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Abstract. If G is a non-cyclic finite group, non-isomorphic G-sets X, Y may give rise to isomor-
phic permutation representations C[X] ∼= C[Y ]. Equivalently, the map from the Burnside ring to
the rational representation ring of G has a kernel. Its elements are called Brauer relations, and
the purpose of this paper is to classify them in all finite groups, extending the Tornehave–Bouc
classification in the case of p-groups.
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1. Introduction

1.1. Background and main result

The Burnside ring B(G) of a finite group G is the free abelian group on isomorphism
classes of finiteG-sets modulo the relations [X]+[Y ] = [XqY ] and with multiplication
[X] · [Y ] = [X×Y ]. There is a natural ring homomorphism from the Burnside ring to the
rational representation ring of G,

B(G)→ RQ(G), X 7→ Q[X].

The purpose of this paper is to describe its kernel K(G).
Both the kernel and the cokernel have been studied extensively. The cokernel is finite

of exponent dividing |G| by Artin’s induction theorem, and Serre remarked that it need not
be trivial [29, Exc. 13.4]. It is trivial for p-groups [19, 27, 28] and it has been determined
in many special cases [18, 8, 21].

Elements of the kernel K(G) are called Brauer relations or (G-)relations. The most
general result on K(G) is due to Tornehave [33] (see [24, 2.4]) and Bouc [10], who
independently described it for p-groups.

There is a bijection H 7→ G/H between conjugacy classes of subgroups of G and
isomorphism classes of transitive G-sets, and we will write elements 2 ∈ B(G) as 2 =∑
i niHi using this identification. In this notation,

2 ∈ K(G) ⇔
∑
i

ni IndGHi 1Hi = 0.

If we allow inductions of arbitrary one-dimensional characters instead of just the trivial
character, isomorphisms between sums of such inductions are called monomial relations.
Deligne [13, §1] described all monomial relations in soluble groups, following Langlands
[26]. For arbitrary finite groups, a generating set of monomial relations was given by
Snaith [31].

Following the approach of Langlands, Deligne, Tornehave and Bouc, we consider a
relation ‘uninteresting’ if it is induced from a proper subgroup or lifted from a proper
quotient of G (see §2). We call a relation imprimitive if it is a linear combination of such
relations from proper subquotients and primitive otherwise, and we let Prim(G) denote
the quotient of K(G) by the subgroup of imprimitive relations. The motivation for this
approach is that if one wants to prove a statement that holds for all Brauer relations, and
if this statement behaves well under induction and inflation, then it is enough to prove it
for primitive relations (see also §1.3).

In this paper we classify finite groups that have primitive relations and determine
Prim(G):

Theorem A. Let p and l denote prime numbers. A finite non-cyclic group G has a prim-
itive relation if and only if either

(1) G is dihedral of order 2n ≥ 8; or
(2) G = (Cp × Cp)o Cp is the Heisenberg group of order p3 with p ≥ 3; or
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(3) G is an extension
1→ Sd → G→ Q→ 1,

where S is simple, Q is quasi-elementary, the natural map Q→ Out Sd is injective,
and moreover, either

(a) Sd is minimal among the normal subgroups ofG (for solubleG, this is equivalent
to G ∼= Fdl oQ with Fdl a faithful irreducible representation of Q), or

(b) G = (Cl o P1) × (Cl o P2) with cyclic (possibly trivial) p-groups Pi that act
faithfully on Cl × Cl with l 6= p; or

(4) G = C o P is quasi-elementary, P is a p-group, |C| = l1 · · · lt > 1 with
li 6= p distinct primes, the kernel K = ker(P → AutC) is trivial, or isomor-
phic to D8, or has normal p-rank one (see Proposition 5.2). Moreover, writing
Kj =

⋂
i 6=j ker(P → AutCli ), either

(a) K = {1}, t > 1, and all Kj have the same non-trivial image in the Frattini
quotient of P ; or

(b) K ∼= Cp, P ∼= K × (P/K), and all Kj have the same two-dimensional image in
the Frattini quotient of P ; or

(c) |K| > p or P is not a direct product by K , and the graph 0 attached to G by
Theorem 7.30 is disconnected.

For these groups, Prim(G) is as follows. We write µ for the Möbius function.

Case Prim(G) Basis of Prim(G)

1 Z/2Z 2=H−H ′+ZH ′−ZH,

H∼=C2 and H ′∼=C2 are non-conjugate non-central, Z=Z(G)∼=C2

2 (Z/pZ)p 2j=〈y〉−〈xy
j
〉−〈y, z〉+〈xyj , z〉, 1≤j≤p,

G=〈x, z〉o〈y〉, z∈Z(G)

3a

3b

Z if Q cyclic
Z/pZ else

(Q p-quasi-elem.)

Z if Q={1}
Z/pZ else

(Q=P1×P2)

2=Cpk−pQ−CloCpk+pG if d=1,Q=Cpk+1

2=G−Q+α(Cn−CloCn)+β(Cm−CloCm)
if d=1,Q=Cmn, αm+βn=1 (any such m, n>1)

2=G−Q+
∑
U (UoNQU−C

d
l
oNQU)

if d>1; sum over U⊂Cd
l

of index l up to G-conjugacy


G∼=Cdl oQ

soluble

2=any relation of the form G+
∑
H 6=G aHH

}
S 6∼=Cl

4a Z/pZ 2=
∑
U≤C µ(|U |)(MU−M

′U),M,M ′≤P of index p
with signatures (1, . . . , 1), (0, . . . , 0), respectively (cf. Prop. 7.19)

4b (Z/pZ)p−2
2i=

∑
U≤CK µ(|U |)(H1U−HiU) for 1<i<p,

Hj≤P of index p, K�Hj and (Hj ∩K1)8(P )/8(P )=Lj ,
Lj distinct lines in K18(P )/8(P ) other than K8(P )/8(P ),
1≤j<p

4c
(Z/pZ)d−1

d=#connected
components of 0

2i=
∑
U≤CCzp

µ(|U |)(H1U−HiU), 2≤i≤d,
Hj any vertex in the j -th connected component of 0, Czp∼=Cp≤Z(K)
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1.2. Overview of the proof

Our analysis of finite groups follows a standard pattern

abelian — p-groups — quasi-elementary — soluble — all finite,

with a somewhat surprising twist that the difficulty of understanding primitive relations
seems to decrease from the middle to the sides.

It is classical that the only abelian groups that have primitive relations are G =
Cp × Cp. On the opposite side, Solomon’s induction theorem together with the fact that
imprimitive relations form an ideal in the Burnside ring immediately allows us to deal
with a large class of groups: if G has a proper non-quasi-elementary quotient, then G has
no primitive relations (Corollary 3.10 and Theorem 4.3(3)). Similarly, using Theorem 4.2,
we get the same conclusion when G has non-cyclic quasi-elementary quotients for two
distinct primes p 6= q (Theorem 4.3), and deduce Theorem A in the non-soluble case.
This strategy was inspired by Deligne’s work on monomial relations.

The p-group case and the soluble case are somewhat more involved. Our main tool
for showing imprimitivity is the fact that in quasi-elementary groups, a relation

∑
nHH

with all H contained in a proper subgroup of G is imprimitive (Proposition 3.7). This is
surprisingly useful. For instance, together with Bouc’s ‘moving lemma’ [10, Lemma 6.15]
it gives an alternative proof of the Tornehave–Bouc classification in the p-group case
(see §5). The classification of primitive relations in soluble groups that are not quasi-
elementary is also not hard (see §6).

The most subtle case is that of quasi-elementary groups (§7). Recall that a quasi-
group is one of the form G = C o P with P a group and C cyclic of order coprime
to p. Assuming that such a G has a primitive relation, we analyse the kernel of the action
of P on C (§7.1) and decompose all permutation representations of G explicitly into
irreducible characters (§7.2). We show that Prim(G) is generated by relations of the form

2 =
∑

U≤C·Z(G)

µ(|U |)(UH1 − UH2),

where H1, H2 ≤ G are of maximal size among those subgroups that intersect C · Z(G)
trivially, unless Z(G) is trivial, in which case H1, H2 are of index p in P . This already
settles Theorem B below, but the remaining issue of primitivity of these generating rela-
tions is quite tricky. To show that 2 as above is imprimitive, it is not enough to show that
it is neither lifted from a quotient nor induced from a subgroup, since2 could be a sum of
relations each of which is either lifted or induced. It becomes necessary to explicitly split
the maximal size subgroups into classes in such a way that any relation involving two
subgroups from different classes has to be primitive. This is the general spirit of Sections
7.3 and 7.4, which complete the proof of Theorem A.

1.3. Remarks and applications

Note that for non-soluble groups in Theorem A(3)(a), Prim(G) is generated by any rela-
tion 2 =

∑
H nHH with nG = ±1 (Theorem 4.3). An explicit construction of such a
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relation can be found in [31, Theorem 2.16(i)]. We note also that the relations in Theorem
A for soluble groups are fairly canonical (see e.g. Remark 7.34).

One of the reasons one is interested in Brauer relations comes from number theory.
In fact, the motivation for the Langlands–Deligne classification of monomial relations in
soluble groups [26, 13] was to build a well-defined theory of ε-factors of Galois represen-
tations starting with one-dimensional characters; to do this, one needs to prove that the
ε-factors of one-dimensional characters cancel in all monomial relations of local Galois
groups.

If F/Q is a Galois extension of number fields, arithmetic invariants of subfields
K ⊂ F may be viewed, via the Galois correspondence K ↔ Gal(F/K), as functions
of subgroups of G = Gal(F/Q). Some functions, such as the discriminant K 7→ 1(K)

extended to B(G)→ Q× by linearity, factor through the representation ring RQ(G) and
so cancel in all Brauer relations. On the other hand, the class number h(K), the regulator
R(K) or the number of roots of unity w(K) are not ‘representation-theoretic’, and do not
cancel in general. However, their combination hR/w does, as it is the leading term of
the Dedekind ζ -function ζK(s) at s = 1, and ζ -functions are representation-theoretic by
Artin formalism for L-functions.

Thus, Brauer relations can provide non-trivial relationships between different arith-
metic invariants, like the class numbers and the regulators of various intermediate fields.
This point of view proved to be very fruitful to study class numbers and unit groups [11,
25, 34, 30], related Galois module structures [9, 3] and Mordell–Weil groups and other
arithmetic invariants of elliptic curves and abelian varieties [16, 15, 2]. In a slightly dif-
ferent direction, a verification of the vanishing in Brauer relations of conjectural special
values of L-functions can be regarded as strong evidence for the corresponding conjec-
tures. This has been carried out in the case of the Birch and Swinnerton-Dyer conjecture
in [16] and in the case of the Bloch–Kato conjecture in [12].

One concrete number-theoretic application of Brauer relations is the theory of ‘reg-
ulator constants’, used in the proof of the Selmer parity conjecture for elliptic curves
over Q [16], questions related to Selmer growth [15, 17, 2], and also to analyse unit
groups and higher K-groups of number fields [3, 6]. The regulator constant C2(0) ∈ Q×
is an invariant attached to a Z[G]-module 0 and a Brauer relation 2 in G. For applica-
tions to elliptic curves the most important regulator constant is that of the trivial Z[G]-
module 0 = 1, as it controls the l-Selmer rank of the curve over the ground field. For
2 =

∑
H nHH it is simply

C2(1) =
∏
H

|H |−nH .

To deduce something about the Selmer rank, one relies on Brauer relations in which
this invariant, or rather its l-part, is non-trivial. As an application of Theorem A, in §9
we settle a question left unanswered in [16, 15, 17, 2], namely which groups have such
a Brauer relation. This is done in Theorem 9.1 and Corollary 9.2; for an example of
number-theoretic consequences of this result, see [4].

For such applications one needs a collection of Brauer relations that span K(G) and
that are ‘as simple as possible’, but whether they are imprimitive is less important. Theo-
rem A describes the smallest list of groups such that all Brauer relations in all finite groups
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come1 from such subquotients. Let us give an alternative version of the classification the-
orem with a much cleaner set of generating relations, that avoids the fiddly combinatorial
conditions of Theorem A (especially (4)(a)–(4)(c)). It is a direct consequence of Theo-
rem A.

Theorem B. All Brauer relations in soluble groups are generated by relations 2 from
subquotients G of the following three types. In every case, G is an extension 1→ C →

G→ Q→ 1 with Q quasi-elementary and acting faithfully on C.

(1) C = Cl , l a prime (so G = C oQ), H ≤ G, and

2 = [Q : H ]G− [Q : H ]Q+H − CH.

(2) C = Cdl , with l a prime, d ≥ 2, G = C oQ, and

2 = G−Q+
∑
U

(U oNQU − Cdl oNQU),

the sum taken over representatives of G-conjugacy classes of subgroups U ≤ Cdl of
index l.

(3) C is cyclic, Q is an abelian p-group, H1, H2 ≤ G intersect C trivially, |H1| = |H2|,
and

2 =
∑
U≤C

µ(|U |)(UH1 − UH2).

Conversely, all 2 ∈ B(G) of the listed type are Brauer relations, not necessarily primi-
tive. Finally, relations from subquotients of type (1), (3) and

(2′) C = Sd with d ≥ 1 and S simple, G is not quasi-elementary, and

2 = any relation of the form G+
∑
H 6=G

aHH

generate all Brauer relations in all finite groups.

1.4. Notation

Throughout the paper, G is a finite group; Z(G) stands for the centre of G and 8(G) for
the Frattini subgroup; whenever Z(G) is a cyclic p-group, we write Czp for the central
subgroup of order p; we denote by 1 the trivial representation; restriction from G to H
and induction from H to G are denoted by ResGH ρ and IndGH σ , respectively; gH stands
for gHg−1.

1 We would like to propose the word indufted instead of a vague ‘come’ or a cumbersome ‘in-
duced and/or lifted’, but we were not brave enough to do this throughout the paper
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2. First properties

Relations can be induced from and restricted to subgroups, and lifted from and projected
to quotients as follows. Let 2 =

∑
i niHi be a G-relation.

