restriction of a basis element of T.

Finally, the fact that the map $\mathbb{P}(T^* \otimes T_2^*) \hookrightarrow \mathbb{P}(T^*)$ induced by μ renders diagram (3.3) commutative is clear from construction.

3.4. Concluding the proof of Theorem [1.2](#page-1-0)

Proposition [3.2](#page-9-1) yields an embedding

$$
(\mathbb{P}^{d_1})^{n_1+1}/\!\!/_{\underline{k}'} SL_{d_1+1} \times (\mathbb{P}^{d_2})^{n_2+1}/\!\!/_{\underline{k}''} SL_{d_2+1} \hookrightarrow \mathbb{P}(T^*),
$$

and it follows from commutativity of diagram [\(3.3\)](#page-9-0), appended by the map in Proposition [3.2,](#page-9-1) and surjectivity of the horizontal map from U_{ss} there that the image of this embedding is contained in the image of the embedding $(\mathbb{P}^d)^n/\!\!/_{\underline{k}} SL_{d+1} \hookrightarrow \mathbb{P}(T^*)$. Therefore, we obtained the desired morphism γ in the statement of Theorem [1.2:](#page-1-0)

$$
(\mathbb{P}^{d_1})^{n_1+1} / \mathbb{L} \times SL_{d_1+1} \times (\mathbb{P}^{d_2})^{n_2+1} / \mathbb{L} \times SL_{d_2+1} \longrightarrow \mathbb{P}(T_1^* \otimes T_2^*)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
(\mathbb{P}^{d})^n / \mathbb{L} SL_{d+1} \subseteq \mathbb{P}(T^*)
$$

Moreover, the statement about polarizations follows immediately since the inclusion $\mathbb{P}(T_1^* \otimes T_2^*) \hookrightarrow \mathbb{P}(T^*)$ is linear and all the GIT quotients involved inherit their hyperplane class from their embeddings in these projective spaces. \Box

3.5. Factorization

We are now in a position to deduce the following, which is an explicit version of Corollary [1.3](#page-1-1) stated in the introduction:

Corollary 3.3. Let $\mathcal{G}_{d,\underline{c}} := \varphi_{d,\underline{c}}^* \mathcal{O}(1)$, where $\varphi_{d,\underline{c}} : \overline{M}_{0,n} \to (\mathbb{P}^d)^n / \mathcal{L}_{\underline{c}} \text{SL}_{d+1}$ and $\mathcal{O}(1)$ is *the GIT polarization. Then, with notation as in Theorem* [1.2](#page-1-0) *and* [§2.1](#page-4-0)*,*

$$
\partial_I^* \mathcal{G}_{d,\underline{c}} \cong \mathcal{G}_{d_1,\underline{c}'} \boxtimes \mathcal{G}_{d_2,\underline{c}''}.
$$

Proof. By Theorem [1.2,](#page-1-0) it is enough to show that the following is commutative:

$$
\overline{M}_{0,n_1+1} \times \overline{M}_{0,n_2+1} \longleftarrow \overline{M}_{0,n}
$$
\n
$$
\left. (\varphi_{d_1, \underline{c}', \varphi_{d_2, \underline{c}'})} \right|_{\psi_{d, \underline{c}}} \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
(\mathbb{P}^{d_1})^{n_1+1} \mathbb{Z} \subseteq \mathrm{SL}_{d_1+1} \times (\mathbb{P}^{d_2})^{n_2+1} \mathbb{Z} \subseteq \mathrm{SL}_{d_2+1} \longrightarrow (\mathbb{P}^{d})^n \mathbb{Z} \subseteq \mathrm{SL}_{d+1}
$$

By separatedness, to check that this diagram commutes, it is enough to consider the restriction to $M_{0,n_1+1} \times M_{0,n_2+1}$. On this open locus, traversing the diagram in either direction corresponds to sending a nodal curve $C = C_1 \cup C_2$ to a union of two rational normal curves in $\mathbb{P}^{d_1} \cup \mathbb{P}^{d_2} \subseteq \mathbb{P}^d$ with a node at the attaching point $\mathbb{P}^{d_1} \cap \mathbb{P}^{d_2}$. It follows from the explicit description of γ and of the morphisms in [\[Gia11,](#page-17-6) §4.1] that the resulting configurations are projectively equivalent. \Box

4. Cyclic covers

In this section we prove Proposition [1.4](#page-2-1) and Corollary [1.5](#page-2-0) and discuss the eigenbundle determinants studied by Fedorchuk.

