
DOI 10.4171/JEMS/568

J. Eur. Math. Soc. 17, 2673–2724 c© European Mathematical Society 2015

Yihong Du · Bendong Lou

Spreading and vanishing in nonlinear
diffusion problems with free boundaries

Received March 3, 2011 and in revised form July 4, 2013

Abstract. We study nonlinear diffusion problems of the form ut = uxx + f (u) with free bound-
aries. Such problems may be used to describe the spreading of a biological or chemical species,
with the free boundary representing the expanding front. For special f (u) of the Fisher-KPP type,
the problem was investigated by Du and Lin [DL]. Here we consider much more general nonlinear
terms. For any f (u) which is C1 and satisfies f (0) = 0, we show that the omega limit set ω(u)
of every bounded positive solution is determined by a stationary solution. For monostable, bistable
and combustion types of nonlinearities, we obtain a rather complete description of the long-time
dynamical behavior of the problem; moreover, by introducing a parameter σ in the initial data, we
reveal a threshold value σ∗ such that spreading (limt→∞ u = 1) happens when σ > σ∗, vanishing
(limt→∞ u = 0) happens when σ < σ∗, and at the threshold value σ∗, ω(u) is different for the
three different types of nonlinearities. When spreading happens, we make use of “semi-waves” to
determine the asymptotic spreading speed of the front.

Keywords. Nonlinear diffusion equation, free boundary problem, asymptotic behavior, mono-
stable, bistable, combustion, sharp threshold, spreading speed

1. Introduction

We consider the following problem:
ut = uxx + f (u), g(t) < x < h(t), t > 0,
u(t, g(t)) = u(t, h(t)) = 0, t > 0,
g′(t) = −µux(t, g(t)), t > 0,
h′(t) = −µux(t, h(t)), t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(1.1)

where x = g(t) and x = h(t) are the moving boundaries to be determined together with
u(t, x), µ is a given positive constant, and f : [0,∞)→ R is a C1 function satisfying

f (0) = 0. (1.2)
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The initial function u0 belongs to X (h0) for some h0 > 0, where

X (h0) :=
{
φ ∈ C2([−h0, h0]) : φ(−h0) = φ(h0) = 0, φ′(−h0) > 0,

φ′(h0) < 0, φ(x) > 0 in (−h0, h0)
}
. (1.3)

For any given h0 > 0 and u0 ∈ X (h0), by a (classical) solution of (1.1) on the time
interval [0, T ]we mean a triple (u(t, x), g(t), h(t)) belonging toC1,2(GT )×C

1([0, T ])×
C1([0, T ]) such that all the identities in (1.1) are satisfied pointwise, where

GT := {(t, x) : t ∈ (0, T ], x ∈ [g(t), h(t)]}.

In the rest of the paper, the solution may also be denoted by (u(t, x; u0), g(t; u0),

h(t; u0)), or simply (u, g, h), depending on the context.
Problem (1.1) with f (u) taking the particular form f (u) = au − bu2 was studied

recently in [DL]. Such a situation arises as a population model describing the spreading
of a new or invasive species, whose growth is governed by the logistic law. The free
boundaries x = g(t) and x = h(t) represent the spreading fronts of the population
whose density is represented by u(t, x). The focus of [DL] is on the particular logistic
nonlinearity f (u) = au− bu2, and many of the arguments there rely on this choice of f .

The logistic f (u) mentioned above belongs to the class of “monostable” nonlineari-
ties, and due to the pioneering works of Fisher [F] and Kolmogorov–Petrovskiı̆–Piskunov
[KPP], it is also known as the Fisher, or KPP, or Fisher-KPP type nonlinearity. As is well-
known, in population models one often needs to consider a general monostable nonlinear
term [AW1, AW2]. Moreover, to include Allee effects, “bistable” nonlinear terms are used
in many population models [HR, LK]. Bistable nonlinearity also appears in other applica-
tions including signal propagation and material science [NAY, AC, FM]. Furthermore, in
the study of combustion problems the typical f (u) is of “combustion” type [ZFK, K, Z].
A precise description of these different types of nonlinearities will be given shortly.

The main purpose of this paper is to classify the behavior of (1.1) for all the types
of nonlinearities mentioned in the last paragraph. Even restricted to the monostable type,
this is an extension of [DL] since we do not require the special form f (u) = au − bu2,
which implies that different methods have to be used.

The corresponding Cauchy problem

ut = uxx + f (u) (x ∈ R1, t > 0), u(0, x) = u0(x) (x ∈ R1) (1.4)

has been extensively studied. For example, the classical paper [AW1] contains a sys-
tematic investigation of this problem, with f normalized to satisfy f (1) = 0. Various
sufficient conditions for limt→∞ u(t, x) = 1 and for limt→∞ u(t, x) = 0 are known,
and when u0(x) is nonnegative and has compact support, the way u(t, x) approaches 1 as
t → ∞ was used to describe the spreading of a (biological or chemical) species, which
is characterized by certain traveling waves, and the speed of these traveling waves de-
termines the asymptotic spreading speed of the species; see for example, [K, FM, AW1,
AW2]. The transition between spreading (u → 1) and vanishing (u → 0) has not been
well understood until recently. In [DM], motivated by break-through results obtained
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in [Z], a rather complete description of the sharp transition behavior was given. As we
will see below, these sharp transition results of [DM] for (1.4) also hold for (1.1). (Spread-
ing and vanishing are sometimes called propagation and extinction, as in [DM].) We will
make use of a number of ideas from [DM], and this paper may be regarded as an extension
of [DM].

In most spreading processes in the natural world, a spreading front can be observed.
In the one space dimension case, if the species initially occupies an interval (−h0, h0)

with density u0(x), as time t increases from 0, it is natural to expect the two end points
of (−h0, h0) to evolve into two spreading fronts, x = g(t) on the left and x = h(t)

on the right, and the initial function u0(x) to evolve into a positive function u inside the
interval (g(t), h(t)) governed by the equation ut = uxx + f (u), with u vanishing at
x = g(t) and x = h(t). To determine how the fronts x = g(t) and x = h(t) evolve
with time, we assume that the fronts invade at a speed that is proportional to the spatial
gradient of the density function u there, which gives rise to the free boundary conditions
in (1.1). A deduction of this free boundary condition based on ecological assumptions can
be found in [BDK].

We notice that the free boundary conditions in (1.1) coincide with the one-phase
Stefan condition arising from the investigation of the melting of ice in contact with wa-
ter [R]. Such conditions also arise in the modeling of wound healing [CF]. For population
models, [L] used such a condition for a predator-prey system over a bounded interval,
showing the free boundary reaches the fixed boundary in finite time, and hence the long-
time dynamical behavior of the system is the same as the well-studied fixed boundary
problem; and in [MYY], a two-phase Stefan condition was used for a competition system
over a bounded interval, where the free boundary separates the two competitors from each
other in the interval. A similar problem to (1.1) but with f (u) = up (p > 1) was studied
in [FS, GST]. Since this is a superlinear problem, its behavior is very different from (1.1)
considered here as our focus is on the sublinear cases (except Theorem 1.1 and Section 2).
Indeed, our interests here are very different from all the previous research mentioned in
this paragraph.

We now describe the main results of this paper. Firstly we assume that

f (u) is C1 and f (0) = 0. (1.5)

Then a simple variation of the arguments in [DL] shows that, for any h0 > 0 and
u0 ∈X (h0), (1.1) has a unique solution defined on some maximal time interval (0, T ∗),
where T ∗ ∈ (0,∞]. Moreover, g′(t) < 0, h′(t) > 0 and u(t, x) > 0 for t ∈ (0, T ∗),
x ∈ (g(t), h(t)), and if T ∗ < ∞ then maxx∈[g(t),h(t)] u(t, x) → ∞ as t → T ∗. Thus
limt→∞ g(t) and limt→∞ h(t) always exist if T ∗ = ∞. Throughout this paper, we will
use the notations

g∞ := lim
t→∞

g(t), h∞ := lim
t→∞

h(t).

T ∗ = ∞ is guaranteed if we assume further that

f (u) ≤ Ku for all u ≥ 0 and some K > 0. (1.6)

A more detailed description of these statements can be found in Section 2 below.
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Our first main result is a general convergence theorem, which is an analogue of The-
orem 1.1 in [DM].

Theorem 1.1. Suppose that (1.5) holds and (u, g, h) is a solution of (1.1) that is defined
for all t > 0, and u(t, x) is bounded: for some C > 0,

u(t, x) ≤ C for all t > 0 and x ∈ [g(t), h(t)].

Then (g∞, h∞) is either a finite interval or (g∞, h∞) = R1. Moreover, if (g∞, h∞) is
a finite interval, then limt→∞maxx∈[g(t),h(t)] u(t, x) = 0, and if (g∞, h∞) = R1 then
either limt→∞ u(t, x) is a nonnegative constant solution of

vxx + f (v) = 0, x ∈ R1, (1.7)

or
u(t, x)− v(x + γ (t))→ 0 as t →∞,

where v is an evenly decreasing positive solution of (1.7), γ : [0,∞) → [−h0, h0] is a
continuous function, and the convergence of u as t → ∞ is uniform over any bounded
interval of x.

By an evenly decreasing function we mean a function v(x) satisfying v(−x) = v(x)

which is strictly decreasing in [0,∞). Let us note that (g∞, h∞) can never be a half-
infinite interval. In fact, we will prove in Lemma 2.8 that

−2h0 < g(t)+ h(t) < 2h0 for all t > 0.

We conjecture that limt→∞ γ (t) exists but have been unable to prove it. (This conjecture
has been resolved now; see Remark 1.8 below for details.)

Next we focus on three types of nonlinearities:

(fM ) monostable case, (fB ) bistable case, (fC) combustion case.

In the monostable case (fM ), we assume that f is C1 and it satisfies

f (0) = f (1) = 0, f ′(0) > 0, f ′(1) < 0, (1− u)f (u) > 0 for u > 0, u 6= 1.
(1.8)

Clearly f (u) = u(1− u) belongs to (fM ).
In the bistable case (fB ), we assume that f is C1 and it satisfies

f (0) = f (θ) = f (1) = 0, f (u)

< 0 in (0, θ),
> 0 in (θ, 1),
< 0 in (1,∞)

(1.9)

for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0 and∫ 1

0
f (s) ds > 0. (1.10)

A typical bistable f (u) is u(u− θ)(1− u) with θ ∈ (0, 1/2).
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In the combustion case (fC), we assume that f is C1 and it satisfies

f (u) = 0 in [0, θ], f (u) > 0 in (θ, 1), f ′(1) < 0, f (u) < 0 in (1,∞) (1.11)

for some θ ∈ (0, 1), and there exists a small δ0 > 0 such that

f (u) is nondecreasing in (θ, θ + δ0). (1.12)

Clearly (1.5) and (1.6) are satisfied if f is of (fM ), (fB ), or (fC) type. Thus in these
cases (1.1) always has a unique solution defined for all t > 0.

The next three theorems give a rather complete description of the long-time behav-
ior of the solution, and they also reveal the related but different sharp transition natures
between vanishing and spreading for these three types of nonlinearities.

Theorem 1.2 (The monostable case). Assume that f is of (fM ) type, and h0 > 0, u0 ∈

X (h0). Then either

(i) Spreading: (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R1,

or

(ii) Vanishing: (g∞, h∞) is a finite interval with length no bigger than π/
√
f ′(0) and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0.

Moreover, if u0 = σφ with φ ∈ X (h0), then there exists σ ∗ = σ ∗(h0, φ) ∈ [0,∞] such
that vanishing happens when 0 < σ ≤ σ ∗, and spreading happens when σ > σ ∗. In
addition,

σ ∗


= 0 if h0 ≥ π/(2

√
f ′(0)),

∈ (0,∞] if h0 < π/(2
√
f ′(0)),

∈ (0,∞) if h0 < π/(2
√
f ′(0)) and if f is globally Lipschitz.

Theorem 1.3 (The bistable case). Assume that f is of (fB ) type, and h0>0, u0∈X (h0).
Then either

(i) Spreading: (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R1,

or

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0,

or
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(iii) Transition: (g∞, h∞) = R1 and there exists a continuous function γ : [0,∞) →
[−h0, h0] such that

lim
t→∞
|u(t, x)− v∞(x + γ (t))| = 0 locally uniformly in R1,

where v∞ is the unique positive solution to

v′′ + f (v) = 0 (x ∈ R1), v′(0) = 0, v(−∞) = v(∞) = 0.

Moreover, if u0 = σφ for some φ ∈ X (h0), then there exists σ ∗ = σ ∗(h0, φ) ∈ (0,∞]
such that vanishing happens when 0 < σ < σ ∗, spreading happens when σ > σ ∗, and
transition happens when σ = σ ∗. In addition, there exists ZB > 0 such that σ ∗ < ∞ if
h0 ≥ ZB , or if h0 < ZB and f is globally Lipschitz.

Theorem 1.4 (The combustion case). Assume that f is of (fC) type, and h0 > 0,
u0 ∈X (h0). Then either

(i) Spreading: (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R1,

or

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0,

or

(iii) Transition: (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = θ locally uniformly in R1.

Moreover, if u0 = σφ for some φ ∈ X (h0), then there exists σ ∗ = σ ∗(h0, φ) ∈ (0,∞]
such that vanishing happens when 0 < σ < σ ∗, spreading happens when σ > σ ∗, and
transition happens when σ = σ ∗. In addition, there exists ZC > 0 such that σ ∗ < ∞ if
h0 ≥ ZC , or if h0 < ZC and f is globally Lipschitz.

