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Abstract. We obtain a presentation by generators and relations of any Nichols algebra of diagonal
type with finite root system. We prove that the defining ideal is finitely generated. The proof is
based on Kharchenko’s theory of PBW bases of Lyndon words. We prove that the lexicographic
order on Lyndon words is convex for PBW generators and so the PBW basis is orthogonal with
respect to the canonical non-degenerate form associated to the Nichols algebra.
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1. Introduction

The interest in pointed Hopf algebras has grown since the appearance of quantized
enveloping algebras [Dr, Ji]. The finite-dimensional analogues, called small quantum
groups, were introduced and described by Lusztig [L1, L2].

The lifting method of Andruskiewitsch and Schneider is the leading method for the
classification of finite-dimensional pointed Hopf algebras. The method depends on an-
swers to some questions, including the following one:

Question 1.1 ([And, Question 5.9]). Given a braided vector space of diagonal type, de-
termine if the associated Nichols algebra is finite-dimensional, and in that case compute
its dimension. Give a nice presentation by generators and relations.

The first part of this question has been answered by Heckenberger [H2], who gives a list of
all diagonal braidings whose associated Nichols algebra has a finite root system, but nei-
ther an explicit formula for the dimension nor a finite set of defining relations are given.
Some of them are Lusztig’s examples, which are associated with the so-called Cartan
braidings and for which the dimension and a presentation by generators and relations are
known. Standard braidings were introduced in [AA] and they constitute a family which
properly includes the family of Cartan braidings. Nichols algebras with standard braid-
ings have been presented by generators and relations in [Ang1], where also an explicit
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formula for the dimension has been given. Another result about presentation of Nichols
algebras is given in [Y] for quantized enveloping algebras associated with semisimple Lie
superalgebras, and for quantized enveloping algebras of Lie algebras [K1]. Some other
preliminary considerations on the relations of a Nichols algebra of diagonal type appear
in [He], and in [H3] for the rank-two case.

Using the lifting method Andruskiewitsch and Schneider [AS3] have classified finite-
dimensional pointed Hopf algebras whose group of group-like elements is abelian of
order not divisible by some small primes; all the possible such braidings are of finite
Cartan type. They confirmed the following conjecture for H0 = k0, 0 an abelian group
as above:

Conjecture 1.2 ([AS1, Conj. 1.4]). Let H be a finite-dimensional pointed Hopf algebra
over k. Then H is generated by group-like and skew-primitive elements.

This result was proved within the proof of the main theorem in [AS3] using a presentation
by generators and relations. The conjecture was recently proved in a more general context
[AnGa], when the braiding is of standard type. The proof also uses a presentation by
generators and relations.

Because of the braidings of Cartan type we see that there exists a close relation be-
tween pointed Hopf algebras and the classical Lie theory. In this direction the notions
of the Weyl groupoid and the root system [H1, HS, HY] associated to a Nichols alge-
bra B(V ) of diagonal type have shown to be good extensions of Weyl groups and root
systems associated to semisimple Lie algebras. The root system is obtained as the set of
degrees of the generators of any PBW basis, and controls coideal subalgebras between
other structures associated to B(V ) [HS].

In the classical case, convex orders over the root system were described in order to
characterize the quantized enveloping algebras Uq(g) for g semisimple [KhT, Le, R2],
and to obtain Lusztig isomorphisms in the affine case [Be]. This kind of orders was first
introduced in [Z]. A characterization of convex orders is therefore necessary, and it has
been given for finite [P] and affine [I] root systems.

It seems natural to consider analogues of convex orders for Nichols algebras of di-
agonal type, and this is part of our work. As a consequence we obtain our main result,
Theorem 4.9: we obtain a presentation by generators and relations for any Nichols alge-
bra of diagonal type whose root system is finite. We obtain two kinds of relations that are
enough to present B(V ): powers of root vectors (generators of a PBW basis), and some
generalizations of quantum Serre relations which express the braided bracket of two root
vectors as a linear combination of other root vectors in an explicit way (Lemmata 4.7, 4.5).

Theorem 4.9 follows by consideration of PBW bases as in [K1]. Such PBW bases con-
sist of homogeneous polynomials associated to Lyndon letters (called hyperletters) and
inherit the lexicographical order. Another important element is a characterization of con-
vex orders for generalized root systems. Such orders are related to reduced expressions of
elements of the Weyl groupoid. These reduced expressions also characterize right coideal
subalgebras of Nichols algebras, so we can relate convex orders and coideal subalgebras.
In particular, the following result holds by Theorem 4.9:
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Theorem 1.3. Let V be a braided vector space of diagonal type whose associated root
system is finite, and let I (V ) be the ideal of T (V ) such that B(V ) = T (V )/I (V ). Then
I (V ) is finitely generated.

Theorem 4.9 extends the presentation by generators and relations of Nichols algebras
of standard type (Remark 5.4), and gives a new proof for braidings of Cartan type. In
particular we obtain the classical presentation of the quantized enveloping algebras Uq(g)
and Lusztig’s small quantum groups uq(g), with a different proof.

This result was used recently to obtain a minimal presentation of Nichols algebras of
diagonal type, and this presentation was crucial to confirming Conjecture 1.2 when the
group of group-like elements is abelian [Ang2].

The plan of this article is the following. In Section 2 we recall the definition of
a Nichols algebra. We also consider results from [K1, R2] concerning PBW bases for
Nichols algebras of diagonal type.

In Section 3 we deal with root systems and coideal subalgebras of Nichols algebras of
diagonal type. In Subsection 3.1 we recall the notion of Weyl groupoid and root system,
and give some properties of these objects. In Subsection 3.2 we characterize convex orders
on finite root systems, generalizing the results in [P]. In Subsection 3.3 we recall some
results from [HS] involving coideal subalgebras of Nichols algebras of diagonal type
with finite root systems, and use these results to characterize PBW bases of hyperletters.
In particular we show that the lexicograpical order on the hyperletters is convex.

In Section 4 we obtain the desired presentation by generators and relations. First we
prove that Kharchenko’s PBW basis is orthogonal for the canonical non-degenerate bi-
linear form of Proposition 2.1 when the braiding matrix is symmetric. Power root vector
relations hold in B(V ) by Lemma 4.7, and generalized quantum Serre relations hold by
Lemma 4.5. These two sets of relations are enough to give the presentation. The proof
follows for symmetric braidings from the orthogonality of the PBW, and can be extended
to the non-symmetric case by considering twistings. We show in Section 5 how the main
theorem allows us to obtain explicit presentations of some specific Nichols algebras.

Notation. N denotes the set of positive integers, and N0 the set of non-negative integers.
We fix an algebraically closed field k of characteristic 0; all vector spaces, Hopf alge-

bras and tensor products are considered over k.
For each N > 0, GN denotes the group of N -th roots of 1 in k.
Given n ∈ N, we define the following polynomials in q:(

n

j

)
q

=
(n)q !

(k)q !(n− k)q !
, where (n)q ! =

n∏
j=1

(k)q and (k)q =

k−1∑
j=0

qj .

2. Preliminaries

We recall some definitions and results that we shall need in the subsequent sections. They
are related to characterizations of Nichols algebras of diagonal type and PBW bases of
such algebras.
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Recall that a braided vector space is a pair (V , c), where V is a vector space and
c ∈ Aut(V ⊗ V ) is a solution of the braid equation:

(c ⊗ id)(id⊗ c)(c ⊗ id) = (id⊗ c)(c ⊗ id)(id⊗ c).

A braided vector space (V , c) is of diagonal type if there exists a basis x1, . . . , xθ of V
and scalars qij ∈ k× such that

c(xi ⊗ xj ) = qijxj ⊗ xi, 1 ≤ i, j ≤ θ. (2.1)

Following [K1] we describe an appropriate PBW-basis of a braided graded Hopf algebra
B =

⊕
n∈NBn such that B1 ∼= V , where (V , c) is of diagonal type. In particular we

obtain PBW bases for Nichols algebras B(V ) of diagonal type. This construction is based
on the notion of Lyndon words. Each Lyndon word has a canonical decomposition as a
product of a pair of smaller Lyndon words, called the Shirshov decomposition. Using that
decomposition and the braided bracket, we define inductively a set of hyperwords, which
are the elements of a PBW basis for braided graded Hopf algebras of diagonal type. We
also recall some properties of this PBW basis.

2.1. Braided vector spaces of diagonal type and Nichols algebras

Given a braided vector space (V , c), one can canonically extend the braiding to c :
T (V ) ⊗ T (V ) → T (V ) ⊗ T (V ) (see (2.3) for the diagonal case). For each pair x, y ∈
T (V ) we define the braided commutator as follows:

[x, y]c := multiplication ◦ (id− c)(x ⊗ y). (2.2)

Fix a braided vector space (V , c) of diagonal type and an ordered basis X = {x1, . . . , xθ }

of V as in (2.1). Let X be the corresponding vocabulary (the set of words in letters
of X) and consider the lexicographical order on X. We will identify the vector space kX
with T (V ). We shall consider two different gradings of the algebra T (V ). First, we con-
sider the usual N0-grading T (V ) =

⊕
n≥0 T

n(V ). If we denote by ` the length of a word
in X, then T n(V ) =

⊕
x∈X, `(x)=n kx.

