
DOI 10.4171/JEMS/564

J. Eur. Math. Soc. 17, 2513–2543 c© European Mathematical Society 2015

Matthew D. Blair · Christopher D. Sogge

On Kakeya–Nikodym averages, Lp-norms and
lower bounds for nodal sets of eigenfunctions
in higher dimensions

In memoriam: Lars Hörmander (1931–2012)
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Abstract. We extend a result of the second author [27, Theorem 1.1] to dimensions d ≥ 3 which
relates the size of Lp-norms of eigenfunctions for 2 < p < 2(d + 1)/(d − 1) to the amount of
L2-mass in shrinking tubes about unit-length geodesics. The proof uses bilinear oscillatory integral
estimates of Lee [22] and a variable coefficient variant of an “ε-removal lemma” of Tao and Var-
gas [35]. We also use Hörmander’s [20] L2 oscillatory integral theorem and the Cartan–Hadamard
theorem to show that, under the assumption of nonpositive curvature, the L2-norm of eigenfunc-
tions eλ over unit-length tubes of width λ−1/2 goes to zero. Using our main estimate, we deduce
that, in this case, the Lp-norms of eigenfunctions for the above range of exponents are relatively
small. As a result, we can slightly improve the known lower bounds for nodal sets in dimensions
d ≥ 3 of Colding and Minicozzi [10] in the special case of (variable) nonpositive curvature.
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1. Introduction and main results

Let (M, g) be a smooth, compact boundaryless Riemannian manifold of dimension
d ≥ 3. Let 1g be the nonnegative Laplace–Beltrami operator and consider eigenfunc-
tions eλ satisfying 1geλ = λ2eλ with λ ≥ 0. If Π denotes the space of unit-length
geodesics and dz the volume element associated with the metric g, then our main result
is the following generalization of [27, Theorem 1.1]:

Theorem 1.1. Let eλ, λ ≥ 1, be an eigenfunction and 2(d+2)/d < q < 2(d+1)/d−1.
Then there is a uniform constant C <∞ such that given ε > 0 we can find a constant Cε
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such that

‖eλ‖
q

Lq (M) ≤ ελ
q( d−1

2 )(1/2−1/q)
‖eλ‖

q

L2(M)
+ C‖eλ‖

q

L2(M)

+ Cελ
q( d−1

2 )(1/2−1/q)
‖eλ‖

2
L2(M)

sup
γ∈Π

(∫
T
λ−1/2 (γ )

|eλ(z)|
2 dz

)(q−2)/2

,

(1.1)

where
Tλ−1/2(γ ) = {x ∈ M : dg(x, γ ) ≤ λ

−1/2
} (1.2)

denotes the λ−1/2-tube about γ , with dg( · , · ) being the Riemannian distance function.

Corollary 1.2. The following are equivalent for any subsequence {eλjk }
∞

k=1 of L2-nor-
malized eigenfunctions:

lim sup
k→∞

(
sup
γ∈Π

∫
T
λ
−1/2
jk

(γ )

|eλjk
(z)|2 dz

)
= 0, (1.3)

lim sup
k→∞

λ
−
d−1

2 (1/2−1/p)
jk

‖eλjk
‖Lp(M) = 0 for any 2 < p <

2(d+1)
d−1 . (1.4)

Proof of Corollary 1.2. Given Theorem 1.1, it is routine to verify that (1.3) implies (1.4)
for 2(d + 2)/d < p < 2(d + 1)/d − 1. The remaining values of p then follow from
interpolation. For the converse, observe that Hölder’s inequality gives∫

T
λ−1/2 (γ )

|eλ(z)|
2 dz . λ−

d−1
2 (1−2/p)

‖eλ‖
2
Lp(M),

and the implication follows. ut

In the case when (M, g) has nonpositive sectional curvatures, we shall be able to show
that (1.4) holds for the full sequence of eigenvalues and hence extend the two-dimensional
results of the second author and Zelditch [32] to higher dimensions:

Theorem 1.3. Let (M, g) be a compact boundaryless manifold of dimension d ≥ 2.
Assume further that (M, g) has everywhere nonpositive sectional curvatures. Then if 0 =
λ0 < λ1 ≤ λ2 ≤ · · · are the eigenvalues of

√
1g we have

lim sup
λj→∞

(
sup
γ∈Π

∫
T
λ
−1/2
j

(γ )

|eλj |
2 dx

)
= 0. (1.5)

Consequently, if 2 < p < 2(d + 1)/(d − 1), we have, in this case,

lim sup
λj→∞

λ
−
d−1

2 (1/2−1/p)
j ‖eλj ‖Lq (M) = 0. (1.6)

In [25] the second author showed that ‖eλ‖Lq (M) = O(λ
d−1

2 (1/2−1/p)) when 2 ≤ p ≤

2(d + 1)/(d − 1), and that these estimates are sharp on the standard sphere Sd because
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of the highest weight spherical harmonics. We should point out that for the complemen-
tary range p > 2(d + 1)/(d − 1) improved Lp-estimates under the above curvature as-
sumptions follow by interpolation from the aforementioned p = 2(d + 1)/(d − 1) and
an improved L∞-estimate which is implicit in Bérard [1] (see also the second author and
Zelditch [29], [28]). Hassell and Tacy [18] have recently obtained further results for this
range exponents. Improvements for p > 2(d + 1)/(d − 1) are a bit more straightforward
than (1.6) due to the fact that everything follows from pointwise estimates, while to ob-
tain (1.5) and consequently (1.6), we have to use oscillatory integrals and a finer analysis
involving the deck transforms of the universal cover. We should point out that there are no
general Lp-improvements for the endpoint p = 2(d + 1)/(d − 1) of the results in [25],
which on the sphere are saturated by eigenfunctions concentrating at points as well as
ones concentrating along geodesics.

As noted before, the special case of d = 2 of Theorem 1.3 is in [32]. When d = 3, if
one assumes constant nonpositive curvature, (1.5) follows from recent work of Chen and
the second author [9], who showed that if ds denotes arc length measure on γ , then

sup
γ∈Π

∫
γ

|eλ|
2 ds = o(λ) as λ→∞. (1.7)

In dimensions d ≥ 4, Burq, Gérard and Tzvetkov [7] showed that one has the follow-
ing bounds for geodesic restrictions:∫

γ

|eλ|
2 ds = O(λd−2). (1.8)

Improving this to o(λd−2) bounds as in (1.7) for d = 3 is not strong enough to obtain
(1.5) when d ≥ 4. This comes as no surprise since, in these dimensions, (1.8) is saturated
on the round sphere Sd not by the highest weight spherical harmonics which concentrate
along geodesics, but rather zonal spherical harmonics, which concentrate at points. By
our main result, Theorem 1.1, we know that (1.5) is relevant for measuring the size of
Lp-norms in the range 2 < p < 2(d + 1)/(d − 1), which are saturated on Sd by highest
weight spherical harmonics. These eigenfunctions saturate the Kakeya–Nikodym aver-
ages in (1.5), by which we mean that the left side of (1.5) is�(1), but they do not saturate
the restriction estimates (1.8) for d ≥ 4.

Fortunately, we can adopt the proof of the aforementioned improvement (1.7) of Chen
and the second author [9] to obtain (1.5) in all dimensions under the assumption of non-
positive curvature. Additionally, even for d = 3, unlike the stronger estimate (1.7), our
techniques do not require that we assume constant sectional curvature.

Let us conclude this section by recording some applications of Theorems 1.1 and 1.3.
First, using (1.5) we can improve the lower bounds for L1-norms of the first author and
Zelditch [30] under the above assumptions:

Corollary 1.4. Let (M, g) be a d-dimensional compact boundaryless manifold with
d ≥ 2. Then

lim inf
λ→∞

λ(d−1)/4
‖eλ‖L1(M) = ∞. (1.9)

As pointed out in [30], no such improvement is possible for the sphere.
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The proof of (1.9) is very simple. For, by Hölder’s inequality, if p > 2,

1 = ‖eλ‖L2 ≤ ‖eλ‖

p−2
2(p−1)

L1 ‖eλ‖

p
2(p−1)
Lp ,

whence
‖eλ‖

−p/(p−2)
Lp ≤ ‖eλ‖L1 , p > 2.

As a result,
(λ−

d−1
2 (1/2−1/p)

‖eλ‖Lp )
−p/(p−2)

≤ λ(d−1)/4
‖eλ‖L1 ,

meaning that (1.6) implies (1.9).
Let us now see how (1.9), along with an estimate of Hezari and the second author [19],

improves the known lower bounds for the Hausdorff measure of eigenfunctions on mani-
folds of variable nonpositive curvature.

To this end, for a given real eigenfunction, eλ, we let

Zλ = {x ∈ M : eλ(x) = 0}

denote its nodal set and Hd−1(Zλ) its (d − 1)-dimensional Hausdorff measure. Yau [38]
conjectured that Hd−1(Zλ) ≈ λ. This was verified by Donnelly and Fefferman [14] in
the real analytic case and so, in particular, if (M, g) has constant sectional curvature. The
lower bound Hd−1(Zλ) ≥ cλ was verified in the C∞ case when d = 2 by Brüning [6]
and Yau, but much less is known in this case. An upper bound Hd−1(Zλ) = O(λ

3/2) is
also known by Dong [13] and Donnelly and Fefferman [15] when d = 2, but the best
known upper bounds for d ≥ 3 are Hd−1(Zλ) = O((cλ)

cλ), which are due to Hardt and
Simon [17].

Until recently, in higher dimensions for the C∞ case, the best known lower bounds
for Hd−1(Zλ) were also of an exponential nature (see [16]). Recently, Colding and Mini-
cozzi [10] and the second author and Zelditch [30] proved lower bounds of a polynomial
nature. Specifically, the best known lower bounds for d ≥ 3 in the C∞ case are those of
Colding and Minicozzi [10] who showed that

cλ1−(d−1)/2
≤ Hd−1(Zλ). (1.10)

Subsequent proofs of this using the original approach of the second author and
Zeldtich [30] were obtained by Hezari and the second author [19] and the second au-
thor and Zelditch [31]. The latter works and the earlier one [30] were based on a variation
of an identity of Dong [13].

The proof of (1.10) in [19] was based on the lower bound

cλ

(∫
M

|eλ| dx

)2

≤ Hd−1(Zλ). (1.11)

Indeed, simply combining (1.11) and the L1-lower bound of the second author and
Zelditch [30]

cλ−(d−1)/4
≤ ‖eλ‖L1 (1.12)

yields (1.10).
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Similarly, by using the improvement (1.9) of (1.12), we can improve1 the known lower
bounds (1.10) under our assumptions:

Corollary 1.5. Let (M, g) be a compact boundaryless Riemannian manifold of dimen-
sion d ≥ 3 with nonpositive sectional curvatures. Then

lim inf
λ→∞

λ−1+(d−1)/2Hd−1(Zλ) = ∞. (1.13)

In particular, when d = 3, H2(Zλ) becomes arbitrarily large as λ→∞.