Remark 1.5. The value of σ ∗ in the above theorems can be∞ if we drop the assumption
that f is globally Lipschitz when h0 is small. Indeed, this is the case if f (u) goes to −∞
fast enough as u → ∞; see Propositions 5.4, 5.8 and 5.12 for details. The values of ZB
and ZC are determined by (4.8) and (4.9), respectively.

Remark 1.6. In [DL], to determine whether spreading or vanishing happens for the spe-
cial monostable nonlinearity, a threshold value of µ was established, which was shown in
[DL] to be always finite. Here we use σ in u0 = σφ as a varying parameter, which ap-
pears more natural especially for the bistable and combustion cases, since in these cases
the dynamical behavior of (1.1) is more responsive to the change of the initial function
than to the change of µ; for example, when ‖u0‖∞ ≤ θ , then vanishing always happens
regardless of the value of µ.
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Remark 1.7. Theorems 1.3 and 1.4 above are parallel to [DM, Theorems 1.3 and 1.4],
where the Cauchy problem was considered. In contrast, Theorem 1.2 is very different
from the Cauchy problem version, where a “hair-trigger” phenomenon appears: when f
is of (fM ) type, any nonnegative solution of (1.4) is either identically 0, or it converges to
1 as t →∞ (see [AW1, AW2]).

Remark 1.8. In the recent paper [DLZ], the conclusion of Theorem 1.1 has been
strengthened. It is shown in [DLZ] that limt→∞ γ (t) = x0 ∈ [−h0, h0]. Hence in the
statement, we could replace γ (t) by x0. As a consequence the conclusion in Theorem
1.3(iii) can be similarly strengthened. Moreover, for the transition cases in Theorems 1.3
and 1.4, the first order expansion of h(t) for large t is obtained in [DLZ].

When spreading happens, the asymptotic spreading speed is determined by the following
problem:{

qzz − cqz + f (q) = 0 for z ∈ (0,∞),
q(0) = 0, µqz(0) = c, q(∞) = 1, q(z) > 0 for z > 0. (1.13)

Proposition 1.9. Assume that f is of (fM ), (fB ), or (fC) type. Then for each µ > 0,
(1.13) has a unique solution (c, q) = (c∗, q∗).

We call q∗ a semi-wave with speed c∗, since the function v(t, x) = q∗(c∗t − x) satisfies

vt = vxx + f (v) (t ∈ R1, x < c∗t), v(t, c∗t) = 0, v(t,−∞) = 1,

and it resembles a wave moving to the right at constant speed c∗, with front at x = c∗t .
In comparison with the normal traveling wave generated by the solution of

qzz − cqz + f (q) = 0 for z ∈ R1, q(−∞) = 0, q(∞) = 1, (1.14)

the generator q∗(z) of v(t, x) here is only defined on the half-line {z ≥ 0}. Hence we call
it a semi-wave. We notice that at the front x = c∗t , we have c∗ = −µvx(t, x), so the
Stefan condition in (1.1) is satisfied by v(t, x) at x = c∗t .

Making use of the above semi-wave, we can prove the following result.

Theorem 1.10. Assume that f is of (fM ), (fB ), or (fC) type, and spreading happens. Let
c∗ be given by Proposition 1.9. Then

lim
t→∞

h(t)

t
= lim
t→∞

−g(t)

t
= c∗,

and for any small ε > 0, there exist positive constants δ, M and T0 such that

max
|x|≤(c∗−ε)t

|u(t, x)− 1| ≤ Me−δt for all t ≥ T0. (1.15)
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Remark 1.11. The asymptotic spreading speed c∗ depends on the parameterµ appearing
in the free boundary conditions and in (1.13). Therefore we may denote c∗ by c∗µ to stress
this dependence. It is well-known (see, e.g., [AW1, AW2]) that when f is of (fM ), (fB ),
or (fC) type, the asymptotic spreading speed determined by the Cauchy problem (1.4) is
given by the speed of certain traveling wave solutions generated by a solution of (1.14).
Let us denote this speed by c0. Then (see Theorem 6.2) c∗µ is increasing in µ and

lim
µ→∞

c∗µ = c0.

Remark 1.12. It is possible to show that the Cauchy problem (1.4) is the limiting prob-
lem of (1.1) as µ→∞. This holds in much more general situations; see [DG, Section 5]
for the general higher space dimension case.

Remark 1.13. In the recent paper [DMZ], the conclusion of Theorem 1.10 has been
strengthened to the following: There exist Ĥ , Ĝ ∈ R such that

lim
t→∞

(h(t)− c∗t − Ĥ ) = 0, lim
t→∞

h′(t) = c∗,

lim
t→∞

(g(t)+ c∗t − Ĝ) = 0, lim
t→∞

g′(t) = −c∗,

and

lim
t→∞

sup
x∈[0, h(t)]

|u(t, x)− q∗(h(t)− x)| = 0,

lim
t→∞

sup
x∈[g(t), 0]

|u(t, x)− q∗(x − g(t))| = 0.

Remark 1.14. Note that for the monostable case, we require f ′(0) > 0. If f (u) =
fp(u) = u

p(1 − u) with p > 1, then f ′(0) = 0, and for p ∈ (0, 1), f ′(0) = ∞. These
degenerate monostable cases are considered in [S], where similar yet different behavior
of the free boundary problem is shown.

The rest of the paper is organized as follows. In Section 2, we present some basic results
which are fundamental for this research, and may have other applications. Here we only
assume that f is C1 and f (0) = 0, that is, (1.5) holds. The proofs of some of these
results are modifications of existing ones. Firstly we give two comparison principles for-
mulated in forms that are convenient to use in this paper. Secondly we explain how the
arguments in [DL] can be modified to show the uniqueness and existence result for (1.1)
under (1.5). Thirdly we give the proof of Theorem 1.1. This is based on a key fact proved
in Lemma 2.8, which says that the solution is rather balanced in x as it evolves with
time t , though it is not symmetric in x in general. The rest of the proof largely follows the
approach in [DM].

In Section 3, for monostable, bistable and combustion nonlinearities, we give a num-
ber of sufficient conditions for vanishing (see Theorem 3.2), through the construction of
suitable upper solutions.
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In Section 4, we obtain sufficient conditions for spreading for the three types of non-
linearities. This is achieved by constructing suitable lower solutions based on a phase
plane analysis of the equation

q ′′ − cq ′ + f (q) = 0

over a bounded interval [0, Z], together with suitable conditions at the ends of this
interval.

Section 5 is devoted to the proofs of Theorems 1.2, 1.3 and 1.4, with the proof of each
theorem constituting a subsection. The arguments here rely heavily on the results in the
previous sections. The proof of the fact mentioned in Remark 1.5, that σ ∗ = ∞ when
f (u) goes to −∞ fast enough, is rather technical, and is given in Subsection 5.4.

Proposition 1.9 and Theorem 1.10 are proved in Section 6, the last section of the paper.
In Subsection 6.1, we prove Proposition 1.9 by revisiting the well-known traveling wave
solution with speed c0 (the minimal speed for monostable type nonlinearity, and unique
speed for nonlinearity of bistable or combustion type). Our phase plane analysis is related
to but different from that in [AW1, AW2]. This alternative method leads to the desired
semi-wave naturally; see Remark 6.3 for further comments. Subsection 6.2 is devoted to
the proof of Theorem 1.10.

2. Some basic results

In this section we give some basic results which will be frequently used. The results here
are for general f which is C1 and satisfies f (0) = 0.

Lemma 2.1. Suppose that (1.5) holds, T ∈ (0,∞), g, h ∈ C1([0, T ]), u ∈ C(DT ) ∩
C1,2(DT ) with DT = {(t, x) ∈ R2

: 0 < t ≤ T , g(t) < x < h(t)}, and
ut ≥ uxx + f (u), 0 < t ≤ T , g(t) < x < h(t),

u = 0, g′(t) ≤ −µux, 0 < t ≤ T , x = g(t),

u = 0, h
′
(t) ≥ −µux, 0 < t ≤ T , x = h(t).

If
[−h0, h0] ⊆ [g(0), h(0)] and u0(x) ≤ u(0, x) in [−h0, h0],

and (u, g, h) is a solution to (1.1), then

g(t) ≥ g(t), h(t) ≤ h(t) in (0, T ],
u(x, t) ≤ u(x, t) for t ∈ (0, T ] and x ∈ (g(t), h(t)).

Lemma 2.2. Suppose that (1.5) holds, T ∈ (0,∞), g, h ∈ C1([0, T ]), u ∈ C(DT ) ∩
C1,2(DT ) with DT = {(t, x) ∈ R2

: 0 < t ≤ T , g(t) < x < h(t)}, and
ut ≥ uxx + f (u), 0 < t ≤ T , g(t) < x < h(t),

u ≥ u, 0 < t ≤ T , x = g(t),

u = 0, h
′
(t) ≥ −µux, 0 < t ≤ T , x = h(t),
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with

g(t) ≥ g(t) in [0, T ], h0 ≤ h(0), u0(x) ≤ u(0, x) in [g(0), h0],

where (u, g, h) is a solution to (1.1). Then

h(t) ≤ h(t) in (0, T ], u(x, t) ≤ u(x, t) for t ∈ (0, T ] and g(t) < x < h(t).

The proof of Lemma 2.1 is identical to that of [DL, Lemma 5.7], and a minor modification
of this proof yields Lemma 2.2.

Remark 2.3. The function u, or the triple (u, g, h), in Lemmas 2.1 and 2.2 is often called
an upper solution to (1.1). A lower solution can be defined analogously by reversing all
the inequalities. There is a symmetric version of Lemma 2.2, where the conditions on
the left and right boundaries are interchanged. We also have corresponding comparison
results for lower solutions in each case.

The following local existence result can be proved by the same arguments as in [DL,
Theorem 2.1 and beginning of Section 5].

Theorem 2.4. Suppose that (1.5) holds. For any given u0 ∈ X (h0) and any α ∈ (0, 1),
there is a T > 0, depending only on h0, α and ‖u0‖C2([−h0,h0])

, such that problem (1.1)
admits a unique solution

(u, g, h) ∈ C(1+α)/2,1+α(GT )× C
1+α/2([0, T ])× C1+α/2([0, T ]);

moreover,

‖u‖C(1+α)/2,1+α(GT ) + ‖g‖C1+α/2([0,T ]) + ‖h‖C1+α/2([0,T ]) ≤ C, (2.1)

where GT = {(t, x) ∈ R2
: x ∈ [g(t), h(t)], t ∈ (0, T ]}, C depends on T , h0, α and

‖u0‖C2([−h0,h0])
.

Remark 2.5. As in [DL], by the Schauder estimates applied to the equivalent fixed
boundary problem used in the proof, we have additional regularity for u, namely u ∈
C1+α/2,2+α(GT ).

Lemma 2.6. Suppose that (1.5) holds, (u, g, h) is a solution to (1.1) defined for t ∈
[0, T0) for some T0 ∈ (0,∞), and there exists C1 > 0 such that

u(t, x) ≤ C1 for t ∈ [0, T0) and x ∈ [g(t), h(t)].

Then there exists C2 depending on C1 but independent of T0 such that

−g′(t), h′(t) ∈ (0, C2] for t ∈ (0, T0).

Moreover, the solution can be extended to some interval (0, T ) with T > T0.
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Proof. Since f is C1 and f (0) = 0, there exists K > 0 depending on C1 such that
f (u) ≤ K for u ∈ [0, C1]. We may then follow the proof of [DL, Lemma 2.2] to construct
an upper solution of the form

w(t, x) = C1[2M(h(t)− x)−M2(h(t)− x)2]

for some suitable M > 0, over the region

{(t, x) : 0 < t < T0, h(t)−M
−1 < x < h(t)}

to prove that h′(t) ≤ C2 for t ∈ (0, T0). The proof for g′(t) ≥ −C2 is parallel.
Thus, for t ∈ [0, T0),

−g(t), h(t) ∈ [h0, h0 + C2t], −g′(t), h′(t) ∈ (0, C2].

We now fix δ0 ∈ (0, T0). By standard Lp estimates, the Sobolev embedding theorem, and
the Hölder estimates for parabolic equations, we can find C3 > 0 depending only on δ0,
T0, C1, and C2 such that ‖u(t, ·)‖C2([g(t),h(t)]) ≤ C3 for t ∈ [δ0, T0). It then follows from
the proof of Theorem 2.4 that there exists a τ > 0 depending on C3, C2 and C1 such that
the solution of problem (1.1) with initial time T0−τ can be extended uniquely to the time
T0 + τ . (This is similar to the proof of [DL, Theorem 2.3].) ut

The above lemma implies that the solution of (1.1) can be extended as long as u remains
bounded. In particular, the free boundaries never blow up when u stays bounded. We have
the following result.

Theorem 2.7. Suppose that (1.5) holds. Then (1.1) has a unique solution defined on some
maximal interval (0, T ∗) with T ∗ ∈ (0,∞]. Moreover, when T ∗ <∞, we have

lim
t→T ∗

max
x∈[g(t),h(t)]

u(t, x) = ∞.

If we further assume that (1.6) holds, then T ∗ = ∞.

Proof. We only need to show that T ∗ = ∞ if (1.6) holds; the other conclusions follow
directly from Theorem 2.4 and Lemma 2.6.