Second, let α1, . . . , αθ be the canonical basis of Zθ . Then T (V ) is Zθ -graded, where
the degree is given by deg xi = αi , 1 ≤ i ≤ θ . Consider the bilinear form χ : Zθ × Zθ
→ k× given by χ(αi, αj ) = qij , 1 ≤ i, j ≤ θ . Then

c(u⊗ v) = qu,vv ⊗ u, u, v ∈ X, (2.3)

where qu,v = χ(deg u, deg v) ∈ k×. The braided commutator satisfies a “braided” deriva-
tion equation which gives rise to a “braided” Jacobi identity, namely

[[u, v]c, w]c = [u, [v,w]c]c − χ(α, β)v[u,w]c + χ(β, γ )[u,w]cv, (2.4)
[u, vw]c = [u, v]cw + χ(α, β)v[u,w]c, (2.5)
[uv,w]c = χ(β, γ )[u,w]cv + u[v,w]c, (2.6)

for any homogeneous u, v,w ∈ T (V ), of degrees α, β, γ ∈ Nθ , respectively.
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We denote by H
HYD the category of Yetter–Drinfeld modules over H , where H is a

Hopf algebra with bijective antipode. Any V ∈ H
HYD becomes a braided vector space

[Mo, Section 10.6]. If H = k0, where 0 is a finite abelian group, then any V ∈ HHYD is
a braided vector space of diagonal type: if Vg = {v ∈ V | δ(v) = g⊗ v}, V χ = {v ∈ V |
g ·v = χ(g)v for all g ∈ 0} and V χg = V χ ∩Vg , then V =

⊕
g∈0, χ∈0̂ V

χ
g . In this setting

the braiding is given by

c(x ⊗ y) = χ(g)y ⊗ x, x ∈ Vg, g ∈ 0, y ∈ V
χ , χ ∈ 0̂.

Conversely, any braided vector space of diagonal type can be realized as a Yetter–
Drinfeld module over the group algebra of many abelian groups. For example let (V , c)
be a braided vector space of diagonal type. Let 0 be the free abelian group of rank θ with
basis g1, . . . , gθ , and define the characters χ1, . . . , χθ of 0 by

χj (gi) = qij , 1 ≤ i, j ≤ θ.

We can consider V as a Yetter–Drinfeld module over k0 for which xi ∈ V
χi
gi .

Given V ∈ HHYD, the tensor algebra T (V ) admits a unique structure of graded braided
Hopf algebra in H

HYD such that the elements of V are primitive. As in [AS2], we define
the Nichols algebra B(V ) associated to V as the quotient of T (V ) by the maximal ele-
ment I (V ) of the family S of homogeneous two-sided ideals I ⊆

⊕
n≥2 T (V ) such that I

is a Yetter–Drinfeld submodule of T (V ) and a Hopf ideal:1(I) ⊂ I⊗T (V )+T (V )⊗I .
The following proposition characterizes the Nichols algebra associated to V in a very

interesting way.

Proposition 2.1 ([L2, Prop. 1.2.3], [AS2, Prop. 2.10]). Assume that (qij )1≤i,j≤θ is sym-
metric. For each family of scalars a1, . . . , aθ ∈ k×, there exists a unique bilinear form
( | ) : T (V )× T (V )→ k such that (1|1) = 1, and

(x|yy′) = (x(1)|y)(x(2)|y
′) for all x, y, y′ ∈ T (V ), (2.7)

(xx′|y) = (x|y(1))(x
′
|y(2)) for all x, x′, y ∈ T (V ), (2.8)

(xi |xj ) = δijai for all i, j. (2.9)

This form is symmetric and satisfies

(x|y) = 0 for all x ∈ T (V )g, y ∈ T (V )h, g, h ∈ 0, g 6= h. (2.10)

The radical of this form, {x ∈ T (V ) : (x|y) = 0, ∀y ∈ T (V )}, is I (V ), so (·|·) induces a
non-degenerate bilinear form on B(V ) denoted by the same symbol. ut

Consequently, if (V , c) is of diagonal type, then the ideal I (V ) is Zθ -homogeneous and
B(V ) is Zθ -graded (see [AS2, Prop. 2.10]).

2.2. Lyndon words and PBW basis of braided graded Hopf algebras generated in degree
zero and one

A word u ∈ X, u 6= 1, is Lyndon if u is smaller than any of its proper ends; that is, for
any decomposition u = vw, v,w ∈ X− {1}, we have u < w. We denote by L the set of
Lyndon words (see [Lo, Chapter 5]).
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Note that X ⊂ L, and any Lyndon word begins with its smallest letter. They also
satisfy the following properties:

1. Let u ∈ X − X. Then u is Lyndon if and only if for any decomposition u = vw with
v,w ∈ X− {1} we have vw = u < wv.

2. If v,w ∈ L and v < w, then vw ∈ L.
3. Let u ∈ X − X. Then u ∈ L if and only if there exist v,w ∈ L with v < w such that
u = vw.

Definition 2.2. Let u ∈ L− X. The Shirshov decomposition of u is the decomposition
u = vw with v,w ∈ L such that w is the smallest among proper non-empty ends of u
(see [Lo]). Following [He], we denote Sh(u) = (v,w) ∈ L × L. Then w is the longest
among the ends of u that are Lyndon words.

Given u, v,w ∈ L such that u = vw, u 6= 1, we have Sh(u) = (v,w) if and only if either
v ∈ X, or else Sh(v) = (v1, v2) satisfies w ≤ v2.

The Lyndon Theorem says that any word u ∈ X admits a unique decomposition
u = l1 · · · lr as a product of non-increasing Lyndon words: li ∈ L, lr ≤ · · · ≤ l1 (see [Lo,
Thm. 5.1.5]). This is called the Lyndon decomposition of u ∈ X, and the li are the Lyndon
letters of u.

We recall the endomorphism [−]c (see [K1]), defined inductively on kX using Shir-
shov and Lyndon decomposition:

[u]c :=


u if u = 1 or u ∈ X,
[[v]c, [w]c]c if u ∈ L, `(u) > 1 and Sh(u) = (v,w),
[u1]c · · · [ut ]c, if u ∈ X− L with Lyndon decomposition u = u1 · · · ut .

Definition 2.3 ([K1]). The hyperletter corresponding to l ∈ L is [l]c. A hyperword is
a word in hyperletters, and a monotone hyperword is a hyperword [u1]

k1
c · · · [um]

km
c such

that u1 > · · · > um.

Note that for any u ∈ L, [u]c is a homogeneous polynomial with coefficients in the
subring Z[qij ] and [u]c ∈ u+ Z[qij ]X`(u)>u .

The hyperletters inherit the order from the Lyndon words; this induces in turn the
lexicographical ordering in the hyperwords. We now describe the braided commutator of
hyperwords.

Theorem 2.4 ([R2, Thm. 10]). Letm, n ∈ L withm < n. Then [[m]c, [n]c]c is a Z[qij ]-
linear combination of monotone hyperwords [l1]c · · · [lr ]c, li ∈ L, such that n > li ≥ mn.
Moreover, [mn]c appears in the expansion with a non-zero coefficient, and for any hyper-
word of this decomposition, deg(l1 · · · lr) = deg(mn). ut

The coproduct of T (V ) can also be described in the basis of hyperwords.
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Lemma 2.5 ([R2]). Let u ∈ X, and let u = u1 · · · urv
m, v, ui ∈ L, v < ur ≤ · · · ≤ u1,

be the Lyndon decomposition of u. Then

1([u]c) = 1⊗ [u]c +
m∑
i=0

(
m

i

)
qv,v

[u1]c · · · [ur ]c[v]
i
c ⊗ [v]

m−i
c

+

∑
l1≥···≥lp>v, li∈L

0≤j≤m

x
(j)
l1,...,lp

⊗ [l1]c · · · [lp]c[v]
j
c ,

where each x(j)l1,...,lp is Zθ -homogeneous, deg(x(j)l1,...,lp l1 · · · lpv
j ) = deg(u). ut

We then have the following result from [R2].

Lemma 2.6. For each l ∈ L denote by Wl the subspace of T (V ) generated by

[l1]c · · · [lk]c, k ∈ N0, li ∈ L, l1 ≥ · · · ≥ lk ≥ l. (2.11)

Then Wl is a right coideal subalgebra of T (V ).

Proof. This follows from Theorem 2.4 and Lemma 2.5. ut

As in [U] and [K1], we consider another order in X. Given u, v ∈ X, we say that u � v
if either `(u) < `(v), or `(u) = `(v) and u > v for the lexicographical order. We call �
the deg-lex order, which is a total order. The empty word 1 is the maximal element for �,
and this order is invariant under right and left multiplication.

Let I be a proper ideal of T (V ), and set R = T (V )/I . Let π : T (V ) → R be the
canonical projection. Define

GI := {u ∈ X : u /∈ kX�u + I }.

This set satisfies:

(a) If u ∈ GI and u = vw, then v,w ∈ GI .
(b) Any u ∈ GI factorizes uniquely as a non-increasing product of Lyndon words inGI .

Proposition 2.7 ([K1, R2]). The set π(GI ) is a basis of R. ut

In what follows, we assume that I is a Hopf ideal. Consider now

SI := GI ∩ L. (2.12)

We then define the height function hI : SI → {2, 3, . . .} ∪ {∞} by

hI (u) := min{t ∈ N : ut ∈ kX�ut + I }. (2.13)

One can find a PBW-basis consisting of hyperwords of the quotient R of T (V ) using the
set SI and the height previously defined.

Theorem 2.8 ([K1]). The following set is a PBW-basis of R = T (V )/I :

{[u1]
n1
c · · · [uk]

nk
c : k ∈ N0, u1 > · · · > uk ∈ SI , 0 ≤ ni < hI (ui)}. ut

Proofs are in [K1], where the next consequences are also considered.
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Proposition 2.9. For any v ∈ SI such that hI (v) < ∞, qv,v is a root of unity whose
order coincides with hI (v). ut

Corollary 2.10. A word u does not belong toGI if and only if the associated hyperletter
[u]c is a linear combination, modulo I , of hyperwords [w]c, w � u, with all hyperletters
in SI . Moreover, if hI (v) =: h < ∞, then [v]h is a linear combination of hyperwords
[w]c, w � vh. ut

3. Root systems and coideal subalgebras

In this section we recall the definition of Weyl groupoid and the associated generalized
root system given in [CH1] and [HY]. We also recall some properties of these objects that
we shall use in the subsequent sections, and the relation to Nichols algebras of diagonal
type. Next, we describe convex orders for subsets of the root systems as a generalization
of Papi’s results [P] for Weyl groups. We then consider a family of coideal subalgebras
of a Nichols algebra of diagonal type with finite root system in order to prove that the
ordering on the Lyndon words of a PBW basis as in Section 2.2 is convex. The proof of
the convexity uses the characterization of coideal subalgebras given in [HS].