By a simple argument (see [27]) one always has (1.3) and consequently (1.4) as λ ranges
over a subsequence {λjk } of eigenvalues if the resulting eigenfunctions form a quantum
ergodic system (i.e. |eλjl |

2dx converges in the weak∗ topology to the uniform probability
measure dx/Volg(M)). Consequently, by the above proof, we also have

Corollary 1.6. Let {eλjk } be a quantum ergodic system on a compact Riemannian mani-
fold of dimension d ≥ 3. Then

lim
k→∞

λ
−1+(d−1)/2
jk

Hd−1(Zλjk ) = ∞. (1.14)

In particular, if the geodesic flow is ergodic, we have (1.14) as {λjk } ranges over a subse-
quence of eigenvalues of density one.

The last part of the corollary follows from the quantum ergodic theorem of Shnirel’man
[23] / Zelditch [39] / Colin de Verdière [11] (see also [28]).

This paper is organized as follows. In the next three sections we shall present the proof
of our main result, Theorem 1.1. In §2 we shall go through the essentially routine step of
reducing matters to proving certain bilinear estimates, and this step is very similar to the
argument for the two-dimensional case of one of us [27]. It gives partial control of the left
side of (1.1) by the last term on the right. The needed bilinear estimates, which lead to the
first term in the right side of (1.1), are then presented in §3 and §4. In §3 we show that the
bilinear estimate we require follows, up to an ε-loss, from one of Lee [22, Theorem 1.1].
We are then able to remove this loss in §4 using a variable coefficient version of the
“ε-removal lemma” of Tao and Vargas [35, Lemma 2.4] (see also Bourgain [2]). Then,
in the final section, §5, we prove Theorem 1.3 which says that we have o(1) bounds
for L2-norms over shrinking tubes under the assumption of nonpositive curvature, and
consequently, by Theorem 1.1, improved Lp(M)-norms for 2 < p < 2(d + 1)/(d − 1)
of the estimates in [25].

1 An alternate approach, which yields the same sort of results, would be to use (1.6) to improve
the conclusion of [10, Lemma 4] under the assumption of nonpositive curvature.



2518 Matthew D. Blair, Christopher D. Sogge

2. Reduction to oscillatory integral estimates

In this section, we begin the proof of Theorem 1.1, reducing matters to estimates on
oscillatory integral operators. Let χλ denote the operator χ(

√
1g − λ), where χ is a

smooth bump function with χ(0) = 1 and sufficiently small compact support. Hence
χλeλ = eλ. Recall (see Sogge [26, Chapter 5]) that the kernel of this operator can be
written as

χλf (z) = χ(
√
1g − λ)f (z) = λ

(d−1)/2
∫
M

eiλdg(z,y)αλ(z, y)f (y) dy + Rλf (z)

where αλ(z, y) is supported in δ ≤ dg(z, y) ≤ 2δ for some δ > 0 sufficiently small and
less than half the injectivity radius of (M, g). Moreover, ‖Rλf ‖Lq (M) . ‖f ‖L2(M).

Using a sufficiently fine partition of unity, we may assume that the support of αλ is
sufficiently small. In particular, we may assume that supp(αλ) ⊂ {|z−z0|+|y−y0| � ε0}

for some points z0, y0 ∈ M with |z0 − y0| ≈ δ. Let γ0 denote the geodesic connecting
z0, y0 and suppose that 6 is a suitable codimension 1 submanifold passing through y0
such that γ0 is orthogonal to 6. Now let (t, s) ∈ Rd−1

× R denote Fermi coordinates
for6 with (0, 0) = y0, (0, s) parameterizing γ0, and (t, 0) parameterizing6. This means
that for any fixed t0, (t0, s) locally parameterizes the geodesic passing through (t0, s)
orthogonal to 6.

It suffices to prove that∫ (∫ ∣∣∣∣λ(d−1)/2
∫
eiλdg(z,y)αλ(z, (t, s))f (t, s) dt

∣∣∣∣2 |f (z)|q−2 dz

)
ds

≤ ε

(
λ
d−1

2 (1/2−1/q)
‖f ‖L2(M)

)2

‖f ‖
q−2
Lq (M)

+ Cελ
q( d−1

2 )(1/2−1/q)
‖f ‖2

L2(M)
sup
γ∈Π

(∫
T
λ−1/2 (γ )

|f (z)|2 dz

)(q−2)/2

Indeed, using Young’s inequality for products applied to the Hölder conjugates q/2,
q/(q − 2), we may absorb the contribution of ε(q−2)/q

‖f ‖
q−2
Lq (M) from the first term into

the left hand side, for ε sufficiently small, yielding (1.1) when f = eλ. Moreover, it suf-
fices to prove that for each s the expression in parentheses on the left hand side is bounded
by the right hand side. For convenience, we will show this for s = 0 as the argument be-
low works for any value of s and does not use the structure of 6 once Fermi coordinates
are given.

Fix λ and let T h(z) =
∫
eiλψ(z,t)αλ(z, (t, 0))h(t) dt where ψ(z, t) = dg(z, (t, 0)).

We will show that∫
|λ(d−1)/2T h(z)|2|f (z)|q−2 dz ≤ ε(λ

d−1
2 (1/2−1/q)

‖h‖L2
t
)2‖f ‖

q−2
L
q
z

+ Cελ
(d−1)/2

‖h‖2
L2
t

sup
γ∈Π

∫
T
λ−1/2 (γ )

|f (z)|q−2 dz. (2.1)
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Hölder’s inequality with conjugates 2/(q − 2), 2/(4− q) will then imply that

λ(d−1)/2
∫
T
λ−1/2 (γ )

|f (z)|q−2 dz . λ(d−1)/2− d−1
2 (2−q/2)

(∫
T
λ−1/2 (γ )

|f (z)|2 dz

)(q−2)/2

,

and it is verified that the exponent of λ on the right is the same as the one in (1.1).
Observe that

(T h(z))2 =

∫
eiλ(ψ(z,t)+ψ(z,t

′))αλ(z, t)αλ(z, t
′)h(t)h(t ′) dt dt ′.

Suppose ε0 is a small dyadic number such that supp(αλ(z, ·)) ⊂ [−ε0, ε0]
d for all z. Let

N > 0 be a sufficiently large dyadic number (which will essentially play the same role as
the integer N in [27, (2.5)]) and let j0 be the largest integer such that 2−j0 ≥ λ−1/2. Take
a Whitney-type decomposition of [−ε0, ε0]

d
× [−ε0, ε0]

d away from its diagonal D into
almost disjoint cubes

[−ε0, ε0]
d
× [−ε0, ε0]

d
\D

=

( ⋃
ε0≥2j>N2−j0

⋃
d(Q

j
ν ,Q

j

ν′
)≈2−j

Qj
ν ×Q

j

ν′

)
∪

( ⋃
d(Q

j0
ν ,Q

j0
ν′
)≤N2−j0

Qj0
ν ×Q

j0
ν′

)

where each Qj
ν has sidelength 2−j and is centered at a point ν ∈ 2−jZd−1. Set hjν(t) =

1
Q
j
ν
(t)h(t) where the first factor denotes the indicator of the cube Qj

ν . Hence

(T h(z))2 =
∑

ε0≥2−j>N2−j0

∑
(ν,ν′)∈4j

T hjν(z)T h
j

ν′
(z)+

∑
(ν,ν′)∈4j0

T hjν(z)T h
j

ν′
(z) (2.2)

where4j denotes the collection of (ν, ν′) indexing the cubes satisfying d(Qj
ν ,Q

j

ν′
)≈2−j

(or ≤ N2−j0 when j = j0).

Theorem 2.1. Suppose T = Tλ is the oscillatory integral operator defined by

T h(z) :=

∫
eiλφ(z,s,t)aλ(z, s, t)h(t) dt

where aλ is smooth and supp(aλ) is contained in a sufficiently small uniform compact set
and whose derivative bounds can be taken uniform in λ. Assume further that φ(x, s, t)
satisfies a Carleson–Sjölin type condition that ∇2

xtφ is invertible and that if θ is a unit
vector for which ∇t 〈∇(x,s)φ, θ〉 = 0, then

∇
2
t t 〈∇(x,s)φ, θ〉 has eigenvalues of the same sign. (2.3)

Then ∥∥∥ ∑
(ν,ν′)∈4j

T hjν T h
j

ν′

∥∥∥
L
q/2
x

. 2j (2(d+1)/q−(d−1))λ−2d/q
‖h‖2

L2
t
. (2.4)
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It can be verified that setting z = (x, s) ∈ Rd−1
× R, the phase function in question

φ(x, s, t) := dg((x, s), (t, 0)) = ψ((x, s), t) satisfies the Carleson–Sjölin condition
given here. Moreover, our assumption that q < 2(d + 1)/(d − 1) ensures that the ex-
ponent of 2j in (2.4) is positive. Hence this estimate yields∑
ε−1

0 ≤2j<N−12j0

∥∥∥ ∑
(ν,ν′)∈4j

T hjν T h
j

ν′

∥∥∥
L
q/2
z

. N−(2(d+1)/q−(d−1))λ−(d−1)/q−(d−1)/2
‖h‖2

L2
t
.

Since Hölder’s inequality with conjugates q/2, q/(q − 2) and the triangle inequality yield

λd−1
∫ ∣∣∣∑

j

∑
(ν,ν′)∈4j

T hjν T h
j

ν′

∣∣∣2|f |q−2dz ≤ λd−1
∑
j

∥∥∥ ∑
(ν,ν′)∈4j

T hjν T h
j

ν′

∥∥∥
L
q/2
z

‖f ‖
q−2
L
q
z
,

the contribution of this sum is bounded by the first term on the right hand side of (2.1) by
taking N suitably large. This estimate can be considered as analogous to [27, (2.6)].

Our main tool in proving (2.4) will be a bilinear estimate due to Lee [22, Theorem 1.1]
along with a refinement of arguments in §3 of that same work. Indeed, the estimate (2.4)
should be compared with [22, Lemma 3.3 and (3.3)]. In [22], the author proves bilinear
estimates which can be thought of as a variable coefficient versions of bilinear restric-
tion estimates due to Tao [34] for elliptic surfaces (inspired by prior work of Wolff [37]
and Tao–Vargas–Vega [36]). Lee then showed that these bilinear estimates in turn im-
plied linear estimates on oscillatory integral operators whose phase function satisfies the
Carleson–Sjölin type condition (2.3) (more generally called the “Hörmander problem”).
However, his estimates suffer losses when compared to the optimal estimate predicted by
scaling. In the present work, we cannot afford such losses. Hence one of the central tasks
in this work is to prove a variable coefficient version of the ε-removal lemma for bilinear
estimates in [35, Lemma 2.4] (see also Bourgain [2]) and refine the almost orthogonality
arguments in [22, §3].