• Induction. If G′ is a group containing G, then, by transitivity of induction, 2 can be
induced to a G′-relation IndG

′

2 =
∑
i niHi .

• Inflation. If G ∼= G̃/N , then each Hi corresponds to a subgroup H̃i of G̃ contain-
ing N , and, inflating the permutation representations from a quotient, we see that
2̃ =

∑
i niH̃i is a G̃-relation.

• Restriction. If H is a subgroup of G, then by Mackey decomposition 2 can be re-
stricted to an H -relation

ResH 2 =
∑
i

(
ni

∑
g∈Hi\G/H

H ∩ gHi

)
.

On the level of (virtual) G-sets this is simply the restriction of a G-set to H .
• Projection (or deflation). If N G G, then N2 =

∑
i NHi is a G/N -relation.

Remark 2.1. Note that by definition of multiplication in the Burnside ring, 2 · H =
IndG(ResH 2) for any G-relation 2 and any subgroup H ≤ G.

The number of isomorphism classes of irreducible rational representations of a finite
group G is equal to the number of conjugacy classes of cyclic subgroups of G (see [29,
§13.1, Cor. 1]). Since the cokernel of B(G) → RQ(G) is finite (see [29, §13.1, Theo-
rem 30]), the rank of the kernel K(G) is the number of conjugacy classes of non-cyclic
subgroups.

Explicitly, Artin’s induction theorem gives a relation for each non-cyclic subgroup H
of G,

|H | · 1 =
∑
C

nCC, nC ∈ Z,

the sum taken over the cyclic subgroups ofH . These are clearly linearly independent, and
thus give a basis of K(G)⊗Q.

Example 2.2. Cyclic groups have no non-zero relations.

Example 2.3. Let G = Cl oH , with l prime and H 6= {1} acting faithfully on C (so H
is cyclic of order dividing l−1). Let H̃ be any subgroup ofH , and set G̃ = Clo H̃ . Then

H̃ − [H : H̃ ] ·H − G̃+ [H : H̃ ] ·G

is a relation. This can be checked by a direct computation, using the explicit description
of irreducible characters of G in Remark 6.3. (See e.g. Corollary 7.12.)

Example 2.4. Let G = Cp × Cp. All its proper subgroups are cyclic, so K(G) has rank
one. It is generated by 2 = 1 −

∑
C C + pG, with the sum running over all subgroups

of order p, as can be checked by an explicit decomposition into irreducible characters, as
above (or see [10] or Proposition 6.4 below).
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3. Imprimitivity criteria

Lemma 3.1. Let G be a finite group, and 2 =
∑
i niHi a G-relation in which each Hi

contains some non-trivial normal subgroup Ni of G. Then 2 is imprimitive.

Proof. Subtracting the projection onto N1, we get a relation

2−N12 =
∑

i, Hi�N1

ni(Hi −N1Hi),

which consists of subgroups each of which contains one of N2, . . . , Nk . Repeatedly re-
placing 2 by 2 − Nj2 we see that the remaining relation is zero, so 2 is a sum of
relations that are lifted from quotients. ut

Lemma 3.2. Let G 6∼= Cp × Cp be a finite group with non-cyclic centre. Then G has no
primitive relations.

Proof. Let Z = Cp × Cp ≤ Z(P ). For any H ≤ G that intersects Z trivially, HZ/H ∼=
Cp × Cp. By lifting the relation of Example 2.4 to HZ and then inducing to G, we can
replace any occurrence of H in any G-relation by groups that intersect Z non-trivially,
using imprimitive relations. Each such intersection is normal in G, so by Lemma 3.1 the
resulting relation is imprimitive as well. ut

We will now develop criteria for a relation to be induced from a subgroup.

Proposition 3.3. Let G be a finite group and D ≤ G a subgroup for which the natural
map B(D)→ B(G) is injective. If 2 =

∑
i niHi is a G-relation with Hi ≤ D for all i,

then 2 is induced from a D-relation.

Proof. First, we claim that the image of Ind : K(D)→ K(G) is a saturated sublattice,2

i.e. if 2 is induced from a D-relation and R is a G-relation such that 2 = nR for some
integer n, then R is induced from a D-relation (and not just from an element of the Burn-
side ring of D, which is trivially true). Indeed, it is enough to show that the image of the
induction map Ind : K(D)→ B(G) is saturated. But it is a composition of the two injec-
tions K(D)→ B(D)

Ind
→B(G) whose images are clearly saturated, and so it has saturated

image.
The image Y of Ind : K(D) → K(G) is obviously contained in the space X of

G-relations
∑
i niHi for which Hi ≤ D for all i. So we only need to compare the ranks

of the two spaces.
We have already remarked that the rank of K(G) is equal to the number of conju-

gacy classes of non-cyclic subgroups of G. A basis for K(G)⊗ Q is obtained by apply-
ing Artin’s induction theorem to a representative of each conjugacy class of non-cyclic
subgroups of G. Hence, it is immediate that a basis for X ⊗ Q is given by the subset
of this set corresponding to those conjugacy classes of non-cyclic subgroups that have
a representative lying in D. But all these relations are clearly contained in Y ⊗ Q, so
X ⊗Q ⊆ Y ⊗Q and we are done. ut

2 That is, K(D)→ K(G) has torsion-free cokernel.
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Proposition 3.4. Let G be a finite group, and N G G a normal subgroup of prime index
that is either metabelian or supersolvable. If 2 =

∑
i niHi is a G-relation with all

Hi ≤ N , then 2 is induced from an N -relation.

Remark 3.5. It is not true that
∑
i niHi is anN -relation, since theHi are representatives

of G-conjugacy classes of subgroups and they might represent the ‘wrong’ N -conjugacy
classes. For example, if H1 and gH1 are not conjugate in N , then H1 −

gH1 will not be
an N -relation in general, while it is the zero element in the Burnside ring of G and in
particular a G-relation.

Proof of Proposition 3.4. Write p for the index of N in G, and fix a generator T of the
quotient G/N ∼= Cp. Recall (see e.g. [1, §8]) that for a Cp-module M ,

H 1(Cp,M) =
1-cocycles

1-coboundaries
=

ker(1+ T + · · · + T p−1)

Im(1− T )
.

Let 2 =
∑
i niHi be a G-relation with Hi ≤ N for all i; we view it as an element of the

Burnside ring of N . Write 2̃ =
∑
mρρ for its image in the rational representation ring

RQ(N), the sum taken over the irreducible3 representations of N . Note that IndGN 2̃ = 0,
since 2 is a G-relation.

We need to show that we can add to 2 a linear combination of terms of the form
gH − H for H ≤ N, g ∈ G such that the resulting element of B(N) is an N -relation. In
other words, we claim that2 is a coboundary for the action ofG/N onM=B(N)/K(N);
note that G acts naturally on B(N) and K(N), with N acting trivially.

First, observe that the operator ResGN IndGN on RQ(N) is, by definition of induction,
equal to 1+ T + · · · + T p−1. Since 2 is a G-relation, 2̃ is killed by IndGN , and therefore
a fortiori by 1+ T + · · · + T p−1. In other words 2̃ is a 1-cocycle under the action of Cp
on the submodule M of RQ(N).

It remains to prove that

H 1(G/N,M) = 0.

Any irreducible representation of N is either fixed by G or has orbit of size p. Thus,
RQ(N) as a G/N -module is a direct sum of trivial modules Z and of regular modules
Z[Cp]. The module M , viewed as the image of B(N) in RQ(N), is of finite index in
RQ(N) by Artin’s induction theorem. SinceN is either metabelian or supersolvable, a the-
orem of Berz [8, 21] says that M is spanned by elements of the form aφφ, as φ runs over
the irreducible representations of N , for suitable aφ ∈ N. Note that aφ = a(Tφ), because
M ≤ RQ(N) is a Cp-submodule. It follows that M is also a direct sum of trivial and of
regular Cp-modules. Now H 1(Cp,Z) = Hom(Cp,Z) = 0, and also H 1(Cp,Z[Cp]) = 0
since Z[Cp] ∼= HomCp (Z[Cp],Z) is co-induced. AsH 1 is additive in direct sums, we get
H 1(Cp,M) = 0, as claimed. ut

3 Throughout the proof the word ‘irreducible’ refers to a rational representation, irreducible
over Q.
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Definition 3.6. A group is called p-quasi-elementary if it has a normal cyclic subgroup
whose quotient is a p-group. It is called quasi-elementary if it is p-quasi-elementary for
some prime p.

Proposition 3.7. Let G be a quasi-elementary group with a proper subgroup D. If 2 =∑
i niHi is a G-relation such that Hi ≤ D for all i, then it is induced from some proper

subgroup of G, and is in particular imprimitive.

Proof. Write G = C o P , with P a p-group and C cyclic of order prime to p.
It suffices to prove the proposition for maximal subgroups D of G. Every maximal

subgroup ofG is either conjugate toD = CoS with S G P of index p, or toD = U oP
where U is a maximal subgroup of C. In the former case, D G G is of prime index and is
quasi-elementary and therefore supersolvable, so the result follows from Proposition 3.4.
Assume that we are in the latter case. We will show that the map B(D) → B(G) is
injective, and the claim will follow from Proposition 3.3.

In general, the kernel of the induction map B(D)→ B(G) is generated by elements
of the form H − gH with H , gH ≤ D. We therefore have to verify that such H, gH ≤
D = U o P are necessarily D-conjugate.

As U G C is maximal, [C : U ] = l and G = ClkD for some prime l and k ≥ 1.
Write g = cd, c ∈ Clk , d ∈ D, so gH = cdH . Replacing H by dH (which is still a
subgroup of D), we may assume that g = c ∈ Clk . If the order of c is less than lk ,
then c ∈ D, and we are done. So assume that c has order lk . If H commutes with Clk ,
then H = cH , and the claim is trivial. Otherwise, there exists h ∈ H (without loss of
generality of order coprime to l) for which hch−1

= ci for some i 6≡ 1 (mod l). But then
chh−1

= chc−1h−1
= c1−i still has order lk , and therefore cannot lie inD, contradicting

the assumption that H, cH ≤ D. ut

Corollary 3.8. Let G be a quasi-elementary group and let {1} 6= Nj G G, Nj ≤ D � G,
j = 1, . . . , s. If 2 =

∑
i niHi is a G-relation with the property that for each Hi either

Nj ≤ Hi for some j or Hi ≤ D, then 2 is imprimitive.

Proof. Set 20 = 2 and define inductively 2j = 2j−1 − Nj2j−1 for 1 ≤ j ≤ s. Then
2s consists only of subgroups of D, so it is imprimitive by Proposition 3.7. Because the
projections Nj2j−1 are lifted from G/Nj , they are also imprimitive. ut

Lemma 3.9. Let G be a finite group and R any G-relation, possibly 0. Then the Z-span
of all imprimitive relations and R is an ideal in the Burnside ring of G.

Proof. If H 6= G, then H · 2 = IndG ResH 2 is imprimitive for any relation 2. If, on
the other hand, H = G, then H ·2 = 2. ut

Corollary 3.10. Let G be a finite group and suppose that there exists an imprimitive
G-relation R in which G enters with coefficient 1. Then G has no primitive relations.

Proof. Write R = G−
∑
H�G nHH . Then R ·2 = 2−

∑
H nH IndG ResH 2 for any

relation2. By Lemma 3.9, R ·2 is imprimitive, and clearly
∑
H nH IndG ResH 2 is also

a sum of imprimitive relations. ut
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4. A characterisation in terms of quotients

The main result of this section, Theorem 4.3, gives a characterisation of Prim(G) in terms
of the existence of quasi-elementary quotients of G. First, recall Solomon’s induction
theorem and a statement complementary to it:

Theorem 4.1 (Solomon’s induction theorem). Let G be a finite group. There exists a
Brauer relation of the form G −

∑
H nHH where the sum runs over quasi-elementary

subgroups of G and nH are integers.
Proof. See [32, Thm. 1] with K = Q or [23, Thm. 8.10]. ut

Theorem 4.2. Let G be a non-cyclic p-quasi-elementary group. Then there exists a re-
lation in which G enters with coefficient p. Moreover, in any G-relation the coefficient of
G is divisible by p.
Proof. See [14]. ut

Theorem 4.3. Let G be a non-quasi-elementary group.
(1) Prim(G) ∼= Z if all proper quotients of G are cyclic.
(2) Prim(G) ∼= Z/pZ if all proper quotients of G are p-quasi-elementary for the same

prime p, and at least one of them is not cyclic.
(3) Prim(G) = 0 otherwise.
In cases (1) and (2), Prim(G) is generated by any relation in which G has coefficient 1.
Proof. By Solomon’s induction theorem, G has a relation of the form R = G −∑
H 6=G nHH , and we claim that R generates Prim(G) in all cases. By Lemma 3.9, the

span I of the set of imprimitive relations and of R is an ideal in B(G). To show that
K(G) ⊂ I , let 2 be any relation. Then 2 = R ·2+ (2− R ·2) and R ·2 ∈ I . Also,

2− R ·2 =
∑
H 6=G

nH (2 ·H)

is imprimitive and therefore also in I . So 2 ∈ I , as claimed.
It remains to determine the smallest integer n > 0 such that G has an imprimitive

relation of the form 2 = nG−
∑
H 6=GmHH . Then Prim(G) ∼= Z/nZ (and Z if there is

no such n). ClearlyG does not enter the relations that are induced from proper subgroups,
so such a 2 must be a linear combination of relations lifted from proper quotients.

(1) If all proper quotients of G are cyclic, there are no such relations.
(2) If all proper quotients are p-quasi-elementary, then n is a multiple of p by Theo-

rem 4.2, and there is a relation with n = p by the same theorem if one of these quotients
is not cyclic.

(3) Otherwise, either
(a) some proper quotient G/N is not quasi-elementary, in which case we apply

Solomon’s induction to G/N and lift the resulting relation to G; or
(b) G has two proper non-cyclic quotients G/N1,G/N2 which are p- and

q-quasi-elementary with p 6= q, in which case we take a linear combination
of the two lifted relations pG+ · · · and qG+ · · · .