3.1. Weyl groupoid and root systems

The notation used here is the same as in [CH1].
Fix a non-empty set X and a non-empty finite set I , and let {αi}i∈I be the canonical

basis of ZI . For each i ∈ I consider a map ri : X → X , and for eachX ∈ X a generalized
Cartan matrix AX = (aXij )i,j∈I in the sense of [Ka].

Definition 3.1 ([HY, CH1]). The quadruple C := C(I,X , (ri)i∈I , (AX)X∈C) is a Cartan
scheme if

• r2
i = id for all i ∈ I ,

• aXij = a
ri (X)
ij for all X ∈ X and i, j ∈ I .

For each i ∈ I and X ∈ X denote by sXi the automorphism of ZI given by

sXi (αj ) = αj − a
X
ijαi, j ∈ I.

The Weyl groupoid of C is the groupoid W(C) whose set of objects is X and whose
morphisms are generated by sXi , where we consider sXi ∈ Hom(X, ri(X)), i ∈ I , X ∈ X .

In general we shall denote W(C) simply by W , and for any X ∈ X , we set

Hom(W, X) :=
⋃
Y∈X

Hom(Y,X), (3.1)

1X re
:= {w(αi) : i ∈ I, w ∈ Hom(W, X)}. (3.2)
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1X re is the set of real roots of X. Each w ∈ Hom(W, X1) can be written as a product
s
X1
i1
· · · s

Xm
im

, where Xj = rij−1 · · · ri1(X1), i ≥ 2. We denote w = idX1si1 · · · sim : this
means that w ∈ Hom(W, X1), because the elements Xj ∈ X are uniquely determined.
The length of w is defined by

`(w) = min{n ∈ N0 : ∃i1, . . . , in ∈ I such that w = idXsi1 · · · sin}.

In what follows we will assume that the groupoid W is connected:

Hom(Y,X) 6= ∅, ∀X, Y ∈ X .

Definition 3.2 ([HY, CH1]). Fix a Cartan scheme C, and for each X∈X a set 1X⊂ZI .
Then R := R(C, (1X)X∈X ) is a root system of type C if

(1) 1X = (1X ∩ NI0) ∪ −(1
X
∩ NI0) for all X ∈ X ,

(2) 1X ∩ Zαi = {±αi} for all i ∈ I and X ∈ X ,
(3) sXi (1

X) = 1ri (X) for all i ∈ I and X ∈ X ,
(4) ifmXij := |1

X
∩(N0αi+N0αj )|, then (rirj )

mXij (X) = X for all i 6= j ∈ I andX ∈ X .

We call 1X+ := 1
X
⊂ NI0 the set of positive roots, and 1X− := −1

X
+ the set of negative

roots.

By (3) we have w(1X) = 1Y for any w ∈ Hom(Y,X).
We say that R is finite if 1X is finite for some X ∈ X . By [CH1, Lemma 2.11], this

is equivalent to the fact that the sets 1X are finite for all X ∈ X , and W is finite.
The following result plays a fundamental role in the next subsection.

Theorem 3.3 ([CH2, Thm. 2.10]). Let α ∈ 1X+ \ {αi : i = 1, . . . , θ}. There exist
β, γ ∈ 1X+ such that α = β + γ . ut

Now we recall some results involving real roots and the length of elements in W .

Lemma 3.4 ([HY, Cor. 3]). Let m ∈ N, X, Y ∈ X and i1, . . . , im, j ∈ I . Set w =
idXsi1 · · · sim ∈ Hom(Y,X), and assume that `(w) = m. Then:

• `(wsj ) = m+ 1 if and only if w(αj ) ∈ 1X+,
• `(wsj ) = m− 1 if and only if w(αj ) ∈ 1X−. ut

Proposition 3.5 ([CH1, Prop. 2.12]). For each w = idXsi1 · · · sim such that `(w) = m,
the roots βj = si1 · · · sij−1(αij ) ∈ 1

X are positive and pairwise different. If w is an
element of maximal length and R is finite, then {βj } = 1X+. Hence all the roots are real,
i.e., for each α ∈ 1X+ there exist i1, . . . , ik, j ∈ I such that α = sik · · · si1(xj ). ut

As in [HS], for X ∈ X , m ∈ N and (i1, . . . , im) ∈ Im consider the sets

3X(i1, . . . , im) := {βk := idXsi1 · · · sik−1(αik ) : 1 ≤ k ≤ m} ⊂ 1
X, (3.3)

3X+(i1, . . . , im) :=
{
β ∈ 1X+ : |{k ∈ {1, . . . , m} : β = ±βk}| is odd

}
. (3.4)
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By [HS, Prop. 1.9], given other elements j1, . . . , jn ∈ I , we have

3X+(i1, . . . , im) = 3
X
+(j1, . . . , jn) ⇔ idxsi1 · · · sim = idXsj1 · · · sjn ,

and moreover
|3X+(i1, . . . , im)| = `(idXsi1 · · · sim). (3.5)

In this way, if w = idXsi1 · · · sim is any expression of w ∈ Hom(W, X), we can define
3X+(w) := 3

X
+(i1, . . . , im).

3.2. Convex orders on root systems

Now we characterize convex orders on subsets of root systems of finite Weyl groupoids,
extending the results given in [P] for Weyl groups.

Definition 3.6. Consider a root system 1X+ with a fixed total order <. We say that the
order is

• convex if for any α, β ∈ 1+ such that α < β and α + β ∈ 1+ we have

α < α + β < β;

• subconvex if for any α, β ∈ 1+ such that α < β and α + β ∈ 1+ we have

α < α + β;

• strongly convex if for each ordered subset α1 ≤ · · · ≤ αk of1+ with α :=
∑
αi ∈ 1

+

we have α1 < α < αk .

Definition 3.7. Let L = {β1, . . . , βm} be an ordered subset of 1X+. We say that L is
associated to w ∈ Hom(W, X) if there exists a reduced expression w = idXsi1 · · · sim
such that

βj = si1 · · · sij−1(αij ), ∀1 ≤ j ≤ m.

Compare this with [P]. For any w ∈ Hom(Y,X) define

Rw := {α ∈ 1
X
+ : w

−1(α) ∈ 1Y−}.

Now we generalize some results about Weyl groups to the context of Weyl groupoids.
First we consider the analogue of a result in [Bo].

Proposition 3.8. For any ordered set L associated tow, we haveL = Rw. Consequently,
|Rw| = `(w) and two ordered sets associated to the samew differ at most by the ordering.

Proof. Note that for any βj = si1 · · · sij−1(αij ),

w−1(βj ) = −sim · · · sij+1(αj )sim · · · sij+1sij

is a reduced expression because it is contained in a reduced expression, so we have
w−1(βj ) ∈ 1

Y
− by Lemma 3.4. Therefore L ⊆ Rw.
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Conversely, let α ∈ Rw. As w−1(α) ∈ 1Y− and si1 · · · sim(w
−1(α)) = α ∈ 1X+,

consider the greatest j such that sij · · · simw
−1(α) is positive. Then sij+1 · · · simw

−1(α)

is negative, so sij · · · simw
−1(α) = αij , and hence αij = sij · · · simw

−1(α); that is, α =
si1 · · · sij−1(αj ) ∈ L. ut

Second, we relate our sets Rw to the ones in [HS] (see (3.4)). Although the sets are equal,
our definition is more convenient to prove statements about convexity.

Lemma 3.9. For each w ∈ Hom(W, X), Rw = 3X+(w).

Proof. Fix a reduced expression w = idXsi1 · · · sim , so βj = si1 · · · sij−1(αij ) is a positive
root, and α ∈ 1X+ is equal to ±βj if and only if α = βj . Therefore 3X+(w) = L. ut

Now we extend another result from [P]. Note that condition (a) in our result is weaker
than the one in [P], but the proof is very similar. This weaker condition will simplify
some proofs in what follows.

Theorem 3.10. Let L be an ordered subset of 1X+. There exists w ∈ Hom(W, X) such
that L is associated to w if and only if the following conditions are satisfied:

(a) For each pair λ < µ ∈ L such that λ+µ ∈ 1X+, we have λ+µ ∈ L and λ < λ+µ.
(b) If λ + µ ∈ L and λ,µ ∈ 1X+, then at least one of them belongs to L and precedes

λ+ µ.

Proof. Assume that L is associated to w = idXsi1 · · · sim for some w ∈ Hom(Y,X).
If λ = si1 · · · sik−1(αik ) and µ = si1 · · · sij−1(αij ) are such that 1 ≤ k < j ≤ m and
λ+ µ ∈ 1X+, we have λ+ µ ∈ L = Rw, because

w−1(λ+ µ) = w−1(λ)+ w−1(µ) ∈ 1Y−.

Suppose that λ + µ < λ. Then λ + µ = si1 · · · sil−1(αil ) for some 1 ≤ l < k, so

sil · · · si1(λ+ µ) = −αl ∈ 1
ril ···ri1 (X)

− . But as l < k < j , we have

sil · · · si1(λ), sil · · · si1(µ) ∈ 1
ril ···ri1 (X)

− ,

which is a contradiction. Therefore λ < λ+ µ, and L satisfies (a).
For (b), suppose that λ + µ ∈ L, but λ,µ /∈ L; then w−1(λ), w−1(µ) ∈ 1Y+, so

w−1(λ + µ) is positive, which contradicts the fact that λ + µ ∈ Rw. If both λ,µ ∈ L, a
similar proof to (a) gives that one of them precedes λ+µ. Now, suppose that λ ∈ L,µ /∈ L

and λ+µ < λ. If l < k is such that λ+µ = si1 · · · sil−1(αil ), we have sil · · · si1(λ) ∈ 1
+

and
sil · · · si1(λ)+ sil · · · si1(µ) = sil · · · si1(λ+ µ) = −αl ∈ 1

ril ···ri1 (X)

− ,

so sil · · · si1(µ) ∈ 1
ril ···ri1 (X)

− , and then µ ∈ RidXsi1 ···sil
⊂ RidXsi1 ···sim

= L, a contradic-
tion.

