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Abstract. In this paper we establish a decoupling feature of the random interlacement process
Iu ⊂ Zd at level u, d ≥ 3. Roughly speaking, we show that observations of Iu restricted to two
disjoint subsets A1 and A2 of Zd are approximately independent, once we add a sprinkling to the
process Iu by slightly increasing the parameter u. Our results differ from previous ones in that we
allow the mutual distance between the sets A1 and A2 to be much smaller than their diameters. We
then provide an important application of this decoupling for which such flexibility is crucial. More
precisely, we prove that, above a certain critical threshold u∗∗, the probability of having long paths
that avoid Iu is exponentially small, with logarithmic corrections for d = 3.

To obtain the above decoupling, we first develop a general method for comparing the trace
left by two Markov chains on the same state space. This method is based on what we call the
soft local time of a chain. In another crucial step towards our main result, we also prove that any
discrete set can be “smoothened” into a slightly enlarged discrete set, for which its equilibrium
measure behaves in a regular way. Both these auxiliary results are interesting in themselves and are
presented independently of the rest of the paper.

Keywords. Random interlacements, stochastic domination, soft local time, connectivity decay,
smoothening of discrete sets.

1. Introduction and results

This work is mainly concerned with the decoupling of the random interlacements model
introduced by A.-S. Sznitman [23]. In other words, we show that the restrictions of the
interlacement set Iu to two disjoint subsets A1 and A2 of Zd are approximately indepen-
dent in a certain sense. To this end, we first develop a general method, based on what we
call soft local times, to obtain an approximate stochastic domination between the ranges
of two general Markov chains on the same state space.

To apply this coupling method to the model of random interlacements, we first need to
modify the sets A1 and A2 through a procedure we call smoothening. This consists in en-
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closing a discrete set A ⊂ Zd in a slightly enlarged set A′, whose equilibrium distribution
behaves “regularly”, resembling what happens for a large discrete ball.

Finally, as an application of our decoupling result, we obtain upper bounds for the
connectivity function of the vacant set Vu = Zd \ Iu, for intensities u above a critical
threshold u∗∗. These bounds are considerably sharp, showing a behavior very similar to
that of their corresponding lower bounds.

We believe that these four results are interesting in their own right. Therefore, we
structured the article so that they can be read independently of each other. Below we give
a more detailed description of each of these results.

1.1. Decoupling of random interlacements

The primary interest of this work lies in the study of the random interlacements process,
recently introduced by A.-S. Sznitman [23]. The construction of random interlacements
was originally motivated by the analysis of the trace left by simple random walks on
large graphs, for instance a large discrete torus or a thick discrete cylinder. Intuitively
speaking, this model describes the texture in the bulk left by these trajectories, when the
random walk is let to run up to specific time scales.

Recently, great effort has been devoted to studying this model [18], [19], [31], [24],
[25], [14], [3] as well as to establishing rigorously the relation between random interlace-
ments and the trace left by random walks on large graphs [20], [34], [32], [4]. Recent
works have also shown a connection between random interlacements, the Gaussian free
field [28], [27] and cover times of random walks [2].

Roughly speaking, the model of random interlacements can be described as a Pois-
sonian cloud of doubly infinite random walk trajectories on Zd , d ≥ 3. The density of
this cloud is governed by an intensity parameter u > 0 so that, as u increases, more and
more trajectories enter the picture. We denote by Iu the so called interlacement set, given
by the union of the ranges of these random walk trajectories. Regarding Iu as a random
subset of Zd , its law Qu can be characterized as the only distribution in {0, 1}Z

d
such that

Qu
[K ∩ Iu = ∅] = exp{−u cap(K)} for every finite K ⊂ Zd , (1.1)

where cap(K) stands for the capacity of the set K defined in (2.6) (see [23, Proposi-
tion 1.5] for the characterization (1.1)).

The main difficulty in understanding the properties of Iu is related to its long range
dependence. Note for instance that

Cov(1x∈Iu ,1y∈Iu) ∼
cdu

‖x − y‖d−2 as ‖x − y‖ → ∞ (1.2)

(see [23, (1.68)]). Such a slow decay of correlations imposes several obstacles to the anal-
ysis of random interlacements, especially in low dimensions. Various methods have been
developed in order to circumvent this dependence, some of which we briefly summarize
below.
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Let us explain what is the type of statement we are after. Consider two subsets A1
and A2 of Zd with diameters at most r and within distance at least s ≥ 1 from each
other. Suppose also that we are given two functions f1 : {0, 1}A1 → [0, 1] and f2 :

{0, 1}A2 → [0, 1] that depend only on the configuration of the random interlacements
inside the sets A1 and A2 respectively. In [23, (2.15)] it was established that

Cov(f1, f2) ≤ cdu
cap(A1) cap(A2)

sd−2 ≤ c′du

(
r2

s

)d−2

(1.3)

(see also [1, Lemma 2.1]). Although the above inequality retains the slow polynomial
decay observed in (1.2), it has been useful in various situations, for instance in [23, The-
orem 4.3] and [1, Theorem 0.1].

A first improvement on (1.3) appeared already in the pioneer work [23], where the
author considers what he calls “sprinkling” of the law Iu (see Section 3). In the sprinkling
procedure, “independent paths are thrown in, so as to dominate long range dependence”
of Iu.

Given two functions f1 and f2 as above, which are non-increasing in Iu, the technique
of [23, Section 3] allows one to conclude that, roughly speaking,

Qu
[f1f2] ≤ Qu(1+δ)

[f1]Qu(1+δ)
[f2] + cd,α(r/s)

α, (1.4)

where α is arbitrary and the sprinkling parameter δ goes to zero as a polynomial of r/s.
Note that the above represents a big improvement over (1.3): in exchange for restricting
ourselves to non-increasing functions and introducing a sprinkling term, we obtain a much
faster decay in the error term. Since its introduction, the sprinkling technique has been
useful for several problems on random interlacements [21], [26], [32].

The most recent result on decoupling bounds for interlacements can be found in [26]
and stands out for several reasons. First, it generalizes the ideas behind [19] and [31] to
random interlacements on quite general classes of graphs (besides Zd ), as long as they
satisfy certain heat kernel estimates. Secondly, the tools developed in [26] work to show
both existence and absence of percolation through a unified framework and give novel
results even in the particular case of Zd ; see also the beautiful applications in [15] and [6].

On the other hand, the results in [26] were designed having a renormalization scheme
in mind. Thus, their use is restricted to bounding the so-called “cascading events”, which
behave in a certain hierarchical way (see the details in [26, Section 3]).

Although the results in (1.3), (1.4) and [26] complement each other, they suffer from
the same drawback, as they implicitly assume that

the distance between A1 and A2 is at least of the same order as their diameters. (1.5)

This can be a major obstruction in some applications, such as the one we present in
Section 3 on the decay of connectivity.

Let us now state the main theorem of the present paper, which can be regarded as an
improvement on (1.4). Later we will describe precisely how it differs quantitatively from
previously known results.

Below, γ0 and γ1 are positive constants depending only on the dimension d .
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Theorem 1.1. Let A1, A2 be two non-intersecting subsets of Zd , at least one of them
being finite. Let s be the distance between A1 and A2, and r be the minimum of their
diameters. Then, for all u > 0 and ε ∈ (0, 1), we have:

(i) for any increasing functions f1 : {0, 1}A1 → [0, 1] and f2 : {0, 1}A2 → [0, 1],

Qu
[f1f2] ≤ Q(1+ε)u

[f1]Q(1+ε)u
[f2] + γ0(r + s)

d exp(−γ1ε
2usd−2); (1.6)

(ii) for any decreasing functions f1 : {0, 1}A1 → [0, 1] and f2 : {0, 1}A2 → [0, 1],

Qu
[f1f2] ≤ Q(1−ε)u

[f1]Q(1−ε)u
[f2] + γ0(r + s)

d exp(−γ1ε
2usd−2). (1.7)

We of course assume that the above functions f1 and f2 are measurable (recall that one
of the sets A1 or A2 may be infinite).

The above theorem is a direct consequence of the slightly more general Theorem 2.1.
Note that the opposite inequalities to (1.6) and (1.7) follow without error terms (and with
ε = 0) from the FKG inequality, which was proved for random interlacements in [29,
Theorem 3.1].

Let us now stress what are the main improvements offered by the above bounds over
previously known results. First, there is no requirement that s should be larger than r as
in (1.5) (and again, one of the sets may even be infinite). Moreover, these error bounds
feature an explicit and fast decay on s, even as ε = ε(s, r) goes (not too rapidly) to zero.
In Remark 3.3 we include some observations on how close to optimal one can expect
(1.6) and (1.7) to be.

1.2. Connectivity decay

As an application of Theorem 1.1, we establish a result on the decay of connectivity of
the vacant set Vu = Zd \ Iu. More precisely, for u large enough (see Theorem 3.1 for
details), for d ≥ 4,

Qu
[0

Vu
←→ x] ≤ γ2 exp{−γ3‖x‖} for every x ∈ Zd , (1.8)

where γ2 and γ3 depend only on d . If d = 3 and u is large enough, then for any b > 1
there exist γ4 = γ4(u, b) and γ5 = γ5(u, b) such that

Qu
[0

Vu
←→ x] ≤ γ4 exp

{
−γ5

‖x‖

log3b
‖x‖

}
for every x ∈ Z3 (1.9)

(see Theorem 3.1 and Remark 3.2 for more details).
Let us stress that the above bounds greatly improve on the previously known results

of [19, Theorem 0.1]. There, the authors establish similar bounds but with ‖x‖ replaced
by ‖x‖ρ for some unknown exponent ρ ∈ (0, 1). Our bounds on the other hand are con-
siderably sharp, as they closely resemble the corresponding lower bounds (see Remark 3.2
for details).
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Note that the exponential decay in (1.8) is also observed in independent percolation
models (see for instance [8, Theorem (5.4), p. 88] and [11]). However, due to the strong
dependence present in Vu, its validity was at first not obvious to the authors. For one
reason, it is known that the logarithmic factor in (1.9) cannot be dropped (see Remark 3.2
below). Similar types of non-exponential decay in dependent percolation models can be
found for instance in [23, (1.65) and (2.21)] and [31, Remark 3.7 2)].

Finally we would like to stress that our proof of (1.8)–(1.9) is general enough in the
sense that it could be adapted to other dependent percolation models, as long as they
satisfy a suitable decoupling inequality. See the discussion in Remark 3.4.

1.3. Soft local times

In Section 4 we develop a technique to prove approximate stochastic domination of the
trace left by a Markov chain on a metric space. This is an important ingredient in prov-
ing Theorem 1.1 and we also expect it to be useful in future applications. To illustrate
this technique, consider an irreducible Markov chain (Zi)i≥1 on a finite state space 6
having π as its unique stationary measure.

A typical model to keep in mind is a random walk on a torus that jumps from z to a
uniformly chosen point in the ball centered at z with radius k. By transitivity, the uniform
distribution π is clearly invariant. Intuitively speaking, if we let this Markov chain run for
a long time t , we expect the law of the covered set {Z1, . . . , Zt } to be “reasonably close”
to that of a collection {W1, . . . ,Wt } of i.i.d. points in 6 distributed according to π . This
is made precise in the following result, which is a consequence of Corollary 4.4.

Proposition 1.2. Let (Zi)i≥1 be a Markov chain on a finite set 6, with transition prob-
abilities p(z, z′), initial distribution π0, and stationary measure π . Then we can find a
coupling Q between (Zi) and an i.i.d. collection (Wi) (with law π) such that for any
λ > 0 and t ≥ 0,

Q[{Z1, . . . , Zt } ⊂ {W1, . . . ,WR}]

≥ Q
[
ξ0π0(z)+

t−1∑
j=1

ξjp(Zj , z) ≤ λπ(z) for all z ∈ 6
]
, (1.10)

where ξi are i.i.d. Exp(1) random variables, independent of R, a Poisson(λ)-distributed
random variable.

Observe that the above statement may have interesting consequences in bounding the
hitting time of a given subset of 6 (see (2.4) for a precise definition).

We call the sum
∑
j ξjp(Zj , z) the soft local time of the chain Zj . To justify this

terminology, observe that instead of counting the number of visits to a fixed site (which
corresponds to the usual notion of local time), we are summing up the chances of visiting
such site, multiplied by i.i.d. mean-one positive factors. See also Theorem 4.6.

In Remark 4.5 we describe the main advantages of Proposition 1.2 over previous
domination techniques and how it allows us to drop the assumption (1.5).
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Later in Section 4, we establish general estimates on the expectation, variance and
exponential moments of the soft local time

∑
j ξjp(Zj , z). These are based on regularity

assumptions on the transition probabilities p(·, ·) and are valuable when estimating the
right-hand side of (1.10) by means of exponential Chebyshev inequalities (Theorems 4.6,
4.8 and 4.9).

Now, we comment on the main method employed to prove results such as Propo-
sition 1.2 above. One can better visualize the picture in a continuous space, so we use
another example to illustrate the method. Assume that we are given a sequence of (not
necessarily independent or Markovian) random variables S1, S2, . . . taking values in the
interval [0, 1], and let T be a finite stopping time. As in (1.10), we attempt to dominate
this process by a sequence U1, . . . , UN , where (Uk) are i.i.d. Uniform[0, 1] random vari-
ables, and N is a Poisson random variable independent of (Uk). More precisely, we want
to construct a coupling between the two sequences in such a way that

{S1, . . . , ST } ⊆ {U1, . . . , UN } (1.11)

with probability close to one. We assume that the law of Sk conditioned on S1, . . . , Sk−1
is absolutely continuous with respect to the Lebesgue measure on [0, 1] (see (4.6)).

Our method for obtaining such a coupling is illustrated in Figure 1. Consider a Pois-
son point process in [0, 1] × R+ with rate 1. Then one can obtain a realization of the
U -sequence by simply retaining the first coordinate of the points lying below a given
threshold (the dashed line in Figure 1) corresponding to the parameter of the Poisson
random variable N .

S1S2 S3 = U4S4 = U3
S50 1U6

ξ1g(·) + ξ2g(· | S1)

ξ1g(·)

Fig. 1. Soft local times: the construction of the process S (here, T = 5, N = 6, Uk = Sk for
k = 1, 2, 5); it is important to observe that the points of the two processes need not necessarily
appear in the same order with respect to the vertical axis (see Remark 4.5).

Now, in order to obtain a realization of the S-sequence using the same Poisson point
process, one proceeds as follows:

• first, take the density g(·) of S1 and multiply it by the unique positive number ξ1 so
that there is exactly one point of the Poisson process lying on the graph of ξ1g and no
point strictly below it;
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• then consider the conditional density g(· | S1) of S2 given S1 and find the smallest
constant ξ2 so that exactly two points lie underneath ξ2g(· | S1)+ ξ1g(·);
• continue with g(· | S1, S2), and so on, up to time T , as shown in Figure 1.

