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Abstract. In this paper we establish a decoupling feature of the random interlacement process
7% c 74 atlevel u, d > 3. Roughly speaking, we show that observations of Z" restricted to two
disjoint subsets A{ and A, of 74 are approximately independent, once we add a sprinkling to the
process 7" by slightly increasing the parameter u. Our results differ from previous ones in that we
allow the mutual distance between the sets A| and A, to be much smaller than their diameters. We
then provide an important application of this decoupling for which such flexibility is crucial. More
precisely, we prove that, above a certain critical threshold u«, the probability of having long paths
that avoid Z" is exponentially small, with logarithmic corrections for d = 3.

To obtain the above decoupling, we first develop a general method for comparing the trace
left by two Markov chains on the same state space. This method is based on what we call the
soft local time of a chain. In another crucial step towards our main result, we also prove that any
discrete set can be “smoothened” into a slightly enlarged discrete set, for which its equilibrium
measure behaves in a regular way. Both these auxiliary results are interesting in themselves and are
presented independently of the rest of the paper.

Keywords. Random interlacements, stochastic domination, soft local time, connectivity decay,
smoothening of discrete sets.

1. Introduction and results

This work is mainly concerned with the decoupling of the random interlacements model
introduced by A.-S. Sznitman [23]. In other words, we show that the restrictions of the
interlacement set Z" to two disjoint subsets A; and A, of Z¢ are approximately indepen-
dent in a certain sense. To this end, we first develop a general method, based on what we
call soft local times, to obtain an approximate stochastic domination between the ranges
of two general Markov chains on the same state space.

To apply this coupling method to the model of random interlacements, we first need to
modify the sets A; and A; through a procedure we call smoothening. This consists in en-
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closing a discrete set A C Z? in a slightly enlarged set A’, whose equilibrium distribution
behaves “regularly”, resembling what happens for a large discrete ball.

Finally, as an application of our decoupling result, we obtain upper bounds for the
connectivity function of the vacant set V¥ = 74 \ Z"*, for intensities u above a critical
threshold u... These bounds are considerably sharp, showing a behavior very similar to
that of their corresponding lower bounds.

We believe that these four results are interesting in their own right. Therefore, we
structured the article so that they can be read independently of each other. Below we give
a more detailed description of each of these results.

1.1. Decoupling of random interlacements

The primary interest of this work lies in the study of the random interlacements process,
recently introduced by A.-S. Sznitman [23]. The construction of random interlacements
was originally motivated by the analysis of the trace left by simple random walks on
large graphs, for instance a large discrete torus or a thick discrete cylinder. Intuitively
speaking, this model describes the texture in the bulk left by these trajectories, when the
random walk is let to run up to specific time scales.

Recently, great effort has been devoted to studying this model [18], [19], [31], [24],
[25], [14], [3] as well as to establishing rigorously the relation between random interlace-
ments and the trace left by random walks on large graphs [20], [34], [32], [4]. Recent
works have also shown a connection between random interlacements, the Gaussian free
field [28], [27] and cover times of random walks [2].

Roughly speaking, the model of random interlacements can be described as a Pois-
sonian cloud of doubly infinite random walk trajectories on Z¢, d > 3. The density of
this cloud is governed by an intensity parameter # > 0 so that, as u increases, more and
more trajectories enter the picture. We denote by Z* the so called interlacement set, given
by the union of the ranges of these random walk trajectories. Regarding Z" as a random

subset of Z, its law Q" can be characterized as the only distribution in {0, I}Zd such that
Q“[K NZI" = @] = exp{—ucap(K)} forevery finite K C VA (1.1)

where cap(K) stands for the capacity of the set K defined in (2.6) (see [23, Proposi-
tion 1.5] for the characterization (1.1)).

The main difficulty in understanding the properties of Z" is related to its long range
dependence. Note for instance that

cqu

W as ||X — y” — 0 (12)

Cov(l ezu, ]lyGZ“) ~

(see [23, (1.68)]). Such a slow decay of correlations imposes several obstacles to the anal-
ysis of random interlacements, especially in low dimensions. Various methods have been
developed in order to circumvent this dependence, some of which we briefly summarize
below.
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Let us explain what is the type of statement we are after. Consider two subsets Aj
and A, of 74 with diameters at most r and within distance at least s > 1 from each
other. Suppose also that we are given two functions f; : {0, 1}41 — [0, 1] and fr
{0, 1}42 — [0, 1] that depend only on the configuration of the random interlacements
inside the sets A and A, respectively. In [23, (2.15)] it was established that

cap(Ap) cap(d2) _ (r2>d‘2

N

COV(f], f2) < Cdusd——Z =cqu (13)
(see also [1, Lemma 2.1]). Although the above inequality retains the slow polynomial
decay observed in (1.2), it has been useful in various situations, for instance in [23, The-
orem 4.3] and [1, Theorem 0.1].

A first improvement on (1.3) appeared already in the pioneer work [23], where the
author considers what he calls “sprinkling” of the law Z" (see Section 3). In the sprinkling
procedure, “independent paths are thrown in, so as to dominate long range dependence”
of 7".

Given two functions f] and f; as above, which are non-increasing in Z", the technique
of [23, Section 3] allows one to conclude that, roughly speaking,

Q'Lf1 2] < QI QI ] + cao(r/s)%, (1.4)

where « is arbitrary and the sprinkling parameter § goes to zero as a polynomial of r/s.
Note that the above represents a big improvement over (1.3): in exchange for restricting
ourselves to non-increasing functions and introducing a sprinkling term, we obtain a much
faster decay in the error term. Since its introduction, the sprinkling technique has been
useful for several problems on random interlacements [21], [26], [32].

The most recent result on decoupling bounds for interlacements can be found in [26]
and stands out for several reasons. First, it generalizes the ideas behind [19] and [31] to
random interlacements on quite general classes of graphs (besides Z?), as long as they
satisfy certain heat kernel estimates. Secondly, the tools developed in [26] work to show
both existence and absence of percolation through a unified framework and give novel
results even in the particular case of 74 see also the beautiful applications in [15] and [6].

On the other hand, the results in [26] were designed having a renormalization scheme
in mind. Thus, their use is restricted to bounding the so-called “cascading events”, which
behave in a certain hierarchical way (see the details in [26, Section 3]).

Although the results in (1.3), (1.4) and [26] complement each other, they suffer from
the same drawback, as they implicitly assume that

the distance between A and A is at least of the same order as their diameters. (1.5)

This can be a major obstruction in some applications, such as the one we present in
Section 3 on the decay of connectivity.

Let us now state the main theorem of the present paper, which can be regarded as an
improvement on (1.4). Later we will describe precisely how it differs quantitatively from
previously known results.

Below, yp and y; are positive constants depending only on the dimension d.
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Theorem 1.1. Let Ay, Ay be two non-intersecting subsets of 74, at least one of them
being finite. Let s be the distance between A1 and Aj, and r be the minimum of their
diameters. Then, for allu > 0 and € € (0, 1), we have:

(i) for any increasing functions fi : {0, 1}*1 — [0, 1] and f> : {0, 1}42 — [0, 1],
Q"I f1f2] = QUL AIQUT L fo] + yo(r + $) exp(—y1e”us®?);  (1.6)
(ii) for any decreasing functions fi : {0, 1}41 — [0, 1] and f> : {0, 1}42 — [0, 1],
Q"Lfi 21 = QU LAIQU L /2] + yo(r + )Y exp(—yre?us®™?).  (1.7)

We of course assume that the above functions f| and f> are measurable (recall that one
of the sets A1 or A> may be infinite).

The above theorem is a direct consequence of the slightly more general Theorem 2.1.
Note that the opposite inequalities to (1.6) and (1.7) follow without error terms (and with
& = 0) from the FKG inequality, which was proved for random interlacements in [29,
Theorem 3.1].

Let us now stress what are the main improvements offered by the above bounds over
previously known results. First, there is no requirement that s should be larger than r as
in (1.5) (and again, one of the sets may even be infinite). Moreover, these error bounds
feature an explicit and fast decay on s, even as € = g(s, r) goes (not too rapidly) to zero.
In Remark 3.3 we include some observations on how close to optimal one can expect
(1.6) and (1.7) to be.

1.2. Connectivity decay

As an application of Theorem 1.1, we establish a result on the decay of connectivity of
the vacant set V* = 74 \ T". More precisely, for u large enough (see Theorem 3.1 for
details), for d > 4,

Q"[0 <K> x] < pyrexp{—y3llx||} forevery x € VA (1.8)

where y» and y3 depend only on d. If d = 3 and u is large enough, then for any b > 1
there exist y4 = y4(u, b) and ys = ys(u, b) such that

Q"[0 <K> x] <y exp{—m%} for every x € 73 (1.9)
log™ ||x|

(see Theorem 3.1 and Remark 3.2 for more details).

Let us stress that the above bounds greatly improve on the previously known results
of [19, Theorem 0.1]. There, the authors establish similar bounds but with ||x|| replaced
by |lx||” for some unknown exponent p € (0, 1). Our bounds on the other hand are con-
siderably sharp, as they closely resemble the corresponding lower bounds (see Remark 3.2
for details).
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Note that the exponential decay in (1.8) is also observed in independent percolation
models (see for instance [8, Theorem (5.4), p. 88] and [11]). However, due to the strong
dependence present in V¥, its validity was at first not obvious to the authors. For one
reason, it is known that the logarithmic factor in (1.9) cannot be dropped (see Remark 3.2
below). Similar types of non-exponential decay in dependent percolation models can be
found for instance in [23, (1.65) and (2.21)] and [31, Remark 3.7 2)].

Finally we would like to stress that our proof of (1.8)—(1.9) is general enough in the
sense that it could be adapted to other dependent percolation models, as long as they
satisfy a suitable decoupling inequality. See the discussion in Remark 3.4.

1.3. Soft local times

In Section 4 we develop a technique to prove approximate stochastic domination of the
trace left by a Markov chain on a metric space. This is an important ingredient in prov-
ing Theorem 1.1 and we also expect it to be useful in future applications. To illustrate
this technique, consider an irreducible Markov chain (Z;);>1 on a finite state space X
having 7 as its unique stationary measure.

A typical model to keep in mind is a random walk on a torus that jumps from z to a
uniformly chosen point in the ball centered at z with radius k. By transitivity, the uniform
distribution 7 is clearly invariant. Intuitively speaking, if we let this Markov chain run for
a long time ¢, we expect the law of the covered set {Z1, ..., Z;} to be “reasonably close”
to that of a collection {Wy, ..., W;} of i.i.d. points in ¥ distributed according to 7. This
is made precise in the following result, which is a consequence of Corollary 4.4.

Proposition 1.2. Let (Z;);>1 be a Markov chain on a finite set X, with transition prob-
abilities p(z,7'), initial distribution 1, and stationary measure 7. Then we can find a
coupling Q between (Z;) and an i.i.d. collection (W;) (with law 1) such that for any
A>0andt >0,

Q[{Zl,...,Z,} C {Wl,..., WR}]

-1
> @[%ono(z) +j;§jp(2-, 7) < Am(z) forall 7 € E], (1.10)

where &; are i.i.d. Exp(1) random variables, independent of R, a Poisson()\)-distributed
random variable.

Observe that the above statement may have interesting consequences in bounding the
hitting time of a given subset of X (see (2.4) for a precise definition).

We call the sum ) _; & p(Z;, z) the soft local time of the chain Z;. To justify this
terminology, observe that instead of counting the number of visits to a fixed site (which
corresponds to the usual notion of local time), we are summing up the chances of visiting
such site, multiplied by i.i.d. mean-one positive factors. See also Theorem 4.6.

In Remark 4.5 we describe the main advantages of Proposition 1.2 over previous
domination techniques and how it allows us to drop the assumption (1.5).
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Later in Section 4, we establish general estimates on the expectation, variance and
exponential moments of the soft local time ) ;i €ip(Zj, z). These are based on regularity
assumptions on the transition probabilities p(-, -) and are valuable when estimating the
right-hand side of (1.10) by means of exponential Chebyshev inequalities (Theorems 4.6,
4.8 and 4.9).

Now, we comment on the main method employed to prove results such as Propo-
sition 1.2 above. One can better visualize the picture in a continuous space, so we use
another example to illustrate the method. Assume that we are given a sequence of (not
necessarily independent or Markovian) random variables Si, S, ... taking values in the
interval [0, 1], and let T be a finite stopping time. As in (1.10), we attempt to dominate
this process by a sequence Uy, ..., Uy, where (Uy) are i.i.d. Uniform[0, 1] random vari-
ables, and N is a Poisson random variable independent of (Uy). More precisely, we want
to construct a coupling between the two sequences in such a way that

{S1,..., 87} C{Uy,...,Un} (1.11)

with probability close to one. We assume that the law of Sy conditioned on S, ..., Sk—1
is absolutely continuous with respect to the Lebesgue measure on [0, 1] (see (4.6)).