We now turn to the second sum in (2.2); since 2−j0 ≈ λ−1/2 it will be treated essen-
tially the same way as in [27, pp. 527-529]. Observe that∣∣∣ ∑

(ν,ν′)∈4j0

T hjν(z) T h
j

ν′
(z)

∣∣∣ . Nd−1
∑
ν

|T hj0
ν (z)|

2.

The main estimate for this term is then∫
|λ(d−1)/2T hj0

ν (z)|
2
|f (z)|q−2 dz . λ(d−1)/2

‖hj0
ν ‖

2
L2
t

sup
γ∈Π

∫
T
λ−1/2 (γ )

|f (z)|q−2 dz.

(2.5)
Since

∑
ν ‖h

j0
ν ‖

2
L2
t

= ‖h‖2
L2
t

, we may sum in ν to see that the contribution of these terms
is bounded by the last term in (2.1).

To see (2.5), we will use geodesic normal coordinates centered at the point onM cor-
responding to (ν, 0) in the Fermi coordinates (recall that ν ∈ 2−j0Zd−1) and let x 7→ κ(x)

denote the diffeomorphism which makes this change of coordinates. We may assume that
κ(ν, s) = (0, s) (parameterizing the geodesic orthogonal to 6 through (ν, 0)). We now
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let {ωl}l denote a λ−1/2-separated collection of points in a neighborhood of (0, . . . , 0, 1)
on Sd−1 indexed by a subset of Zd−1 so that

|ωl − ωk| & λ−1/2
|l − k|.

Now let

Sl :=

{
z :

∣∣∣∣ z|z| − ωl
∣∣∣∣ ≤ λ−1/2

}
and observe that the left hand side of (2.5) can be dominated by∑

l

‖λ(d−1)/2T hj0
ν ‖

2
L∞(κ−1(Sl))

‖f ‖
q−2
Lq−2(κ−1(Sl)∩K)

≤ sup
k

‖f ‖
q−2
Lq−2(κ−1(Sk)∩K)

∑
l

|λ(d−1)/2T (hj0
ν )(zl)|

2

where the zl are chosen to maximize |T (hj0
ν )(z)| as z ranges over κ−1(Sl) andK is a small

set containing the x-support of αλ(x, y). It thus suffices to see that for some suitable bump
function ψ ,∑

l

∣∣∣∣λ(d−1)/2
∫
eiλψ(zl ,t)αλ(zl, (0, t))ψ(λ1/2(t − ν))hj0

ν (t) dt

∣∣∣∣2 . λ(d−1)/2
‖hj0
ν ‖

2
L2
t
.

After a translation in t , it suffices to assume that ν = 0 and the desired L2
→ `2 estimate

follows from the one dual to (2.7) below.

Theorem 2.2. Suppose ψ(z, t) is as defined above and ρ(z, t) is a smooth bump function
satisfying |∂αt ρ(z, t)| .α λ

|α|/2 and supp(ρ(·, z)) ⊂ {|t | . λ−1/2
}. Assume also that ρ

vanishes when z is outside of a small neighborhood N of (s0, 0) with s0 ≈ δ with δ > 0
(in the Fermi coordinates described above). Let zl be a collection of points in N indexed
by Zd−1 such that whenever |l − k| is sufficiently large,∣∣∣∣ (κ1(zl), . . . , κd−1(zl))

|κ(zl)|
−
(κ1(zk), . . . , κd−1(zk))

|κ(zk)|

∣∣∣∣ & λ−1/2
|l − k|. (2.6)

Then
λ(d−1)/2

∫ ∣∣∣∑
l

eiλψ(zl ,t)ρ(zl, t)al

∣∣∣2 dt .∑
l

|al |
2. (2.7)

The proof of (2.7) is the same as the one in [27, Prop. 2.3], once it is observed that

|∇tψ(zl, 0)−∇tψ(zk, 0)| & λ−1/2
|l − k|.

But since the pushforward of ∂/∂zd under z 7→ κ(z) is itself, this is a consequence of
(2.6) and the identity

∂tiψ(z, 0) = 〈νi, κ(z)/|κ(z)|〉, i = 1, . . . , d − 1,

where νi is the pushforward of ∂/∂zi .
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3. Almost orthogonality

In this section, we begin the proof of Theorem 2.1. We first appeal to [22, Lemma 3.1]
(which follows results of Bourgain [4] and Hörmander [20]) and the ensuing remark,
which states that after a change of coordinates and multiplying T h, h by harmless func-
tions of modulus one, we may assume

φ(x, s, t) = x · t + 1
2 s|t |

2
+ E(x, s, t) (3.1)

where
E(x, s, t) = O((|x| + |s|)2|t |2)+O((|x| + |s|)|t |3). (3.2)

Let ψ be a smooth bump function supported in [−1, 1]d−1 satisfying
∑
k∈Zd−1 ψ2(x− k)

= 1 and set Aµ(x) = ψ2(2j (x − µ)) with µ ∈ 2−jZd−1.

Lemma 3.1. Suppose 1 ≤ p ≤ 2 and that T is as in Theorem 2.1. There exist amplitudes
aν,µ, aν′,µ, both with x-support contained in supp(Aµ) and satisfying derivative bounds
of the form

|∂αx aν,µ(x, s, t)| .α 2j |α|, (3.3)

such that if Tν,µ is the oscillatory integral operator with phase φ and amplitude aν,µ,

Tν,µ(h)(x, s) =

∫
Rd−1

eiλφ(x,s,t)aν,µ(x, s, t)h(t) dt,

then ∥∥∥Aµ ∑
ν,ν′∈4j

T (hjν)T (g
j

ν′
)

∥∥∥p
Lp(Rd )

.
∑

ν,ν′∈4j

∥∥∥Tν,µ(hjν)Tν′,µ(gjν′)∥∥∥pLp(Rd ) .
Proof. For a given s, consider the slice of T (h) at s, T s(h)(x) = T (h)(x, r)|r=s . It
suffices to show that∥∥∥Aµ ∑

ν,ν′∈4j

T s(hjν)T
s(g

j

ν′
)

∥∥∥p
Lp(Rd−1)

.
∑

ν,ν′∈4j

∥∥∥T sν,µ(hjν)T sν′,µ(gjν′)∥∥∥pLp(Rd−1)
,

and hence we shall assume that s is fixed throughout the proof. Now let 8(x, t, t ′) =
φ(x, s, t)+ φ(x, s, t ′) and observe that AµT s(h

j
ν)T

s(g
j

ν′
) can be written as

Aµ(x)

∫
eiλ8(x,t,t

′)a(x, s, t)a(x, s, t ′)hjν(t)g
j

ν′
(t ′) dt dt ′.

Treating Dx = −i∇x as a vector-valued differential operator we want to write

(1+(λ−12j )2|λ∇x8(µ, ν, ν′)−Dx |2)NAµT s(hjν)T
s(g

j

ν′
) = T sν,µ(h

j
ν)T

s
ν′,µ(g

j

ν′
) (3.4)

for some N large based on d and each operator on the right satisfies (3.3). It thus suffices
to see that this can be done for any monomial of

λ−12j (λ∇x8(µ, ν, ν′)−Dx),
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which in turn will follow by induction. To this end, observe that products of functions
satsifying (3.3) satisfy the same condition as do weighted derivatives (c∂x)α of such func-
tions provided |c| ≤ 2−j . On supp(Aµ)×Q

j
ν ×Q

j

ν′
we see that

λ−12j
(
λ∂k8(µ, ν, ν

′)− λ∂k8(x, t, t
′)
)

satisfies (3.3). Moreover, since λ−12j ≤ 2−j , it is seen that for any α, (λ−12j∂x)αA
1/2
µ

satisfies (3.3). The claim then follows.
It now suffices to see that if Pν,ν′ is the Fourier multiplier

Pν,ν′(Dx) =
(
1+ (λ−12j )2|λ∇x8(µ, ν, ν′)−Dx |2

)−N
,

then for any sequence of {fν,ν′} of Schwartz class functions defined on Rd−1,∥∥∥ ∑
ν,ν′∈4j

Pν,ν′fν,ν′
∥∥∥2

L2(Rd−1)
.

∑
ν,ν′∈4j

‖fν,ν′‖
2
L2(Rd−1)

,

∥∥∥ ∑
ν,ν′∈4j

Pν,ν′fν,ν′
∥∥∥
L1(Rd−1)

.
∑

ν,ν′∈4j

‖fν,ν′‖L1(Rd−1).

The latter follows from the triangle inequality and Young’s inequality for convolutions,
so it suffices to treat the former. But ∇x8(µ, ν, ν′) = 2∇xφ(µ, s, ν) + O(2−j ), so the
invertibility of ∇2

x,tφ gives

2j |∇x8(µ, ν, ν′)−∇x8(µ, ν̃, ν̃′)| ≈ 2j |ν − ν̃|.

Recall that for each ν, the number of ν′ such that (ν, ν′) ∈ 4j is O(1). Therefore since
the ν range over a regularly spaced 2−j lattice, the desired bound follows from a routine
computation using Plancherel’s identity. ut

Returning to the proof of Theorem 2.1, fix a pair (ν, ν′) ∈ 4j . Set h1(t) = h
j
ν(2−j t),

aj,ν,µ(x, s, t) = aν,µ(x, s, 2−j t), φj (x, s, t) = 2jφ(x, s, 2−j t) so that rescaling variables
t 7→ 2−j t in the integral defining Tν,µ(h

j
ν)(x, s) yields

Tj,ν,µ(h1)(x, s) :=

∫
eiλ2−jφj (x,s,t)aν,µ(x, s, t)h1(t) dt = 2j (d−1)Tν,µ(h

j
ν)(x, s).

Also set h2(t) = h
j

ν′
(2−j t) and define Tj,ν′,µ(h2)(x, s) analogously, noting that φj

remains independent of ν, ν′. Moreover, we may assume that aj,ν,µ(x, s, ·) (resp.
aj,ν′,µ(x, s, ·)) is supported in a slightly larger cube containing supp(h1) (resp. supp(h2)).
It is helpful to observe that given (3.1), (3.2),

φj (x, s, t) = x · t + 2−j−1s|t |2 + 2jE(x, s, 2−j t).