In Proposition 4.3, we show that the collection of points obtained through the above pro-
cedure has the same law as (S1, S2, . . . ) and is independent of the random variables ξi ,
which are i.i.d. with law Exp(1). We call the sum ξ1g(·)+ ξ2g(· | S1)+ · · · the soft local
time of the process S (which coincides with the sum on the right-hand side of (1.10) in the
Markovian case). Clearly, if the soft local time (the gray area in the picture) is below the
dashed line, then the domination in (1.11) holds. To obtain the probability of a successful
coupling, one has to estimate the probability that the soft local time lies below the dashed
line. In several cases, this reduces to a large deviations estimate.

After developing a general version of this technique in Section 4, we adapt this theory
to random interlacements in Section 5. More precisely, we present an alternative con-
struction of the interlacement set Iu restricted to some A ⊂ Zd . In this construction, we
split each trajectory composing Iu into a collection of excursions in and out of A. This
induces a Markov chain on the space of excursions, and the technique of soft local times
helps us control the range of such soup.

After completing this article, we learned that a technique similar to the soft local times
was introduced in the special case 6 = (0, 1) ⊂ R in order to study local minima of the
Brownian motion in [33, Claim 1.5].

We believe that the method of soft local times can be useful in other contexts besides
random interlacements. For example, when considering a random walk trajectory on a
finite graph (such as a torus or a discrete cylinder), one can naturally be interested in the
degree of independence in the pictures left by the walker on disjoint subsets of the graph.
The approach followed in this paper is likely to be successful in this situation as well.
We also believe this technique could give alternative proofs or generalize results on the
coupling of systems of independently moving particles (see [13, Proposition 5.1] for an
example of such a statement).

1.4. Smoothening of discrete sets

As mentioned before, in order to estimate the probability of having a successful coupling
using the soft local times technique, we need some regularity conditions on the transi-
tion densities of the Markov chain. When applying this to the excursions composing the
random interlacements, this translates into a condition on the regularity of the entrance
distributions on the sets A1 and A2, which may not hold in general (picture for instance a
set with sharp points).

To overcome this difficulty, we develop a technique to enlarge the original discrete
sets A1 and A2 into slightly bigger discrete sets with “sufficiently smooth” boundaries,
so that their entrance probabilities satisfy the required regularity conditions.

The exact result we are referring to is given in Proposition 6.1, but we provide here a
small preview of its statement. There exist positive constants c, c′, c′′, s0 (depending only
on dimension) such that for any s ≥ s0 and any finite set A ⊂ Zd , there exists a set A(s)
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with A ⊆ A(s) ⊆ B(A, s) and

Px[XH = y] ≤ cPx[XH = y
′
] (1.12)

for all y, y′ ∈ ∂A(s) with ‖y − y′‖ ≤ c′′s, and all x such that ‖x − y‖ ≥ c′s. Here X
is the simple random walk and H is the hitting time of the set A(s). That is, the entrance
measure to the set A(s) is “comparable” in close sites of the boundary, as long as the
starting point of the random walk is sufficiently far away.

It is important to observe that for example a large (discrete) ball has the above prop-
erty, while a large box does not, since its entrance probabilities at the faces are typically
much smaller than those at the corners (to see this, observe that using arguments similar
e.g. to the proof of [12, Theorem 1.4] one can show that the harmonic measure at a corner
of the box is at least O(n−γ ) for some γ < 1, while for “generic” sites on the faces it
is O(n−1).

1.5. Plan of the paper

The paper is organized in the following way. In Section 2 we formally define the model of
random interlacements, and state our main decoupling result. In Section 3, we formally
state the connectivity decay appearing in (1.7) and (1.6) (Theorem 3.1). In Section 4
we present a general version of the method of soft local times. Then, in Section 5 this
method is used to introduce an alternative construction of random interlacements, which
is better suited for decoupling configurations on disjoint sets. In the same section we
reduce the proof of our main Theorem 2.1 to a large deviations estimate for the soft local
time of excursions. In Section 6, we estimate the probability of these large deviation
events and conclude the proof of Theorem 2.1 under a set of additional assumptions on
the entrance measures of A1,2. While this set of assumptions may not be satisfied for
arbitrary A1,2, we show in Section 8 that this is not really an issue, as one can always
slightly enlarge the sets of interest (with the procedure referred to above as smoothening)
so that the modified sets satisfy the necessary regularity assumptions. Before going to
(quite technical) Section 8, in Section 7 we prove the result on the decay of connectivity
for the vacant set, corresponding to (1.8) and (1.9).

2. Random interlacements: formal definitions and main result

In this paper, we use the following convention concerning constants: c1, c2, . . . as well as
γ1, γ2, . . . denote strictly positive constants depending only on dimension d . Dependence
of constants on additional parameters appears in the notation. For example, cα denotes a
constant depending only on d and α. Also c-constants are “local” (used only in a small
neighborhood of the place of the first appearance) while γ -constants are “nonlocal” (they
appear in propositions and “important” formulas).

Let us now introduce some notation and describe the model of random interlacements.
In addition, we recall some useful facts concerning the model.
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For a ∈ R, we write bac for the largest integer smaller than or equal to a and recall
that

bta + (1− t)bc ∈ [min{a, b},max{a, b}] for all a, b ∈ Z and t ∈ [0, 1]. (2.1)

We say that two points x, y ∈ Zd are neighbors if they are at Euclidean distance
(denoted by ‖ · ‖) exactly 1 (we then write x ↔ y). This induces a graph structure and a
notion of connectedness in Zd .

If K ⊂ Zd , we denote by Kc its complement and by B(K, r) the r-neighborhood of
K with respect to the Euclidean distance, i.e. the union of the balls B(x, r) for x ∈ K .
The diameter of K (denoted by diam(K)) is the supremum of ‖x − y‖∞ with x, y ∈ K ,
where ‖·‖∞ is the maximum norm. The internal boundary ofK is ∂K = {x ∈ K; x ↔ y

for some y ∈ Kc
}.

In this article the term path always denotes finite, nearest neighbor paths, i.e. some
T : {0, . . . , n} → Zd such that T (l) ↔ T (l + 1) for l = 0, . . . , n − 1. In this case we
say that the length of T is n.

Let us denote by W+ and W the spaces of infinite, respectively doubly infinite, tran-
sient trajectories:

W+ =
{
w : Z+→ Zd; w(l)↔ w(l + 1) for each l ≥ 0 and ‖w(l)‖ −−−→

l→∞
∞

}
,

W =
{
w : Z→ Zd; w(l)↔ w(l + 1) for each l ∈ Z and ‖w(l)‖ −−−−→

|l|→∞
∞

}
.

(2.2)

We endow these spaces with the σ -algebras W+ and W generated by the coordinate maps
{Xn}n∈Z+ and {Xn}n∈Z.

Let us also introduce the entrance time of a finite set K ⊂ Zd ,

HK(w) = inf{k; Xk(w) ∈ K} for w ∈ W(+), (2.3)

and for w ∈ W+, we define the hitting time of K as

H̃K(w) = inf{k ≥ 1; Xk(w) ∈ K}. (2.4)

Let θk : W → W stand for the time shift given by θ(w)(·) = w( ·+k) (where k could
also be a random time).

For x ∈ Zd (recall that d ≥ 3), we can define the law Px of a simple random
walk starting at x on the space (W+,W+). If ρ is a measure on Zd , we write Pρ =∑
x∈Zd ρ(x)Px .
Let us introduce, for a finite K ⊂ Zd , the equilibrium measure

eK(x) = 1x∈KPx[H̃K = ∞] for x ∈ Zd , (2.5)

the capacity of K
cap(K) = eK(Zd) (2.6)

and the normalized equilibrium measure

eK(x) = eK(x)/cap(K) for x ∈ Zd . (2.7)
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We mention the following bound on the capacity of a ball of radius r ≥ 1:

cap(B(0, r)) � rd−2 (2.8)

(see [10, Proposition 6.5.2]; here and below we write f (r) � g(r)when c0g(r) ≤ f (r) ≤

c1g(r) for strictly positive constants c0, c1 depending only on the dimension).
Let W ∗ stand for the space of doubly infinite trajectories in W modulo time shift,

W ∗ = W/∼, where w ∼ w′ if w(·) = w′(k + ·) for some k ∈ Z, (2.9)

endowed with the σ -algebra

W∗ = {A ⊂ W ∗; (π∗)−1(A) ∈W}, (2.10)

which is the largest σ -algebra making the canonical projection π∗ : W → W ∗ measur-
able. For a finite set K ⊂ Zd , we denote by WK the set of trajectories in W which meet
the set K , and define W ∗K = π

∗(WK).
Now we are able to describe the intensity measure of the Poisson point process which

governs the random interlacements.
For a finite set K ⊂ Zd , we consider the measure QK in (W,W) supported in WK

such that given A,B ∈W+ and x ∈ K ,

QK [(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B] = Px[A | H̃K = ∞]Px[B]eK(x). (2.11)

Theorem 1.1 of [23] establishes the existence of a unique σ -finite measure ν in W ∗ such
that

1W ∗K
· ν = π∗ ◦QK for any finite set K ⊂ Zd . (2.12)

The above equation is the main tool to perform calculations on random interlacements.
We then introduce the spaces of point measures on W ∗ × R+ and W+ × R+,

� =

{
ω =

∑
i≥1

δ(w∗i ,ui )
;
w∗i ∈ W

∗, ui ∈ R+ and ω(W ∗K × [0, u]) <∞

for every finite K ⊂ Zd and u ≥ 0

}
(2.13)

and endowed with the σ -algebra A generated by the evaluation maps ω 7→ ω(D) for
D ∈W∗ ⊗ B(R+). Here B(·) denotes the Borel σ -algebra.

We let P be the law of a Poisson point process on � with intensity measure ν ⊗ du,
where du denotes the Lebesgue measure on R+. Given ω =

∑
i δ(w∗i ,ui )

∈ �, we define
the interlacement and the vacant set at level u respectively as the random subsets of Zd :

Iu(ω) =
⋃

i: ui≤u

Range(w∗i ), (2.14)

Vu(ω) = Zd \ Iu(ω). (2.15)

In [23, (0.13)], Sznitman introduced the critical value

u∗ = inf{u ≥ 0; P[Vu contains an infinite connected component] = 0}, (2.16)
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where the vacant set undergoes a phase transition in connectivity. It is known that 0 <
u∗ < ∞ for all d ≥ 3 [23, Theorem 3.5], [18, Theorem 3.4]. Moreover, it is also proved
that the infinite connected component of the vacant set (if any) must be unique [30, The-
orem 1.1].

It is important to mention also that, as shown in [23],

the law of the random set Iu is invariant and ergodic with respect to
translations of the lattice Zd . (2.17)

2.1. Decoupling: the main result

We now state our main result on random interlacements. It provides us with a way to
decouple the intersection of the interlacement set Iu with two disjoint subsets A1 and A2
of Zd . Namely, we couple the original interlacement process Iu with two independent
interlacements processes Iu1 and Iu2 in such a way that Iu restricted on Ak is “close”
to Iuk , for k = 1, 2, with probability rapidly going to 1 as the distance between the sets
increases. This is formulated precisely in

Theorem 2.1. Let A1, A2 be two non-intersecting subsets of Zd , at least one of them be-
ing finite. Set s = d(A1, A2) and r = min{diam(A1), diam(A2)}. Then there are positive
constants γ0 and γ1 (depending only on the dimension d) such that for all u > 0 and
ε ∈ (0, 1) there exists a coupling Q between Iu and two independent random interlace-
ment processes, (Iu1 )u≥0 and (Iu2 )u≥0, such that

Q[Iu(1−ε)k ∩ Ak ⊆ Iu ∩ Ak ⊆ Iu(1+ε)k , k = 1, 2]

≥ 1− γ0(r + s)
d exp(−γ1ε

2usd−2). (2.18)

It is straightforward to see that the above theorem implies the inequality on the covariance
of increasing (or decreasing) functions depending only on A1 and A2, stated previously
in Theorem 1.1. Also, we mention that the factor (r+ s)d before the exponential in (2.18)
can usually be reduced (see Remark 6.4).

3. Discussion, open problems, and an application of decoupling

We start this section with the following application of our main result. We are interested

in the probability P[0 Vu
←→ x] that two far away points are connected through the vacant

set. In the subcritical case, u > u∗, this probability clearly converges to zero as ‖x‖ goes
to infinity. In what follows, we will be interested in the rate in which this convergence
takes place.

In [23, Proposition 3.1], it was proven that P[0 Vu
←→ x] decays at least as a polynomial

in ‖x‖ if u is chosen large enough. Then in [19] this was considerably improved, by
showing that for u large enough, there exist c, c′ and δ > 0 (possibly depending on u)
such that

P[0 Vu
←→ x] ≤ c exp{−c′‖x‖δ} for every x ∈ Zd . (3.1)
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To be more precise, the above statement was established for all intensities u above the
threshold

u∗∗(d) = inf
{
u > 0; for some α > 0, lim

L→∞
LαP

[
[−L,L]d

Vu
←→ ∂[−2L, 2L]d

]
= 0

}
.

(3.2)

The above critical value is known to satisfy u∗ ≤ u∗∗ < ∞ [22, Lemma 1.4] and a
relevant question is whether u∗ and u∗∗ actually coincide.

In [26], an important class of decoupling inequalities was introduced, implying in
particular that (3.2) can be written as

u∗∗ = inf
{
u > 0; lim

L→∞
P
[
[−L,L]d

Vu
←→ ∂[−2L, 2L]d

]
= 0

}
, (3.3)

potentially enhancing the validity of (3.1). The above result could perhaps be seen as a
step towards proving u∗ = u∗∗.

Here, we further weaken the definition of u∗∗ but, more importantly, we improve on
the bound (3.1) for values of u above u∗∗. The improved result we present gives the correct
exponents in the decay of the connectivity function, although for d = 3 they could be off
by logarithmic corrections (see Remark 3.2 below).

Theorem 3.1. For d ≥ 4, given u > u∗∗(d), there exist positive constants γ2 = γ2(d, u)

and γ3 = γ3(d, u) such that

P[0 Vu
←→ x] ≤ γ2 exp{−γ3‖x‖} for every x ∈ Zd . (3.4)

If d = 3 and u > u∗∗(3), then for any b > 1 there exist γ4 = γ4(u, b) and γ5 = γ5(u, b)

such that

P[0 Vu
←→ x] ≤ γ4 exp

{
−γ5

‖x‖

log3b
‖x‖

}
for every x ∈ Zd . (3.5)

Moreover, (3.2) can be written as

u∗∗ = inf
{
u > 0; lim inf

L→∞
P
[
[0, L]d

Vu
←→ ∂[−L, 2L]d

]
<

7
2d · 21d

}
. (3.6)

Remark 3.2. The probability that a straight segment of length n is vacant is exponen-
tially small in nwhen d≥4, while for d = 3, this probability is at least c exp(−c′n/log n),
which corresponds to the capacity of a line segment (this follows e.g. from [9, Proposi-
tion 2.4.5]). So, (3.4) is sharp (up to constants), but the situation with (3.5) is less clear,
since in (3.5) the power of the logarithm in the denominator is at least 3. We believe,
however, that (3.5) can be improved (by decreasing the power of the logarithm).

