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Abstract. We study classical spin networks with group SU2. In the first part, using Gaussian inte-
grals, we compute their generating series in the case where the edges are equipped with holonomies;
this generalizes Westbury’s formula. In the second part, we use an integral formula for the square
of the spin network and perform stationary phase approximation under some non-degeneracy hy-
pothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going
to infinity.
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1. Introduction

A classical spin network is a pair (0, c)where 0 is a trivalent graph equipped with a cyclic
ordering of the edges around each vertex and c is a map from the edges to the natural
numbers called coloring and satisfying some simple conditions. According to Penrose
[P71], one may associate to such a pair a rational number 〈0, c〉 obtained by contracting
a tensor with values in some representations of SU2.

When 0 is a theta graph ( ) or a tetrahedron ( ), these quantities were introduced
by Racah and Wigner in 1940–1950 for the study of atomic spectra [W59]. Later, Pon-
zano and Regge used them as a discrete model for gravity. Immediately, physicists were
interested in the study of the asymptotic behavior of 〈0, kc〉 when k goes to infinity. This
behavior corresponds to the classical limit of quantum mechanics and is expected to be
related to Euclidean geometric quantities.

In the nineties physicists used spin networks in spin foam models for quantum gravity
[B98], and the study of the asymptotical behavior was extended from 3j (theta) and 6j
(tetrahedron) to more complicated networks like 9j (complete bipartite 3,3 graph), 10j,
15j (skeleta of the 4- and 5 simplices) (see [BS03, FL03]). Mathematicians got interested
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in spin networks through the work of Kirillov and Reshetikhin [KR89] and Kauffman
[K94] who introduced and studied their “quantum versions” which are a key ingredient
in the construction of quantum invariants of knots and 3-manifolds. In this paper, we will
not deal with these “quantum versions” but restrict to the classical case.

The first rigorous proof for the asymptotical behavior of the 6j-symbols was obtained
(in the so-called Euclidean case) by Roberts [R99] and then recovered and extended us-
ing different techniques [AHHJLY12, C10, GV13, LY09, WT05]. For general graphs,
Garoufalidis and Van der Veen [GV13] proved that the generating series of the sequence
k 7→ 〈0, kc〉 is a G-function, implying that the sequence 〈0, kc〉 is of Nilsson type and
thus that the asymptotic behavior does exist. Abdesselam [A12] obtained estimations on
the growth of spin-network evaluations, in particular for generalized drum graphs. A gen-
eral strategy based on WKB approximation for studying these asymptotical behaviors was
proposed in [AHHJLY12].

Another interesting approach to the study of spin networks was proposed by Westbury
[W98] who computed the generating series of spin networks as follows (we refer to Sec-
tion 2 for notation). Let RX = C[[Xα, α ∈ A]] be the ring of formal series in variables
associated to the angles of 0. For any coloring c, we denote by ce, cα and Xc respectively
the color of the edge e, that of the angle α and the monomial

∏
α∈AX

cα
α . Then we define

the following formal series:

Z(0) =
∑
c

〈〈0, c〉〉Xc, 〈〈0, c〉〉 = 〈0, c〉

∏
e∈E ce!∏
α∈A cα!

.

Given δ ⊂ 0, a subgraph which is a disjoint union of cycles, we denote by cδ the coloring
which associates to an angle 1 or 0 according to whether or not δ contains the two edges
forming the angle. Let then P0 =

∑
δ⊂0 X

cδ .

Theorem 1 (Westbury, [W98]). If 0 is a planar graph then Z(0) = P−2
0 .

This was generalized to all trivalent graphs by Garoufalidis and Van der Veen [GV13].
Below we describe our results, which fall into two independent parts.

1.1. Generating series with holonomies

In gauge theory it is natural to consider spin networks whose edges are decorated by
a holonomy ψ in SL2(C); we shall denote them by 〈0, c, ψ〉 (see Definition 2.4) and
their renormalization by 〈〈0, c, ψ〉〉 (defined as above). In the present paper we generalize
Westbury’s theorem to the case of a general graph 0 equipped with any holonomy ψ and
we give a closed formula for the generating series Z(0,ψ) =

∑
c〈〈0, c, ψ〉〉X

c.

Fix a numbering of the vertices of 0 compatible with the planar structure (see Fig-
ure 2), and let 0′ be the graph obtained from 0 by blowing up vertices, i.e. replacing
→ . The vertices of 0′ are in 1-to-1 correspondence with the setH of half-edges

of 0, and the holonomy may be seen as a map ψ : H → SL2(C). Then we set Fh = R2

for every half-edge, and for any pair of half-edges g, h we define bg,h : Fg ×Fh→ C by
bg,h(zg, wg, zh, wh) = i(zgwh − zhwg).
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We define the following RX-valued quadratic form on
⊕

h∈H Fh:

Q(x) = 2
∑
α:g→h

bg,h(ψ
−1
g xg, ψ

−1
h xh)Xα + 2

∑
e:g→h

(−1)wind(e)+1/2bg,h(xg, xh).

The expression α : g → h means that α is an angle between the half-edges g and h
such that the opposite vertex of g is lower than the opposite vertex of h. In the same way,
e : g → h means that the edge e contains the half-edges g and h in such a way that the
vertex contained in g is lower than the vertex contained in h. Moreover, wind(e) is the
winding number of e oriented from h to g (it is always an odd multiple of 1/2). Using
Gaussian integrals, we prove the following result:

Theorem 1.1. For a planar graph 0 with holonomy ψ : H → SL2(C), we have Z(0,ψ)
= det(Q)−1/2.

In this expression, the determinant is computed in the canonical basis. We remark that
strictly speaking, the formula makes sense only for holonomies in SL2(R) because of the
indeterminacy in the square root. By analytic continuation, the formula holds in general.
The non-planar case can be easily treated as a corollary of Theorem 1.1 (see Subsec-
tion 3.2). As a corollary we observe that Z(0,ψ)−2 is a polynomial with integer coeffi-
cients in the entries of ψ . In Theorem 3.2, we provide a combinatorial interpretation of
our formula which extends Westbury’s formula in the case when ψ takes values in the
diagonal subgroup of SL2(C).

1.2. Asymptotics from integral formulas

In his book [W59], Wigner showed that the square of a 6j-symbol may be computed
by a simple integral formula over four copies of SU2. Barrett [BS03] observed that this
formula may be generalized to any graph. In Section 4, after recalling the integral formula,
we compute the generating series of squares of spin networks:

Theorem 1.2. Let (0, c, ψ) be a spin network equipped with a holonomy with values in
SL2(C). Define

[0, c, ψ] =
〈0, c, ψ〉2∏

v:(e1,e2,e3)
〈2, ce1 , ce2 , ce3〉

where by v : (e1, e2, e3) we indicate the edges touching v, and 〈2, ce1 , ce2 , ce3〉 is the
value of the2-graph colored by ce1 , ce2 , ce3 . Considering the generating seriesW(0,ψ)
=
∑
c[0, c, ψ] Y

ce , the following holds in RY = C[Ye, e ∈ E]:

W(0,ψ) =

∫
GV

dg∏
e=(h1,h2)=(v,w)

det(ψh2gwψ
−1
h2
− ψh1gvψ

−1
h1
Ye)

.

Using Kirillov’s trace formula, the integral formulas may be transformed in order to apply
the stationary phase approximation. This method was applied in [BS03, FL03] to com-
pute the asymptotical behavior of some spin networks but it faces some technical diffi-
culties because of the existence of so-called “degenerate configurations”. In Section 5 we
propose a different transformation which allows us to treat uniformly all configurations
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corresponding to critical points. We precisely describe the critical points of the integrand
and compute the associated Hessian. Under suitable genericity hypotheses on 0 and c de-
scribed in Section 5.2, we compute the dominating terms in the asymptotical development
of [0, kc, 1] for general 0.

Fix a trivalent graph 0 and a coloring c : E → N. Let I be the set of maps P from
oriented edges of 0 to S2 which satisfy the following relations:
• Denoting by −e the edge e with opposite orientation, we have P−e = −Pe.
• For every vertex v with outgoing edges e1, e2, e3 we have

∑
i ceiPei = 0.

If 0 is planar, an element P ∈ I may be considered, as a geometric realization in R3, to
be a possibly non-convex polyhedron with triangular faces of the graph 0∗ dual to 0.

Given any graph 0, for each oriented edge e : v → w of 0 and for each P ∈ I we
define αP (e) ∈ [0, 2π [ as the oriented dihedral angle at c(e)Pe formed by the two trian-
gles in R3 whose edges are the vectors c(e)Pe, c(e2)Pe2 , c(e3)Pe3 and c(e)Pe, c(e4)Pe4 ,
c(e5)Pe5 , where e, e2, e3 share the vertex v, and e, e3, e4 share the vertex w. Given a pair
(P,Q) of non-isometric elements of I , we define its phase function τ in Subsection 5.2
as a map from E to S1/{±1} by τe = ± exp

(
i
αQ(e)−αP (e)

2

)
.

Given P ∈ I we define rP (ξ) =
∑
e ce‖Pe × ξ‖

2 for ξ ∈ R3 and qP (ξv) =∑
e:(v,w) ce‖Pe × (ξv − ξw)‖

2 for (ξv) ∈
⊕

v∈V R3. In these formulas, × is the cross-
product in R3.

Finally, given a pair (P,Q) of non-isometric elements of I , we set, for (ξv) in⊕
v∈V R3,

qκP,Q(ξv) =
∑
e

ce

(
κ2τ 2

e + 1
κ2τ 2

e − 1
‖Qe × (ξv − ξw)‖

2
+ 2i〈Qe, ξv × ξw〉

)
.

Then, given a quadratic form q on Rn, we denote by det′(q) the determinant of the re-
striction of q to the orthogonal of the kernel of q, that is, the product of all non-zero
eigenvalues of the matrix of q. We also set det′(qP,Q) = limκ→1(κ − 1)−3 det′(qκP,Q).

The following gives a general answer to the question of understanding the asymptoti-
cal behavior of classical spin network evaluations. We recall the following equalities:

[0, c] =
〈0, c〉2∏

v:(e1,e2,e3)
〈2, ce1 , ce2 , ce3〉

where 〈0, c〉 is the standard evaluation of spin networks and 〈2, ce1 , ce2 , ce3〉 is the stan-
dard evaluation of the theta graph with given colors.

Theorem 1.3. Let (0, c) be a colored graph satisfying the conditions of Subsection 5.2.
Then denoting by N the opposite of the Euler characteristic of 0, one has

[0, kc] =
(2N)3/2

(πk3)N−1

(∑
P∈I

det(rP )1/2

det′(qP )1/2

+

∑
(P,Q)∈I 2, P 6=Q

Re
(
iN det(rP )1/2ei

∑
e(kce+1)θe

det′(qP,Q)1/2
∏
e sin(θe)

)
+O(k−1)

)
,

while [0, kc] decays exponentially fast if I = ∅.
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The above formula was numerically tested in the case of the tetrahedron and of course
its results are in line with the known asymptotics [AHHJLY12], [R99], [GV13], [BS03],
[C10]. The non-degeneracy conditions of Subsection 5.2 are equivalent to the non-van-
ishing of all determinants in the formula of Theorem 1.3.

• The quantity det(rP ) is zero only if the configuration P is planar, which can occur only
for very special values of c.
• The non-vanishing of det′(qP ) is equivalent to the infinitesimal rigidity of the config-

uration P . In particular, it does not hold if the set I is not discrete: this happens for
instance for the regular cube, or more generally the cube whose edges are colored by
the lengths of Bricard’s flexible octahedron.
• We do not have a geometric interpretation of the determinant det′(qP,Q) but in our

numerical experiments on the spin networks formed by the 1-skeleton of a tetrahedron
this determinant was non-zero. In any case, the conditions define a Zariski open set of
configurations.

We believe that describing when the non-degeneracy conditions hold is a very difficult
task as it contains the problem of flexibility of polyhedra, a notoriously hard problem.
Still, we expect that for planar graphs whose colors correspond to the lengths of a generic
convex configuration of the dual graph, there is a simple geometric condition ensuring that
the non-degeneracy conditions hold—but this question is not addressed in this article.