Lemma 3.2. There exists an amplitude ãj,ν,µ(x, s, t) satisfying bounds of the form (3.3)
such that

(1+ 22j
|λ−12jDt − µ|2)Neiλ2−jφj (x,s,t)aj,ν,µ(x, s, t) = e

iλ2−jφj (x,s,t)ãj,ν,µ(x, s, t).
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Proof. Observe that

e−iλ2−jφj 2j (λ−12jDtk − µk)e
iλ2−jφj aj,ν,µ = 2j (∂tkφj − µk)aj,ν,µ + λ

−122jDtkaj,ν,µ.

Since λ−122j
≤ 1, the second term satisfies (3.3). Moreover, by (3.1), (3.2),

(∂tkφj (x, s, t)− µk) = xk − µk +O(2
−j )

and thus by the support properties of aj,ν,µ the first term satisfies (3.3) as well. The lemma
then follows by an inductive argument akin to that in Lemma 3.1. ut

Given this lemma we let Pµ = Pµ(Dt ) be the Fourier multiplier with symbol Pµ(ζ ) =
(1+ 22j

|λ−12j ζ + µ|2)−N and observe that by self-adjointness of Pµ(−Dt ), we have

Tj,ν,µ(h1)(x, s) =

∫
eiλ2−jφj (x,s,t)ãj,ν,µ(x, s, t)(Pµh1)(t) dt.

Thus if we can show that

‖Tj,ν,µ(h1)Tj,ν′,µ(h2)‖Lq/2(Rd ) . λ−2d/q22j (d+1)/q
‖Pµh1‖L2(Rd−1)‖Pµh2‖L2(Rd−1),

(3.5)
taking a sum with respect to µ and applying Cauchy–Schwarz will give∑

µ

‖Tj,ν,µ(h1)Tj,ν′,µ(h2)‖
q/2
Lq/2(Rd )

. (λ−2d/q22j (d+1)/q)q/2
2∏
i=1

(∑
µ

‖Pµhi‖
q

L2(Rd−1)

)1/2
,

and by almost orthogonality of the Pµhi , (
∑
µ ‖Pµhi‖

q

L2)
1/2 . ‖hi‖

q/2
L2 . Rescaling there-

fore yields∑
µ

‖Tν,µ(h
j
ν)Tν′,µ(h

j

ν′
)‖
q/2
Lq/2(Rd )

. (λ−2d/q2j (2(d+1)/q−(d−1)))q/2‖hjν‖
q/2
L2(Rd−1)

‖h
j

ν′
‖
q/2
L2(Rd−1)

. (3.6)

Hence Lemma 3.1 and Cauchy–Schwarz mean that the left hand side of (2.4) is dominated
by

λ−2d/q2j (2(d+1)/q−(d−1))
(∑
ν

‖hjν‖
q

L2(Rd−1)

)1/q(∑
ν

‖h
j

ν′
‖
q

L2(Rd−1)

)1/q
.

The desired estimate (2.4) now follows from the embedding `2 ↪→ `q .
We are left to show (3.5). At this stage, d(supp(h1), supp(h2)) ≈ 1, but we want to

exhibit the uniformity of the phases and amplitudes. To this end, observe that

φ(x, s, t + ν) = (x + sν) · t + 1
2 s|t |

2
+ E(x, s, t + ν)+ 1

2 s|ν|
2
+ x · ν.
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The last two terms here can be neglected. A Taylor expansion gives

E(x, s, t + ν) = E(x, s, ν)+∇tE(x, s, ν) · t +
1
2

∑
|α|=2

∂αt E(x, s, ν)tα + Rν(x, s, ν).

As observed in [22, (3.9)], we may change variables y = x + sν + ∇tE(x, s, ν) and,
neglecting terms which can be absorbed into either T (hi) or hi , we can write

φ(y, s, t + ν) = y · t + 1
2 s|t |

2
+ Eν(y, s, t),

where Eν(y, s, t) will also satisfy (3.2) (with y replacing x). Hence

φj (y, s, t + 2jν) = 2jφ(y, s, 2−j t + ν) = y · t + 2−j−1s|t |2 + 2jEν(y, s, 2−j t).

Also define σs = µ+ sν+∇tE(µ, s, ν) (recalling that µ is the center of the x-support of
ãj,ν,µ, ãj,ν′,µ) and observe that linearizing the change of coordinates shows that if |x−µ|
. 2−j , then |y − σs | . 2−j . We next set

φ̃(y, s, t) = 22jφj (2−jy + σs, s, t) = y · t + 1
2 s|t |

2
+ 22jEν(2−jy + σs, s, 2−j t + ν)

and define

T̃1(g1)(y, s) =

∫
eiλ2−2j φ̃(y,s,t)ãj,ν,µ(2−jy + σs, s, t)g1(t) dt

and T̃2(g2) in the same way except with amplitude ãj,ν′,µ(2−jy + σs, s, t). The bound
(3.5) will then follow from

‖T̃1(g1)T̃2(g2)‖Lq/2(Rd ) . (λ2−2j )−2d/q
‖g1‖L2(Rd−1)‖g2‖L2(Rd−1). (3.7)

This estimate in turn follows from one of Lee [22, Theorem 1.1] along with ε-removal
lemmas in the next section. We state this using his hypotheses.

For i = 1, 2, let Ti be oscillatory integral operators

Tif (z) =

∫
eiλφi (z,ξ)ai(z, ξ)f (ξ) dξ, z = (x, s) ∈ Rd−1

× R, ξ ∈ Rd−1,

with ai smooth and of sufficiently small compact support. Assume that ∇2
xξφi has rank

d − 1 and that ξ 7→ ∇xφi(x, s, ξ) is a diffeomorphism on supp(ai). Take qi(x, s, ξ) =
∂sφi(x, s, [∇xφi(x, s, ·)]

−1(ξ)) so that ∂sφi(x, s, ξ) = qi(x, s,∇xφi(x, s, ξ)). Suppose
further that ∇2

ξξqi(z,∇xφi(z, ξi)) is nonsingular for (z, ξi) ∈ supp(ai).

Theorem 3.3. For i = 1, 2, ai , φi satisfy the hypotheses outlined in the preceding dis-
cussion. Set ui = ∇xφ(z, ξi) and δ(z, ξ1, ξ2) = ∇ξq1(z, u1)−∇ξq2(z, u2). Then if

|〈∇
2
xξφ(z, ξi)δ(z, ξ1, ξ2), [∇

2
xξφ(z, ξi)]

−1
[∇

2
ξξqi(z, ui)]

−1δ(z, ξ1, ξ2)〉| ≥ c > 0 (3.8)

for i = 1, 2, then for any (d + 2)/d < p,

‖T1f1 T2f2‖Lp(Rd ) . λ−d/p‖f1‖L2(Rd−1)‖f2‖L2(Rd−1). (3.9)
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Moreover, if T1, T2 are members of a family of operators whose phase and amplitude
functions satisfy these hypotheses uniformly and are uniformly bounded in C∞ with am-
plitudes supported in a set of uniform size, then the implicit constant in (3.9) can be taken
independent of each operator in the family.

We postpone the proof of this theorem until the next section. It is then verified (see [22,
(3.14)]) that if one takes ξ = t , z = (x, s), φ̃(x, s, t) = φ1(x, s, t) = φ2(x, s, t) and
a1, a2 as the amplitudes in T̃1, T̃2 respectively, then the left hand side of (3.8) satisfies

|ξ1 − ξ2| +O(ε0)+O(2−j ).

Therefore since |t1 − t2| ≈ 1, the desired bound follows by taking (3.9) with λ replaced
by λ2−2j .

Remark 3.4. As a consequence of Theorem 3.3 and the almost orthogonality arguments
in this section, we obtain the bound

‖T h‖Lq (Rd ) . λ−d/q‖h‖Lp(Rd−1) when q > 2(d+2)
d

and d+1
q
< d−1

p′
(3.10)

for operators T satisfying the hypotheses of Theorem 2.1. In other words, we obtain Lee’s
estimate [22, Theorem 1.3] without the ε-loss. Indeed, the Whitney-type decomposition
of (T h)2 in the previous section is essentially the same as that in his work, and the es-
timate over the (ν, ν′) ∈ 4j0 is treated on p. 85 there. Since Hölder’s inequality gives

‖h
j
ν‖L2(Rd−1) . 2−

j (d−1)
2 (1/2−1/p)

‖h
j
ν‖Lp(Rd−1), (3.6) and the almost orthogonality argu-

ments above yield the following variation on (2.4):∥∥∥ ∑
(ν,ν′)∈4j

T hjν T h
j

ν′

∥∥∥
Lq/2(Rd )

. 2j (2(d+1)/q−2(d−1)(1−1/p))λ−2d/q
‖h‖2

Lp(Rd−1)

(since it suffices to treat the cases where q ≥ p). Taking a sum in j then yields (3.10).
We also note that when p = ∞, the estimate in (3.10) is valid for a larger range of q

by a recent work of Bourgain and Guth [5].

4. The ε-removal lemma

Turning to the proof of (3.9), the estimate

‖T1f1 T2f2‖Lq (Rd ) ≤ Cαλ
−d/q+α

‖f1‖L2(Rd−1)‖f2‖L2(Rd−1) (4.1)

for arbitrary α > 0 and (d + 2)/d ≤ q is due to Lee [22, Theorem 1.1]. Moreover, as
observed in [22, p. 88], the constant Cα is stable under small perturbations in ai and φi .
In particular, if families of amplitudes and phase functions are considered and these func-
tions are uniformly bounded in C∞ then Cα can be taken uniform within the family of
operators.

The rest of this section will be dedicated to the following lemma, a generalization of
[35, Lemma 2.4], which completes the proof of Theorem 3.3.
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Lemma 4.1. Suppose T1, T2 satisfy the hypotheses of the previous theorem and that they
satisfy the estimate (4.1) for some 1 < q < (d + 1)/(d − 1) and some α > 0. Assume
further that

1
p

(
1+

8α
d − 1

)
≤

1
q
+

4α
d + 1

. (4.2)

Then the scale-invariant estimate

‖T1f1 T2f2‖Lr (Rd ) . λ−d/r‖f1‖L2(Rd−1)‖f2‖L2(Rd−1).

is also valid for any r > p.

The hypothesis (4.2) is stronger than the one appearing in [35] (corresponding to σ =
(d − 1)/2 there)

1
p

(
1+

4α
d − 1

)
<

1
q
+

2α
d + 1

, (4.3)

but is sufficient for our purposes.
Let f1, f2 be unit normalized functions in L2(Rd−1). By a Marcinkiewicz interpola-

tion argument, it suffices to see that2

|{x : |T1f1(x)T2f2(x)| > β}| . λ−dβ−p.