Remark 3.3. There is a general question about how sharp the result in (2.18) is (also
in (1.6) and (1.7)). One could for instance ask whether the probability in (2.18) can be
exactly 1, thus achieving equality in (1.6)–(1.7) (so that we would have a “perfect dom-
ination”). Interestingly enough, Theorem 3.1 sheds some light on this question, at least
in dimension d = 3. Indeed, in the proof of Theorem 3.1 we use (1.7) with ε ' log−b s
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to obtain the subexponential decay of (3.5); however, if the error term could be dropped
altogether, or even if s could be replaced by s1+δ (for some δ > 0) in that term, then
(compare with the proof for d ≥ 4) one would obtain the exponential decay for d = 3 as
well, which contradicts the previous remark. This is an indication that, in general, sd−2

in the exponent in the error term could be sharp, at least if ε is small enough. Also, one
cannot hope to achieve perfect domination if ε � s−(d−2) simply due to (1.2).

It is less clear how small the parameter ε can be made (say, in the situation when s
does not exceed r). Obviously, (2.18) stops working when ε = O(s−(d−2)/2), but we
are unsure about how much our main result can be improved in this direction. Also, it
is interesting to observe that, unlike the bound (1.3), our estimates become better as the
parameter u increases.

Remark 3.4. As mentioned in Section 1.1, one can obtain exponential decay as in (3.4)
for any percolation model with suitable monotonicity and decoupling properties. Namely,
let Q̃u be a family of measures on {0, 1}Z

d
, d ≥ 2, indexed by a parameter u ∈ [0,∞).

We assume that this family is monotone in the sense that Q̃u′ dominates Q̃u if u′ < u (as
happens for the vacant set in the random interlacement model). Also, assume that there
are positive constants b, c,M, δ such that for any increasing eventsA1, A2 that depend on
disjoint boxes of size r within distance at least s from each other, we have, for all u > 0
and ε ∈ (0, 1),

Q̃u
[A1A2] ≤ Q̃(1−ε)u

[A1]Q̃(1−ε)u
[A2] + c(r + s)

M exp(−γ1ε
bus1+δ).

Then for all u > u∗∗ (where u∗∗ is defined as in (3.6) with obvious notational changes)
we would obtain exponential decay as in (3.4) (again, with obvious notational changes).
The proof would go through practically unaltered.

4. Soft local times and simulations with Poisson processes

In this section we prove a result about simulating sequences of random variables using
Poisson processes. Besides being interesting in itself, this result will be a major ingredient
in order to couple various random interlacements during the proof of Theorem 2.1.

Let 6 be a locally compact and Polish metric space. Suppose also that we are given a
measure space (6,B, µ) where B is the Borel σ -algebra on6 and µ is a Radon measure,
i.e., every compact set has finite µ-measure.

The above setup is standard for the construction of a Poisson point process on 6. For
this, we also consider the space of Radon point measures on 6 × R+,

L =
{
η =

∑
λ∈3

δ(zλ,vλ); zλ ∈ 6, vλ ∈ R+ and η(K) <∞ for all compact K
}
, (4.1)

endowed with the σ -algebra D generated by the evaluation maps η 7→ η(S), S∈B⊗B(R).
Note that the index set 3 in the above sum has to be countable. However, we do not

use Z+ for this indexing, because (zλ, vλ) will be ordered later and only then will we
endow them with an ordered indexing set.
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One can now canonically construct a Poisson point process η on the space (L,D,Q)
with intensity given by µ ⊗ dv, where dv is the Lebesgue measure on R+. For more
details on this construction, see for instance [16, Proposition 3.6, p. 130].

The proposition below provides us with a way to simulate a random element of 6
using the Poisson point process η. Although this result is very simple and intuitive, we
provide here its proof for the sake of completeness and the reader’s convenience.

Proposition 4.1. Let g : 6→ R+ be a measurable function with
∫
g(z) µ(dz) = 1. For

η =
∑
λ∈3 δ(zλ,vλ) ∈ L, define

ξ = inf{t ≥ 0; there exists λ ∈ 3 such that tg(zλ) ≥ vλ} (4.2)

(see Figure 2). Then under the law Q of the Poisson point process η,
(i) there exists a.s. a unique λ̂ ∈ 3 such that ξg(z

λ̂
) = v

λ̂
,

(ii) (z
λ̂
, ξ) is distributed as g(z)µ(dz)⊗ Exp(1),

(iii) η′ :=
∑
λ 6=λ̂

δ(zλ,vλ−ξg(zλ)) has the same law as η and is independent of (ξ, λ̂).

As mentioned in the introduction, a statement similar to the above proposition has already
been established in the special case of 6 = (0, 1) ⊂ R in [33, Claim 1.5].

G1(z) = ξ1g(z0, z)

G2(z) = ξ1g(z0, z) + ξ2g(z1, z)

z1 z2

(zλ, vλ)

R+

Σ

Fig. 2. An example illustrating the definition of ξ and λ̂ in Proposition 4.1. More generally, ξ1, z1
and ξ2, z2 are as in (4.32).

Proof. Let us first define, for any measurable A ⊂ 6, the random variable

ξA = inf{t ≥ 0; there exists λ ∈ 3 such that t1Ag(zλ) ≥ vλ}. (4.3)

Elementary properties of Poisson point processes (see for instance [16, (a) and (b),
p. 130]) imply that

ξA is exponentially distributed (with parameter
∫
A
g(z) µ(dz)) and

if A and B are disjoint, then ξA and ξB are independent. (4.4)
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Property (1) now follows from (4.4), using the fact that 6 is separable and that two
independent exponential random variables are almost surely distinct. Observe also that

Q[ξ ≥ α, z
λ̂
∈ A] = Q[ξ6\A > ξA ≥ α]. (4.5)

Thus, using (4.4) we can prove property (2) using simple properties of the minimum of
independent exponential random variables.

Finally, let us establish property (3). We first claim that, given ξ , η′′ :=
∑
λ6=λ̂

δ(zλ,vλ)
is a Poisson point process, which is independent of z

λ̂
and, conditioned on ξ , has intensity

measure 1{v>ξg(z)} · µ(dz)⊗ dv.
This is a consequence of the strong Markov property for Poisson point processes and

the fact that {(z, v) ∈ 6 × R+; v ≤ ξg(z)} is a stopping set [17, Theorem 4].
To finish the proof, we observe that, given ξ , η′ is a mapping of η′′ (in the sense of [16,

Proposition 3.7, p. 134]). This mapping pulls back the measure 1{v>ξg(z)} ·µ(dz)⊗ dv to
µ(dz)⊗ dv. Noting that the latter distribution does not involve ξ , we conclude the proof
of (3) and therefore of the lemma. ut

Let us now use the same Poisson point process η to simulate not only a single random
element of 6, but a Markov chain (Zk)k≥1. For this, suppose that in some probability
space (L′,D′,P) we are given a Markov chain (Zk)k≥1 on 6 with transition densities

P[Zk+1 ∈ dz | Zk] = g(Zk, z)µ(dz) for k ≥ 1, (4.6)

where g(·, ·) is B-measurable in each of its coordinates and integrates to 1 with respect
to µ in the second coordinate.

We moreover suppose that the starting distribution of the Markov chain is also abso-
lutely continuous with respect to µ. In fact, in order to simplify the notation, we suppose
that

Z1 is distributed as g(Z0, z)µ(dz). (4.7)

Observe that the Markov chain starts at time one, so that there is no element Z0 in the
chain. In fact, (4.7) should be regarded as a notation for the distribution of Z1, which is
consistent with (4.6) for convenient indexing. This notation will be particularly useful in
Theorem 4.8 below.

Remark 4.2. Observe that, in principle, Zk could be any process adapted to a filtration
and the arguments of this section would still work, as long as their conditional distribution
are absolutely continuous with respect to µ. However, for simplicity we only deal with
Markovian processes here, as the notation for general processes would be more compli-
cated.

Using Proposition 4.1, we introduce

ξ1 := inf{t ≥ 0; there exists λ ∈ 3 such that tg(Z0, zλ) ≥ vλ},

G1(z) := ξ1g(Z0, z) for z ∈ 6,
(z1, v1) is the unique pair in {(zλ, vλ)}λ∈3 with ξ1G1(z1) = v1

(4.8)

(see Figure 2).
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It is clear from Proposition 4.1 that z1 is distributed as Z1 and that the point process∑
(zλ,vλ)6=(z1,v1)

δ(zλ,vλ−G1(zλ)) is distributed as η. In fact we can continue this construction
starting with η′ to prove the following

Proposition 4.3. We can proceed iteratively to define ξn,Gn and (zn, vn) as follows, for
all n ≥ 1:

ξn := inf{t ≥ 0; ∃(zλ, vλ) /∈ {(zk, vk)}n−1
k=1 : Gn−1(zλ)+ tg(zn−1, zλ) ≥ vλ}, (4.9)

Gn(z) = Gn−1(z)+ ξng(zn−1, z), (4.10)

(zn, vn) is the unique pair (zλ, vλ) /∈ {(zk, vk)}n−1
k=1 with Gn(zλ) = vλ, (4.11)

(z1, . . . , zn)
d
∼ (Z1, . . . , Zn) and they are independent of ξ1, . . . , ξn, (4.12)∑

(zλ,vλ)/∈{(zk,vk)}
n
k=1

δ(zλ,vλ−Gn(zλ)) is distributed as η and independent of the above.

(4.13)

See Figure 2 for an illustration of this iteration.

We call Gn the soft local time of the Markov chain, up to time n, with respect to the
reference measure µ. We will justify the choice of this name in Theorem 4.6 below.

From the above construction we have the following

Corollary 4.4. On the probability measure Q (where we defined the Poisson point pro-
cess η)we can construct the Markov chain (Zk)k≥1, in such a way that for any measurable
function v : 6→ R+,

Q[{Z1, . . . , ZT } ⊆ {zλ; vλ ≤ v(zλ)}] ≥ Q[GT (z) ≤ v(z) for µ-a.e. z ∈ 6] (4.14)

for any finite stopping time T ≥ 1.

Remark 4.5. Let us now comment on how the above corollary compares with other tech-
niques for approximate domination present in the literature. One such method is called
“Poissonization” and appears in various works, for instance [23], [22], [32]. Loosely
speaking, the method of Poissonization attempts to compare the elements Z1, Z2, . . .

with z1, z2, . . . one by one, so that one needs the transition densities g(z, z′) to be close to
one (in L1(µ)) uniformly over z. Not having such a requirement is the main contribution
of our technique, which will be useful later when working with random interlacements.

In order to estimate the right-hand side of (4.14), it is natural to resort to concentration
inequalities or large deviations principles for the sum defining GT . For this it is first nec-
essary to obtain the expectation of the soft local time GT (z). The following proposition
relates this with the expectation of the usual local time of the chain Zk , and that is the
main reason why we call Gk a soft local time.

We define the local time measure of the chain (Zk)k≥1 up to time n by

Ln =
∑
k≤n

δZk . (4.15)
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Observe that in some examples, the probability that z ∈ 6 is visited by the Markov chain
could be zero for every z ∈ 6 (for instance if µ is the Lebesgue measure). Therefore, we
need to use a test function in order to define what we call the expected local time of the
chain. More precisely, we say that a measurable function h : 6 → R+ is the expected
local time density of (Zk)k≤n with respect to µ if

EP (Lnf ) =
∫
6

f (z)h(z) µ(dz) for every non-negative measurable f . (4.16)

Here n could also be replaced by a stopping time. An important special case occurs when
6 is countable and µ is the counting measure. In this case, the expected local time density
h(z) is given simply by the expectation of the local time Ln at z:

EP
( n∑
k=1

f (Zk)

)
=

n∑
k=1

∑
z

f (z)P[Zk = z] =
∑
z

f (z)EPLn(z). (4.17)

For what follows, we suppose that the state space 6 contains a special element 1
which we refer to as the cemetery. We assume that µ({1}) = 1 and g(1, ·) = 1{1}(·), or
in other words, that the cemetery is an absorbing state. We write T1 for the hitting time
of1 which is a killing time for the chain in the sense of [7, (2)]. We will also assume that
test functions f as in (4.16) are zero at the cemetery.

The next result relates the expected local time density to the expectation of the soft
local time.

Theorem 4.6. Consider a state space (6,B, µ) with a cemetery state 1 and a Markov
chain (Zk)k≥1 satisfying (4.7) and (4.6). Then

EQ
[GT1(z)] is the expected local time density of (Zk)k≤T1 as in (4.16). (4.18)

The result is also true when T1 is replaced by a deterministic time.

Proof. Given some n ≥ 1, let us calculate

EP
( n∑
k=1

f (Zk)
)
= EPf (Z1)+ E

P
( n∑
k=2

EP
Zk−1

f (Z1)
)

= EP
( n∑
k=1

∫
f (z)g(Zk−1, z)µ(dz)

)
(4.12)
= EQ

∫
f (z)Gn(z) µ(dz) =

∫
f (z)EQGn(z) µ(dz), (4.19)

proving the validity of the proposition for the deterministic time n. We now let n go to
infinity and the result follows from the monotone convergence theorem and the fact that f
is zero at 1. ut

Let us remark that the above proof can be adapted to any killing time; on the other hand,
one cannot put an arbitrary stopping time in place of T1 in Theorem 4.6.

Before stating the next result, let us discuss a bit further our convention on the starting
distribution of the Markov chain. According to (4.7), Z1 is distributed as g(Z0, z)µ(dz),
but this was seen as a mere notation for convenient indexing and Z0 had no meaning
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whatsoever in that equation. However, it is clear that given any z0 ∈ 6, we could plug
it in the first coordinate of g(·, ·) as in (4.6) to define the density of Z1. Then the whole
construction of ξk ,Gk and (zk, vk) in Proposition 4.3 would depend on the specific choice
of z0. In the next proposition, we write Qz0 for the measure Q, where the construction
of ξk ,Gk and (zk, vk) (recall (4.9)) is obtained starting from the density g(z0, z). We also
denote by EQ

z0 the corresponding expectation.

Remark 4.7. Let us also observe that restricting the distribution of Z1 to be
g(z0, z)µ( dz) for some z0 ∈ 6 does not represent any additional loss of generality, as z0
could be an artificial state introduced in 6, from which g(z0, z) is any desired density
for Z1.

The next two theorems are useful in estimating the second and exponential moments of
the soft local times. This will be useful in the proofs of Lemma 6.2 and Theorem 2.1.