1.2.1. About our proof and comparison with other approaches. The proof of Theorem
1.3 is based on a new integral formula (equation (7)) for the evaluation [0, kc] obtained
by applying a key lemma (Lemma 5.1) to another formula (equation (5)) which was first
proved by J. W. Barrett [BS03] in the case of spin networks without holonomies on the
edges and is proven here in the general case. One of the nice features of this formula is
that the colors ce of 0 intervene only as exponents of a product in the integrand, so when
replacing them by kce, the integral is very well suited for stationary phase approximation.
Then, our analysis takes care of all the technical points in applying that method, namely:
identifying the critical points (Proposition 5.3), making the necessary assumptions for
these points to be isolated and non-degenerate (Subsection 5.2), computing the Hessian
of the integrand at the critical points (see equation (8)), dealing with the inevitable de-
generacies due to the action of a group of symmetries (Subsection 5.4.1), computing the
contribution of each critical point (Subsection 5.4.2) and finally summing up all the con-
tributions of the critical points (Subsection 5.4.3).

Different other approaches to the study of asymptotics of classical spin networks
have been proposed in the literature. Among the most recent ones, we mention those of
Aquilanti et al. [AHHJLY12] who construct the WKB approximation of the wave func-
tions associated to two “halves” of the spin network (called the A- and B-part in this
paper); these functions concentrate on two lagrangian submanifolds which are cut out not
by a set of commuting operators (as in the standard integrable systems) but obtained by
a construction generalizing the symplectic reduction. Then a careful application of the
WKB method on these functions yields the asymptotical behavior of their scalar prod-
uct, hence of the evaluation of the initial classical spin network. Independently L. Charles
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[C10] applied the geometric quantization techniques to the moduli spaces of polygons and
retrieved Wigner’s formula for the asymptotical behavior of . Garoufalidis and Van der
Veen [GV13] used a completely different approach and gave a new proof of the formula
based on the recursion formulas satisfied by the different evaluations of .

1.3. Some questions

• The generating series Z(0,ψ)2 has coefficients which are integral polynomials in the
entries of ψ . Is this still true for Z(0,ψ) as suggested by the abelian case?
• Is there a combinatorial interpretation of Z(0,ψ) for general ψ?
• Find a direct relation between the series Z(0,ψ) and W(0,ψ).
• Find sufficient conditions on 0 and c which ensure that the non-degeneracy hypothesis

holds, in particular in the case of convex polyhedra.
• Interpret geometrically the leading terms in the asymptotic formula of Theorem 1.3.

2. Equivalent descriptions of spin network evaluations

Let 0 be a trivalent graph, possibly with loops and multiple edges. We denote by E the
set of edges, V the set of vertices and we divide each edge e ∈ E into two subarcs called
half-edges. We will then letH be the set of half-edges commonly described as pairs (e, v)
where e is an edge and v is an end of e. We shall moreover orient a priori each half-edge
h = (e, v) so that it goes out of the vertex v. We assume that for each vertex the set of
half-edges incoming to that vertex have a cyclic order. We define an angle to be a pair
of half-edges touching the same vertex and denote by A the set of angles. In the whole
article, we will suppose that 0 is connected and contains at least one vertex; we will
denote by N the opposite of the Euler characteristic of 0 so that #V = 2N, #E = 3N
and #H = #A = 6N .

An admissible coloring is a map c : E→ N satisfying the triangle conditions:

∀v : (i, j, k), ci + cj + ck ∈ 2N and ci ≤ cj + ck. (T)

For convenience, we wrote v : (i, j, k) meaning that the edges i, j, k are incoming at v
with that cyclic order. Associated to each coloring c there is an internal coloring, i.e. a
map from A to N also denoted by c and defined as follows: if α is the angle between
edges i and j around v then we set cα = (ci + cj − ck)/2. We remark than one can
recover the original coloring from the internal coloring; to avoid confusion, we will denote
edges with Latin letters and angles with Greek ones.

Let (V , ω) be a complex symplectic vector space of rank 2 and SL(V ) be its symmetry
group. A discrete connection is a map ψ : H → SL(V ); we define the gauge group as
the group of maps {g : V q E → SL(V )}. An element g of the gauge group acts on a
discrete connection ψ as follows: for each h = (e, v) ∈ H , (g · ψ)h = geψhg

−1
v . Two

discrete connections ψ1, ψ2 : E → SL(V ) are said to be gauge equivalent if they are in
the same orbit of the gauge group.
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Definition 2.1 (Holonomy). • A holonomy on 0 is an equivalence class of discrete con-
nections ψ on 0.
• The trivial holonomy (denoted by 1) is the class of the constant discrete connection

defined by ψh = 1 ∈ SL(V ) for all half-edges h ∈ H .
• Let γ be an oriented path in 0 described as a sequence of half-edges h1, . . . , hn. We

define the holonomy ψ(γ ) of ψ along γ to be the product ψεnhn · · ·ψ
ε1
h1

where εi is 1 or
−1 depending on whether the half-edge is oriented coherently with γ or not. If ψ1 and
ψ2 are gauge equivalent and γ is closed then ψ1(γ ) and ψ2(γ ) are conjugate.

In the following section, we give two equivalent descriptions of the spin network eval-
uation which consists in associating to a triple (0, c, ψ) a complex number 〈0, c, ψ〉:
the abstract and computational descriptions. The computational description is one of the
many equivalent descriptions already known in the literature and is based on standard al-
gebra. The abstract one makes use of super vector spaces to take care of all the annoying
signs appearing when dealing with spin networks; through the abstract description one
may simply define a spin network as a contraction of tensors without drawing any graph
or inserting additional signs. Although the abstract definition is esthetically nicer, in the
rest of the paper we will use the computational one. In any case, when the holonomy is
trivial, both definitions coincide with the standard evaluation of spin networks defined by
Penrose [P71].

2.1. Abstract description

Let (V , ω) be a complex symplectic vector space of rank 2. In this section we will consider
that V is an odd superspace. We refer to Appendix for a basic review of supersymmetry
adapted to our purposes.

The symplectic form is considered as a supersymmetric map ω : V ⊗ V → C in the
sense that ω◦ϕ(12) = ω. For any integer n ∈ N, ω induces a map ω⊗n : V⊗n⊗V⊗n→ C
defined by the formula

ω⊗n(v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wn) =

n∏
i=1

ω(vn+1−i, wi).

Denote by Vn the subspace of V⊗n consisting of anti-supersymmetric tensors (or,
equivalently, symmetric in the standard sense); the formω⊗n restricts to a supersymmetric
form ωn : Vn ⊗ Vn → C. The vector space Vn (of parity n) is the (n + 1)-dimensional
irreducible representation of the group SL(V ); we will sometimes use the notation ρn :
SL(V )→ End(Vn). Denote by ω−1 the unique element of V⊗V such that the contraction
of the two middle terms in ω ⊗ ω−1 is the identity of V .

Let a, b, c be three integers. It is well known that the set of SL(V )-invariant elements
in Va⊗Vb⊗Vc is 1-dimensional if a, b, c satisfy the triangle conditions (T) unless it is 0.
One can find an explicit generator εa,b,c ∈ Va ⊗ Vb ⊗ Vc given by the symmetrization of
the element

ωa,b,c = (ω
−1)⊗(a+b−c)/2 ⊗ (ω−1)⊗(b+c−a)/2 ⊗ (ω−1)⊗(a+c−b)/2

where the supersymmetric tensor product is reordered as in Figure 1.
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Remark 2.2. Note that the sign of the permutation which reorders the a + b + c factors
in this tensor product is +1.

1 23 45 6 7 89 1011 12

Fig. 1. Invariant tensor at vertices with a = 3, b = 5, c = 4.

Then we define εa,b,c = (5a⊗5b⊗5c)ωa,b,c where5a is the anti-supersymmetrization
(i.e. standard symmetrization) map projecting V⊗a onto Va .

One may check that this element is supersymmetric: if we permute cyclically a, b and
c to the left the result is multiplied by (−1)a = (−1)a(b+c), which is the sign of the cycle
Va ⊗ Vb ⊗ Vc → Vb ⊗ Vc ⊗ Va according to the supersymmetric rule.

Definition 2.3 (Spin network). Let 0 be a trivalent graph and c : E → N be an admis-
sible coloring. Then 〈0, c, 1〉 is the result of the supersymmetric contraction of〈⊗

e∈E

ωce ,
⊗

v∈V, v:(i,j,k)

εci ,cj ,ck

〉
.

By supersymmetric contraction, we mean that we reorder the tensors on the right hand
side according to the sign rule so that factors corresponding to the same edge are consec-
utive, and then contract with the maps ωn.

Given a discrete connection ψ : H → SL(V ), let us define Holψ to be the endomor-
phism⊗

v∈V, v:(i,j,k)

ρci (ψi,v)⊗ ρcj (ψj,v)⊗ ρck (ψk,v) ∈ End
( ⊗
v∈V, v:(i,j,k)

Vci ⊗ Vcj ⊗ Vck

)
Definition 2.4 (Spin network with holonomy). Let 0 be a trivalent graph, ψ : H →
SL(V ) be a discrete connection and c : E→ N be an admissible coloring. Then 〈0, c, ψ〉
is the result of the following supersymmetric contraction:〈⊗

e∈E

ωce ,Holψ
( ⊗
v∈V, v:(i,j,k)

εci ,cj ,ck

)〉
.

One can check directly that this definition does not depend on the gauge equivalence class
of ψ .

2.2. Computational description

The computational description follows directly from the abstract one, by stipulating now
that V is an even vector space and then taking care of the signs which are now no longer
natural and need to be inserted ad hoc.

Set V = C2 and ω(v,w) = det(v,w). Then V ∗ = C2 and we denote by z and
w the corresponding coordinates. In this way, ω−1

∈ V ⊗ V corresponds to the linear
polynomial on V ∗ × V ∗ which in coordinates (z1, w1, z2, w2) reads as z2w1 − z1w2.
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The form ωn : Vn ⊗ Vn → C is a linear form on the space of homogeneous polyno-
mials of bidegree (n, n) on V ∗ × V ∗. Here we identify homogeneous polynomials and
symmetric tensors via

ziwn−i 7→
1
n!

∑
σ∈Sn

Xσ1 ⊗ · · · ⊗Xσn

where Xk = z if k ≤ i and w otherwise. One checks directly that in coordinates, ωn is
expressed by

ωn =
1
n!2

(
∂

∂z1

∂

∂w2
−

∂

∂z2

∂

∂w1

)n
.

In the same way, the element εa,b,c ∈ Va ⊗ Vb ⊗ Vc corresponds to a polynomial on
V ∗ × V ∗ × V ∗ which in coordinates (z1, w1, z2, w2, z3, w3) reads as

εa,b,c = (z2w1 − z1w2)
a+b−c

2 (z3w2 − z2w3)
b+c−a

2 (z3w1 − z1w3)
a+c−b

2 .

In these expressions we consider the variables zi, wi and the derivations as even quan-
tities, and these expressions coincide with those in the preceding section because of Re-
mark 2.2.

v1 v2 v3 v4

h1 h2 h3

e1
e2

e3
e4

e5
e6

Fig. 2. Planar presentation of the tetrahedron.

Finally, let us compute the sign needed to perform the final contraction as explained in
the preceding subsection. Suppose first that the trivalent graph is presented as in Figure 2;
this presentation induces an ordering of the set of half-edges H . For any edge e ∈ E, let
e1 and e2 be the respective left and right half-edges of e, and for any vertex v in V , let
v1, v2, v3 be the three half-edges incoming to v in increasing order. Writing the tensor
product of the invariant elements εa,b,c by ordering them from left to right as the vertices
in the figure gives a big tensor which has to be reordered in such a way that half-edges are
matched in pairs as indicated in the figure (so for instance h1 is to be matched with h2).
Let X be the set of pairs of crossing edges; the sign of this permutation (see Remark 2.2)
is (−1)

∑
{e,e′}∈X cece′ ; since now we treat all the vector spaces as even we need to re-insert

this sign in the contraction of tensors.
We then compute

〈0, c, 1〉 = (−1)
∑
{e,e′}∈X cece′

∏
e

1
ce!2

(
∂

∂ze1

∂

∂we2

−
∂

∂ze2

∂

∂we1

)ce
·

∏
v

(zv2wv1 − zv1wv2)
cv1+cv2−cv3

2 (zv3wv2 − zv2wv3)
cv2+cv3−cv1

2

· (zv3wv1 − zv1wv3)
cv1+cv3−cv2

2 . (1)
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In order to use the machinery of Gaussian integration, it will be more comfortable
to introduce i =

√
−1 in our formulas. The formula is unchanged if we replace ωn and

εa,b,c by ωn and εa,b,c where we set

ωn =
in

n!2

(
∂

∂z1

∂

∂w2
−

∂

∂z2

∂

∂w1

)n
,

εa,b,c = i
a+b+c

2 (z1w2 − z2w1)
a+b−c

2 (z2w3 − z3w2)
b+c−a

2 (z1w3 − z3w1)
a+c−b

2 .