In both cases, there is an imprimitive relation with n = 1, so Prim(G) = 0. ut
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Corollary 4.4. If a finite group G has a primitive relation, then there is a prime p such
that every proper quotient of G is p-quasi-elementary.

Proof. If G itself is p-quasi-elementary, then so are all its quotients, and there is nothing
to prove. Otherwise, apply the theorem. ut

Corollary 4.5. Let G be a finite group that has a primitive relation. Then G is an exten-
sion of the form

1→ Sd → G→ Q→ 1, d ≥ 1,(4.6)

with S a simple group and Q p-quasi-elementary. Moreover, if S is not cyclic (equiva-
lently if G is not soluble), then the canonical map Q → Out Sd is injective and Sd has
no proper non-trivial subgroups that are normal in G. In this case, Prim(G) ∼= Z if Q is
cyclic and Prim(G) ∼= Z/pZ otherwise.

Proof. By the existence of chief series for finite groups, any G 6= {1} is an extension
(4.6) of some group Q, with simple S. Because G has a primitive relation, Q is quasi-
elementary by Theorem 4.3.

Now suppose S is not cyclic, and consider the kernelK of the mapG→ Aut Sd given
by conjugation. The centre of Sd is trivial, so K ∩ Sd = {1}. If K 6= {1}, then G/K is a
proper non-quasi-elementary quotient, contradicting Theorem 4.3. So G ↪→ Aut Sd and,
factoring out Sd ∼= Inn Sd , we get Q ↪→ Out Sd . In the same way, if N G G is a proper
subgroup of Sd , then G/N is not quasi-elementary, so again N = {1}.

Finally, the description of Prim(G) is given by Theorem 4.3. ut

Remark 4.7. Conversely, suppose that G is an extension as in (4.6) with p-quasi-ele-
mentary Q, non-cyclic S and Q ↪→ Out Sd . Suppose also that Sd has no proper non-
trivial subgroups that are normal in G. It follows that every non-trivial normal subgroup
of G contains Sd . So G is not quasi-elementary but every proper quotient of it is p-
quasi-elementary, and thereforeG has a primitive relation. This proves Theorem A for all
non-soluble groups.

5. Primitive relations in p-groups

Definition 5.1. The normal p-rank of a finite group G is the maximum of the ranks of
the elementary abelian normal p-subgroups of G.

As in Bouc’s work [10], the groups of normal p-rank one will be of particular importance
to us. We will repeatedly need the following classification:

Proposition 5.2 ([20, Ch. 5, Thm. 4.10]). Let P be a p-group with normal p-rank one.
Then P is one of the following:

• the cyclic group Cpn = 〈c | cp
n
= 1〉;

• the dihedral group D2n+1 = 〈c, x | c2n
= x2

= 1, xcx = c−1
〉 with n ≥ 3;

• the generalised quaternion groupQ2n+2 = 〈c, x | c2n
= x2, x−1cx = c−1

〉with n ≥ 1;
• the semi-dihedral group SD2n+1 = 〈c, x | c2n

= x2
= 1, xcx = c2n−1

−1
〉 with n ≥ 3.
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We now present an alternative proof of the Tornehave–Bouc theorem [10, Cor. 6.16]. The
ingredients are the results of §3 and a lemma of Bouc [10, Lemma 6.15].

Theorem 5.3 (Tornehave–Bouc). All Brauer relations in p-groups are Z-linear combi-
nations of ones lifted from subquotients P of the following types:

(i) P ∼= Cp×Cp with the relation 1−
∑
C C+p ·P , the sum taken over all subgroups

of order p;
(ii) P is the Heisenberg group of order p3 (which is isomorphic toD8 when p = 2), and

the relation is I−IZ−J+JZ whereZ = Z(P ) and I and J are two non-conjugate
non-central subgroups of order p;

(iii) P ∼= D2n , n ≥ 4, with the relation I − IZ − J + JZ, where Z = Z(P ) and I and
J are two non-conjugate non-central subgroups of order 2.

Proof. Let P be a p-group that has a primitive relation. By Lemma 3.2, either P =
Cp × Cp or P has cyclic centre. The former is covered by Example 2.4, so assume that
we are in the latter case, and let Czp be the unique central subgroup of order p.

First, suppose P has normal p-rank r ≥ 2, with V = (Cp)r G P . The conjugation ac-
tion of P on V is upper-triangular, as is any action of a p-group on an Fp-vector space. So
there are normal subgroups (Cp)j G G for all j ≤ r , and we denote by E one for j = 2.
Note that Czp ⊂ E, since any normal subgroup of a p-group meets its centre. By [10,
Lemma 6.15], any occurrence in a relation of a subgroup that does not contain Czp and is
not contained in the centraliser CP (E) of E in P can be replaced by subgroups that either
contain Czp or are contained in CP (E), using a relation from a subquotient isomorphic to
the Heisenberg group of order p3. The remaining relation is then imprimitive by Corol-
lary 3.8. So P has a primitive relation if and only if it is the Heisenberg group of order p3.

Now suppose that r = 1, so P is as in Proposition 5.2. If P is cyclic or generalised
quaternion, then every non-trivial subgroup contains Czp, so P has no primitive relations
by Corollary 3.8. If P is semi-dihedral, then the only conjugacy class of non-trivial sub-
groups of P that do not contain Cz2 is that of non-central involutions, represented by 〈x〉,
say. But x and Cz2 generate a proper subgroup of P , so P again has no primitive rela-
tions by Corollary 3.8. Finally, if P is dihedral of order 2n, n ≥ 4, then there are two
conjugacy classes of non-trivial subgroups that do not contain Cz2 , represented, say, by I
and J . Using the relation in (iii) (cf. [10, p. 25]) one can replace any occurrence of I in a
relation by J and by subgroups that contain Cz2 . In the resulting relation, every subgroup
will either contain Cz2 or will be contained in D = Cz2 × J , which is a proper subgroup
of P . So, applying Corollary 3.8 again, we see that the group of primitive relations of P
is generated by the relation of (iii), and the theorem is proved. ut

6. Main reduction in soluble groups

Theorem 6.1. Every finite soluble group that has a primitive relation is either

(i) quasi-elementary, or
(ii) of the form (Cl)

d oQ, where l is a prime, Q is quasi-elementary and acts faithfully
and irreducibly on the Fl-vector space (Cl)d by conjugation, or
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(iii) of the form (Cl o P1) × (Cl o P2), where l, p are primes, and Pi ↪→ AutCl are
cyclic p-groups.

Proof. Since G is soluble and has a primitive relation, by Corollary 4.5 it is an extension
of the form

(6.2) 1→ (Cl)
d
→ G→ Q→ 1, d ≥ 1,

with Q quasi-elementary. We may assume d ≥ 1 (otherwise we are in (i)) and Q 6= {1}
(otherwise G ∼= Cl × Cl , e.g. by Theorem 5.3, and we are in (iii)). Consider the various
possibilities for the structure of Q and its action on W = (Cl)d by conjugation.

(A) Suppose that l does not divide |Q|. The sequence (6.2) then splits by the Schur–
Zassenhaus theorem, so G = W o Q. The kernel of the action of Q on W is then a
normal subgroup N G G.

Case 1: N 6= {1} and Q is cyclic. By Corollary 4.4, G/N is quasi-elementary. If it is
p-quasi-elementary for some p 6= l, then its l-part must be cyclic, so d = 1. Moreover,
sinceQ/N acts faithfully on Cl , it must be a p-group. So, writingQ = Qp×Qp′ , where
Qp is the Sylow p-subgroup of Q, we deduce that N contains Qp′ , which is cyclic of
order coprime to l, and so G = (Cl ×Qp′)oQp is quasi-elementary (case (i)). If G/N
is l-quasi-elementary, then l - |Q| implies that Q/N G G/N , so G/N = (Q/N) × W .
But N is the whole kernel of the action of Q on W , so Q/N must be trivial. In this case
Q = N is normal in G, and G = Q×W is again quasi-elementary.

Case 2: N 6= {1} and Q is not cyclic. Write Q = C o P with C cyclic of order co-
prime to lp and P a p-group. This time, we know that G/N is p-quasi-elementary by
Corollary 4.4. Since p 6= l, we have d = 1. Also, because G/N is p-quasi-elementary
and the action of Q/N on Cl is faithful, Q/N must be a p-group. So N contains C, and
G = (Cl × C)o P is p-quasi-elementary.

Case 3: N = {1} and Q acts reducibly. Since l - |Q|, the Fl-representation W of Q is
completely reducible. Say W =

⊕n
i=1 Vi with irreducible Vi ; so Vi G G.

Let p be a prime divisor of |Q|. A Sylow p-subgroup of Q acts faithfully on W , so it
acts non-trivially on one of the Vi , say on V1. Because U = G/(V2⊕· · ·⊕Vn) ∼= V1oQ
is quasi-elementary by Corollary 4.4, and because its p-Sylow is not normal in it, U must
be p-quasi-elementary (and not cyclic). However, Corollary 4.4 asserts that all proper
non-cyclic quotients of G are quasi-elementary with respect to the same prime, so |Q|
cannot have more than one prime divisor. In other words, Q is a p-group.

Now, both G/V1 and G/V2 must be p-quasi-elementary, so their l-parts are cyclic.
This is only possible if n = 2 and dimV1 = dimV2 = 1. So W = Cl × Cl , and

Q ↪→ (AutCl)× (AutCl) ∼= F×l × F
×

l

is an abelian p-group. This is case (iii) of the theorem.

Case 4: N = {1} and Q acts irreducibly. This is case (ii).
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(B) Suppose that l divides |Q|.

Case 5: Q is l′-quasi-elementary for l′ 6= l. Let L̄ be a Sylow l-subgroup of Q. Since
l′ 6= l, L̄ is cyclic and normal in Q, and we write L G G for its inverse image in G.
So G is an extension of Q̃ = Q/L̄ by L. By the Schur–Zassenhaus theorem it is a split
extension, and we may view Q̃ as a subgroup of G and consider its conjugation action
on L.

If the Frattini subgroup 8(L) is trivial, then L ∼= (Cl)m for some m and we are back
in case (A) of the proof. So suppose that8(L) 6= {1}. ThenG/8(L) is quasi-elementary
by Corollary 4.4.

Assume first that G/8(L) is p-quasi-elementary for p 6= l. Then L/8(L) must be
cyclic, hence L is cyclic (by a standard property of l-groups). Moreover, Q̃ = R o P
with R cyclic and P a p-group, andG/8(L) = (L/8(L)×R)oP . Now R acts trivially
on L/8(L) and has order prime to l, so R acts trivially on L by the classical theorem of
Burnside that the kernel of AutL → Aut(L/8(L)) is an l-group [20, Ch. 5, Thm. 1.4].
It follows that G = (L× R)o P and L× R is cyclic, so G is p-quasi-elementary.

Assume that G/8(L) is l-quasi-elementary. Then Q̃ must be cyclic and normal in
G/8(L), and therefore G/8(L) = L/8(L) × Q̃. Again Q̃ acts trivially on L/8(L),
hence on L by Burnside’s theorem. It follows that G = L× Q̃ is l-quasi-elementary.

Case 6: Q is non-cyclic l-quasi-elementary. Now Q = C o P with C cyclic of order
prime to l, and P an l-group, both non-trivial. By Schur–Zassenhaus we may view C

as a subgroup of G. We may also assume that C acts non-trivially on W , for otherwise
C × W is a normal subgroup of G in which C is characteristic, so C G G and G is
quasi-elementary.

Since |C| and |W | are coprime, W is completely reducible as a representation of C
over Fl . Therefore, the invariant subspace WC has a (non-trivial) complement on which
C acts faithfuly. SinceWC is a P -representation, it is a normal subgroup ofG. If it is non-
zero, then G/WC is l-quasi-elementary by Corollary 4.4, so the image of C is normal in
it. But so is the image of W , so the two commute, contradicting the faithfullness of the
action of C on W/WC . In other words, WC

= 0.
Now the inflation-restriction sequence for C G Q acting on W reads

H 2(Q/C,WC)→ H 2(Q,W)→ H 2(C,W).

The first group is zero as WC
= 0, and the last one is zero as it is killed by |C| and

by |W |, which are coprime. So the middle group, which classifies extensions of Q by W
up to splitting, is zero, in other words G = W oQ is a split extension.

Next, we show thatW is irreducible as a representation ofQ. If not, let 0 ( V ( W be
a subrepresentation. Since G/V is l-quasi-elementary (Corollary 4.4 again), C must act
trivially on W/V . But, by complete reducibility again, this contradicts the fact WC

= 0.
Finally, consider the kernel N of the action of Q on W . As G is a split extension,

N may be viewed as a (normal) subgroup of G. If N is non-trivial, G/N is l-quasi-ele-
mentary, and so CN/N G G/N , which implies CN G G. Moreover, the commutators
[C,W ] lie both in W and CN , hence in W ∩ CN = {1}. Therefore, W centralises C, so
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C is normal in G, and it follows that G is l-quasi-elementary. If, on the other hand, N is
trivial, then we are in case (ii). ut

Remark 6.3. Before continuing, we recall from [29, §8.2] the classification of irre-
ducible characters of semi-direct products by abelian groups. Let G = A o H with A
abelian. The group H acts on one-dimensional characters of A via

h(χ)(a) = χ(hah−1), h ∈ H, a ∈ A, χ : A→ C×.

Let X be a set of representatives of the H -orbits of these characters. For χ ∈ X write
Hχ for its stabiliser in H . Then χ can be extended to a one-dimensional character of its
stabiliser Sχ = A o Hχ in G by defining it to be trivial on Hχ . Let ρ be an irreducible
character ofHχ ∼= Sχ/A and lift it to Sχ . Then IndGSχ (χ⊗ρ) is an irreducible character of
G and all irreducible characters ofG arise uniquely in this way, for varying χ ∈ X and ρ.

Proposition 6.4. Let G = W o H with W ∼= (Cl)
d for d ≥ 2, and H acting faith-

fully on W . Let U be a set of representatives of the G-conjugacy classes of hyperplanes
U ⊂ W , and write HU = NH (U) for U ∈ U . Then

2 = G−H +
∑
U∈U

(HUU −HUW)

is a G-relation.
Proof. We retain the notation of Remark 6.3 for the irreducible characters of G. Choose
the set X of representatives for the H -orbits of one-dimensional characters of W in such
a way that kerχ ∈ U for 1 6= χ ∈ X.