Besides calculating the expectation ofGk , it is useful to estimate its second moment.

Theorem 4.8. For any z, z0 ∈ 6,

EQ
z0
(GT1(z))

2
≤ 4EQ

z0
(GT1(z)) sup

z′0

E
Q
z′0
GT1(z). (4.20)

The result is also true with T1 replaced by a deterministic time.

Proof. For z ∈ 6 \1 and n ≥ 1, we write (recall that the expectation of (Exp(1))2 is 2)

EQ
z0
(Gn(z))

2
= EQ

z0

( n∑
k=1

ξkg(zk−1, z)
)2

= EQ
z0

( n∑
k=1

ξ2
k g

2(zk−1, z)
)
+ EQ

z0

(
2
∑

k<k′≤n

ξkξk′g(zk−1, z)g(zk′−1, z)
)

≤

n∑
k=1

Eξ2
k sup

z′
g(z′, z)EQ

z0
g(zk−1, z)+ 2

n−1∑
k=1

n∑
k′=k+1

EQ
z0

(
g(zk−1, z)g(zk′−1, z)

)
≤ 2 sup

z′
g(z′, z)EQ

z0
Gn(z)+ 2

n−1∑
k=1

n∑
k′=k+1

EQ
z0

(
g(zk−1, z)E

Q
z0
(g(zk′−1, z) | zk−1)

)
≤ 2 sup

z′
E

Q
z′
Gn(z)E

Q
z0
Gn(z)+ 2

n−1∑
k=1

EQ
z0

(
g(zk−1, z)E

Q
zk−1

(n−k∑
m=1

g(zm−1, z)
))

≤ 2 sup
z′
E

Q
z′
Gn(z)E

Q
z0
Gn(z)+ 2 sup

z′
E

Q
z′

(n−k∑
m=1

g(zm−1, z)
)
EQ
z0

(n−1∑
k=1

g(zk−1, z)
)

≤ 4EQ
z0
(Gn(z)) sup

z′0

E
Q
z′0
Gn(z),

proving the result for the deterministic time n. Then we simply let n go to infinity and use
the monotone convergence theorem. ut
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The next result provides an estimate on the exponential moments ofGT1 , which is clearly
an important ingredient in bounding the right-hand side of (4.14). The next theorem im-
poses some regularity condition on the transition densities g(·, ·) (which will be encoded
in ` and α below) to help obtain such fast decaying bounds. Intuitively speaking, the reg-
ularity condition says that if there is a big accumulation of densities g at some point ẑ,
then there should be a big accumulation of densities in a large set 0.

Theorem 4.9. Given ẑ ∈ 6 and measurable 0 ⊂ 6, let

α = inf
{
g(z, z′)

g(z, ẑ)
; z ∈ 6, z′ ∈ 0, g(z, ẑ) > 0

}
,

N(0) = #{k ≤ T1; zk ∈ 0}, ` ≥ sup
z′∈6

g(z′, ẑ).
(4.21)

Then, for any v ≥ 2,

Q[GT1(ẑ) ≥ v`]

≤ Q[GT1(ẑ) ≥ `]
(
exp

{
−
( 1

2v − 1
)}
+ sup

z′
Qz′
[
η
(
0 ×

[
0, 1

2v`α
])
≤ N(0)

])
,

(recall the definition of η in (4.1) and observe that η(0×[0, 1
2v`α]) is a random variable

with distribution Poisson
( 1

2v`αµ(0)
)
).

Before proving the above theorem, let us give an idea of what each term in the above
bound represents. In order for GT1(ẑ) to get past v`, it must first overcome `, which
explains the first term in the above bound. Then the two terms inside the parenthesis above
correspond respectively to the overshooting probability and a large deviations term. We
can expect the second term to decay fast as v grows, since N(0) becomes much smaller
than the expected value of η(0 × [0, 1

2v`α]).

Proof of Theorem 4.9. Define the stopping time (with respect to the filtration Fn =
σ(zk, ξk, k ≤ n))

T` = inf{k ≥ 1; Gk(ẑ) ≥ `}. (4.22)

Now, for any v ≥ 2, we can bound Q[GT1(ẑ) ≥ v`] by

Q
[
T` <∞, GT`(ẑ) ≥

1
2v`

]
+Q

[
T` <∞, GT`(ẑ) <

1
2v`, GT1(ẑ)−GT`(ẑ) >

1
2v`

]
(4.23)

(observe that Q[GT1(ẑ) ≥ `] = Q[T` <∞]). We start by estimating the first term in the
above sum, which equals (using the memoryless property of the exponential distribution)∑
n≥1

EQ(Gn−1(ẑ) < `, Q
[
ξng(zn−1, ẑ) >

1
2v`−Gn−1(ẑ)

∣∣ zn−1,Gn−1
])

≤

∑
n≥1

EQ(Gn−1(ẑ) < `, Q[ξ1g(zn−1, ẑ) > `−Gn−1]Q
[
ξ1g(zn−1, ẑ) >

( 1
2v − 1

)
`
])

≤ Q[T` <∞] sup
z′∈6

Q
[
ξ1g(z

′, ẑ) >
( 1

2v − 1
)
`
]
≤ Q[T` <∞] exp

{
−
( 1

2v − 1
)}
.

(4.24)
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We now turn to the bound on the second term in (4.23), which is

EQ(T` <∞, GT`(ẑ) < 1
2v`,Q

[
GT1(ẑ)−GT`(ẑ) >

1
2v`

∣∣ G1, . . . ,GT`
])

≤ Q[T` <∞] sup
z′

Qz′
[
GT1(ẑ) >

1
2v`

]
. (4.25)

Now since for any z′ ∈ 6,

GT1(z
′) =

T1∑
k=1

ξkg(zk−1, z
′) ≥

T1∑
k=1

αξkg(zk−1, ẑ)10(z
′) = αGT1(ẑ)10(z

′), (4.26)

we deduce that for all z′,

Qz′
[
GT1(ẑ) ≥

1
2v`

]
≤ Qz′

[
GT1(z) ≥

1
2v`α for every z ∈ 0

]
≤ Qz′

[
η
(
0 ×

[
0, 1

2v`α
])
≤ N(0)

]
. (4.27)

Combining (4.23) with (4.24), (4.25) and the above we obtain the desired result. ut

Unfortunately, the simulation of a single Markov chain will not suffice for our purposes in
this work. As suggested by the definition of random interlacements in terms of a collection
of random walks (see (2.14)), we will need to apply the above scheme to construct a
sequence of independent Markov chains on 6 and to this end, we will make use of the
same Poisson point process η. This is done in Proposition 4.10 below, which requires
some further definitions.

Suppose that in some probability space (L,L,P) we are given a collection (Zjk )j,k≥1
of random elements of 6 such that

for any given j ≥ 1, the sequence (Zj1 , Z
j

2 , . . . ) is a Markov chain on 6,
characterized by P[Zjk ∈ dz | Z

j

k−1] = g(Z
j

k−1, z)µ(dz) for k = 1, 2, . . . , (4.28)

for distinct values of j , the above Markov chains are independent. (4.29)

Recall that we interpret (4.28) for k = 1 as a notation for the starting distribution of the
chain as we did in (4.7). However, we are allowed to impose different starting laws (for
distinct values of j ) by choosing theZj0 ’s. Although they have a possibly different starting
distribution, they all evolve independently and under the same transition laws.

Suppose that for each j ≥ 1,

the hitting time of 1 (as below (4.17)) is P
Z
j

0
-a.s. finite, (4.30)

where Pz denotes the law of this Markov chain evolution starting from z.
In what follows, we are going to use a single Poisson point process η to simulate

all the above Markov chains (Zjk ) until they hit 1. We do this by simply repeating the
procedure of Proposition 4.3 following the lexicographic order (j, k) 4 (j ′, k′) if either
j < j ′, or j = j ′ and k ≤ k′. This construction results in the accumulation of the soft
local times of all the chains, which is essential in proving our main theorem.
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In the same spirit of the definition (4.9), we set G1
0 ≡ 0 and define inductively, for

n = 1, 2, . . . ,

ξ1
n := inf

{
t ≥ 0; ∃(zλ, vλ) /∈ {(z1

k, v
1
k )}

n−1
k=1: G1

n−1(zλ)+ tg(z
1
n−1, zλ) ≥ vλ

}
,

G1
n(z) = G

1
n−1(z)+ ξ

1
ng(z

1
n−1, z),

(z1
n, v

1
n) = the unique pair (zλ, vλ) /∈ {(z1

k, v
1
k )}

n−1
k=1 with G1

n(zλ) = vλ.

(4.31)

We write T 1
1 for the hitting time of 1 by the chain (z1

1, z
1
2, z

1
3, . . . ). Applying Propo-

sition 4.3, we find that (z1
1, . . . , z

1
T 1
1

) is distributed as (Z1
1, . . . , Z

1
T1
) under the law P and

that

η′ :=
∑

(zλ,vλ)/∈{(z1
n,v

1
n)}n≤T 1

1

δ(zλ,vλ−G1
T 1
1

(zλ))

is distributed as η and independent of the above.
Now that we are done simulating the first Markov chain up to time T 1

1 using η, let
us continue the above procedure in order to obtain from η′ the chain (Z2

k )k≥1 and so on.
Supposing we have concluded the construction up to m − 1, let Gm0 ≡ 0 and define for
n = 1, . . . , T m1 (T m1 stands for the absorption time of the mth chain),

ξmn := inf
{
t ≥ 0; ∃(zλ, vλ) /∈ {(z

j
k , v

j
k }(j,k)4(m,n−1):∑m−1

j=1 G
j

T
j
1

(zλ)+G
m
n−1(zλ)+ tg(z

m
n−1, zλ) ≥ vλ

}
,

Gmn (z) = G
m
n−1(z)+ ξ

m
n g(z

m
n−1, z),

(zmn , v
m
n ) /∈ {(z

j
k , v

j
k )}(j,k)4(m,n−1) with

∑m−1
j=1 G

j

T
j
1

(zλ)+G
m
n (zλ) = vλ.

(4.32)

The following proposition summarizes the main properties of the above construction
and its proof is a straightforward consequence of Proposition 4.3.

Proposition 4.10. Suppose we are given starting densities g(Zj0 , ·) (j ≥ 1) and tran-
sition densities g(·, ·) of a Markov chain as in (4.28). Then, defining ξ jk , Gjk and zjk for
j = 1, 2, . . . and k = 1, . . . , T j1 as in (4.32), one has:

(ξ
j
k , j ≥ 1, k ≤ T j1) are i.i.d. Exp(1)-random variables, (4.33)

(z
j
k , j ≥ 1, k ≤ T j1)

d
∼ (Z

j
k , j ≥ 1, k ≤ T j1) are independent of ξ jk ’s. (4.34)

The most relevant conclusion of the proposition is (4.34), showing that our method indeed
provides a way to simulate a sequence of independent Markov chains.
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5. Construction of random interlacements from a soup of excursions

In this section we use Proposition 4.10 to construct random interlacements in an alterna-
tive way. The advantage of this new construction is that it is more “local” than the usual
one, i.e., it does not reveal the interlacement configuration far away from the set of in-
terest; this of course facilitates the decoupling of the configuration on different sets, and
that is why we consider this construction to be the key idea of this paper. Note that the
canonical construction of the random interlacements (presented in Section 2) does not
have this property of “localization”, since it is quite probable that many walkers would
do long excursions away from the set of interest before eventually coming back.

Let us start with a simple decomposition of random interlacements that prepares the
ground for the main construction of this section.

5.1. Decomposition of random interlacements

A crucial ingredient in proving our main result is a decomposition of the interlacement set
Iu that we now describe. For the rest of this section, let K be a fixed finite subset of Zd .

Consider first the map sK : W ∗K → W defined by

sK(w
∗) is the unique trajectory w ∈ W with π∗(w) = w∗ and HK(w) = 0. (5.1)

We also introduce, for w ∈ W , the one-sided trajectories w+ = (Xi(w))i≥0 and w− =
(X−i(w))i≥0 in W+. These can be seen as the future and past of w.

Let us define the space of point measures

M =

{
χ =

∑
i∈I

δ(wi ,ui );
I ⊂ N, wi ∈ W+, ui ∈ R+ and
ω(W+ × [0, u]) <∞ for every u ≥ 0

}
, (5.2)

endowed with the σ -algebra M generated by the evaluation maps χ 7→ χ(D) for D ∈
W+⊗B(R+). And for χ =

∑
i δ(wi ,ui ) we extend the definition in (2.14) toM as follows:

Iu(χ) =
⋃

i: ui<u

Range(wi). (5.3)

We can now introduce, for ω =
∑
i δ(w∗i ,ui )

∈ �, maps χ+K , χ
−

K : �→ M by

χ+K (ω) =
∑

i:w∗i ∈W
∗
K

δ(sK (w∗i )
+,ui ) and χ−K (ω) =

∑
i:w∗i ∈W

∗
K

δ(sK (w∗i )
−,ui ) in M . (5.4)

We also define the analogous point processes χ+K,u and χ−K,u where the summations are
taken only over ui ≤ u.

The main observation concerning these point processes is stated in the following
proposition, which is a direct consequence of (2.11) and (2.12).
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Proposition 5.1. For any finite set K ⊂ Zd , the law of (χ+K , χ
−

K ) under P is a Poisson
point process on (M ×M,M⊗M) with intensity measure characterized by

ζK(A×[a, b]×B×[c, d]) = 1((a, b)×(c, d))
∑
x∈K

eK(x)Px[A]Px[B | H̃K = ∞] (5.5)

for A,B ∈W+ and a < b, c < d ∈ R. Here 1 is the Lebesgue measure on the diagonal
in R2 divided by

√
2.

A way to rephrase the above proposition is to say that we can simulate the pair
(χ+K,u, χ

−

K,u) as follows:

• let 2Ku be a Poisson(u cap(K))-distributed random variable,

• choose i.i.d. points X1
0, . . . , X

2Ku
0 with law ēK , and

• from each point Xj0 , start two trajectories, with laws given respectively by P
X
j

0
and

P
X
j

0
[ · |H̃K = ∞].

Given a finite set K ⊂ Zd , we are going to decompose the interlacement set Iu as the
union of three sets IuK,+, IuK,− and ÎuK given by

IuK,+(ω) = Iu(χ+K (ω)), IuK,−(ω) = Iu(χ−K (ω)), ÎuK(ω) = Iu(1{W ∗ \W ∗K} · ω)
(5.6)

(recall the definitions (2.14) and (5.3)).
Roughly speaking, the sets IuK,+ and IuK,− correspond respectively to the future and

past of the trajectories of Iu that hit K , while ÎuK encompasses the trajectories not hit-
ting K . This decomposition will be crucial for obtaining the decoupling in Theorem 2.1,
and we now present its main properties.