The formula for 〈0, c, ψ〉 is obtained from (1) by replacing the variables (zi, wi) at
the vertex v with ψ−1

i,v (zi, wi).
More generally, if 0 is such that all the vertices look like but the edges

may pass under some vertex then the sign correction can be shown to be equal to
(−1)

∑
e ce(wind(e)+1/2)+

∑
{e,e′}∈X cece′ where for each edge we compute its winding num-

ber by orienting it from its leftmost to its rightmost endpoint (and it is therefore an odd
multiple of 1/2). Indeed it is sufficient to check what happens when one edge e passing
below a vertex v is pushed by an isotopy over the vertex: if v is not an endpoint of e, the
global contribution of the three resulting crossings is 1 (because of the parity condition).
Otherwise a kink is created along e whose contribution to the sign is (−1)c

2
e = (−1)ce ;

deleting the kink one changes the sign exactly by the change in (−1)ce(wind(e)+1/2).

Example 2.5 (The unknot colored by n).

〈 , n, 1〉 =
in

n!2

(
∂

∂z1

∂

∂w2
−

∂

∂z2

∂

∂w1

)n
(in(z1w2 − z2w1)

n)

=
(−1)n

n!2

n∑
h=0

(
n

h

)(
∂

∂z1

∂

∂w2

)h(
∂

∂w1

∂

∂z2

)n−h n∑
k=0

(
n

k

)
(z1w2)

k(z2w1)
n−k

=
(−1)n

n!2

n∑
h=0

(
n

h

)2
∂h

∂zh1

∂n−h

∂wn−h1

∂n−h

∂zn−h2

∂h

∂wh2
(zh1w

n−h
1 zn−h2 wh2 ) = (−1)n(n+ 1).

More generally, if ψ is a matrix whose trace is λ+ λ−1, a similar computation yields

〈 , n, ψ〉 = (−1)n
λn+1

− λ−(n+1)

λ− λ−1 .

Example 2.6. As already stated, we defined 〈0, c, 1〉 to be identical to the original eval-
uation defined by Penrose, so in particular

〈
a

b
c

, 1〉 = (−1)
a+b+c

2

(
a+b+c

2 + 1
)
!
(
a+b−c

2

)
!
(
a−b+c

2

)
!(−a+b+c2 )!

a!b!c!

while the integral normalization 〈〈 〉〉 defined in the introduction gives

〈〈
a

b
c

, 1〉〉 = (−1)
a+b+c

2

(
a+b+c

2 + 1
)
!(

a+b−c
2

)
!
(
a−b+c

2

)
!
(
−a+b+c

2

)
!
∈ Z.
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2.3. Why supersymmetry?

The abstract definition of spin network evaluations might puzzle the reader, so we ded-
icate this subsection to explain where this definition came from and why both our def-
initions coincide with the following standard evaluation of spin networks used in the
literature:

Definition 2.7 (Evaluation of spin networks, [P71]). Let 0 be a trivalent graph in R3

equipped with an admissible coloring c of its edges and a cyclic ordering of the edges
around each vertex. One defines 〈0, c〉 by the following algorithm:

1. Cable each edge e of 0 by replacing an edge e colored by a by the linear combination
of braids given by the Jones–Wenzl projectors JWa :

a → JWJWa +
∑
σ∈Sa

(−1)−a(a−1)+3T (σ)

a!
JWJWσ̂

where σ̂ is the minimal positive braid inducing the permutation σ , and T (σ) is the
number of crossings it contains.

2. Around each vertex, connect the (yet free) endpoints of the resulting strands in the
unique planar way without self-returns:

a

b c

→

a

b c

3. This way one associates to (0, c) a linear combination with coefficients ci ∈ Q of
links Li . Define 〈0, c〉 :=

∑
i ci(−2)#Li , where #Li is the number of components

of Li .

It is well known that the above definition is a special case (corresponding to A = −1) of
the definition of the quantum spin network 〈0, c〉 ∈ Q(A) associated to a framed, colored
graph 0 in R3 via the representation theory of Uq(sl2), where A2

= q; see for instance
[K94]. Hence 〈0, c〉 can be computed by suitably composing morphisms of Uq(sl2) when
A = −1.

This is basically what we do in our computational definition. The simple modules Va
of U(sl2) are homogeneous polynomials of a degree a in two variables z,w, and the key
point is to observe that when A = −1 the operator associated to a crossing formed by two
strands colored with V1 is minus the flip. The computational description we gave in the
preceding section is obtained by giving explicitly the invariant tensors in tensor products
of Va and writing them as polynomials, and remarking that the action of the R-matrix
(when A = −1) introduces signs associated to the crossings of a diagram. Although this
approach is more practical for computations, it is less intrinsic as it needs the choice of
some embedding of the graph in R3 to identify the crossings and suitably take care of the
signs.
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This is why we searched for the abstract description which was obtained by taking
seriously the hint of the signs appearing at crossings and so considering V1 as an odd
super vector space and its tensor powers Va as having degrees (−1)a . Using super vector
spaces automatically sorts out a list of annoying sign problems: for instance the value
associated to an unknot colored by n is (−1)n(n + 1), which is exactly the supertrace of
the identity if Vn has degree (−1)n.

3. Generating series via Gaussian integrals

In Subsection 3.1 we will use Gaussian integration to prove Theorem 1.1 in the case of a
planar graph 0. This is a generalization of Westbury’s result to the case when graphs are
equipped with holonomies. In Subsection 3.3 we will provide a topological interpretation
of the theorem when the holonomy is diagonal and recover Westbury’s original result
(always in the case of planar graphs). In Subsection 3.2 we will extend Theorem 1.1 to
the case of non-planar graphs.

3.1. Computing the generating series of a spin network

Let 0 be a planar trivalent graph that we present by means of a planar diagram in R2 in
which all the vertices have different horizontal coordinate and look like . Each edge
has a left half-edge and a right one, e : g → h; orienting the edges from left to right
one can define the winding number wind(e) which is always an odd multiple of 1/2. In
particular if 0 can be presented as in Figure 2 and without crossings, all the winding
numbers are −1/2.

Let Fh be a copy of R2 associated to each half-edge h; we will always consider the
standard density on these spaces and then omit it in the notation, and let F =

⊕
h Fh.

For two half-edges g, h we set bg,h : Fg × Fh → C as being given in coordinates by the
expression i(zgwh − zhwg), and b−1

g,h : F
∗
g × F

∗

h → C as −i
(
∂
∂zg

∂
∂wh
−

∂
∂zh

∂
∂wg

)
.

Define quadratic forms P on F ∗ and Q on F by

P = −2
∑
e:g→h

(−1)wind(e)+1/2b−1
g,h and Q = 2

∑
α:g→h

Xαbg,h.

The notation α : g→ h and e : g→ hmeans that α and e are composed of the half-edges
g, h which appear in that order from left to right in Figure 2. For the moment, Xα should
be interpreted as a real parameter.

Remark 3.1. The role ofXα is just that of a formal variable in the generating series used
to keep track of the combinatorics of the colorings. So for this purpose, it is clear that one
may also replace it by Yl(α)Yr(α) where l(α), r(α) are the half-edges at the left and right
endpoint of α. In the following formulas we decided to use Xα because these variables
always come in pairs, but we emphasize that it is just a matter of taste here.

Note that the quadratic form P−1 on F is expressed by

P−1
= 2

∑
e:g→h

(−1)wind(e)+1/2bg,h.
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Consider P as a differential operator P op on C∞(F,C) and develop
(
exp

( 1
2P
)op
·

exp
( 1

2Q
))∣∣

0 (see Appendix B). Collecting monomials in the variablesXα , by equation (1)
one sees that the coefficient of

∏
α X

cα
α is 〈〈0, c〉〉 (defined in the Introduction). (In particu-

lar the winding number of an edge e shows up when contracting all the tensors associated
to minima and maxima along e.) Therefore we have

Z(0, 1) =
(
exp

( 1
2P
)op exp

( 1
2Q
))∣∣

0.

Consider a deformation Qε of Q which is non-degenerate and has positive real part.
For concreteness, we can pick Q0 =

∑
h(z

2
h + w

2
h) and set Qε = Q + εQ0. We define

Zε =
(
exp

( 1
2P
)op exp

( 1
2Qε

))∣∣
0 so that Z(0, 1) = limε→0 Zε. Then if we replace Q by

Q−1
ε and 1

2P by exp( 1
2P), formula (16) of Appendix B gives

Zε = (2π)−n/2 det(Q−1
ε )1/2

∫
F ∗

exp
(

1
2
P(x)−

1
2
Q−1
ε (x)

)
dx.

We now apply formula (15) to the integral, noting that the quadratic formQ−1
ε −P is

still non-degenerate and has positive real part. Hence, we have

Z2
ε =

det(Q−1
ε )

det(Q−1
ε − P)

= det(Q0 −QεP)
−1.

Letting ε go to 0, we find that Z(0, 1) = det(Q0 −QP)
−1/2.

Suppose that ψ is represented by a discrete connection on 0 with values in SL2(R).
By formula (1), we know how to adapt the construction: for each angle α connecting two
half-edges g and h, we need to replace bg,h : Fg ×Fh→ C by bg,h(ψ−1

g xg, ψ
−1
h xh). We

denote by Qψ the resulting quadratic form. By the assumption that ψ lives in SL2(R),
P takes again only imaginary values. Hence, the argument above repeats exactly and we
obtain Z(0,ψ) = det(Q0 −QψP)

−1/2. The general case, that is, for ψ taking values in
SL2(C), follows by analytic continuation.

One can simplify this formula by remarking that the matrix of P in the canonical basis
satisfies P−1

= −P , and moreover det(P ) = 1. We obtain the formula of Theorem 1.1:

Theorem 1.1.
Z(0,ψ) = det(P +Qψ )

−1/2.

3.2. The non-planar case

Let now 0 be a non-planar graph and let us fix a diagram of 0 as in Figure 2 containing
crossings x1, . . . , xk . For each coloring c of 0, a crossing xi between edges e1 and e2
induces a factor (−1)ce1ce2 , which we denote by s(xi, c). The previous results allow us to
compute the “wrong” generating series for 0 where the signs coming from crossings are
not taken into account, that is, we can compute W(0,ψ)=

∑
c〈〈0, c, ψ〉〉X

c
∏
xi
s(xi, c).

To fix these signs, use the identity

(−1)ab = 1
2 (1+ (−1)a + (−1)b − (−1)a+b), ∀a, b ∈ Z.
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More explicitly, for each edge e let αe, βe be the leftmost angles formed by e and let
Ope : C[[X]] → C[[X]] be the automorphism that changes the signs of Xαe and Xβe .
Then, for a crossing x between edges e1 and e2, define Sx : C[[X]] → C[[X]] as Sx =
1
2 (Id+ Ope1

+ Ope2
− Ope1

◦ Ope2
). Then we recover Z(0,ψ) =

∑
c〈〈0, c, ψ〉〉X

c as

Z(0,ψ) = Sx1 ◦ · · · ◦ Sxk (W(0,ψ)).

In particular, when ψ is trivial this recovers Garoufalidis and Van der Veen’s extension to
non-planar graphs of Westbury’s theorem [GV13].

3.3. A generalization of Westbury’s theorem to the case of diagonal holonomies

Suppose that the holonomy ψ can be represented by a connection with values in the
subgroup D ⊂ SL2(R) of diagonal matrices. We introduce a map t : H → R∗ such
that for all h, one has ψh =

( th 0
0 t−1

h

)
in the basis (zh, wh). In this case, we can extend

Westbury’s Theorem 1 as follows.
Let C(0) be the set of all oriented curves immersed in 0 which pass over an edge

of 0 either 0, 1 or 2 times, in the latter case with opposite orientations. Given γ ∈ C(0)
we denote by cr(γ ) the number of crossings modulo 2 of the corresponding immersion.

Let Xγ =
∏
α⊂γ Xα (hence each angle may appear 0, 1 or 2 times) and Tr(γ ) =∏

h⊂γ t
ε(γ,h)

h (ε(γ, h) being 1 if γ crosses h in the positive direction, −1 otherwise). The
following result generalizes Westbury’s result to the case of holonomies with values in
diagonal matrices:

Theorem 3.2. Let 0 be a planar graph equipped with an abelian holonomy ψ . Then

Z(0,ψ) =
( ∑
γ∈C(0)

(−1)cr(γ ) Tr(γ )Xγ (c)
)−1

.