Comparing u(t, x) with the solution of the ODE

vt = f (v), v(0) = ‖u0‖∞,

we obtain u(t, x) ≤ v(t) ≤ ‖u0‖∞e
Kt , since f (v) ≤ Kv. In view of Lemma 2.6, we

must have T ∗ = ∞. ut

The rest of this section is devoted to the proof of Theorem 1.1. We need a lemma first.

Lemma 2.8. Suppose that (u(t, x), g(t), h(t)) is a solution of (1.1) as given in Theo-
rem 1.1. Then

−2h0 < g(t)+ h(t) < 2h0 for all t > 0, (2.2)
ux(t, x) > 0 > ux(t, y) for all t > 0, x ∈ [g(t),−h0] and y ∈ [h0, h(t)]. (2.3)
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Proof. By continuity, g(t)+ h(t) > −2h0 for all small t > 0. Define

T := sup{s : g(t)+ h(t) > −2h0 for all t ∈ (0, s)}.

We show that T = ∞. Otherwise T is a positive number and

g(t)+ h(t) > −2h0 for t ∈ (0, T ), g(T )+ h(T ) = −2h0.

Hence
g′(T )+ h′(T ) ≤ 0. (2.4)

We now derive a contradiction by considering

w(t, x) := u(t, x)−u(t,−x−2h0) over G := {(t, x) : t ∈ [0, T ], g(t) ≤ x ≤ −h0}.

Since −h0 ≤ −x − 2h0 ≤ −g(t)− 2h0 ≤ h(t) when (t, x) ∈ G, w is well-defined over
G and it satisfies

wt = wxx + c(t, x)w for 0 < t ≤ T and g(t) < x < −h0,

with some c ∈ L∞(G), and

w(t,−h0) = 0, w(t, g(t)) < 0 for 0 < t < T .

Moreover,

w(T , g(T )) = u(T , g(T ))− u(T ,−g(T )− 2h0) = u(T , g(T ))− u(T , h(T )) = 0.

Applying the strong maximum principle and the Hopf lemma, we deduce

w(t, x) < 0 for 0 < t ≤ T and g(t) < x < −h0, wx(T , g(T )) < 0.

But
wx(T , g(T )) = ux(T , g(T ))+ ux(T , h(T )) = −[g

′(T )+ h′(T )]/µ.

Thus we have g′(T )+h′(T ) > 0, contradicting (2.4). This proves that g(t)+h(t) > −2h0
for all t > 0. We can similarly prove g(t)+ h(t) < 2h0 by considering

v(t, x) := u(t, x)− u(t, 2h0 − x) over {(t, x) : t > 0, h0 ≤ x ≤ h(t)}.

With (2.2) proven, it is now easy to prove (2.3). For any fixed ` ∈ (g∞,−h0], we can
find a unique T ≥ 0 such that g(T ) = `. We now consider

z(t, x) := u(t, x)− u(t, 2`− x) over G` := {(t, x) : t > T , g(t) < x < `}.

We have

zt = zxx + c(t, x)z in G`, z(t, g(t)) < 0 and z(t, `) = 0 for t > T .

Hence we can apply the strong maximum principle and the Hopf lemma to deduce

z(t, x) < 0 in G`, zx(t, `) > 0 for t > T .



Spreading and vanishing in nonlinear diffusion problems 2685

Since zx(t, `) = 2ux(t, `), we thus have

ux(t, g(T )) > 0 for t > T .

Now for any t > 0 and x ∈ (g(t),−h0], we can find a unique T ∈ [0, t) such that
x = g(T ). Hence ux(t, x) > 0. This inequality is also true for x = g(t), which is a
consequence of the Hopf lemma applied directly to (1.1).

The proof of the other inequality in (2.3) is similar. ut

Proof of Theorem 1.1. We will make use of Lemma 2.8 and then follow the ideas of [DM]
with suitable variations.

Let (u, g, h) be as given in Theorem 1.1. Then in view of Lemma 2.8, I∞ :=(g∞, h∞)
is either a finite interval or R1. Denote by ω(u) the ω-limit set of u(t, ·) in the topology
of L∞loc(I∞). Thus a function w(x) belongs to ω(u) if and only if there exists a sequence
0 < t1 < t2 < · · · → ∞ such that

lim
n→∞

u(tn, x) = w(x) locally uniformly in I∞. (2.5)

By local parabolic estimates, we see that the convergence (2.5) implies convergence
in the C2

loc(I∞) topology. Thus the definition of ω(u) remains unchanged if the topology
of L∞loc(I∞) is replaced by that of C2

loc(I∞).
It is well-known that ω(u) is compact and connected, and it is an invariant set. This

means that for any w ∈ ω(u) there exists an entire orbit (namely a solution of Wt =

Wxx + f (W) defined for all t ∈ R1 and x ∈ I∞) passing through w. Choosing a suitable
sequence 0 < t1 < t2 < · · · → ∞, we can find such an entire solution W(t, x) with
W(0, x) = w(x) as follows:

u(t + tn, x)→ W(t, x) as n→∞. (2.6)

Here the convergence is understood in theL∞loc sense in (t, x) ∈ R1
×I∞, but, by parabolic

regularity, it takes place in the C1,2
loc (R

1
× I∞) sense.

For clarity we divide the argument below into four parts, each proving a specific claim.

Claim 1. ω(u) consists of solutions of

vxx + f (v) = 0, x ∈ I∞. (2.7)

Let w(x) be an arbitrary element of ω(u) and W(t, x) the entire orbit satisfying W(0, x)
= w(x). Since W is a nonnegative solution of

Wt = Wxx + f (W), t ∈ R1, x ∈ I∞,

and f (0) = 0, by the strong maximum principle we have either W(t, x) > 0 for all
t ∈ R1 and x ∈ I∞, or W ≡ 0. (Note that if I∞ is a finite interval, then it can be shown
that W(t, g∞) = W(t, h∞) = 0 for all t ∈ R1.) In the latter case we have w ≡ 0, which
is a solution to (2.7). In what follows we assume the former, that is, w > 0.
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By Lemma 2.8, we see that w′(x) ≥ 0 for x ∈ (g∞,−h0] and w′(x) ≤ 0 for x ∈
[h0, h∞). Thus there exists x0 ∈ (−h0, h0) such that w′(x0) = 0, w(x0) = ‖w‖∞ > 0.

Let v(x) be the solution of the following initial value problem:

v′′ + f (v) = 0, v(x0) = w(x0), v
′(x0) = 0.

Then v is symmetric about x = x0. Since w(x0) > 0, v is either a positive solution
of (2.7) in R1 or a solution of (2.7) with compact positive support, namely there exists
R0 > 0 such that

v(x) > 0 in (x0 − R0, x0 + R0), v(x0 ± R0) = 0 or v(x0 ± R0) = ∞.

We may now follow the argument in [DM, proof of Lemma 3.4] (with obvious minor
variations) to conclude that w ≡ v. This proves Claim 1.

Claim 2. If I∞ is a finite interval, then ω(u) = {0}.

Otherwise by Claim 1, ω(u) contains a nontrivial nonnegative solution v of the problem

vxx + f (v) = 0 in I∞, v(g∞) = v(h∞) = 0.

Due to f (0) = 0, by the strong maximum principle and the Hopf lemma, we have v > 0
in I∞ and v′(g∞) > 0 > v′(h∞). By definition, along a sequence tn → ∞, u(tn, x)→
v(x) in C1

loc(I∞). We claim that there exists α > 0 so that, by passing to a subsequence,
‖u(tn, ·) − v(·)‖C1+α([g(tn),h(tn)])

→ 0 as n → ∞. Indeed, if we make a change of the
variable x to reduce [g(t), h(t)] to the fixed finite interval [−h0, h0] as in [DL, proof
of Theorem 2.1], so that the solution u(t, x) is changed to ũ(t, x), and v(x) is changed
to ṽ(x), then we can apply the Lp estimates (and Sobolev embeddings) on the reduced
equation with Dirichlet boundary conditions to conclude that ũ(t + ·, ·) has a common
bound in C(1+ν)/2,1+ν([0, 1] × [−h0, h0]) for all t ≥ 1, say

‖ũ(t + ·, ·)‖C(1+ν)/2,1+ν ([0,1]×[−h0,h0])
≤ C0 for all t ≥ 1. (2.8)

Hence by taking a subsequence we may assume that ũ(tn, x) → V (x) in
C1+ν/2([−h0, h0]). But from u(tn, x) → v(x) we know that ũ(tn, x) → ṽ(x). Thus
necessarily V (x) ≡ ṽ(x), and so ‖u(tn, ·)− v(·)‖C1+ν/2([g(tn),h(tn)])

→ 0.
It follows that

h′(tn) = −µux(tn, h(tn))→−µv
′(h∞) > 0 as n→∞.

Hence for all large n, say n ≥ n0,

h′(tn) ≥ δ := −µv
′(h∞)/2 > 0.

On the other hand, from (2.8), we also deduce that

‖u(t + ·, ·)‖C(1+ν)/2,1+ν (Qt ) ≤ C1 for all t ≥ 1,

with Qt := {(s, x) : s ∈ [0, 1], g(t + s) ≤ x ≤ h(t + s)}. It follows that
h′(t) = −µux(t, h(t)) is uniformly continuous in t for t ≥ 1. Therefore h′(t) ≥ δ/2
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for t ∈ [tn, tn+ ε] and n ≥ n0 for some ε > 0 sufficiently small but independent of n (we
may assume without loss of generality that tn+1 − tn ≥ 1 for all n). Since h′(t) > 0 for
all t > 0, we thus have

h∞ ≥ h0 +

∞∑
n=n0

∫ tn+ε

tn

h′(t) dt = ∞,

contradicting the assumption that I∞ is a finite interval. The proof of Claim 2 is now
complete.

Claim 3. If I∞ = R1, then ω(u) is either a constant or ω(u) = {v(·+α) : α ∈ [α1, α2]}

for some interval [α1, α2] ⊂ [−h0, h0], where v is an evenly decreasing positive solution
of (2.7).

In view of Lemma 2.8, we only need to consider the case that I∞ = R1 and ω(u) is not
a singleton. Then since ω(u) is connected and compact in the topology of C2

loc(R
1), and

every function w(x) in ω(u) achieves its maximum at some x0 ∈ [−h0, h0], we find that
there exist 0 ≤ γ− ≤ γ+ such that ω(u) consists of solutions vα,β (β ∈ [γ−, γ+], α ∈
[α
β

1 , α
β

2 ]) of (2.7) satisfying

vα,β(x) = vβ(x + α) (α ∈ [α
β

1 , α
β

2 ]),

‖vβ‖∞ = vβ(0) = β, v′β(0) = 0, [α
β

1 , α
β

2 ] ⊂ [−h0, h0] (β ∈ [γ−, γ+]).

Thus each vα,β is either a constant or a symmetrically decreasing solution of (2.7). If
γ− < γ+, then we may use vβ (β ∈ [γ−, γ+]) to deduce a contradiction in the same
way as in [DM, Section 3.3]. Thus γ− = γ+. Let V0(x) be the unique solution of (2.7)
satisfying

V (0) = γ−, V ′(0) = 0.

If V0 is a constant, then clearly ω(u) = {V0}. Otherwise V0 is an evenly decreasing
positive solution of (2.7), and ω(u) = {V0(· + α) : α ∈ [α1, α2]}, [α1, α2] ⊂ [−h0, h0].

Claim 4. If ω(u) = {V0(· + α) : α ∈ [α1, α2]} for some interval [α1, α2] ⊂ [−h0, h0],
then there exists a continuous function γ : [0,∞)→ [−h0, h0] such that

u(t, x)− V0(x + γ (t))→ 0 as t →∞ locally uniformly in R1.

Write w(t, x) = ux(t, x). Then

wt = wxx + f
′(u(t, x))w for t > 0 and x ∈ (g(t), h(t)),

and w(t, g(t)) > 0, w(t, h(t)) < 0 for all t > 0. Therefore by the zero number result of
[A], for all large t , say t ≥ T ,w(t, x) has a fixed finite number of zeros, all nondegenerate.
Denote them by

x1(t) < · · · < xm(t) (m ≥ 1).

Then each xi(t) is a continuous function of t . Due to Lemma 2.8, we must have −h0 ≤

xi(t) ≤ h0 for i = 1, . . . , m and t ≥ T . We show that m = 1. For fixed α ∈ [α1, α2] ⊂
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[−h0, h0], since V0(· + α) ∈ ω(u), there exists tn→∞ such that u(tn, x)→ V0(x + α)

in C2
loc(R

1). Since V ′0(x + α) has a unique nondegenerate zero x = −α ∈ [−h0, h0], we
find that for all large n, w(tn, x) = ux(tn, x) has in [−2h0, 2h0] a unique nondegenerate
zero αn near−α. By Lemma 2.8, we necessarily have αn ∈ (−h0, h0). On the other hand,
we know that x1(tn), . . . , xm(tn) are all the zeros of w(tn, x) in [−h0, h0]. Thus we must
have m = 1 and x1(tn) = αn. This proves m = 1.

Define γ (t) = −x1(t) for t ≥ T , and extend γ (t) to a continuous function for t ∈
[0, T ] such that γ (t) ∈ [−h0, h0] for all t . We prove that

u(t, x)− V0(x + γ (t))→ 0 as t →∞ locally uniformly in R1.