Proposition 5.2. For any finite K ⊂ Zd and u ≥ 0,

Iu = IuK,+ ∪ IuK,− ∪ ÎuK for every ω ∈ �, (5.7)

Iu ∩K = IuK,+ P-a.s. (5.8)

ÎK,u is independent of (IuK,+, IuK,−). (5.9)

Proof. To prove (5.7), one should decompose the union giving Iu intoW ∗K andW ∗ \W ∗K ,
observing that for each w∗ ∈ W ∗K , Range(w∗) = Range(sK(w∗)+) ∪ Range(sK(w∗)−).

To see why the second statement is true, observe first that Iu ∩ K ⊂ IuK,+ ∪ IuK,−,
since we have (5.7) and ÎuK is disjoint from K . Then, observe that IuK,− ∩ K is P-a.s.
contained in IuK,+, which follows from Proposition 5.1, since for every x ∈ supp(eK),
Range(w) ∩K = {X0(w)}, Px[ · | H̃K = ∞]-a.s.

Finally, to prove (5.9), we observe that these two sets are determined by the realization
of the Poisson point process ω in the disjoint spaces of trajectoriesW ∗ andW ∗ \W ∗K . ut

We also observe that the random variable

2Ku = χ
+

K (W+×[0, u]) = χ
−

K (W+×[0, u]) is Poisson(u cap(K))-distributed. (5.10)
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5.2. Chopping into excursions

Fix a finite set V ⊂ Zd and a set C ⊂ Zd such that

∂C is finite. (5.11)

The above condition is equivalent to C being either finite or having finite complement
(see Figure 3 below). Suppose also that C ∩V = ∅. Although some of the definitions that
follow will depend on both V and C, we will keep only the dependence on C explicit,
since the set V will be kept unchanged throughout proofs.

We are interested at first in the trace left by IuV,± on the set C. The random walks
composing IuV,+ (see (5.6)) will perform various excursions between C and V until they
finally escape to infinity. This decomposition of a random walk trajectory into excursions
is crucial to our proofs and we now give the details of its definition. In fact, one can look
at Figure 3 to have a feeling of what is going to happen.

D0

R1

D1

R2

D2

C

V

D0

R1

D1

R2

V

C

Fig. 3. Typical examples of sets C (gray) and V (closed curves). On the left C is finite, while on
the right it has finite complement. The stopping times Rk and Dk are also pictured.

Given a trajectory w+ ∈ W+ (recall (2.2)), let us define its successive return and
departure times between C and V :

D0 = 0, R1 = HC,

D1 = HV ◦ θR1 + R1, R2 = HC ◦ θD1 +D1,

D2 = HV ◦ θR2 + R2 and so on (see Figure 3).

Note that above we have omitted the dependence on w+. Define

T C = inf{k ≥ 1; Rk = ∞}, (5.12)

which is equal to one plus the random number of excursions performed by w+ until
escaping to infinity. Since we have assumed that the set V is finite, and the random walk
on Zd (d ≥ 3) is transient, T C is finite P -almost surely.

The reason why we define T C as one plus the number of excursions is to guarantee
that it coincides with T1 as defined just after (4.17) in the construction that follows.
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As mentioned before, we are interested in the intersection of IuV,+ (recall (5.6)) with

the set C. Writing χ+V,u =
∑2Vu
j=1 δwj (where the w’s are ordered according to their corre-

sponding u’s), and abbreviating T Cj = T
C(wj ), we obtain

C∩IuV,+ = C∩
⋃

(w+,u)∈supp(χ+V,u)

(w+) = C∩

2Vu⋃
j=1

T Cj −1⋃
k=1

{XRk (wj ), . . . , XDk (wj )}, (5.13)

where it may occur that some of the Dk(wj )’s above are infinite.
We are now going to employ the techniques of Section 4 to simulate the above col-

lection of excursions using a Poisson point process. For this let 6C denote the following
space of paths:

6C = {1} ∪

{
w = (x1, . . . , xk) finite nearest neighbor path, starting

at ∂C and ending at its first visit to V

}
∪

{
w = (x1, x2, . . . ) infinite nearest neighbor path,

starting at ∂C and never visiting V

}
, (5.14)

where 1 is a distinguished state that encodes the fact that a given trajectory has already
diverged to infinity. Illustrations of finite and infinite paths in6C can be found in Figure 3.

Consistently with the previous discussion, we use the shorthand Xj· = X·(wj ); in
other words, the superscript j means that we are dealing with the j th walk of the con-
struction. The excursions induced by the random walks will be encoded as elements of6C
as follows

Z
j
k = (X

j
Rk
, . . . , X

j
Dk
) ∈ 6C for k = 1, . . . , T Cj − 1,

Z
j

T Cj
= 1.

(5.15)

The reason why we introduce the state 1 is to recover the description of Section 4, indi-
cating that another trajectory is about to start.

In view of (5.13), in order to simulate C ∩ IuV,+, we only need to construct the ex-

cursions Zjk with the correct law. For this, we are going to use the construction of the
previous section to simulate them from a Poisson point process. In (5.18) below, we will
prove that for a fixed j , the sequence Zj1 , Zj2 , . . . is a Markov chain, as required in (4.28)
and (4.29).

Endow the space of paths 6C with the σ -algebra S generated by the canonical coor-
dinates and with the measure µC given by

µC(X ) =
∑
x∈∂C

Px[(X0, X1, . . . , XHV ) ∈ X ] + δ1(X ), (5.16)

where X ∈ S. Note that µC is finite due to (5.11). We can therefore define a Poisson
point process η =

∑
i δ(zi ,vi ) on 6C × R+ with intensity µC ⊗ dv as in (4.1).

In order to apply Proposition 4.10, we first observe that for fixed j ≥ 1, Zjk is a
Markov chain, due to the Markovian character of the simple random walk. We then define

f Cy (x) := Py[XH̃C
= x] (5.17)
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and apply the strong Markov property at Dk−1 to obtain the Radon–Nikodym derivative

dP [Z
j
k ∈ · | Z

j

k−1 = z]

dµC
(z′) =



1 if z = z′ = 1,
or z′ = 1,Dk−1 = ∞,

f C
X
j
Dk−1

(z)
(X0(z

′)) if z, z′ 6= 1, Dk−1 <∞,

P
X
j
Dk−1

(z)
[HC = ∞] if z′ = 1 6= z, Dk−1 <∞,

0 otherwise,
(5.18)

for all k ≥ 2.
The above not only shows that the sequence Zj1 , Z

j

2 , . . . is Markovian, but also that
the transition density of the chain satisfies

gC((x0, . . . , xl), (y0, . . . , ym)) = fxl (y0) (5.19)
(g is a density with respect to µC , as in (5.16)). We are now left with the starting distri-
butions of the Markov chains Zjk .

Recall that we are attempting to construct the measure χ+V,u, which is not independent
of χ−V,u. In fact, they are conditionally independent given {X0(w)}w∈supp(χ−V,u)

. Therefore,

conditioning on {Xj0}j=1,...,2Vu
, the starting density of the j th chain (with respect to µC)

satisfies
g
j
C(x0, . . . , xl) = fXj0

(x0). (5.20)

Finally, we set Zj0 = w where w is any trajectory with X0(w) = X
j

0 = X
j
D0

, so that
(5.18) is also satisfied for k = 1, in compliance with the notation in (4.28) (see also
Remark 4.7).

We can now follow the construction of ξCj,k and GCj,k , for j ≥ 1, k = 1, . . . , T Cj , as

in (4.32). Then, using Proposition 4.10, we obtain a way to simulate the excursions Zjk as
promised. In particular, we can show that

C ∩ IuV,+ is distributed as C ∩
2Vu⋃
j=1

T Cj⋃
k=1

Range(zCj,k) under Q. (5.21)

See Figure 4 for an illustration of the first two steps (for the first particle) of the
construction of random interlacements on the set C.

We now prove a proposition that relates our main result, Theorem 2.1, to the above
construction. To simplify the notation for the soft local time, we abbreviate the accumu-
lated soft local time up to the 2Cu th trajectory as

GCu = G
C

1,T C1
+GC

2,T C2
+ · · · +GC

2Cu ,T
C

2Cu

. (5.22)

We can use Theorem 4.6 to obtain a short expression for EGCv (z). For this, given
j ≥ 1, we let

ρCj (x) =

T Cj∑
k=1

1x(X
j
Rk
) (5.23)

count the number of times the j th trajectory starts an excursion through x.
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∂C × R+

G1
1

∂V

X1
0

X1
0

X1
D1
(z11)

X0(z
1
1)

z11

X1
0

X0(z
1
1)

z11

G1
2

X0(z
1
2)

X1
D1
(z12)

z12

C

X1
D1
(z11)

X1
0

X1
D1
(z11)

Fig. 4. The construction of random interlacements on the set C; the points of 6C are substituted
by points in ∂C×R+ with marks representing the corresponding trajectories, and the state1 is not
pictured.
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Let us first recall, from (5.19), thatGCv depends on z = (x0, x1, . . . ) solely through x0.
Thus, given z, z′ ∈ 6C , we define q(z, z′) = 1{X0(z) = X0(z

′)} to obtain

EQGC
1,T C1

(z)
(5.19)
=

∫
q(z, z′)EQGC

1,T C1
(z′) µC(dz

′)

Theorem 4.6
= EP

( T Cj∑
k=1

q(Z
j
k , z)

)
= EPρCj (X0(z)), (5.24)

for every z ∈ 6C . Clearly, this implies that

EQGCv (z) = E
Q2Cv × E

PρCj (X0(z)) = v cap(V )EPρCj (X0(z)). (5.25)

Proposition 5.3. Let A1 and A2 be two disjoint subsets of Zd with A2 having finite com-
plement. Now suppose that

V ⊂ Zd is such that any path from A1 to A2 crosses V . (5.26)

Then for every u > 0 and ε ∈ (0, 1) there exists a coupling Q between Iu and two
independent random interlacements processes, (Iu1 )u≥0 and (Iu2 )u≥0, such that

Q[Iu(1−ε)k ∩ Ak ⊆ Iu ∩ Ak ⊆ Iu(1+ε)k , k = 1, 2]

≥ 1−
∑

(v,C)=(u(1±ε),A1),
(u(1±ε),A2),(u,A1∪A2)

Q
[
|GCv (z)− E

QGCv (z)| ≥
1
3εE

QGCv (z) for some z ∈ 6C
]
,

(5.27)

where the soft local times above are determined in terms of V .

We note that the above proposition is an important ingredient for the proof of Theo-
rem 2.1, since it relates the success probability of our decoupling to an estimate on the
soft local times. In Section 6, we will bound the right-hand side of (5.27) using large
deviations. One should not be worried that the set 6C may be uncountable (in case the
excursions are infinite). Later we will deal with this, using the fact that the soft local time
depends on z only through its starting point.

Proof of Proposition 5.3. We are going to follow the scheme in Section 5.1 in order to
construct the triple Iu, (Iu1 )u≥0, (Iu2 )u≥0, distributed as random interlacements on Zd as
stated in the proposition. However, we will need two independent copies of some of the
ingredients appearing in that construction. More precisely,

let χ−V,1 =
∑
i δ(w1

i ,u
1
i )

and χ−V,2 =
∑
i δ(w2

i ,u
2
i )

be two independent ran-
dom variables on M (i.e., Poisson point processes on the space of labeled
trajectories) with the same law as χ−V in (5.4), (5.28)

let the counting processes 2V,1u = χ−V,1(W+ × [0, u]) and 2V,2u =

χ−V,2(W+ × [0, u]) be as in (5.10), for u ≥ 0, and finally (5.29)

define two independent processes ÎuV,1 and ÎuV,2 as in (5.6). (5.30)
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The only missing ingredients in order to construct two independent random interlacement
processes following the construction of Section 5.1 are the random walks composing χ+V
(see (5.4)). The construction will be based on Proposition 4.10, and that is where the
coupling will take place.

Let us introduce the sets

6A1∪A2 , 6A1 and 6A2 given by (5.14) with V as in (5.26). (5.31)

Note that we have replaced the set C by the three above choices, while keeping V fixed.
We also let µA1∪A2 , µA1 and µA2 be the respective measures on these sets, given

by (5.16). The first crucial observation for this proof is that

6A1∪A2 is the disjoint union of 6A1 and 6A2 and µA1∪A2 = µA1 + µA2 . (5.32)

Note that we are duplicating the cemetery on 6A1∪A2 for the above to hold.
We define a Poisson point process η on 6A1∪A2 ×R+ with intensity µA1∪A2 ⊗ dv as

below (5.16). From (5.32) we conclude that

η restricted to 6A1 and 6A2 are Poisson point processes with respective
intensities µA1 ⊗ dv and µA2 ⊗ dv, which are independent of each other.
Moreover, an excursion z ∈ 6Ak cannot intersect Ak′ with k′ 6= k (see (5.26)). (5.33)

We use χ−V,1 and χ−V,2 in order to define the starting points {XV,1,j0 }
j=1,...,2

A1
u

and

{X
V,2,j
0 }

j=1,...,2
A2
u

. Let us finally recall the definitions of T C from (5.12), and of GCj,k
and zCj,k from (4.32), where C can be replaced by either of the three sets A1 ∪ A2, A1,

orA2. It is important to observe that we use the starting pointsXV,1,j0 for the caseC = A1

and XV,2,j0 for both C = A2, A1 ∪ A2. We can finally introduce

J u
C = C ∩

2Cu⋃
j=1

T Cj⋃
k=1

Range(zCj,k) with C = A1 ∪ A2, A1 or A2 (5.34)

(note that we use the same Poisson point process to define the three sets above) and

Iu = J u
A1∪A2

∪ Iu(χ−V,2) ∪ ÎuV,2,
Iu1 = J u

A1
∪ Iu(χ−V,1) ∪ ÎuV,1, Iu2 = J u

A2
∪ Iu(χ−V,2) ∪ ÎuV,2.

We independently modify the above sets on (A1∪A2)
c to obtain the correct distributions,

although this is immaterial for the statement of the proposition.
To conclude the proof of the proposition, let us observe that

• (J u
C )u≥0 is distributed as (C ∩ IuV,+)u≥0 for C = A1 ∪ A2, A1 or A2 (see (5.21)), so

that ((A1 ∪A2)∩ Iu)u≥0, (A1 ∩ Iu1 )u≥0 and (A2 ∩ Iu2 )u≥0 have the right distributions
as under the random interlacements;
• J u

A1
and J u

A2
are independent (see (5.28), (5.29) and (5.33)), which means (A1∩Iu1 )u≥0

and (A2 ∩ Iu2 )u≥0 are also independent.
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ΣA1
ΣA2

GA1

u(1−ε) GA2

u(1−ε)

GA1

u(1+ε) GA2

u(1+ε)

GA1∪A2
uGA1∪A2

u

u cap(V )(1− ε)(1 + ε
3 )ϕ

u cap(V )(1− ε
3 )ϕ

u cap(V )(1 + ε
3 )ϕ

u cap(V )(1 + ε)(1− ε
3 )ϕ

Fig. 5. Proof of Proposition 5.3; ϕ was defined in the last paragraph of the proof (observe that
1+ ε/3 ≤ (1− ε/3)(1+ ε) for ε ∈ [0, 1]).