Conversely, we will prove that an ordered set L satisfying (a) and (b) is associated
to some w by induction on m := |L|. If m = 1, let α ∈ L. If α is not simple, then by
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Theorem 3.3, α = β + γ for some positive roots β, γ , and by condition (b) one of them
belongs to L, so m ≥ 2, which is a contradiction. Therefore L = {αj } = Rsj for some
1 ≤ j ≤ θ .

Now assume m > 1 and let β1 < · · · < βm be the elements of L. Notice that
L′ = {β1, . . . , βm−1} satisfies conditions (a) and (b), so by the inductive hypothesis there
exists a reduced expression v = idXsi1 · · · sim−1 such that

β1 = αi1 , βj = si1 · · · sij−1(αij ), j = 2, . . . , m− 1.

Let Z = rim−1 · · · ri1(X). Then v−1(βm) ∈ 1
Z
+ because βm /∈ L′ = Rv . Suppose that

v−1(βm) is not simple. Then there exist α, β ∈ 1Z+ such that α + β = v−1(βm), i.e.
βm = α′ + β ′, where α′ = v(α), β ′ = v(β) ∈ 1X. Therefore α′ ∈ 1X+ or β ′ ∈ 1X+.
On the other hand, if both are positive then one of them is βk for some k < m; assume
α′ = βk; then α = v−1(βk) ∈ 1Z−, a contradiction. Consequently, we can consider
α′ ∈ 1X+ and β ′ ∈ 1X−. For this case, α′ /∈ Rv = L′ and −β ′ ∈ Rv = L′ ⊂ L.
As α′ = βm + (−β

′), hypothesis (a) implies that α′ ∈ L, so α′ = βm ∈ L − L
′, a

contradiction. Therefore, v−1(βm) = αim for some im ∈ I , w = vsim ∈ Hom(rim(Z),X)
is a reduced expression by Lemma 3.4, and L = Rw. ut

Theorem 3.11. Given an order on 1X+, the following statements are equivalent:

(1) the order is associated with a reduced expression of the longest element,
(2) the order is strongly convex,
(3) the order is convex.

Proof. (1)⇒(2). Let ω = idXsi1 · · · sim be an element of maximal length in Hom(W, X).
By Proposition 3.5, m = |1X+| and the elements

βk := si1 · · · sik−1(αik ), k = 1, . . . , m,

are all different, so {βk} = 1X+. This induces an order on 1X+:

β1 < · · · < βm.

To prove that this order is strongly convex, consider β, βk1 , . . . , βkl ∈ 1
X
+ such that

k1 < · · · < kl and β = βk1 + · · · + βkl . Suppose that β = βk with k < k1. Then
u = idXsi1 · · · sik satisfies `(u) = k, β ∈ Ru but βkj /∈ Ru for all j = 1, . . . , l, which is

a contradiction because u(β) ∈ 1
rik ···ri1X

− should be the sum of the positive roots u(βj ).
We obtain a similar contradiction if we assume k > kl . Therefore k1 < k < kl .

(2)⇒(3) is clear.
(3)⇒(1). Assume that a given order on 1X+ is convex; then it trivially satisfies con-

dition (a) of Theorem 3.10 because we consider L = 1X+. Therefore it also satisfies
condition (b) by convexity, so the order is associated to some w. As `(w) = |1X+| by
Proposition 3.8, it is the element of maximal length. ut
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3.3. Coideal subalgebras and convex orders for PBW bases

Now we recall a description of coideal subalgebras of Nichols algebras with finite root
system given in [HS]. We will use this result to prove that the lexicographical order on
the PBW generators of Kharchenko’s basis is convex. First, we recall some results about
the Weyl groupoid attached to a braided vector space of diagonal type. Given a braided
vector space (V , c) of diagonal type, fix a basis {x1, . . . , xθ } and scalars qij ∈ k× as in
(2.1), and the bilinear form as in (2.3). As in [H1], let 1V+ be the set of degrees of a PBW
basis of B(V ), counted with their multiplicities. This set does not depend on the PBW
basis, as remarked in [H1] and proved in [AA].

In what follows, we fix a braided vector space (V , c) of diagonal type and assume
that the root system 1V+ is finite. In that case we can attach to it a Cartan scheme C,
a Weyl groupoid W and the corresponding root system R (see [HS, Thms. 6.2, 6.9]
and the references therein); here W coincides with the Weyl groupoid defined in [H1]
for a braided vector space of diagonal type. This Weyl groupoid can be built as follows
(see [AA]). Let X be the set of ordered bases of Zθ , and for each F = {f1, . . . , fθ } ∈ X ,
set q̃ij = χ(fi, fj ). For each 1 ≤ i 6= j ≤ θ , define

mij (F ) := min{n ∈ N0 : (n+ 1)q̃ii (1− q̃
n
ii q̃ij q̃ji) = 0}, (3.6)

and let si,F ∈ Aut(Zθ ) be such that si,F (fj ) = fj +mij (F )fi . Here mii = −2.
Note that G = Aut(Zθ ) × X is a groupoid whose set of objects is X and whose

morphisms are

x
(g,x)
−−−→ g(x).

The Weyl groupoid W(χ) of χ is the least subgroupoid of G such that

• (id, E) ∈ W(χ),
• if (id, F ) ∈ W(χ) and si,F is defined, then (si,F , F ) ∈ W(χ).

Recall that the (right) Duflo order on Hom(W, X) is defined as follows: if x ∈
Hom(Y,X) and y ∈ Hom(Z, Y ), then x ≤D xy iff `(xy) = `(x) + `(y) (see [HS,
Def. 1.11]). By [HS, Thm. 1.13], given v,w ∈ Hom(W, X) we have v ≤D w if and only
if 3X+(v) ⊂ 3

X
+(w).

Remark 3.12. Let w1 ≤D · · · ≤D wk be a maximal chain in Hom(W, X). Then
there exists a reduced expression idXsi1 · · · sik for some i1, . . . , ik ∈ I such that wj =
idXsi1 · · · sij for each 1 ≤ j ≤ k.

In particular, a chain w1 ≤D · · · ≤D wk has maximal length iff it is associated to a
reduced expression of the longest element in Hom(W, X), and so k = |1X+|.

We now recall some results from [HS] about the classification of coideal subalgebras
of B(V ). As there, we denote by K(V ) the set of all Nθ0-graded left coideal subalgebras
of B(V ). We rewrite these results in the context of diagonal braidings (in [HS] the authors
work in a more general context).

First results about the classification of coideal subalgebras were obtained in [K3, KL,
Po] for the quantized enveloping algebras Uq(g) of type An, Bn and G2, respectively,
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where it was proved that coideal subalgebras admit a PBW basis and these subalgebras
were classified.

Given n = (n1, . . . , nθ ) ∈ Nθ0 , we set Xn = Xn1
1 · · ·X

nθ
θ in k[[x1, . . . , xθ ]]. We also

set

qh(t) :=
th − 1
t− 1

∈ k[t], h ∈ N; q∞(t) :=
1

1− t
=

∞∑
s=0

ts ∈ k[[t]].

For each Nθ0-graded k-vector space W =
⊕

α∈Nθ0
Wα , we denote its Hilbert series by

HW :=

∑
α∈Nθ0

(dimWα)X
α
∈ k[[x1, . . . , xθ ]].

For any α ∈ Nθ0 , we set qα = χ(α, α), where χ is the bicharacter over Zθ as in (2.3),
and Nα = ord(qα), where Nα = ∞ if qα is not a root of unity.

Theorem 3.13 ([HS]). For each w ∈ Hom(W, V ) there exists a unique left coideal
subalgebra F(w) ∈ K(V ) with Hilbert series

HF(w) =

∏
β∈3V+(w)

qNβ (X
β). (3.7)

Moreover, the correspondence w 7→ F(w) gives an order preserving and order reflect-
ing bijection between Hom(W, V ) and K(V ), where we consider the Duflo order over
Hom(W, V ) and the inclusion order over K(V ); i.e.

w1 ≤D w2 ⇔ F(w1) ⊂ F(w2).

Proof. Note that in [HS] the authors classify the right coideal subalgebras, but E is a
right coideal subalgebra if and only if S(E) is a left coideal subalgebra, where S denotes
the antipode of B(V ). Moreover, if they are Nθ -graded, then HE = HS(E), because S
is Nθ -graded, and the order given by inclusion on the family of left coideal subalgebras
corresponds with the one on the family of right coideal subalgebras because S is bijective.
In this context we define F(w) = S(EV (w)), where EV (w) is as in [HS, Thm. 6.12].