Theorem 3.2 follows directly from Corollary 3.4 and Proposition 3.8; the details are given
below.

3.4. Some general facts about dimers and determinants

The following are general well known facts which we shall apply to interpret topologi-
cally some of the determinants we will be dealing with. Let Gor be a graph whose ver-
tices v1, . . . , vn are connected by oriented edges eij : vi → vj whose weights are the
entries mij of an n × n matrix M (the diagonal terms then correspond to loops). The
following is a standard well known fact:

Lemma 3.3. det(M) = (−1)n
∑
c(−1)#cw(c) where c runs over all the oriented curves

embedded inGor and passing through each vertex exactly once, w(c) is the product of the
weights mij of the oriented edges in c, and #c is the number of connected components of
c.
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Let now G be the graph whose vertices v1, . . . , vn are connected by exactly one unori-
ented edge ei,j and suppose that M is a matrix such that mii = 0 for all i. Given a
connected oriented curve c embedded in G connecting vertices vi1 → vi2 → · · · →

vik → vi1 let w(c) = mi1,i2 · · ·mik,i1 and if c is a disjoint union of disjoint oriented
curves c1, . . . , ck , let w(c) =

∏
i w(ci). Also let a dimer be a disjoint union of edges,

d = eii ,j1 t · · · t eik,jk , and let w(d) = mi1,j1mj1,i1 · · ·mik,jkmj1,ik and #d = k. By a
configuration of curves and dimers we will mean a disjoint union c∪ d of dimers and ori-
ented curves embedded inG such that each vertex is contained in exactly one component
of c ∪ d; its weight will be w(c ∪ d) = w(c)w(d); similarly a configuration of dimers
will be a configuration of curves and dimers containing no curves. We shall denote by
Conf(G) the set of configurations of curves and dimers onG, and by DConf(G) the set of
dimer configurations. (Basically here we call dimers curves of length 2, recalling that by
hypothesis, any two vertices share at most one edge.) Then the following holds:

Corollary 3.4. det(M) = (−1)n
∑
c∪d∈Conf(G)(−1)#c+#dw(c)w(d).

Finally if M t
= −M then det(M) = Pfaff(M)2 and Pfaff(M) can be interpreted as

counting the dimer configurations in G (see [K63]):

Theorem 3.5. Pfaff(M) =
∑
d∈DConf(G)±

√
|w(d)|.

In the above theorem, the square root is due only to our definition of w(d) while the
choice of the signs is in general a delicate matter (see [K63]); in our specific cases it will
be quite easy to determine it.

3.5. Proof of Theorem 3.2

Theorem 3.2 follows directly from Corollary 3.4 and Proposition 3.8; this subsection is
dedicated to proving the latter. Let 0 be a planar spin network equipped with a holonomy
with values in the diagonal matrices of SL2(C) and let us use the notation introduced in
Subsection 3.3. Let 0′ be the graph obtained from 0 by blowing up the vertices; each
curve γ ⊂ 0 can be lifted in a natural way to one in 0′ (which we will keep calling γ )
and the connection ψ may be lifted to ψ on 0′ so that the holonomy on a curve and its
lift coincide (see Figure 3).

ψ1 ψ2 ψ3

ψ3ψ
−1
1

ψ3ψ
−1
2ψ2ψ

−1
1

Fig. 3. Blowing up with holonomies.

For any half-edge h of 0, the space Fh has a standard basis whose corresponding
coordinates are zh, wh. We will say that a basis element has type z or w. Denote by
W the matrix of (1/i)(P + Qψ ) in this basis. Observe that since ψ is diagonal, the
coefficient Wi,j does not vanish only if i, j correspond to adjacent vertices of 0′ with
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distinct types. Recall that the set of half-edges is ordered and put first the type z basis,
then the type w basis. Then W is block antidiagonal. Denote by W 1,W 2 the matrices
indexed by H defined respectively by W 1

g,h = Wzg,wh and W 2
g,h = Wwg,zh . We have

det(W) = det(W 1) det(W 2).
Using the presentation of 0′ in R2 induced by that of 0 (Figure 2) we see that the

edges corresponding to adjacent angles in 0 form an angle of 0 degrees (so a cusp) point-
ing upwards in 0′ (see Figure 3); we will call such edges internal and the other ones
external.

Remark 3.6. If e is an edge of 0′, let le, re be the half-edges respectively at the left and
right endpoint of e. If e is an external edge of 0′ oriented from left to right, then the entry
of W1 corresponding to e is (−1)wind(e), and that corresponding to e equipped with the
opposite orientation is the opposite; indeed, both entries come from the matrix expressing
−iP . Similarly, if α is an internal edge of 0′ oriented from left to right, then the entry of
W1 corresponding to α is (t−1

lα
trα )Xα and that corresponding to the opposite orientation

is −(tlα t
−1
rα
)Xα; both entries come from the matrix expressing −iQψ .

Let us denote th = t−1
h . This extends to an automorphism of the ring of coefficients. We

check thatW 2
= −W 1 = (W 1)t , hence det(W 2) = det(W 1) = det(W 1) because there is

an even number of half-edges, so, by Theorem 1.1, to prove Theorem 3.2 it is sufficient
to interpret det(W 1) in terms of traces of curves. To this end, note that W 1 has 0 on the
diagonal and we can apply Corollary 3.4 with G = 0′ and M = W 1.

Now observe that if a vertex v of 0′ is contained in a curve c embedded in 0′ then
either c contains an internal and an external edge containing v, or it contains two internal
edges containing v; we will call the latter kind of vertices cusps of c; also a dimer covering
an internal edge will be called internal.

Proposition 3.7. Let c∪d be a configuration of curves and dimers containing each vertex
of 0′ exactly once. Then:

1. There exists a unique set L of disjoint arcs in 0′ \ c whose boundary vertices coincide
with the set of cusps of c.

2. Let d ′ = d \ L. The set of internal dimers of d ′ can be joined by external edges of 0′

to form a unique embedded (possibly disconnected) curve c′ ⊂ 0′ \ (c ∪ L).

Proof. The first statement is proved by remarking that if e is an edge of 0′ whose endpoint
is a cusp of a configuration, then its other endpoint can only be either another cusp (in
which case set li = e), or contained in an internal dimer. By iterating this argument for the
edge at the other endpoint of that internal dimer, one eventually constructs a path li which
must end at another cusp of c. The second statement is proved by a similar inspection. ut

There is a natural map π : C(0) → Conf(0′): define π(γ ) as c ∪ d where c is the
oriented curve in 0′ formed by the edges and angles of 0 contained in γ exactly once,
and d is the dimer formed by all the angles contained twice in γ and all the edges not
contained in γ .
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Proposition 3.8. The map π is a bijection, and letting π(γ ) = c ∪ d we have

(−1)#c+#dw(c ∪ d) = (−1)cr(γ ) Tr(γ )Xγ

where cr(γ ) is the number of crossings of γ .

Proof. We construct the inverse map s : Conf(0′) → C(0) by associating to a con-
figuration c ∪ d the unique oriented curve γ which passes once exactly over the edges
contained in c (and with the same orientation as c), twice over all the edges contained in
L (see Proposition 3.7 applied to c ∪ d) and twice over all the edges contained in c′ (in
that case we consider the curve without crossings). This proves our first claim.

Set π(γ ) = c ∪ d. Then for any connected component δ of γ , we define w(δ) =∏n
k=0W

1
hk,hk+1

where δ visits the half-edges h0, . . . , hn, hn+1 = h0 in that order. We first
claim that

(−1)#c+#dw(c)w(d) = (−1)#γw(γ ).

We check this formula by looking first at the Xα terms, then the th terms and then the
signs.

• The monomial in Xα occurring on the right hand side is Xγ , where each angle appears
as many times as it is visited by γ . On the left hand side, each time an internal edge α is
visited by c produces a monomial Xα , whereas each time a dimer occupies an internal
edge Xα produces a monomial X2

α . As internal edges occupied by a dimer are visited
twice by γ , these monomials coincide.
• By Remark 3.6, if an internal edge is visited twice in opposite directions, the resulting

monomial in th is equal to 1. Hence, monomials occur only for internal edges visited
once. One sees that the sets of internal edges visited once by γ and once by c ∪ d
coincide (with orientation), hence the resulting monomial is the same.
• By Remark 3.6, for any individual dimer d0 one has w(d0) = −1. Hence, (−1)#dw(d)
= 1 (we drop here the Xα and th parts which have already been taken care of). In order
to show (−1)#γw(γ ) = (−1)#cw(c), we recall that to build γ from c, one needs to add
the double arcs L and the double curve c′. For the latter, the weight is 1 because the
number of curves is even and each curve goes through an even number of edges. Now,
any added double arc contains exactly one more external edges than internal ones and
thus produces a −1 factor. On the other hand, it either merges two components of c, or
splits one component in two, and hence the formula is proven.

Let us show finally that (−1)#γw(γ ) = (−1)cr(γ ) Tr(γ )Xγ . We only have to check the
sign, and one can suppose that γ is connected. Then one has to show that sgnw(γ ) =
(−1)cr(γ )+1

= (−1)wind(γ ) where wind(γ ) is the winding number of γ (here we use the
equality wind(γ ) = cr(γ )+ 1 mod 2).

The lift of γ to an oriented curve immersed in 0′ meets alternately an internal edge i
and an external one e; by Remark 3.6, if both are covered in the same direction (e.g.
from right to left) then the contribution to w(γ ) is (−1)wind(e)+1/2, and if not then the
contribution is (−1)wind(e)−1/2. On the other hand, the tangent vector to γ rotates through
either ±2π(wind(e) + 1/2) or ±2π(wind(e) − 1/2), depending on the same condition.
Hence, sgnw(γ ) = (−1)wind(γ ), and thus the formula of the proposition is proved. ut
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3.6. Recovering Westbury’s theorem from Theorem 3.2

Theorem 1 can be recovered from Theorem 3.2 by remarking that if th = 1 for all h ∈ H
then the equalitiesW 2

= −W 1 andW 2
= (W 1)t imply (W 1)t = −W 1 and so det(W 1) =

Pfaff(W 1)2. Hence we must show that

Pfaff(W 1) =
∑
c⊂0

∏
α⊂c

Xα.

By Theorem 3.5 we have

Pfaff(W 1) =
∑

d∈DConf(0′)

±

√
|w(d)| =

∑
d∈DConf(0′)

±

∏
α⊂d

Xα

and it is straightforward to check that for each d ∈ DConf(0′) the monomial
√
|w(d)|

equals ±w(c(d)) for a unique (possibly empty or disconnected) curve c(d) embedded
in 0; similarly for every γ ⊂ 0 there exists exactly one d ∈ DConf(0′) such that
c(d) = γ . So we have Pfaff(W 1) =

∑
γ⊂0 s(γ )

∏
α⊂γ Xα (with s(γ ) = ±1) and it

remains to show that s(γ ) = 1 for all γ ⊂ 0. Let us first remark that by Theorem 3.2 the
coefficient of w(γ1 t · · · t γk) =

∏
α⊂γ Xα in det(W 1) is 2k . We now use the equality

det(W 1) = Pfaff(W 1)2 and argue by induction on k. If k = 1 the coefficient of w(γ ) in
det(W 1) is 2 = 2s(γ ) and so s(γ ) = 1. Now suppose s(γ ) = 1 for all γ ⊂ 0 such that
#γ ≤ k; then given γ = γ1 t · · · t γk+1, the coefficient of w(γ ) in det(W 1) is

2k+1
= 2s(γ )+ 2

∑
I⊂{1,...,k+1}

1≤#I≤(k+1)/2

s
(⊔
i∈I

γi

)
s
(⊔
i /∈I

γi

)
= 2

(
s(γ )+

1
2
(2k+1

− 2)
)

and so s(γ ) = 1.

4. An integral formula for the square of a spin-network evaluation and its analysis

In this section we deduce an integral formula for the square of a spin-network evaluation.
In the case of the tetrahedron, this formula was already known to Wigner [W59]. It was
generalized by Barrett [BS03] to any graph. For reasons of clarity and normalizations,
we provide a proof of it, then we derive a formula for the corresponding generating se-
ries. From now on we will no longer work in the supersymmetric category: since we are
interested in squares of spin-network evaluations, sign matters are irrelevant.