Hence, using the definition of Iu, Iu1 and Iu2 , we see that

Q[Iu(1−ε)k ∩ Ak ⊆ Iu ∩ Ak ⊆ Iu(1+ε)k , k = 1, 2]

≥ Q[J u(1−ε)
Ak

⊆ J u
A1∪A2

∩ Ak ⊆ J u(1+ε)
Ak

, k = 1, 2]

≥ Q[GAku(1−ε)(z) ≤ G
A1∪A2
u (z) ≤ G

Ak
u(1+ε)(z) for all z ∈ 6Ak and k = 1, 2]. (5.35)

Now, (5.26) implies that for x ∈ ∂Ak we have ϕ(x) := EPρAk1 (x) = EPρA1∪A2
1 (x). The

conclusion of (5.27) is now a simple consequence of the above display and the fact that
the expectation of GCu is linear in u according to (5.25) (see Figure 5). ut

6. Proof of Theorem 2.1

In this section we will prove our main result, modulo a set of additional assumptions that
will be proved in the next section.

Recall that we use the notation B(x, r) = {y ∈ Zd; ‖x − y‖ ≤ r} for discrete balls.
Also, for A ⊂ Zd we write B(A, r) =

⋃
x∈A B(x, r).

Suppose we are given sets A1 and A2 as in Theorem 2.1 and suppose without loss of
generality that the diameter of A1 is not greater than the diameter of A2. It is clear that
we can assume that A2 = Zd \ B(A1, s), since the function f2 can be seen as a function
in {0, 1}Z

d
\B(A1,s); so, from now on we work with this assumption.

The proof of the main theorem will require some estimates on the entrance distribution
of a random walk on the sets A1, A2 and A1 ∪ A2, which are closely related to the
regularity conditions mentioned before Theorem 4.9. However, the problem is that, in
general, these estimates need not be satisfied for an arbitrary finite set A1 and A2 =

Zd \B(A1, s). So, in order to fix this problem, we will replaceA1 andA2 by slightly larger
sets A(s)1 and A(s)2 , using Proposition 6.1 below. Roughly speaking, these “fattened” sets
will have the following properties (below, C stands for any of the three sets A(s)1 , A

(s)
2 , or

A
(s)
1 ∪ A

(s)
2 ):
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• the probability that the simple random walk enters C through some point y is at
most O(s−(d−1)) for starting points at distance at least of order s from C;
• this probability should be at least of order s−(d−1) for “many” starting points which are

at distance of order s from y;
• the probabilities of entering C through two near points y and y′ in ∂C can be different

by at most a (fixed) constant factor (this should be valid as soon as the random walk
starts far from {y, y′});
• finally, we also need some additional geometric properties of ∂C.
A typical example of a set having these properties is a discrete ball of radius s; in fact,
we will prove that any set with “sufficiently smooth boundary” will do. More rigorously,
the fact that we need is formulated in the following way (one may find it helpful to look
at Figure 6):

A

A(s)

B(A, s
5 )

y

y′

D̂B̄y

γ6s

Fig. 6. The sets in Proposition 6.1.

Proposition 6.1. There exist positive constants γ6 ∈ (0, 1
10 ), γ7, γ8 < γ6/2, γ9, γ10, γ11

∈ (0, 1), s0 (depending only on dimension) such that, for any s ≥ s0 and any set A ⊂ Zd
such that Zd \ B(A, s) is non-empty, there is a set A(s) with the following properties:

A ⊆ A(s) ⊆ B(A, s/5); (6.1)

for any y ∈ ∂A(s),

sup
x∈Zd :

d(x,y)≥γ6s/2

Px[XH
A(s)
= y] ≤ γ7s

−(d−1) (6.2)
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and there exists a ball B̄y of radius γ6s such that d(B̄y, y) ∈ [γ6s, 2γ6s] and

inf
x∈B̄y

Px[XH
A(s)
= y, HA(s) < HZd\B(y,4γ6s)

] ≥ γ−1
7 s−(d−1). (6.3)

Moreover, for any y ∈ ∂A(s),

|{z ∈ ∂A(s); ‖y − z‖ ≤ γ8s}| ≥ γ9s
d−1, (6.4)

and if y′ ∈ ∂A(s) is such that ‖y − y′‖ ≤ γ8s, then there exists a set D̂ (depending on
y, y′) that separates {y, y′} from ∂B(y, γ6s) (i.e., any nearest neighbor path starting at
∂B(y, γ6s) that enters A(s) at {y, y′}, must pass through D̂) such that

sup
x∈D̂:

Px [XH
A(s)
=y′]>0

Px[XH
A(s)
= y]

Px[XH
A(s)
= y′, HA(s) < HZd\B(y′,5γ6s)

]
≤ γ10. (6.5)

The proof of this proposition is postponed to Section 8. We are now going to use the
above result to prove Theorem 2.1.

Recall that we define A2 = Zd \ B(A1, s). The idea is to use Proposition 5.3 for A(s)1
and A(s)2 provided by Proposition 6.1, and V defined as

V = {y ∈ Zd; d(y,A(s)1 ∪ A
(s)
2 ) ≥ γ6s}. (6.6)

Let y, y′ ∈ ∂A(s)1 ∪∂A
(s)
2 be such that ‖y−y′‖ ≤ γ8s (in fact, in this case both y and y′

must be in the same set, either ∂A(s)1 or ∂A(s)2 ). Let D̂ be the corresponding separating set,
as in (6.5) of Proposition 6.1. Now, consider an arbitrary site x ∈ V , and write, for
C = A

(s)
1 , A

(s)
2 , A

(s)
1 ∪ A

(s)
2 ,

Px[XHC = y] =
∑
z∈D̂

Px[XH
C∪D̂
= z]Pz[XHC = y] and similarly with y′, (6.7)

where we have used the strong Markov property at H
C∪D̂

and dropped vanishing terms.
So, by construction, we have

sup
x∈V :

Px [XHC=y
′
]>0

Px[XHC = y]

Px[XHC = y
′]
≤ γ10 for C = A(s)1 , A

(s)
2 , A

(s)
1 ∪ A

(s)
2 ,

when ‖y − y′‖ ≤ γ8s. (6.8)

With the above, we can now start estimating the soft local times appearing in (5.27).
In the rest of this section, C stands for one of the sets A(s)1 , A

(s)
2 , A

(s)
1 ∪ A

(s)
2 ; we will

obtain the same estimates for all of them. Recalling the definition of T` in (4.22), we
consider x ∈ ∂C and fix any z ∈ 6C such that x = X0(z); then we denote by

FCj (x) = G
C

j,T Cj
(z) (6.9)
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the contribution of the j th particle to the soft local time in trajectories starting at x, in the

construction of the corresponding interlacement set for C, so thatGCu (z) =
∑2Cu
j=1 F

C
j (x).

We also introduce

πC(x) = E[FC1 (x)], which also equals EPρC1 (x) due to (5.24); (6.10)

recall the definition of ρCj from (5.23).

Lemma 6.2. ForC being eitherA(s)1 ,A(s)2 orA(s)1 ∪A
(s)
2 , and V as in (6.6), for all x ∈ ∂C

we have

(i) γ12s
−1 cap(V )−1

≤ πC(x) ≤ γ13s
−1 cap(V )−1;

(ii) E(FC1 (x))
2
≤ γ14s

−d cap(V )−1.

Proof. Instead of estimating the expected soft local time directly, we rather work with the
“real” local time ρC1 (x), with the assistance of Theorem 4.6.

Consider the discrete sphere Ṽ of radius 3(r + s) centered at any fixed point of A1.
Given a trajectory w∗ ∈ W ∗, the number of excursions ρC1 (x) between V and C entering
at x is the same for both sV (w∗) and s

Ṽ
(w∗). Thus, their expected values are the same

and can be written respectively as u cap(V )πC(x) and u cap(Ṽ )π̃C(x), where π̃C(x) is
the expected number of such (V , x)-crossings under Pē

Ṽ
. So,

πC(x) = cap(V )−1 cap(Ṽ )π̃C(x).

We know that cap(Ṽ ) � (r + s)d−2 (see (2.8)), so in order to prove (i), it will be enough
to obtain

π̃C(x) � s−1(r + s)−(d−2). (6.11)

For x′ ∈ Zd \C such that d(x′, x) ≥ γ6s, we use the Markov property atHC to obtain

Ex′ρ
C
1 (x) ≤ Px′ [XHC = x] + sup

y∈V

Py[HB(x,γ6s/2) <∞] sup
z: d(z,x)≥γ6s/2

Ezρ
C
1 (x). (6.12)

Then taking the supremum in x′ and using (6.2), we get

sup
x′: d(x′,x)≥γ6s/2

Ex′ρ
C
1 (x) ≤

supx′: d(x′,x)≥γ6s/2 Px′ [XHC = x]

1− supy∈V Py[HB(x,γ6s/2) <∞]
≤ c2s

−(d−1). (6.13)

So, by [10, Proposition 6.4.2],

Eē
Ṽ
ρC1 (x) ≤ sup

x′∈Ṽ

Px′ [HB(x,γ6s/2) <∞] sup
x′: d(x′,x)≥γ6s/2

Ex′ρ
C
1 (x)

≤ c3

(
s

s + r

)−(d−2)

s−(d−1)
= c3s

−1(r + s)−(d−2).
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We are now left with the lower bound

Eē
Ṽ
ρC1 (x) ≥ inf

x′∈∂Ṽ

Px′ [HB̄x <∞] inf
x′′∈∂B̄x

Px′′ [XHC = x]
(6.3)
≥ c4

(
s

s + r

)−(d−2)

s−(d−1),

proving (6.11) and consequently (i).
Part (ii) then immediately follows from (6.13) and Theorem 4.8 (see also Remark 4.7).

ut

Next, we need the following large deviation bound for FC1 (x):

Lemma 6.3. For C = A(s)1 , A
(s)
2 , A

(s)
1 ∪ A

(s)
2 and V as in (6.6), for all x ∈ ∂C we have

P [FC1 (x) > vγ7s
−(d−1)

] ≤ γ15s
d−2 cap(V )−1 exp(−γ16v) for any v ≥ 2 (6.14)

(also, without loss of generality we suppose that γ16 ≤ 1).

Proof. The idea is to apply Theorem 4.9 for FC1 (x) and with 0x = {z ∈ 6C; ‖x−X0(z)‖

≤ γ8s}; observe that µC(0x) ≥ γ9s
d−1 by (6.4). With the notation of Theorem 4.9, we

set
` = γ7s

−(d−1) and observe that α ≥ 1/γ10,

by (6.2) and (6.8).
Chebyshev’s inequality together with Lemma 6.2(i) then implies that

P [T` <∞] = P [F
C
1 (x) ≥ γ7s

−(d−1)
] ≤

πC(x)

γ7s−(d−1) ≤ γ
−1
7 γ13s

d−2 cap(V )−1. (6.15)

Now, denoting byN(0x) the number of crossings between V and C that enter 0x , and
by ηx the number of points of the Poisson process (from the construction in Section 5) in
0x × [0,

γ7
2γ10

vs−(d−1)
], we write

Qz′ [ηx ≤ N(0x)] ≤ Qz′
[
ηx ≤

γ7γ9

4γ10
v

]
+Qz′

[
N(0x) ≥

γ7γ9

4γ10
v

]
.

To see that both terms on the right-hand side of the above display are exponentially small
in v, we observe that

• ηx has Poisson distribution with parameter at least γ7γ9
2γ10

v, and
• starting from any y ∈ V , with uniformly positive probability the random walk does not

enter 0x (recall that γ8 < γ6/2, which implies that Py[H0x <∞] < c5 < 1 uniformly
in y ∈ V ). Therefore Nx is dominated by a Geometric(c5) random variable having
exponential tail as well.

Together with (6.15) and Theorem 4.9, this finishes the proof of Lemma 6.3. ut

Now, we are able to finish the proof of our main result.

Proof of Theorem 2.1. For C = A1, A2, A1 ∪ A2 and x ∈ ∂C, let ψxC(λ) = EeλF
C
1 (x)

be the moment generating function of FC1 (x). It is elementary that et − 1 ≤ t + t2 for
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all t ∈ [0, 1]. Using this observation, for 0 ≤ λ ≤ 1
2γ
−1
7 γ16s

d−1 (where γ16 is from
Lemma 6.3) we write

ψxC(λ)− 1 = E(eλF
C
1 (x) − 1)1λFC1 (x)≤1 + E(e

λFC1 (x) − 1)1λFC1 (x)>1

≤ E
(
λFC1 (x)+ λ

2(FC1 (x))
2)
+ EeλF

C
1 (x)1FC1 (x)>λ

−1

≤ λπC(x)+ γ14λ
2s−d cap(V )−1

+ λ

∫
∞

λ−1
eλyP [FC1 (x) > y] dy

≤ λπC(x)+ γ14λ
2s−d cap(V )−1

+ λγ15s
d−2 cap(V )−1

∫
∞

λ−1
exp

(
−
γ16

2γ7
sd−1y

)
dy

≤ λπC(x)+ γ14λ
2s−d cap(V )−1

+ c6s
−1 cap(V )−1λ exp(−c7λ

−1sd−1)

≤ λπC(x)+ c8λ
2s−d cap(V )−1, (6.16)

where we have used Lemmas 6.2(ii) and 6.3. Analogously, since e−t − 1 ≤ −t + t2 for
all t > 0, we obtain, for λ ≥ 0,

ψxC(−λ)− 1 ≤ −λπC(x)+ c9λ
2s−d cap(V )−1 (6.17)

(in this case we do not need the large deviation bound of Lemma 6.3).
Observe that if (Yk, k ≥ 1) are i.i.d. random variables with common moment generat-

ing function ψ , and N is an independent Poisson random variable with parameter θ , then
E exp(λ

∑N
k=1 Yk) = exp(θ(ψ(λ) − 1)). So, using (6.16) and Lemma 6.2(ii), we write,

for any δ > 0, z ∈ 6 and x = X0(z),

Q[GC
û
≥ (1+ δ)û cap(V )πC(x)] = Q

[2Cû∑
k=1

FCk (x) ≥ (1+ δ)û cap(V )πC(x)
]

≤
E exp(λ

∑2C
û

k=1 F
C
k (x))

exp(λ(1+ δ)û cap(V )πC(x))

= exp
(
−λ(1+ δ)û cap(V )πC(x)+ û cap(V )(ψ(λ)− 1)

)
≤ exp

(
−(λδû cap(V )πC(x)− c8λ

2ûs−d)
)
≤ exp

(
−(c10λδûs

−1
− c8λ

2ûs−d)
)
,

and, analogously, with (6.17) instead of (6.16) one can obtain

Q[GC
û
≤ (1− δ)û cap(V )πC(x)] ≤ exp

(
−(c12λδûs

−1
− c13λ

2ûs−d)
)
.