Our method for obtaining such a coupling is illustrated in Figure 1. Consider a Pois-
son point process in [0, 1] x Ry with rate 1. Then one can obtain a realization of the
U-sequence by simply retaining the first coordinate of the points lying below a given
threshold (the dashed line in Figure 1) corresponding to the parameter of the Poisson
random variable N.

&g(-) +&g(- | S1)

0 Sy Sy =Us Ss Us S3=Us 51 1

Fig. 1. Soft local times: the construction of the process S (here, T = 5, N = 6, Uy = Sy for
k = 1,2,5); it is important to observe that the points of the two processes need not necessarily
appear in the same order with respect to the vertical axis (see Remark 4.5).

Now, in order to obtain a realization of the S-sequence using the same Poisson point
process, one proceeds as follows:

o first, take the density g(-) of S; and multiply it by the unique positive number & so
that there is exactly one point of the Poisson process lying on the graph of &1 g and no
point strictly below it;
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e then consider the conditional density g(- | S1) of S> given S; and find the smallest
constant & so that exactly two points lie underneath &;g(- | S1) + &1g(-);
e continue with g(- | S, $2), and so on, up to time 7', as shown in Figure 1.

In Proposition 4.3, we show that the collection of points obtained through the above pro-
cedure has the same law as (S, Sz, ...) and is independent of the random variables &;,
which are i.i.d. with law Exp(1). We call the sum &;g(-) + & g(- | S1) + - - - the soft local
time of the process S (which coincides with the sum on the right-hand side of (1.10) in the
Markovian case). Clearly, if the soft local time (the gray area in the picture) is below the
dashed line, then the domination in (1.11) holds. To obtain the probability of a successful
coupling, one has to estimate the probability that the soft local time lies below the dashed
line. In several cases, this reduces to a large deviations estimate.

After developing a general version of this technique in Section 4, we adapt this theory
to random interlacements in Section 5. More precisely, we present an alternative con-
struction of the interlacement set Z* restricted to some A C Z¢. In this construction, we
split each trajectory composing Z" into a collection of excursions in and out of A. This
induces a Markov chain on the space of excursions, and the technique of soft local times
helps us control the range of such soup.

After completing this article, we learned that a technique similar to the soft local times
was introduced in the special case ¥ = (0, 1) C R in order to study local minima of the
Brownian motion in [33, Claim 1.5].

We believe that the method of soft local times can be useful in other contexts besides
random interlacements. For example, when considering a random walk trajectory on a
finite graph (such as a torus or a discrete cylinder), one can naturally be interested in the
degree of independence in the pictures left by the walker on disjoint subsets of the graph.
The approach followed in this paper is likely to be successful in this situation as well.
We also believe this technique could give alternative proofs or generalize results on the
coupling of systems of independently moving particles (see [13, Proposition 5.1] for an
example of such a statement).

1.4. Smoothening of discrete sets

As mentioned before, in order to estimate the probability of having a successful coupling
using the soft local times technique, we need some regularity conditions on the transi-
tion densities of the Markov chain. When applying this to the excursions composing the
random interlacements, this translates into a condition on the regularity of the entrance
distributions on the sets A and A,, which may not hold in general (picture for instance a
set with sharp points).

To overcome this difficulty, we develop a technique to enlarge the original discrete
sets A1 and A, into slightly bigger discrete sets with “sufficiently smooth” boundaries,
so that their entrance probabilities satisfy the required regularity conditions.

The exact result we are referring to is given in Proposition 6.1, but we provide here a
small preview of its statement. There exist positive constants ¢, ¢/, ¢”, so (depending only
on dimension) such that for any s > so and any finite set A C Z, there exists a set A®)
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with A C A® C B(A, s) and
PiXy =yl <cPXu =)' (1.12)

for all y,y’ € dA® with ||y — y'|| < ¢”s, and all x such that ||x — y|| > ¢’s. Here X
is the simple random walk and H is the hitting time of the set A®). That is, the entrance
measure to the set A is “comparable” in close sites of the boundary, as long as the
starting point of the random walk is sufficiently far away.

It is important to observe that for example a large (discrete) ball has the above prop-
erty, while a large box does not, since its entrance probabilities at the faces are typically
much smaller than those at the corners (to see this, observe that using arguments similar
e.g. to the proof of [12, Theorem 1.4] one can show that the harmonic measure at a corner
of the box is at least O(n~7") for some y < 1, while for “generic” sites on the faces it
isOm™".

1.5. Plan of the paper

The paper is organized in the following way. In Section 2 we formally define the model of
random interlacements, and state our main decoupling result. In Section 3, we formally
state the connectivity decay appearing in (1.7) and (1.6) (Theorem 3.1). In Section 4
we present a general version of the method of soft local times. Then, in Section 5 this
method is used to introduce an alternative construction of random interlacements, which
is better suited for decoupling configurations on disjoint sets. In the same section we
reduce the proof of our main Theorem 2.1 to a large deviations estimate for the soft local
time of excursions. In Section 6, we estimate the probability of these large deviation
events and conclude the proof of Theorem 2.1 under a set of additional assumptions on
the entrance measures of Aq . While this set of assumptions may not be satisfied for
arbitrary A 2, we show in Section 8 that this is not really an issue, as one can always
slightly enlarge the sets of interest (with the procedure referred to above as smoothening)
so that the modified sets satisfy the necessary regularity assumptions. Before going to
(quite technical) Section 8, in Section 7 we prove the result on the decay of connectivity
for the vacant set, corresponding to (1.8) and (1.9).

2. Random interlacements: formal definitions and main result

In this paper, we use the following convention concerning constants: cy, ¢z, ... as well as
Y1, Y2, - . . denote strictly positive constants depending only on dimension d. Dependence
of constants on additional parameters appears in the notation. For example, ¢, denotes a
constant depending only on d and «. Also c-constants are “local” (used only in a small
neighborhood of the place of the first appearance) while y-constants are “nonlocal” (they
appear in propositions and “important” formulas).

Let us now introduce some notation and describe the model of random interlacements.
In addition, we recall some useful facts concerning the model.
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For a € R, we write |a] for the largest integer smaller than or equal to a and recall
that

lta + (1 —t)b]| € [min{a, b}, max{a, b}] foralla,b e Zandt € [0, 1]. 2.1

We say that two points x, y € Z? are neighbors if they are at Euclidean distance
(denoted by || - ||) exactly 1 (we then write x <> y). This induces a graph structure and a
notion of connectedness in Z4.

If K ¢ Z4, we denote by K¢ its complement and by B(K, r) the r-neighborhood of
K with respect to the Euclidean distance, i.e. the union of the balls B(x, r) for x € K.
The diameter of K (denoted by diam(K)) is the supremum of ||x — y|lcc Withx,y € K,
where || - ||« s the maximum norm. The internal boundary of K is 0K = {x € K; x <>y
for some y € K€}.

In this article the term path always denotes finite, nearest neighbor paths, i.e. some
T :1{0,...,n} — Z% such that T(I) <> T({ + 1) forl = 0,...,n — 1. In this case we
say that the length of 7 is n.

Let us denote by W and W the spaces of infinite, respectively doubly infinite, tran-
sient trajectories:

W, = {w -7y — 7% w(l) < w(l + 1) for each I > 0 and [Jw(l)|| —> oo},

(2.2)
W = {w 17— 7% w(l) <> w(l + 1) foreach [ € Z and ||[w(l)|| —>|”_)oo OO}'

We endow these spaces with the o -algebras YV and W generated by the coordinate maps

{Xn}neZ+ and {X,,},ez.
Let us also introduce the entrance time of a finite set K C Z4,

Hg (w) = inf{k; X (w) € K} forw € Wy, 2.3)
and for w € W, we define the hitting time of K as
Hg (w) = inf{k > 1; Xx(w) € K}. (2.4)

Let 6 : W — W stand for the time shift given by 6 (w)(-) = w( -+ k) (where k could
also be a random time).

For x € 74 (recall that d > 3), we can define the law P, of a simple random
walk starting at x on the space (W, , Wy). If p is a measure on Z9, we write P, =

S e P Pe.
Let us introduce, for a finite K C Z9, the equilibrium measure

ex (x) = Lyex Py[Hx = 0o] forx e Z¢, (2.5)

the capacity of K
cap(K) = ex (Z) (2.6)

and the normalized equilibrium measure

ex(x) = ex (x)/cap(K) for x € Z°. 2.7
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We mention the following bound on the capacity of a ball of radius » > 1:
cap(B(0, r)) =< r?=2 (2.8)

(see [10, Proposition 6.5.2]; here and below we write f(r) < g(r) whencog(r) < f(r) <
c18(r) for strictly positive constants cq, c; depending only on the dimension).
Let W* stand for the space of doubly infinite trajectories in W modulo time shift,

W*=W/~, where w~ w ifw(-)=w'(k+ ) for somek € Z, (2.9)
endowed with the o -algebra
W ={A C W* (") 1(A) e W), (2.10)

which is the largest o -algebra making the canonical projection 7* : W — W* measur-
able. For a finite set K C Z¢, we denote by W the set of trajectories in W which meet
the set K, and define W§ = 7*(Wk).

Now we are able to describe the intensity measure of the Poisson point process which
governs the random interlacements.

For a finite set K C Z?, we consider the measure Qg in (W, W) supported in Wg
such that given A, B € W, and x € K,

Ok[(X_nnz0 € A, Xo = x, (X)nz0 € Bl = P[A | Hx = 00]Pi[Bleg(x).  (2.11)

Theorem 1.1 of [23] establishes the existence of a unique o -finite measure v in W* such
that
Ly - v =n"*o Qg forany finite set K C Z. (2.12)

The above equation is the main tool to perform calculations on random interlacements.
We then introduce the spaces of point measures on W* x Ry and W, x Ry,

Q= {a) = Z(S(wf’ui);

i>1

w) € W*, u; € Ry and w(Wg x [0, u]) < 0o
} (2.13)

for every finite K C 7% and u >0

and endowed with the o-algebra .4 generated by the evaluation maps @ +— w(D) for
D € W* ® B(R,). Here B(-) denotes the Borel o -algebra.

We let P be the law of a Poisson point process on 2 with intensity measure v ® du,
where du denotes the Lebesgue measure on R. Givenw = ) ; S(wr,u;) € §2, we define

the interlacement and the vacant set at level u respectively as the random subsets of Z<:

T (w) = U Range(w}), (2.14)
Vi(w) = 24\ T (). (2.15)

In [23, (0.13)], Sznitman introduced the critical value

uy = inf{u > 0; P[V" contains an infinite connected component] = 0}, (2.16)



Soft local times and decoupling of interlacements 2555

where the vacant set undergoes a phase transition in connectivity. It is known that 0 <
u, < oo forall d > 3 [23, Theorem 3.5], [18, Theorem 3.4]. Moreover, it is also proved
that the infinite connected component of the vacant set (if any) must be unique [30, The-
orem 1.1].

It is important to mention also that, as shown in [23],

the law of the random set 7" is invariant and ergodic with respect to
translations of the lattice Z¢. 2.17)

2.1. Decoupling: the main result

We now state our main result on random interlacements. It provides us with a way to
decouple the intersection of the interlacement set 7 with two disjoint subsets A| and A;
of Z4. Namely, we couple the original interlacement process 7" with two independent
interlacements processes Z{ and Zj in such a way that Z" restricted on Ay is “close”
to 7}/, for k = 1, 2, with probability rapidly going to 1 as the distance between the sets
increases. This is formulated precisely in

Theorem 2.1. Let A1, As be two non-intersecting subsets of 7%, at least one of them be-
ing finite. Set s = d(A1, Az) and r = min{diam(A1), diam(A»>)}. Then there are positive
constants yy and y1 (depending only on the dimension d) such that for all u > 0 and
e € (0, 1) there exists a coupling Q between I" and two independent random interlace-
ment processes, (L{),>0 and (I3)y>0, such that

QI nay T nay <, k=1,2]
> 1 — @ + ) exp(—yi1e2us?™?).  (2.18)

It is straightforward to see that the above theorem implies the inequality on the covariance
of increasing (or decreasing) functions depending only on A and A, stated previously
in Theorem 1.1. Also, we mention that the factor (r +s)¢ before the exponential in (2.18)
can usually be reduced (see Remark 6.4).

3. Discussion, open problems, and an application of decoupling

We start this section with the following application of our main result. We are interested

in the probability P[0 <V—> x] that two far away points are connected through the vacant
set. In the subcritical case, u > u,, this probability clearly converges to zero as ||x|| goes
to infinity. In what follows, we will be interested in the rate in which this convergence
takes place.