4.1. Derivation of the integral formula

Let (V , ω, h) be a symplectic complex and Hermitian vector space of dimension 2. Both
structures are supposed to be compatible in the sense that there is a Hermitian basis
(e1, e2) of V such that ω(e1, e2) = 1. We also suppose that the Hermitian product is
antilinear on the left and denote by SU(V ) the symmetry group of the whole structure.
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Naturally, V⊗n has an Hermitian structure, as does its subspace Vn. Denote also by h the
Hermitian product induced on the spaces Vn and their tensor products.

We would like to replace contractions with the forms ωn by scalar products with some
vectors. The compatibility of the Hermitian structure and the symplectic form immedi-
ately gives the formula h(ω−1, v⊗w) = ω(w, v) or h($, v⊗w) = ω(v,w)where we set
$ = −ω−1. Let$n = (5n⊗5n)

⊗n
i=1$i,2n+1−i , where5n : V⊗n→ V⊗n is the pro-

jector on symmetric tensors in the non-supersymmetric sense. After some computation,
we obtain h($n, v ⊗ w) = ωn(v,w) for any v,w ∈ Vn.

Then we can compute the spin-network evaluation using scalar product instead of
contraction; more precisely, up to sign we have

〈0, c〉 = h
(⊗
e∈E

$ce ,
⊗

v∈V, v:(i,j,k)

εci ,cj ,ck

)
. (2)

Denote by G the group SU(V ) and for any integer n, let ρn : G→ U(Vn) be the induced
representation of G. We also write dg for the Haar measure on G satisfying

∫
G
dg = 1.

Consider the element

P =
∫
G

ρn(g)⊗ ρn(g) dg ∈ End(Vn ⊗ Vn).

We check directly that P ◦ P = P and P∗ = P . Moreover, the image of P is the one-
dimensional space (Vn ⊗ Vn)G. Hence, P is the orthogonal projector on C$n. Using
the formula h($n, v ⊗ w) = 〈ωn, v ⊗ w〉 we have h($n,$n) = 〈ωn,$n〉. But in the
contraction of ωn ⊗ $n, one can first contract the middle terms. One finds n times the
evaluation of ω⊗$ , which is equal to−IdV ∗ . Thus, the middle contraction is (−1)nIdV ∗n .
The final contraction computes the super-trace. Hence, one finds h($n,$n) = n + 1.
Finally, we see that P(v) = 1

n+1h($
n, v)$ n for any v ∈ Vn ⊗ Vn.

In the same spirit, for any triple (a, b, c) satisfying the triangular relations consider
the element

E =
∫
G

ρa(g)⊗ ρb(g)⊗ ρc(g) dg ∈ End(Va ⊗ Vb ⊗ Vc).

The same reasoning as above shows that for any v ∈ Va ⊗ Vb ⊗ Vc one has E(v) =
h(εa,b,c,v)

〈a,b,c〉
v where we set 〈a, b, c〉 = h(εa,b,c, εa,b,c).

Lemma 4.1.

〈a, b, c〉 = |〈2, (a, b, c)〉| =

(
a+b+c

2 + 1
)
!
(
a+b−c

2

)
!
(
a−b+c

2

)
!
(
−a+b+c

2

)
!

a!b!c!
.

Proof. A proof may be found for instance in [BL81] or deduced from the generating
series given in [W98, Theorem] for the theta graph, taking care of the renormalization
from 〈〈2, (a, b, c)〉〉 to 〈2, (a, b, c)〉. ut

In equation (2), replace ε by E and $ by P and consider the scalar product
h(
⊗

e∈E Pe,
⊗

v∈V Ev); using the fact that all matrices involved are self-adjoint, one sees
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that it equals Tr(
⊗

e∈E Pe ◦
⊗

v∈V Ev). For any edge e colored by ce, let 〈e〉 = ce + 1
and Pe be the projector acting on Vce ⊗ Vce . Similarly, for any vertex v whose incom-
ing edges are i, j, k, we set 〈v〉 = 〈ci, cj , ck〉 and denote by Ev the projector acting on
Vci ⊗ Vcj ⊗ Vck . Let

[0, c] =
∏
e

〈e〉Tr
(⊗
e∈E

Pe ◦
⊗
v∈V

Ev
)
=

∏
e

〈e〉h
(⊗
e∈E

Pe,
⊗
v∈V

Ev
)
.

The first term in the scalar product defining [0, c] is the orthogonal projector on⊗
e$

ce , and the second term is the orthogonal projector on
⊗

v εv . Hence, we have

[0, c] =
|〈0, c〉|2∏

v〈v〉
. (3)

Here we use the fact that h induces an Hermitian form on End(W) = W ⊗W ∗ and that
the scalar product of the projectors Pu and Pv on the unit vectors u and v is |〈u, v〉|2. On
the other hand, we can interchange Hermitian product and integration, finding

[0, c] =
∏
e

〈e〉

∫
GVqE

h
(⊗

e

ρce (ge)⊗ ρce (ge),
⊗

v:(i,j,k)

ρci (gv)⊗ ρcj (gv)⊗ ρck (gv)
)
dg

=

∏
e

〈e〉

∫
GVqE

∏
h=(v,e)

Trce (gvge) dg =
∫
GV

∏
e:(v,w)

Trce (gvg
−1
w ) dg.

Note that the last equation holds even if c is a non-admissible coloring on 0 (in which
case both sides are 0). In order to prove the last equality, we have used the following
lemma:

Lemma 4.2. For any integer c and all A,B ∈ G one has∫
G

Trc(Ag)Trc(Bg) dg =
1

c + 1
Trc(AB−1).

Proof. We have∫
G

Trc(Ag)Trc(Bg) dg =
∫
G

Trc(AB−1g)Trc(g) dg

= Tr ρc

(
AB−1

∫
G

ρc(g)Trc(g) dg
)
.

Writing U =
∫
G
ρc(g)Trc(g) dg one finds that U commutes with G, hence U is propor-

tional to the identity. Moreover, Tr(U) =
∫
G

Trc(g)2 dg = 1, hence U = 1
c+1 IdVc , which

proves the lemma. ut

In summary we have obtained the following formula, noting that 〈0, c〉 is real:

〈0, c〉2 =
∏
v

〈v〉

∫
GV

∏
e:(v,w)

Trce (gvg
−1
w ) dg =

∏
v

〈v〉[0, c].
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Notice that to write this formula we need to orient the edges of 0 arbitrarily; this detail
will be important in the next section.

Let R = C[[Ye, e ∈ E]] be the ring of formal series in variables associated to the
edges. For any coloring c, we denote by Y c the monomial

∏
e∈E Y

ce
e . For any A in G, the

following identity holds: ∑
n∈N

Trn(A)Y n =
1

det(Id− YA)
.

Consider then W(0) =
∑
c[0, c]Y

c where the sum is taken also over non-admissible
colorings by setting [0, c] = 0 in that case. We deduce that

W(0) =
∑

c admissible

〈0, c〉2Y c∏
v〈v〉

=

∫
GV

dg∏
e:(v,w) det(Id− Yegvg−1

w )
. (4)

Example 4.3. Consider the case of the graph . Then for any coloring c given by three
colors a, b, c, one has by construction 〈2, a, b, c〉 = 〈a, b, c〉, and hence the generating
series (4) is simply∑

c admissible

Y c =
1

(1− Y1Y2)(1− Y2Y3)(1− Y1Y3)
=

∫
G

dg∏3
i=1 det(Id− Yig)

.

The coefficient of Y a1 Y
b
2 Y

c
3 in the above integral is

∫
G

Tra(g)Trb(g)Trc(g) dg. Orthonor-
mality of characters in L2(G, dg) and the Clebsch–Gordan rules imply that this integral
is 1 if a, b, c are admissible and 0 if not.

We can generalize the formula to the holonomy case. Fix a holonomy ψ : H → G. Then,
at each vertex v, one has to replace the tensor εci ,cj ,ck with Holψ (εci ,cj ,ck ) = ρci (ψi,v)⊗
ρcj (ψj,v)⊗ρck (ψk,v)εci ,cj ,ck . Consequently, in the computation above, we need to replace
the projector E with the projector on Holψ (εci ,cj ,ck ), that is, HolψEHol−1

ψ . Therefore we
have

[0, c, ψ] =
∏
e

〈e〉

∫
GVqE

∏
h=(v,e)

Trce (geψhgvψ
−1
h ) dg

=

∫
GV

∏
e:(v,w)

Trce (ψe,vgvψ
−1
e,vψe,wg

−1
w ψ−1

e,w) dg. (5)

Since as before the above equalities still hold if c is not admissible (all terms are 0),
defining W(0,ψ) as in (4), the following holds:

Theorem 4.4. Let (0,ψ) be a trivalent graph equipped with a connection with values in
SL2(C), and let RY = C[[Ye, e ∈ E]]. Then the following equality holds in RY :

W(0,ψ) =

∫
GV

dg∏
e:(v,w) det(Id− ψe,vgvψ−1

e,vψe,wg
−1
w ψ−1

e,wYe)
.
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4.2. Comparison between generating series

Let 0 be a trivalent graph. We denote by RX be the subalgebra of RX linearly generated
by Xc for all admissible colorings c, and by RY the subalgebra of RY linearly generated
by Y c for all admissible colorings c. We define a morphism (antilinear on the left) (·, ·) :
RX × RX → RY in the following way: if c and c′ are distinct then (Xc, Xc

′

) = 0; if not,
set

(Xc, Xc) =
Y c∏

v:(e1,e2,e3)
〈〈2, ce1 , ce2 , ce3〉〉

.

Summing over all colorings we find

(Z(0,ψ), Z(0,ψ)) = W(0,ψ). (6)

It would be interesting to interpret this formula at the level of generating series for which
we should interpret the product (·, ·) as an Hermitian product over RX given by some
integral formula. We do not address this question here.

We end this section with some remarks on the orthogonality of spin networks as func-
tions of the holonomy. Let M be the moduli space of holonomies on 0 with values in
G = SU2. It is equal to the quotient GH /GVqE ; the Haar measure on GH produces a
measure µ on M.

The map from M to C sending ψ to 〈0, c, ψ〉 is a polynomial function and it is well-
known that the family 〈0, c, ·〉 forms an orthogonal basis of L2(M, µ). Equation (3)
relating 〈0, c〉 and [0, c] generalizes directly to the case with holonomies. We can use it
to compute the normalization of the basis:∫

M
|〈0, c, ψ〉|2 dµ(ψ) =

∏
v

〈v〉
∏
e

〈e〉

∫
M

∏
h=(v,e)

Trce (geψhgvψ
−1
h ) dµ(h).

We have
∫
G

Trc(AgBg−1) dg = 1
c+1 Trc(A)Trc(B) by an argument similar to Lemma

4.2. If we apply this formula to each term of the product, the term
∏
e〈e〉 gets in-

verted. By the orthonormality of characters and the Clebsch–Gordan rule, we find∫
M |〈0, c, ψ〉|

2 dµ(ψ) =
∏
v〈v〉

∏
e〈e〉
−1.

5. Asymptotics of spin-network evaluations

In this section, we compute the first order asymptotic behavior of [0, kc, 1] (the square
of the spin-network evaluation divided by

∏
v〈v〉), for general 0. In Subsection 5.1, we

transform the integral formula to adapt it to stationary phase approximation and describe
the critical set of the integrand. Then we discuss some sufficient non-degeneracy hypothe-
ses (Subsection 5.2). The computation of the Hessian occupies Subsection 5.3, in Sub-
section 5.4 we apply the stationary phase method, and Subsection 5.4.3 ends the proof.
Subsection 5.5 discusses an example of application of our formula to the case of the
tetrahedron.
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5.1. Description of the critical set

From now on, to simplify the notation, we will write h(v,w) = 〈v,w〉 for any v,w ∈ V .
Denote by S3 the unit sphere of V , and by dv the Haar measure on it (i.e.

∫
S3 1 dv = 1).

Lemma 5.1. For any g ∈ G, Trn(g) = (n+ 1)
∫
S3〈v, ρ(g)v〉

n dv.

Proof. Recall that
⊕

n Vn is the algebra of polynomials on V ∗ and that G acts on it by
algebra morphisms. For any v ∈ S3, we have 〈vn, wn〉 = 〈v,w〉n. Consider the endo-
morphism U of Vn given by U =

∫
S3 v

n
〈vn, ·〉 dv. Since U clearly commutes with the

action of G, it is proportional to IdVn . As Tr(vn〈vn, ·〉) = 1, we find Tr(U) = 1, hence
U = 1

n+1 IdVn . Now, given any g ∈ G, we have

Trn(g) = Tr ρn(g) = (n+ 1)Tr ρn(g)U = (n+ 1)
∫
S3
〈vn, ρ(g)vn〉 dv

= (n+ 1)
∫
S3
〈v, ρ(g)v〉n dv. ut

We deduce the following formula:

[0, c] =
∏
e

〈e〉

∫
GV

∫
(S3)E

∏
e:v→w

〈gvue, gwue〉
ce dg du. (7)

The notation e : v → w means that e is an oriented edge joining v to w; and ue is an
element of S3 corresponding to the edge e.