4.1. Attaching maps and Hodge bundles

Let us denote the Hodge bundle over \overline{M}_g by \mathbb{E}_g . For any integers $g_1, g_2 \geq 0$ and $s \geq 1$, there is a natural attaching map $\rho : \overline{M}_{g_1,s} \times \overline{M}_{g_2,s} \to \overline{M}_g$, where $g = g_1 + g_2 + s - 1$, defined by glueing two curves of genus g_1, g_2 g_1, g_2 along their s marked points. See Figure 2 for an example. We will also consider the product of forgetful maps $\pi : \overline{M}_{g_1, s} \times \overline{M}_{g_2, s} \to$ $\overline{M}_{g_1} \times \overline{M}_{g_2}.$

Fig. 2. The attaching map $\rho : \overline{M}_{3,4} \times \overline{M}_{2,4} \rightarrow \overline{M}_{8}$.

Lemma 4.1. *There is an isomorphism of vector bundles*

$$
\rho^* \mathbb{E}_g \cong \pi^* ((\mathbb{E}_{g_1} \boxtimes \mathcal{O}_{\overline{M}_{g_2}}) \oplus (\mathcal{O}_{\overline{M}_{g_1}} \boxtimes \mathbb{E}_{g_2})) \oplus \mathcal{O}_{\overline{M}_{g_1,s} \times \overline{M}_{g_2,s}}^{\oplus s-1}.
$$

Proof. This follows from [\[Mum83,](#page-18-19) §5], as developed in [\[FP00,](#page-17-18) equations (17) and (18)] and $[CY10, equation (23)].$ $[CY10, equation (23)].$

4.2. Admissible covers

The cyclic cover morphisms $f_{\mathcal{L},r}$ mentioned in [§1.2](#page-2-2) are most easily defined on the interior $M_{0,n}$, and Fedorchuk [\[Fed11,](#page-17-7) §2] describes two ways to see the extension to the stable compactification $\overline{M}_{0,n}$. One method is via orbicurves and essentially shows that the extension is obtained by taking a degree r cyclic cover of the universal curve not of $\overline{M}_{0,n}$ itself but of a DM-stack lying over $\overline{M}_{0,n}$, namely Fedorchuk's moduli space of r-divisible curves. These r-divisible curves are orbicurves whose coarse moduli space is a marked stable rational curve. The second method to see the extension is via the Harris–Mumford theory of admissible covers: to compute the limit of a family of cyclic covers, take the limit in the compactified Hurwitz scheme of admissible covers [\[HM82\]](#page-18-20). We will use the latter perspective to prove Proposition [1.4.](#page-2-1) To begin, let us see what happens to smooth cyclic covers as they degenerate in the simplest possible way:

Lemma 4.2. Let $C_0 \to D_0 = \mathbb{P}^1 \cup_{\{q\}} \mathbb{P}^1$ be the admissible cover obtained as the limit of *cyclic covers* $C_t \to \mathbb{P}^1$ *ramified over* $\sum_{i=1}^n c_i p_i$ *as* $(\mathbb{P}^1, p_1, \ldots, p_n) \in M_{0,n}$ *tends to the* generic point $(\mathbb{P}^1 \cup_{\{q\}} \mathbb{P}^1, p_1, \ldots, p_n)$ of a boundary divisor $\overline{M}_{0,n_1+1} \times \overline{M}_{0,n_2+1} \subseteq \overline{M}_{0,n}$. Let $C' \sqcup C'' \rightarrow C_0$ *and* $D' \sqcup D'' \rightarrow D_0$ *denote the normalizations, so* $D' = \mathbb{P}^1$ *with* markings p_1, \ldots, p_{n_1}, q and $D'' = \mathbb{P}^1$ with markings $p_{n_1+1}, \ldots, p_n, q$. Then

- (1) $C' \rightarrow D'$ is a cyclic cover ramified over $\sum_{i=1}^{n_1} c_i p_i + (\sum_{i=n_1+1}^{n} c_i) q;$
- (2) $C'' \rightarrow D''$ is a cyclic cover ramified over $\sum_{i=n_1+1}^{n} c_i p_i + (\sum_{i=1}^{n_1} c_i)q_i$;
- (3) *the fiber of* $C_0 \rightarrow D_0$ *over the node* q *consists of* $s = \text{gcd}(\sum_{i=n_1+1}^{n} c_i, r)$ $\gcd(\sum_{i=1}^{n_1} c_i, r)$ *distinct points;*
- (4) *the genus g of* C_t *satisfies* $g = g_1 + g_2 + s 1$ *, where* g_1 *is the genus of* C' *and* g_2 *is the genus of* C'' .