In [23, Proposition 3.1], it was proven that P[0 <K> x] decays at least as a polynomial
in ||x|| if u is chosen large enough. Then in [19] this was considerably improved, by
showing that for u large enough, there exist ¢, ¢’ and § > 0 (possibly depending on u)
such that

P05 x] < cexp{—cIx |’} forevery x € Z<. 3.1)
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To be more precise, the above statement was established for all intensities «# above the
threshold
VM

U (d) = inf{u > 0; forsome @ > 0, lim LOP[[~L, LI <= a[-2L,2L)] = 0}.
—00
(3.2)

The above critical value is known to satisfy u, < wu.. < oo [22, Lemma 1.4] and a
relevant question is whether u, and u,, actually coincide.

In [26], an important class of decoupling inequalities was introduced, implying in
particular that (3.2) can be written as

Yoy = inf{u > 0; lim P[[—L, LI & 2L, 2019 = 0}, (3.3)
—00

potentially enhancing the validity of (3.1). The above result could perhaps be seen as a
step towards proving uy = .

Here, we further weaken the definition of u., but, more importantly, we improve on
the bound (3.1) for values of u above u.. The improved result we present gives the correct
exponents in the decay of the connectivity function, although for d = 3 they could be off
by logarithmic corrections (see Remark 3.2 below).

Theorem 3.1. Ford > 4, given u > u..(d), there exist positive constants y» = y>(d, u)
and y3 = y3(d, u) such that

P[0 ﬁ) x] < yrexp{—ys3llx||} foreveryx € 74, 34

If d =3 and u > u(3), then for any b > 1 there exist y4s = ys(u, b) and ys = ys(u, b)
such that
flx 1l

Vu
P[0 «— x] <y exp{—y5—
log® |||

} forevery x € VAR 3.5
Moreover, (3.2) can be written as

Mo = inf{u > 0; liminfP[[0, LI < a[~L,2LI'] < (3.6)
—00

2d -214 }
Remark 3.2. The probability that a straight segment of length n is vacant is exponen-
tially small in n when d >4, while for d = 3, this probability is at least ¢ exp(—c'n/logn),
which corresponds to the capacity of a line segment (this follows e.g. from [9, Proposi-
tion 2.4.5]). So, (3.4) is sharp (up to constants), but the situation with (3.5) is less clear,
since in (3.5) the power of the logarithm in the denominator is at least 3. We believe,
however, that (3.5) can be improved (by decreasing the power of the logarithm).

Remark 3.3. There is a general question about how sharp the result in (2.18) is (also
in (1.6) and (1.7)). One could for instance ask whether the probability in (2.18) can be
exactly 1, thus achieving equality in (1.6)—(1.7) (so that we would have a “perfect dom-
ination”). Interestingly enough, Theorem 3.1 sheds some light on this question, at least
in dimension d = 3. Indeed, in the proof of Theorem 3.1 we use (1.7) with ¢ =~ log_b s
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to obtain the subexponential decay of (3.5); however, if the error term could be dropped
altogether, or even if s could be replaced by s'*% (for some § > 0) in that term, then
(compare with the proof for d > 4) one would obtain the exponential decay for d = 3 as
well, which contradicts the previous remark. This is an indication that, in general, s4-2
in the exponent in the error term could be sharp, at least if ¢ is small enough. Also, one
cannot hope to achieve perfect domination if ¢ < s~@~2) simply due to (1.2).

It is less clear how small the parameter ¢ can be made (say, in the situation when s
does not exceed r). Obviously, (2.18) stops working when ¢ = O(s_(d_z)/z), but we
are unsure about how much our main result can be improved in this direction. Also, it
is interesting to observe that, unlike the bound (1.3), our estimates become better as the
parameter u increases.

Remark 3.4. As mentioned in Section 1.1, one can obtain exponential decay as in (3.4)
for any percolation model with suitable monotonicity and decoupling properties. Namely,
let Q” be a family of measures on {0, I}Zd, d > 2, indexed by a parameter u € [0, 00).
We assume that this family is monotone in the sense that Q“/ dominates Q” ifu’ < u(as
happens for the vacant set in the random interlacement model). Also, assume that there
are positive constants b, ¢, M, § such that for any increasing events A, A, that depend on
disjoint boxes of size r within distance at least s from each other, we have, for all u > 0
ande € (0, 1),

O"[A1A7] < QU=9[ANON=9[As] + c(r + )M exp(—y16Pus'T9).

Then for all u > u** (where u™* is defined as in (3.6) with obvious notational changes)
we would obtain exponential decay as in (3.4) (again, with obvious notational changes).
The proof would go through practically unaltered.

4. Soft local times and simulations with Poisson processes

In this section we prove a result about simulating sequences of random variables using
Poisson processes. Besides being interesting in itself, this result will be a major ingredient
in order to couple various random interlacements during the proof of Theorem 2.1.

Let X be a locally compact and Polish metric space. Suppose also that we are given a
measure space (2, B, u) where B is the Borel o -algebra on ¥ and u is a Radon measure,
i.e., every compact set has finite y-measure.

The above setup is standard for the construction of a Poisson point process on X. For
this, we also consider the space of Radon point measures on ¥ x R,

L = {17 = Z(S(ZAJ&); Z) € X, v, € Ry and n(K) < oo for all compactK}, “.1)
LEA

endowed with the o -algebra D generated by the evaluation maps n — 1n(S), S € BRB(R).

Note that the index set A in the above sum has to be countable. However, we do not
use Z4 for this indexing, because (z;, vy) will be ordered later and only then will we
endow them with an ordered indexing set.
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One can now canonically construct a Poisson point process 1 on the space (L, D, Q)
with intensity given by u ® dv, where dv is the Lebesgue measure on R,. For more
details on this construction, see for instance [16, Proposition 3.6, p. 130].

The proposition below provides us with a way to simulate a random element of X
using the Poisson point process 1. Although this result is very simple and intuitive, we
provide here its proof for the sake of completeness and the reader’s convenience.

Proposition 4.1. Ler g : & — Ry be a measurable function with [ g(z) u(dz) = 1. For
n=2 e 8. € L, define

& = inf{t > 0; there exists A € A such that tg(z,) > vy} “4.2)
(see Figure 2). Then under the law Q of the Poisson point process 1,

(1) there exists a.s. a unique A € A such that §g(z5) = vy,
(ii) (z3,&) is distributed as g(z)u(dz) ® Exp(1),
(iii) 0 =3, 5 8(zvi—tg () has the same law as n and is independent of (§, ).

As mentioned in the introduction, a statement similar to the above proposition has already
been established in the special case of ¥ = (0, 1) C R in [33, Claim 1.5].

Ry

(2x,v2)

Ga(z) = &19(20, 2) + §29(21, 2)

z1 z2 E
Fig. 2. An example illustrating the definition of £ and A in Proposition 4.1. More generally, &1, z1
and &, 7 are as in (4.32).
Proof. Let us first define, for any measurable A C X, the random variable
éA = inf{¢t > 0; there exists A € A suchthat714g(z)) > v,}. “4.3)

Elementary properties of Poisson point processes (see for instance [16, (a) and (b),
p- 130]) imply that

£4 is exponentially distributed (with parameter f 4 &(2) u(dz)) and
if A and B are disjoint, then £4 and £5 are independent. 4.4
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Property (1) now follows from (4.4), using the fact that ¥ is separable and that two
independent exponential random variables are almost surely distinct. Observe also that

QIt > @, z; € Al = Q[E™\ > g% > a]. 4.5)

Thus, using (4.4) we can prove property (2) using simple properties of the minimum of
independent exponential random variables.

Finally, let us establish property (3). We first claim that, given &, " := ), £ 8(z,.v1)
is a Poisson point process, which is independent of z; and, conditioned on &, has intensity
measure Ljyseg(z)) - 1(dz) @ dv.

This is a consequence of the strong Markov property for Poisson point processes and
the fact that {(z, v) € ¥ x Ry; v < &g(z)} is a stopping set [17, Theorem 4].

To finish the proof, we observe that, given &, ' is a mapping of " (in the sense of [16,
Proposition 3.7, p. 134]). This mapping pulls back the measure 1(y~¢g(7)) - 4(d2) ® dv to
n(dz) ® dv. Noting that the latter distribution does not involve &, we conclude the proof
of (3) and therefore of the lemma. ]

Let us now use the same Poisson point process 1 to simulate not only a single random
element of X, but a Markov chain (Zy)>1. For this, suppose that in some probability
space (L', D', P) we are given a Markov chain (Z;)r>1 on X with transition densities

PlZi+1 € dz | Z] = g(Zk, 2)u(dz)  fork =1, (4.6)

where g(-, -) is B-measurable in each of its coordinates and integrates to 1 with respect
to u in the second coordinate.

We moreover suppose that the starting distribution of the Markov chain is also abso-
lutely continuous with respect to . In fact, in order to simplify the notation, we suppose
that

Z is distributed as g(Zo, z)u(dz). 4.7

Observe that the Markov chain starts at time one, so that there is no element Zj in the
chain. In fact, (4.7) should be regarded as a notation for the distribution of Z;, which is
consistent with (4.6) for convenient indexing. This notation will be particularly useful in
Theorem 4.8 below.

Remark 4.2. Observe that, in principle, Z; could be any process adapted to a filtration
and the arguments of this section would still work, as long as their conditional distribution
are absolutely continuous with respect to . However, for simplicity we only deal with
Markovian processes here, as the notation for general processes would be more compli-
cated.

Using Proposition 4.1, we introduce

&1 = inf{r > 0; there exists A € A such that tg(Zy, z)) > vy},
Gi(z) :=§&18(Zy,z) forz € X, (4.8)
(21, v1) is the unique pair in {(z3, va)}rea With &1G1(z1) = vg

(see Figure 2).
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It is clear from Proposition 4.1 that z; is distributed as Z; and that the point process
Z(Z)\ v)£(z1,v1) 8za,v—G 1 (z,)) 18 distributed as 7. In fact we can continue this construction
starting with n’ to prove the following

Proposition 4.3. We can proceed iteratively to define &,, G, and (z,, v,) as follows, for

alln > 1:
£y i=inf{t > 0; I(za, v2) ¢ {(zk, VOYIZ) : Gue1(2) +18(zn—1,22) = vi),  (4.9)
Gu(2) = Gpo1(2) + £18(2n—-1, 2), (4.10)
(zn, V) is the unique pair (z;, vy) ¢ {(zk, vk)}z;} with G,(z2,) = vy, 4.11)
(21, .-y 2n) £ (Z1, ..., Zy) and they are independent of &1, ..., &, 4.12)
Z 8(z,v1—Gn(z2)) 18 distributed as n and independent of the above.
(zr,v) ¢l (kv (4.13)

See Figure 2 for an illustration of this iteration.

We call G, the soft local time of the Markov chain, up to time n, with respect to the
reference measure p. We will justify the choice of this name in Theorem 4.6 below.
From the above construction we have the following

Corollary 4.4. On the probability measure Q (where we defined the Poisson point pro-
cess 1) we can construct the Markov chain (Zy)k>1, in such a way that for any measurable
Sfunctionv : ¥ — Ry,

QUZ1,.... Zr} S {za v = v(@)H = QIGT(2) < v(2) for p-ae.z € £ (4.14)
for any finite stopping time T > 1.

Remark 4.5. Let us now comment on how the above corollary compares with other tech-
niques for approximate domination present in the literature. One such method is called
“Poissonization” and appears in various works, for instance [23], [22], [32]. Loosely
speaking, the method of Poissonization attempts to compare the elements Zy, Zs, ...
with z1, z2, . .. one by one, so that one needs the transition densities g(z, z’) to be close to
one (in L' (x)) uniformly over z. Not having such a requirement is the main contribution
of our technique, which will be useful later when working with random interlacements.

In order to estimate the right-hand side of (4.14), it is natural to resort to concentration
inequalities or large deviations principles for the sum defining Gr. For this it is first nec-
essary to obtain the expectation of the soft local time G7(z). The following proposition
relates this with the expectation of the usual local time of the chain Zj, and that is the
main reason why we call G a soft local time.