Choosing λ = c14δs
d−1 with small enough c14 depending on c8, c10, c12, c13 (and such

that c14 ≤ (δ−1γ16/2) ∧
γ16
3γ7

), we thus obtain, using also the union bound (clearly, the
cardinality of ∂C is at most O((r + s)d)),

Q
[
(1− δ)û cap(V )πC(x) ≤ GC

û
≤ (1+ δ)û cap(V )πC(x) for all x ∈ ∂C

]
≥ 1− c15(r + s)

d exp(−c16δ
2ûsd−2). (6.18)

Using (6.18) with δ = ε/3 and u, (1− ε)u, (1+ ε)u in place of û together with Proposi-
tion 5.3, we conclude the proof of Theorem 2.1. ut
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Remark 6.4. As mentioned in the introduction, the factor (r+s)d before the exponential
in (2.18) can usually be reduced. Observe that this factor (times a constant) appears in the
proof as an upper bound for the cardinality of ∂(A(s)1 ∪ A

(s)
2 ). In the typical situation

when s is smaller than r and the sets have a sufficiently regular boundary (e.g., boxes or
balls), one can replace (r + s)d by rd−1.

7. Connectivity decay

Proof of Theorem 3.1. We start by introducing the renormalization scheme on which
the proof will be based. Fix b ∈ (1, 2]; clearly, one can consider only this range of
the parameter b in proving (3.5), and any particular value of b ∈ (1, 2] (in fact, any
b ∈ (0,∞)) will work for (3.4). Given L1 ≥ 100, we define

Lk+1 = 2
(

1+
1

(k + 5)b

)
Lk for k ≥ 1. (7.1)

Note that Lk grows roughly as 2k and it need not be an integer in general. Before mov-
ing further, let us first establish some important properties of the rate of growth of this
sequence. First, it is obvious that

2Lk = Lk+1 −
2

(k + 5)b
Lk ≤ Lk+1 −

2kL1

(k + 5)b
≤ bLk+1c −

2k−1L1

(k + 5)b
(7.2)

for all k ≥ 1 (here we have used 50·2k+1

(k+5)2 > 1 for every k ≥ 1). Moreover, it is clear that

logLk = logL1 + (k − 1) log 2+
k−1∑
j=1

log
(

1+
1

(j + 5)b

)

≤ logL1 + (k − 1) log 2+
k−1∑
j=1

1
(j + 5)b

,

so
L12k−1

≤ Lk ≤ e
ζ(b)L12k−1. (7.3)

We use the above scale sequence to define boxes entering our renormalization scheme.
For x ∈ Zd and k ≥ 1, let

Ckx = [0, Lk)
d
∩ Zd + x and Dkx = [−Lk, 2Lk) ∩ Zd + x. (7.4)

(Observe that the Lk’s above need not be integers in general.)
Given u > u∗∗, k ≥ 1 and a point x ∈ Zd , we will be interested in the probability of

the event

Akx(u) = {C
k
x

Vu
←→ Zd \Dkx}, (7.5)
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pictured in Figure 7. Our main objective is to bound the probabilities

pk(u) = sup
x∈Zd

P[Akx(u)]
(2.17)
= P[Ak0(u)]. (7.6)

In order to employ a renormalization scheme, we will need to relate the events Ak for
different scales, as done in the following observation. Given k ≥ 1,

there exist two collections of points {xki }
3d
i=1 and {ykj }

2d·7d−1

j=1 such that

(i) Ck+1
0 =

⋃3d
i=1 C

k

xki
,

(ii)
⋃2d·7d−1

j=1 Ck
ykj

is disjoint from Dk+1
0 and contains ∂(Zd \Dk+1

0 )

(7.7)

(see Figure 7). The above statement is a consequence of (7.2) and the fact that for all
k ≥ 1 we have 2

(
1+ 1

(k+5)b
)
< 3 and 6

(
1+ 1

(k+5)b
)
< 7. It implies that

Ak+1
0 ⊂

⋃
i≤3d

j≤2d·7d−1

Ak
xki
∩ Ak

ykj
(7.8)

(see Figure 7).

Lk+1
3Lk+1

Lk 3Lk

2(k + 5)−bLk

xk
i

ykj

Fig. 7. An illustration of the event in (7.5) and the inclusion in (7.8).
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It is also important to observe from (7.7) that for any i ≤ 3d and j ≤ 2d · 7d−1,

d
(
Dk
xki
,Dk

ykj

)
≥ bLk+1c − 2Lk

(7.2)
≥

2k−1L1

(k + 5)b
. (7.9)

Abbreviate û = (u∗∗ + u)/2; since u > u∗∗, we have u > û > u∗∗. Then, choose a
sufficiently small ε > 0 in such a way that

∞∏
k=1

(
1−

ε

kb

)
>
û

u
,

and define

uk =
û∏k−1

j=1(1− εk−b)
;

by construction, uk < u for all k. Abbreviate κd = 2d · 21d/7 and set

%d = lim inf
L→∞

P
[
[0, L]d

V û
←→ ∂[−L, 2L]d

]
; (7.10)

then (recall (3.6)) 0 ≤ %d < κ−1
d . The above event is that there exists a connecting path

between these two sets through V û.
Now, we obtain a recursive relation for pk(uk) (recall (7.6)).
We use (1.7) with r = 3

√
d Lk , s ≥ 2k−1L1(k + 5)−b (recall (7.9)), uk+1 in place

of u and εk−b in place of ε (observe that uk = (1 − εk−b)uk+1), and use also (7.3) and
(7.8) to obtain

pk+1(uk+1) ≤ κdp
2
k(uk)+ c172kdLd1 exp

(
−c18k

−2b
(

L12k

(k + 5)b

)d−2)
, (7.11)

where c18 = c18(u, b, ε).
Now, let us first consider the case d ≥ 4 (as mentioned above, for this case any

particular value of b ∈ (1, 2] will do the job, so in the calculations below one can assume
for definiteness that e.g. b = 2). Let h1 > 0 be such that %d < e−h1 < κ−1

d . Choose a
sufficiently large L1 ≥ 100 in such a way that p1(û) < e−h1 and

c172kdLd1 exp
(
−c18k

−2b
(

L12k

(k + 5)b

)d−2

+ h1 + 2k+1
)
< 1− κde−h1 (7.12)

for all k ≥ 1 (here we have used d ≥ 4). Then we can find h2 ∈ (0, 1) small enough that

p1(û) ≤ exp(−h1 − 2h2). (7.13)

We then prove by induction that

pk(uk) ≤ exp(−h1 − h22k). (7.14)
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Indeed, the base for the induction is provided by (7.13); then, by (7.11),

pk+1(uk+1) ≤ κd exp(−2h1 − h22k+1)+ c172kdLd1 exp
(
−c18k

−2b
(

L12k

(k + 5)b

)d−2)
,

so, by (7.12) (recall that h2 < 1)

pk+1(uk+1)

exp(−h1 − h22k+1)

≤ κde
−h1 + c172kdLd1 exp

(
−c18k

−2b
(

L12k

(k + 5)b

)d−2

+ h1 + h22k+1
)
,

which is smaller than one, thus proving (7.14).
Observe that for all x,

P[0 Vu
←→ x] ≤ P

[
[−Lk, Lk]

d Vu
←→ ∂[−2Lk, 2Lk]d

]
(7.15)

with k = max{m; 3
2Lm < ‖x‖}; also, Lk = O(2k) by (7.3). Since uk < u for all k, (7.14)

implies that pk(u) ≤ exp(−h1 − h22k), and we obtain (3.4) from (7.15).
Let us now deal with the case d = 3. Again, let h′1 > 0 with %3 < e−h

′

1 < κ−1
3 .

Choose a sufficiently large L1 ≥ 100 in such a way that p1(û) < e−h
′

1 and

c1723kL3
1 exp(−c18(k + 5)−3bL12k−1

+ h1) < 1− κ3e
−h′1 (7.16)

for all k ≥ 1. Then, we can find h′2 ∈ (0,
1
4c18) small enough that

p1(û) ≤ exp(−h′1 − 2h′2). (7.17)

Now, in three dimensions we are going to prove by induction that

pk(uk) ≤ exp(−h′1 − h
′

2(k + 5)−3b2k). (7.18)

Indeed, by (7.11) we have

pk+1(uk+1) ≤ κ3 exp(−2h′1−h
′

2(k+5)−3b2k+1)+ c1723kL3
1 exp(−c18(k+5)−3bL12k),

so, by (7.16) (recall that h2 <
1
4c18),

pk+1(uk+1)

exp(−h′1−h
′

2(k+ 6)−3b2k+1)
≤ κ3e

−h′1 exp
(
−h′2((k+ 5)−3b

− (k+ 6)−3b)
)

+ c1723kL3
1 exp

(
−c18

L12k

(k+ 5)3b
+h′1+h

′

2
2k+1

(k+ 6)3b

)
≤ κ3e

−h′1 + c1723kL3
1 exp(−c18(k+ 5)−3bL12k−1

+h′1)

< 1,

thus proving (7.18). Again, since uk < u for all k, (7.14) implies that pk(u) ≤
exp(−h′1 − h

′

2(k + 5)−3b2k) for all k, and then we obtain (3.5) with the help of (7.15)
analogously to the case d ≥ 4. This concludes the proof of Theorem 3.1. ut
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8. Smoothing of discrete sets: proof of Proposition 6.1

In this section we show that any set can be enclosed in a slightly larger set with “smooth
enough” boundaries, and this larger set has the desired properties (in particular, the en-
trance probabilities behave in a good way), as described in Proposition 6.1.

To facilitate reading, throughout this section we will adopt the following convention
for denoting points and subsets of Rd which are not (generally) in Zd : they will be re-
spectively denoted by x, y, z and A,B,D, using the sans serif font. The usual fonts are
reserved for points and subsets of Zd . Also, we use the following (a bit loose but conve-
nient) notation: if a set A ⊂ Rd is defined, then we denote by A ⊂ Zd its discretization:
A = A∩Zd ; conversely, if A ⊂ Zd is a discrete set, then A just equals A, but is regarded
as a subset of Rd .

Similarly to the notation in the discrete case, let us write B(x, s) = {y ∈ Rd;
‖x − y‖ ≤ s} for the ball with radius s; recall that ‖ · ‖ stands for the Euclidean norm.
We abbreviate B(s) = B(0, s). It will be convenient to define, for A ⊆ Rd , the ball
B(A, s) =

⋃
x∈A B(x, s).

Definition 8.1. Let D ⊂ Rd be an open set (not necessarily connected) with smooth
boundary ∂D. We say that D is s-regular if for any x ∈ ∂D there exist two balls Bx

in ⊂ D̄

and Bx
out ⊂ Rd \D of radius s such that ∂D∩Bx

out = ∂D∩B
x
in = {x}. Informally speaking,

the definition means that one can touch the boundary of D by spheres of radius s from the
inside and outside. We also adopt the convention that Rd is s-regular for any s > 0.

Observe that if D is an s-regular set, then for each x ∈ ∂D the balls Bx
in and Bx

out
are unique. Let us denote by xin and xout their respective centers, which lie on the line
normal to ∂D at x. Also, it is important to keep in mind that if D is s-regular then it is also
s′-regular for all s′ ≤ s.

First, we will show that any set A ⊂ Rd can be thickened into a smooth and regu-
lar A(s) which is “close” to A (see Figure 6). This is made precise in the following

Lemma 8.2. There exists a constant γ17 ∈ (0, 1/5) such that, for any set A ⊂ Rd and
s > 0, there exists a set A(s) ⊂ Rd with smooth boundary such that:

(1) A ⊆ A(s) ⊆ B(A, s/5);
(2) A(s) is γ17s-regular in the sense of Definition 8.1.

Proof. Assume that Rd \B(A, s/5) is non-empty, otherwise the claim is straightforward.
Since we suppose that A ⊂ Rd is arbitrary, we can suppose that s = 5 (so that s/5 = 1)
by scaling A if necessary.

Let us first tile the space Rd with compact cubes Km of side length 1/(8
√
d). More

precisely, for m = (m1, . . . , md) ∈ Zd , let

Km =
1

8
√
d
[m1, m1 + 1] × · · · × [md , md + 1]. (8.1)

With the above definition, diam(Km1 ∪ Km2) ≤
1
4 if Km1 and Km2 have at least one

common point.
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We first consider the set
Â =

⋃
Km,

where the union is taken over all cubes that either intersect A or have at least one common
point with another cube that intersects A.

Define now the function f̂ to be the convolution of 1
Â
(·) with a smooth test func-

tion ψ ≥ 0, with
∫
ψ dx = 1 and supported on B(1/8). Clearly, for any α ∈ (0, 1),

A ⊆ {x; f̂ (x) > α}, (8.2)

so it remains to show that, for some α, the set {x; f̂ (x) > α} is γ17-regular for some small
enough γ17 < 1/5 independent of A.

To understand how the above construction depends on the choice of A, let us scale
and recenter the function f̂ . More precisely, let ϕA,m : B(0, 1) → R+ be the function
that associates a point x ∈ B(0, 1) to f̂ (x−m). It is important to observe that

as we vary A ⊂ Zd and m ∈ Zd , the functions
ϕA,m range over a finite collection of smooth functions, (8.3)

since ϕA,m is determined by the finitely many possible configurations of boxes Km′ that
intersect Km (whether they appear or not in the union defining Â).

From Sard’s theorem and the implicit function theorem one can deduce that for some
α ∈ (0, 1) (in fact, for generic values of α ∈ (0, 1)) the boundary {x; f̂ (x) = α} is
smooth. Therefore, using (8.3) we can choose αo ∈ (0, 1) such that {x; f̂ (x) = αo} is
smooth, independently of the choice of A. We now let A′ = {x; f̂ (x) > αo}. From (8.2),
we conclude that A ⊂ A′ and from the definition of f̂ , we see that A′ ⊆ B(A, 1). To finish
the proof, we should show that A′ is γ17-regular (with some small enough constant γ17
independent of A).

Since ∂A′ is smooth, we can show that for every x ∈ ∂A′, there exist Bin and Bout as in
Definition 8.1. Observe that the existence of such balls with radius smaller than or equal
to 1/4 only depends on the values of f̂ in B(x, 1). So that the independence of γ17 from
the choice of A follows from (8.3). ut

At this point, we can collect the first ingredient for Proposition 6.1: we take A(s) to be the
discretization of the set A(s) provided by Lemma 8.2.

Now, we prove several geometric properties of regular sets and their discretizations.