Fig. 3. The limit of a degree $r = 4$ cover with weights $c = (2, 1, 3, 3, 1, 2)$ is obtained by gluing covers with weights $c' = (2, 1, 3, 2)$ and $c'' = (2, 3, 1, 2)$ at two points lying over the branch node.

Proof. The restricted maps $C' \rightarrow D'$ and $C'' \rightarrow D''$ are degree r cyclic covers of \mathbb{P}^1 , ramified over a weighted sum of the marked points and the attaching point q . The weight on the attaching point is as stated, since the sum of the weights for each of the two cyclic covers, and the original cover, is divisible by r .

The genus of C_t is independent of t and is given by the Riemann–Hurwitz formula:

$$
g = 1 - r + \frac{1}{2} \sum_{i=1}^{n} (r - \gcd(c_i, r)).
$$

On the other hand, applying Riemann-Hurwitz to C' and C'' yields

$$
g_1 = 1 - r + \frac{1}{2} \sum_{i=1}^{n_1} (r - \gcd(c_i, r)) + \frac{1}{2} \left(r - \gcd\left(\sum_{i=n_1+1}^{n} c_i, r\right) \right),
$$

\n
$$
g_2 = 1 - r + \frac{1}{2} \sum_{i=n_1+1}^{n} (r - \gcd(c_i, r)) + \frac{1}{2} \left(r - \gcd\left(\sum_{i=1}^{n_1} c_i, r\right) \right).
$$

Since gcd($\sum_{i=n_1+1}^{n} c_i$, r) = gcd($\sum_{i=1}^{n_1} c_i$, r), and we call this common number s, which is the number of nodes in the fiber over the node q, we see that $g_1 + g_2 = g - s + 1$. This concludes the proof of the third and fourth claims.

Let $\Delta \subseteq \overline{M}_g$ denote the image of the attaching map $\rho : \overline{M}_{g_1,s} \times \overline{M}_{g_2,s} \to \overline{M}_g$ from [§4.1.](#page-12-1) The normalization of Δ is $(\overline{M}_{g_1,s} \times \overline{M}_{g_2,s})/S_s$. It follows from Lemma [4.2](#page-13-1) that the restriction of the cyclic cover morphism $f_{\mathcal{L},r}$: $\overline{M}_{0,n} \to \overline{M}_g$ to the boundary divisor $\overline{M}_{0,n_1+} \times \overline{M}_{n_2+1}$ has image contained in Δ . Since $\overline{M}_{0,n_1+} \times \overline{M}_{n_2+1}$ is normal, this restriction factors through $(\overline{M}_{g_1,s} \times \overline{M}_{g_2,s})/S_s$. We thus have a diagram as in Proposition [1.4](#page-2-1) which is commutative except possibly at the triangle on the left:

However, to check this remaining commutativity we can restrict to the dense open subset $M_{0,n_1+1}\times M_{0,n_2+1}\subseteq \overline{M}_{0,n_1+1}\times \overline{M}_{0,n_2+1}$, where commutativity follows from Lemma [4.2.](#page-13-1) This completes the proof of Proposition [1.4.](#page-2-1)

4.3. Determinants and eigenbundles

Following [\[Fed11,](#page-17-7) §4], we define the cyclic bundle $\Sigma_{r,c}$ by splitting the Hodge bundle on the cyclic cover locus into μ_r -eigenbundles,

$$
f_{\underline{c},r}^* \mathbb{E}_g \cong \bigoplus_{i=1}^{r-1} \mathbb{E}_g^{(i)},
$$

and then taking the determinant of the first eigenbundle: $\Sigma_{r,c} := \det \mathbb{E}_g^{(1)}$.