Denote the set on the left by E. Observe that since ‖T1f1T2f2‖∞ . 1, it suffices to
assume that β . 1. Hence we may assume that |E| & λ−d throughout since the de-
sired bounds are guaranteed otherwise. Moreover, we know from (4.1) and Chebyshev’s
inequality that

|E| . λ−d+qαβ−q .

Consequently, it suffices to assume that β > λ−qα/(p−q). This gives the a priori bound

|E| . λ
−d+qα(1+ q

p−q
)
. (4.4)

Since β|E| . ‖1ET1f1 T2f2‖L1 , it suffices to show that

‖1ET1f1 T2f2‖L1 . λ−d/p|E|1/p
′

.

We deduce this by showing that for any unit vectors g1, g2 in L2(Rd−1),

‖1ET1g1 T2g2‖L1 . λ−d/p|E|1/p
′

,

where it should be stressed that E is dependent on f1, f2 above, but that g1, g2 are com-
pletely independent of these functions. Fix g2 and let T = TE,g2 be the linear operator
T g1 = 1ET2g2 T1g1. It suffices to show that

‖T ∗F‖L2(Rd−1) . λ−d/p|E|1/p
′

‖F‖L∞(Rd ),

2 One sees that this inequality implies the lossless bilinear inequalities for each exponent r > p
since if ω(β) = |{x : |T1f1(x)T2f2(x)| > β}| then ω(β) = 0 for β larger than a fixed constant
and

∫
|T1f1 T2f2|

r dx = r
∫
∞

0 βr−1ω(β) dβ.
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since duality then implies that ‖T g1‖L1 . λ−d/p|E|1/p
′

. We may assume ‖F‖L∞ . 1.
Set F̃ := 1ET2g2F . By a duality argument, we square the left hand side of the previous
inequality to see that it suffices to show that

|〈T1T
∗

1 F̃ , F̃ 〉| . λ−2d/p
|E|2/p

′

= λ−2d(λd |E|)2/p
′

, (4.5)

where the inner product on the left is with respect to L2(Rd). The integral kernel of T1T
∗

1
is

K(w, z) =

∫
eiλ(φ1(w,ξ)−φ1(z,ξ))a1(w, ξ)a1(z, ξ) dξ,

and satisfies
|K(w, z)| . (1+ λ|w − z|)−(d−1)/2.

This bound follows from the invertibility of ∇2
ξξ∂sφ1 when w − z is inside a small cone

about (0, . . . , 0, 1). Otherwise, stronger estimates result from integration by parts and the
invertibility of ∇xξφ1. We now let R ≥ λ−1 be a parameter to be determined shortly
and write K(w, z) = KR(w, z) + KR(w, z) where KR(w, z) is smoothly truncated to
|w − z| ≥ R and KR(w, z) is supported in |w − z| ≤ 2R. Observe that by Stein’s
generalization of Hörmander’s variable coefficient oscillatory integral theorem (see [33]
or [26, Ch. 2])

‖F̃‖L1(Rd ) . |E|
d+3

2(d+1) ‖T2g2‖
L

2(d+1)
d−1 (Rd )

‖F‖L∞(Rd ) . |E|
d+3

2(d+1) λ
−
d(d−1)
2(d+1) .

Thus the contribution of KR to 〈T1T
∗

1 F̃ , F̃ 〉 is bounded by

(λR)−(d−1)/2
|E|

d+3
d+1 λ−

d(d−1)
d+1 = (λR)−(d−1)/2(λd |E|)

d+3
d+1 λ−2d .

It is now verified that taking

R = λ−1(λd |E|)
2
d−1 (

d+3
d+1−

2
p′
)
≥ λ−1

ensures that the contribution of KR is acceptable towards proving (4.5) (by scaling, this
is consistent with the choice of R in [35, Lemma 2.4]). We also remark that another
computation reveals that (4.4) along with the hypothesis (4.2) ensures that R . λ−1/2.

It remains to control the contribution of KR to (4.5). Let {ψk}k be a partition of unity
over [−ε0, ε0]

d such that supp(ψk) is contained in a cube of sidelength 2R centered at
a point wk ∈ RZd . Let PR be the operator determined by the integral kernel KR and
observe that its contribution to the left hand side of (4.5) is dominated by∑

k,k′

|〈PR(ψkF̃ ), ψk′ F̃ 〉|. (4.6)

Given a fixed k, the number of k′ for which 〈PR(ψkF̃ ), ψk′ F̃ 〉 6= 0 is O(1) and satisfies
d(supp(ψk), supp(ψk′)) . R. Hence we will restrict attention to the sum over the diag-
onal k = k′, as a slight adjustment of the argument below will handle the off-diagonal
terms.
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At this stage it will be convenient to use the semiclassical Fourier transform with
h = 1/λ (cf. [40, §3.3])

F1/λ(G)(η) =

∫
Rd
e−iλw·ηG(w) dw, F−1

1/λ(g)(w) =
λd

(2π)d

∫
Rd
eiλw·ηG(η) dη.

(4.7)
Since F1/λ is related to the usual Fourier transform by F1/λ(G)(η) = F(G)(λη), we have
the Plancherel identity (2π)d‖G‖2

L2 = λ
d
‖F1/λ(G)‖

2
L2 (cf. [40, (3.3.6)]). We now have

(2π)d〈PR(ψkF̃ ), ψkF̃ 〉 = λd〈F1/λ(PR(ψkF̃ )),F1/λ(ψkF̃ )〉, (4.8)

and the right hand side can be written as

1
(2π)d

∫∫
Jk(η, ζ )F1/λ(ψkF̃ )(ζ )F1/λ(ψkF̃ )(η) dζ dη,

where

Jk(η, ζ ) = λ
2d
∫∫∫

e−iλ(η·w−φ1(w,ξ)+φ1(z,ξ)−z·η)ψ̃k(z, w)a1(w, ξ)a1(z, ξ) dz dw dξ,

for some ψ̃k supported in |z− wk|, |w − wk| . R satisfying |∂αw,zψ̃k| .α R
−|α|. Strictly

speaking, one needs to justify the use of Fubini’s theorem here, but this can be done
by passing to Schwartz class approximations to F̃ and employing crude L2 continuity
bounds for PR . Therefore over supp(ψ̃k),

|∇wφ1(wk, ξ)−∇wφ1(w, ξ)| + |∇zφ1(wk, ξ)−∇zφ1(z, ξ)| . R . (λR)−1,

where we use R . λ−1/2 in the second inequality. Hence integration by parts gives, for
any N and some uniform cube Q ⊂ Rd−1,

|Jk(η, ζ )| .N (λR)
2d
∫
Q

(
1+ λR|η −∇wφ1(wk, ξ)| + λR|ζ −∇wφ1(wk, ξ)|

)−N
dξ,

as the domain of integration in (w, z) is of volume R2d . Let S1
k denote the hypersurface

{∇φ1(wk, ξ) : ξ ∈ Q}. This in turn allows us to deduce that

|Jk(η, ζ )| .N (λR)
d+1(1+ λR d(η, S1

k )+ λR d(ζ, S
1
k )+ λR|ζ − η|)

−N .

Consequently, by using Cauchy–Schwarz in (4.8) we have

|〈PR(ψkF̃ ), ψkF̃ 〉| .N λR
∫
(1+ λR|d(η, S1

k )|)
−N
|F1/λ(ψkF̃ )(η)|

2 dη.

Now let S1
k,l denote the (λR)−12l-neighborhood of S1

k . We have

∑
k

|〈PR(ψkF̃ ), ψkF̃ 〉| .N
∑
k

∞∑
l=0

λR2−lN‖F1/λ(ψkF̃ )‖
2
L2(S1

k,l)
.
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We examine the case l = 0, the other cases are similar and aided by the factor of 2−lN . Let
{g̃1,k}k be a sequence of functions with supp(g̃1,k) ⊂ S

1
k,0 for each k and

∑
k ‖g̃1,k‖

2
L2(S2

k,0)

= 1. To finish the proof and show that (4.8) is dominated by the right side of (4.5), it suf-
fices to see that∑

k

|〈ψkF̃ , λ
−dF−1

1/λ(g̃1,k)〉| . λ−d/p(λR)−1/2
|E|1/p

′

‖F‖L∞(Rd ),

which in turn follows from∑
k

∫
|ψk1Eλ−dF−1

1/λ(g̃1,k)T2g2| . λ−d/p(λR)−1/2
|E|1/p

′

.

Now reverse the roles of g1 and g2 from the previous step, treating {g̃1,k}k as a fixed
sequence and redefine T = TE,{g1,k} by T g2 = {ψk1EF−1

1/λ(g̃1,k)T2g2}k so that it suffices
to show

‖T ‖L2(Rd−1)→l1kL
1(Rd ) . λd−d/p(λR)−1/2

|E|1/p
′

.

Let {Fk}k be any sequence of functions satisfying supk ‖Fk‖L∞(Rd ) ≤ 1 and set F̃k =
ψk1Eλ−dF−1

1/λ(g̃1,k)Fk . By duality, the desired bound on T will follow from∥∥∥T ∗(∑
k

Fk

)∥∥∥
L2(Rd−1)

. λ−d/p(λR)−1/2
|E|1/p

′

,

or equivalently ∑
k,k′

〈T2T
∗

2 (F̃k), F̃k′〉 . (λ−d/p(λR)−1/2
|E|1/p

′

)2.

Observe that∑
k

‖F̃k‖L1(Rd ) ≤
∑
k

‖Fk‖L∞(Rd )

∫
|ψk1Eλ−dF−1

1/λ(g̃1,k)| dw

≤

(∫
E

∑
k

ψ
2(d+1)
d+3

k

) d+3
2(d+1)
‖λ−dF−1

1/λ(g̃1,k)‖
`

2(d+1)
d−1

k L
2(d+1)
d−1 (Rd )

. (4.9)

By finite overlap of the supp(ψk), the first factor on the right is seen to be bounded by

|E|
d+3

2(d+1) . Similar to before, an application of the Stein–Tomas theorem for S1
k gives

‖λ−dF−1
1/λ(g̃1,k)‖

`

2(d+1)
d−1

k L
2(d+1)
d−1 (Rd )

. λ
−
d(d−1)
2(d+1) (λR)−1/2

‖g̃1,k‖`2
kL

2(S1
k,0)

(cf. the formula for F−1
1/λ in (4.7)) where we use the fact that `2

k ↪→ `
2(d+1)
d−1
k . Decomposing

the integral kernel of T2T
∗

2 as a sum KR
+KR as before, we may handle the contribution

ofKR by using (4.9) to reason analogously to the argument above. We are thus reduced to
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handling the contribution ofKR and denote the corresponding operator as PR . As before,
we restrict attention to the diagonal terms, and are thus reduced to seeing that∑

k

λd |〈F1/λ(PR(F̃k)),F1/λ(F̃k)〉| . (λ−d/p(λR)−1/2
|E|1/p

′

)2.