We define the local time measure of the chain (Z;)x>1 up to time n by

Ly=Y 6z (4.15)

k<n
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Observe that in some examples, the probability that z € ¥ is visited by the Markov chain
could be zero for every z € X (for instance if u is the Lebesgue measure). Therefore, we
need to use a test function in order to define what we call the expected local time of the
chain. More precisely, we say that a measurable function 2 : ¥ — Ry is the expected
local time density of (Z)r<n with respect to pu if

EP (Lnf) = / f(@)h(z) u(dz) for every non-negative measurable f. (4.16)
b

Here n could also be replaced by a stopping time. An important special case occurs when
¥ is countable and u is the counting measure. In this case, the expected local time density
h(z) is given simply by the expectation of the local time £, at z:

EP (Z f(Zk)> =YY f@PIZ=z1=)_ fRE"La(2). 4.17)
k=1 k=1 z b4

For what follows, we suppose that the state space X contains a special element A
which we refer to as the cemetery. We assume that ({A}) = 1and g(A, -) = 1{5)(-), or
in other words, that the cemetery is an absorbing state. We write T for the hitting time
of A which is a killing time for the chain in the sense of [7, (2)]. We will also assume that
test functions f as in (4.16) are zero at the cemetery.

The next result relates the expected local time density to the expectation of the soft
local time.

Theorem 4.6. Consider a state space (X, B, u) with a cemetery state A and a Markov
chain (Zy)>1 satisfying (4.7) and (4.6). Then

EQ[GTA (2)] is the expected local time density of (Zy)k<T, as in (4.16). (4.18)

The result is also true when Ty is replaced by a deterministic time.

Proof. Given some n > 1, let us calculate

Ep(kn;ﬂzk))

EPpzn+EP (3 ED_ f2)
k=2

EP(Z / f(z)g(zk_l,z)mz))
k=1
4.12)

= EQ/f(Z)Gn(Z)M(dZ) =/f(z)EQGn(z)M(dz), (4.19)

proving the validity of the proposition for the deterministic time n. We now let n go to
infinity and the result follows from the monotone convergence theorem and the fact that f
is zero at A. O

Let us remark that the above proof can be adapted to any killing time; on the other hand,
one cannot put an arbitrary stopping time in place of Tx in Theorem 4.6.

Before stating the next result, let us discuss a bit further our convention on the starting
distribution of the Markov chain. According to (4.7), Z; is distributed as g(Zo, z)u(dz),
but this was seen as a mere notation for convenient indexing and Zy had no meaning
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whatsoever in that equation. However, it is clear that given any zp € X, we could plug
it in the first coordinate of g(-, -) as in (4.6) to define the density of Z;. Then the whole
construction of &, Gy and (zx, vx) in Proposition 4.3 would depend on the specific choice
of zo. In the next proposition, we write Q;, for the measure Q, where the construction
of &, G and (zx, vi) (recall (4.9)) is obtained starting from the density g(zo, z). We also
denote by E;% the corresponding expectation.

Remark 4.7. Let us also observe that restricting the distribution of Z; to be
g(z0, 2)u(dz) for some zp € ¥ does not represent any additional loss of generality, as zg
could be an artificial state introduced in X, from which g(zo, z) is any desired density
for Z;.

The next two theorems are useful in estimating the second and exponential moments of
the soft local times. This will be useful in the proofs of Lemma 6.2 and Theorem 2.1.
Besides calculating the expectation of Gy, it is useful to estimate its second moment.

Theorem 4.8. Foranyz,z9 € X,

ES(Gr, (2))* < 4E2(G1,(2)) sup E;%GTA (2). (4.20)
)

The result is also true with Ta replaced by a deterministic time.

Proof. Forz € £\ A andn > 1, we write (recall that the expectation of (Exp(1))? is 2)
2 - 2
E2(Gu(2) = ES(Y &g(@i1.2))
k=1

=Eg (Z ngz(zkflyz)) +E (2 D &g, g1, z))
k=1

k<k'<n

n
<Y E&supg(z, DE2g(z 1, z>+22 Z 2 (g1, 2)8(zw-1,2))
k=1 4 =1 k'=k+1

szsupg<z’,z)E;?;Gn(z)+2Z Z (g1, DED(ezir—1,2) | 25-1))
k4 =1 k'=k+1

- n—k
= 25up EZGa () ESGa(2) + 2ZE;Q(§ (sr-1.9ES (X 8Gn-1.2)))
Z = m=1
n—1

<2supE Gn(z)EQG (z)—i-ZSupEQ(Zg(Zm 1,Z)> (Zg(Zkfl,Z))
k=1

m=1

= 4E;QS(G,, (2)) sup EZ6Gn(Z)»

20

proving the result for the deterministic time n. Then we simply let n go to infinity and use
the monotone convergence theorem. O
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The next result provides an estimate on the exponential moments of G, , which is clearly
an important ingredient in bounding the right-hand side of (4.14). The next theorem im-
poses some regularity condition on the transition densities g(-, -) (which will be encoded
in £ and « below) to help obtain such fast decaying bounds. Intuitively speaking, the reg-
ularity condition says that if there is a big accumulation of densities g at some point Z,
then there should be a big accumulation of densities in a large set I'.

Theorem 4.9. Given 7 € ¥ and measurable ' C X, let

!

a :inf{ g(Z’ZA); ze%, 7 el gz, 2 > 0},
8(z,2)

NI) =#k <Ta; zx €T}, £€> sup g(z,2).

7€

421

Then, for any v > 2,

QIG1, (2) = ve]
< QIGr,(2) = €l(exp{—(3v — 1)} + Su/p@zf[n(l" x [0, Svea]) < N(D)]).

(recall the definition of n in (4.1) and observe that n(I" x [0, %vﬁa]) is a random variable
with distribution Poisson (5 vt (I"))).

Before proving the above theorem, let us give an idea of what each term in the above
bound represents. In order for Gr, () to get past v€, it must first overcome ¢, which
explains the first term in the above bound. Then the two terms inside the parenthesis above
correspond respectively to the overshooting probability and a large deviations term. We
can expect the second term to decay fast as v grows, since N (I") becomes much smaller
than the expected value of n(I" x [0, %vﬁa]).

Proof of Theorem 4.9. Define the stopping time (with respect to the filtration F,, =

0 (zk, &k, k < n))
T, = inflk > 1; Gr(2) > £}. 4.22)

Now, for any v > 2, we can bound Q[G 1, (Z) > v{] by
Q[T; < 00, G, (2) = 3v€] + Q[T < 00, G7,(2) < 3vl, G, () — G, (3) > 3ve]
(4.23)

(observe that Q[Gr, (2) > £] = Q[T; < oc]). We start by estimating the first term in the
above sum, which equals (using the memoryless property of the exponential distribution)

Y EYGu1(3) < . QlEng(n-1.2) > 0L = Gu1(B) | 2a-1. Gu1))

n>1

<Y EYGp 1) < €, QlErg(za1,2) > £ — Gy 11Q[E1g(za1,2) > (3v — 1)t])

n>1
< QIT < ool sup Q[£18(z',2) > (3v = 1)¢] < QIT¢ < colexp{—(3v —1)}.
7ex
(4.24)
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‘We now turn to the bound on the second term in (4.23), which is

E%(T; < 00, G1,(2) < 100, Q[G1, () — G1,(3) > tve | Gy, ..., Gr])
< QIT; < oolsupQy[Gr, (2) > yve].  (4.25)

Now since for any 7’ € %,

Ta Ta
Gr, ()= &rg1,) = Y g1, HIFE) = aGr, OIrE),  (426)
k=1 k=1

we deduce that for all Z/,

Q/[Gr, (3 = %Uﬁ] <Q/[Gr,(2) = %vﬁa for every z € ']
< Qu[n(r x [0, Jvta]) < N(D)]. (4.27)

Combining (4.23) with (4.24), (4.25) and the above we obtain the desired result. ]

Unfortunately, the simulation of a single Markov chain will not suffice for our purposes in
this work. As suggested by the definition of random interlacements in terms of a collection
of random walks (see (2.14)), we will need to apply the above scheme to construct a
sequence of independent Markov chains on ¥ and to this end, we will make use of the
same Poisson point process 1. This is done in Proposition 4.10 below, which requires
some further definitions. '

Suppose that in some probability space (L, £, P) we are given a collection (Z;i )j k=1
of random elements of X such that

for any given j > 1, the sequence (Zj, Zg, ...) is a Markov chain on X,
characterized by P[Z] € dz | Z]_|1=g(Z] . 2)u(dz) fork=1,2,..., (4.28)
for distinct values of j, the above Markov chains are independent. (4.29)

Recall that we interpret (4.28) for k = 1 as a notation for the starting distribution of the
chain as we did in (4.7). However, we are allowed to impose different starting laws (for
distinct values of j) by choosing the Z(j) ’s. Although they have a possibly different starting
distribution, they all evolve independently and under the same transition laws.

Suppose that for each j > 1,

the hitting time of A (as below (4.17)) is PZ j-a.s. finite, (4.30)
0

where P, denotes the law of this Markov chain evolution starting from z.

In what follows, we are going to use a single Poisson point process 1 to simulate
all the above Markov chains (Z,ﬁ) until they hit A. We do this by simply repeating the
procedure of Proposition 4.3 following the lexicographic order (j, k) < (j/, k') if either
Jj < j'yor j = j and k < k. This construction results in the accumulation of the soft
local times of all the chains, which is essential in proving our main theorem.
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In the same spirit of the definition (4.9), we set G(l) = ( and define inductively, for
n=1,2,...,

g6 i=inf{r > 0; 3(zs, va) ¢ {2 VOYZ1: Go_y(22) +18(zh_ 1. 20) = vi )
Gl =Gl (@ +&'eE .2, 431

(z). v) = the unique pair (3. v) & {(z5. v)}{Z| With G (22) = v;.

We write TA1 for the hitting time of A by the chain (z%, z%, z%, ...). Applying Propo-
sition 4.3, we find that (z}, e, le] ) is distributed as (Zl, e, Z%A) under the law P and
that .

m= Z 8(ZA»UA_G1T1 (z2))
A

(ZA,UA)¢{(Zrll’v}'ll)}n§Ti

is distributed as 1 and independent of the above.

Now that we are done simulating the first Markov chain up to time TA1 using n, let
us continue the above procedure in order to obtain from 5’ the chain (Z,%) k>1 and so on.
Supposing we have concluded the construction up to m — 1, let G = 0 and define for
n=1,..., Ty (T} stands for the absorption time of the mth chain),

£ = inf{r > 0; Iz, v1) & (&L, V]G o= mn—):
S G @) + Gy @) + 18y za) = v,
A
(4.32)
Gr(@) =Gy () + 478 2),

@, v ¢ {1z, v} o< mn—1) with Z;":_IIGJT, (zn) + G (z3) = vy
A

The following proposition summarizes the main properties of the above construction
and its proof is a straightforward consequence of Proposition 4.3.

Proposition 4.10. Suppose we are given starting densities g(Zj ,) (j = 1) and tran-
sition densities g(-, -) of a Markov chain as in (4.28). Then, defining g,j, G,J( and z,{ for
j=12,...andk=1,..., TA’ as in (4.32), one has:

(é,g,j >1,k < Ti) are i.i.d. Exp(1)-random variables, (4.33)

(Z]{, j=1k< Ti) L (Z,{, j=1k< TX) are independent of ék' ’s. (4.34)

The most relevant conclusion of the proposition is (4.34), showing that our method indeed
provides a way to simulate a sequence of independent Markov chains.
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5. Construction of random interlacements from a soup of excursions

In this section we use Proposition 4.10 to construct random interlacements in an alterna-
tive way. The advantage of this new construction is that it is more “local” than the usual
one, i.e., it does not reveal the interlacement configuration far away from the set of in-
terest; this of course facilitates the decoupling of the configuration on different sets, and
that is why we consider this construction to be the key idea of this paper. Note that the
canonical construction of the random interlacements (presented in Section 2) does not
have this property of “localization”, since it is quite probable that many walkers would
do long excursions away from the set of interest before eventually coming back.

Let us start with a simple decomposition of random interlacements that prepares the
ground for the main construction of this section.

5.1. Decomposition of random interlacements

A crucial ingredient in proving our main result is a decomposition of the interlacement set
7" that we now describe. For the rest of this section, let K be a fixed finite subset of Z¢.
Consider first the map sg : Wi — W defined by

sk (w*) is the unique trajectory w € W with 7*(w) = w* and Hg (w) =0.  (5.1)

We also introduce, for w € W, the one-sided trajectories w = (X (w))i>o and w™ =
(X—i(w))i>o in Wy. These can be seen as the future and past of w.
Let us define the space of point measures

I cN w;, €e Wo, u; € Ry and
Lo AT } (5.2)

{X Z Cni ) w(Wx x [0,u]) < oo foreveryu >0

iel

endowed with the o-algebra M generated by the evaluation maps x — x (D) for D €
Wi QB(R4). And for x = >, §(w;,4;) We extend the definition in (2.14) to M as follows:

7'(x) = |J Range(w)). (5.3)

itui<u

We can now introduce, forw = ) ; S(w;ﬁ’ui) € 2, maps X;a Xg - 2 —> M by

xp@= > Ssxwiytaun and X (@) = > Sisgwhy—upy M. (54)

itw;eWg wieWg

We also define the analogous point processes x;u and x , where the summations are
taken only over u; < u.