Corollary 4.3. With notation as above, we have $\partial_l^* \Sigma_{r,\underline{c}} \cong \Sigma_{r,\underline{c}'} \boxtimes \Sigma_{r,\underline{c}''}$.

Proof. By Proposition [1.4](#page-2-1) and Lemma [4.1,](#page-12-2) the restriction of $f_{c,r}^* \mathbb{E}_g$ to the boundary divisor $\overline{M}_{0,n_1+1} \times \overline{M}_{0,n_2+1} \subseteq \overline{M}_{0,n}$ coincides with the pullback of $\mathbb{E}_{g_1} \oplus \mathbb{E}_{g_2} \oplus \mathcal{O}^{\oplus s-1}$ along the product morphism $(f_{\underline{c}',r}, f_{\underline{c}'',r}) : \overline{M}_{0,n_1+1} \times \overline{M}_{0,n_2+1} \to \overline{M}_{g_1} \times \overline{M}_{g_2}$. The μ_r -action is compatible with this decomposition, and determinants commute with base change, so

$$
\partial_I^* \Sigma_{r,\underline{c}} \cong \det \mathbb{E}_{g_1}^{(1)} \otimes \det \mathbb{E}_{g_2}^{(1)} \otimes \det((\mathcal{O}^{\oplus s-1})^{(1)}).
$$

But over a complete variety every direct summand of a trivial bundle is trivial, since endomorphisms are simply constant matrices, so the last factor on the right-hand side vanishes and we obtain the desired result. \Box

5. Conclusion

Here we use the results from the previous sections to derive Theorem [1.7,](#page-3-1) restated below for the convenience of the reader:

Theorem 5.1. *Fix* $n \geq 4, r \geq 2$, and $\underline{c} \in \mathbb{Z}^n$ *with* $0 \leq c_i < r$ and $r \mid \sum_{i=1}^n c_i$. *The following line bundles on* $\overline{M}_{0,n}$ *are isomorphic:*

- (i) the conformal block bundle $\mathbb{V}(\mathfrak{sl}_r, 1, (\omega_{c_1}, \ldots, \omega_{c_n}))$;
- (ii) *the GIT bundle* $\mathcal{G}_{|\underline{c}|/r-1,\underline{c}}$ *;*
- (iii) *the* r^{th} *tensor power of the cyclic bundle* $\Sigma_{r,c}$ *.*

This is done by showing that all three classes of line bundles form divisorial factorization systems admitting the same factorization rule. Once this is demonstrated, all that remains is to analyze the case $n = 4$ and apply Proposition [2.5.](#page-5-2)

Proposition 5.2. *For each* n, *r and* <u>c</u> as above, if $\Phi_n^{CB}(\underline{c}) := \mathbb{V}(\mathfrak{sl}_r, 1, (\omega_{c_1}, \ldots, \omega_{c_n}))$, $\Phi_n^{\mathcal{G}}(\underline{c}) := \mathcal{G}_{\frac{|\underline{c}|}{r}-1,\underline{c}}$ and $\Phi_n^{\Sigma}(\underline{c}) := \Sigma_{r,\underline{c}}^{\otimes r}$, then these three assignments form divisorial *factorization systems that all admit the following factorization rule:*

$$
\phi_I(c_1, ..., c_n) := \left(c_1, ..., c_m, \sum_{i=m+1}^n c_i \mod r\right),
$$

$$
\psi_I(c_1, ..., c_n) := \left(c_{m+1}, ..., c_n, \sum_{i=1}^m c_i \mod r\right),
$$

where the mod r representative is taken in $\{1, \ldots, r\}$ *for* ϕ_I *and in* $\{0, \ldots, r-1\}$ *for* ψ_I *. By convention, we set* $\mathcal{G}_{d,c} = \mathcal{O}$ *if* $d \notin \{1, \ldots, n - 3\}$ *.*

Remark 5.3. By definition, the representative of the remainder is irrelevant for the conformal block and cyclic bundles, but for GIT we must break the symmetry, as we will see in the proof below.