Since supp(F̃k) ⊂ supp(ψk), this analogously reduces to showing that∑
k

∞∑
l=0

2−lN‖F1/λ(F̃k)‖
2
L2(S2

k,l)
. (λ−d/p(λR)−1

|E|1/p
′

)2,

where this time S2
k,l denotes the (λR)−12l-neighborhood of the hypersurface S2

k =

{∇φ2(wk, ξ) : ξ ∈ Q}. We again restrict attention to the l = 0 case, and let {g̃2,k}k
be a sequence such that supp(g̃2,k) ⊂ S

2
k,0 and

∑
k ‖g̃2,k‖

2
L2(S2

k,0)
= 1. Observe that

∑
k

|〈F̃k, λ
−dF−1

1/λ(g̃2,k)〉| .
∑
k

‖Fk‖L∞(Rd )

∫
|λ−2dψk1EF−1

1/λ(g̃1,k)F
−1
1/λ(g̃2,k)| dw,

and it suffices to show that the right hand side is bounded by λ−d/p(λR)−1
|E|1/p

′

. But
each term on the right is bounded by

|E|1/q
′

(∫
|λ−2dψkF

−1
1/λ(g̃1,k)F

−1
1/λ(g̃2,k)|

q dw

)1/q

.

Rescaling w 7→ Rw and applying the bilinear estimates (4.1) (or even those in [34])
shows the preceding term is bounded by

|E|1/q
′

Rd/q(λR)−d/q+α(λR)−1
‖g̃1,k‖L2(S1

k,0)
‖g̃2,k‖L2(S2

k,0)
.

Taking the sum in k and applying Cauchy–Schwarz completes the proof once we observe
that

|E|1/q
′

λ−d/q+αRα . |E|1/p
′

λ−d/p.

Recalling that R ≈ λ−1(λd |E|)
2
d−1 (

d+3
d+1−

2
p′
)
= λ−1(λd |E|)

2
d−1 (

2
p
−
d−1
d+1 ) this inequality is

equivalent to

|E|−1/qλ−d/q(λd |E|)
2α
d−1 (

2
p
−
d−1
d+1 ) . |E|−1/pλ−d/p,

which in turn can be rearranged as

(λd |E|)
2α
d−1 (

2
p
−
d−1
d+1 ) . (λd |E|)1/q−1/p.

But since λd |E| & 1, this follows once it is observed that (4.3) is equivalent to

2α
d − 1

(
2
p
−
d − 1
d + 1

)
<

1
q
−

1
p
.

Even though we only need the weaker condition (4.3) to conclude the argument, the
stronger hypothesis (4.2) is used above in a significant way to ensure that λR2

≤ 1.
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5. L2-estimates for shrinking tubes

By Corollary 1.2, (1.6) follows from (1.5). Therefore, if, as before, Π denotes the space
of unit-length geodesics, we must show that if (M, g) has nonpositive sectional curvature,
then if ε > 0 is fixed there is a 3ε <∞ such that∫

T
λ−1/2 (γ )

|eλ|
2 dx ≤ ε, λ ≥ 3ε, γ ∈ Π. (5.1)

Here, as before, we are denoting the volume element associated to the metric simply by
dx.

We shall first fix γ ∈ Π and prove the special case∫
T
λ−1/2 (γ )

|eλ|
2 dx ≤ ε, λ ≥ 3ε. (5.2)

After doing this we shall see that we can adapt its proof using the compactness of Π to
obtain the estimates (5.1) which are uniform as γ ranges over this space.

To prove these estimates, we shall want to use a reproducing operator which is similar
to the local one, χλ, that was used to prove Theorem 1.1. This operator was a local one,
but to be able to take advantage of our curvature assumptions and make use of the method
of time-averaging, it will be convenient to use a variant that is in effect scaled in the
spectral parameter.

To this end, let us fix a real-valued function ρ ∈ S(R) satisfying

ρ(0) = 1, ρ̂(t) = 0 if |t | ≥ 1/4 and ρ̂(t) = ρ̂(−t). (5.3)

Then for a given fixed T � 1 we have

ρ
(
T
(
λ−

√
1g
))
eλ = eλ.

As a result, we would have (5.2) if we could show that there is a uniform constant A =
A(M, g) such that whenever T � 1 is fixed there is a constant AT < ∞ such that for
λ ≥ 1 we have∥∥ρ(T (λ−√1g))f ∥∥L2(T

λ−1/2 (γ ))
≤ (AT −1/4

+ AT λ
−1/8)‖f ‖L2(M). (5.4)

Since ρ
(
T
(
λ−

√
1g
))
: L2(M)→ L2(M) is self-adjoint, by duality, (5.4) is equivalent

to∥∥ρ(T (λ−√1g))h∥∥L2(M)
≤ (AT −1/4

+ AT λ
−1/8)‖h‖L2(M) if supph ⊂ Tλ−1/2(γ ).

(5.5)
If we now let

m(τ) = (ρ(τ ))2, (5.6)
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we can square the right side of (5.5) to see that whenever h is supported in the tube
Tλ−1/2(γ ) we have∥∥ρ(T (λ−√1g))h∥∥2

L2(M)
=
〈
m
(
T
(
λ−

√
1g
))
h, h

〉
≤
∥∥m(T (λ−√1g))h∥∥L2(T

λ−1/2 (γ ))
‖h‖L2(T

λ−1/2 (γ ))
.

Hence our desired inequalities (5.2), (5.4) and (5.5) would all follow from∥∥m(T (λ−√1g))h∥∥L2(T
λ−1/2 (γ ))

≤ (CT −1/2
+ CT λ

−1/4)‖h‖L2(M) if supph ⊂ Tλ−1/2(γ ), (5.7)

with C and CT being equal to A2 and A2
T , respectively.

Since, by (5.3),
m̂(τ ) = (2π)−1(ρ̂ ∗ ρ̂)(τ )

is supported in |τ | < 1, we can write

m
(
T
(
λ−

√
1g
))
=

1
2πT

∫ T

−T

m̂(τ/T )eiλτ e−iτ
√
1g dτ.

After perhaps multiplying the metric, we may assume that the injectivity radius of the
manifold is larger than 10. Let us then fix an even bump function β ∈ C∞0 (R) satisfying

β(τ) = 1, |τ | ≤ 3/2, and β(τ) = 0, |τ | ≥ 2.

We then can split
m
(
T
(
λ−

√
1g
))
= Rλ +Wλ

where (suppressing the T -dependence)

Wλ =
1

2πT

∫ T

−T

(1− β(τ))m̂(τ/T )eiλτ e−iτ
√
1g dτ,

and if rT (τ ) denotes the inverse Fourier transform of τ 7→ β(τ)m̂(τ/T ),

Rλh = T
−1rT

(
λ−

√
1g
)
h.

Clearly, |rT (τ )| ≤ B for some B independent of T ≥ 1, and therefore

‖Rλf ‖L2(M) ≤ BT
−1
‖f ‖L2(M), T ≥ 1.

As a result, we would obtain (5.7) if we could show that

‖Wλh‖L2(T
λ−1/2 (γ ))

≤ (CT −1/2
+ CT λ

−1/4)‖h‖L2 if supph ⊂ Tλ−1/2(γ ). (5.8)

By Euler’s formula, if m̃T denotes the inverse Fourier transform of T −1(1−β(τ))m̂(τ/T ),
we have

Wλ =
1

2πT

∫ T

−T

(1− β(τ))m̂(τ/T )eiλτ cos
(
τ
√
1g
)
dτ + m̃T

(
λ+

√
1g
)
.
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Since m̃T (λ +
√
1g) has a kernel which, for T ≥ 1, is OT ((1 + λ)−N ) for every N =

1, 2, . . . as m̃T ∈ S(R), we conclude that we would obtain (5.8) if we could prove that

‖Sλh‖L2(T
λ−1/2 (γ ))

≤ (CT −1/2
+ CT λ

−1/4)‖h‖L2 if supph ⊂ Tλ−1/2(γ ), (5.9)

with

Sλ =
1

2πT

∫ T

−T

(1− β(τ))m̂(τ/T )eiλτ cos
(
τ
√
1g
)
dτ. (5.10)

It is at this point that we shall finally use our hypothesis that (M, g) has nonposi-
tive sectional curvature. By the Cartan–Hadamard theorem (see [8], [12]), for each point
P ∈ M , the exponential map at P , expP , sending TPM , the tangent space at P , to M
is a universal covering map. For our sake, it is natural to take P to be the center of our
unit-length geodesic segment γ . Thus, with this choice, if we identify Rd with TPM , then

κ = expP : Rd ' TPM → M (5.11)

is a covering map.
If g̃ = κ∗g denotes the pullback via κ of the metric g to Rd , it follows that κ is

a local isometry. We let dg̃(y, z) denote the Riemannian distance with respect to g̃ of
y, z ∈ Rd . By the Cartan–Hadamard theorem there are no conjugate points for either
(M, g) or (Rd , g̃). Also, the image under κ of any geodesic in (Rd , g̃) is one in (M, g). If
{γ (t) : t ∈ R} denotes the parameterization by arc length of the extension of our geodesic
segment γ ∈ Π , let γ̃ = {γ̃ (t) : t ∈ R} denote the lift of this extension, which is the
unique geodesic in (Rd , g̃) that passes through the origin and satisfies κ(γ̃ (t)) = γ (t),
t ∈ R.

Next we recall that the deck transforms are the set of diffeomorphisms α : Rd → Rd
for which

κ ◦ α = κ.

The collection of these maps form a group 0. Since α∗g̃ = g̃, α ∈ 0, any deck transform
preserves angles and distances. Consequently, the image of any geodesic in (Rd , g̃) under
a deck transform is also a geodesic in this space. As a result, the collection of all α ∈ 0
for which α(γ̃ ) = γ̃ is a subgroup of 0, which is called the stabilizer subgroup of γ̃ ,
which we denote by Stab(γ̃ ). If {γ (t) : t ∈ R} is not a periodic geodesic, i.e., if there
is no t0 > 0 such that γ (t + t0) = γ (t) for all t ∈ R, then Stab(γ̃ ) is just the identity
element in 0. If the extension of γ ∈ Π is periodic with minimal period t0 > 0 then
Stab(γ̃ ) is a cyclic subgroup which we can write as {α` : ` ∈ Z}, where α` is determined
by α`(γ̃ (t)) = γ̃ (t + `t0), ` = 0,±1,±2, . . . . Thus, restricted to γ̃ , α` just involves
shifting the geodesic γ̃ (t) by ` times its period, and Stab(γ̃ ) is generated by α1.