To prove that 2 is a relation, it suffices to show that

C[G/H ] 	 1 =
⊕

χ∈X,χ 6=1
IndGSχ (χ ⊗ 1Hχ ),

C[G/HUU ] 	 C[G/HUW ] =
⊕

χ∈X, kerχ=U

IndGSχ (χ ⊗ 1Hχ ) for U ∈ U .

To do so, first compute the decomposition of C[G/T ] into irreducible characters for an
arbitrary T <G. The multiplicity mT

χ,ρ of IndGSχ (χ ⊗ ρ) in C[G/T ] is

mT

χ,ρ = 〈IndGSχ (χ ⊗ ρ), IndG 1T 〉G = 〈ResT IndGSχ (χ ⊗ ρ), 1〉T

=

∑
x∈Sχ\G/T

〈Ind
xT ResSχSχ∩xT (χ ⊗ ρ), 1〉xT

=

∑
x∈Sχ \G/T

〈ResSχ∩xT (χ ⊗ ρ), 1〉Sχ∩xT .

Next, take T = H . Since W ⊆ Sχ for each χ ∈ X, there is a unique double coset in
Sχ\G/H , the trivial one. So

mH

χ,ρ = 〈ResSχHχ (χ ⊗ ρ), 1Hχ 〉Hχ = 〈ρ, 1Hχ 〉Hχ =
{

1, ρ = 1,
0, ρ 6= 1,

as claimed. Finally, for U ∈ U we compare mHUU

χ,ρ and mHUW

χ,ρ .
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If χ = 1 and ρ is an irreducible representation of G/W lifted to G, then

m
HUU

χ,ρ = 〈IndG 1HUU , ρ〉G = 〈1,ResHUU ρ〉HUU

= 〈1,ResHU ρ〉HU = 〈IndG 1HUW , ρ〉G = m
HUW

χ,ρ .

For χ 6= 1,

m
HUU

χ,ρ =

∑
x∈Sχ\G/HUU

〈ResSχ∩x(HUU)(χ ⊗ ρ), 1〉Sχ∩x(HUU).

If kerχ 6= U , or if kerχ = U but x represents a non-trivial double coset, then the
corresponding summand is 0, since Sχ ∩x(HUU) contains xU , a hyperplane ofW distinct
from kerχ , and the restriction to this hyperplane is a sum of several copies of one non-
trivial character. The same is true for HUW . If, on the other hand, kerχ = U , then
Hχ ≤ HU , so that Sχ ∩HUU = HχU . Therefore

m
HUU

χ,ρ =

{
1, ρ = 1,
0, ρ 6= 1, m

HUW

χ,ρ = 0. ut

Proposition 6.5. Let G = Cl o H , with l prime and H 6= {1} acting faithfully on Cl .
Then Prim(G) ∼= Z. If H ∼= Cpk is of prime-power order, then Prim(G) is generated by

Cpk−1 − pH − Cl o Cpk−1 + pG.

If H ∼= Cmn with coprime m, n > 1, then Prim(G) is generated by

G−H + α(Cn − Cl o Cn)+ β(Cm − Cl o Cm),

where αm+ βn = 1.

Proof. The existence of the two relations follows immediately from Example 2.3, applied
to H̃ = Cm < H and H̃ = Cn < H . If H has composite order, the result follows from
Theorem 4.3(1). If H ∼= Cpk , then G is p-quasi-elementary, so the coefficient of G in
any relation is divisible by p by Theorem 4.2. Clearly, no relation in whichG enters with
non-zero coefficient can be induced from a subgroup. But also, no such relation can be
lifted from a proper quotient, since all proper quotients ofG are cyclic and therefore have
no non-trivial relations. ut

Corollary 6.6. Theorem A holds for all finite non-quasi-elementary groups.

Proof. The theorem is already proved for non-soluble groups (Remark 4.7), so suppose
G is soluble but not quasi-elementary. Then, if G has a primitive relation, it falls under
(ii) or (iii) of Theorem 6.1. This gives one direction.

Conversely, suppose G is of one of these two types, in particular G ∼= (Cl)
d o Q,

with Q quasi-elementary and acting faithfully on (Cl)d by conjugation. It is easy to see
that every proper quotient of G is quasi-elementary. So Theorem 4.3 combined with
Proposition 6.4 for d ≥ 2 and Proposition 6.5 for d = 1 give the asserted description
of Prim(G). ut



2490 Alex Bartel, Tim Dokchitser

7. Quasi-elementary groups

In this section, we determine the structure and the representatives of Prim(G) for quasi-
elementary groups that are not p-groups. This is case (4) of Theorem A, and it is by far
the most difficult one.

Notation 7.1. For the rest of the section we fix

P a non-trivial p-group,
C a non-trivial cyclic group of order coprime to p,
G = C o P a quasi-elementary group with normal subgroup C

and a fixed complementary subgroup P ≤ G,
K G P the kernel of the conjugation action of P on C.

We begin by showing that the presence of primitive relations forces tight restrictions on
the structure of K . We then write down generators for Prim(G) and give necessary and
sufficient group-theoretic criteria for these relations to be primitive.

7.1. The kernel of the conjugation action

Lemma 7.2. If P has normal p-rank one or is isomorphic to D8, and K 6= {1}, then G
has no primitive relations.

Proof. By Proposition 5.2, P is either cyclic, generalised quaternion, semi-dihedral, or
dihedral. We will consider these cases separately. We may assume that P 6∼= Cp, for
otherwise K = P and G = P × C is cyclic. In the remaining cases, we use the notation
of Proposition 5.2 for the generators c, x of P . Denote by Czp the unique central subgroup
of P of order p. Note that K contains Czp, since any normal subgroup of a p-group
intersects its centre non-trivially.

If P is cyclic or generalised quaternion, then every non-trivial subgroup of P con-
tains Czp. So every subgroup of G either contains Czp, or contains a non-trivial subgroup
of C, or is contained inD = Czp×C G G. By Corollary 3.8,G has no primitive relations.

If P is semi-dihedral, then there is only one conjugacy class of subgroups of P that do
not contain Cz2 , represented by 〈x〉. Now, up to conjugation, every subgroup of G either
contains Cz2 or a non-trivial subgroup of C, or is contained in D = C o (Cz2 × 〈x〉) G G.
By Corollary 3.8, we are done.

If P is dihedral, then there are two conjugacy classes of non-trivial subgroups of P
that intersect 〈c〉 trivially, I and J , say. They are each generated by a non-central involu-
tion. There is a P -relation (cf. Theorem 5.3)

I − J − ICz2 + JC
z
2.

Thus, any occurrence of I in any relation can be replaced by groups that either contain Cz2
or are contained in JCz2 , using a relation that is induced from P , which is a proper sub-
group of G. Similarly, any occurrence of C̃ o I for C̃ ≤ C can be replaced by subgroups
that either contain Cz2 or are contained in CoJCz2 using a relation from a proper subquo-
tient. In summary, by adding imprimitive relations to any given G-relation, all subgroups
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can be arranged to either contain Cz2 or be contained in C o JCz2 , and we are again done
by Corollary 3.8. ut

Lemma 7.3. Suppose P has a non-central normal subgroup E ∼= Cp × Cp that inter-
sects K non-trivially. Then G has no primitive relations.

Proof. Since E G P , the intersection U = E ∩ Z(P ) is non-trivial. By assumption, U
is not the whole of E, so Cp ∼= U G P , and the action of P on E by conjugation factors
through a group

(1
0
∗

1

)
of order p. In particular, no other Cp <E except for U is normal

in P , so every normal subgroup of P that meets E non-trivially must contain U ; hence
U ⊂ K . So U commutes both with C and with P , in particular U G G.

The centraliser CP (E) of E in P has index p in P . By [10, Lemma 6.15], if H is
any subgroup of P that does not contain U and is not contained in CP (E), then any
occurrence ofH in a relation can be replaced by subgroups that either contain U ≤ Z(G)
or are contained in CP (E) using a relation induced from P , which is a proper subgroup
ofG. Similarly, any group of the form C̃oH for C̃ ≤ C andH as above can be replaced
by subgroups that either contain U or are contained in D = C o CP (E) using a relation
from the quotient G/C̃. By Corollary 3.8, G has no primitive relations. ut

Corollary 7.4. If K 6= {1} and P has cyclic centre, then G has no primitive relations.

Proof. If P has normal p-rank one, we are done by Lemma 7.2. Otherwise P has a
normal subgroup E ∼= Cp×Cp (cf. proof of Theorem 5.3). Since Z(P ) is cyclic, E is not
central. Also, both E and K intersect Z(P ) non-trivially, so they both contain the unique
Cp ≤ Z(P ), and thus G has no primitive relations by Lemma 7.3. ut

Lemma 7.5. Let T be any p-group. Then either T = {1} or T ∼= D8 or T has normal
p-rank one or the number of normal subgroups of T isomorphic to Cp ×Cp is congruent
to 1 modulo p.

Proof. By a theorem of Herzog [22, Theorem 3], the number α of elements in T of order
p is congruent to −1 modulo p2 if and only if T 6∼= D8 and has normal p-rank greater
than one. We consider two cases:

Case 1: Z(T ) is cyclic. Since every normal subgroup of T intersects the centre non-
trivially and since there is a unique subgroup 〈z〉 of order p in the centre, any normal
Cp × Cp is generated by z and a non-central element a of order p. For an arbitrary
non-central element a of order p, 〈a, z〉 need not be normal, but the size of its orbit under
conjugation is a power of p. So the number of normal suchCp×Cp is congruent modulo p
to the number of allCp×Cp that intersect the centre non-trivially. Finally, p2

−p different
non-central elements define the same subgroup, so the number β of normal subgroups
isomorphic to Cp × Cp is congruent to (α − (p − 1))/(p2

− p) modulo p. Thus,

T 6∼= D8 and ∃Cp × Cp G T ⇔ α ≡ −1 (modp2)

⇔ α − p + 1 ≡ −p (modp2)

⇔ β =
α − (p − 1)
p2 − p

≡ 1 (modp),

as required.
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Case 2: Z(T ) is not cyclic. Then a normal subgroup of T isomorphic to Cp × Cp is
either contained in Z(T ) or intersects it in a line. Let Z(T ) have normal p-rank r ≥ 2.
Any Cp × Cp ≤ Z(T ) is generated by two linearly independent elements of order p and
there are (pr − 1)(pr − p)/2 unordered pairs of such elements. Each Cp × Cp contains
(p2
− 1)(p2

− p)/2 pairs and so there are

(pr − 1)(pr − p)
(p2 − 1)(p2 − p)

=
(pr − 1)(pr−1

− 1)
(p2 − 1)(p − 1)

≡ 1 (modp)

distinct subgroups of Z(T ) that are isomorphic to Cp ×Cp. Since there are pr − 1 ≡ −1
(modp2) elements in Z(T ) of order p, by Herzog’s theorem we have

T 6∼= D8 and ∃Cp × Cp G T ⇔ #{g ∈ T \Z(T ) | gp = 1} ≡ 0 (modp2).

For any given line in Z(T ), the number of Cp × Cp ≤ T intersecting Z(T ) in that line is
therefore divisible by p by the same counting as in Case 1, and so the number of normal
Cp × Cp in T that intersect Z(T ) in a line is divisible by p, as required. ut

Proposition 7.6. Suppose that G has a primitive relation. Then either K = {1} or
K ∼= D8 or K has normal p-rank one. In particular, K has cyclic centre.

Proof. If K is not of these three types, then by Lemma 7.5, the set of normal Cp × Cp
in K has cardinality coprime to p. The p-group P acts on this set by conjugation, so
there is a fixed point. In other words, there is N = Cp × Cp G K that is fixed under
conjugation by P , so N G P . Now, either N is in the centre of P , in which case it is
also in the centre of G (since K commutes with C by definition), and G has no primitive
relations by Lemma 3.2; or N is a normal non-central subgroup of P that intersects K
non-trivially, and then G has no primitive relations by Lemma 7.3. ut

Lemma 7.7. If Cl2 ≤ C for some prime l, then Prim(G) = 0.

Proof. Write C = Cln × C̃ with C̃ cyclic of order prime to l. There is a unique Cl G C,
and any subgroup of G that does not contain it is contained in C̃ o P and, a fortiori, in
D = (Cl × C̃)o P � G. Since Cl G G, we are done by Corollary 3.8. ut

Assumption 7.8. In view of 7.6 and 7.7, from now we assume:

(1) G = CoP , with P a p-group, and C = Cl1 × · · ·×Clt cyclic with t distinct primes
lj 6= p.

(2) K = ker(P → Aut(C)) is either trivial or isomorphic to D8 or has normal p-rank
one.

Notation 7.9. The following notation will be used in the rest of the section. Here, N is
any normal subgroup of G, and j is an index, 1 ≤ j ≤ t .
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Czp the unique central subgroup of K (and of G) of order p, when K is non-trivial.
CK either K if K is cyclic, or a cyclic index 2 subgroup of K that is normal in G

otherwise.4

C̄K CCK ; this is the largest normal cyclic subgroup of G.
HN a set of representatives of conjugacy classes of subgroups of G that intersect N

trivially.
Hc
N the set of subgroups of G that intersect N non-trivially.

Hc short for Hc

C̄K
.

H short for HC̄K
; we take H to consist of subgroups of P .

Hm the set of elements of H of maximal size.
Cj Cl1 × · · · × Ĉlj × · · · × Clt , the l′j -Hall subgroup of C.
Kj ker(P → AutCj ) =

⋂
i 6=j ker(P → AutCli ). Thus K ≤ Kj and Kj/K is cyclic,

as it injects into AutClj .
K̃j Kj ∩ ker(P → AutCK).

For elements 21 =
∑
H nHH and 22 =

∑
H mHH of the Burnside ring of G, write

21 ≡ 22 (modHc
N )

if nH = mH for all H ∈ HN .