Otherwise we can find tn → ∞, a bounded sequence {xn} ⊂ R1 and some ε0 > 0 such
that for all n ≥ 1,

|u(tn, xn)− V0(xn + γ (tn))| ≥ ε0.

By passing to a subsequence of tn, not relabeled, we may assume u(tn, ·)→ V0(· + α) in
C2

loc(R
1) for some α ∈ [α1, α2]. Hence w(tn, ·) → V ′0(· + α) in C1

loc(R
1). This implies

that γ (tn) = −x1(tn)→ α, and thus, due to the boundedness of {xn},

V0(xn + α)− V0(xn + γ (tn))→ 0 as n→∞.

It follows that

ε0 ≤ |u(tn, xn)− V0(xn + γ (tn))|

≤ |u(tn, xn)− V0(xn + α)| + |V0(xn + α)− V0(xn + γ (tn))| → 0

as n→∞. This contradiction proves our claim.
The proof of Theorem 1.1 is now complete. �

3. Conditions for vanishing

In this section we prove some sufficient conditions that imply vanishing (u → 0). The
following upper bound is an easy consequence of the standard comparison principle.

Lemma 3.1. Assume that f satisfies (1.5) and (1.6). Then, for any h0 > 0 and any
φ ∈X (h0),

u(t, x;φ) ≤
eKt

2
√
πt

∫ h0

−h0

φ(x) dx for g(t) ≤ x ≤ h(t) and t > 0. (3.1)

Proof. Consider the Cauchy problem{
wt = wxx +Kw, x ∈ R1, t > 0,
w(0, x) = 8(x), x ∈ R1,

(3.2)

where

8(x) =

{
φ(x), x ∈ (−h0, h0),

0, x 6∈ (−h0, h0).
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Then from the expression of w by the fundamental solution we obtain

w(t, x) =
eKt
√

4πt

∫
R
e−

(x−ξ)2
4t w(0, ξ) dξ ≤

eKt

2
√
πt

∫ h0

−h0

φ(ξ) dξ.

By the standard comparison theorem, we have u(t, x;φ) ≤ w(t, x) for t > 0 and x ∈
[g(t), h(t)], and the required inequality follows. ut

Theorem 3.2. Let h0 > 0 and φ ∈ X (h0). Then I∞ := (g∞, h∞) is a finite interval
and limt→∞ ‖u(t, ·;φ)‖L∞([g(t),h(t)]) = 0 if one of the following conditions holds:

(i) f is of (fM ) type, h0 < π/(2
√
f ′(0)) and ‖φ‖L∞ is sufficiently small;

(ii) f is of (fB ) or (fC) type, and ‖φ‖L∞ ≤ θ ;
(iii) f is of (fB ) or (fC) type, and for K in (1.6),∫ h0

−h0

φ(x)dx ≤ θ ·

√
2π
eK

. (3.3)

Proof. (i) Since h0 < π/(2
√
f ′(0)), there exists a small δ > 0 such that

π2

4(1+ δ)2h2
0
− f ′(0) ≥ 2δ. (3.4)

Moreover, there exists an s > 0 small such that

πµs ≤ δ2h2
0, f (u) ≤ (f ′(0)+ δ)u for u ∈ [0, s].

Set

k(t) := h0

(
1+ δ −

δ

2
e−δt

)
and w(t, x) := se−δt cos

(
πx

2k(t)

)
.

Clearly w(t,−k(t)) = w(t, k(t)) = 0. A direct calculation shows that, for t > 0 and
x ∈ [−k(t), k(t)],

wt − wxx − f (w) ≥

(
−δ +

π2

4k2(t)
− f ′(0)− δ

)
w ≥ 0.

On the other hand, by the choice of s we have

µwx(t,−k(t)) = −µwx(t, k(t)) =
πµs

2k(t)
e−δt ≤

πµs

2h0
e−δt ≤

δ2h0

2
e−δt = k′(t).

Thus, (w(t, x),−k(t), k(t)) will be an upper solution of (1.1) if w(0, x) ≥ φ(x) in
[−h0, h0].

Choose σ1 :=s cos π
2+δ , which depends only on µ, h0 and f . Then when ‖φ‖L∞≤σ1

we have φ(x) ≤ σ1 ≤ w(0, x) in [−h0, h0], since h0 < k(0) = h0(1 + δ/2). By
Lemma 2.1,

h(t) ≤ k(t) ≤ h0(1+ δ), h∞ <∞.
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Hence I∞ is a finite interval and by Theorem 1.1, u → 0 as t → ∞ locally uniformly
in I∞. In view of Lemma 2.8, this implies that limt→∞ ‖u(t, ·)‖L∞([g(t),h(t)]) = 0.

(ii) (The (fB ) case) Since u ≡ θ is a stationary solution, by the strong comparison
principle, there exist η1 ∈ (0, θ) and t1 > 0 such that

u(t1, x;φ) ≤ η1 for x ∈ [g1, h1] := [g(t1), h(t1)].

Since f is of (fB ) type, there exists M = M(η1) > 0 such that

f (u) ≤ −Mu for 0 ≤ u ≤ η1.

It follows that u(t, x;φ) ≤ η(t) := η1e
−M(t−t1) for t ≥ t1. Choose ρ > h1 such that

2Mρ2 > πµη1e
Mt1 , and then choose 0 < δ < min{ρ/2, h1} small such that

u(t1, x) <

√
2

2
η1 for x ∈ [g1, g1 + δ] ∪ [h1 − δ, h1]. (3.5)

For t ≥ t1 we define

σ(t) := ρ(2− e−Mt ) and k(t) := h1 − δ + σ(t)

(so ρ ≤ σ(t) ≤ 2ρ, k(t1) > h1), and

w(t, x) := η(t) cos
[
π(x − h1 + δ)

2σ(t)

]
for h1 − δ ≤ x ≤ k(t) and t ≥ t1.

Then, for h1 − δ ≤ x ≤ k(t), t ≥ t1, we have

wt − wxx +Mw =
π2w

4σ 2(t)
+ η(t) sin

[
π(x − h1 + δ)

2σ(t)

]
·
π(x − h1 + δ)σ

′(t)

2σ 2(t)
> 0,

w(t, k(t)) = 0 and −µwx(t, k(t)) ≤
πµη(t)

2ρ
≤ Mρe−Mt = k′(t)

by the choice of ρ. Moreover, w(t, h1 − δ) = η(t) ≥ u(t, h1 − δ), and by (3.5),

u(t1, x) <

√
2

2
η1 ≤ w(t1, x) for h1 − δ ≤ x ≤ h1.

Hence (w(t, x), h1 − δ, k(t)) is an upper solution of (1.1) for t > t1 in the sense of
Lemma 2.2. By the conclusion of this lemma we have h(t) ≤ k(t), and hence

h∞ ≤ lim
t→∞

k(t) = h1 − δ + 2ρ <∞.

The rest of the proof is the same as in (i).
(ii) (The (fC) case) In this case u ≡ θ is again a stationary solution, and by the stan-

dard comparison principle we have u(t, x;φ) ≤ θ for all t ≥ 0. Therefore, the equation
we are dealing with reduces to the heat equation ut = uxx . As in the proof of Lemma 3.1,

u(t, x;φ) ≤
1

2
√
πt

∫ h0

−h0

φ(ξ) dξ ≤
θh0
√
πt

for g(t) ≤ x ≤ h(t) and t > 0.
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Therefore, we can find a large t2 > 0 such that

max
g(t2)≤x≤h(t2)

u(t2, x;φ) ≤ η2 :=
1
2
·min

{
θ,
π

8µ

}
. (3.6)

Take h2 > max{−g(t2), h(t2)} such that

u(t2, x;φ) < 2η2 cos
(
πx

2h2

)
for x ∈ [g(t2), h(t2)]. (3.7)

For this h2 we set ω := π/(4h2) and define, for t ≥ 0,

k(t) := h2(2− e−ω
2t ), w(t, x) := 2η2 cos

(
πx

2k(t)

)
e−ω

2t .

Then h2 ≤ k(t) ≤ 2h2, and for t ≥ 0 and −k(t) ≤ x ≤ k(t) we have

wt − wxx ≥

(
π2

4[k(t)]2
− ω2

)
w ≥ 0

and, by the choice of η2,

k′(t)− µwx(t,−k(t)) = k
′(t)+ µwx(t, k(t)) = e

−ω2t

[
π2

16h2
−
πµη2

k(t)

]
≥ 0.

Hence (w(t, x),−k(t), k(t)) is an upper solution of (1.1) for t > t2. It follows that
h(t + t2) ≤ k(t) < 2h2 for t ≥ 0. This implies that h∞ < ∞, and the rest is as be-
fore.

(iii) By (3.1), we have

u

(
1

2K
, x;φ

)
≤

√
eK

2π

∫ h0

−h0

φ(x)dx ≤ θ for g
(

1
2K

)
≤ x ≤ h

(
1

2K

)
.

Then the conclusion follows from (ii). This proves the theorem. ut

From Theorem 3.2 (ii), we immediately obtain

Corollary 3.3. If f is of (fB ) or (fC) type, then

lim
t→∞
‖u(t, ·)‖L∞([g(t),h(t)]) = 0

implies that (g∞, h∞) is a finite interval.

If f is of (fM ) type, this conclusion is also true. In fact, a much stronger version holds,
namely h∞ − g∞ ≤ π/

√
f ′(0). This will follow from Theorem 3.2(i) and Corollary 4.5

in the next section (see Corollary 4.6).
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4. Waves of finite length and conditions for spreading

In this section, f is always assumed to be of (fM ), (fB ), or (fC) type. In order to obtain
sufficient conditions for spreading (u→ 1), we will construct suitable lower solutions to
(1.1) through “waves of finite length”, obtained by a phase plane analysis of the equation

q ′′ − cq ′ + f (q) = 0.

4.1. Waves of finite length

For Z ∈ (0,∞), we look for a pair (c, q(z)) satisfying{
q ′′ − cq ′ + f (q) = 0, z ∈ [0, Z],
q(0) = 0, q ′(Z) = 0, q(z) > 0 in (0, Z]. (4.1)

We call such a q(z) a “wave of lengthZ with speed c”, sincew(t, x) := q(ct−x) satisfies{
wt = wxx + f (w) for t ∈ R1, x ∈ (ct − Z, ct),

wx(t, ct − Z) = 0, w(t, ct) = 0.

Such aw will be used to construct lower solutions to (1.1). We will mainly consider waves
of speed c = 0 (stationary waves) and of speed c > 0 small.

Using q ′ to denote dq
dz

, we can rewrite the first equation in (4.1) in the equivalent form{
q ′ = p,

p′ = cp − f (q),
(4.2)

or
dp

dq
= c −

f (q)

p
when p 6= 0. (4.3)

For each c ≥ 0 and ω > 0, we use pc(q;ω) to denote the unique solution of (4.3) with
initial condition p(q)|q=0 = ω. Such a solution is well-defined as long as it stays positive.

For c = 0, the positive solution of (4.3) with p(q)|q=0 = ω is given explicitly by

p0(q;ω) =

√
ω2 − 2

∫ q

0
f (s) ds for q ∈ [0, qω), (4.4)

where qω is given by

ω2
= 2

∫ qω

0
f (s) ds.

It follows that qω < 1 if and only if 0 < ω < ω0, where

ω0
:=

√
2
∫ 1

0
f (s) ds.
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Moreover, it is easily seen that qω is strictly increasing in ω ∈ (0, ω0), and as ω ↘ 0,
qω ↘ 0 in the (fM ) case, qω ↘ θ̄ ∈ (θ, 1) in the (fB ) case, where θ̄ ∈ (θ, 1) is determined
by
∫ θ̄

0 f (s) ds = 0, and qω ↘ θ in the (fC) case.
The positive solution p0(q;ω) (q ∈ [0, qω)) corresponds to a trajectory (q0(z), p0(z))

of (4.2) (with c = 0) that connects (0, ω) and (qω, 0) in the qp-plane. We may assume
that it passes through (0, ω) at z = 0 and approaches (qω, 0) as z goes to zω ∈ (0,∞].
Then using (4.2) with c = 0 and (4.4) we easily deduce

z =

∫ q0(z)

0

dr√
ω2 − 2

∫ r
0 f (s) ds

=

∫ q0(z)

0

dr√
2
∫ qω
r
f (s) ds

. (4.5)

Therefore

zω =

∫ qω

0

dr√
ω2 − 2

∫ r
0 f (s) ds

=

∫ qω

0

dr√
2
∫ qω
r
f (s) ds

<∞

for 0 < ω < ω0. We now introduce the function

Z(q) =

∫ q

0

dr√
2
∫ q
r
f (s) ds

. (4.6)

Define

Z′M := inf
0<ω<ω0

zω = inf
0<q<1

Z(q) in the (fM ) case, (4.7)

ZB := inf
0<ω<ω0

zω = inf
θ̄<q<1

Z(q) in the (fB ) case, (4.8)

ZC := inf
0<ω<ω0

zω = inf
θ<q<1

Z(q) in the (fC) case. (4.9)

In the (fM ) case, as ω ↘ 0, we have qω ↘ 0 and so

zω =

∫ qω

0

(1+ o(1)) dr√
f ′(0)

√
(qω)2 − r2

=
π

2
√
f ′(0)

+ o(1).

This implies that
Z′M ≤ ZM := π/(2

√
f ′(0)). (4.10)

It is easily seen that Z′M , ZB and ZC are all positive.
As a first application of the above analysis, we have the following result.