Proof of Proposition [5.2.](#page-15-0) That this holds for Φ^{CB} and Φ^{Σ} was established in Example [2.8](#page-6-2) and Corollary [4.3,](#page-14-0) respectively, so all that remains is establishing it for the GIT system $\Phi^{\mathcal{G}}$. For this, we must show that

$$
\partial_I^* \mathcal{G}_{\vert \underline{c} \vert /r-1, \underline{c}} \cong \mathcal{G}_{\vert \underline{c}' \vert /r-1, \underline{c}'} \boxtimes \mathcal{G}_{\vert \underline{c}'' \vert /r-1, \underline{c}''},
$$

where $\underline{c}' := (c_1, ..., c_m, \sum_{i=m+1}^n c_i \mod r)$ and $\underline{c}'' := (c_{m+1}, ..., c_n, \sum_{i=1}^m c_i \mod r)$. By rescaling the GIT polarizations, it clearly suffices to prove that

$$
\partial_I^* \mathcal{G}_{|\underline{b}|-1,\underline{b}} \cong \mathcal{G}_{|\underline{b}'|-1,\underline{b}'} \boxtimes \mathcal{G}_{|\underline{b}''|-1,\underline{b}''},
$$

where $\underline{b} := (1/r)\underline{c}, \underline{b}' := (1/r)\underline{c}'$, and $\underline{b}'' := (1/r)\underline{c}''$. Define $d := |\underline{b}| - 1, d_1 := |\underline{b}'| - 1$, and $d_2 := |b''| - 1$, and observe that these d, d_1, d_2 are all integers. We can assume that they are all positive, for if not then the corresponding GIT bundle is defined to be the trivial line bundle; since any restriction of a trivial bundle is trivial, this is compatible with the above factorization rules. Then $\underline{b} \in \Delta(d + 1, n), \underline{b}' \in \Delta(d_1 + 1, m + 1)$, and $\underline{b}'' \in \Delta(d_2+1, n-m+1)$. Our convention on representatives of the remainder modulo *r* implies that $d_1 + d_2 = d$. The result then follows immediately from Corollary [3.3.](#page-12-3) \Box

5.1. The case n = 4

Since $\overline{M}_{0,4} \cong \mathbb{P}^1$ and Pic($\overline{M}_{0,4}$) $\cong \mathbb{Z}$, the isomorphism class of any line bundle here is simply its degree. To complete the proof of Theorem [1.7,](#page-3-1) by applying Proposition [2.5,](#page-5-2) we must show that the three types of line bundles occurring have the same degree for $n = 4$. Although this is by no means trivial, the computation of these degrees has already appeared in the literature:

Theorem 5.4. *With notation as in Proposition* [5.2](#page-15-0)*, and assuming for notational convenience that* $\underline{c} \in \mathbb{Z}^4$ *satisfies* $c_1 \leq \cdots \leq c_4 \leq r$, we have:

• deg
$$
\Phi_4^{CB}(c) = \begin{cases} c_1 & \text{if } |c| = 2r \text{ and } c_2 + c_3 \ge c_1 + c_4, \\ r - c_4 & \text{if } |c| = 2r \text{ and } c_2 + c_3 \le c_1 + c_4, \\ 0 & \text{otherwise} \end{cases}
$$

[\[Fak09,](#page-17-12) Lemma 5.1]*;*

• $\frac{1}{r}$ deg $\Phi_4^{\mathcal{G}}(\underline{c}) =$ $\left[\min\left\{\frac{1}{r}c_1, 1-\frac{1}{r}c_4\right\} \mid \text{if } \frac{1}{r}|\underline{c}|=2, \right]$ 0 *otherwise*

[\[GG12,](#page-17-14) Lemma 2.6], [\[AS12,](#page-17-4) Lemma 2.2]*;*

• deg $\Phi_4^{\Sigma}(\underline{c}) =$ $\int \min\{c_1, r - c_4\}$ *if* $|\underline{c}| = 2r$, 0 *otherwise*

[\[Fed11,](#page-17-7) Proposition 4.2], [\[BM10,](#page-17-20) [EKZ10\]](#page-17-8)*.*

As observed in the above-cited papers, these three formulae clearly coincide.

Acknowledgments. We thank Abramovich, Cavalieri, and Ottaviani for their generous assistance with this work, Fedorchuk, Gibney, and Sorger for their encouragement and stimulating discussions, and the referee for helpful suggestions. The second author was supported by the SNF (Swiss National Science Foundation).