Note that Czp, CK , C̄K , Cj , Kj are all normal (even characteristic) in G, and C̄K is
the largest normal cyclic subgroup of G. The quotient P̄ = G/C̄K acts faithfully on C̄K
by conjugation (as seen from the presentation of generalised quaternion, semi-dihedral
and dihedral groups in Proposition 5.2), and is therefore abelian. In particular, G is an
extension

1→ C̄K → G→ P̄ → 1

of an abelian p-group by a cyclic group. Also, all H ∈ H are abelian, as they inject into
G/C̄K ∼= P̄ . Finally, CK ≤ K̃j , and the quotient K̃j/CK ↪→ AutClj is cyclic and acts
trivially on CK by conjugation. It follows that every K̃j is abelian.

Any relation in which every term contains a non-trivial subgroup of C̄K is imprimitive
by Lemma 3.1. So, to find generators of Prim(G), we will from now on focus our attention
on relations that contain subgroups of P not containing Czp, or equivalently subgroups
H ∈ H.

7.2. Some Brauer relations

In this subsection, we define several relations, which will later be shown to generate
Prim(G).

4 IfK 6∼= Q8 is non-trivial, then it contains a unique cyclic subgroup of index p, which is normal
inG. InQ8, there are three cyclic subgroups of index 2 and the 2-group P acts them by conjugation,
so this action has a fixed point, which is also normal in G.
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Lemma 7.10. Let H ∈ H and let φ be a faithful irreducible character of C̄K . Then
IndG

C̄K
φ is irreducible, and any irreducible character of G whose restriction to C̄K is

faithful is of this form. Moreover,

〈IndGH 1, IndG
C̄K
φ〉 = |P̄ |/|H |.

Proof. Since P̄ = G/C̄K acts faithfully on C̄K , it also acts faithfully on the faithful
characters of C̄K . By Mackey’s formula,

〈IndG
C̄K
φ, IndG

C̄K
φ〉 = 〈φ,ResG

C̄K
IndG

C̄K
φ〉 =

∑
g∈C̄K\G/C̄K

〈φ, gφ〉 = 1,

i.e. IndG
C̄K
φ is irreducible. Moreover, if χ is any irreducible character ofG whose restric-

tion to C̄K is faithful, then by Clifford theory, all irreducible summands of ResG
C̄K
χ lie

in one orbit under the action of G. Since any normal subgroup of C̄K is characteristic, all
G-conjugate irreducible characters of C̄K have the same kernel, so all irreducible sum-
mands of ResG

C̄K
χ are faithful. Thus, if φ is one of them, then χ = IndG

C̄K
φ by Frobenius

reciprocity and by the first part of the lemma.
The rest of the lemma now follows by Mackey’s formula:

〈IndGH 1, IndG
C̄K
φ〉 = 〈1,ResH IndG

C̄K
φ〉

=

〈
1,

∑
x∈H\G/C̄K

IndHxC̄K∩H ResxC̄K∩H
xφ
〉

=

∑
x∈H\G/C̄K

〈1, IndH
{1} Res{1} xφ〉

=

∑
x∈H\G/C̄K

〈1, IndH
{1} 1〉 = |H\G/C̄K | =

|P̄ |

|H |
. ut

Lemma 7.11. Let G be any finite group, N G G a normal subgroup, and 20 =∑
H∈HN

nHH ∈ B(G). For an element 3 of B(G) write 3̃ ∈ RQ(G) for the associ-
ated virtual representation.

(1) For any irreducible character φ of G,

〈IndGN 1, φ〉 =

{
dimφ, N ≤ kerφ,
0, otherwise.

(2) If φ is an irreducible character of G satisfying N ≤ kerφ, then for every subgroup
H ≤ G,

〈IndGH 1, φ〉 = 〈IndGHN 1, φ〉.

In particular, 〈φ, 3̃− Ñ3〉 = 0 for every 3 ∈ B(G).
(3) Let N1, . . . , Nr be a collection of normal subgroups ofG. Set2i = 2i−1−Ni2i−1

for i = 1, . . . , r . If φ is an irreducible character of G whose kernel contains some
Ni , then 〈2̃r , φ〉 = 0.
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(4) Suppose thatN is cyclic. If2 is a relation and2 ≡ 20 (modHc
N ), then 〈2̃0, φ〉 = 0

for every irreducible character φ of G whose restriction to N is faithful.
(5) Suppose that N is cyclic. Let N1, . . . , Nr and 21, . . . ,2r be as in part (3), and

assume in addition that all Ni are contained in N , and that any normal subgroup
of G that intersects N non-trivially contains some Ni . Then 〈2̃r , φ〉 = 〈2̃0, φ〉 for
every irreducible character φ ofG that is faithful onN . In particular,2r is a relation
if and only if 〈2̃0, φ〉 = 0 for every such character.

Proof. We implicitly rely on Frobenius reciprocity throughout the proof.
(1) By Clifford theory, ResGN φ is a sum of irreducible characters of N that all lie in

oneG-orbit. The claim follows from the fact that the trivial character is aG-orbit in itself.
(2) The assumptions imply that the H -invariants of the underlying vector space of φ

is the same as the HN -invariants, since the entire vector space is N -invariant.
(3) The operators 3 7→ 3 − Ni3 on B(G) commute pairwise. So 2r is of the form

2−Ni2 for some 2 ∈ B(G), and the claim follows from part (2).
(4) Let φ be faithful on N , and let U ∈ Hc

N . Since N is normal in G and cyclic,
U ∩ N 6= {1} is normal in G, so by part (1), 〈IndGU∩N 1, φ〉 = 0. Also, IndGU 1 is a direct
summand of IndGU∩N 1, so 〈IndGU 1, φ〉 = 0. It follows that 〈2̃0, φ〉 = 〈2̃, φ〉 = 0.

(5) Suppose φ is faithful on N , and hence on each Ni . Then for any H ≤ G,
IndGHNi 1 is a direct summand of IndGNi 1, and 〈IndGNi 1, φ〉 = 0 by part (1). We deduce
that 〈IndGHNi 1, φ〉 = 0, and therefore 〈2̃r , φ〉 = 〈2̃0, φ〉, as claimed. For the last claim,
if φ is not faithful on N then by assumption, kerφ contains some Ni , and the assertion
follows from part (3). ut

Corollary 7.12. Let Hi ∈ H and 20 =
∑
niHi ∈ B(G). For 1 ≤ j ≤ t set 2j =

2j−1 − Clj2j−1, and set 2t+1 = 2t if K is trivial and 2t+1 = 2t − C
z
p2t otherwise.

In other words,
2t+1 =

∑
i

ni
∑
U≤C̄K

µ(|U |)HiU,

where µ denotes the Möbius function, and U runs over all subgroups of C̄K . Then the
following are equivalent:

(1) 2t+1 is a relation.
(2)

∑
ni/|Hi | = 0.

(3) There exists a relation 2 such that 2 ≡ 20 (modHc).

Proof. For an element 3 of B(G), denote its image in RQ(G) by 3̃.
By Lemma 7.11(5), part (1) is equivalent to the statement that 〈2̃t+1, φ〉 = 0 for all

irreducible characters φ of G that are faithful on C̄K . So the equivalence with (2) follows
from Lemma 7.10.

The equivalence of (1) and (3) follows from Lemma 7.11(4) and (5): indeed, if there
exists a relation 2 ≡ 20 (modHc), then by Lemma 7.11(4), 〈2̃0, φ〉 = 0 for all irre-
ducible characters φ of G whose restriction to C̄K is faithful. But then Lemma 7.11(5)
implies that 2t+1 is a relation. ut
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Corollary 7.13. Let H1, H2 ∈ H.
(1) If |H1| = |H2|, then there is a relation 2 ≡ H1 −H2 (modHc).
(2) If |H2| = p|H1|, then there is a relation 2 ≡ H1 − pH2 (modHc).

Theorem 7.14. Fix an index 1 ≤ j ≤ t . For subgroups H1, H2 ∈ H of the same size, the
following are equivalent:
(1) There exists a relation 2 ≡ H1 −H2 (modHc) that is induced from Cj o P .
(2) The element ∑

U≤C̄K
Clj 6≤U

µ(|U |)(H1U −H2U)

of B(G) is a relation.
(3) ResP

K̃j
(H1 −H2 − C

z
pH1 + C

z
pH2) is a relation.

(4) There exists an element g ∈ P such that one of the intersections H1 ∩ K̃j and
gH2 ∩ K̃j is contained in the other, and

[NP (H1 ∩ K̃j ) : H1K̃j ] = [NP (H2 ∩ K̃j ) : H2K̃j ].

Proof. By Lemma 7.11 (applied to G = CjP , N = CjCK , 3 = H1 − H2), the state-
ments (1) and (2) are equivalent, and both are equivalent to the condition that

〈IndGH1
1, χ〉 = 〈IndGH2

1, χ〉

for all irreducible characters χ of G whose restriction to CjCK , equivalently to CjCzp,
is faithful. By Lemma 7.10, this is automatically satisfied for those χ whose restriction
to C̄K is faithful. Let χ be an irreducible character of G whose restriction to C̄K has
kernel Clj . Then by [23, Theorem 6.11],

χ = IndG
CK̃j

ρ

for some ρ; here CK̃j is the stabiliser of a constituent of ResC̄K χ . Moreover, Res
K̃j
ρ is

irreducible, faithful on Czp, and any irreducible character of K̃j that is faithful on Czp is of
the form Res

K̃j
ρ for some such ρ. For H = H1 or H2, we have

〈χ, IndGH 1〉 = 〈IndG
CoK̃j

ρ, IndGH 1〉 =
∑

CK̃j \G/H

〈ρ, Ind
CK̃j

CK̃j∩
gH

1〉

=

∑
CK̃j \G/H

〈ρ, Ind
CK̃j

K̃j
Ind

K̃j

K̃j∩
gH

1〉 =
∑

CK̃j \G/H

〈Res
K̃j
ρ, Ind

K̃j

K̃j∩
gH

1〉

=

∑
K̃j \P/H

〈Res
K̃j
ρ, Ind

K̃j

K̃j∩
gH

1〉 = 〈Res
K̃j
ρ,ResP

K̃j
IndPH 1〉.

So (1) and (2) are equivalent to the statement that for any irreducible character φ of K̃j
that is faithful on Czp, 〈φ,ResP

K̃j
IndPH1

1〉 = 〈φ,ResP
K̃j

IndPH2
1〉. This in turn is equivalent

to (3), again by Lemma 7.11.
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We now prove the equivalence of (1)–(3) to (4). Let φ be an irreducible character
of K̃j , faithful on Czp. Its kernel, say N , is then necessarily cyclic. For H = H1 or H2, by
Lemma 7.11(1),

〈φ,ResP
K̃j

IndPH 1〉 =
〈
φ,

∑
K̃j \P/H

Ind
K̃j
gH∩K̃j

1
〉
= #{g ∈ P/HK̃j | gH ∩ K̃j ≤ N}.

If gH ∩ K̃j � N for all g ∈ P , this is 0. Otherwise, replace H by some gH such that
gH ∩ K̃j ≤ N (this does not change 〈φ,ResP

K̃j
IndPH 1〉). We find

(7.15) 〈φ,ResP
K̃j

IndPH 1〉 = #{g ∈ P/HK̃j | g ∈ NP (H ∩ K̃j )}

= [NP (H ∩ K̃j ) : HK̃j ].

This uses the fact thatHK̃j is contained inNP (H ∩K̃j ), since K̃j is abelian and therefore
normalises its subgroups, and since it is normal in P , so that H ∩ K̃j is normal in H .

To deduce that (3) implies (4) (or rather the contrapositive), assume without loss of
generality that |H1 ∩ K̃j | ≥ |H2 ∩ K̃j |. Suppose first that no conjugate of H2 ∩ K̃j is
contained in H1 ∩ K̃j . Saturate H1 ∩ K̃j to a cyclic subgroup N of K̃j with K̃j/N cyclic.
Then no conjugate of H2 ∩ K̃j is contained in N , so if φ is an irreducible character of K̃j
with kernel N , then

〈φ,ResP
K̃j

IndPH2
1〉 = 0 6= 〈φ,ResP

K̃j
IndPH1

1〉.

If instead [NP (H1 ∩ K̃j ) : H1K̃j ] 6= [NP (H2 ∩ K̃j ) : H2K̃j ], then calculation (7.15)
shows that these inner products are not equal whenever they are non-zero.

Conversely, if (4) is satisfied, then the above calculation yields

〈φ,ResP
K̃j

IndPH1
1〉 = 〈φ,ResP

K̃j
IndPH2

1〉

for all irreducible characters φ of K̃j that are faithful on Czp. ut

Proposition 7.16. Suppose that some Kj0 is cyclic and let 2 =
∑
H≤G nHH be a rela-

tion with nH = 0 for all H that contain Clj0 . Then∑
|H∩Kj0 |≤p

i

HKj0=P

nH ≡ 0 (modp) ∀i ≥ 0.

Proof. Let IndGCoKj0
(χ ⊗ ϕ) be an irreducible character of G, where χ is a one-dimen-

sional character ofC with kernelClj0 , extended toCoKj0 as in Remark 6.3, and ϕ is an ir-
reducible character ofKj0 . IfH ≤ G intersects Cj0 non-trivially, then by Lemma 7.11(1),

〈IndGCoKj0 (χ ⊗ ϕ), IndGH 1〉 = 0,

while for any H ≤ P ,
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〈IndGH 1, IndGCoKj0 (χ ⊗ ϕ)〉 =
∑

g∈Kj0\P/H

〈1Kj0∩gH ,Res
Kj0
Kj0∩

gH ϕ〉

=

∑
g∈Kj0\P/H

〈1g(Kj0∩H),Res
Kj0
g(Kj0∩H)

ϕ〉

= #(Kj0\P/H) · 〈1Kj0∩H ,Res
Kj0
Kj0∩H

ϕ〉.

The last two equalities follow from the facts that

(1) Kj0 G P , so that g(Kj0 ∩H) = Kj0 ∩
gH is a subgroup of Kj0 ,

(2) Kj0 is cyclic, so that g(Kj0 ∩ H) = Kj0 ∩ H , since both are subgroups of Kj0 of the
same order.