Lemma 4.1. If f is of (fM ) type and Z > Z′M , or of (fB ) type and Z ≥ ZB , or of (fC)
type and Z ≥ ZC , then the elliptic boundary value problem

vxx + f (v) = 0 in (−Z,Z), v(−Z) = v(Z) = 0, (4.11)

has a positive solution. Moreover, any positive solution vZ of (4.11) satisfies ‖vZ‖∞ < 1;
in addition, ‖vZ‖∞ > θ if f is of (fB ) type, and ‖vZ‖∞ > θ if f is of (fC) type.
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Proof. We only consider the case of (fB ) type; the other cases are similar.
Let Z > ZB . Then from the definition of ZB we can find ω∗ ∈ (0, ω0) and corre-

spondingly q∗ := qω∗ ∈ (θ, 1) such that z∗ := zω∗ = Z(q∗) ∈ (ZB , Z). Let (q(z), p(z))
be the trajectory of (4.2) (with c = 0) that passes through (0, ω∗) at z = 0 and approaches
(q∗, 0) as z goes to z∗. Then q(z) satisfies

q ′′ + f (q) = 0 in (0, z∗), q(0) = 0, q ′(z∗) = 0.

Define

v(x) :=

 q(x + z∗), x ∈ [−z∗, 0],
q(−x + z∗), x ∈ [0, z∗],
0, x ∈ [−Z,Z] \ [−z∗, z∗].

Then one easily checks that v is a (weak) lower solution of (4.11). Clearly any constant
C ≥ 1 is an upper solution of (4.11). Therefore we can use the standard upper and lower
solution argument to conclude that (4.11) has a maximal positive solution v̂Z , and v(x) <
v̂Z(x) < 1 in (−Z,Z).

We now prove that (4.11) also has a positive solution for Z = ZB . Let Zn be a
sequence decreasing to ZB and vn a positive solution of (4.11) with Z = Zn. Setting
Vn := vn(Znx) we find that Vn is a positive solution of

V ′′ + Z2
nf (V ) = 0 in (−1, 1), V (−1) = V (1) = 0.

Since Z2
nf (Vn) is a bounded sequence in L∞([−1, 1]) it follows from standard regularity

theory that by passing to a subsequence, Vn → V ∗ in C1([0, 1]) and V ∗ is a weak (and
hence classical) nonnegative solution of

V ′′ + Z2
Bf (V ) = 0 in (−1, 1), V (−1) = V (1) = 0.

We claim that V ∗ 6≡ 0. Arguing indirectly we assume that V ∗ ≡ 0, and let V̂n :=
Vn/‖Vn‖∞. Then

V̂ ′′n + cn(x)V̂n = 0 in (−1, 1), V̂n(−1) = V̂n(1) = 0,

with cn = Z2
nf (Vn)/Vn a bounded sequence in L∞([−1, 1]). As before, by standard

elliptic regularity we have V̂n→ V̂ in C1([−1, 1]) up to a subsequence. Moreover, since
cn→ Z2

Bf
′(0), we deduce

V̂ ′′ + Z2
Bf
′(0)V̂ = 0 in (−1, 1), V̂ (−1) = V̂ (1) = 0. (4.12)

Since ‖V̂ ‖∞ = 1 and V̂ ≥ 0, by the strong maximum principle V̂ must be a positive
solution of (4.12). This implies that Z2

Bf
′(0) is the first eigenvalue of − d2

dx2 over (−1, 1)
with Dirichlet boundary conditions, and hence is positive. But this contradicts f ′(0) < 0.
Thus V ∗ 6≡ 0. By the strong maximum principle, it is a positive solution of (4.11) with
Z = ZB .

Now let vZ be any positive solution of (4.11). Then clearly (q(z), p(z)) :=

(vZ(Z − z),−v
′

Z(Z − z)) is a trajectory for (4.2) (with c = 0) passing through (0, ω) at



Spreading and vanishing in nonlinear diffusion problems 2695

z = 0 and approaching (qω, 0) as z goes toZ, where ω := −v′Z(Z) and qω := vZ(0) < 1.
Since qω is strictly increasing and qω decreases to θ as ω decreases to 0, we find that
vZ(0) > θ . ut

Next we consider (4.2) and (4.3) for small c > 0 as a perturbation of the case c = 0. It
is easily seen that for small c > 0, (4.3) with initial data pc(q)|q=0 = ω ∈ (0, ω0) has a
solution pc(q;ω) defined on q ∈ [0, qc,ω] for some qc,ω > qω, and pc(qc,ω;ω) = 0. As
before, this solution corresponds to a trajectory (qc(z;ω), pc(z;ω)) that passes through
(0, ω) at z = 0, and approaches (qc,ω, 0) as z goes to some zc,ω > 0. Moreover, an
elementary analysis yields the following result.

Lemma 4.2. For any fixed ω ∈ (0, ω0) and any small ε > 0, there exists δ > 0 small
such that if c ∈ (0, δ), then qc,ω ∈ (qω, qω + ε), and

p0(q;ω) ≤ pc(q;ω) ≤ p0(q;ω)+ ε for q ∈ [0, qω];

moreover, zc,ω ∈ (zω − ε, zω + ε) and

q0(z;ω) ≤ qc(z;ω) ≤ q0(z;ω)+ ε for z ∈ [0,min{zω, zc,ω}].

Let us observe that q(z) := qc(z, ω) is a solution of (4.1) with Z = zc,ω. Moreover,
q ′(0) = ω. We will use qc(z;ω) below to construct lower solutions of (1.1).

4.2. Conditions for spreading

Theorem 4.3. Suppose that the conditions in Lemma 4.1 are satisfied and vZ is a positive
solution of (4.11). If (u, g, h) is a solution of (1.1) with h0 ≥ Z and u0 ≥ vZ in [−Z,Z],
then

(g∞, h∞) = R1 and lim
t→∞

u(t, ·) = 1 locally uniformly in R1.

Proof. Since vZ is a stationary solution, and g(t) < −Z and h(t) > Z for t > 0, by the
standard strong comparison principle we deduce

u(t, x) > vZ(x) in [−Z,Z] for all t > 0.

By Theorem 1.1, u(t, x) → v(x) locally uniformly in (g∞, h∞) = R1 as t → ∞,
where v is a nonnegative solution of (1.7). It must be a positive solution since v ≥ vZ in
[−Z,Z]. Moreover, since [−Z,Z] ⊂ (g∞, h∞), we necessarily have v > vZ in [−Z,Z]
due to the strong maximum principle.

Thus if we fix t0 > 0 and extend vZ by 0 outside [−Z,Z], then we can find ε > 0
small such that for all t ≥ t0,

u(t, x) > vZ(x)+ ε in [−h0, h0], u(t, x) > vZ(0)+ ε in [−ε, ε].

As in the proof of Lemma 4.1, vZ corresponds to a trajectory (q0(z;ω), p0(z;ω)) of
(4.2) (with c = 0) that passes through (0, ω) := (0,−v′Z(Z)) at z = 0 and approaches
(qω, 0) := (vZ(0), 0) as z goes to zω := Z. By Lemma 4.2, we can find c > 0 sufficiently
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small such that the trajectory (qc(z;ω), pc(z;ω)) of (4.2) that passes through (0, ω) at
z = 0 and goes to (qc,ω, 0) as z approaches zc,ω satisfies

zc,ω < zω + ε < h0, qc,ω < qω + ε < 1,
qc(z

c,ω
− z;ω) < q0(z

c,ω
− z;ω)+ ε/2 < q0(z

ω
− z;ω)+ ε in [ε, zc,ω].

Since pc(z, ω) = d
dz
qc(z;ω) > 0 for z ∈ (0, zc,ω), we find that

qc(z
c,ω
− z;ω) < qc,ω < qω + ε = vZ(0)+ ε for z ∈ (0, ε].

Thus for such small c > 0, we have

u(t, x) > qc(z
c,ω
− x;ω) for t ≥ t0 and x ∈ [0, zc,ω].

We now fix a small c > 0 such that the above holds and c < µω. Then define, for t ≥ 0,

k(t) := zc,ω + ct, w(t, x) :=

{
qc(k(t)− x;ω), x ∈ [ct, k(t)],

qc(z
c,ω
;ω), x ∈ [0, ct].

Since qc(zc,ω;ω) = qc,ω and f (qc,ω) > 0, we find

wt ≤ wxx + f (w) for t > 0 and x ∈ (0, k(t)).

Moreover,

k(0) = zc,ω < h0 < h(t0),

w(t, k(t)) = 0, k′(t) = c < µω = −µwx(t, k(t)) for t > 0.

Thus we can apply the lower solution version of Lemma 2.2 to conclude that

h(t + t0) ≥ k(t), u(t + t0, x) ≥ w(t, x) for all t > 0 and x ∈ [0, k(t)].

This implies that h∞ = ∞ and the ω-limit of u, namely the positive solution v(x) of
(1.7), is defined over R1. Moreover, for t > 0 and x ∈ [0, ct], we have

u(t + t0, x) ≥ w(t, x) = q
c,ω > qω.

Hence v(x) ≡ 1 for x ∈ R1. ut

Remark 4.4. The function w(t, x) constructed above is C1 in both variables but it is C2

in x only for x ∈ [0, ct) ∪ (ct, k(t)]; along x = ct , wxx(t, x) has a jump discontinuity.
However, as for the classical comparison principle, this does not affect the validity of
Lemmas 2.1 and 2.2.

Corollary 4.5. If f is of (fM ) type and h0 ≥ ZM = π/(2
√
f ′(0)), then every positive

solution (u, g, h) of (1.1) satisfies

(g∞, h∞) = R1 and lim
t→∞

u(t, ·) = 1 locally uniformly in R1.
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Proof. Fix t0 > 0. Then g(t0) < −h0, h(t0) > h0. Set x0 = [g(t0)+h(t0)]/2 and choose
Z0 > h0 such that [−Z0 + x0, Z0 + x0] ⊂ (g(t0), h(t0)). Then u(t0, x + x0) > 0 in
[−Z0, Z0].

Since qω → 0 and zω → π/(2
√
f ′(0)) ≤ h0 as ω decreases to 0, we can find ω > 0

small such that zω < Z0 and qω < u(t0, x + x0) in [−Z0, Z0]. We now denote Z = zω

and define

vZ(x) :=

{
q0(x + Z;ω), x ∈ [−Z, 0],
q0(−x + Z,ω), x ∈ [0, Z].

Then it is easily checked that vZ is a positive solution of (4.11), and vZ(x) ≤ qω <

u(t0, x + x0) in [−Z,Z].
Define

ũ(t, x) = u(t + t0, x + x0), g̃(t) = g(t + t0)− x0, h̃(t) = h(t + t0)− x0.

We find that ũ0(x) := ũ(0, x) > vZ(x) in [−Z,Z] and (ũ, g̃, h̃) solves (1.1) with initial
function ũ0. Applying Theorem 4.3 we deduce that (g̃∞, h̃∞)=R1 and limt→∞ ũ(t, ·)=1
locally uniformly in R1. Clearly this implies the conclusion of the corollary. ut

Corollary 4.6. If f is of (fM ) type, then

lim
t→∞
‖u(t, ·)‖L∞([g(t),h(t)]) = 0

implies that (g∞, h∞) is a finite interval with length no bigger than π/
√
f ′(0).

Proof. Otherwise we can find t0 > 0 such that

h(t0)− g(t0) > π/
√
f ′(0).

Let x0 = [g(t0) + h(t0)]/2 and define (ũ, g̃, h̃) by the same formulas as in the proof of
Corollary 4.5; we find that the conclusion of Corollary 4.5 can be applied to (ũ, g̃, h̃) to
deduce that ũ→ 1 as t →∞ locally uniformly in R1. In view of Lemma 2.8, this implies

lim
t→∞
‖u(t, ·)‖L∞([g(t),h(t)]) = 1,

contradicting our assumption. ut

5. Classification of dynamical behavior and sharp thresholds

In this section, based on the results of the previous sections, we obtain a complete de-
scription of the long-time dynamical behavior of (1.1) when f is of monostable, bistable
or combustion type. We also reveal the related but different sharp transition behaviors
between spreading and vanishing for these three types of nonlinearities.
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5.1. Monostable case

Throughout this subsection, we assume that f is of (fM ) type.

Theorem 5.1 (Dichotomy). Suppose that h0 > 0, u0 ∈ X (h0), and (u, g, h) is the
solution of (1.1). Then either spreading happens, namely, (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R1
;

or vanishing happens, i.e., (g∞, h∞) is a finite interval with length no larger than
π/
√
f ′(0) and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0.

Proof. Since f is of monostable type, it is easy to see that (1.7) has no evenly decreas-
ing positive solution, and the only nonnegative constant solutions are 0 and 1. By Theo-
rem 1.1, we see that in this case the ω-limit set of u consists of a single constant 0 or 1.
Moreover, if (g∞, h∞) is a finite interval, then u(t, x)→ 0 as t →∞ locally uniformly
in (g∞, h∞). In view of Lemma 2.8, this implies limt→∞ ‖u(t, ·)‖L∞([g(t),h(t)]) = 0.
Hence we can use Corollary 4.6 to conclude that when (g∞, h∞) is a finite interval, its
length is no larger than π/

√
f ′(0).