By [HS, Lemma 6.11], we have an isomorphism of Nθ0-graded spaces

F(w) ∼=
⊗

β∈3V+(w)

B(Vβ),

where Vβ corresponds to Nβ of [HS, Def. 6.5]. In this way Vβ is a 1-dimensional braided
vector space of diagonal type generated by a non-zero vector vβ , such that c(vβ ⊗ vβ) =
qβ vβ ⊗ vβ . Therefore, HB(Vβ ) = qNβ (X

β), and (3.7) follows.
The uniqueness of a coideal subalgebra with a given Hilbert series follows from [HS,

Lemma 6.4]. The map Hom(W, V )→ K(V ) is bijective and preserves the order in both
directions by [HS, Thms. 6.12, 6.15] (note that we can apply these theorems because we
assume that V has diagonal braiding and 1V+ is finite). ut
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Consider the PBW basis of Lyndon words given in Theorem 2.8 for the fixed basis
{x1, . . . , xθ } of V . We assume that1V+ is finite, so all the roots are real and have multiplic-
ity one. In this way, we can label PBW generators by elements β ∈ 1V+: the generators
are xβ = [lβ ]c for some Lyndon word lβ of degree β. This induces a total order on the
roots: if lβ1 < · · · < lβM are ordered lexicographically, we consider β1 < · · · < βM ,
where M = |1V+| and in particular lβ1 = x1, lβM = xθ . Let B be the basis of B(V )
consisting of hyperwords as above.

Let π : T (V )→ B(V ) = T (V )/I (V ) be the canonical projection. Recall the defini-
tion of the coideal subalgebras Wlβ in Lemma 2.6, and set

Wβ := π(Wlβ ), β ∈ 1V+.

Remark 3.14. Wβ is a left coideal subalgebra of B(V ), because π is a morphism of
braided Hopf algebras and Wlβ is a left coideal subalgebra of T (V ). Also Wβj ⊆ Wβi if
i < j , and

Wβ1 = B(V ), WβM = k〈xθ 〉.

Lemma 3.15. With the notation above, xβi /∈ Wβj if i < j . Hence,

B(V ) = Wβ1 ) Wβ2 ) · · · ) WβM .

Proof. Suppose that xβi ∈ Wβj with i < j . Then xβi ∈ GI (V ) is a linear combination of
hyperwords greater than or equal to xβj in B(V ), contrary to Corollary 2.10. Therefore
xβi /∈ Wβj . The second statement follows from Remark 3.14. ut

We now prove the main result of this section.

Theorem 3.16. Keep the notation above. The order β1 < · · · < βM on 1V+ is convex.

Proof. EachWβi corresponds to one F(wi). As we have a chain as in the previous lemma,
by Theorem 3.13 we have w1 ≥D · · · ≥D wM .

As the wi’s are pairwise different, we have a chain of maximal length, and by Remark
3.12 there exists a reduced expression of the longest element ωV = idV siM · · · si1 such
that wk = idV siM · · · sik for each 1 ≤ k ≤ M .

We will prove by descending induction on j that βj = siM · · · sij+1(αj ). This will con-
clude the proof because of Theorem 3.11. For the base step, notice that HwM = qNαθ (xθ )
by Theorem 3.13, and by Remark 3.14 we have im = θ .

Assume now that k < M and βj = siM · · · sij+1(αj ) for j = k + 1, . . . ,M . Set
γ = siM · · · sik+1(αk). By the inductive hypothesis we have

HWβk+1
=

M∏
j=k+1

qNβj (X
βj ), HWβk

= qNγ (X
γ )
( M∏
j=k+1

qNβj (X
βj )
)
.

On the other hand, {xnMβM · · · x
nk
βk
: 0 ≤ nj < Nβj } is a linearly independent set in Wβk , so

HWβk
≥

M∏
j=k

qNβj (X
βj ),
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where the inequality between the series means the inequality for all the corresponding
coefficients. Looking at the coefficient of Xβk we find that there exists an expression

βk = nγ +

M∑
j=k+1

njβj , n ∈ N, nj ∈ N0.

Note that Rwk = 3V+ = {γ, βk+1, . . . , βM}, so if we apply wk to the last equality, we
deduce that w−1

l (βk) ∈ 1
rl ···rM (V )
m . Therefore βk ∈ Rwk , and as βk 6= βj for all j > k,

we conclude βk = γ . ut

The next result is analogous to the one for the positive part of the quantized envelop-
ing algebra Uq(g) given in [Le], and gives an inductive way to obtain the words lβ for
β ∈ 1V+.

Corollary 3.17. For each β ∈ 1V+, β 6= α1, . . . , αθ , we have

lβ = max{lδ1 lδ2 : δ1, δ2 ∈ 1
V
+, δ1 + δ2 = β, lδ1 < lδ2}. (3.8)

Proof. Any factor of an element of GI (V ) is in GI (V ) (see Subsection 2.2). If lβ = uv

is the Shirshov decomposition of lβ , then there exist γ1, γ2 ∈ 1
V
+ such that u = lγ1 <

v = lγ2 and β = γ1 + γ2.
On the other hand, let δ1, δ2 ∈ 1

V
+ be such that δ1 + δ2 = β and lδ1 < lδ2 . By the

previous theorem, lδ1 < lβ < lδ2 . If lβ does not begin with lδ1 , then lδ1u < lβ for every
word u, so in particular lδ1 lδ2 < lβ . If lβ begins with lδ1 , then lβ = lδ1u, where u has
degree δ2. Let u = lplp−1 · · · l1 be its Lyndon decomposition. Then each li is in GI (V ),
so u = lnMβM · · · l

n1
β1

for some ni ∈ N0. Let k = max{j : nj 6= 0}. As the order is strongly
convex, xβk ≥ xδ2 , i.e. lβk ≥ lδ2 , so u ≥ lδ2 and hence lβ = lδ1u ≥ lδ1 lδ2 . In any case,
lβ = lδ1u ≥ lδ1 lδ2 . ut

Another consequence is that the coideal subalgebras Wβ (which are in particular left
B(V )-comodules) behave as a kind of modules of highest weight.

Theorem 3.18. The set Bk = {x
nM
βM
· · · x

nk
βk
: 0 ≤ nj < Nβj } is a basis of Wβk . Moreover,

if Wβk =
⊕

α∈Nθ0
Wβk (α) denotes the decomposition into Nθ0-homogeneous components,

then dimWβk (βk) = 1.

Proof. The first statement follows because Bk is included in Wβk , it is linearly indepen-
dent and the Hilbert series of the k-linear subspace spanned by Bk coincides with the
Hilbert series of Wβk .

For the second statement, if
∑M
i=1 niβi = βk for some ni ∈ N0, then ni = δi,k or

there exists i < k such that ni > 0, by Theorem 3.11. ut

The first consequence of the description of the coideal subalgebras Wα in the previous
theorem is a new expression for the coproduct of hyperwords which we will use in the
next section. We set

Ck := {x
nk
βk
x
nk−1
βk−1
· · · x

n1
β1
: 0 ≤ nj < Nβj }, (3.9)

Dk := {x
nM
βM
· · · x

n1
β1
: 0 ≤ nj < Nβj , ∃j ≥ k such that nj 6= 0}. (3.10)



A presentation of Nichols algebras of diagonal type 2659

Lemma 3.19. Let a ∈ Bk − {1} and b ∈ Bl with l ≤ k. Then either ab = 0 or ab is
spanned by elements of Bl ∩Dk .

Proof. If l = k, the conclusion follows directly. Assume that l < k and write b = b1b2
with b1 ∈ Bk and b2 ∈ Ck−1 ∩ Bl (possibly b1 = 1). Then ab1 ∈ Wβk , because Wβk is a
subalgebra, so it is spanned by Bk . Finally, note that if c ∈ Bk , then cb2 ∈ Bl ∩Dk . ut

We also set ht(u) :=
∑
ni if u = xnMβM x

nk−1
βk−1
· · · x

n1
β1

.

Lemma 3.20. Let u = xnkβk · · · x
nl
βl
∈ Bl −Dk+1, l ≤ k, be such that nk, nl 6= 0. Then

1(u) ∈
( ⊕
v∈B,w∈Dk∩Bl

k v ⊗ w
)
⊕

( ⊕
v∈Dk, w∈Bl−Dk

k v ⊗ w
)
.

Proof. We use induction on the height. If ht(u) = 1, then u = xβi for some i. Thus,
1(u) ∈ u⊗ 1+ 1⊗ u+B(V )⊗Wβi , so the result follows.

Assume the conclusion holds for ht(w)<n, and u = xnkβk · · · x
nl
βl

is such that ht(u)=n.
Write u = xβkw, so by the inductive hypothesis,

1(u) ∈
( ⊕
v∈B,w∈Ds∩Bl

k v ⊗ w
)
⊕

( ⊕
v∈Ds , w∈Bl−Ds

k v ⊗ w
)
,

where s = k− 1 if nk = 1, or s = k if nk > 1. We calculate1(u) = 1(xβk )1(w). Using
the fact that the braiding is diagonal, and Lemma 3.19, we conclude that

(1(xβk )− xβk ⊗ 1)1(w) ∈
⊕

v∈B,w∈Dk∩Bl

k v ⊗ w.

Also, for any v ∈ B we have xβkv ∈ Dk , because if v ∈ Bk then xβkv ∈ Wβk and if
v ∈ Bi for i < k then we apply Lemma 3.19 again, and we conclude the proof. ut

4. Presentation by generators and relations of Nichols algebras of diagonal type

In this section we use the convex order of a PBW basis of hyperletters to prove that,
when the diagonal braiding is symmetric, the PBW basis is orthogonal with respect to
the bilinear form of Proposition 2.1. This gives a way to obtain relations which hold in
Nichols algebras, even when the braiding is not symmetric. We then obtain a presentation
by generators and relations for any Nichols algebra of diagonal type whose root system
is finite, by considering a suitable set of relations.

4.1. A general presentation

We continue with the setting fixed in Subsection 3.3. To begin with, we prove the or-
thogonality of the PBW basis with respect to the bilinear form in Proposition 2.1. This
extends [Ang1, Prop. 5.1], and the proof is very similar; anyway we rewrite it in this
general setting.
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Proposition 4.1. Consider a PBW basis of B(V ) as above given by Lyndon words, and
assume that the braiding matrix is symmetric. Then the PBW basis is orthogonal with
respect to the bilinear form in Proposition 2.1.
Proof. We prove by induction on k = `(u) + `(v) that (u|v) = 0, where u 6= v are
ordered products of PBW generators. If k = 1, then either u = 1, v = xj , or u = xi ,
v = 1, for some i, j ∈ {1, . . . , θ}, and (1|xj ) = (xi |1) = 0.