Next, let

DDir = {ỹ ∈ Rd : dg̃(0, ỹ) < dg̃(0, α(ỹ)), ∀α ∈ 0, α 6= Identity}

be the Dirichlet domain for (Rd , g̃). We can then add to DDir a subset of ∂DDir = DDir \

Int(DDir) to obtain a natural fundamental domain D, which has the property that Rd is
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the disjoint union of the α(D) as α ranges over 0 and {ỹ ∈ Rd : dg̃(0, ỹ) < 10} ⊂ D

since we are assuming that the injectivity radius of (M, g) is more than ten.
Given x ∈ M , let x̃ ∈ D be the unique point in our fundamental domain for which

κ(x̃) = x. We then have (see e.g. [28, §3.6]) that the kernel of cos
(
τ
√
1g
)

can be written
as (

cos
(
τ
√
1g
))
(x, y) =

∑
α∈0

(
cos τ

√
1g̃
)
(x̃, α(ỹ)), (5.12)

where cos
(
τ
√
1g̃
)
: L2(Rd , g̃) → L2(Rd , g̃) is the cosine transform associated with g̃.

Thus, if dVg̃ is the associated volume element and f ∈ C∞0 (R
d) then

u(τ, x̃) =

∫
Rd

(
cos τ

√
1g̃
)
(x̃, z̃)f (z̃) dVg̃(z̃)

is the solution of the Cauchy problem (with Dτ = −i∂t )

(D2
τ −1g̃)u = 0, u|τ=0 = f, ∂τu|τ=0 = 0.

Therefore, by the Huygens principle,(
cos τ

√
1g̃
)
(x̃, z̃) = 0 if dg̃(x̃, z̃) > |τ |. (5.13)

Also, this kernel is smooth when dg̃(x̃, z̃) 6= |τ |, i.e.,

sing supp
(
cos τ

√
1g̃
)
( · , · ) ⊂ {(x̃, z̃) ∈ Rd × Rd : dg̃(x̃, z̃) = |τ |}. (5.14)

To proceed, we need a result which follows from the Hadamard parametrix and sta-
tionary phase:

Lemma 5.1. Let m be as in (5.3) and (5.6), and, as above, assume that β ∈ C∞0 (R)
satisfies β(τ) = 1, |τ | < 3/2 and β(τ) = 0, |τ | ≥ 2. If λ, T ≥ 1 and x̃, ỹ ∈ Rd , then

1
2πT

∫ T

−T

(1− β(τ))m̂(τ/T )eiλτ
(
cos τ

√
1g̃
)
(x̃, ỹ) dτ

= ρ(x, y)
λ(d−1)/2

T

∑
±

a±(λ, T ; dg̃(x̃, ỹ))e
±iλdg̃(x̃,ỹ) + R(λ, T , x̃, ỹ), (5.15)

where ρ ∈ L∞(Rd × Rd) ∩ C∞(Rd × Rd),

a±(λ, T ; r) = 0, r /∈ [1, T ], |∂
j
r a±(λ, T ; r)| ≤ Cj r

−(d−1)/2−j , (5.16)

with constants Cj independent of T , λ ≥ 1, and

R(λ, T ; x̃, ỹ) = 0 if dg̃(x̃, ỹ) > T ,

|R(λ, T ; x̃, ỹ)| ≤ CT ,Kλ
−2−(d−1)/2 if x̃, ỹ ∈ K b Rd .

(5.17)
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This lemma is standard and can essentially be found in [9], [32] or [28, §3.6]. So let
us postpone its proof to the end of the section and focus now on using it to help us to
prove (5.9).

If we combine (5.10) and (5.12), we can write the kernel of our operator as

Sλ(x, y) =
1

2πT

∑
α∈0

∫ T

−T

(1− β(τ)) m̂(τ/T ) eiλτ
(
cos τ

√
1g̃
)
(x̃, α(ỹ)) dτ, (5.18)

with, as in (5.12), x̃ and ỹ being the unique points in our fundamental domain having the
property that x = κ(x̃) and y = κ(ỹ), respectively.

In view of (5.13) the number of nonzero summands in (5.18) is finite, but if the sec-
tional curvatures of (M, g) are strictly negative, the number of such terms grows expo-
nentially with T . Therefore, as in [32] and [9], it is convenient and natural to split the sum
into the terms in the stabilizer group for γ̃ and everything else. So let us write

Sλ(x, y) = S
Stab
λ (x, y)+ SOsc

λ (x, y), (5.19)

where

SStab
λ (x, y) =

1
2πT

∑
α∈Stab(γ̃ )

∫ T

−T

(1− β(τ))m̂(τ/T )eiλτ
(
cos τ

√
1g̃
)
(x̃, α(ỹ)) dτ,

(5.20)

SOsc
λ (x, y) =

1
2πT

∑
α∈0\Stab(γ̃ )

∫ T

−T

(1− β(τ))m̂(τ/T )eiλτ
(
cos τ

√
1g̃
)
(x̃, α(ỹ)) dτ.

(5.21)

We shall also call the operator associated with the second term on the right side of (5.19)
SOsc
λ since we shall be able to use oscillatory integral operator bounds to control it.

The other piece is very easy to estimate. We claim that

‖SStab
λ h‖L2(T

λ−1/2 (γ ))
≤ (CT −1/2

+ CT λ
−2)‖h‖L2 if supph ⊂ Tλ−1/2(γ ). (5.22)

By Young’s inequality, this would be a consequence of the following estimate for the
kernel:

|SStab
λ (x, y)| ≤ CT −1/2λ(d−1)/2

+ CT λ
−2+(d−1)/2, (5.23)

since we may restrict to (x, y) ∈ Tλ−1/2(γ )×Tλ−1/2(γ ). If our γ ∈ Π is not a segment of a
periodic geodesic in (M, g) then Stab(γ̃ ) is just the identity element, in which case (5.23)
follows trivially from Lemma 5.1. Otherwise, if the geodesic has period t0 > 0 then as
noted before Stab(γ̃ ) = {α`}`∈Z where α`(γ̃ (t)) = γ̃ (t + `t0). Since dg̃(α(w̃), α(z̃)) is
uniformly bounded as w̃ and z̃ range overD and α over 0, Lemma 5.1 also yields, in this
case,

|SStab
λ (x, y)| ≤ CT −1

∑
1≤`t0≤2T

λ(d−1)/2(1+ `)−(d−1)/2
+ CT λ

(d−1)/2−2, (5.24)
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using (5.16) (with j = 0) to obtain the first term on the right and (5.17) to obtain the
other term. Since d ≥ 2, (5.24) implies (5.23). For later use, note that since the period t0
must be larger than 10, in view of our assumption on the injectivity radius of (M, g), the
constants in (5.22) can be chosen to be independent of γ ∈ Π .

In view of (5.22), the proof of (5.9) would be complete if we could show that

‖SOsc
λ h‖L2(T

λ−1/2 (γ ))
≤ CT λ

−1/4
‖h‖L2 if supph ⊂ Tλ−1/2(γ ). (5.25)

By Lemma 5.1,

SOsc
λ (x, y) = ρ(x, y)

λ(d−1)/2

T

∑
α∈0\Stab(γ̃ )

a±(λ, T ; dg̃(x̃, α(ỹ)))e
±iλdg̃(x̃,α(ỹ))+Rλ(x, y),

(5.26)
where, with bounds independent of γ ∈ Π ,

|Rλ(x, y)| ≤ CT λ
−2+(d−1)/2. (5.27)

By invoking Young’s inequality one more time, we find that by (5.26) and (5.27) we
would have (5.25) if we could show that(∫

T
λ−1/2 (γ )

∣∣∣∣∫
T
λ−1/2 (γ )

ρ(x, y)a±(λ, T ; dg̃(x, α(y)))e
±iλdg̃(x,α(y))h(y) dy

∣∣∣∣2 dx)1/2

≤ Cαλ
−(d−1)/2−1/4

‖h‖L2 , α ∈ 0 \ Stab(γ̃ ). (5.28)

Here, to simplify the notation to follow, as we may, we are identifying Tλ−1/2(γ ) with its
preimage in D via κ . So we have lifted our calculation to Rd , and dy denotes the volume
element coming from the metric g̃.

To prove this we shall use the following result which is an immediate consequence of
Hörmander’s L2-oscillatory integral theorem in [20] (see also [26, Theorem 2.1.1]).

Lemma 5.2. Let
φ(z; x, y) ∈ C∞(Rm × Rd−1

× Rd)

be real and
a(z; x, y) ∈ C∞0 (R

m
× Rd−1

× Rd).

Assume that the mixed Hessian in the (x, y) variables of φ satisfies

Rank
(

∂2

∂xj∂yk
φ(z; x, y)

)
≡ d − 1 on supp a.

Then there is a uniform constant C such that for λ ≥ 1,(∫
Rd−1

∣∣∣∣∫
Rd
eiλφ(z;x,y)a(z; x, y)f (y) dy

∣∣∣∣2 dx)1/2

≤ Cλ−(d−1)/2
‖f ‖L2(Rd ),

where all the integrals are taken with respect to Lebesgue measure.
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We also require the following simple geometric lemma so that we can use Lemma 5.2 to
exploit the fact that our tubes only have width λ−1/2 to obtain (5.28).

Lemma 5.3. Suppose that α ∈ 0 \ Stab(γ̃ ) and x0, y0 ∈ γ̃ ∩D. Then either α(y0) /∈ γ̃

or α−1(x0) /∈ γ̃ or both.

Proof of Lemma 5.3. Since α ∈ 0 \ Stab(γ̃ ), it follows that γ̃ and α(γ̃ ) are distinct or
intersect at a unique point P = P(γ̃ , α) (by the Cartan–Hadamard theorem). In the first
case both α(y0) /∈ γ̃ and α−1(x0) /∈ γ̃ . We also have the desired conclusion if P 6= α(y0),
for then we must have α(y0) /∈ γ̃ as α(y0) ∈ α(γ̃ ).

Suppose that we are in the remaining case where γ̃ ∩α(γ̃ )={α(y0)}. Since x0, y0∈D

and D ∩ α(D) = ∅, it follows that x0 6= α(y0). Therefore, as x0 ∈ γ̃ , we must have
x0 /∈ α(γ̃ ). Thus, in this case, α−1(x0) /∈ γ̃ , meaning that we have the desired conclusion
for this case as well. ut

To use these two lemmas we require some simple facts about the Riemannian distance
function dg̃(x, z). We recall that (Rd , g̃) has no conjugate points. Thus, the d×d Hessian
∂2

∂xj ∂zk
dg̃(x, z) has rank identically equal to d − 1 away from the diagonal.