It remains to show that when (g∞, h∞) = R1, the ω-limit is 1. If the limit is 0, then
we can use Corollary 4.6 as above to deduce that (g∞, h∞) is a finite interval; hence only
ω(u) = {1} is possible. ut

Theorem 5.2 (Sharp threshold). Suppose that h0 > 0, φ ∈ X (h0), and (u, g, h) is a
solution of (1.1) with u0 = σφ for some σ > 0. Then there exists σ ∗ = σ ∗(h0, φ) ∈

[0,∞] such that spreading happens when σ > σ ∗, and vanishing happens when 0 <

σ ≤ σ ∗.

Proof. By Corollary 4.5, we find that spreading happens when h0 ≥ π/(2
√
f ′(0)). Hence

in this case we have σ ∗(h0, φ) = 0 for any φ ∈X (h0).
In what follows we consider the remaining case h0 < π/(2

√
f ′(0)). By Theorem

3.2(i), in this case vanishing happens for all small σ > 0. Therefore

σ ∗ = σ ∗(h0, φ) := sup{σ0 : vanishing happens for σ ∈ (0, σ0]} ∈ (0,∞].

If σ ∗ = ∞, then there is nothing left to prove. Suppose σ ∗ ∈ (0,∞). Then by defini-
tion vanishing happens when σ ∈ (0, σ ∗), and in view of Theorem 5.1, there exists a
sequence σn decreasing to σ ∗ such that spreading happens when σ = σn, n = 1, 2, . . . .
For any σ > σ ∗, we can find some n ≥ 1 such that σ > σn. If we denote by (un, gn, hn)
the solution of (1.1) with u0 = σnφ, then by the comparison principle, we find that
[gn(t), hn(t)] ⊂ [g(t), h(t)] and un(t, x) ≤ u(t, x). It follows that spreading happens for
such σ .

It remains to show that vanishing happens when σ = σ ∗. Otherwise spreading must
happen when σ = σ ∗ and we can find t0 > 0 such that h(t0) − g(t0) > π/

√
f ′(0) + 1.

By the continuous dependence of the solution of (1.1) on its initial values, if ε > 0 is
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sufficiently small, then the solution of (1.1) with u0 = (σ
∗
−ε)φ, denoted by (uε, gε, hε),

satisfies
hε(t0)− gε(t0) > π/

√
f ′(0).

But by Corollary 4.5, this implies that spreading happens for (uε, gε, hε), contrary to the
definition of σ ∗. ut

From the above proof we already know that σ ∗(h0, φ) = 0 if h0 ≥ π/(2
√
f ′(0)), regard-

less of the choice of φ ∈ X (h0). And if h0 < π/(2
√
f ′(0)), then σ ∗(h0, φ) ∈ (0,∞].

We now investigate when σ ∗(h0, φ) is finite, and when it is∞.
For a given h0 > 0, since any two functions φ1, φ2 ∈ X (h0) can be related by

σ1φ1 ≤ φ2 ≤ σ2φ1 for some positive constants σ1 and σ2, we find by the comparison
principle that either σ ∗(h0, φ) is infinite for all φ ∈ X (h0), or it is finite for all such φ.
In other words, whether it is finite or not is determined by h0 and f , but not affected by
the choice of φ ∈X (h0).

Proposition 5.3. Assume that h0 < π/(2
√
f ′(0)) and f (u) ≥ −Lu for all u > 0 and

some L > 0. Then σ ∗(h0, φ) ∈ (0,∞) for all φ ∈X (h0).

Proof. Fix φ ∈X (h0). By Theorem 5.2, it suffices to show that spreading happens when
u0 = σφ and σ is large. We will achieve this by constructing a suitable lower solution.

We start with the following Sturm–Liouville eigenvalue problem:{
ϕ′′(x)+ 1

2ϕ
′(x)+ λϕ(x) = 0, x ∈ (0, 1),

ϕ′(0) = ϕ(1) = 0.
(5.1)

It is well-known that the first eigenvalue λ1 of this problem is simple and the corre-
sponding first eigenfunction ϕ1(x) can be chosen positive in [0, 1). Moreover, one can
easily show that λ1 > 1/16 and ϕ′1(x) < 0 for x ∈ (0, 1]. We assume further that
‖ϕ1‖L∞([0,1]) = ϕ1(0) = 1.

We extend ϕ1 to [−1, 1] as an even function. Then clearly{
ϕ′′1 (x)+

sgn(x)
2 ϕ′1(x)+ λ1ϕ1(x) = 0, x ∈ (−1, 1),

ϕ1(−1) = ϕ1(1) = 0.
(5.2)

We now choose constants ε, Z̄, T , λ, ρ with

0 < ε < min{1, h2
0}, Z̄ := 1+ π/(2

√
f ′(0)), T > Z̄2,

λ > λ1 + L(T + 1), (5.3)

−2µρϕ′1(1) > (T + 1)λ. (5.4)

Define

w(t, x) :=
ρ

(t + ε)λ
ϕ1

(
x

√
t + ε

)
for x ∈ [−

√
t + ε,

√
t + ε] and t ≥ 0. (5.5)

We show that (w(t, x),−
√
t + ε,

√
t + ε) is a lower solution of (1.1) on the time interval

[0, T ].
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In fact, for x ∈ (−
√
t + ε,

√
t + ε) and t ∈ [0, T ] we have

wt − wxx − f (w) ≤ wt − wxx + Lw

=
−ρ

(t + ε)λ+1

[
ϕ′′1 +

x

2
√
t + ε

ϕ′1 + (λ− L(t + ε))ϕ1

]
≤

−ρ

(t + ε)λ+1

[
ϕ′′1 +

sgn(x)
2

ϕ′1 + (λ− L(t + ε))ϕ1

]
≤

−ρ

(t + ε)λ+1

[
ϕ′′1 +

sgn(x)
2

ϕ′1 + λ1ϕ1

]
= 0.

Clearly w(t,±
√
t + ε) = 0, and by (5.4) we have

(
√
t + ε)′ ± µwx(t,±

√
t + ε) ≤

1
2
√
t + ε

(
1+

2µρ
(T + 1)λ

ϕ′1(1)
)
< 0.

Finally, since ε < h2
0 we can choose σ̂ > 0 large such that

w(0, x) =
ρ

ελ
ϕ1

(
x
√
ε

)
< σ̂φ(x) for x ∈ [−

√
ε,
√
ε] ⊂ [−h0, h0].

Hence (w(t, x),−
√
t + ε,

√
t + ε) is a lower solution of (1.1) over the time interval

[0, T ] if in (1.1) we take u0(x) = σφ(x) with σ ≥ σ̂ . It follows that if (u, g, h) is
the solution of (1.1) with u0 = σφ and σ ≥ σ̂ , then

g(t) ≤ −
√
t + ε, h(t) ≥

√
t + ε for t ∈ [0, T ].

In particular, h(T )− g(T ) > 2
√
T > 2Z̄ > π/

√
f ′(0). So spreading happens by Corol-

lary 4.5 for such (u, g, h). ut

Proposition 5.4. Assume that

lim
s→∞

−f (s)

s1+2β = ∞ (5.6)

for some

β > (3+
√

13)/2. (5.7)

Then there exists Z0
M ∈ (0, π/(2

√
f ′(0))) such that for every φ ∈X (h0),

(i) σ ∗(h0, φ) = ∞ if h0 ∈ (0, Z0
M ], and

(ii) σ ∗(h0, φ) ∈ (0,∞) if h0 ∈
(
Z0
M , π/(2

√
f ′(0))

)
.

The proof of this result is rather technical and is postponed to the end of this section.
Clearly Theorem 1.2 follows from Theorems 5.1, 5.2 and Proposition 5.3 above.
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5.2. Bistable case

Throughout this subsection, we assume that f is of (fB ) type.

Theorem 5.5 (Trichotomy). Suppose that h0 > 0, u0 ∈ X (h0) and (u, g, h) is the
solution of (1.1). Then either

(i) Spreading: (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R1,

or

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0,

or

(iii) Transition: (g∞, h∞) = R1 and there exists a continuous function γ : [0,∞) →
[−h0, h0] such that

lim
t→∞
|u(t, x)− v∞(x + γ (t))| = 0 locally uniformly in R1,

where v∞ is the unique positive solution to

v′′ + f (v) = 0 (x ∈ R1), v′(0) = 0, v(−∞) = v(∞) = 0.

Proof. By Theorem 1.1, either (g∞, h∞) is a finite interval or (g∞, h∞) = R1. In the
former case, limt→∞ u(t, x) = 0 locally uniformly in (g∞, h∞), which, together with
Lemma 2.8, implies that (ii) holds.

Suppose now (g∞, h∞) = R1; then either limt→∞ u(t, x) is a nonnegative constant
solution of

vxx + f (v) = 0 in R1, (5.8)

or u(t, x) − v(x + γ (t)) → 0 as t → ∞ locally uniformly in R1, where v is an evenly
decreasing positive solution of (5.8), and γ : [0,∞) → [−h0, h0] is a continuous func-
tion.

Since f is of bistable type, it is well-known (see [DM]) that bounded nonnegative
solutions of (5.8) consist of the following:

(1) constant solutions: 0, θ , 1;
(2) a family of periodic solutions v satisfying 0 < min v < θ < max v < θ;

(3) a family of symmetrically decreasing solutions v∞(· − a), a ∈ R1, where v∞ is
uniquely determined by

v′′∞ + f (v∞) = 0 in R1, v∞(0) = θ, v′∞(0) = 0,

which necessarily satisfies lim|x|→∞ v∞(x) = 0.

From this list, clearly only 0, θ, 1 and v∞(· − a) are possible members of ω(u).
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By Corollary 3.3, ω(u) = {0} is impossible. It remains to show that ω(u) 6= {θ}. We
argue indirectly by assuming that u(t, x) → θ as t → ∞ locally uniformly in R1. Let
v0(x) be a periodic solution of (5.8) as given in (2) above. We now consider the number
of zeros of the function

w(t, x) := u(t, x)− v0(x)

in the interval [g(t), h(t)], and denote this number by Z(t). Clearly w(t, g(t)) < 0 and
w(t, h(t)) < 0 for all t > 0. Therefore we can use the zero number result of [A] to the
equation satisfied by w to conclude that Z(t) is finite and nonincreasing in t for t > 0.
(We could use a change of variable to change the varying interval [g(t), h(t)] to a fixed
one, and then apply [A] to the reduced equation.) On the other hand, since u(t, x) → θ

and v0(x) oscillates around θ , we find that Z(t) → ∞ as t → ∞. This contradiction
shows that v = θ is impossible. ut

Theorem 5.6 (Sharp threshold). Suppose that h0 > 0, φ ∈ X (h0), and (u, g, h) is
a solution of (1.1) with u0 = σφ for some σ > 0. Then there exists σ ∗ = σ ∗(h0, φ) ∈

(0,∞] such that spreading happens when σ > σ ∗, vanishing happens when 0 < σ < σ ∗,
and transition happens when σ = σ ∗.

Proof. By Theorem 3.2(ii), vanishing happens if σ < θ/‖φ‖. Hence

σ ∗ = σ ∗(h0, φ) := sup{σ0 : vanishing happens for σ ∈ (0, σ0]} ∈ (0,∞].

If σ ∗ = ∞, then there is nothing to prove. So we assume that σ ∗ is a finite positive
number.

By definition, vanishing happens for all σ ∈ (0, σ ∗). We now consider the case
σ = σ ∗. In this case, we cannot have vanishing, for otherwise, for some large t0 > 0,
u(t0, x) < θ in [g(t0), h(t0)], and due to the continuous dependence of the solution on
the initial values, we can find ε > 0 sufficiently small such that the solution (uε, gε, hε)
of (1.1) with u0 = (σ ∗ + ε)φ satisfies uε(t0, x) < θ in [gε(t0), hε(t0)]. Hence we can
apply Theorem 3.2(ii) to conclude that vanishing happens for (uε, gε, hε), contrary to the
definition of σ ∗. Thus at σ = σ ∗ either spreading or transition happens.

We show next that spreading cannot happen at σ = σ ∗. Suppose this happens. Let vZ
be a stationary solution as given in Lemma 4.1. Then we can find t0 > 0 large such that

[−Z,Z] ⊂ (g(t0), h(t0)), u(t0, x) > vZ(x) in [−Z,Z]. (5.9)

By the continuous dependence of the solution on initial values, we can find a small ε > 0
such that the solution (uε, gε, hε) of (1.1) with u0 = (σ ∗ − ε)φ satisfies (5.9), and by
Theorem 4.3, spreading happens for (uε, gε, hε). But this contradicts the definition of σ ∗.

Hence transition must happen when σ = σ ∗. We show next that spreading happens
when σ > σ ∗. Let (u, g, h) be a solution of (1.1) with some σ > σ ∗, and denote the
solution of (1.1) with σ = σ ∗ by (u∗, g∗, h∗). By the comparison theorem we know that

[g∗(1), h∗(1)] ⊂ (g(1), h(1)), u∗(1, x) < u(1, x) in [g∗(1), h∗(1)].



Spreading and vanishing in nonlinear diffusion problems 2703

Hence we can find ε0 > 0 small such that for all ε ∈ [0, ε0],

[g∗(1)−ε, h∗(1)−ε] ⊂ (g(1), h(1)), u∗(1, x+ε) < u(1, x) in [g∗(1)−ε, h∗(1)−ε].

Now define

uε(t, x) = u∗(t + 1, x + ε), gε(t) = g∗(t + 1)− ε, hε(t) = h∗(t + 1)− ε.