References

[AGS14] Alexeev, V., Gibney, A., Swinarski, D.: Higher-level \mathfrak{sl}_2 conformal blocks divisors on $\overline{M}_{0,n}$. Proc. Edinburgh Math. Soc. 57, 7–30 (2014) [Zbl 1285.14012](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1285.14012&format=complete) [MR 3165010](http://www.ams.org/mathscinet-getitem?mr=3165010)

- [AS12] Alexeev, V., Swinarski, D.: Nef divisors on $\overline{M}_{0,n}$ from GIT. In: Geometry and Arithmetic. EMS Congr. Rep., Eur. Math. Soc., 1–22 (2012) Zbl 1285.14012 Arithmetic, EMS Congr. Rep., Eur. Math. Soc., 1-22 (2012) [MR 2987650](http://www.ams.org/mathscinet-getitem?mr=2987650)
- [AGSS12] Arap, M., Gibney, A., Stankewicz, J., Swinarski, D.: \mathfrak{sl}_n level 1 conformal blocks divisors on $\overline{M}_{0,n}$. Int. Math. Res. Notices 2012, no. 7, 1634–1680 [Zbl 1271.14034](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1271.14034&format=complete) [MR 2913186](http://www.ams.org/mathscinet-getitem?mr=2913186)
- [Bea96] Beauville, A.: Conformal blocks, fusion rings and the Verlinde formula. In: Proc. Hirzebruch 65 Conf. on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Bar-Ilan Univ., 75–96 (1996) [Zbl 0848.17024](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0848.17024&format=complete) [MR 1360497](http://www.ams.org/mathscinet-getitem?mr=1360497)
- [Bol11] Bolognesi, M.: Forgetful linear systems on the projective space and rational normal curves over $\mathcal{M}_{0,2n}^{GIT}$. Bull. London Math. Soc. 43, 583–596 (2011) [Zbl 1229.14026](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.14026&format=complete) [MR 2820147](http://www.ams.org/mathscinet-getitem?mr=2820147)
- [BM10] Bouw, I., Möller, M.: Teichmüller curves, triangle groups, and Lyapunov exponents. Ann. of Math. (2) 172, 139–185 (2010) [Zbl 1203.37049](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1203.37049&format=complete) [MR 2680418](http://www.ams.org/mathscinet-getitem?mr=2680418)
- [CY10] Cavalieri, R., Yang, S.: Tautological pairings on moduli spaces of curves. Proc. Amer. Math. Soc. 139, 51–62 (2011) [Zbl 1210.14065](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1210.14065&format=complete) [MR 2729070](http://www.ams.org/mathscinet-getitem?mr=2729070)
- [Che_{10]} Chen, D.: Covers of the projective line and the moduli space of quadratic differentials. Geom. Dedicata 163, 105–125 (2013) [Zbl 1271.14036](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1271.14036&format=complete) [MR 3032687](http://www.ams.org/mathscinet-getitem?mr=3032687)
- [DM86] Deligne, P., Mostow, G.: Monodromy of hypergeometric functions and nonlattice integral monodromy. Inst. Hautes Études Sci. Publ. Math. 63, 5–89 (1986) [Zbl 0615.22008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0615.22008&format=complete) [MR 0849651](http://www.ams.org/mathscinet-getitem?mr=0849651)
- [Dol03] Dolgachev, I.: Lectures on Invariant Theory. London Math. Soc. Lecture Note Ser. 296, Cambridge Univ. Press (2003) [Zbl 1023.13006](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1023.13006&format=complete) [MR 2004511](http://www.ams.org/mathscinet-getitem?mr=2004511)
- [DH98] Dolgachev, I., Hu, Y.: Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math. $87, 5-56$ (1998) [Zbl 1001.14018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1001.14018&format=complete) [MR 1659282](http://www.ams.org/mathscinet-getitem?mr=1659282)
- [DO88] Dolgachev, I., Ortland, D.: Point Sets in Projective Spaces and Theta Functions. Astérisque 165 (1988) [Zbl 0685.14029](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0685.14029&format=complete) [MR 1007155](http://www.ams.org/mathscinet-getitem?mr=1007155)
- [Dor04] Doran, B.: Moduli space of cubic surfaces as ball quotient via hypergeometric functions. [arXiv:0404062](http://arxiv.org/abs/0404062) (2004)