In order to analyze this integral, we restrict the integration domain to a subset X
of GV × (S3)E such that the integrand does not vanish and symmetries behave nicely;
we will see that this restriction does not affect the asymptotic analysis. More precisely,
let π : S3

→ S2 be the Hopf fibration. The sphere S2 is either identified to the projective
space P(V ) or to the unit sphere of the Lie algebra G of G (equipped with the scalar
product |ξ |2 = − 1

2 Tr(ξ2)). Set

X = {(gv, ue) ∈ G
V
× (S3)E | ∀e : v→ w, 〈gvue, gwue〉 6= 0

and the family (π(ue))e∈E has rank at least 2 in G}.

Let F : X→ C/2iπZ be the map

F(g, u) =
∑
e:v→w

ce ln〈gvue, gwue〉

and write Pe = π(ue) ∈ G if the orientation of e coincides with the chosen one and
Pe = −π(ue) if not. We have the following proposition:

Proposition 5.2. The critical points of F are the elements (g, u) ∈ X satisfying:

1. For all edges e : v→ w, gvue = τegwue for some τe ∈ S1.
2. For all vertices v with outgoing edges e1, e2, e3, one has ce1Pe1+ce2Pe2+ce3Pe3 = 0.
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Proof. Differentiating F with respect to the variable ue in the direction ve, we get

DF(ve) =
ce

〈gvue, gwue〉
(〈gvve, gwue〉 + 〈gvue, gwve〉).

Denote by u⊥e the element of S3 satisfying 〈ue, u⊥e 〉 = 0 and det(ue, u⊥e ) = 1. Taking
ve = u⊥e and ve = iu⊥e , we find that g−1

v gw is diagonal in the basis (ue, u⊥e ). This is
equivalent to the first item of the proposition.

Consider an element ξ in G and replace gv by gvetξ for some t > 0. Then compute the
derivative of F at t = 0. Three terms contribute to the sum, corresponding to the edges
incoming to v. Suppose that they are oriented from v to v1, v2, v3 by edges denoted by
e1, e2, e3 respectively. For simplicity, we write g = gv , gi = gvi , ui = uei and ci = cei .

We have F ′(0) =
∑3
i=1 ci

〈gξui ,giui 〉
〈gui ,giui 〉

=
∑3
i=1 ci〈ξui, ui〉. The last equality comes

from the first item. Let5i be the element of End(V ) acting by i on ui and−i on u⊥i . Then,
from Tr(ξ5i) = 2i〈ui, ξui〉 we see that

∑
i ci5i is 0. Using the standard identification

between anti-Hermitian operators and G which sends5i to Pi , we obtain the second item
of the proposition. ut

Suppose that the coloring c satisfies the strict triangle inequalities (T); then at any vertex,
the triple Pe1 , Pe2 , Pe3 has rank 2. In particular, the corresponding pair (gv, ue) is in X.
We will make this assumption in the following.

The integral presents some obvious symmetries: the integrand depends on ue through
its image π(ue) ∈ S2. Hence, we can replace the integral over (S3)E by an integral over
(S2)E integrating over the fiber (S1)E of the Hopf fibration. Moreover replacing (gv, ue)
by (ggv, ue) does not change the integral, nor does replacing (gv, ue) by (gvg−1, gue).
Hence, the integral can be performed over Y = X/(S1)E×G×Gwhere (αe, g, h) acts on
(gv, ue) by (ggvh−1, h(αeue)). Notice that the stabilizer of the action of (S1)E ×G×G

on X is {±1}, hence the quotient Y is a smooth manifold of dimension 12N − 6. Let
F̃ : Y → C/2iπZ be the induced map.

We denote by I ⊂ GE/G the isometry classes of tuples (Pe)e∈E satisfying the equa-
tion (2) of Proposition 5.2. They encode the critical points of F̃ in the following way:

Proposition 5.3. The set C of critical points of F̃ are in bijection with the set of triples
(P,Q, (gv)) in I × I × (GV /{±1}) where for all half-edges (e, v) we have gvPe = Qe.
Moreover, the map C → I × I which forgets the third term is surjective and its fibers
have cardinality 22N−1.

We remark that if N > 1, then I is never reduced to one element, because if P belongs
to I , then −P is an element of I distinct from P .

Proof. Let (g, u) be a critical point of F . Then the family Pe = π(ue) belongs to I . For
any half-edge (e, v), set Qe = π(gvue) = π(gwue). For any vertex v with incoming
edges e1, e2, e3, the relation

∑
i ceiPei = 0 implies

∑
i ceiQei = 0, hence (Qe) also be-

longs to I . Conversely, given two families (Pe), (Qe) in I , we choose vectors ue, se ∈ S3
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satisfying π(ue) = Pe and π(se) = Qe. Then for every vertex v surrounded by e1, e2, e3,
we need to find gv ∈ G such that for all i, gvuei is proportional to sei . As we required
that the coefficients cei satisfy the strict triangular inequalities, the pair Pe1 , Pe2 is linearly
independent in G. As Qe1 ,Qe2 have the same lengths and the same angle by hypothesis,
there is a unique rotation of G which sends Pei to Qei for all i. This rotation lifts in two
possible ways to G, giving our choices for gv . Note that the action of {±1} ∈ G × G
divides by 2 the number of critical points. ut

5.2. Non-degeneracy hypotheses

We would like to understand which conditions ensure that the critical points of F̃ are
isolated in Y . At first, we concentrate on the family (Pe) of vectors associated to critical
points.

Let E be the set of maps from E to G. We consider it as a Euclidean space where
the scalar product is induced from the scalar product |ξ |2 = − 1

2 Tr(ξ2) on G. This space
will then be identified alternatively as the chain or cochain complex of 0 with coefficients
in G. As edges of E are oriented, there is a boundary operator ∂ : E → C0(0,G) and we
set H = ker ∂ . We see that any critical point in X produces an element ζ of H by setting
ζe = cePe. Conversely, any element ζ of H with |ζe| = ce produces an element of I (see
Proposition 5.3).

A tangent vector to ζ is an element ζ ′ ∈ H such that 〈ζe, ζ ′e〉 = 0 for all e (because
|ζe| = ce). We interpret this formula as the scalar product of (ζeδe) and ζ ′. On the other
hand, a tangent vector correspond to a global symmetry if and only if there exists ξ ∈ G
such that ζ ′e = ξ × ζe for all e. We count that the dimension of H is 3(N + 1): the
number of conditions imposed by ζ is 3N (one for each edge), whereas the symmetry
gives three dimensions (because the family ζe has rank at least 2). Hence, an element
of GE/G associated to P is isolated if the family (Peδe) projected orthogonally on H is
linearly independent. With this interpretation in mind, we make the following assumption:

(H1) Let (ce) be a coloring of 0 such that all triangle inequalities in (T) are strict. We
suppose that all elements ζ ∈ H such that |ζe| = ce satisfy the non-degeneracy con-
dition that the family (5H(ζeδe))e∈E is linearly independent, where 5H : E → H
is the orthogonal projector on H. This implies that I is a finite set.

Remark 5.4. The preceding hypothesis is equivalent to saying that for any (ξv) in
C0(0,G), if Pe × (ξw − ξv) = 0 for all edges e : v → w then all the ξv are equal.
Let us show this:

The image of d : C0(0,G)→ E is orthogonal to the space H. Let U be the subspace
U =

⊕
e RPe ⊂ E . The non-degeneracy assumption is that the orthogonal projection

of U on H is injective. Hence, by standard linear algebra, the orthogonal projection of U⊥
on H⊥ is surjective. This implies that if some vector ζe in H⊥ satisfies Pe × ζe = 0 for
all e then ζe = 0.

For any critical point x, one can define the phase function τ x : E → S1 in the following
way. Set x = (gv, ue). Then, by the first item of Proposition 5.2, gvue and gwue are
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proportional unit vectors, moreover the phase factor τ xe = 〈gvue, gwue〉 depends only on
the class of the critical point x in Y .

Remark 5.5. The proof of Proposition 5.3 gives a way to compute up to sign the phase
factor τe associated to an oriented edge e and two configurations P,Q ∈ I . Indeed, a
configuration P allows us to define an angle at e : v → w denoted by αP (e1) as the
interior dihedral angle formed by the triangles adjacent to cePe, namely those formed by
cePe, ce2Pe2 , ce3Pe3 and cePe, ce4Pe4 , ce5Pe5 with e2 ∩ e = e3 ∩ e = {v} and e4 ∩ e =

e5 ∩ e = {w}. Then applying the ideas of the proof in the case when gv = Id (which
can be achieved by acting via 1E × {g−1

v } × Id on the critical points of F ), one sees that
τe = ± exp

(
i
αQ(e)−αP (e)

2

)
.

We remark that the generalized phase of a critical point indexed by (P,Q, gv)∈I×I×GV

depends on gv only up to a sign and is necessarily equal to ±1 if P = Q. We assume that
this is the only case when the phase function takes the value ±1:

(H2) For any distinct (P,Q) ∈ I , the phase function of the associated critical points does
not take the value ±1.

Let P,Q be distinct elements of I , and τ be the associated phase function. Write τe=eiθe .
Then θe is well-defined modulo π . Consider the following quadratic form on GV :

q =
∑
e

2ce
(
−i cot(θe)‖Qe × (ξv − ξw)‖

2
+ i〈Qe, ξv × ξw〉

)
.

We assume

(H3) For any distinct (P,Q) ∈ I , the quadratic form q has corank 6.

Let us develop an example which is the main motivation of this section:

Example 5.6. Suppose that 0 is a planar graph and I = {P,−P }. Then there is a unique
(up to isometry) polyhedron 1 ⊂ G whose 1-skeleton is dual to 0 (hence whose faces
are triangles) and such that for any oriented edge e of 0 the dual edge in 1 is vectorially
equal to cePe; in particular, it has length ce.

The non-degeneracy condition (H1) is equivalent to an infinitesimal rigidity condition
on 1. For instance, if 1 is convex, this condition is automatically satisfied by Cauchy’s
theorem (see for instance [AZ10, Chapter 13]). The generalized phase function has
the following nice interpretation. Let (gv, ue) be a critical point associated to the pair
(P,−P). This means that π(ue) = Pe and π(gvue) = −Pe. Let v be a vertex of 0, dual
to a face Fv of 1. Suppose that v has three outgoing edges e1, e2, e3. Then gv lifts the
unique rotation mapping Pei to −Pei , that is, the rotation through π in the plane support-
ing Fv . Now, given an edge e, one has τe = 〈gvue, gwue〉 = ±eiθ where 2θ is the angle
of the rotation g−1

v gw around Pe. Hence, θ is the angle modulo π between the faces Fv
and Fw. In particular, if 1 is a non-degenerate polyhedron, its corresponding graph sat-
isfies (H2). We do not know which geometric condition on 1 would imply that (H3) is
valid.
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5.3. Second variation formula

Given a point (gv, ue) ∈ X, we can build a a coordinate system around it using the
variables (ξv) ∈ GV , (λe) ∈ CE and αe ∈ (S1)E . The parametrization is given by
(eξvgv, αeue(λe)) where for any u ∈ S3 and λ ∈ C we set

u(λ) =
1√

1+ |λ|2
(u+ λu⊥) = (1− |λ|2/2)u+ λu⊥ + o(|λ|2).

Let sev = gvue and notice that gvue(λe) = sev(λe). Let ixev = 〈s
e
v, ξvs

e
v〉, µ

e
v = 〈s

e⊥
v , ξvs

e
v〉,

τe = 〈s
e
v, s

e
w〉. In what follows, the values of gv, ue, sev are to be considered as fixed

and ξv, λe (and consequently those of xev, µ
e
v) as variable. Notice that xev ∈ R, that τe

was already defined in Proposition 5.2, and that F : X → R does not depend on the
coordinates {αe}, so we set them to 1 in the following:

Proposition 5.7. The Taylor expansion of F in a neighborhood of a point (gv, ue) ∈ X
is, up to the second order,

F(eξvgv, ue(λe)) =
∑
e

ce ln τe +
∑
e

cei(x
e
w − x

e
v)+

∑
e

ce
τe

τe
(µev + λe)(µ

e
w + λe)

−

∑
e

ce(|λe|
2
+ |µev|

2/2+ |µew|
2/2+ λeµev + λeµew)

+ o
(∑
v

|ξv|
2
+

∑
e

|λe|
2
)
.