The main observation concerning these point processes is stated in the following
proposition, which is a direct consequence of (2.11) and (2.12).
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Proposition 5.1. For any finite set K C 74, the law of (x;{r, X ) under P is a Poisson
point process on (M x M, M ® M) with intensity measure characterized by

tx (Axla, b]xBxlc,d]) = A((@. b)x(c.d)) Y ex ()P [AIP,[B | Hg = 00] (5.5

xekK

for A,Be W, anda < b,c <d € R. Here A is the Lebesgue measure on the diagonal
in R? divided by \/2.

A way to rephrase the above proposition is to say that we can simulate the pair
(X; w X ) as follows:

o let ®f be a Poisson(u cap(K))-distributed random variable,
K

.. . ® . _
e choose i.i.d. points X, X" with law ek, and

e from each point X, / , start two trajectories, with laws given respectively by P, ; and
0

Pyl |Hg = ool.

Given a finite set K C Z4, we are going to decompose the interlacement set 7% as the

union of three sets Z ,, 73 _ and fl"( given by

T (@) =T" (@), Té_(@) =T"(xg @), Le@) =T"LW*\ W) o)
(5.6)
(recall the definitions (2.14) and (5.3)).
Roughly speaking, the sets II”(’ 4 and Il’éyf correspond respectively to the future and

past of the trajectories of Z" that hit K, while ’I} encompasses the trajectories not hit-
ting K. This decomposition will be crucial for obtaining the decoupling in Theorem 2.1,
and we now present its main properties.

Proposition 5.2. For any finite K C Z% and u > 0,

I"=Tg UIg U f}‘( for every w € €, 5.7
T“NK = I,”(’+ P-a.s. (5.8)
/I\K,u is independent of (T ,,Tg ). (5.9

Proof. To prove (5.7), one should decompose the union giving Z" into Wz and W*\ Wy,
observing that for each w* € W}, Range(w*) = Range(sx (w*)*) U Range(sg (w*) 7).

To see why the second statement is true, observe first that 7 N K C I}‘(’ e II”{,_,
since we have (5.7) and f,“( is disjoint from K. Then, observe that T} _ N K is P-a.s.

contained in Zy ., which follows from Proposition 5.1, since for ever); x € supp(eg),
Range(w) N K = {Xo(w)}, P[ - | Hx = oco]-ass.
Finally, to prove (5.9), we observe that these two sets are determined by the realization

of the Poisson point process  in the disjoint spaces of trajectories W* and W*\ Wg. 0O

We also observe that the random variable

@5 = X;(W+ x [0, ul) = xgx (W4 x [0, u]) is Poisson(u cap(K))-distributed. ~ (5.10)
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5.2. Chopping into excursions
Fix a finite set V C Z¢ and a set C C Z¢ such that
aC is finite. 5.11)

The above condition is equivalent to C being either finite or having finite complement
(see Figure 3 below). Suppose also that C NV = . Although some of the definitions that
follow will depend on both V and C, we will keep only the dependence on C explicit,
since the set V will be kept unchanged throughout proofs.

We are interested at first in the trace left by Zy, , on the set C. The random walks
composing I‘“,! n (see (5.6)) will perform various excursions between C and V until they
finally escape to infinity. This decomposition of a random walk trajectory into excursions
is crucial to our proofs and we now give the details of its definition. In fact, one can look
at Figure 3 to have a feeling of what is going to happen.

Ry

)

Fig. 3. Typical examples of sets C (gray) and V (closed curves). On the left C is finite, while on
the right it has finite complement. The stopping times Ry and Dy, are also pictured.

Given a trajectory w4 € W, (recall (2.2)), let us define its successive return and
departure times between C and V:
Do =0, Ry = Hc,
Dy =Hyo0g, +Ry, Ry=Hco0p, + Dy,
Dy = Hy o0, + Ry and so on (see Figure 3).

Note that above we have omitted the dependence on w.. Define
TC = inf{k > 1; Ry = oo}, (5.12)

which is equal to one plus the random number of excursions performed by wy until
escaping to infinity. Since we have assumed that the set V is finite, and the random walk
on Z% (d > 3) is transient, T is finite P-almost surely.

The reason why we define 7€ as one plus the number of excursions is to guarantee
that it coincides with T as defined just after (4.17) in the construction that follows.
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As mentioned before, we are interested in the intersection of Zy, " (recall (5.6)) with

.. + ey
the set C. Writing x; , = Zj£1

sponding u’s), and abbreviating ch = Tc(wj), we obtain

8w, (where the w’s are ordered according to their corre-

oy Tf -1
cnzy,=cn | wo=cnlJ U Xr@p..... Xp,w))  (5.13)
(w,w)esupp(xy) ) j=1 k=1

where it may occur that some of the Dy (w;)’s above are infinite.

We are now going to employ the techniques of Section 4 to simulate the above col-
lection of excursions using a Poisson point process. For this let ¥¢ denote the following
space of paths:

Se = (AU { w = (x1, ..., xt) finite nearest neighbor path, starting }

at dC and ending at its first visit to V

U { w = (x1, X2, ...) infinite nearest neighbor path, }

starting at dC and never visiting V .19

where A is a distinguished state that encodes the fact that a given trajectory has already
diverged to infinity. Illustrations of finite and infinite paths in £ ¢ can be found in Figure 3.
Consistently with the previous discussion, we use the shorthand X/ = X A(wj); in
other words, the superscript j means that we are dealing with the jth walk of the con-
struction. The excursions induced by the random walks will be encoded as elements of X¢
as follows ) ) )
Zl =X Xp) €Zc fork=1,..., T —1,
J (5.15)
ZTjC =A.
The reason why we introduce the state A is to recover the description of Section 4, indi-
cating that another trajectory is about to start.

In view of (5.13), in order to simulate C N Zjy, ., we only need to construct the ex-

-+
cursions Z,ﬁ with the correct law. For this, we are going to use the construction of the
previous section to simulate them from a Poisson point process. In (5.18) below, we will
prove that for a fixed j, the sequence z7!, Zé, ... is a Markov chain, as required in (4.28)
and (4.29).

Endow the space of paths X¢ with the o-algebra S generated by the canonical coor-
dinates and with the measure pc given by

pe(X) = > Pl(Xo. X1..... Xpy) € X1+ 8a(X), (5.16)
xedC
where X € S. Note that ¢ is finite due to (5.11). We can therefore define a Poisson
point process 7 = ) _; 8(z;.v;) on ¢ x Ry with intensity e ® dv as in (4.1).
In order to apply Proposition 4.10, we first observe that for fixed j > 1, Z,ﬂ is a
Markov chain, due to the Markovian character of the simple random walk. We then define

f@) = Py[X g =x] (5.17)
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and apply the strong Markov property at Dy_; to obtain the Radon—Nikodym derivative

1 ifz=27 = A,
) ) or7 = A, Dy = o0,
dP(Z]l e-1Z]_ =2 , & (Xo(@))  ifz,7 # A, Dy_y < o0,
dic @) =1"%p, @
PXj [He =o0] if =A#2z, Dy < o0,
D @
0 otherwise,
(5.18)
forall k > 2. o
The above not only shows that the sequence Z I Zé, ... 1s Markovian, but also that
the transition density of the chain satisfies
gc((x0, -+ x1), (Y0, -+ > Ym)) = [, (Y0) (5.19)

(g is a density with respect to ¢, as in (5.16)). We are now left with the starting distri-
butions of the Markov chains Z ,ﬁ
Recall that we are attempting to construct the measure X‘}L ,» Which is not independent

of Xy, In fact, they are conditionally independent given {Xo(w)} ) Therefore,

wesupp(xy ,

=1,...,

satisfies .
8e (X0, - X1) = fyg (x0). (5.20)

Finally, we set Zé = w where w is any trajectory with Xo(w) = Xé =X {)O, so that
(5.18) is also satisfied for k& = 1, in compliance with the notation in (4.28) (see also
Remark 4.7).

We can now follow the construction of & ].Ck and jSk’

in (4.32). Then, using Proposition 4.10, we obtain a way to simulate the excursions Z ,ﬁ as
promised. In particular, we can show that

forj > 1,k = 1,...,TJ.C,as

o 1f
cn I\L;,+ is distributed as C N U U Range(sz) under Q. (5.21)
j=1k=1
See Figure 4 for an illustration of the first two steps (for the first particle) of the
construction of random interlacements on the set C.
We now prove a proposition that relates our main result, Theorem 2.1, to the above
construction. To simplify the notation for the soft local time, we abbreviate the accumu-
lated soft local time up to the @fth trajectory as

C _ ~C c o c
G, = Gl,T,C + G2,T2C +- G®E,TL§C' (5.22)

We can use Theorem 4.6 to obtain a short expression for EGS (z). For this, given

Jj =1, welet

TjC
Py () = ]; 1+(Xg,) (5.23)

count the number of times the jth trajectory starts an excursion through x.
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IC x

X

Ry ;\
e Q

B e N
1

Fig. 4. The construction of random interlacements on the set C; the points of X are substituted
by points in dC x R with marks representing the corresponding trajectories, and the state A is not
pictured.
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Let us first recall, from (5.19), that Gf depends on z = (xg, x1, . .. ) solely through xy.
Thus, given z, 7’ € X¢, we define ¢(z, ') = 1{Xo(z) = Xo(z')} to obtain

(5.19)
EQGﬁTlc(Z) = /Q(Z,z/)E@Glec(z’) we(dz)
¢
J .
Theorem 4.6 EP(ZQ(Z], Z)) — Eppf(XO(Z)), (5.24)
k=1

for every z € Z¢. Clearly, this implies that
E®GS(2) = EROS x EP pf (X0(2) = veap(V)E” pf (Xo(2)). (5.25)

Proposition 5.3. Let Ay and A, be two disjoint subsets of Z¢ with Ay having finite com-
plement. Now suppose that

V c Z% is such that any path from A\ to Ay crosses V. (5.26)

Then for every u > 0 and ¢ € (0, 1) there exists a coupling Q between T" and two
independent random interlacements processes, (L1),=0 and (13)y>0, such that

QY nAr T nAay 7V k= 1,2]

>1- > Q[IGS () — ERGS ()| = 16 EQGS (2) for some z € B¢,
(0.0)=(u(T+e),Ap),

(u(l%e),Ar),(u,A1UA7) (5.27)

where the soft local times above are determined in terms of V.

We note that the above proposition is an important ingredient for the proof of Theo-
rem 2.1, since it relates the success probability of our decoupling to an estimate on the
soft local times. In Section 6, we will bound the right-hand side of (5.27) using large
deviations. One should not be worried that the set ¥¢ may be uncountable (in case the
excursions are infinite). Later we will deal with this, using the fact that the soft local time
depends on z only through its starting point.

Proof of Proposition 5.3. We are going to follow the scheme in Section 5.1 in order to
construct the triple Z", (Z{')y>0, (Z3 )u=0, distributed as random interlacements on 74 as
stated in the proposition. However, we will need two independent copies of some of the
ingredients appearing in that construction. More precisely,

let Xy = 28,1, and xy 5 = 37 8,2 2 be two independent ran-
dom variables on M (i.e., Poisson point processes on the space of labeled

trajectories) with the same law as y, in (5.4), (5.28)
let the counting processes ®X’1 = Xy1(W4 x [0, u]) and ®X’2 =
)(‘7’2(WJr x [0, u]) be as in (5.10), for u# > 0, and finally 5.29)

define two independent processes /I\‘”,I and /I\éz as in (5.6). (5.30)
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The only missing ingredients in order to construct two independent random interlacement
processes following the construction of Section 5.1 are the random walks composing X‘J,“
(see (5.4)). The construction will be based on Proposition 4.10, and that is where the
coupling will take place.