With this in mind, let us fix points x0 and y0 on our unit geodesic segment γ ⊂ D. We
shall now prove a local version of our remaining estimate (5.28). By Lemma 5.3, for our
given α ∈ 0 \ Stab(γ̃ ), we know that either α(y0) /∈ γ̃ or α−1(x0) /∈ γ̃ . For the moment,
let us assume the former, i.e.,

α(y0) /∈ γ̃ . (5.29)

Then the geodesic passing through z0 = α(y0) and x0 ∈ γ ⊂ γ̃ intersects γ transversally.
We may therefore choose geodesic normal coordinates in Rd vanishing at x0 so that γ̃ is
the first coordinate axis, i.e.

γ̃ = {(t, 0, . . . , 0) : t ∈ R},

and moreover if x′ = (x1, . . . , xd−1) are the first d−1 coordinates of x in this coordinate
system then

Rank
(

∂2

∂x′j∂zk
dg̃((x

′, 0), z)
)
= d − 1 at x′ = 0 and z = z0 = α(y0).

By Gauss’ lemma this will be the case if the geodesic through the origin and z0 intersects
the hyperplane {x : xn = 0} transversally as shown in Figure 1 below, which can be
achieved after performing a rotation fixing the first coordinate axis if needed. Since α :
Rd → Rd is a diffeomorphism it follows that given our fixed points x0, y0 ∈ γ ⊂ γ̃ ∩D,
we can find δ > 0 such that, in the above coordinates,

Rank
(

∂2

∂x′j∂yk
dg̃((x

′, xn), α(y))

)
= d − 1 if x ∈ Bδ(x0) and y0 ∈ Bδ(y0), (5.30)

with Bδ(w) denoting the geodesic ball of radius δ about x ∈ Rd .
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γ ⊂ γ̃

α(y0) = z0

x0

Fig. 1. Transversal intersections.

Next, it follows from (5.26) and Lemma 5.2 that, in our coordinates, for each fixed
value of xn, we have(∫
{x′:(x′,xn)∈Tλ−1/2 (γ )∩Bδ(x0)}

∣∣∣∣∫
T
λ−1/2 (γ )∩Bδ(y0)

ρ(x, α(y))a±(λ, T ; dg̃(x, α(y)))

× e±iλdg̃(x,α(y))h(y) dy

∣∣∣∣ dx′)1/2

≤ Cαλ
−(d−1)/2

(∫
|h(y)|2 dy

)1/2

.

Since |xn| . λ−1/2 in Tλ−1/2(γ ), from this we deduce that, under our assumption (5.29),(∫
T
λ−1/2 (γ )∩Bδ(x0)

∣∣∣∣∫
T
λ−1/2 (γ )∩Bδ(y0)

ρ(x, α(y))a±(λ, T ; dg̃(x, α(y)))

× e±iλdg̃(x,α(y))h(y) dy

∣∣∣∣ dx)1/2

≤ Cαλ
−(d−1)/2λ−1/4

(∫
|h(y)|2 dy

)1/2

. (5.31)

Lemma 5.3 tells us that if we do not have (5.29) then

α−1(x0) /∈ γ̃ . (5.32)

We claim that for our fixed points x0, y0 ∈ γ we can find δ > 0 such that (5.31) remains
valid for this case as well. To do this, we just use the fact that our α ∈ 0 \ Stab(γ̃ ) is an
isometry and therefore

dg̃(x, α(y)) = dg̃(α
−1(x), y).

Consequently, since α−1
∈ 0 \ Stab(γ̃ ), we obtain (5.31) under the assumption (5.32)

since it is essentially just the dual version of the case we just handled, and so follows
from the above argument after taking adjoints.

Since we have shown that (5.31) holds either under assumption (5.29) or (5.32),
Lemma 5.2 tells us that given any two fixed points x0, y0 ∈ γ we can find a δ > 0
such that (5.31) is valid. By the compactness of our unit geodesic segment γ , this implies
(5.28), which completes the proof of the estimate (5.2) for our fixed γ ∈ Π .

It is straightforward to see how to obtain the stronger estimate (5.1), which involves
uniform bounds over Π , by using the proof of (5.2). We use the fact that if T � 1 is
fixed and if γ ∈ Π is fixed then there is a neighborhood N (γ ) of γ in Π such that
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if α ∈ 0 \ Stab(γ̃ ) and the geodesic distance between our fundamental domain D and
its image α(D) is ≤ 2T , then also α /∈ 0\Stab (γ̃0) for any γ0 ∈ N (γ ). This follows
from the fact that there are only finitely many α ∈ 0 for which the distance between D
and α(D) is ≤ 2T , and if α is not a stabilizer for γ̃ then it is not a stabilizer for nearby
geodesics either.

Because of this and the uniform dependence on the smooth parameter z in Lemma 5.2,
if we define SOsc,γ

λ to be the operator whose kernel is given by (5.21), we have the uniform
bounds

‖S
Osc,γ
λ h‖L2(T

λ−1/2 (γ ))
≤ CT λ

−1/4
‖h‖L2 if γ0 ∈ N (γ ) and supph ⊂ Tλ−1/2(γ0).

If SStab,γ
λ = Sλ − S

Osc,γ
λ is then defined using γ , then the proof of (5.22) clearly also

yields the following variant:

‖S
Stab,γ
λ h‖L2(T

λ−1/2 (γ ))
≤ (CT −1/2

+ CT λ
−2)‖h‖L2

if γ0 ∈ N (γ ) and supph ⊂ Tλ−1/2(γ0).

Together these two estimates imply the analog of (5.1) where, instead of having the
geodesic segments range over Π , we have them range over N (γ ) and 3ε = 3ε(N (γ ))
depends on N (γ ). By the compactness of Π , this in turn yields (5.1).

To wrap things up, we also need to prove Lemma 5.1.

Proof of Lemma 5.1. Since m̂(τ ) = 0 when |τ | > 1/2 it follows that the left side
of (5.15),

1
2πT

∫ T

−T

(1− β(τ))m̂(τ/T )eiλτ
(
cos τ

√
1g̃
)
(x̃, ỹ) dτ, (5.33)

vanishes when dg̃(x̃, ỹ) > T . Since β(τ) = 1 for |τ | ≤ 3/2, by (5.14), it is
ON,T ((1+ λ)−N ) for any N = 1, 2, . . . if dg̃(x̃, ỹ) ≤ 1. Therefore, we need only prove
the assertions in Lemma 5.1 when 1 ≤ dg̃(x̃, ỹ) ≤ T .

To prove this, we shall use the Hadamard parametrix (see e.g. [21] and [28, Chapter
2]). Since (Rd , g̃) has nonpositive curvature, for 0 ≤ τ ≤ T we can write(

cos τ
√
1g̃
)
(x̃, ỹ)= ρ(x̃, ỹ)(2π)−d

∫
Rd
eidg̃(x̃,ỹ)ξ1 cos τ |ξ | dξ

=

∑
±

∫
Rd
eidg̃(x̃,ỹ)ξ1α±(τ, x̃, ỹ, |ξ |) e

±iτ |ξ | dξ+R(τ, x̃, ỹ), (5.34)

where the leading Hadamard coefficient, ρ, is smooth and uniformly bounded (by the
curvature hypothesis), and ifm ∈ N is fixed we can have ∂jτ R(τ, x̃, ỹ) ∈ L∞loc, 0 ≤ j ≤ m,
and also

|∂
β

τ,x̃,ỹ
∂
j
r α±(τ, x̃, ỹ, r)| ≤ CT ,K,β,j r

−2−j

if r ≥ 1, 0 ≤ τ ≤ T , j = 0, 1, 2, . . . , and x̃, ỹ ∈ K b Rd . (5.35)
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We also recall (see e.g. [26]) that we can write the Fourier transform of Lebesgue
measure on the sphere in Rd as∫

Sd−1
eix·ω dσ(ω) = |x|−(d−1)/2(c+(|x|)e

i|x|
+ c−(|x|)e

−i|x|), (5.36)

where for each j = 0, 1, 2, . . . , we have

|∂
j
r c+(r)| + |∂

j
r c−(r)| ≤ Cj r

−j , r ≥ 1. (5.37)

If in (5.33) we replace
(
cos τ

√
1g̃
)
(x̃, ỹ) by the first term in (5.34), the resulting

expression equals ρ(x̃, ỹ) times a fixed multiple of

1
2πT

∫ T

−T

∫
Rd
m̂(τ/T )eiλτ cos(τ |ξ |)eidg̃(x̃,ỹ)ξ1 dξdτ

=

∑
±

1
2πT

∫ T

−T

∫
∞

0
m̂(τ/T )eiλτ cos(τ r)e±irdg̃(x̃,ỹ)c±(dg̃(x̃, ỹ)r)

×
r(d−1)/2

(dg̃(x̃, ỹ))
(d−1)/2 dr dτ (5.38)

minus

∑
±

1
2πT

∫ 2

−2

∫
∞

0
β(τ)m̂(τ/T )eiλτ cos(τ r)e±irdg̃(x̃,ỹ)c±(dg̃(x̃, ỹ)r)

×
r(d−1)/2

(dg̃(x̃, ỹ))
(d−1)/2 dr dτ. (5.39)

If we replace cos(τ r) by e−iτ r on the right side of (5.38), the resulting expression equals
the sum over ± of∫

∞

0
m(T (λ− r))c±(dg̃(x̃, ỹ)r)e

±irdg̃(x̃,ỹ)
r(d−1)/2

(dg̃(x̃, ỹ))
(d−1)/2 dr

=
λ(d−1)/2

T
e±iλdg̃(x̃,ỹ)a±(λ, T ; dg̃(x̃, ỹ)),

where, using the fact that m ∈ S(R) and (5.37), a± satisfies (5.16). If in (5.38) we re-
place cos(τ r) by eiτ r , then this argument also implies that the resulting expression is
ON,T ((1 + λ)−N ) for any N = 1, 2, . . . . Thus, modulo such an error, ρ times the terms
on (5.38) can be written as the first term on the right side of (5.15) with (5.16) being valid.
Since this argument shows that the same is the case for (5.39), we conclude that the first
term on the right side of (5.34), up to ON,T ((1+ λ)−N ) errors, gives us the first term on
the right side of (5.15).

This argument and (5.35) also shows that if in (5.15) we replace
(
cos τ

√
1g̃
)
(x̃, ỹ)

by the second term on the right side of (5.34), then we get a term obeying the bounds in
(5.17). Since, as noted, we can take the remainder term in (5.34) to satisfy, for a given
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m ∈ N, ∂jτ R(τ, x̃, ỹ) ∈ L∞loc, j = 0, 1, . . . , m, we also see that if we choose m large
enough, the same is true for it. ut
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