In particular, at critical points,
∑
e ice(x

e
v − x

e
w) = 0 and τe/τe = τ−2

e .

Proof. Notice that in the basis (sev, (s
e
v)
⊥) we have

ξv =

(
ixev −µev
µev −ixev

)
;

moreover since 〈sev, s
e
w〉 = τe, it follows that 〈(sev)

⊥, (sew)
⊥
〉 = τe (= τ−1

e at crit-
ical points by Proposition 5.2). To compute the first terms of F(eξvgv, ue(λe)) =∑
e:v→w ce ln〈eξv sev(λe), e

ξw sew(λe)〉, we first compute

eξv sev(λe) =

(
1+ ixev − |ξv|

2/2 −µev
µev 1− ixev − |ξv|

2/2

)(
1− |λe|2/2

λe

)
+ h.o.t.

Then we get

〈eξv sev(λe), e
ξw sew(λe)〉

= τe(1− ixev + ix
e
w + x

e
vx
e
w − |λe|

2
− |ξv|

2/2− |ξw|2/2− µevλe − µewλe)

+ τ e(µev + λe)(µ
e
w + λe)+ h.o.t.



2444 F. Costantino, J. Marché

Taking the logarithm, expanding it up to order 2 terms, and recalling that |ξv|2 =
−

1
2 Tr(ξ2

v ) = (xev)
2
+ |µev|

2 we get the formula of the proposition. The last statement
is a consequence of Proposition 5.2. ut

To obtain a nicer formula, in the case of a critical point, we introduce the variables
zev = µ

e
v and zew = τ

−2
e µew. After some computation, by Proposition 5.7, one finds that at

critical points we have Hess(F )x(ξ, λ) = −q(ξ, λ) where

q(ξ, λ) =
∑
e

ce
(
2(1− τ−2

e )|λe|
2
+ 2λeτ−2

e (zew − z
e
v)+ 2λe(zev − z

e
w)

+|zv − zw|
2
+ zvzw − zwzv

)
=

∑
e

ce

(
2(1− τ−2

e )

∣∣∣∣λe − zew − z
e
v

1− τ−2
e

∣∣∣∣2
+
τe + τ

−1
e

τe − τ
−1
e

|zew − z
e
v|

2
+ zevz

e
w − z

e
wz

e
v

)
if τ 2

e 6= 1 ∀e ∈ E. (8)

5.4. Applying the stationary phase method

Let us now perform the stationary phase approximation when replacing the coloring c
by kc and letting k go to infinity in

∫
Y

exp(kF̃ ) dµ. In this formula, the measure µ is
obtained from the Haar measure on (S3)2N × (S3)3N by integration over the action of
(S1)E ×G×G/{±1}, equipped with its Haar density. In this subsection as well as in the
following one, we rely on the notation and machinery recalled in Appendix B.

By assumption, any critical point x is isolated in Y . Provided that Hess(F̃ )x is non-
degenerate, we can apply the stationary phase expansion theorem [H83, Theorem 7.7.5])
to F̃ , which is a smooth function with non-positive real part, and find that the local con-
tribution of x to [0, kc] when k→∞ is

I (x) =
∏
e

〈e〉ekF̃ (x)
(

(2π)12N−6

det(−kHess(F̃ )x, µ)

)1/2

=

∏
e

〈e〉ekF̃ (x)I (kq). (9)

The proof of Theorem 1.3 then consists in computing, for any critical point, the Gaus-
sian integral I (q) where q is the opposite of the Hessian computed in the preceding sub-
section (if there are no critical points then the stationary phase expansion theorem yields
an exponential decay of the integral). We observe that in equation (8) this quadratic form
is expressed in terms of {λe, zev, z

e
v} and that its restriction to {zev = z

e
w = 0} is diagonal.

Thus we would like to perform a partial integration on the λe terms which form local
coordinates for the (S2)E-part of Y . There are two different cases to handle. In the first
case one has τ 2

e = 1 for all e in E. The quadratic form q is then degenerate with respect
to the λ coordinates and we deform it with a parameter κ . In the second case, one has
τ 2
e 6= 1 for all e, thanks to (H2). Fix a critical point described by a pair (P,Q) ∈ I × I

(as in Proposition 5.3); to avoid cumbersome notation, in what follows we will suppress
the indices P,Q except in the definition of the quadratic forms used in the statement of
Theorem 1.3.
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5.4.1. Deformation and degeneracies. The kernel of q contains the image of G×G. Let ξ
and η be the two variables acting on (gv, ue) by (eξgve−η, eηuu). For an edge e : v→ w

set pe = 〈u⊥e , ηue〉 and qe = 〈se⊥v , ξsev〉. The infinitesimal action of ξ and η in the tangent
space at (gv, ue) is (ξ − gvηg−1

v , η). One computes this action in terms of pe and qe as
λe = pe, zev = µ

e
v = 〈s

e⊥
v , (ξ − gvηg

−1
v )sev〉 = qe − pe and zew = qe − τ

−2
e pe.

Consider the deformation qκ of q obtained by replacing τe by τeκ = κτe. One recovers
the original one by letting κ ∈ (1,∞) go to 1. After some computations one may check
that qκ |G×G = 4(κ−1)

∑
e ce|pe|

2
+o(κ−1). Hence, denoting by rP the quadratic form

on G given by rP (η) =
∑
e ce|pe|

2 we can remove the indeterminacy in η as explained in
Appendix B. We have

I (q) = lim
κ→1

I (qκ)

I (qκ |G×G)
= lim
κ→1

(4κ − 4)3/2I (qκ)
I (rP )

.

5.4.2. Partial integration. We now remark that this deformation also allows us to inte-
grate by part over the coordinates (λe). More precisely, let σκ be the restriction of qκ to
the λ-coordinates. Setting σκ =

∑
e 2ce(1− τ−2

eκ )|λe|
2, one obtains I (qκ) = I (σκ)I (qκ)

where

qκ =
∑
e

ce

(
τeκ + τ

−1
eκ

τeκ − τ
−1
eκ

|zev − z
e
w|

2
+ zevz

e
w − z

e
vz
e
w

)
.

We can reformulate the preceding quadratic form by introducing only operations on G.
For instance, one has |zev|

2
= |Qe × ξv|

2. We also have zevzew − z
e
wz

e
v = −i Tr(5ξvξw) =

2i〈Qe, ξv × ξw〉, where 5 is the matrix whose eigenvalues in the basis (sev, s
e⊥
v ) are i

and −i and 2ξv × ξw = [ξv, ξw]. This may be proved by direct computation in the basis
(sev, s

e⊥
v ). Hence, we can write

qκP,Q =
∑
e

ce

(
τeκ + τ

−1
eκ

τeκ − τ
−1
eκ

|Qe × (ξv − ξw)|
2
+ 2i〈Qe, ξv × ξw〉

)
. (10)

First case: τ 2
e = 1 for all e in E. Write qκ = κ2

+1
κ2−1qQ + q

′ where we set

q ′ =
∑
e

2ice〈Qe, ξv × ξw〉 and qQ =
∑
e

ce|Qe × (ξv − ξw)|
2.

By Remark 5.4, the kernel of qQ is the subspace of G given by the equations ξv = ξ

for all v. When κ goes to 1, the quadratic form q ′ becomes negligible. Hence, I (qκ) '
(κ − 1)3N−3/2I (qQ), and using I (|λ|2, µP1

H ) = I (|λ|
2, µP1

euc)/π = 2 one computes

I = lim
κ→1

(4κ − 4)3/2

I (rP )

23N

(4κ − 4)3N
∏
e ce

I (qQ)

(κ − 1)3/2−3N =
23−3N I (qQ)

I (rP )
∏
e ce

.

Second case: τ 2
e 6= 1 for all e in E. Setting κ = 1 in qκ , we get the quadratic form q ′′:

q ′′P,Q =
∑
e

ce
(
−i cot(θe)|5Q⊥e (ξv − ξw)|

2
+ 2i〈Qe, ξv × ξw〉

)
. (11)
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By hypothesis (H3) this form has corank 6, hence the following formula makes sense:

I = lim
κ→1

(4κ − 4)3/2

I (rP )
I (σ1)I (q

κ) = lim
κ→1

(4κ − 4)3/2

I (rP )

23N∏
e 2ce(1− τ−2

e )
I (qκ)

= lim
κ→1

23(κ − 1)3/2I (qκ)

I (rP )
∏
e ce(1− τ

−2
e )
= lim
κ→1

23−3N iN
∏
e τe(κ − 1)3/2I (qκ)∏

e ce sin(θe)I (rP )
. (12)

5.4.3. Collecting the critical points. In this section, we apply the previous computations
to all critical points and collect the results. There are two cases: the critical point corre-
sponds to a pair (P, P ) or to a pair (P,Q) with P 6= Q.

First case: Fix a 3N -tuple (ue) representing Pe. All critical points associated to the pair
(P, P ) have the form ((−1)εv , ue) where εv ∈ {0, 1}. In the preceding subsection, we
found that the contribution of a single critical point (1, ue) to (9) is 23−3N I (qP )/I (rP ),
remarking that the term

∏
e ce cancels and using the fact that F̃ (1, ue) = 0. The other

pairs ((−1)εv , ue) differ only by the value of ekF̃ =
∏
e:v→w(−1)(εv+εw)kce . Adding the

contributions and dividing by 2 (see Proposition 5.3), we get

1
2

(∑
εv

∏
v:(e1,e2,e3)

(−1)εvk(ce1+ce2+ce3 )
)23−3N I (qP )

I (rP )
=

22−N I (qP )

I (rP )
.

We note that the contribution of (−P,−P) is the same because q−P = qP and r−P = rP .
We will multiply the result by 2 when summing over P ∈ I/{±1}.

Second case: When P 6= Q, we have found in (12) that the contribution of a critical
point (gv, ue) is

lim
κ→1

23−3N iN (κ − 1)3/2I (qκP,Q)

I (rP )
∏
e sin(θe)

ei
∑
e(kce+1)θe .

As before, taking into account all critical points associated to the same pair (P,Q)
amounts to multiplying the result by 22N−1.

When replacing (P,Q) by (−P,−Q), we also have r−P = rP . Given a critical point
(gv, ue) corresponding to (P,Q), one checks directly that the point (gv, u⊥e ) corresponds
to (−P,−Q) and that the phase function gets inverted. Letting qκP,Q be defined as in
equation (10), one sees that qκ

−P,−Q = −q
κ
P,Q and since qκP,Q is purely imaginary when

κ → 1, we have limκ→1(κ − 1)3/2I (−qκP,Q) = limκ→1(κ − 1)3/2I (qκP,Q). Collecting
the contributions of (P,Q) and (−P,−Q), we get the following formula:

23−N Re
(
iN limκ→1(κ − 1)3/2I (qκP,Q)e

i
∑
e(kce+1)θe

)
I (rP )

∏
e sin(θe)

.

It remains to compute explicitly the Gaussian integrals involved in the preceding com-
putation. Considering on G × G the usual Haar measure, one has to divide the result by 2
because of the isotropy subgroup {±1} ∈ G × G. Using Appendix B, we can replace
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all occurrences of I by a usual det in the Euclidean basis of G and its tensor powers.
Denoting by det′ the product of the non-zero eigenvalues of a matrix, we have

I (rP ) = (2/π)1/2 det(rP )−1/2,

I (qP ) = (2N)3/2(2/π)N−1/2 det′(qP )−1/2,

I (qκP,Q, µ) = (2N)
3/2(2/π)N−1/2 det′(qκP,Q)

−1/2,

where the factors (2N)3/2 are due to the fact that the Haar density on the kernels of qP
and of qκP,Q is µHaar = µeuc/(2N)3/2 because each vector of the kernel is represented
in G2N by 2N copies of the same vector of G.

5.5. An explicit example: the tetrahedron

This subsection is dedicated to providing some examples of applications of Theorem 1.3
and comparisons with previously known results.

First, let us remark that the first two hypotheses in Subsection 5.2 become geometri-
cally meaningful when 0 is a planar graph. Indeed, in this case, let 0∗ be its dual graph
and observe that each P ∈ I provides a geometric realization in G = R3 of 0∗ by a
(possibly non-convex) polyhedron 1 whose edges are vectorially equal to cePe, e ∈ E
(where we identify the edges of 0 and 0∗ in the natural way). As explained at the end
of Subsection 5.2, if 0 is planar and all P ∈ I correspond to convex polyhedra, then
hypotheses (H1) and (H2) are automatically satisfied.