So by assumption on 2, we must have∑
H≤P

nH#(Kj0\P/H) · 〈1H∩Kj0 ,Res
Kj0
H∩Kj0

ϕ〉 = 0(7.17)

for any one-dimensional character ϕ of Kj0 . By Lemma 7.11(1),

〈1H∩Kj0 ,Res
Kj0
H∩Kj0

ϕ〉 =

{
1, H ∩Kj0 ≤ kerϕ,
0, otherwise.

Also, #(Kj0\P/H) is a power of p, since Kj0 is normal in P , and it is equal to 1 if and
only ifHKj0 = P . The result now follows by considering equation (7.17) modulo p for ϕ
with increasing kernels. ut

Proposition 7.18. The following conditions are equivalent:

(1) P/K is generated by exactly t elements;
(2) Kj ) K for 1 ≤ j ≤ t;
(3) P/K acts faithfully on C but does not act faithfully on any maximal proper subgroup

of C.

Moreover, if G does not satisfy these conditions, then Prim(G) = 0.

Proof. The equivalence of (2) and (3) is clear. Suppose that for some j , Kj = K . Then
P/K = P/Kj injects into AutCj , which has rank t−1, so P/K is generated by less than
t elements. Conversely, if Kj  K for all j , then any set {gr} of elements gr ∈ Kjr \K
generates a group of rank t in AutC, since each gr acts non-trivially on Cjr and trivially
on Cjr . So P/K ≤ AutC cannot be generated by less than t elements.

Suppose that G does not satisfy these conditions, let j0 be such that Kj0 = K , or
equivalently that P/K acts faithfully on Cj0 . Then, G0 = Cj0 o P satisfies Assump-
tion 7.8, so Corollary 7.12 applies to both G and G0. Thus there exists a G-relation 2 ≡∑
niHi (modHc) if and only if there exists a G0-relation 2 ≡

∑
niHi (modHc

CzpC
j0
),

which can then be induced to an imprimitive G-relation. Here CzpC
j0 is considered as a

normal subgroup of G0. So all occurrences of H ∈ H in any G-relation can be replaced
by groups intersecting C̄K non-trivially using imprimitive relations, soG has no primitive
relations. ut
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7.3. Primitive relations with trivial K

As before, we have G = C o P , where C is a cyclic group of order l1 · · · lt for distinct
primes li 6= p, and P is a p-group. Assume throughout this subsection thatK = {1}, that
is, P acts faithfully on C. In particular, P is abelian and its p-torsion is an elementary
abelian p-group of rank at most t .

If t = 1, then Prim(G) has been described in Proposition 6.5, so we assume for the
rest of the subsection that t > 1. Define M to be the set of all index p subgroups of P .
For eachM ∈M, define the signature ofM to be the vector in Ft2 whose j -th coordinate
is 1 if Kj ⊆ M and 0 otherwise.

Proposition 7.19. The following properties of G are equivalent:

(1) All Kj =
⋂
i 6=j ker(P → AutCli ) have the same, non-trivial image in the Frattini

quotient P/8(P ) of P .
(2) Each subgroup of P of index p contains either every Kj or none, and both cases oc-

cur. In other words, the set of signatures of elements of M is {(1, . . . , 1), (0, . . . , 0)}.

Proof. Note that, as P acts faithfully on C, some Kj is not the whole of P , and so some
M ∈ M has a non-zero signature. A subgroup Kj has trivial image in P/8(P ) if and
only if it is contained in all maximal proper subgroups of P if and only if the signatures
of all M ∈ M have a 1 in the j -th coordinate. Moreover, K1, K2, say, have different
non-trivial images in the Frattini quotient if and only if there are two hyperplanes in
P/8(P ) containing one but not the other if and only if there are two subgroups in M
with signatures (1, 0, . . .) and (0, 1, . . .). ut

Theorem 7.20. The group G has a primitive relation if and only if G satisfies the equiv-
alent conditions of Proposition 7.19. If it does, then Prim(G) is isomorphic to Cp and is
generated by the relation ∑

U≤C

µ(|U |)(MU −M ′U),

where M,M ′ ∈M have signatures (1, . . . , 1) and (0, . . . , 0), respectively.

The proof will proceed in several lemmata.

Lemma 7.21. The group Prim(G) is generated by relations of the form 2 ≡ M −M ′

(modHc
C) for M,M ′ ∈M.

Proof. If a relation contains no subgroup of P , then it is imprimitive by Lemma 3.1.
Let 2 = nHH + · · · be any relation with H ≤ P of index at least p2. Pick M ∈ M
that contains H . Filter M by a chain of subgroups, each of index p in the previous,
such that at each step, the image in some AutClj decreases. By Corollary 7.13, we can
replace H by a subgroup H ′ in this chain and by subgroups intersecting C non-trivially,
adding the relation 2t+1 from Corollary 7.12. Moreover, the added relation is induced
from a subgroup (since 〈H,H ′〉 ≤ M < P ), so the class in Prim(G) is unchanged. Next,
we claim that each subgroup in the chain can be replaced by (an integer multiple of)
its supergroup in the chain and by elements of Hc

C , using an imprimitive relation. Let
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H ′ ≤ H be an index p subgroup such that Im(H → AutClj ) 6= Im(H ′ → AutClj ) for
some j . Then the subgroup Clj oH/ker(H → AutClj ) is a group of the form discussed
in Example 2.3, with H ′ corresponding to H̃ in that example. Lifting the relation of that
example from the quotient, H ′ can be replaced by p ·H , as claimed. So, in summary, we
can replace any H � P by elements of M and subgroups intersecting C non-trivially,
without changing the class in Prim(G).

Also, by Corollary 7.12, the coefficient of P in any relation is divisible by p. So we
can replace P by a subgroup in M, again using the relation of Example 2.3, induced from
the subquotient Cl1 o P/ker(P → AutCl1) (by Proposition 7.18, we may assume that
ker(P → AutCl1) 6= P ).

We have thus shown that we can replace any subgroup of P by a subgroup in M, with-
out changing the class in Prim(G). Finally, by using relations 2 ≡ M −M ′ (modHc

C),
we can replace all subgroups in M by one of them. But the coefficient of this one must
be zero by Corollary 7.12, so the resulting relation is imprimitive. Thus, Prim(G) is gen-
erated by relations 2 ≡ M −M ′ (modHc

C), as claimed. ut

Lemma 7.22. Let2 be a relation of the form2 ≡ M−M ′ (modHc
C) withM,M ′ ∈M.

Then its order in Prim(G) divides p.

Proof. Any occurrence of pM in a relation can be replaced by a proper subgroup of M
and groups intersecting C, using the relation from Example 2.3, and similarly for M ′.
Next, these strictly smaller groups can all be replaced by one group of the same size, as
in the proof of Lemma 7.21, using imprimitive relations. The resulting relation is ≡ 0
(modHc

C) by Corollary 7.12, and so is imprimitive. ut

Lemma 7.23. If M,M ′ ∈M have signatures that agree in some entry, then there is an
imprimitive relation 2 ≡ M −M ′ (modHc

C).

Proof. Say the signatures agree in the j -th entry. If the common entry is 1, thenM∩Kj =
M ′ ∩ Kj = Kj , and if it is 0, then the intersections are both equal to the unique index p
subgroup of Kj . In either case, there is an imprimitive relation of the required form by
Theorem 7.14. ut

Lemma 7.24. If M,M ′ ∈ M have opposite signatures both of which contain 0 and 1,
then there is an imprimitive relation 2 ≡ M −M ′ (modHc

C).

Proof. Say the signatures of M and M ′ start (0, 1, . . .) and (1, 0, . . .), respectively. In
particular, there exists g ∈ K1\M with 〈M,g〉 = P and gp ∈ M and h ∈ K2\M

′ with
〈M ′, h〉 = P and hp ∈ M ′. Since M ∩ M ′ is of index p in M and in M ′, and since
M ′ = 〈M ∩M ′, g〉 and similarly for M , the group 〈M ∩M ′, gh〉 is in M and contains
neither K1 nor K2, i.e. it has signature (0, 0, . . .). Thus we get the required relation by
applying the previous lemma twice. ut

Corollary 7.25. If there exists M ∈M whose signature contains 0 and 1, then Prim(G)
is trivial. Otherwise, Prim(G) is generated by any 2 ≡ M − M ′ (modHc

C) where M
and M ′ have signatures (0, . . . , 0) and (1, . . . , 1), respectively.
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To conclude the proof of Theorem 7.20, it remains to show:

Lemma 7.26. Suppose that no element of M has a signature in which both 0 and 1
occur. Let M,M ′ ∈ M have signatures (0, . . . , 0) and (1, . . . , 1), respectively, and let
2 ≡ M −M ′ (modHc

C) be a relation. Then 2 is primitive.

Proof. Assume for a contradiction that 2 is a sum of relations that are induced and/or
lifted from proper subquotients. Then at least one summand must contain terms in M with
signature (0, . . . , 0) such that the sum of all coefficients of these terms is not congruent
to 0 modulo p. Moreover, by Corollary 7.12(2), this relation must contain either a term
in M with signature (1, . . . , 1), or P . Since no M ∈ M contains a normal subgroup
of G, this relation cannot be lifted from a proper quotient, so it must be induced from a
proper subgroup. Since two distinct groups in M generate P , this proper subgroup must
be of the form (Cl1 × · · · × Ĉlj0

× · · · × Clt ) o P . By Proposition 7.16, applied with
pi = |Kj0 |/p, the sum of the coefficients of M ∈M with signature (0, . . . , 0) plus the
sum of the coefficients of H ≤ P that satisfy HKj0 = P and |H ∩ Kj0 | ≤ |Kj0 |/p

2

is divisible by p. By the same proposition, applied with pi = |Kj0 |/p
2, the second sum

is divisible by p. We deduce that the sum of the coefficients of M ∈ M with signature
(0, . . . , 0) is divisible by p, which is a contradiction. ut

7.4. Primitive relations with non-trivial K

Finally, we consider G = CoP , where C is a cyclic group of order l1 · · · lt for distinct
primes li different from p, P is a p-group and the kernel K of P → AutC is non-trivial.
By Proposition 7.6, ifG has a primitive relation, thenK must be isomorphic toD8 or have
normalp-rank one, so it is a group of the type described in Proposition 5.2. We will assume
this throughout this subsection. Note that in particular, if p is odd, thenK must be cyclic.

Recall that H is a set of representatives of conjugacy classes of subgroups of P that
do not contain Czp, the unique subgroup of K of order p that is central in G, and Hm is
the set of elements of H of maximal size.

Lemma 7.27. The group Prim(G) is generated by relations of the form

2 =
∑
C̃≤C̄K

µ(|C̃|)(C̃H1 − C̃H2)

for H1, H2 ∈ Hm.

Proof. By Corollary 7.12, these are indeed G-relations.
Now let 2 be any relation. If no elements of H occur in it, then 2 is imprimitive by

Lemma 3.1. Suppose H ∈ H \Hm occurs in 2 and H ′ ∈ H is such that |H ′| = p|H |.
Set IH = Im(H → AutC), and consider two cases:

(1) IH = Im(P → AutC). Then the assumption that there exists an element of
H of size p|H | implies that p = 2, K is dihedral or semi-dihedral, and P is a direct
product of H and K . In particular, H is normal in P . Let Ca2 be a non-central C2 in K .
By inducing the relation of Example 2.4 from the subquotient HCa2C

z
p/H

∼= C2 × C2,
we may replace H by strictly bigger groups in H and by subgroups of P containing Czp,
without changing the class of 2 in Prim(G).
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(2) IH 6= Im(P → AutC). Let B be an index p subgroup of Im(P → AutC)
containing IH . By intersecting H ′ with the pre-image of B in P if necessary, we can
find an index p subgroupH ′′ inH ′ such thatH andH ′′ generate a proper subgroup of P .
Thus, the relation

∑
C̃≤C̄K

µ(|C̃|)(C̃H−C̃H ′′) of Corollary 7.13 is induced from a proper
subgroup by Proposition 3.7, so thatH can be replaced byH ′′, which is a subgroup ofH ′,
and by subgroups that intersect C̄K non-trivially without changing the class in Prim(G).
By inducing the relation of Example 2.4 from the subquotient H ′Czp/H

′′ ∼= Cp × Cp
(note that H ′ is abelian and Czp is central, so H ′′ is indeed normal in the group generated
by the two), we may replace H ′′ by strictly bigger groups in H and by subgroups of P
containing Czp.

In summary, any class in Prim(G) is represented by a relation of the form 2 ≡∑
niHi (modHc) with Hi ∈ Hm.
Since

∑
i ni = 0 by Corollary 7.12, the generators of Prim(G) are as claimed. ut

Lemma 7.28. The group Prim(G) is an elementary abelian p-group.

Proof. By the previous lemma, it suffices to show that for any H1, H2 ∈ Hm,

2 = p
∑
C̃≤C̄K

µ(|C̃|)(C̃H1 − C̃H2)

is imprimitive. Let A be a subgroup of Im(P → AutC) of index p and such that for
some j , A∩AutClj 6= Im(P → AutClj ). By intersecting H1 and H2 with the pre-image
of A in P , we may find subgroups H3 ≤ H1 and H4 ≤ H2 of index p whose image in
AutC lies inA, and in particular whose image in AutClj is strictly smaller than that ofH1
and of H2, respectively. By inducing the relation of Example 2.3, we may replace pH1
and pH2 in2 byH3 andH4, respectively, and by groups containingClj , without changing
the class of2 in Prim(G). Now, we can replace H3 by H4 and by groups intersecting C̄K
non-trivially, using the relation of Corollary 7.13(1). Since H3 and H4 together generate
a proper subgroup of G (it is contained in the pre-image of A in P ), the class of 2 in
Prim(G) is still unchanged. But now, the only element of H appearing in 2 is H4, so by
Corollary 7.12, it must appear with coefficient 0 and the resulting relation is imprimitive
by Lemma 3.1. ut

It only remains to determine the rank of Prim(G). We will first treat separately the case
that K = Czp and K G P is a direct summand. In this case, Kj ∼= K × (cyclic group) for
every j , and their images in P/8(P ) are either Cp or Cp × Cp.