Let us introduce the sets

Y AU4,» 24, and X4, given by (5.14) with V as in (5.26). (5.31)

Note that we have replaced the set C by the three above choices, while keeping V fixed.
We also let pta,u4,, A, and 14, be the respective measures on these sets, given
by (5.16). The first crucial observation for this proof is that

2 A,U4, s the disjoint union of X 4, and X 4, and pa,ua, = KA, + H4,. (5.32)

Note that we are duplicating the cemetery on X 4,u4, for the above to hold.
We define a Poisson point process n on X4,u4, X Ry with intensity pa,ua, ® dv as
below (5.16). From (5.32) we conclude that

n restricted to X 4, and X 4, are Poisson point processes with respective
intensities 4, ® dv and p 4, ® dv, which are independent of each other.
Moreover, an excursion z € X4, cannot intersect Ay with k' # k (see (5.26)). (5.33)

14

We us§ Xy, and x, , in order to define the starting points {Xo’l’j}jzl,__.,@fl and
{X(‘)/ 2 }j= L et Let us finally recall the definitions of 7€ from (5.12), and of Gﬁk

and zjck from (4.32), where C can be replaced by either of the three sets A1 U Aj, Ay,

or Aj. Itis important to observe that we use the starting points X (‘)/ 17 for the case C = Ay
and X(‘)/’Z’J for both C = Ay, A1 U A>. We can finally introduce
of Tf
JE=cCn U U Range(z{,) with C = A; U Aj, A or Ay (5.34)
j=lk=1

(note that we use the same Poisson point process to define the three sets above) and

Iu = jKIUAz UIM (X;l) UI&,Z’
Ii = JKI UIM(X;J) UZy,. Iy= sz UIM(X\Zz) UZy,.
We independently modify the above sets on (A U A»)€ to obtain the correct distributions,

although this is immaterial for the statement of the proposition.
To conclude the proof of the proposition, let us observe that
o (J&)ux0 is distributed as (C N I{‘,,Jr)uzo for C = A1 U Ay, A or A, (see (5.21)), so
that ((A1 U A2) NZ"),>0, (A1 NZ})u=0 and (A2 N ZY),>0 have the right distributions
as under the random interlacements;
° ‘7/?1 and sz are independent (see (5.28), (5.29) and (5.33)), which means (A1 NZ}),>0
and (A N Iﬁ’)uzo are also independent.
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Ay
’\/\/\/@\/\/\ /\/vf&g/\/‘\/u
- Bl o ucap(V)(1+¢)(1 - 5)e
BN NN Gt et
= e~ T
Lo - R P L <

r---oCoC - S N ST —ucap(V)(1 - §)p

W" W ucap(V)(1 =€)+ 5)¢
G 2

Fig. 5. Proof of Proposition 5.3; ¢ was defined in the last paragraph of the proof (observe that
14+¢/3<(1—¢/3)(1+¢)fore e [0,1]).

Hence, using the definition of 7%, I’l‘ and 7, we see that

QIZ''" nA T A < Tk =1,2]
> QT4 ™ S T uay, N AR S T4 Tk =1,2]

> QG () < Gi1V42(2) < Gt (o) forall z € By, and k = 1,2]. (5.35)
Now, (5.26) implies that for x € 9 A; we have p(x) := E” p*(x) = EP p/""*2(x). The
conclusion of (5.27) is now a simple consequence of the above display and the fact that
the expectation of GS is linear in u according to (5.25) (see Figure 5). ]

6. Proof of Theorem 2.1

In this section we will prove our main result, modulo a set of additional assumptions that
will be proved in the next section.

Recall that we use the notation B(x, r) = {y € Z%; |lx — y|| < r} for discrete balls.
Also, for A C Z@ we write B(A, 1) = U, B(x, 7).

Suppose we are given sets A1 and A as in Theorem 2.1 and suppose without loss of
generality that the diameter of A is not greater than the diameter of A;. It is clear that
we can assume that A, = Z4 \ B(A1, s), since the function f, can be seen as a function
in {0, 1)2\B(A1.9): 5o, from now on we work with this assumption.

The proof of the main theorem will require some estimates on the entrance distribution
of a random walk on the sets Aj, A and A; U Aj, which are closely related to the
regularity conditions mentioned before Theorem 4.9. However, the problem is that, in
general, these estimates need not be satisfied for an arbitrary finite set A| and Ay =
ZA\B(A1, s). So, in order to fix this problem, we will replace A| and A, by slightly larger
sets AES) and Aés), using Proposition 6.1 below. Roughly speaking, these “fattened” sets
will have the following properties (below, C stands for any of the three sets Ags), Ags), or

(s) ().
AT UAS):
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e the probability that the simple random walk enters C through some point y is at
most O (s~@=D) for starting points at distance at least of order s from C;

e this probability should be at least of order s ~@~1 for “many” starting points which are
at distance of order s from y;

o the probabilities of entering C through two near points y and y’ in dC can be different
by at most a (fixed) constant factor (this should be valid as soon as the random walk
starts far from {y, y'});

o finally, we also need some additional geometric properties of dC.

A typical example of a set having these properties is a discrete ball of radius s; in fact,
we will prove that any set with “sufficiently smooth boundary” will do. More rigorously,
the fact that we need is formulated in the following way (one may find it helpful to look
at Figure 6):

Rl

Fig. 6. The sets in Proposition 6.1.

Proposition 6.1. There exist positive constants ys € (0, 1—10), Y1, ¥8 < ¥6/2, V9, Y10, Y11
€ (0, 1), so (depending only on dimension) such that, for any s > sy and any set A C 7¢
such that Z¢ \ B(A, s) is non-empty, there is a set A with the following properties:

A C AY C B(A, 5/5); (6.1)
foranyy € 9A®,
sup  PelXp,, =yl <yps” 7D (6.2)

xezd4:
d(x,y)>ve6s/2
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and there exists a ball By of radius yes such that d(éy, y) € [VeS, 2y6s] and

ing PX[XHA(A') =Yy, HA(J) < HZd\B(y,4J/6S)] 2 )/7_1S_(d_1). (63)
x€B,

Moreover, for any y € 3A®,
[z € 94 Iy — 2]l < ys}l = yos, (6.4)
and if y' € dAY is such that |y — y'|| < yss, then there exists a set D (depending on

v, Y') that separates {y, y'} from dB(y, yes) (i.e., any nearest neighbor path starting at
dB(y, y6s) that enters A at {y, y'}, must pass through D) such that

PX[XHA(S) = y]
sup - = Yio0- (6.5)
ved:  PelXn, =¥ Hyo < Hza\py syes)]
PulXn, =310

The proof of this proposition is postponed to Section 8. We are now going to use the
above result to prove Theorem 2.1.

Recall that we define A, = Z¢ \ B(Aj1, s). The idea is to use Proposition 5.3 for AES)
and Ag) provided by Proposition 6.1, and V defined as

V={yez diy, AV UAY) > ys). (6.6)

Lety,y e 8A§s) UBAS) be such that ||y —y’|| < ygs (in fact, in this case both y and y’
must be in the same set, either aAi‘Y) or BAES)). Let D be the corresponding separating set,
as in (6.5) of Proposition 6.1. Now, consider an arbitrary site x € V, and write, for
=AY, 40,40 uaY,

P Xu. =yl = Z PX[Xch[) =z]P;[Xn, = y] and similarly with Y, 6.7)

zeb

where we have gsed the strong Markov property at H ., and dropped vanishing terms.
So, by construction, we have

Px[XHC = y]

sup 7 <y forC = A(ls), Ag‘v), Ais) U Ag‘v),

xeV: Py Xp. =y
PelXne=r1>0 when |y — Y|l < 5. (6.8)

With the above, we can now start estimating the soft local times appearing in (5.27).

In the rest of this section, C stands for one of the sets Ais), Ag), AES) U A(ZS); we will
obtain the same estimates for all of them. Recalling the definition of 7, in (4.22), we
consider x € dC and fix any z € X¢ such that x = X((z); then we denote by

Ff ) =G e (@) (6.9)
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the contribution of the jth particle to the soft local time in trajectories starting at x, in the
oF

construction of the corresponding interlacement set for C, so that GE @=> el ch (x).
We also introduce
Crry — C . P C )
- (x) = E[F|" (x)], which also equals E” p; (x) due to (5.24); (6.10)

recall the definition of ,ojc from (5.23).

Lemma 6.2. For C being either Ags), A;S) or AgS)UAg), andV asin (6.6), forall x € 0C
we have

(i) yi2s teap(V)™! < 7€ (x) < yi3sTeap(V) 7!,
(i) E(FE(x))? < yias~4 cap(V)~L.

Proof. Instead of estimating the expected soft local time directly, we rather work with the
“real” local time ,olc (x), with the assistance of Theorem 4.6.

Consider the discrete sphere V of radius 3(r + s) centered at any fixed point of Aj.
Given a trajectory w* € W*, the number of excursions ,olc (x) between V and C entering
at x is the same for both sy (w™*) and s‘;(w*). Thus, their expected values are the same

and can be written respectively as u cap(V)7 € (x) and u cap(V)ﬁC(x), where 7€ (x) is
the expected number of such (V, x)-crossings under ng. So,

7 (x) = cap(V)_1 cap(V)fTC(x).

We know that cap(V) = (r + 5)472 (see (2.8)), so in order to prove (i), it will be enough
to obtain

7€) < s r +5)7@, 6.11)

Forx’ € 74 \ C such that d(x’, x) > yss, we use the Markov property at H¢ to obtain

Ex’plc(x) < Py[Xpe = x]+ sup Py[Hp(x,yes/2) < 00] sup Ezplc(x), (6.12)
yev 7:d(z,x)>V6s/2

Then taking the supremum in x’ and using (6.2), we get

SUPx/: d(x’,x)>y6s/2 Pu[Xpe = x] —

sup Evpf(x) < D (6.13)

X' d(x,x)>yes /2 1-— SUPyey Py[HB(x,y63/2) < 0]
So, by [10, Proposition 6.4.2],

Ez,py (x) < sup Pu[Hp( s/ <00l sup  Eupf (x)
x'eV xd(x,x)>yes /2

—(d-2)
s+r
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We are now left with the lower bound

, (6.3) s\ s
E;. o P1 (x) > inf Py [H <oo] inf Pu[Xpy. =x] > ¢4 s ,
x'€dv x"€dBy s+r

proving (6.11) and consequently (i).
Part (ii) then immediately follows from (6.13) and Theorem 4.8 (see also Remark 4.7).
O

Next, we need the following large deviation bound for F 1C (x):
Lemma 6.3. For C = Ags), A(ZS), Ags) U Ag) and V as in (6.6), for all x € 3C we have
P[F]C(x) > vws_(d_l)] < y15sd_2 cap(V)_1 exp(—yiev) foranmyv =2 (6.14)

(also, without loss of generality we suppose that y16 < 1).

Proof. The idea is to apply Theorem 4.9 for Flc (x)and withT'y = {z € Z¢; |[x—=Xo2)||
< ygs}); observe that ue(I'y) > yos97! by (6.4). With the notation of Theorem 4.9, we
set

—(d-1

L=1ys and observe that o > 1/y0,

by (6.2) and (6.8).
Chebyshev’s inequality together with Lemma 6.2(i) then implies that

—- € (x) -
P[Ty < 0ol = P[F{ (x) =z y1s~ "V = ——7= < vy 'yiss' Peap(V) ™' (6.15)

Y78
Now, denoting by N (I'y) the number of crossings between V and C that enter I'y, and
by n, the number of points of the Poisson process (from the construction in Section 5) in

I, x [0, & 2y VS —@d=D1 we write

Qotns < Vo1 = Qo ne = 2220] @ [w = 220
4v10 4y10

To see that both terms on the right-hand side of the above display are exponentially small
in v, we observe that

e 1), has Poisson distribution with parameter at least 7’”'9 S U and
e starting from any y € V, with uniformly positive probab1l1ty the random walk does not
enter I'y (recall that yg < y6/2, which implies that Py[Hr, < o0] < ¢5 < 1 uniformly

in y € V). Therefore N, is dominated by a Geometric(cs) random variable having
exponential tail as well.

Together with (6.15) and Theorem 4.9, this finishes the proof of Lemma 6.3. ]

Now, we are able to finish the proof of our main result.

Proof of Theorem 2.1. For C = Ay, Ay, Aj U Ay and x € 3C, let Y& (A) = ESFE @)
be the moment generating function of F IC (x). It is elementary that ¢/ — 1 < t + 2 for
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all ¢+ € [0, 1]. Using this observation, for 0 < A < %y{lylésd_l (where yj¢ is from
Lemma 6.3) we write

C C
Ye0) = 1= E@ Y = DL pe + EE@TY = DL e
C
< E(WF{ () + 22 (F{ 0))%) + EST e

o0
< A€ (x) + y1ar’s ™4 cap(v)~! +,\/ 1 ™ PIFF (x) > yldy
.
o0
exp(—msd_1y> dy
i 2y7
< Mrc(x) + y14k2s_d cap(\/)_1 + c(,s_1 cap(V)_l)» exp(—cﬂ_lsd_l)
< A€ (x) + egr?s 4 cap(V) 7!, (6.16)

<270 + 71482~ cap(V) ! + 25542 cap(V)~! /

where we have used Lemmas 6.2(ii) and 6.3. Analogously, since e~ — 1 < —t + > for
all t > 0, we obtain, for A > 0,

YE(=1) — 1 < =2 (x) + cor?s  cap(V) ! (6.17)

(in this case we do not need the large deviation bound of Lemma 6.3).