To provide an explicit example, let now 0 = and c be an admissible color-
ing on it; in this case N = 2, and the graph 0∗ is still a tetrahedron. Given six edge
lengths c1, . . . , c6, under suitable conditions concerning the determinant of the associ-
ated Cayley–Menger matrix (see for instance [GV13, Proposition 9.2]) there exist exactly
two (up to positive isometry) Euclidean tetrahedra whose edge lengths are ci , and they
are the mirror images of each other. In our language this translates to the fact that there
are exactly two configurations: I = {P,−P }; by the above general discussion we already
know that hypotheses (H1) and (H2) of Subsection 5.2 are satisfied. Moreover it was con-
jectured by Ponzano and Regge and then proved by Roberts [R99], but also more recently
through new techniques by Garoufalidis and Van der Veen [GV13], by Aquilanti et al.
[AHHJLY12] (generalizing the approach of Littlejohn and Yu [LY09]) and by L. Charles
[C10] that the following holds for k→∞:

〈 , kc〉U =

√
2

√
3πk3V

cos
(
π

4
+

∑
e

(kce + 1)θe
2

)
(1+O(1/k)) (13)

where V is the common volume of the above Euclidean tetrahedra and θe is the exterior
dihedral angle at e. The above formula was based on another normalization which is
sometimes used in the literature (see [GV13]), known as the unitary normalization, which
relates to our symbol [0, c] as follows:

〈0, c〉U :=
〈0, c〉∏
v

√
〈v〉
, [0, c] = (〈0, c〉U )2.
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So taking the square of (13), after few manipulations we get

[0, kc] =
1+ cos(π/2+

∑
e(kce + 1)θe)

3πk3V
(1+O(1/k)). (14)

Now in the main formula of Theorem 1.3 there are four summands (corresponding to
P,−P in the first sum and to (P,−P), (−P, P ) in the second sum). By the definition
of the quadratic forms qP and rP it is easy to verify that the first two summands give the
same contribution (this is a general fact). Moreover numerical experiments have shown
that the quadratic form qP,−P has corank 6 (so that hypothesis (H3) is satisfied) and that
the following equalities hold true:

8

√
det(rP )
det′(qP )

=
1

6V
,

8
Re
(
−

√
det(rP )

det′(qP,−P )
exp(i

∑
e(kce + 1)θe)

)∏
e sin(θe)

=
cos(π/2+

∑
e(kce + 1)θe)

6V
.

Inserting this in (14) we recover our initial formula in the case of a tetrahedron.
For the interested reader, we make here some remarks concerning the computational

aspects of our formula. In the case of the tetrahedron, we have I = {P,−P }, and so
as already stated our formula is made up of four terms. To find the configurations is an
easy task for a computer as there are 2N linear equations (one per vertex) on the vectors
Pe, e ∈ E, and 3N equations imposing that the lenghts of Pe are 1. Moreover, up to
rotations one may fix P1 = (1, 0, 0) and P2 to have zero z-coordinate and, say, negative
y-coordinate; this completely fixes the indeterminacy due to the action of G ×G. In the
case of the tetrahedron the equations can be easily solved and have two solutions, which
are obtained from each other by reflection in the xy-plane.

The matrices rP and qP have respectively size 3 × 3 (this is always the case) and
(3 · 2N) × (3 · 2N) = 12 × 12, and are computed in terms of the solutions found in the
preceding step. To compute q ′P (which we recall is the product of all the non-zero eigen-
values of the matrix expressing qP ) one may compute minus the first non-zero coefficient
(which is that of degree 3 if the hypotheses are satisfied) of the characteristic polynomial
of the matrix which represents the form. A similar (but more tedious) computation yields
limk→1(k − 1)3 det′(qP,Q): for generic k minus the degree three coefficient of the char-
acteristic polynomial is non-zero (if the hypotheses are satisfied), and the above limit is
non-zero. In any case the computations we carried out were exact but with fixed numerical
values of ce, and matched the known asymptotical behavior (14).

Appendix A. Supersymmetric rules

We refer to [DM99] for a detailed discussion. We collect here some definitions and
warnings important in the article. A super vector space V is a direct sum of two finite-
dimensional complex vector spaces V0 and V1 called respectively the even and odd parts.
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We will always suppose that our spaces are homogeneous, that is, one of the two compo-
nents vanishes, in particular any element x ∈ V has a degree |x|which is 0 or 1 depending
on the parity of V . Super vector spaces form a category where morphisms are linear maps
respecting the decomposition.

The tensor product V ⊗ W is defined as the vector space whose even part is V0 ⊗

W0 ⊕ V1 ⊗ W1 and odd part is V1 ⊗ W0 ⊕ V0 ⊗ W1. There is an isomorphism cV,W :

V ⊗W → W ⊗ V sending x ⊗ y to (−1)|x‖y|y ⊗ x. The even vector space C is neutral
for tensor product.

This allows one to define the unordered tensor product of homogeneous super spaces
in the following way: Given a finite family (Vi)i∈I of vector spaces of parity pi , we set⊗

i∈I

Vi = lim
−→
(ϕ(σ ′)−1◦σ : Vσ → Vσ ′).

The projective system is defined as follows. Let n be the cardinality of I , and for
any bijection σ : {1, . . . , n} → I , set Vσ =

⊗n
i=1 Vi . Then define an isomorphism

ϕ(σ ′)−1◦σ : Vσ → Vσ ′ by the formula

ϕτ (v1 ⊗ · · · ⊗ vn) = (−1)svτ1 ⊗ · · · ⊗ vτn where s =
∑

i<i′,τi>τi′

pipi′ .

There is an internal functor Hom satisfying the following adjunction formula:

Hom(U,Hom(V ,W)) = Hom(U ⊗ V,W).

The space Hom(U, V ) is the space of all linear maps where a map is considered even if it
respects the parity and odd if it reverses it. In particular, if we set U∗ = Hom(U,C) we
have an isomorphism Hom(U, V ) = V ⊗U∗ and an evaluation map evU : U∗⊗U → C.

With these identifications, bilinear forms are elements of Hom(U ⊗ V,C) =
Hom(U, V ∗) = V ∗ ⊗ U∗. The inversion of the terms should be noticed.

There is another tricky issue: the natural isomorphism θU : U → (U∗)∗ is not the
identity but sends x to (−1)|x|. With that convention, we have the identity evU∗ = evU ◦
cU,U∗ ◦ (θ

−1
U ⊗ 1). Informally, this formula is explained by the transposition of the terms

in the Gelfand transform: θ(x)(λ) = (−1)|x| |λ|λ(x).

Appendix B. Gaussian integrals and densities

In this subsection let F be a real vector space of dimension n, F ∗ be its dual,Q a quadratic
form on F , and S(F ) the symmetric algebra of F . IfQ is non-degenerate, one can identify
F and F ∗ and thus transport it to a quadratic form denoted Q−1 on F ∗. Note that if F is
equipped with a basis and F ∗ with the dual, the matrices expressing Q and Q−1 in these
bases are inverse to each other.

Definition B.1 (Densities). Let B(F ) be the set of bases of F . A density µ on F is a
map µ : B(F )→ R such that µ(A · b) = |det(A)|µ(b) for each A ∈ GL(F ). The set of
densities is a real 1-dimensional vector space denoted |3|(F ). A density on a manifold
M is a continuous section of the bundle |3|(TM).
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Fixing b ∈ B(F ) defines an isomorphism F ' Rn and thus F can be equipped with
a density which we denote µeuc which satisfies µeuc(b) = 1. If F is equipped with a
density µ and Q : F → C is a quadratic form, then one defines det(Q,µ) ∈ C as
det(Q(b))/µ(b)2 where Q(b) is the matrix expressing Q in the basis b of F (this clearly
does not depend on b).

Lemma B.2 (Gaussian integrals). Given a density µ on F and a quadratic formQ such
that Re(Q) > 0, we have

I (Q) =

∫
F

exp
(
−
Q

2

)
dµ =

(2π)n/2
√

det(Q,µ)
(15)

where the square root is the analytical extension of the positive one on the set of real and
positive quadratic forms.

An element P of S(V ∗) may be interpreted either as a polynomial function on V or as a
differential operator on C∞(V ∗;C). To distinguish the two cases we shall denote by P op

the element P interpreted as a differential operator. The following is a generalization of
the Gaussian integration formula (15):

Proposition B.3 (Fourier transforms of Gaussian functions).∫
V

P(x) exp
(
−

1
2
Q(x)

)
dµ =

(2π)n/2
√

det(Q,µ)

(
P op exp

(
1
2
Q−1

))∣∣∣∣
0
. (16)

IfK ⊂ F is a k-dimensional subspace, one has |3(F)| = |3(K)|⊗R |3(F/K)|. Indeed,
given bases bK and bF/K for K and F/K , one can construct easily a basis of b of F
using the inclusion of K and choosing an arbitrary complement to K (the choice of the
complement affects b only up to elements of SL(F )). Thus given densitiesµ andµF on F
andK respectively, the quotient densityµF/K on F/K is defined so thatµ = µK⊗µF/K .

Suppose that the quadratic form Q is degenerate. Then denoting by K its kernel, we
can apply the formula (15) to the reduced quadratic form Q on F/K . To do so, we need
to fix a density µK on K . Then we can set I (Q,µK) =

∫
F/K

exp(− 1
2Q(x)) dµF/K(x).

This new integral can be computed without considering the quotient, by the following
perturbative argument. Let Q′ be a quadratic form on F with positive real part and non-
degenerate on K . Then, for ε positive and small enough, the quadratic form Q+ εQ′ is
non-degenerate on K and on F . Moreover

I (Q,µK) = lim
ε→0

I (Q+ εQ′)

I (Q′|K)
.

As a consequence, if α ∈ R is positive, then I (αQ,µk) = α(k−n)/2I (Q,µk). Suppose
now that F = F1 ⊕ F2, Q is non-degenerate on F1 and both F and F1 are equipped with
densities µ and µ1 (consequently, F2 inherits a density µ2). Let Q1 be the restriction of
Q to F1 and letA : F2 → F1 be defined byQ(x, y) = Q1(x,Ay) for y ∈ F2 and x ∈ F1.
Then setting Q′(y) = Q(y, y)−Q(Ay,Ay) we have

I (Q) = I (Q1)I (Q
′). (17)
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Given a manifold M equipped with a density µ one defines
∫
M
f dµ ∈ C for f ∈

C∞(M) in the natural way. In particular, a compact Lie group G can be equipped with
a G-invariant density µH defined by

∫
G

1 dµH = 1. If G acts freely on a manifold M
equipped with a density µ preserved byG, one defines a density µM/G on the quotient in
a natural way.

Example B.4 (The Euclidean density on G). On G equipped with the scalar product
|ξ |2 = − 1

2 Tr(ξ2), let µeuc be the density whose value on an orthonormal basis is 1.
Then µeuc coincides with the density induced by the identification of G with the tangent
space to S3

⊂ C2 at a point, and the Haar density is µH = µeuc/(2π2).

Example B.5 (The Hopf fibration). Let S3
= SU(2) be the unit sphere in C2 and let

P1 be the quotient by the diagonal action of S1. Let µSU(2)
Haar , µ

S1

Haar and µP1

Haar be the Haar
densities on SU(2) and the quotient density on P1 respectively. Let also µSU(2)

euc and µP1

euc

be the Euclidean densities. Then µSU(2)
Haar = (2π

2)−1µ
SU(2)
euc and µP1

Haar = π
−1µP1

euc.
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[H83] Hörmander, L.: The Analysis of Linear Partial Differential Operators, I. Grundlehren
Math. Wiss. 256, Springer (1983) Zbl 0712.35001 MR 1065993

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1287.57026&format=complete
http://www.ams.org/mathscinet-getitem?mr=2887655
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1239.81042&format=complete
http://www.ams.org/mathscinet-getitem?mr=2881060
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1185.00001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2569612
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0932.83014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1633142
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1043.83011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1983476
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0474.00023&format=complete
http://www.ams.org/mathscinet-getitem?mr=0635121
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1206.47095&format=complete
http://www.ams.org/mathscinet-getitem?mr=2726596
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1170.58302&format=complete
http://www.ams.org/mathscinet-getitem?mr=1701597
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1035.83014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1983472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1277.57020&format=complete
http://www.ams.org/mathscinet-getitem?mr=3035322
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0712.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1065993


2452 F. Costantino, J. Marché
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