Lemma 8.3. Abbreviate γ18 = 1/200 and γ19 = (1+
√

799)/200 < 1/6. Then for any
s-regular set A and for any v1, v2 ∈ ∂A such that ‖v1 − v2‖ ≤ γ18s, we have

‖vout
1 − vout

2 ‖ ≤ γ19s (8.4)

(by symmetry, the same holds for vin
1 , v

in
2 ).

Proof. Consider the plane L generated by the points v1, vout
1 , and vout

2 + (v1 − v2) (see
Figure 8; note that, as indicated in the picture, v2 need not lie on this plane). Let x be
the point that lies in the intersection of ∂Bv1

in ∩ (∂B
v2
out + v1 − v2) with L and is different

from v1, and let y be the middle point on the arc of the circle (∂Bv2
out + v1 − v2) ∩ L
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∂A

v1

v2

vin1

vout1 vout2

vout2 + (v1 − v2)

vin2

x
y

s

s

hs

s s

Bv1
in

Bv2
out + v1 − v2

Fig. 8. The plane L in the proof of Lemma 8.3. The radius of the small gray circle centered in y is
as; also, in this picture the segment between vin

2 and vout
2 (containing also v2) does not intersection

with the plane L. That is why v2 appears not to intersect ∂A.

between v1 and x (of course, we mean the arc that lies inside Bv1
in ). Abbreviate also h =

s−1
‖vout

2 + (v1 − v2) − vout
1 ‖ and a = s−1 d(y, ∂Bv1

in ); with some elementary geometry,
we obtain

h = 2
√
a − a2/4.

But, we must necessarily have

d(y, ∂Bv1
in ) ≤ ‖v1 − v2‖,

because otherwise the point y − v1 + v2 ∈ Bv2
out would also belong to the interior of Bv1

in ,
a contradiction. So, we have

h ≤ 2
√
γ18 − γ

2
18/4 =

√
799/200,

which means that

‖vout
1 − vout

2 ‖ < (
√

799/200+ γ18)s = γ19s. ut

The next lemma is a consequence of the obvious observation that the boundary of dis-
cretized s-regular sets looks locally flat for large s:

Lemma 8.4. There exist (large enough) s0, h0 with the following properties. Assume
that A is s-regular for some s ≥ s0 and x, y /∈ A are such that ‖x − y‖ ≤ 3

√
d. Then

there exists a path between x and y of length at most h0 that does not intersect A.
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Proof. This result is fairly obvious, so we give only a sketch of the proof (certainly,
not the most “economic” one). First, without restricting generality, one can assume that
max(d(x,A), d(y,A)) < 3

√
d (otherwise, the ball of radius 3

√
d centered at one of the

points does not intersectA and contains the other point; then, use the fact that this discrete
ball is a connected graph). Let z ∈ ∂A be a point on the boundary closest to x, let z be the
point in A closest to z, and consider the cube

G = {z′ ∈ Zd; ‖z′ − z‖∞ ≤ d7
√
de}

(where ‖·‖∞ is the maximum norm). Assume without loss of generality that the projection
of the normal vector to ∂A at z on the first coordinate vector is at least 1/

√
d . Then the

claim of the lemma follows once we prove that for all large enough s,

the set G \ A is connected. (8.5)

Indeed, for s large enough, {v, v + e1} is not fully inside Rd \ (Bz
in ∪ Bz

out) for any v
in G. This implies that G \ A is given by G ∩ Bzout together with some extra points in the
neighborhood of this set, implying (8.5) and concluding the proof of the lemma. ut

Observe that Lemma 8.4 implies that for any x ∈ ∂A and y /∈ A such that ‖x−y‖ ≤ 2
√
d,

we have
Py[XHA = x] ≥ (2d)

−h0 . (8.6)

Next, we need an elementary result about escape probabilities from spheres:

Lemma 8.5. There exist positive constants s1, c19, c20, c21, c22 (depending only on the
dimension) such that for all y ∈ Rd , all s ≥ s1 and every x ∈ B(y, 2s)\B(y, s), we have

c19
‖x − y‖ − s

s
≤ Px[HB(y,s) > HZd\B(y,2s)] ≤ c20

‖x − y‖ − s + 1
s

, (8.7)

and for all x ∈ B(y, 3s) \ B(y, s),

c21
3s − ‖x − y‖

s
≤ Px[HB(y,s) < HZd\B(y,3s)] ≤ c22

3s − ‖x − y‖ + 1
s

. (8.8)

Proof. By a direct and elementary calculation for large enough s (not depending on y),
the process ‖Xn∧HB(s) − y‖−(d−1) is a supermartingale, and ‖Xn∧HB(s) − y‖−(d−5/2) is a
submartingale (see e.g. [5, proof of Lemma 1]). From the Optional Stopping Theorem,

s−(d−1)
− ‖x − y‖−(d−1)

s−(d−1) − (2s + 1)−(d−1) ≤ Px[HB(s) > HZd\B(2s)]

≤
(s − 1)−d+5/2

− ‖x − y‖−d+5/2

(s − 1)−d+5/2 − (2s)−d+5/2 , (8.9)

where the above balls are centered at y. Then (8.7) follows from (8.9) with the observation
that 0 < ‖x − y‖/s ≤ 2 and some elementary calculus. The proof of (8.8) is completely
analogous.
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In fact, with some more effort, one can show that s1 =
√
d/2 (observe that

B(y,
√
d/2) is non-empty for all y ∈ Rd ), but we do not need this stronger fact in the

present paper. ut

We now need estimates on the entrance measure of a set in Zd which has been obtained
from the discretization of a regular set D ⊂ Rd . For this, we will need the following
definitions. Let D = D ∩ Zd and fix x ∈ ∂D, write x for the closest point to x in ∂D (it
can be chosen arbitrarily in case of ties) and note that ‖x − x‖ ≤ 1. We define xin and
xout to be the closest points to xin and xout in Zd (again chosen arbitrarily in case of ties).
Observe that ‖xout

− xout
‖ is at most

√
d/2 (and the same holds for xin and xin).

Lemma 8.6. (i) Suppose that A is an s-regular set for some s ≥ s0 +
√
d and let

y ∈ ∂A, x ∈ Zd \ A be such that ‖x − y‖ ≥ 2s. Then Px[XHA = y] ≤ c24s
−(d−1).

(ii) Assume that A is s-regular with s ≥ s0 +
√
d and y ∈ ∂A. Then for every x in

B(yout, s/2), we have Px[XHA = y,HA < HZd\B(yout,s+
√
d)] ≥ c25s

−(d−1).

Proof. Given A and y ∈ ∂A as above, recall that y stands for the closest point to y in ∂A
(chosen arbitrarily in case of ties). By Definition 8.1, the ball By

in ⊂ Rd of radius s lies
fully inside A. Moreover, since yin is at distance at most

√
d/2 from yin, we conclude that

B
y

in := B(y
in, s −

√
d/2) ⊆ B

y
in and B

y
out := B(y

out, s −
√
d/2) ⊆ B

y
out (8.10)

(see Figure 9).

∂A

y
y

yin

yin

y′

By
in

By
in

Fig. 9. Proof of Lemma 8.6.
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Let y′ ∈ ∂Byin be the point closest to y (it could happen that y′ is y itself). By con-
struction, d(y, Byin) ≤

√
d, therefore ‖y − y′‖ ≤ 3

2

√
d, and so by Lemma 8.4,

Px[XHB = y
′
] ≥ c26Px[XHA = y]. (8.11)

Employing [10, Proposition 6.5.4], we obtain

Px[XHB = y
′
] ≤ c24s

−(d−1), (8.12)

which together with (8.11) proves (i).
A discretization argument analogous to the above gives (ii) for all x in

B(yout, s/2 −
√
d/4) as a direct consequence of [10, Lemma 6.3.7]; then, using

Lemma 8.4, we obtain the desired statement for all x ∈ B(yout, s/2). ut

Next, aiming at the proof of (6.5), we prove the following result:

Proposition 8.7. There exist constants s0, γ8, γ10 > 0 such that if s ≥ s0 and A ⊂ Rd
is γ17s-regular and if y1, y2 ∈ ∂A are such that ‖y1 − y2‖ ≤ γ8s, then there exists a
set D̂ (depending on y1, y2) that separates {y1, y2} from ∂B(y1, 2γ17s) (i.e., any nearest
neighbor path starting at ∂B(y1, 2γ17s) that enters A at {y1, y2}, must pass through D̂)
such that

sup
x∈D̂;

Px [XHA=y1]>0

Px[XHA = y2]

Px[XHA = y1, HA < HZd\B(y1,
5
2 γ17s)
]
≤ γ10. (8.13)

Let us mention that the constants γ8, γ10 here are exactly those that we need in Proposi-
tion 6.1.

Proof of Proposition 8.7. Define

s2 = max{γ−1
17 s0, 36(γ17γ18)

−1(s1 +
√
d)} ≥ 18(γ17γ18)

−1. (8.14)

Also, define γ8 =
1
3γ17γ18. Given y1 and y2 in ∂A such that ‖y1 − y2‖ < γ8s, set

D = {z ∈ Zd \ A; d(z,A) ≤ 1
2γ8s and d(z, yk) ≤ 2γ8s, k = 1, 2}, (8.15)

D̂ = {z ∈ D; there exists v ∈ Zd \ (A ∪D) such that z and v are neighbors} (8.16)

(see Figure 10). Intuitively speaking, D̂ is the part of the boundary ofD not adjacent toA.
We now claim that

all sites of D̂ are at distance at least 1
2γ8s − 1 from {y1, y2}. (8.17)

To see this, observe first that for z ∈ D̂, the point v ↔ z as in (8.16) is not inD. Therefore,
either d(v, {y1, y2}) > 2γ8s or d(v,A) ≥ 1

2γ8s; in both cases (8.17) holds.
In fact, to prove (8.13), it is enough to prove that for all z ∈ D̂,

Px[XHA = y1, HA < HZd\B(y1,
5
2 γ17s)
] ≥ c29d(z, A)/sd , (8.18)

Pz[XHA = y2] ≤ c30d(z, A)/sd . (8.19)
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y2 y1

γ8s
12 γ8s

6

z2 z1

w.p. ≤ O(hs )

w.p. ≤ O(s−(d−1))

w.p. ≥ O(hs )

w.p. ≥ O(s−(d−1))

A

D̂

B(yout2 , γ17s/2)

B(yout, γ17s/3)

Fig. 10. Proof of Proposition 8.7: lower bound for Pz1 [XHA = y1, . . . ] and upper bound for
Pz2 [XHA = y2]; we have h ' d(z1,2, A), and “w.p.” stands for “with probability”.

The idea behind these two bounds is depicted in Figure 10, which we now turn into a
rigorous proof. To obtain (8.18), we proceed in the following way. Consider some y ∈ ∂A
such that d(z, A) ≥ ‖z− y‖, and observe that (8.8) implies that

Pz[HB(yout,γ17s/3) < HA] ≥ c31 d(z, A)/s. (8.20)

Let yk ∈ ∂A be the closest boundary point to yk; clearly, ‖yk−yk‖ ≤ 1. Then ‖y1− z‖ ≤

2γ8s and ‖z− y‖ ≤ 1
2γ8s, and thus, by (8.14),

‖y1 − y‖ ≤ 5
2γ8s + 1 < 3γ8s = γ17γ18s.

So, by Lemma 8.3 we have ‖yout
− yout

1 ‖ ≤ γ17γ19s <
1
6γ17s, which implies that

B(yout, 1
3γ17s) ⊂ B(yout

1 , 1
2γ17s). Observing that B(yout

1 , γ17s +
√
d) ⊂ B(y1,

5
2γ17s),

applying Lemma 8.6(ii) and using (8.20), we obtain (8.18).
To prove (8.19), we proceed in the following way. Recall that if a set is r-regular

then it is r ′-regular for all r ′ ≤ r; so, if d(z, A) ≥ 1
3γ8s then Lemma 8.6(i) already

implies (8.19). Assume now that z ∈ D̂ is such that d(z, A) < 1
3γ8s and let y ∈ ∂A

be such that d(z, A) ≥ ‖z − y‖. Let us show that then ‖y − y2‖ ≥
1
2γ8s. Indeed, by

construction of D̂ there exists v /∈ A∪G such that ‖z−v‖ = 1 and either d(v, A) ≥ 1
2γ8s
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or min(‖v− y1‖, ‖v− y2‖) > 2γ8s. The first possibility is ruled out since then we would
have d(z, A) > 1

2γ8s − 1, which contradicts d(z, A) < 1
3γ8s because of (8.14). The

second alternative implies that ‖v − y2‖ > γ8s, so ‖z− y2‖ > γ8s − 1. This means that

‖y − y2‖ ≥ γ8s − 1− 1
3γ8s ≥

1
2γ8s

again because of (8.14).
Let v̂ be the center of the ball with radius 1

12γ8s that touches ∂A at y from the inside;
by (8.14) we have

inf
v′∈B(v̂, 1

6 γ8s)
‖v′ − y2‖ ≥

1
2γ8s −

1
4γ8s − 1 ≥ 1

12γ8s + 1.

Then, one can write

Pz[XHA = y2] ≤ Pz[HZd\B(v̂, 1
6 γ8s)

< H
B(v̂, 1

12 γ8s)
] sup
z′: ‖z′−y2‖≥

1
12 γ8s

Pz′ [XHA = y2],

and use Lemma 8.5 to find that the first term on the right-hand side is at most
c32s

−1 d(z, A). By Lemma 8.6(i), the second term is bounded above by c33s
−(d−1). This

concludes the proof of (8.19) and hence of Proposition 8.7. ut

We now collect the ingredients necessary for the proof of Proposition 6.1:

• as already mentioned just before Lemma 8.3, the sets A(s)1,2 are the discretizations of the

sets A(s)1,2 provided by Lemma 8.2;
• we take the same s2 provided by (8.14) and define γ6 =

1
2γ17;

• existence of γ7 suitable for (6.2) and (6.3) follows from Lemma 8.6;
• the claim (6.5) follows from Proposition 8.7, with the right constants γ8, γ10, as already

mentioned.

So, the only unattended item in Proposition 6.1 is (6.4). But it is straightforward to ob-
tain (6.4) from a projection argument: Let y ∈ ∂A(s)k be a closest point to y ∈ ∂A(s)k and
assume without lost of generality that the projection of the normal vector at y to the first
coordinate is at least 1/

√
d . Then the intersection of the projections of By

in∩B(y, γ8s−1)
and B

y
out ∩ B(y, γ8s − 1) along the first coordinate axis contains a ((d − 1)-dimensional)

ball of radius O(s), and this proves (6.4) (since on the preimage of each integer point
which lies within this intersection there should be at least one point of ∂A(s)k ∩B(y, γ8s)).
This concludes the proof of Proposition 6.1. �
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[3] Černý, J., Popov, S.: On the internal distance in the interlacement set. Electron. J. Probab. 17,
no. 29, 25 pp. (2012) Zbl 1245.60090 MR 2915665
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