- [EKZ10] Eskin, A., Kontsevich, M., Zorich, A.: Lyapunov spectrum of square-tiled cyclic covers. J. Modern Dynam. 5, 319–353 (2011) [Zbl 1254.32019](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1254.32019&format=complete) [MR 2820564](http://www.ams.org/mathscinet-getitem?mr=2820564)
- [FP00] Faber, C., Pandharipande, R.: Hodge integrals and Gromov–Witten theory. Invent. Math. 139, 173–199 (2000) [Zbl 0960.14031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0960.14031&format=complete) [MR 1728879](http://www.ams.org/mathscinet-getitem?mr=1728879)
- [Fak09] Fakhruddin, N.: Chern classes of conformal blocks on $\overline{M}_{0,n}$. In: Compact Moduli and Vector Bundles (Athens, GA, 2010), V. Alexeev et al. (eds.), Contemp. Math. 564, Amer. Math. Soc., Providence, RI, 145–176 (2012) [Zbl 1244.14007](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1244.14007&format=complete) [MR 2894632](http://www.ams.org/mathscinet-getitem?mr=2894632)
- [Fal94] Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3, 347–374 (1994) [Zbl 0809.14009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0809.14009&format=complete) [MR 1257326](http://www.ams.org/mathscinet-getitem?mr=1257326)
- [Fed11] Fedorchuk, M.: Cyclic covering morphisms on $\overline{M}_{0,n}$. [arXiv:1105.0655](http://arxiv.org/abs/1105.0655) (2011)
- [Ful97] Fulton, W.: Young Tableaux, with Applications to Representation Theory and Geometry. Cambridge Univ. Press (1997) [Zbl 0878.14034](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0878.14034&format=complete) [MR 1464693](http://www.ams.org/mathscinet-getitem?mr=1464693)
- [Gia11] Giansiracusa, N.: Conformal blocks and rational normal curves. J. Algebraic Geom. 22, 773–793 (2013) [Zbl 1279.14029](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1279.14029&format=complete) [MR 3084722](http://www.ams.org/mathscinet-getitem?mr=3084722)
- [GG12] Giansiracusa, N., Gibney, A.: The cone of type A, level one conformal blocks divisors. Adv. Math. 231, 798–814 (2012) [Zbl 06084082](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06084082&format=complete) [MR 2955192](http://www.ams.org/mathscinet-getitem?mr=2955192)
- [GJMS12] Gibney, A., Jensen, D., Moon, H.-B., Swinarski, D.: Veronese quotient models of $\overline{M}_{0,n}$ and conformal blocks. Michigan Math. J. 62, 721–751 (2013) [Zbl 1287.14011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1287.14011&format=complete) [MR 3160539](http://www.ams.org/mathscinet-getitem?mr=3160539)
- [HKT06] Hacking, P., Keel, S., Tevelev, J.: Compactification of the moduli space of hyperplane arrangements. J. Algebraic Geom. 15, 657–680 (2006) [Zbl 1117.14036](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1117.14036&format=complete) [MR 2237265](http://www.ams.org/mathscinet-getitem?mr=2237265)
- [HM82] Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Invent. Math. 67, 23–88 (1982) [Zbl 0506.14016](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0506.14016&format=complete) [MR 0664324](http://www.ams.org/mathscinet-getitem?mr=0664324)
- [HMSV12] Howard, B., Millson, J., Snowden, A., Vakil, R.: The ideal of relations for the ring of invariants of *n* points on the line. J. Eur. Math. Soc. 14 , $1-60$ (2012) Zbl 1255.14039 [MR 2862033](http://www.ams.org/mathscinet-getitem?mr=2862033)
- [Kap93] Kapranov, M.: Chow quotients of Grassmannians, I. In: I. M. Gel'fand Seminar, Adv. Soviet Math. 16, part 2, Amer. Math. Soc. 29–110 (1993) [Zbl 0811.14043](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0811.14043&format=complete) [MR 1237834](http://www.ams.org/mathscinet-getitem?mr=1237834)
- [Kee92] Keel, S.: Intersection theory of moduli space of stable *n*-pointed curves of genus zero. Trans. Amer. Math. Soc. 330, 545–574 (1992) [Zbl 0768.14002](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0768.14002&format=complete) [MR 1034665](http://www.ams.org/mathscinet-getitem?mr=1034665)