Suppose the statement is valid when `(u) + `(v) < k, and let u 6= v be hyperwords
such that `(u) + `(v) = k. If both are hyperletters, they have different degrees α 6=
β ∈ Zθ , so u = xα , v = xβ , and (xα|xβ) = 0, since the homogeneous components are
orthogonal for (·|·).

Suppose that u = xα and v = xhkβk x
hk−1
βk−1

. . . x
hi
βi

for some 1 ≤ i ≤ k ≤ M (we consider
hk, hl 6= 0). If they have different Zθ -degree, they are orthogonal. Assume that α =∑k
j=i hjβj , so βi < α because the ordered root system is strongly convex by Theorem

3.16. Using Lemma 2.5 and (2.1), we have

(u|v) = (xα|w)(1|xβi )+ (1|w)(xα|xβi )

+

∑
l1≥···≥lp>lα, li∈L

(xl1,...,lp |w)([l1]c · · · [lp]c|xβi )

where v = wxβi . Note that (1|xβi ) = (1|w) = 0. Also, [l1]c · · · [lp]c is a linear combi-
nation of greater hyperwords of the same degree and an element of I (V ), so by induc-
tive hypothesis and the fact that I (V ) is the radical of the bilinear form, we conclude
([l1]c · · · [lp]c|xβi ) = 0. Therefore (u|v) = 0.

Finally, we consider

u = x
hk
βk
. . . x

hi
βi
, 1 ≤ i ≤ k ≤ M, v = x

fq
βq
. . . x

fp
βp
, 1 ≤ p ≤ q ≤ M.

The bilinear form is symmetric, so we can assume i ≤ p. By Lemma 2.5 and (2.7),

(u|v) = (w|1)(xβi |v)+
fp∑
j=0

(
fp

j

)
qβp

(w|x
fq
βq
· · · x

fp−1
βp−1

x
j
βp
)(xβi |x

fp−j

βp
)

+

∑
l1≥···≥lt>lβp , ls∈L

0≤j≤fp

(w|x
(j)
l1,...,lt

)(xβi |[l1]c · · · [lt ]cx
j
βp
)

where u = wxβi . Note that (w|1) = 0, and [l1]c · · · [lp]cx
j
βp

is a combination of hyper-
words of the PBW basis greater than or equal to it and an element of I (V ). Using the
induction hypothesis and the fact that I (V ) is the radical of this bilinear form, we con-
clude that (xβi |[l1]c · · · [lp]cx

j
βp
) = 0. As also xβi , x

fp−j

βp
are different elements of the

PBW basis for fp − j 6= 1, we have

(u|v) = (fp)qβp (w|x
fq
βq
· · · x

fp−1
βp−1

x
fp−1
βp

)(xβi |xβp ). (4.1)

Then it is zero if i < p, but also if i = p, because in that case w 6= x
fq
βq
· · · x

fp−1
βp−1

x
fp−1
βp

and we use the induction hypothesis. ut



A presentation of Nichols algebras of diagonal type 2661

Corollary 4.2. If u = xnMβM · · · x
n1
β1

, where 0 ≤ nj < Nβj , then

cu := (u|u) =

M∏
j=1

(nj )!qβj
c
nj
xβj
6= 0. (4.2)

Proof. We use induction on ht(w). If ht(w) = 1, w is a hyperletter. If we assume the
conclusion holds for ht(w) < k, and ht(u) = k, we use the orthogonality of the PBW
basis and a calculation as in (4.1) for v = u to deduce (4.2) from the inductive hypothesis.

The scalar is not zero because u /∈ I (V ) and the PBW basis generates a k-linear
complement to I (V ), the radical of this bilinear form. ut

Remark 4.3. Note that

(xβixβj |u) = (xβi |u(1))(xβj |u(2)) = di,j cxβi cxβj ,

where di,j is the coefficient of xβi ⊗xβj in the expression of1(u) as a linear combination
of elements of the PBW basis on both sides of the tensor product.

We return to the general case where the braiding matrix is not necessarily symmetric. We
obtain some relations and then prove a presentation of Nichols algebras by generators and
relations. To obtain these relations is the key step to finding the presentation in Theorem
4.9. Note that Bi ∩Cj is the set of monotone hyperwords whose hyperletters are between
xβi and xβj (see Theorem 3.18 and the definition of Cj in Subsection 3.3).

Let (W, d) be a braided vector space of diagonal type, x̂1, . . . , x̂θ a basis of W and
q̂ij ∈ k× such that d(x̂i ⊗ x̂j ) = q̂ij x̂j ⊗ x̂i . Assume that q̂ij = q̂ji for all 1 ≤ i, j ≤ θ ,
and that (V , c) and (W, d) are twist equivalent:

qijqji = q̂ij q̂ji, qii = q̂ii, 1 ≤ i 6= j ≤ θ.

We define x̂β = [lβ ]d , that is, the corresponding hyperletter to lβ , but where we change
the braiding c to d. By Corollary 3.17 and the invariance of the root system under twist
equivalence, the set of all x̂β , β ∈ 1V+ = 1

W
+ , is a set of generators of a PBW basis as in

Kharchenko’s Theorem. If u = xnMβM · · · x
n1
β1

, then we denote û = x̂nMβM · · · x̂
n1
β1

.
Let σ : Zθ × Zθ → k× be the bilinear form given by

σ(gi, gj ) =

{
q̂ijq

−1
ij , i ≤ j,

1, i > j.
(4.3)

By [AS2, Prop. 3.9, Rem. 3.10] there exists a linear isomorphism 9 : B(W) → B(V )
such that 9(x̂i) = xi and for any x ∈ B(W)α , y ∈ B(W)β , α, β ∈ Nθ0 ,

9(xy) = σ(α, β)9(x)9(y), (4.4)
9([x, y]d) = σ(α, β)[9(x),9(y)]d . (4.5)

Define tαi = 1 for all 1 ≤ i ≤ θ , and inductively

tβ = σ(β1, β2)tβ1 tβ2 , Sh(lβ) = (lβ1 , lβ2).
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Also for any u = xnMβM · · · x
n1
β1

define

f (u) :=
∏

1≤i<j≤M

σ(βj , βi)
ninj

∏
1≤i≤M

σ(βi, βi)
(
ni
2 )t

ni
βi
. (4.6)

Lemma 4.4. For any u = xnMβM · · · x
n1
β1

, 9(û) = f (u)u.

Proof. We first prove by induction on `(lβ), β ∈ 1V+, that 9(x̂β) = tβxβ . This follows
by definition when `(lβ) = 1, i.e. when β = αi for some 1 ≤ i ≤ θ . Now assume it holds
for `(lγ ) < k, and consider β ∈ 1V+ such that `(lβ) = k. Let Sh(lβ) = (β1, β2). Then

9(x̂β) = 9([x̂β1 , x̂β2 ]d) = σ(β1, β2)[9(x̂β1),9(x̂β2)]c

= σ(β1, β2)tβ1 tβ2 [xβ1 , xβ2 ]c = tβxβ ,

by (4.5) and the inductive hypothesis.
Now we prove that 9(û) = f (u)u by induction on ht(u). Note that if ht(u) = 1,

this reduces to 9(x̂β) = tβxβ . Assume now that it holds for ht(v) < N , and consider
u = x

nM
βM
· · · x

nk
βk

such that ht(u) = N and nk > 0. Set v = xnMβM · · · x
nk−1
βk

. Then

9(û) = σ
(
(nk − 1)βk +

M∑
i=k+1

niβi, βk

)
9(v̂)9(x̂βk )

=

( M∏
i=k+1

σ(βi, βk)
ni
)
σ(βk, βk)

nk−1f (v)v tβkxβk = f (u)u,

by (4.4) and the inductive hypothesis. ut

For 1 ≤ i < j ≤ θ and u = xnMβM · · · x
n1
β1

, we define

cui,j :=
f (u)(x̂βi x̂βj |û)

σ (βi, βj )tβi tβj cû
, (4.7)

where (·|·) denotes the bilinear form associated to (W, d), and cû is computed as in Corol-
lary 4.2. Note that if (qij ) is symmetric and we consider qij = q̂ij , then σ(α, β) = 1 for
all α, β ∈ Zθ and so f (u) = 1 for any u. Consequently, cui,j = (xβixβj |u)c

−1
u .

We obtain a first set of relations for our presentation.

Lemma 4.5. Let 1 ≤ i < j ≤ M be such that lβi lβj 6= lβk for all k, and Sh(lβi lβj ) =
(lβi , lβj ), and cui,j ∈ k as above. Then

[xβi , xβj ]c =
∑

u∈Bi∩Cj−{xβj xβi }: deg u=βi+βj

cui,j u. (4.8)

Proof. Assume that the braiding is symmetric. As lβi lβj 6= lβk for all k, and Sh(lβi lβj ) =
(lβi , lβj ), it follows that [lβi lβj ]c = [xβi , xβj ]c = xβixβj − χ(βi, βj )xβj xβi is a linear
combination of greater monotone hyperwords by Corollary 2.10.
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As xβixβj ∈ Wβi , it is a linear combination of elements in Bi by Theorem 3.18. Also,
B(V ) is Nθ0-graded, so this linear combination is over elements of Bi of degree βi + βj .
Moreover, if cui,j 6= 0 for u = x

nk
βk
· · · x

nl
βl

, l ≤ k, such that nk, nl 6= 0, then xβi ⊗ xβj
appears in the expression of1(u) by Remark 4.3. Note that xβi ⊗ xβj /∈ Dk ⊗ (Bl −Dk),
because i < j . By Lemma 3.20, we have xβj ∈ Bk , so j ≥ k, and u ∈ Cj .

The explicit formula for the coefficients comes from Proposition 4.1.