Proposition 7.29. Suppose P is a direct product by K ∼= Czp. If some Kj has image Cp
in P/8(P ) or some Kj1 , Kj2 have different images in P/8(P ), then Prim(G) is trivial.
Otherwise, Prim(G) ∼= Fp−2

p .

Proof. Denote by ·8 the image of · in the Frattini quotient P/8(P ).
Let H = 〈a1, . . . , ar 〉 be a complement to K in P , where r is the smallest number of

generators ofH . If r is less than the number t of prime divisors of |C|, then by Proposition
7.18, some Kj is equal to K ∼= Cp, and so K8

j
∼= Cp. Also, by the same proposition, G

has no primitive relations, as claimed.



Brauer relations in finite groups 2503

Suppose from now on that r = t . Write K = 〈c〉. The elements of Hm are precisely
the complements of K in P , so they are shifts of H of the form Hδ = 〈c

δ1a1, . . . , c
δrar 〉

for δ = (δ1, . . . , δt ) ∈ Ftp.

Step 1. Suppose K8
j
∼= Cp for some j . Then K8

j = K8, so the intersection of Kj
with any Hδ has trivial image in the Frattini quotient, and therefore consists only of p-th
powers. For any Hδ ∈ Hm, from the explicit description of the generators it follows that
Hδ ∩Kj = H ∩Kj , since taking p-th powers kills c. So by Theorem 7.14, there exists an
imprimitive relation 2 ≡ H − Hδ (modHc). Combined with Lemma 7.27, this implies
that Prim(G) is generated by a relation of the form 2 ≡ nHH (modHc). But nH = 0 by
Corollary 7.12, and so Prim(G) is trivial by Lemma 3.1.

Step 2. Suppose K8
j1
6= K8

j2
, and both are two-dimensional. Then, given any lines L1 ≤

K8
j1

, L2 ≤ K
8
j2

distinct fromK8, we can lift a hyperplane in P/8(P ) that intersects each
K8
ji

in Li for i = 1, 2 to an index p subgroup of P that intersects K trivially. Thus, given
any two complements H1 and H2, we can find H3 such that Hi ∩ Kji = H3 ∩ Kji for
i = 1, 2. Thus, there exist imprimitive relations 2i ≡ Hi − H3 (modHc) for i = 1, 2,
and so Prim(G) is trivial by the same argument as in the previous step.

Step 3. From now on, suppose thatK8
1 = · · · = K

8
t
∼= Cp×Cp. Denote the p+ 1 lines

in this quotient by K8, L1, . . . , Lp. For any H ∈ Hm, the image (H ∩ Kj )8 is one of
the lines Li . This line is the same for all j (any two Li1 6= Li2 generate K8

1 , forcing H
to contain K otherwise). Consider the linear map

l : K(G)→ Fpp

that takesH ∈ Hm to the i-th basis vector when (H∩Kj )8 = Li , and declaring l(H) = 0
for H /∈ Hm.

We claim that every relation 2 ∈ ker l is imprimitive. To see this, we first modify
2 to get rid of the subgroups that are in H but not in Hm. Fix H ∈ Hm (a complement
to K in P ), and let H1 ∈ H \ Hm. Denote Im(H1 → Aut(C)) by A. Then H1 ∼= A �
Im(P → Aut(C)), so intersecting H with the pre-image of A in P , we obtain a proper
subgroup H2 ≤ H of the same order as H1, and such that 〈H1, H2〉 6= P , since its image
in AutC is contained in A. The relation �1 ≡ H1−H2 (modHc) of Corollary 7.13(1) is
therefore imprimitive, and it clearly lies in the kernel of l. So by adding relations of the
type �1 to 2, we may replace any terms in 2 that lie in H but not in Hm by subgroups
of H , without changing the class in Prim(G) and without changing l(2). Next, given any
H̃ � H , we can obtain an imprimitive relation of the form �2 ≡ H̃ − pH (modHc) by
inducing the relation of Corollary 7.13(2) from the proper subgroup C o H of G. This
relation also lies in the kernel of l. So by adding relations of the type �2 to 2, we may
assume without loss of generality that 2 ≡

∑
H∈Hm

nHH (modHc).
Let H1, H2 ∈ Hm be such that their intersection with some Kj has the same image

in P/8(P ). We claim that this implies that H1 ∩ Kj = H2 ∩ Kj . Indeed, Kj is of the
form Kj = C

z
p × 〈g〉 for some g ∈ P , and each of these intersections is a complement

ofCzp inKj . There are p such complements, and they all have distinct images in P/8(P ).
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By Theorem 7.14, there is an imprimitive relation �3 ≡ H1 − H2 (modHc), which is
in the kernel of l. So we may assume without loss of generality that 2 ≡

∑
H nHH

(modHc), where all H in the sum give rise to different lines Lk in P/8(P ). Since 2 is
assumed to lie in the kernel of l, we have p | nH for all H , and so 2 is imprimitive by
Lemma 7.28.

Step 4. By Corollary 7.12, the image of l is precisely equal to the hyperplane V =
{(v1, . . . , vp) |

∑
vi = 0 ∈ Fp} of Fpp . By Step 3, Prim(G) is isomorphic to the quotient

of V by the image of the imprimitive relations under l. Let 2 be imprimitive with non-
trivial image under l; without loss of generality assume that it is primitive in its own
subquotient Ḡ. Since l(2) 6= 0 and since any two groups in Hm generate all of P , this
subquotient is either a quotient of P or of the form C̃ o P , where C̃ is a proper subgroup
of C. So, assume that 2 is as described by Theorem 5.3 or by Lemma 7.27.

Suppose first that it is the former. Then Ḡ = P/N must be isomorphic to Cp × Cp,
since P is abelian, and 2 is then lifted from the relation of Example 2.4. Since the pro-
jections of all H ∈ Hm in this subquotient have the same size, and since we assume
that 0 6= l(2) ∈ V , we deduce that the projections of H ∈ Hm in this subquotient are
cyclic of order p. Moreover, any two distinct H,H ′ ∈ Hm generate all of P , and neither
contains Czp, so the projection of Czp onto this subquotient is non-trivial cyclic, and the
other p terms in 2 of size p correspond to distinct elements of Hm. If g is a lift of a
generator of one such cyclic group from Ḡ to P , and if c is a generator of Czp, then the
elements of Hm entering in 2 are Hi = 〈cig〉N , i = 0, . . . , p − 1. Since the image of c
in the Frattini quotient P/8(P ) is non-trivial, it follows that the images of Hi ∩ Kj in
P/8(P ) for i = 0, . . . , p − 1 are either all the same or all distinct. The assumption that
l(2) 6= 0 then forces the latter, and so l(2) = (−1, . . . ,−1).

Now suppose that Ḡ = C̃oP , where C̃ is a proper subgroup of C. Then by Theorem
7.14, 2 ≡ H1 − H2 (modHc

C) such that H1 ∩ Kj = H2 ∩ Kj for some j . But then
l(2) = 0, which is a contradiction.

In summary, the image of the imprimitive relations under l is a one-dimensional sub-
space of V , spanned by (1, . . . , 1), so Prim(G) ∼= Fp−2

p , as claimed. ut

Theorem 7.30. Assume that either |K| > p, or P is not a direct product by K . Let
Hm be the set of subgroups of P of maximal size among those that intersect the centre
of K trivially. Define a graph 0 whose vertices are the elements of Hm and with an edge
between H1, H2 ∈ Hm if one of the following applies:

(1) the subgroup generated by H1 and H2 is a proper subgroup of P ;
(2) t > 1 and there exists 1 ≤ j0 ≤ t such that H1 ∩ K̃j0 = H2 ∩ K̃j0 , where K̃j0 =

Kj0 ∩ ker(P → AutCK) (recall that CK is a fixed maximal cyclic subgroup of K
that is normal in G, see Notation 7.9);

(3) the intersection H1 ∩ H2 is of index p in H1 and in H2, and 〈H1, H2〉/H1 ∩ H2 is
either dihedral, or the Heisenberg group of order p3.

Let d be the number of connected components of 0. Then Prim(G) ∼= (Cp)d−1, generated
by relations 2 =

∑
C̃≤C̄K

µ(|C̃|)(C̃H1 − C̃H2) for H1, H2 ∈ Hm corresponding to
distinct connected components of the graph.
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Proof. The three conditions for when there is an edge between H1 and H2 in Hm ensure
that if H1 and H2 lie in the same connected component of the graph 0, then there is an
imprimitive relation 2 ≡ H1 − H2 (modHc), by using Proposition 3.7, Theorem 7.14,
and by inducing the relations of Theorem 5.3, respectively.

For a subgroupH ∈ Hm write [H ] for the connected component of 0 that containsH .
Note that since the conjugation action of P on its Frattini quotient is trivial, condition (1)
ensures that [H ] = [gH ] for any g ∈ G. Therefore [ · ] extends by linearity to a well-
defined linear map B(G) → Fdp, defining it to be 0 on the groups not in Hm. We are
interested in its restriction to the space of relations,

[ · ] : K(G)→ Fdp.

By Corollary 7.12, the image of this restriction is the hyperplane V = {v |
∑
vi = 0}.

We will show that this map establishes an isomorphism between V and Prim(G).
First, we claim that every imprimitive relation is in ker[ · ], so that [ · ] yields a well-

defined map
[ · ] : PrimG→ Fd−1

p .

Suppose, on the contrary, that [2] 6= 0 and 2 is imprimitive. So 2 =
∑
i 2i , where

each 2i comes from a proper subquotient of G. Without loss of generality, we may
assume that each of these summands is primitive in its subquotient. Moreover, using
Lemma 7.27 and Theorem 7.20, we may assume further that 2i that are induced from
p-groups are of the form described in Theorem 5.3, while2i that are induced/lifted from
quasi-elementary subquotients that are not p-groups are as described by Proposition 6.5
and by Lemma 7.27.

Because [2] 6= 0, some [2i] is not 0. The entries of [2i] ∈ Fdp sum to 0, so at
least two of them are non-zero. In particular, 2i contains two terms H1, H2 ∈ Hm from
two different connected components of 0, appearing in 2i with non-zero coefficients
modulo p. Since both Hi act faithfully on C̄K , their intersection does not contain any
normal subgroup of G, so 2i must be induced from a proper subgroup of G. Since H1
andH2 lie in different connected components of 0, they generate all of P . So2i is either
induced from P or from C̃ o P for a proper non-trivial subgroup C̃ of C.

If2i is induced from P , then it is induced from a subquotient of the form described in
Theorem 5.3 and the images of H1, H2 are of order p in it. In fact, since 〈H1, H2〉 = P ,
this subquotient is a quotient. If it is dihedral or a Heisenberg group of order p3, then there
is an edge between H1 and H2, a contradiction. Otherwise, it is isomorphic to Cp × Cp,
so |P | = p|H1|. It follows that K = Czp and P = Czp ×H1, and this case was excluded.

From now on we may assume that 2i is induced from a subgroup C̃ o P . Let K̃ =
ker(P → Aut C̃). SinceH1, H2 are abelian and generate P , their intersection is normal in
P , and so is I = K̃ ∩H1 ∩H2. Since the image of Czp in K̃/I is non-trivial,2i cannot be
the relation of Proposition 6.5, so it must be as described by Lemma 7.27. Moreover, since
2i is primitive in its subquotient, Proposition 7.6 implies that K̃/I is isomorphic to D8
or has normal p-rank one. Pick an index j with C̃ ≤ Cj and Kj ≤ K̃ (see Notation 7.9).
ThenKj/Kj ∩ I is canonically identified with a non-trivial normal subgroup of K̃/I , and
hence is itself isomorphic to D8 or has normal p-rank one, or is isomorphic to C2 × C2,
the latter being only possible if K̃/I ∼= D8.
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IfKj/Kj ∩ I is isomorphic toD8 or has normal p-rank one, then K̃j/K̃j ∩ I is cyclic,
and so K̃j ∩H1 ∩H2 is a maximal (with respect to inclusion) cyclic subgroup of K̃j not
containing Czp. But K̃j ∩H1 ∩H2 ≤ K̃j ∩H1, K̃j ∩H2, which are also cyclic and do not
contain Czp, so necessarily K̃j ∩H1 = K̃j ∩H2, and there is therefore an edge betweenH1
and H2.

Finally, suppose Kj/Kj ∩ I ∼= C2 × C2 and K̃/I ∼= D8. By Proposition 7.18, these
two assumptions and the inclusions {1} � K � Kj � K̃ force the index [C : C̃] to
be the product of exactly two primes lj , li . In other words, K̃ = K = Czp

∼= C2, and
K̃j/K̃j ∩ I, K̃i/K̃i ∩ I are the two distinct subgroups of D8 isomorphic to C2 ×C2 . The
intersections H1 ∩ K̃ , H2 ∩ K̃ meet Czp trivially, so their images in the quotient K̃/I are
either trivial or non-central of order 2. If these images are conjugate, or if at least one of
them is trivial, then either H1 ∩ K̃j is conjugate to H2 ∩ K̃j or H1 ∩ K̃i is conjugate to
H2 ∩ K̃i ; in both cases, there is an edge between H1 and H2. So suppose their images
in K̃/I ∼= D8 are two non-conjugate non-central subgroups of order 2. Say, H1 ∩ K̃j

becomes isomorphic to C2 in K̃/I , and H2 ∩ K̃j becomes trivial. Then by [10, Lemma
6.15], applied to the subgroup E = Ki/Ki ∩ I ∼= C2×C2 of P/I , with H = H1/H1 ∩ I

there exists a subgroup H ′ of P/I that centralises E, and a relation

�̃ = H −H ′ −HCzp +H
′Czp

in P/I . Lifting it to P , we get a relation

� = H1 −H3 −H1C
z
p +H3C

z
p

for some H3 ∈ P . By Corollary 7.12, H3 ∈ Hm. We already showed that the existence
of such a relation forces H1 and H3 to lie in the same connected component. However,
H2 ∩ K̃j = I = H3 ∩ K̃j , since no non-central element of D8 can lie in one C2 × C2
and centralise the other one, and so there is an edge between H2 and H3. So in this case
[H1] = [H2] as well.