- [LS97] Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic G-bundles over curves and their sections. Ann. Sci. École Norm. Sup. 30, 499–525 (1997) [Zbl 0918.14004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0918.14004&format=complete) [MR 1456243](http://www.ams.org/mathscinet-getitem?mr=1456243)
- [LM05] Lehr, C., Matignon, M.: Automorphism groups for *p*-cyclic covers of the affine line. Compos. Math. 141, 1213–1237 (2005) [Zbl 1083.14028](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1083.14028&format=complete) [MR 2157136](http://www.ams.org/mathscinet-getitem?mr=2157136)
- [Loo05] Looijenga, E.: Conformal blocks revisited. [arXiv:0507086](http://arxiv.org/abs/0507086) (2005)
- [McM13] McMullen, C.: Braid groups and Hodge theory. Math. Ann. 355, 893–946 (2013) [Zbl 1290.30050](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1290.30050&format=complete) [MR 3020148](http://www.ams.org/mathscinet-getitem?mr=3020148)
- [Moo10] Moonen, B.: Special subvarieties arising from families of cyclic covers of the projective line. Doc. Math. 15, 793–819 (2010) [Zbl 1236.11056](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1236.11056&format=complete) [MR 2735989](http://www.ams.org/mathscinet-getitem?mr=2735989)
- [MO13] Moonen, B., Oort, F.: The Torelli locus and special subvarieties. In: Handbook of Moduli, Vol. II, Adv. Lect. Math. 25, Int. Press, Somerville, MA, 549–594 (2013) [MR 3184184](http://www.ams.org/mathscinet-getitem?mr=3184184)
- [Muk03] Mukai, S.: An Introduction to Invariants and Moduli. Cambridge Stud. Adv. Math. 81, Cambridge Univ. Press (2003) [Zbl 1033.14008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1033.14008&format=complete) [MR 2004218](http://www.ams.org/mathscinet-getitem?mr=2004218)
- [Mum83] Mumford, D.: Toward an enumerative geometry of the moduli space of curves. In: Arithmetic and Geometry, Vol. II, Progr. Math. 36, Birkhäuser, 271–328 (1983) [Zbl 0554.14008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0554.14008&format=complete) [MR 0717614](http://www.ams.org/mathscinet-getitem?mr=0717614)
- [Pag12] Pagani, N.: The Chen–Ruan cohomology of moduli of curves of genus 2 with marked points. Adv. Math. 229, 1643–1687 (2012) [Zbl 1236.14032](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1236.14032&format=complete) [MR 2871153](http://www.ams.org/mathscinet-getitem?mr=2871153)
- [Pau96] Pauly, C.: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84, 217–235 (1996) [Zbl 0877.14031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0877.14031&format=complete) [MR 1394754](http://www.ams.org/mathscinet-getitem?mr=1394754)
- [Roh09] Rohde, J.: Cyclic Coverings, Calabi–Yau Manifolds and Complex Multiplication. Lecture Notes in Math. 1975, Springer (2009) [Zbl 1168.14001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1168.14001&format=complete) [MR 2510071](http://www.ams.org/mathscinet-getitem?mr=2510071)
- [Swi11] Swinarski, D.: ϵ_2 conformal block divisors and the nef cone of $\overline{M}_{0,n}$. [arXiv:1107.5331](http://arxiv.org/abs/1107.5331) (2011)
- [TUY89] Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Stud. Pure Math. 19, Academic Press, 459–566 (1989) [Zbl 0696.17010](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0696.17010&format=complete) [MR 1048605](http://www.ams.org/mathscinet-getitem?mr=1048605)
- [Uen97] Ueno, K.: Introduction to conformal field theory with gauge symmetries. In: Geometry and Physics (Aarhus, 1995), Lecture Notes in Pure Appl. Math. 184, Dekker, 603–745 (1997) [Zbl 0873.32022](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0873.32022&format=complete) [MR 1423195](http://www.ams.org/mathscinet-getitem?mr=1423195)
- [Wit91] Witten, E.: On quantum gauge theories in two dimensions. Comm. Math. Phys. 141, 153–209 (1991) [Zbl 0762.53063](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0762.53063&format=complete) [MR 1133264](http://www.ams.org/mathscinet-getitem?mr=1133264)