If we want to compute c
xβj xβi
i,j , we have to calculate the coefficient of xβi ⊗ xβj in

1(xβj xβi ), because of Remark 4.3 and the formula cxαj xαi = cxαi cxαj . This coefficient is
χ(βj , βi), but as the braiding matrix is symmetric, χ(βj , βi) = χ(βi, βj ). This concludes
the proof when the matrix braiding is symmetric.

When the braiding is not symmetric, we use the linear isomorphism 9 considered
previously to reduce the computation to the symmetric case. Then

0 = 9
(
[x̂βi , x̂βj ]d −

∑
(x̂βi x̂βj |û)c

−1
û
û
)

= σ(βi, βj )tβi tβj [xβi , xβj ]c −
∑

(x̂βi x̂βj |û)c
−1
û
f (u)u,

by (4.5) and Lemma 4.4, so (4.8) holds in B(V ). ut

Corollary 4.6. Assume that i, j are as in Lemma 4.5, and βi + βj =
∑j
k=i nkβk with

nk ∈ N0 if and only if ni = nj = 1 and nk = 0 for k 6= i, j . Then

[xβi , xβj ]c = 0. (4.9)

Proof. This follows from the previous proposition. ut

Now we extend [Ang1, Cor. 5.2]. Recall that Nβ = ord(qβ) = h(xβ).

Lemma 4.7. If β ∈ 1V+ and Nβ is finite, then

x
Nβ
β = 0 in B(V ). (4.10)

Proof. Assume first that (qij ) is symmetric. Consider w = w̃xmβ , where β ∈ 1+ and
either w̃ is a non-increasing product of hyperletters xγ , γ ∈ 1+, γ > β, or w̃ = 1. If
β > α, then

(xNαα |w) = (x
Nα−1
α |1)(xα|w)+

m∑
i=0

(
m

i

)
qβ

(xNα−1
α |w̃xiβ)(xα|x

m−i
β )

+

∑
l1≥···≥lp>xβ , 0≤j≤m

(xNα−1
α |x

(j)
l1,...,lp

)(xα|[l1]c · · · [lp]cx
j
β) = 0,

where we use the fact that (xNα−1
α |1) = (xα|x

m−i
β ) = (xα|[l1]c · · · [lp]cx

j
β) = 0 by the

orthogonality of the PBW basis.
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If β ≤ α, then

(xNαα |w) = (1|w̃x
m−1
β )(xNαα |xβ)+

Nα∑
i=1

(
Nα

i

)
qα

(xiα|w̃x
m−1
β )(xNα−iα |xβ)

+

∑
l1≥···≥lp>xα, 0≤j≤Nα

(x
(j)
l1,...,lp

|w̃xm−1
β )([l1]c · · · [lp]cx

j
α |xβ)

where we use the fact that qα ∈ GNα , the orthogonality of the PBW basis and the fact that
Nβ /∈ 1+ if N > 1 (so (xNαα |xβ) = 0).

Therefore (xNαα |v) = 0 for all v in the PBW basis. Also (I (V )|xNαα ) = 0, because
I (V ) is the radical of this bilinear form, so (T (V )|xNαα ) = 0, and hence xNαα ∈ I (V ).
That is, we have xNαα = 0 in B(V ).

For the general case, we recall that a diagonal braiding is twist equivalent to a braid-
ing with a symmetric matrix (see [AS2, Theorem 4.5]). Also, there exists a linear iso-
morphism between the corresponding Nichols algebras. The corresponding xα are related
by a non-zero scalar, because they are iterations of braided commutators between hyper-
words. ut

Before proving the main result of this section, we need another technical lemma.

Lemma 4.8. Let B be a quotient of T (V ) such that relations (4.8) hold. Then for any
i < j , xβixβj can be written as a linear combination of monotone hyperwords greater
than xβi whose hyperletters are xβk , i ≤ k ≤ j .

Proof. This is similar to the proof of Theorem 2.4 (see [R2, Thm. 10]). For each n ≥ 2,
set

Ln := {(xβi , xβj ) : i < j, `(lβi )+ `(lβj ) = n}.

We order Lk as follows: (xβi , xβj ) < (xβk , xβm) if either lβi lβj < lβk lβm , or lβi lβj = lβk lβm
and lβi < lβk .

We prove the statement by induction on n = `(xβi ) + `(xβj ), and then by induction
on the previous order on Ln. If n = 2, then βi, βj are simple, and [xi, xj ]c = xαi+αj or
[xi, xj ]c = 0 in B.

Fix then a pair (xβi , xβj )∈Ln and assume that the statement holds for (xβk , xβm)∈Ln,
(xβi , xβj ) > (xβk , xβm), and for (xβk , xβm) ∈ Ln′ , n

′ < n. If Sh(lβi lβj ) = (lβi , lβj ) then
the assertion holds because

• if lβi lβj = lβk for some k, then necessarily (by the definition of the order) i < k < j

and [xβi , xβj ]c = xβk ,
• otherwise it holds because we assume (4.8).

If Sh(lβi lβj ) 6= (lβi , lβj ), let Sh(lβi ) = (lβp , lβq ), so xβi = [xβp , xβq ]c. Therefore lβq < lβj
(see Subsection 2.2). By (2.4),

[xβi , xβj ]c = [xβp , [xβq , xβj ]c]c − χ(βp, βq)xβq [xβp , xβj ]c + χ(βq , βj )[xβp , xβj ]cxβq .
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We apply the induction hypothesis and express [xβq , xβj ]c as a linear combination of
monotone hyperwords whose hyperletters are between xβq and xβj . By (2.5) and the in-
ductive hypothesis, we express [xβp , [xβq , xβj ]c]c as a linear combination of monotone
hyperwords whose letters are between xβi and xβj . The order in Ln is important here,
because in such a linear combination a single hyperletter xβk can appear, which by hy-
pothesis is between xβq and xβj , and so (lβi , lβj ) > (lβp , lβk ).

We also use the inductive hypothesis to express [xβp , xβj ]c as a linear combination of
hyperwords whose hyperletters are between xβp and xβj . As in the previous step, we can
reorder the hyperletters to find the desired expression by the inductive hypothesis. ut

Now we are ready to prove the main result of this work.

Theorem 4.9. Let (V , c) be a finite-dimensional braided vector space of diagonal type
such that 1V+ is finite. Let x1, . . . , xθ be a basis of V such that c(xi ⊗ xj ) = qijxj ⊗ xi ,
where (qij ) ∈ (k×)θ×θ is the braiding matrix, and let {xβk }βk∈1V+ be the associated set of
hyperletters. Then B(V ) is presented by the generators x1, . . . , xθ and the relations

x
Nβ
β = 0, β ∈ 1V+, ord(qβ) = Nβ <∞, (4.11)

[xβi , xβj ]c =
∑

u∈Bi∩Cj−{xβj xβi }: deg u=βi+βj

cui,ju, (4.12)

Sh(lβi lβj ) = (lβi , lβj ), 1 ≤ i < j ≤ M, lβi lβj 6= lβk ,∀k,

where the cui,j are as in (4.7). Moreover, {xnMβM · · · x
n1
β1
: 0 ≤ nj < Nβj } is a basis of B(V ).

Proof. The statement about the basis follows from Kharchenko’s theory of PBW bases
(Subsection 2.2) and the definition of1V+ (see Subsection 3.1), where the hyperletters xβk
are uniquely determined by Corollary 3.17.

Let B := T (V )/I , where I is the ideal of T (V ) generated by (4.11), (4.12): by Lem-
mata 4.5 and 4.7, I ⊆ I (V ), so the projection π : T (V ) � B(V ) induces canonically a
projection π ′ : B � B(V ). Let W be the subspace of B spanned by B, where B is the
PBW basis of B(V ); we have 1 ∈ W . For each pair 1 ≤ i ≤ j ≤ M , we let Wi,j be the
subspace of W spanned by Bi ∩ Cj .

We assert that

xβkWi,j ⊂ Wmin{i,k},max{j,k}. (4.13)

We shall prove this by induction on k. When k = M , fix i ≤ j . For each w ∈ Bi ∩ Cj ,
we have either xβMw ∈ Bi ∩ CM = Bi , or xβMw = 0 if j = M , NM <∞ and w begins
with xNM−1

βM
, so xβMWi,j ⊂ Wi,M .

Now assume that (4.13) holds for all l > k and all i ≤ j . We argue by induction on j .
If i ≤ j ≤ k, for each w ∈ Bi ∩ Cj we have either xβkw ∈ Bi ∩ Ck or xβkw = 0 as in
the initial step, so xβkWi,j ⊂ Wi,k . Now assume j > k, and consider w ∈ Bi ∩ Cj ; it is
enough to prove that xβkw ∈ Wmin{i,k},j . Moreover, we can assume w = xβjw

′ for some
monotone hyperword w′ inWi,j (if w begins with another hyperletter xβl , l < j , we con-
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sider w ∈ Wi,l ⊂ Wi,j ). By Lemma 4.8, we can write xβkxβj as a linear combination of
monotone hyperwords whose hyperletters belong to Bk ∩Cj . Therefore the result follows
by the inductive hypothesis: any of these hyperwords either has no letters xβk and we use
the first inductive hypothesis (it holds for all l > k), or it ends with hyperletters xβk and
we write xβkw

′ as a linear combination of hyperwords in Bmin{i,k} ∩ Cj by the second
inductive hypothesis.