Finally, to determine the kernel of

[ · ] : PrimG→ Fd−1
p ,(7.31)

it suffices to evaluate it on linear combinations of the generators of Prim(G) given by
Lemma 7.27. Such a linear combination is mapped to 0 if and only if the coefficients of
all H ∈ Hm are divisible by p. We deduce by Lemma 7.28 that the map (7.31) is an
isomorphism. ut

Remark 7.32. This completes the proof of Theorem A in the last remaining case, when
G = C o P is quasi-elementary with P a p-group and C cyclic of order prime to p.

The conditions in Theorem A(4) that describe when such a G has primitive relations
are group-theoretic, but they are rather intricate. In the special case that |C| = l 6= p

is prime, they can be made completely explicit, and one can list all such G in terms of
generators and relations. We refer the interested reader to [5], and just make one remark
here.
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Suppose thatG has a primitive relation. By Proposition 7.6, the kernelK of the action
of P onC by conjugation is {1},D8 or has normal p-rank one. Suppose that {1} 6= K 6= P
(cf. Example 2.3, Lemma 7.2). WriteA for the image of P in AutC. What makes the case
|C| = l simpler is that in this case A is cyclic and the sequence

(7.33) 1→ K → P → A→ 1

must split; this makes P = KoA andG not hard to describe by generators and relations.
Indeed, suppose the sequence does not split. If K is cyclic or generalised quaternion,

then all subgroups of K contain the central Czp, so, in the notation of Section 7.4, H
consists of subgroups of P that intersect K trivially. Since there is no subgroup H of P
with H ∩ K = {1} and surjecting onto A (otherwise P would be a semi-direct product
of H by K), all subgroups in H must be contained in the pre-image under P → AutC
of the unique index p subgroup. Thus, there is an edge between any two groups in Hm

(in the notation of Theorem 7.30), and so Prim(G) = {1}. Now suppose K is dihedral
or semi-dihedral, and denote by CK the unique cyclic index 2 subgroup of K . Since the
automorphism of CK given by any non-central involution of K is not divisible, P not
being a semi-direct product byK implies that it is not a semi-direct product by CK either.
Thus, again, there is an index p subgroup of P containing any subgroup of P that does
not intersect CK , so the same argument applies and shows that Prim(G) = {1}.

Finally, let us mention that when C has composite order, it may happen that the se-
quence (7.33) does not split, butG still has primitive relations. The smallest such example
that we know is a group G of order 3934208 = 211

· 17 · 113, with C = C17 × C113,
K = C8 and A = C16×C16.5 Here there are no subgroups in H mapping onto A, but the
images of two elements of H may generate the whole of A. This cannot happen when C
has prime order.

Remark 7.34. Although there is no a priori preferred representative of any class in
Prim(G), the generators of Prim(G) in Theorem A for quasi-elementary G are fairly
canonical in the following sense. The results of §7 show that in case (4)(c) of Theorem A
every primitive G-relation 2 =

∑
H nHH satisfies the following conditions:

• There exist at least two subgroups H of P of maximal size among those that intersect
Czp trivially such that nH 6≡ 0 (modp).
• The sum of nH over all such H is 0 modulo p.
• For any C̃ ≤ C, there exists a subgroupH ofG that intersects C̃ non-trivially and such

that nH 6= 0.

Similar remarks apply to cases (4)(a) and (4)(b).

5 In Magma, this group may be given by PolycyclicGroup〈a, b, c, d, e, f, g, h, i, j, k, l, m | a2
=

f , b2
= e, c2

= d, d2
= h, e2

= g, f 2
= i, g2

= k, h2
= j , i2, j2, k2, l17, m113, ac = c · i,

bc = c · f , bd = d · i, ce = e · i, bl = l3, el = l9, g l = l13, k l = l16, bm = m48, cm = m42,
dm = m69, em = m44, gm = m15, hm = m15, jm = m112, km = m112

〉.
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8. Examples

Example 8.1. Let G = SL2(F3). Its Sylow 2-subgroup S is normal in G and is iso-
morphic to the quaternion group Q8. The Sylow 2-subgroup and G itself are the only
non-cyclic subgroups of G, so K(G) has rank 2. Since G is not in the list of Theorem A,
all its relations come from proper subquotients. By Theorem 5.3, K(S) is generated by
the relation lifted from S/Z(S) ∼= C2 × C2. The only other subquotient of G that has
primitive relations isG/Z(G) ∼= A4, which is of type (3)(a) in Theorem A withQ cyclic.
Combining everything we have said and noting that the three cyclic subgroups of order 4
in S are conjugate in G, we see that K(G) is generated by

21 = C4 − C6 − S +G, 22 = C2 − 3C4 + 2S.

Example 8.2. LetG = A5. SinceG is simple, Theorem 4.3 shows thatG has a primitive
relation and Prim(G) ∼= Z and is generated by any relation in whichG enters with coeffi-
cient 1. Using [31, Theorem 2.16(i)] or explicitly decomposing all permutation characters
in A5 into irreducible characters, we find that

2 = C2 − C3 − V4 + S3 −D10 +G

is a relation (of the form predicted by Theorem 4.1). Theorem 4.3 now implies that all
Brauer relations in G can be expressed as integral linear combinations of 2 and of rela-
tions coming from proper subgroups. The non-cyclic proper subgroups of G are V4, S3,
D10 and A4, and their relations induced to G together with 2 generate K(G).

Example 8.3. Let G = C3 o C4 be the wreath product of C3 by C4. Then the subspace
of F4

3 on which C4 acts trivially is a normal subgroup of G with non-quasi-elementary
quotient. Thus, all relations ofG are obtained from proper subquotients by Corollary 4.4.

9. An application to regulator constants

Let 2 =
∑
H nHH be a Brauer relation in a group G. Write

C2(1) =
∏
H

|H |−nH .

This quantity is called the regulator constant of the trivialZG-module. We refer the reader
to [15, §2.2] and [2, §2.2] for the definition of regulator constants for generalZG-modules
and their properties. Note that C2(1) is invariant under induction of2 from subgroups and
lifts from quotients (because

∑
nH = 〈2, 1〉 = 0), and that C2+2′(1) = C2(1)C2′(1).

As an application of Theorem A, we classify, given a prime number l, all finite
groups G that have a Brauer relation 2 with ordl(C2(1)) 6= 0. Here, ordl denotes the
(additive) l-adic valuation of a non-zero rational number. For an example of number-
theoretic consequences of the theorem, see [4].
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Theorem 9.1. Let G be a finite group and l a prime number. Then any Brauer relation
in G is a sum of a relation 2′ satisfying ordl(C2′(1)) = 0 and relations induced and/or
lifted from relations 2 from subquotients H = Cdl oQ of the following form:

(1) d = 1,Q = Cpk+1 , p 6= l prime,Q acting faithfully onCl;2 = Cpk−pQ−CloCpk
+ pH ; C2(1) = l−p+1.

(2) d = 1, Q = Cmn acting fathfully on Cl , (m, n) = 1, mα + nβ = 1; 2 = H −Q +
α(Cn − Cl o Cn)+ β(Cm − Cl o Cm); C2(1) = lα+β−1.

(3) d > 1, either Q is quasi-elementary and acts faithfully irreducibly on (Cl)d , or
H = (Cl o P1) × (Cl o P2), where P1, P2 are cyclic p-groups, p 6= l, acting
faithfully on the respective Cl;

2 = H −Q+
∑
U∈U

(U oNQU − Cdl oNQU);

C2(1) = l|U |−d , where U is the set of index l subgroups of Cdl up to Q-conjugation.

Corollary 9.2. A group G has a Brauer relation 2 with ordl(C2(1)) 6= 0 if and only if
it has a subquotient isomorphic either to Cl × Cl or to Cl o Cp with Cp of prime order
acting faithully on Cl .

Proof. If G has a subquotient Cl × Cl , respectively Cl o Cp, then the induction/lift of
a relation from Example 2.4, respectively 2.3 is as required. The converse immediately
follows from Theorem 9.1, on noting that all groups listed there have a subquotient of the
required type. ut

We begin by reducing the theorem to soluble groups.

Definition 9.3. Given a prime number l, write Zl for the ring of l-adic integers. We call
a Brauer relation 2 =

∑
H H −

∑
H ′ H

′ in G a Zl-isomorphism if⊕
H

Zl[G/H ] ∼=
⊕
H ′

Zl[G/H ′],

or equivalently (see [7, Lemma 5.5.2]) if⊕
H

Fl[G/H ] ∼=
⊕
H ′

Fl[G/H ′].

The following result is a slight strengthening of [7, Theorem 5.6.11]:

Theorem 9.4 (Dress’s induction theorem). LetG be a finite group and l a prime number.
There exists a Zl-isomorphism in G of the form

G+
∑
H

αHH, αH ∈ Z,

the sum taken over those subgroups H of G for which H/Ol(H) is quasi-elementary.
Here Ol(H) is the l-core of H (the largest normal l-subgroup).
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Sketch of the proof. This is shown in the course of the proof of [7, Theorem 5.6.11],
but since the actual statement of the theorem is somewhat weaker, we summarise for the
benefit of the reader the main ideas of the proof. It is enough to prove that for any prime
number q, there exists a Zl-isomorphism in G of the form

aG+
∑
H

αHH,

where the sum is over subgroups H for which H/Ol(H) is quasi-elementary, αH ∈ Z,
and a ∈ Z is not divisible by q. In other words, it is enough to exhibit suitable elements of
B(G)⊗Z(q) that become trivial under the natural map B(G)⊗Z(q)→ RFl (G)⊗Z(q). To
do so, one first writes 1 ∈ B(G)⊗ Z(q) as a sum of primitive idempotents 1 =

∑
H eH ,

which are described in [7, Corollary 5.4.8], with the property that each eH is induced
from B(H)⊗ Z(q) [7, Theorem 5.4.10]. One then shows that under the map

B(G)⊗ Z(q)→ RFl ⊗ Z(q),

only those eH map to non-zero idempotents, for which H/Ol(H) is q-quasi-elementary.
Since each eH is a linear combination of G-sets G/U , U ≤ H , with coefficients whose
denominators are not divisible by q, the result follows. ut

Corollary 9.5. LetG be a finite group and l a prime number. Any Brauer relation can be
written as a sum of relations induced from soluble subgroups ofG and a Zl-isomorphism.

Proof. Let 2 be an arbitrary Brauer relation in G, let R = 1G +
∑
H αHH be a

Zl-isomorphism, as given by Theorem 9.4. In particular, all subgroups H in the sum
are soluble. Since the subgroup of B(G) that consists of Zl-isomorphisms forms an ideal
in B(G), we see that

2 · R = 2+
∑
H

αH IndG ResH 2

is a Zl-isomorphism, and the claim is established. ut

Proof of Theorem 9.1. It is easy to see that ifR is a Zl-isomorphism, then ordl(CR(1))=0
(and in fact, the same is true with 1 replaced by any finitely generated Z[G]-module).
Thus, Corollary 9.5 reduces the proof of the theorem to the case that G is soluble.

Writing 2 as a sum of primitive relations listed in Theorem A, we see immediately
by inspection that the relations 2′ that generate Prim(G) in cases (1), (2), and (4) satisfy
C2′(1) = 1. The remaining assertions of the theorem follow from a direct calculation for
the generators of Prim(G) in case (3). ut
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[25] Kuroda, S.: Über die Klassenzahlen algebraischer Zahlkörper. Nagoya Math. J. 1, 1–10 (1950)
Zbl 0037.16101 MR 0039759

[26] Langlands, R. P.: On the functional equation of the Artin L-functions. Preprint, Yale Univ.
(1970)

[27] Ritter, J.: Ein Induktionssatz für rationale Charaktere von nilpotenten Gruppen. J. Reine
Angew. Math. 254, 133–151 (1972) Zbl 0242.20003 MR 0470058

[28] Segal, G.: Permutation representations of finite p-groups. Quart. J. Math. Oxford (2) 23, 375–
381 (1972) Zbl 0338.20017 MR 0322041

[29] Serre, J.-P.: Linear Representations of Finite Groups. Grad. Texts in Math. 42, Springer (1977)
Zbl 0355.20006 MR 0450380

[30] de Smit, B.: Brauer–Kuroda relations for S-class numbers. Acta Arith. 98, 133–146 (2001)
Zbl 0998.11058 MR 1831606

[31] Snaith, V.: Explicit Brauer induction. Invent. Math. 94, 455–478 (1988) Zbl 0704.20009
MR 0969240

[32] Solomon, L.: The representation of finite groups in algebraic number fields. J. Math. Soc.
Japan 13, 144–164 (1961) Zbl 0101.26701 MR 0143822

[33] Tornehave, J.: Relations among permutation representations of p-groups. Preprint (1984)
[34] Walter, C. D.: Kuroda’s class number relation. Acta Arith. 35, 41–51 (1979) Zbl 0339.12008

MR 0536879

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1275.19002&format=complete
http://www.ams.org/mathscinet-getitem?mr=3077840
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0037.16101&format=complete
http://www.ams.org/mathscinet-getitem?mr=0039759
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0242.20003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0470058
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0338.20017&format=complete
http://www.ams.org/mathscinet-getitem?mr=0322041
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0355.20006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0450380
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0998.11058&format=complete
http://www.ams.org/mathscinet-getitem?mr=1831606
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0704.20009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0969240
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0101.26701&format=complete
http://www.ams.org/mathscinet-getitem?mr=0143822
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0339.12008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0536879

	Introduction
	Background and main result
	Overview of the proof
	Remarks and applications
	Notation

	First properties
	Imprimitivity criteria
	A characterisation in terms of quotients
	Primitive relations in p-groups
	Main reduction in soluble groups
	Quasi-elementary groups
	The kernel of the conjugation action
	Some Brauer relations
	Primitive relations with trivial K
	Primitive relations with non-trivial K

	Examples
	An application to regulator constants
	References