Clearly (uε, gε, hε) is a solution of (1.1) with u0(x) = u∗(1, x + ε). By the comparison
principle we have, for all t > 0 and ε ∈ (0, ε0],

[gε(t), hε(t)] ⊂ (g(t + 1), h(t + 1)), uε(t, x) ≤ u(t + 1, x) in [gε(t), hε(t)].

If u∗(t, x) − v∞(x + γ (t)) → 0 as t → ∞ and ω(u) 6= {1}, then necessarily
u(t, x)− v∞(x + γ̃ (t))→ 0 as t →∞. Here both limits are locally uniform in R1, and
γ, γ̃ are continuous functions from [0,∞) to [−h0, h0].

On the other hand, the above inequalities imply that

lim sup
t→∞

[v∞(x + ε + γ (t))− v∞(x + γ̃ (t))] ≤ 0

for all x ∈ R1 and ε ∈ (0, ε0]. Since v∞ is an evenly decreasing function, this implies
that limt→∞[ε + γ (t)− γ̃ (t)] = 0 for every ε ∈ (0, ε0]. Clearly this is impossible. Thus
we must have ω(u) = {1}. This proves that spreading happens for σ > σ ∗. ut

Next we determine when σ ∗(h0, φ) is finite and when it is infinite.

Proposition 5.7. Let ZB be given by (4.8). Then σ ∗(h0, φ) < ∞ for all φ ∈ X (h0) if
h0 ≥ ZB , or if h0 ∈ (0, ZB) and f (u) ≥ −Lu for all u > 0 and some L > 0.

Proof. Let h0 > 0, φ ∈ X (h0) and (u, g, h) be a solution of (1.1) with u0 = σφ. It
suffices to show that spreading happens for all large σ under the given conditions.

First we suppose that h0 ≥ ZB . By Lemma 4.1, (4.11) has a positive solution vZ with
Z = h0. For sufficiently large σ > 0 clearly σφ ≥ vZ . Thus we can apply Theorem 4.3
to conclude that spreading happens for (u, g, h) with such σ , as we wanted.

Next we consider the case of h0 ∈ (0, ZB) and f (u) ≥ −Lu for all u > 0 and some
L > 0. In this case we construct a lower solution as in the proof of Proposition 5.3 with
the following changes: Z̄ ≥ 1+ π/(2

√
f ′(0)) is replaced by Z̄ ≥ 1+ ZB , and we add a

further restriction on ρ, namely

ρ

(T + ε)λ
ϕ1

(
x

√
T + ε

)
≥ vZB (x) in [−ZB , ZB ].

We deduce as in the proof of Proposition 5.3 that, for σ ≥ σ̂ ,

h(T )− g(T ) > 2ZB , u(T , x) ≥ w(T , x) ≥ vZB in [−ZB , ZB ].

Then by Theorem 4.3, we deduce that spreading happens for (u, g, h) with σ ≥ σ̂ . ut

Clearly Theorem 1.3 is a consequence of Theorems 5.5, 5.6 and Proposition 5.7. The
following result gives conditions for σ ∗(h0, φ) = ∞; the proof will be given in the last
subsection of this section.
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Proposition 5.8. Assume that

lim
s→∞

−f (s)

s1+2β = ∞ for some β > 2. (5.10)

Then there exists Z0
B ∈ (0, ZB) such that, for every φ ∈X (h0),

(i) σ ∗(h0, φ) = ∞ if h0 ≤ Z
0
B , and

(ii) σ ∗(h0, φ) ∈ (0,∞) if h0 > Z0
B .

5.3. Combustion case

Throughout this subsection, we assume that f is of (fC) type.

Theorem 5.9 (Trichotomy). Suppose that h0 > 0, u0 ∈ X (h0) and (u, g, h) is the
solution of (1.1). Then either

(i) Spreading: (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R1,

or

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0,

or

(iii) Transition: (g∞, h∞) = R1 and

lim
t→∞

u(t, x) = θ locally uniformly in R1.

Proof. One easily sees that bounded nonnegative solutions of

vxx + f (v) = 0 in R1, (5.11)

with a combustion type f , consist of the following constant solutions only: 0, every c ∈
(0, θ), θ , 1.

Therefore, by Theorem 1.1, either (g∞, h∞) is a finite interval and limt→∞ u(t, x)=0
locally uniformly in (g∞, h∞), or (g∞, h∞) = R1 and limt→∞ u(t, x) = v locally
uniformly in R1, with v a constant nonnegative solution of (5.11). As before, we can use
Lemma 2.8 to conclude that when (g∞, h∞) is a finite interval, then vanishing happens.

It remains to show that when (g∞, h∞) = R1, then v ≡ 1 or v ≡ θ . As before,
Corollary 3.3 shows that v = 0 is impossible when (g∞, h∞) = R1. We show next that
v 6= c for any c ∈ (0, θ). Suppose by way of contradiction that v ≡ c ∈ (0, θ). Then in
view of Lemma 2.8, for some large t0 > 0 we have ‖u(t0, ·)‖L∞ < θ . Thus we can apply
Theorem 3.2 to conclude that vanishing happens to (u, g, h), contrary to ω(u) = {c}. ut
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Theorem 5.10 (Sharp threshold). Suppose that h0 > 0, φ ∈ X (h0), and (u, g, h) is
a solution of (1.1) with u0 = σφ for some σ > 0. Then there exists σ ∗ = σ ∗(h0, φ) ∈

(0,∞] such that spreading happens when σ > σ ∗, vanishing happens when 0 < σ < σ ∗,
and transition happens when σ = σ ∗.

Proof. The proof is identical to that of Theorem 5.6 except the last part, where one shows
that spreading happens when σ > σ ∗. This part has to be proved differently.

Let (u∗, g∗, h∗) be the solution of (1.1) with u0 = σ
∗φ, and (u, g, h) a solution with

u0 = σφ and σ > σ ∗. Since u∗(t, x)→ θ locally uniformly in R1 as t →∞, in view of
Lemma 2.8, we can find T > 0 large such that

u∗(t, x) < θ + δ0/2 for t ≥ T/2 and x ∈ [g∗(t), h∗(t)], (5.12)

where δ0 is given in (1.12). By the comparison principle we have

[g∗(T ), h∗(T )] ⊂ (g(T ), h(T )), u∗(T , x) < u(T , x) in [g∗(T ), h∗(T )]. (5.13)

Now, for ξ ∈ (0, 1), we define

vξ (t, x) := ξ−1 u∗(ξ t,
√
ξ x), gξ (t) = ξ−1/2g∗(ξ t), hξ (t) = ξ−1/2h∗(ξ t).

Then, by (5.12) and (5.13), we can choose ξ0 ∈ (0, 1) close enough to 1 so that, for every
ξ ∈ [ξ0, 1),

vξ (t, x) ≤ θ + δ0 for all t ≥ T and x ∈ [gξ (t), hξ (t)], (5.14)

and

[gξ (T ), hξ (T )] ⊂ (g(T ), h(T )), vξ (T , x) ≤ u(T , x) in [gξ (T ), hξ (T )]. (5.15)

Observe that vξ satisfies the equation

v
ξ
t = v

ξ
xx + f (ξv

ξ ) for t > T and x ∈ [gξ (t), hξ (t)].

By (5.14) and (1.12), we have f (ξvξ ) ≤ f (vξ ). Therefore in view of (5.15), we find that
(vξ , gξ , hξ ) is a lower solution of (1.1) for t ≥ T . It follows that

u(t, x) ≥ vξ (t, x) and v ≥ lim
t→∞

vξ (t, x) = θ/ξ,

where v is the ω-limit of u. Thus we must have v ≡ 1, as we wanted. ut

Proposition 5.11. Let ZC be given by (4.9). Then σ ∗(h0, φ) < ∞ for all φ ∈ X (h0) if
h0 ≥ ZC , or if h0 ∈ (0, ZC) and f (u) ≥ −Lu for all u > 0 and some L > 0.

Proposition 5.12. Assume that f satisfies (5.10). Then there exists Z0
C ∈ (0, ZC) such

that, for every φ ∈X (h0),

(i) σ ∗(h0, φ) = ∞ if h0 ≤ Z
0
C , and

(ii) σ ∗(h0, φ) ∈ (0,∞) if h0 > Z0
C .

The proof of Proposition 5.11 is identical to that of Proposition 5.7; all we need is to re-
placeZB byZC in the proof. The proof of Proposition 5.12 is given in the next subsection.
Evidently, Theorem 1.4 is a consequence of Theorems 5.9, 5.10 and Proposition 5.11.
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5.4. Proof of Propositions 5.4, 5.8 and 5.12

In this subsection we always assume that f is of (fM ), (fB ), or (fC) type. We will prove
Propositions 5.8 and 5.12 first, and then prove Proposition 5.4.

If f satisfies

lim
u→∞

−f (u)

u1+2β = ∞ for some β > 2, (5.16)

then taking

L = L(β) =
1+ β
β2 · 2

1+2β , (5.17)

we can find s = s(β) > 1 such that

−f (u) ≥ Lu1+2β for u ≥ s. (5.18)

Let h0 > 0, and (u, g, h) be the solution of (1.1) with u0 = φ ∈ X (h0). We show
that

∫ h(t)
g(t)

u(t, x;φ) dx can be made as small as we want if h0 is small enough and t is
chosen suitably, regardless of the choice of φ.

Lemma 5.13. Suppose that (5.16) or (5.18) holds. Then given any ε > 0 we can find
h∗0 = h

∗

0(ε) > 0 such that, for each h0 ∈ (0, h∗0] there exists t0 = t0(h0) > 0 so that∫ h(t0)

g(t0)
u(t0, x;φ) dx < ε for all φ ∈X (h0).

Proof. For any h0 ∈ (0, 1), set

ψ(x) = (x − h0)
−1/β
− h
−1/β
0 for h0 < x ≤ 2h0.

For h0 + ct < x ≤ 2h0 + ct, t > 0, we define

w(t, x) := ψ(x − ct), k(t) = 2h0 + ct with c =
µ

βh
(1+β)/β
0

. (5.19)

With s given by (5.18), we set

ε1 := h0(1+ s)−β (< h0) (or equivalently, ψ(h0 + ε1) = sh
−1/β
0 ). (5.20)

We now consider w for h0 + ct + ε1 ≤ x ≤ 2h0 + ct, t > 0. It is easily seen that

wt (t, x) = −cψ
′(x − ct) =

c

β(x − h0 − ct)(1+β)/β
≥

c

βh
(1+β)/β
0

,

wxx(t, x) =
1+ β

β2(x − h0 − ct)(1+2β)/β ≤
1+ β
β2 ·

(1+ s)1+2β

h
(1+2β)/β
0

.
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Hence, with F := sup0≤ξ<∞ f (ξ),

wt − wxx − f (w) ≥
1

βh
(1+2β)/β
0

[
ch0 −

1+ β
β

(1+ s)1+2β
− Fβh

(1+2β)/β
0

]
=

1

βh
(1+2β)/β
0

[
µ

β
h
−1/β
0 −

1+ β
β

(1+ s)1+2β
− Fβh

(1+2β)/β
0

]
≥ 0,

provided h0 is sufficiently small.

Next we consider w for h0 + ct < x ≤ h0 + ct + ε1, t > 0. In this range, we have

w(t, x) ≥
1

(x − h0 − ct)1/β

(
1−

(
ε1

h0

)1/β)
=

1
(x − h0 − ct)1/β

(
s

1+ s

)
≥

s

ε
1/β
1 (1+ s)

=
s

h
1/β
0

> s.

Thus,

wt − wxx − f (w) ≥ −cψ
′(x − ct)− ψ ′′(x − ct)+ L[ψ(x − ct)]1+2β

≥ L

[
1

(x − h0 − ct)1/β

(
s

1+ s

)]1+2β

−
1+ β

β2(x − h0 − ct)(1+2β)/β

=
1

(x − h0 − ct)(1+2β)/β

[
L

(
s

1+ s

)1+2β

−
1+ β
β2

]
>

1
(x − h0 − ct)(1+2β)/β

[
L

(
1
2

)1+2β

−
1+ β
β2

]
= 0.

Clearly,
k′(t)+ µwx(t, k(t)) = c −

µ

βh
(1+β)/β
0

= 0.

We now compare (u, h) with (w, k) over the region

� := {(t, x) : h0 + ct ≤ x ≤ k(t)} ∩ {(t, x) : 0 ≤ x ≤ h(t)}.

By definition,

u(t, x) = 0 for x = h(t), w(t, x) = ∞ for x = h0 + ct.

Thus we can apply Lemma 2.2 to deduce that whenever J (t) := {x : (t, x) ∈ �} is
nonempty, we have h(t) ≤ k(t) and u(t, x) ≤ w(t, x) in J (t). Thus h(t) ≤ k(t) for all
t > 0.

By (5.18) and the definition of c,

τ1 :=

∫
∞

s/h
1/β
0

dr

−f (r)
≤

h2
0

2βLs2β , cτ1 ≤
µ

2β2Ls2β h
(β−1)/β
0 .



2708 Yihong Du, Bendong Lou

Let ζ(t) be the solution of

ζ ′(t) = f (ζ ), ζ(0) = ‖φ‖L∞ + 1.

Then u(t, x;φ) ≤ ζ(t) for t ≥ 0. We claim that u(t, x;φ) ≤ sh−1/β
0 for t ≥ τ1.