In this way we find that W is a left ideal which contains 1, so W = B. But then the
projection π ′ is an isomorphism, and B = B(V ). ut

Remark 4.10. Recall that we have defined, for i, j ∈ {1, . . . , θ},

mij := max{m : (adc xi)mxj 6= 0}

(see (3.6)), and so mαi + αj ∈ 1V+ iff 0 ≤ m ≤ mij . Moreover assume i < j . Then
xmαi+αj = (adc xi)mxj , and a pair as in Corollary 4.6 is (xi, x

mij
i xj ), so the corollary

implies the well-known quantum Serre relation in B(V ): (adc xi)mij+1xj = 0. If i > j ,
then the pair changes to (xjx

mij
i , xi), but then 0 = [xmαi+αj , xi]c = a(adc xi)mij+1xj for

some a ∈ k×. In any case we have (adc xi)mij+1xj = 0.
This shows that the set of relations (4.8), (4.10) is not minimal: if ord(qii) = mij + 1,

then x
mij+1
i is one of the relations (4.10), and then (adc xi)mij+1xj belongs to the ideal

generated by x
mij+1
i .

5. Explicit presentations by generators and relations of some Nichols algebras of
diagonal type

We shall apply the previous theory concerning a PBW basis (Corollary 3.17) and a pre-
sentation of the corresponding Nichols algebra (Theorem 4.9) in some concrete examples.

5.1. Examples when dimV = 3

We consider the Weyl equivalence classes 9, 10, 11 in [H2, Table 2]. We fix the following
notation: let q, r, s ∈ k× be such that qrs = 1. Let M,N,P ∈ N be the orders of these
scalars, if they are finite. Such a Weyl equivalence class includes the following generalized
Dynkin diagrams:

• ◦
q

q−1

◦
−1 r−1

◦
r

• ◦
q

q−1

◦
−1 s−1

◦
s

• ◦
r r−1

◦
−1 s−1

◦
s

• ◦
−1

r

◦
−1

q

s
◦
−1
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Notice that 10, 11 are particular cases of 9 when q = r , q = r = s ∈ G3, respectively.
Also the second and the third diagrams are analogous to the first one, so it is enough to
obtain the presentation for the first and the last braidings.

If i < j , then lαi+αj = xixj , so xαi+αj = [xi, xj ]c = (adc xi)xj . Also,

lα1+α2+α3 =

{
x1x2x3 if (adc x1)x3 = 0 and xα1+α2+α3 = [x1, xα2+α3 ]c,

x1x3x2 if (adc x1)x3 6= 0 and xα1+α2+α3 = [xα1+α3 , x2]c.

When (adc x1)x3 = 0, we also have

lα1+2α2+α3 = x1x2x3x2 and xα1+2α2+α3 = [xα1+α2+α3 , x2]c.

Proposition 5.1. Let (V , c) be a braided vector space such that dimV = 3, and the
corresponding generalized Dynkin diagram is

◦
q

q−1

◦
−1 r−1

◦
r .

Then B(V ) is presented by generators x1, x2, x3 and the relations

xM1 = x
2
2 = x

N
3 = x

P
α1+2α2+α3

= 0, (5.1)

(adc x1)
2x2 = (adc x3)

2x2 = (adc x1)x3 = 0, (5.2)
[xα1+α2 , xα1+α2+α3 ]c = [xα1+α2+α3 , xα2+α3 ]c = 0. (5.3)

Moreover, B(V ) has the following PBW basis:{
x
n3
3 x

n23
α2+α3

x
n2
2 x

n1232
α1+2α2+α3

x
n123
α1+α2+α3

x
n12
α1+α2

x
n1
1 :

0 ≤ n1 < M, 0 ≤ n2 < N, 0 ≤ n1232 < P, n12, n123, n2, n23 ∈ {0, 1}
}
.

If M,N,P <∞, then dimB(V ) = 16MNP .

Proof. For this case,

1V+ = {α3, α2 + α3, α2, α1 + 2α2 + α3, α1 + α2 + α3, α1 + α2, α1}.

Therefore we easily obtain lβ , β ∈ 1V+, from Corollary 3.17.
By Remark 4.10, we consider the relations

(adc x1)
2x2 = (adc x3)

2x2 = (adc x1)x3 = 0,

because (adc x2)
2x1, (adc x2)

2x3 = 0 follow from x2
2 = 0.

We have the following decompositions:

Sh(lα1+α2 lα1+α2+α3) = (lα1+α2 , lα1+α2+α3),

Sh(lα1+α2+α3 lα2+α3) = (lα1+α2+α3 , lα2+α3).

Relation (5.3) then follows from Corollary 4.6.
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Also Sh(lα1 lα1+α2+α3) = (lα1 , lα1+α2+α3), so

[x1, xα1+α2+α3 ]c = 0.

Note that xα1+α2+α3 = [xα1+α2 , x3]c from (adc x1)x3 = 0 and the identity (2.4). There-
fore, the displayed relation is redundant because of (2.4) and x2

1 = 0. The same holds for
the relation [xα1+α2+α3 , x3]c = 0, coming from the decomposition Sh(lα1+α2+α3 lα3) =

(lα1+α2+α3 , lα3).
Also Sh(lα1 lα1+2α2+α3) = (lα1 , lα1+2α2+α3), so by Lemma 4.5 there exists a ∈ k such

that
[x1, xα1+2α2+α3 ]c = axα1+α2+α3xα1+α2 .

This relation is also redundant:

[x1, xα1+2α2+α3 ]c = [[x1, xα1+α2+α3 ]c, x2]c + q11q12q13xα1+α2+α3xα1+α2

− q12q22q32xα1+α2xα1+α2+α3

= q11q12q13(1− s)xα1+α2+α3xα1+α2 ,

where we use (2.4) and the previous relations.
We finally have

Sh(lα1+α2 lα1+2α2+α3) = (lα1+α2 , lα1+2α2+α3),

Sh(lα1+α2+α3 lα1+2α2+α3) = (lα1+α2+α3 , lα1+2α2+α3),

which yields the following relations:

[xα1+α2 , xα1+2α2+α3 ]c = [xα1+α2+α3 , xα1+2α2+α3 ]c = 0.

These relations also follow from the previous ones using (2.4).
We can prove in the same way that x2

α1+α2
, x2
α2+α3

, x2
α1+α2+α3

= 0 are redundant. The
proposition then follows by Theorem 4.9, where we omit some redundant relations. ut

Proposition 5.2. Let (V , c) be a braided vector space such that dimV = 3, and the
corresponding generalized Dynkin diagram is

◦
−1

r

◦
−1

q

s
◦
−1

Then B(V ) is presented by generators x1, x2, x3 and the relations

x2
1 = x

2
2 = x

2
3 = x

2
α1+α2+α3

= 0, (5.4)

xMα1+α2
= xNα2+α3

= xPα1+α3
= 0, (5.5)

[xαi+αj , xαi+αk ]c = 0, {i, j, k} = {1, 2, 3}, (5.6)

[x1, xα2+α3 ]c =
1− s

q23(1− r)
xα1+α2+α3 + q12(1− s)x2xα1+α3 . (5.7)
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Moreover, B(V ) has a PBW basis{
x
n3
3 x

n23
α2+α3

x
n2
2 x

n13
α1+α3

x
n123
α1+α2+α3

x
n12
α1+α2

x
n1
1 :

0 ≤ n12 < M, 0 ≤ n23 < N, 0 ≤ n13 < P, n1, n123, n2, n3 ∈ {0, 1}
}
.

If M,N,P <∞, then dimB(V ) = 16MNP .

Proof. Again we obtain lβ , β ∈ 1V+, easily from Corollary 3.17, because

1V+ = {α3, α2 + α3, α2, α1 + α3, α1 + α2 + α3, α1 + α2, α1}.

By Remark 4.10, all the quantum Serre relations (adc xi)2xj = 0, i 6= j , follow from
x2
i = 0, i = 1, 2, 3.

We have the decompositions

Sh(lα1+α2 lα1+α3) = (lα1+α2 , lα1+α3),

Sh(lα1+α2 lα2+α3) = (lα1+α2 , lα2+α3),

Sh(lα1+α3 lα2+α3) = (lα1+α3 , lα2+α3),

which yield relations (5.6) by Corollary 4.6.
The decomposition Sh(lα1 lα2+α3) = (lα1 , lα2+α3) tells us that [x1, xα2+α3 ]c is a linear

combination of xα1+α2+α3 and x2xα1+α3 by Lemma 4.5, and we calculate the correspond-
ing coefficients using Lemma 4.4.

Also Sh(lα1 lα1+α2+α3) = (lα1 , lα1+α2+α3), so

[x1, xα1+α2+α3 ]c = 0.

This relation is again redundant because of (2.4), x2
1 = 0 and the first relation in (5.6).

The same holds for the relation [xα1+α2+α3 , x2]c = 0, coming from the decomposition
Sh(lα1+α2+α3 lα2) = (lα1+α2+α3 , lα2).

Also Sh(lα1+α2 lα1+α2+α3) = (lα1+α2 , lα1+α2+α3), so

[xα1+α2 , xα1+α2+α3 ]c = 0.

This relation is also redundant by the previous relations and (2.4). In the same way,
[xα1+α2+α3 , xα1+α3 ]c = [xα1+α2+α3 , xα2+α3 ]c = 0 are redundant. The proposition fol-
lows by Theorem 4.9. ut

Remark 5.3. We can prove that if (V , c) is a braided vector space as in Proposition
5.1 or Proposition 5.2, and R =

⊕
n≥0 Rn is a finite-dimensional graded braided Hopf

algebra such that R0 = k1 and R1 ∼= V as braided vector spaces, then R is generated by
R1 as an algebra. The proof is exactly as in [AnGa, Thm. 2.7], using the corresponding
presentation by generators and relations.

Remark 5.4. When the braiding is of standard type, we obtain the presentation by gen-
erators and relations given in [Ang1, Section 5]. In fact, Corollary 3.17 gives the set of
Lyndon words obtained in [Ang1, Section 4B]. Then we obtain a set of relations as in
Theorem 4.9, where the set of relations (4.12) includes the ones of [Ang1, Theorems
5.14, 5.19, 5.22, 5.25] which are not root vector powers. Then we can reduce this set of
relations because of (2.4) as in this paper, in order to obtain a minimal set of relations.
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