Observe that if (Y, kK > 1) are i.i.d. random variables with common moment generat-
ing function v, and N is an independent Poisson random variable with parameter 6, then
E exp(™ 25:1 Yi) = exp(B(¢¥ (1) — 1)). So, using (6.16) and Lemma 6.2(ii), we write,
forany § > 0,z € ¥ and x = X¢(2),

ef
U

(1 + 8)it cap(V)7© (x)] = @[Z FE =+ a)ﬁcap(V)n%x)]
k=1

v

QIGS
e¢
Eexp(A) 1, ch (x))
= exp(A(1 + 8)ii cap(V)m € (x))
= exp(—)»(l + 8)u cap(V)rrC(x) + acap(V)(¥r(A) — 1))
< exp(— (8 cap(V)m € (x) — Cgkzﬁs_d)) < exp(—(ciordiis ™! — cgatiis™)),

and, analogously, with (6.17) instead of (6.16) one can obtain
QIGS = (1 = &)icap(V)m € (x)] < exp(—(crordiis ™! — ci3rtis™)).

Choosing A = 1485971 with small enough c14 depending on cg, c19, ¢12, ¢13 (and such
that 14 < (57! Y16/2) N ;Lyj), we thus obtain, using also the union bound (clearly, the

cardinality of dC is at most O((r + 5)%)),
Q[(1 — it cap(V)m € (x) < G§ < (1 + 8)it cap(V)m€ (x) forall x € C]
> 1 —ci5(r + )% exp(—c168%is?™%).  (6.18)

Using (6.18) with § = ¢/3 and u, (1 — &)u, (1 + &)u in place of & together with Proposi-
tion 5.3, we conclude the proof of Theorem 2.1. O
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Remark 6.4. As mentioned in the introduction, the factor (r +s)¢ before the exponential
in (2.18) can usually be reduced. Observe that this factor (times a constant) appears in the
proof as an upper bound for the cardinality of 8(A§S) U A;S)). In the typical situation
when s is smaller than r and the sets have a sufficiently regular boundary (e.g., boxes or
balls), one can replace (r + )4 by rd-1,

7. Connectivity decay

Proof of Theorem 3.1. We start by introducing the renormalization scheme on which
the proof will be based. Fix b € (1, 2]; clearly, one can consider only this range of
the parameter b in proving (3.5), and any particular value of b € (1, 2] (in fact, any
b € (0, 00)) will work for (3.4). Given L1 > 100, we define

1
L =214+ ——7=-= )L fork > 1. 7.1
k+1 ( + (k+5)b> k fork = (7.1)

Note that L; grows roughly as 2% and it need not be an integer in general. Before mov-
ing further, let us first establish some important properties of the rate of growth of this
sequence. First, it is obvious that

2k, 2k=1p,

2 1
2Ly =L —— 7L <L ——7 =< |L - — 7.2
k=Lt = gosple s L = G5 = [Li+1] * 15y (1.2)

for all k > 1 (here we have used

k+1 .
5(2'435)2 > 1 for every k > 1). Moreover, it is clear that
k—1

1
logLy =logLi+ (k—1)log2 + log| 1 + —
gLr=logLy+( ) log ; g( (j+5)b>

k—1
<logLi+(k—1)log2+ ra—t
gLy + (k—1)log j;(]+5)”
SO
L1250 <Ly <@ 2k (7.3)

‘We use the above scale sequence to define boxes entering our renormalization scheme.
Forx € Z4 and k > 1, let

Ck=10,L)"NZ +x and DN =[-L;,2L)NZ¢ +x. (7.4)

(Observe that the L;’s above need not be integers in general.)
Given u > u**, k > 1 and a point x € Z?, we will be interested in the probability of
the event

Al = (ck &5 74\ phy, (7.5)
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pictured in Figure 7. Our main objective is to bound the probabilities

pru) = sup PLAK )] P2 PLak ). (7.6)

xez4

In order to employ a renormalization scheme, we will need to relate the events A* for
different scales, as done in the following observation. Given k > 1,

. . . d d—1
there exist two collections of points {x!‘}?: 1 and { y]]?}/zi 17 such that

o k1 34
@ €™ = Uiz Cles (7.7)

d—1
(ii) Ufi’f c;fk is disjoint from D5 and contains 8(Z% \ D&T)
J

(see Figure 7). The above statement is a consequence of (7.2) and the fact that for all

k > 1 we have 2(1 + m) < 3and 6(1 + m) < 7. It implies that
Attc U 4ahn A’;_k (7.8)
i<3d ! !
j<2d-79-1
(see Figure 7).
e
2(k+5)7bLy,
E e—
A
3Lkt -

@) :
Y. z: q _//\4 ILk 3Ly

Yj

)

Fig. 7. An illustration of the event in (7.5) and the inclusion in (7.8).
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It is also important to observe from (7.7) that for any i < 39 and j<2d- 74-1

a2 2k-1p,
d(D%, DY) = | L] — 2L =

) =kt (7:9)

Abbreviate & = (u** + u)/2; since u > u™*, we have u > 1 > u**. Then, choose a
sufficiently small ¢ > 0 in such a way that

and define

Up = —@—4 >
[1=1( —ek)

by construction, u; < u for all k. Abbreviate kg = 2d - 21?/7 and set
0a = liminf P[0, LI & oL, 201); (7.10)
—>00

then (recall (3.6)) 0 < g4 < K;]. The above event is that there exists a connecting path

between these two sets through Vi,

Now, we obtain a recursive relation for py (i) (recall (7.6)).

We use (1.7) with r = 33/d Ly, s > 28" 1L (k + 5)7? (recall (7.9)), uz41 in place
of u and ek~? in place of ¢ (observe that uy = (1 — sk"’)uk+1), and use also (7.3) and
(7.8) to obtain

- lek d—2
pk+1(uk+1)sxdp,%(uu+c172"deexp<—msk 2”(m) . (711

where c1g = c18(u, b, €).

Now, let us first consider the case d > 4 (as mentioned above, for this case any
particular value of b € (1, 2] will do the job, so in the calculations below one can assume
for definiteness that e.g. b = 2). Let &y > 0 be such that g < e M < KaTl. Choose a
sufficiently large L1 > 100 in such a way that p; (i) < e~ and

L12k

kd yd —2b
C172 Ll exp(—clgk (m

d-2
) +h1+2k+‘) <1—kge ™ (7.12)
for all k > 1 (here we have used d > 4). Then we can find /> € (0, 1) small enough that
p1(@) < exp(—hy — 2h). (7.13)

We then prove by induction that

pr(ur) < exp(—hy — hy2"). (7.14)
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Indeed, the base for the induction is provided by (7.13); then, by (7.11),

Prat (1) < kg exp(=2h1 — ha2"H) 072" L] CXP(—018k2b<(k _Il_ 5),,) )

0, by (7.12) (recall that hy < 1)
PiA+1(U+1)
exp(—hy — hp2kt+1)

lek d—2
< kge M 4 cp2kLd CXP<—C18k_2b <m) +h + h22k+1>,

which is smaller than one, thus proving (7.14).
Observe that for all x,

PO <5 x] < P[[—Ly, Lil® &> a[—2Ly. 2L 1] (7.15)

with k = max{m; %Lm < |lx|I}; also, Ly = O(2%) by (7.3). Since uy < u forall k, (7.14)
implies that py (1) < exp(—h; — h22K), and we obtain (3.4) from (7.15).

Let us now deal with the case d = 3. Again, let h’1 > 0 with o3 < e < /c3_1.
Choose a sufficiently large L1 > 100 in such a way that p; (i) < e and
172 L3 exp(—ciglk +5) " L1254 hy) < 1 —k3e™™ (7.16)
for all k > 1. Then, we can find h/2 € (0, %Clg) small enough that
p1(i) < exp(—h} — 2h}). (7.17)
Now, in three dimensions we are going to prove by induction that
pr(ug) < exp(—h) — b (k + 5)7302%), (7.18)

Indeed, by (7.11) we have
Piet1 (Upt1) < k3 exp(—2h] — hy(k+5) 73025 4 01723% LT exp(—c15(k +5) 737 L125),

50, by (7.16) (recall that h; < %cig),

Pr+1 (k1) . ) )
exp(—/1} i (k—:é)—3b2k+1) < ke exp(—hb ((k +5)73 — (k+6)73"))
1 2

T2k L3 ( L2 + 1, + h} 2t

C X —C18————=+ o ———
e SR TS G s T T G 6y
< /cge*h/l +c1723ka exp(—clg(k—i—5)73hL12k71 +h))

<1,

thus proving (7.18). Again, since uy < wu for all k, (7.14) implies that pr(u) <
exp(—h) — h5(k + 5)732F) for all k, and then we obtain (3.5) with the help of (7.15)
analogously to the case d > 4. This concludes the proof of Theorem 3.1. O
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8. Smoothing of discrete sets: proof of Proposition 6.1

In this section we show that any set can be enclosed in a slightly larger set with “smooth
enough” boundaries, and this larger set has the desired properties (in particular, the en-
trance probabilities behave in a good way), as described in Proposition 6.1.

To facilitate reading, throughout this section we will adopt the following convention
for denoting points and subsets of R which are not (generally) in Z¢: they will be re-
spectively denoted by X, y, z and A, B, D, using the sans serif font. The usual fonts are
reserved for points and subsets of Z¢. Also, we use the following (a bit loose but conve-
nient) notation: if a set A C R is defined, then we denote by A C 74 its discretization:
A = ANZ4; conversely, if A C Z¢ is a discrete set, then A just equals A, but is regarded
as a subset of RY.

Similarly to the notation in the discrete case, let us write B(x,s) = {y € RY;
Ix — y|| < s} for the ball with radius s; recall that || - || stands for the Euclidean norm.
We abbreviate B(s) = B(0, s). It will be convenient to define, for A C R9, the ball
B(A,s) = Uyea B, 5).

Definition 8.1. Let D C R? be an open set (not necessarily connected) with smooth
boundary 9D. We say that D is s-regular if for any x € 9D there exist two balls B C D
and BX,, € R?\D of radius s such that 3D NBY, = dDNBY, = {x}. Informally speaking,
the definition means that one can touch the boundary of D by spheres of radius s from the

inside and outside. We also adopt the convention that R? is s-regular for any s > 0.

Observe that if D is an s-regular set, then for each x € 9D the balls B}, and B,
are unique. Let us denote by x™ and x°'* their respective centers, which lie on the line
normal to dD at x. Also, it is important to keep in mind that if D is s-regular then it is also
s'-regular for all s" < s.

First, we will show that any set A C R? can be thickened into a smooth and regu-
lar A®) which is “close” to A (see Figure 6). This is made precise in the following

Lemma 8.2. There exists a constant yi7 € (0, 1/5) such that, for any set A ¢ R? and
s > 0, there exists a set A®) C RY with smooth boundary such that:

(1) AC AW C B(A, 5/5);
(2) A is yi75-regular in the sense of Definition 8.1.

Proof. Assume that R? \ B(A, s/5) is non-empty, otherwise the claim is straightforward.
Since we suppose that A C R? is arbitrary, we can suppose that s = 5 (so that s /5 = 1)
by scaling A if necessary.

Let us first tile the space R? with compact cubes K,, of side length 1/ (8+/d). More
precisely, form = (my, ..., my) € 74, let

Km:#E[ml,ml—}—l]><-~-><[md,md+l]. 8.1

With the above definition, diam(K,,, U Ky,) < le if K,;, and K,,, have at least one
common point.
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We first consider the set
A= JKn.
where the union is taken over all cubes that either intersect A or have at least one common
point with another cube that intersects A.
Define now the function f to be the convolution of 1 A(') with a smooth test func-
tion ¥ > 0, with [ dx = 1 and supported on B(1/8). Clearly, for any & € (0, 1),

AC{x fx) > a), (8.2)

so it remains to show that, for some «, the set {x; f (xX) > «} is yr7-regular for some small
enough y17 < 1/5 independent of A.

To understand how the above construction depends on the choice of A, let us scale
and recenter the function f . More precisely, let pa ,, : B(0,1) — R, be the function

that associates a point x € B(0, 1) to f (x — m). It is important to observe that

as we vary A C 74 and m € 74, the functions
@A, range over a finite collection of smooth functions, (8.3)

since @a ,, is determined by the finitely many possible configurations of boxes K,/ that

intersect K, (whether they appear or not in the union defining A).

From Sard’s theorem and the implicit function theorem one can deduce that for some
a € (0,1) (in fact, for generic values of ¢ € (0, 1)) the boundary {x; f xX) = a}is
smooth. Therefore, using (8.3) we can choose «, € (0, 1) such that {x; f(x) = o} is
smooth, independently of the choice of A. We now let A’ = {x; f (X) > a,}. From (8.2),
we conclude that A C A’ and from the definition of f , we see that A’ C B(A, 1). To finish
the proof, we should show that A’ is y7-regular (with some small enough constant y;7
independent of A).

Since A’ is smooth, we can show that for every x € dA’, there exist B, and By as in
Definition 8.1. Observe that the existence of such balls with radius smaller than or equal
to 1/4 only depends on the values of f in B(x, 1). So that the independence of y;7 from
the choice of A follows from (8.3). ]

At this point, we can collect the first ingredient for Proposition 6.1: we take A to be the
discretization of the set A®) provided by Lemma 8.2.
Now, we prove several geometric properties of regular sets and their discretizations.

Lemma 8.3. Abbreviate y13 = 1/200 and y19 = (1 + +/799)/200 < 1/6. Then for any
s-regular set A and for any vy, vo € A such that ||vi — v2|| < y18s, we have

VY™ = V53Ul < 108 (8.4)

(by symmetry, the same holds for viln, vi2n .

Proof. Consider the plane £ generated by the points vy, v{", and v§" + (vi — v2) (see

Figure 8; note that, as indicated in the picture, vo» need not lie on this plane). Let x be
the point that lies in the intersection of 9B} N (3ByZ + vi — v2) with £ and is different

from vy, and let y be the middle point on the arc of the circle (9 Bgﬁt +vi—w)NL
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V:
Bout V1 — V2

Fig. 8. The plane £ in the proof of Lemma 8.3. The radius of the small gray circle centered in y is
as; also, in this picture the segment between v and v9"! (containing also v,) does not intersection
with the plane £. That is why v, appears not to intersect d A.

between v and x (of course, we mean the arc that lies inside B:’nl ). Abbreviate also i =

sTHIVSM + (vi — v2) — v and a = s~ d(y, 3B}); with some elementary geometry,

we obtain
h=2/a—a?/4.

d(y, 3Bj)) < lIvi — vall,

But, we must necessarily have

V2

because otherwise the pointy — vy 4+ vo € B,

a contradiction. So, we have

h <2\/yis — vk /4 = v/799/200,

V" — V8"l < (v/799/200 + y18)s = yi9s. O

would also belong to the interior of BI/n‘ ,

which means that

The next lemma is a consequence of the obvious observation that the boundary of dis-
cretized s-regular sets looks locally flat for large s:

Lemma 8.4. There exist (large enough) so, ho with the following properties. Assume
that A is s-regular for some s > so and x,y ¢ A are such that ||x — y|| < 3/d. Then
there exists a path between x and y of length at most hq that does not intersect A.
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Proof. This result is fairly obvious, so we give only a sketch of the proof (certainly,
not the most “economic” one). First, without restricting generality, one can assume that
max(d(x, A), d(y, A)) < 3+/d (otherwise, the ball of radius 3+/d centered at one of the
points does not intersect A and contains the other point; then, use the fact that this discrete
ball is a connected graph). Let z € 9A be a point on the boundary closest to x, let z be the
point in A closest to z, and consider the cube

G=1{ ez I - 2llos = [TWd)

(where ||- || is the maximum norm). Assume without loss of generality that the projection
of the normal vector to dA at z on the first coordinate vector is at least 1/ A/d. Then the
claim of the lemma follows once we prove that for all large enough s,

the set G \ A is connected. (8.5)

Indeed, for s large enough, {v, v + e} is not fully inside R? \ (Bf, U B2, for any v
in G. This implies that G \ A is given by G N BS,, together with some extra points in the
neighborhood of this set, implying (8.5) and concluding the proof of the lemma. O

Observe that Lemma 8.4 implies that for any x € 9A and y ¢ A such that | x—y|| < 2+/d,
we have

Py[Xp, =x]1> Qd)~". (8.6)
Next, we need an elementary result about escape probabilities from spheres:

Lemma 8.5. There exist positive constants s1, c19, €20, C21, ¢22 (depending only on the
dimension) such that for ally € R?, all s > s1 and every x € B(y, 2s) \ B(y, s), we have

lx —yll s lx =yl —s+1
ety = PdlHpy. > Haipyagl < co—————. 87

and for all x € B(y, 3s) \ B(y, s),

35 — [lx —yl 35 — [lx —yll +1
en " = Pl Hpiy. < Hyipyag] < en——————.  (88)

Proof. By a direct and elementary calculation for large enough s (not depending on y),

the process || XyaHg,, — y[I~@=D is a supermartingale, and | XnAHp — y|~€@=3/2 isa

submartingale (see e.g. [5, proof of Lemma 1]). From the Optional Stopping Theorem,
sTD — Jlx —y) @Y
s—@d=D — (25 +1)~@-D

< Py[Hp) > sz\g(zs)]

(s — 1)—d+5/2 _ Hx _ y||—d+5/2

(s — 1)=d+5/2 = (25)=d+5/2 (8.9)

where the above balls are centered at y. Then (8.7) follows from (8.9) with the observation
that 0 < ||x —y||/s < 2 and some elementary calculus. The proof of (8.8) is completely
analogous.
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In fact, with some more effort, one can show that s; = Jd /2 (observe that
B(y, ~/d/2) is non-empty for all y € R?), but we do not need this stronger fact in the
present paper. O

We now need estimates on the entrance measure of a set in Z¢ which has been obtained
from the discretization of a regular set D C R?. For this, we will need the following
definitions. Let D = D N Z9 and fix x € D, write x for the closest point to x in aD (it
can be chosen arbitrarily in case of ties) and note that ||x — x|| < 1. We define x™ and
x° to be the closest points to x" and x°™ in Z¢ (again chosen arbitrarily in case of ties).
Observe that [ x°" — x°U|| is at most +/d /2 (and the same holds for x™ and x).

Lemma 8.6. (i) Suppose that A is an s-regular set for some s > so + ~/d and let
y € A, x € Z%\ A be such that |x — y|| = 2s. Then P,[Xpg, = y] < coas™ @D,

(ii) Assume that A is s-regular with s > so + ~/d and y € dA. Then for every x in
B(y°", 5/2), we have Py[Xp, =y, Ha < HZd\B(you‘,s+ﬁ)] > ¢pss (@D,

Proof. Given A and y € 0A as above, recall that y stands for the closest point to y in dA
(chosen arbitrarily in case of ties). By Definition 8.1, the ball Biyn C R? of radius s lies
fully inside A. Moreover, since yin is at distance at most ~/d /2 from yi“, we conclude that

B} := B(y™, s —+d/2) C B!, and B, =BG, s —+d/2) CBY, (8.10)

(see Figure 9).

Fig. 9. Proof of Lemma 8.6.
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Let y' € BBiyn be the point closest to y (it could happen that y’ is y itself). By con-
struction, d(y, Bifl) < /d, therefore Iy =yl < %«/3, and so by Lemma 8.4,

Pi[Xny = Y1 > c26Pc[Xn, =yl (8.11)
Employing [10, Proposition 6.5.4], we obtain
PilXpy = y'1 < cous 7D, (8.12)

which together with (8.11) proves (i).

A discretization argument analogous to the above gives (ii) for all x in
B(y°",s/2 — \/3/4) as a direct consequence of [10, Lemma 6.3.7]; then, using
Lemma 8.4, we obtain the desired statement for all x € B(y°", 5/2). O

Next, aiming at the proof of (6.5), we prove the following result:

Proposition 8.7. There exist constants s, y3, Y10 > 0 such that if s > so and A C R4
is y175-regular and if y1, y, € 0A are such that ||y1 — y2|| < yss, then there exists a
set D (depending on y1, yy) that separates {y1, y2} from d B(y1, 2y175) (i.e., any nearest
neighbor path starting at 9 B(y1, 2y175) that enters A at {y1, y»}, must pass through D)
such that

sup Pl X = 7o) <y (813)

xeb; PelXny = y1. Ha < HZd\B()’l,%VnS)]

Pr[XnH,=y11>0

Let us mention that the constants yg, y10 here are exactly those that we need in Proposi-
tion 6.1.

Proof of Proposition 8.7. Define
s2 = max{y;'s0, 36(17v18) ' (51 + V) = 18Ga7yis) (8.14)
Also, define y3 = %)/17)/18. Given yj and y; in d A such that ||y; — y2|| < ypgs, set
D={zeZ'\ A; d(z,A) < Lygsand d(z, yo) < 2yss, k = 1,2}, (8.15)
D= {z € D; there exists v € 74 \ (AU D) such that 7 and v are neighbors} (8.16)

(see Figure 10). Intuitively speaking, D is the part of the boundary of D not adjacent to A.
We now claim that

all sites of D are at distance at least %ygs — 1 from {y1, y2}. (8.17)

To see this, observe first that for z € D, the point v <> z asin (8.16) is not in D. Therefore,
either d(v, {y1, y2}) > 2ygs ord(v, A) > %ygs; in both cases (8.17) holds.

In fact, to prove (8.13), it is enough to prove that for all z € f),
PilXp, = y1. Ha < Hyay gy, 5,001 2 e20d(z, A) /s, (8.18)
P.[Xu, = y2] < c30d(z, A) /5%, (8.19)
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B(y°™, 7175/3)
B(y8", m7s/2)

Pz, [XH, = y21; we have h >~ d(z1 3, A), and “w.p.” stands for “with probability”.

The idea behind these two bounds is depicted in Figure 10, which we now turn into a
rigorous proof. To obtain (8.18), we proceed in the following way. Consider somey € 0 A
such that d(z, A) > ||z — y||, and observe that (8.8) implies that

PZ[HB(y"“t,ynS/’J’) < HA] > 31 d(Z, A)/S (820)

Let y; € 0 A be the closest boundary point to yi; clearly, |lyx — yk|| < 1. Then ||y —z|| <
2ygs and ||z —y|| < %ygs, and thus, by (8.14),

lyr —yll < 3yss + 1 < 3yss = yi79185.

So, by Lemma 8.3 we have [ly*" — y{"'| < yi7y198 < éyns, which implies that

B(you, %yns) c By™ %yns). Observing that B(y?"!, 175 + +/d) C B(yi, %yns),
applying Lemma 8.6(ii) and using (8.20), we obtain (8.18).

To prove (8.19), we proceed in the following way. Recall that if a set is r-regular
then it is r’-regular for all ¥’ < r; so, if d(z, A) > %ygs then Lemma 8.6(i) already
implies (8.19). Assume now that z € D is such that d(z, A) < %ygs and lety € 0A
be such that d(z, A) > ||z — y||. Let us show that then |y — y2| > %ygs. Indeed, by
construction of D there exists v ¢ AUG such that ||z —v|| = 1 and either d(v, A) > %ygs
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or min(||v — y1 ||, [J[v — y2|) > 2ygs. The first possibility is ruled out since then we would
have d(z, A) > %ygs — 1, which contradicts d(z, A) < %ygs because of (8.14). The
second alternative implies that |[v — yz|| > 85, s0 ||z — y2|| > y8s — 1. This means that

ly = y2ll = yss — 1 — $ygs > Syss

again because of (8.14).
Let v be the center of the ball with radius % ygs that touches dA at y from the inside;
by (8.14) we have

inf v =yl = Jyss — gy8s — 1 > {5yes + 1.

U’GB(\?,%ygS)
Then, one can write
Pz[XHA =m] =< PZ[HZ

N8y < Hp@. o] sup o PolXa, =l
il =y2ll= 5 v8s

and use Lemma 8.5 to find that the first term on the right-hand side is at most
c3s7 ] d(z, A). By Lemma 8.6(i), the second term is bounded above by c335~@=D  This
concludes the proof of (8.19) and hence of Proposition 8.7. O

We now collect the ingredients necessary for the proof of Proposition 6.1:

e as already mentioned just before Lemma 8.3, the sets Ags)z are the discretizations of the
sets Ai‘v)z provided by Lemma 8.2;

e we take the same s provided by (8.14) and define y¢ = %)/17;

e existence of y; suitable for (6.2) and (6.3) follows from Lemma 8.6;

e the claim (6.5) follows from Proposition 8.7, with the right constants y3, y10, as already
mentioned.

So, the only unattended item in Proposition 6.1 is (6.4). But it is straightforward to ob-
tain (6.4) from a projection argument: Lety € BAI(:') be a closest point to y € BA,((S) and
assume without lost of generality that the projection of the normal vector at y to the first
coordinate is at least 1/+/d. Then the intersection of the projections of Biyn NB(y, ygs—1)
and Bgut N B(y, ygs — 1) along the first coordinate axis contains a ((d — 1)-dimensional)
ball of radius O(s), and this proves (6.4) (since on the preimage of each integer point
which lies within this intersection there should be at least one point of 8A,(f) NB(y, v35)).
This concludes the proof of Proposition 6.1. g
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