Indeed, since f (1) = 0 and f (ξ) < 0 for ξ > 1, we find that ζ(t) > 1 and is
decreasing for t > 0. Moreover,

τ1 =

∫ ζ(τ1)

‖φ‖∞+1

dζ

f (ζ )
=

∫
∞

‖φ‖∞+1

dζ

f (ζ )
−

∫
∞

ζ(τ1)

dζ

f (ζ )
<

∫
∞

ζ(τ1)

dζ

−f (ζ )
.

Thus ∫
∞

s/h
1/β
0

dζ

−f (ζ )
<

∫
∞

ζ(τ1)

dζ

−f (ζ )
.

It follows that ζ(τ1)<s/h
1/β
0 and hence ζ(t)<s/h1/β

0 for all t≥τ1, implying the claim.
By this estimate of u(t, x;φ) we obtain, for t = τ1,∫ h(τ1)

0
u(τ1, x;φ) dx ≤ (2h0 + cτ1)sh

−1/β
0 ≤ h

(β−2)/β
0

[
2sh1/β

0 +
µ

2β2Ls2β−1

]
.

Since β > 2,
∫ h(τ1)

0 u(τ1, x;φ) dx can be as small as desired when h0 → 0. By a parallel
consideration, the same is true for

∫ 0
g(τ1)

u(τ1, x;φ) dx. ut

We also need the following technical lemma.

Lemma 5.14. Suppose h0 > 0 and φ ∈X (h0). Then there exists ε0 ∈ (0, h0) such that,
for any ε ∈ (0, ε0), any φε ∈X (h0 − ε), and any sufficiently large σ > 0,

gε(t1) ≤ −h0, hε(t1) ≥ h0, uε(t1, x) ≥ φ(x) for x ∈ [−h0, h0]

at some t1 > 0, where (uε, gε, hε) denotes the solution of (1.1) with u0 = σφε.

Proof. We prove the conclusion by constructing a suitable lower solution. Let ϕ1(x) be
the positive function satisfying (5.2) and ‖ϕ1‖L∞([−1,1]) = ϕ1(0) = 1.

Choose ρ0 > 0 such that

ρ0 >
1

−2µϕ′1(1)
, ρ0ϕ1

(
x

h0

)
≥ φ(x) for x ∈ [−h0, h0]. (5.21)

This is possible since ϕ′1(1) < 0 and φ ∈ C1([−h0, h0]). Fix such a ρ0; then there exists
M = M(ρ0) > 0 such that

f (s) ≥ −Ms for s ∈ [0, 2ρ0]. (5.22)

Set
λ := λ1 +Mh

2
0, ε0 := (1− 2−1/(2λ))h0. (5.23)
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For any ε ∈ (0, ε0) and φε ∈X (h0 − ε), we will show that when

σφε ≥ ρ0

(
h0

h0 − ε

)2λ

· ϕ1

(
x

h0 − ε

)
,

we have
u(t1, x; σφε) ≥ φ(x) on [−h0, h0],

at time t1 := 2εh0 − ε
2 > 0. To prove this result, we first show that (w,−k, k) given by

w(t, x) := ρ0

(
h0

k(t)

)2λ

· ϕ1

(
x

k(t)

)
, k(t) :=

√
(h0 − ε)2 + t,

is a lower solution of (1.1) on the time interval [0, t1].
When t ∈ [0, t1], we have h0 − ε ≤ k(t) ≤ h0 and

‖w(t, x)‖L∞([−k(t),k(t)]) = w(t, 0) ≤ ρ0

(
h0

h0 − ε

)2λ

≤ 2ρ0

by the definition of ε0. Hence, for −k(t) ≤ x ≤ k(t) and 0 ≤ t ≤ t1,

wt − wxx − f (w) ≤ wt − wxx +Mw

=
−ρ0h

2λ
0

[k(t)]2λ+2

[
ϕ′′1 +

x

2k(t)
ϕ′1 + [λ−M(k(t))

2
]ϕ1

]
≤
−ρ0h

2λ
0

[k(t)]2λ+2

[
ϕ′′1 +

sgn(x)
2

ϕ′1 + λ1ϕ1

]
= 0,

k′(t)+ µwx(t, k(t)) ≤
1

2k(t)

[
1+ 2µρ0

(
h0

k(t)

)2λ

ϕ′1(1)

]
< 0,

−k′(t)+ µwx(t,−k(t)) ≥ −
1

2k(t)

[
1+ 2µρ0

(
h0

k(t)

)2λ

ϕ′1(1)

]
> 0.

If σ is chosen such that w(0, x) ≤ σφε, we find that (w(t, x),−k(t), k(t)) is a lower
solution of (1.1) with u0 = σφε . Now it is clear that the required inequalities follow from
this and (5.21). ut

Proof of Propositions 5.8 and 5.12. We only consider the (fB ) case; the proof in the (fC)
case is identical.

By Lemma 5.13 and Theorem 3.2(iii), for sufficiently small h0 > 0, vanishing hap-
pens for any φ ∈X (h0) and any σ > 0. So σ ∗(h0) = ∞ for small h0. Here and in what
follows we write σ ∗(h0) = ∞ instead of σ ∗(h0, φ) = ∞, since φ ∈ X (h0) plays no
role for the validity of this identity.

Define
Z0
B := sup5 where 5 := {h0 > 0 : σ ∗(h0) = ∞}. (5.24)

In view of the above fact and Proposition 5.7, we have 0 < Z0
B ≤ ZB . By the comparison

principle, σ ∗(h0) = ∞ when h0 ∈ (0, Z0
B), that is, (0, Z0

B) ⊂ 5.



2710 Yihong Du, Bendong Lou

We claim that the set (0,∞) \ 5 is open, and so 5 is closed. To see this, suppose
h0 belongs to this set and so σ ∗(h0, φ) < ∞ for every φ ∈ X (h0). Hence there exists
σ1 > 0 so that spreading happens when u0 = σφ and σ ≥ σ1. By Lemma 5.14, for
sufficiently small ε > 0 and any φε ∈X (h0− ε), there exist σ2 > 0 and t1 > 0 such that

u(t1, x; σ2φε) ≥ σ1φ(x) in [−h0, h0].

It follows that
u(t + t1, x; σ2φε) ≥ u(t, x; σ1φ) for all t > 0.

This implies that σ ∗(h0−ε, φε) <∞ and hence h0−ε ∈ (0,∞)\5. By the comparison
principle, clearly any h > h0 belongs to this set. Thus it is an open set.

Hence5 is relatively closed in (0,∞) and5 = (0, Z0
B ]. By Proposition 5.7, σ ∗(ZB)

<∞. Therefore Z0
B < ZB , and for h0 > Z0

B , σ ∗(h0) <∞. ut

The proof of Proposition 5.4 needs the following result.

Lemma 5.15. Under the assumptions of Proposition 5.4, there exists h∗0 > 0 small such
that, for any h0 ∈ (0, h∗0) and φ ∈X (h0), we have ‖u(t, ·;φ)‖∞→ 0 as t →∞.

Proof. By (5.7) we have

β <
2β2
− 2β − 1
1+ β

.

Fix a constant α between them; we may assume without loss of generality that

lim sup
s→∞

−f (s)

s1+2α <∞. (5.25)

Indeed, if (5.25) does not hold, we can modify f to f1 ∈ C
1 such that f (u) ≤ f1(u) for

u ≥ 0 and f1 satisfies (5.25). Replace f by f1 in (1.1) and denote the problem by (1.1)1.
It is easily seen that when a solution u1(t, x;φ) of (1.1)1 vanishes, the solution u(t, x;φ)
of (1.1) also vanishes. Hence we may prove the lemma under the additional condition
(5.25).

In what follows we always choose h0 ∈ (0, 1). Conditions (5.6) and (5.25) imply that
there exist s > 1 and Kβ ,Kα > 0 such that

Kβu
1+2β
≤ −f (u) ≤ Kαu

1+2α for u ≥ s. (5.26)

Moreover, we could have chosen Kβ = L given by (5.17). Therefore we can define c,
w(t, x) and k(t) as in the proof of Lemma 5.13 to deduce

h(t) ≤ 2h0 + ct for all t > 0.

Similarly
g(t) ≥ −2h0 − ct for all t > 0.
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Step 1. A bound from the proof of Lemma 5.13. We denote ω1 :=
1+2β
2β2 < 1; then as in

the proof of Lemma 5.13 we have

τ1 :=

∫
∞

s/h
ω1
0

dr

−f (r)
≤

h
2βω1
0

2βKβs2β ,

cτ1 ≤
µ

2β2Kβs2β h0, max{−g(τ1), h(τ1)} ≤ 2h0 + cτ1 ≤

(
2+

µ

2β2Kβs2β

)
h0,

and ∫ h(τ1)

g(τ1)
u(τ1, x;φ) dx ≤

(
4s +

µ

β2Kβs2β−1

)
h

1−ω1
0 . (5.27)

Step 2. A bound for g and h at a later time τ2. By condition (5.7), there exists 0 < δ < β

such that

α <
2β2
− 2β − 1

1+ β + δ
.

Hence

1− ω1 =
2β2
− 2β − 1
2β2 > αω2 := α ·

1+ β + δ
2β2 .

Note that ω2 < ω1 and so h−ω2
0 < h

−ω1
0 . Define

τ2 :=

∫
∞

s/h
ω2
0

dr

−f (r)
≤

h
2βω2
0

2βKβs2β < τ 0
2 :=

1
2βKβs2β .

Then

max{−g(τ2), h(τ2)} ≤ 2h0 + cτ2 ≤ 2h0 +
µ

2β2Kβs2β h
δ/β

0 ≤
π

3
√
f ′(0)

(5.28)

provided h0 is sufficiently small.

Step 3. A key bound for u. Direct calculation shows that

τ2 − τ1 ≥

∫ s/h
ω1
0

s/h
ω2
0

dr

Kαr1+2α =
h

2αω2
0 (1− h2α(ω1−ω2)

0 )

2αKαs2α ≥
h

2αω2
0

4αKαs2α

provided that h0 is sufficiently small such that

1− h2α(ω1−ω2)
0 ≥ 1/2. (5.29)

Therefore, for g(τ2) ≤ x ≤ h(τ2), by (5.27) we have

eK(τ2−τ1)

2
√
π(τ2 − τ1)

∫ h(τ1)

g(τ1)
u(τ1, x;φ) dx ≤ M̃h

1−ω1−αω2
0 < σ1 (5.30)
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provided h0 > 0 is sufficiently small, where K > 0 is chosen such that (1.6) holds,
σ1 > 0 is small so that the conclusion in Theorem 3.2(i) holds when ‖φ‖∞ ≤ σ1, and

M̃ :=
eKτ

0
2

√
π

√
4αKαs2α

(
2s +

µ

2β2Kβs2β−1

)
.

Step 4. Completion of the proof. For the above chosen h0 > 0,

h(τ1) < h(τ2) <
π

3
√
f ′(0)

, g(τ1) > g(τ2) > −
π

3
√
f ′(0)

.

By the proof of Lemma 3.1 we know that

u(τ1 + t, x;φ) ≤
eKt

2
√
πt

∫ h(τ1)

g(τ1)
u(τ1, x;φ) dx for all t ≥ 0.

Hence for g(τ2) ≤ x ≤ h(τ2),

u(τ2, x;φ) ≤
eK(τ2−τ1)

2
√
π(τ2 − τ1)

∫ h(τ1)

g(τ1)
u(τ1, x;φ) dx < σ1.

Consequently, u(τ2 + t, x;φ)→ 0 by Theorem 3.2(i). ut

Proof of Proposition 5.4. With the help of the above lemma, one can proceed as in the
proof of Propositions 5.8 and 5.12. ut

6. Semi-waves and spreading speed

Throughout this section we assume that f is of type (fM ), (fB ), or (fC), and (u, g, h) is
a solution of (1.1) for which spreading happens. To determine the spreading speed, we
will construct suitable upper and lower solutions based on semi-waves and waves of finite
length with speed close to that of the semi-waves.

6.1. Semi-waves

We call q(z) a semi-wave with speed c if (c, q(z)) satisfies{
q ′′ − cq ′ + f (q) = 0 for z ∈ (0,∞),
q(0) = 0, q(∞) = 1, q(z) > 0 for z ∈ (0,∞). (6.1)

As before, the first equation in (6.1) can be written in the equivalent form

q ′ = p, p′ = cp − f (q). (6.2)

So a solution q(z) of (6.1) corresponds to a trajectory (q(z), p(z)) of (6.2) that starts from
the point (0, ω) (ω = q ′(0) > 0) in the qp-plane and ends at the point (1, 0) as z→∞.
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If p(z) = q ′(z) > 0 for all z > 0, then the trajectory can be expressed as a function
p = P(q), q ∈ [0, 1], which satisfies

dP

dq
≡ P ′ = c −

f (q)

P
for q ∈ (0, 1), P (0) = ω, P (1) = 0. (6.3)

It is easily checked that

P0(q) :=

√
2
∫ 1

q

f (s) ds, q ∈ [0, 1],

solves (6.3) with c = 0 and ω = ω0
:=

√
2
∫ 1

0 f (s) ds > 0. Moreover,

P ′0(1) = −
√
−f ′(1).

Suppose c ≥ 0 and consider the equilibrium point (1, 0) of (6.2). A simple calcula-
tion shows that (1, 0) is a saddle point, and hence by the theory of ODE (cf. [P]) there
are exactly two trajectories of (6.2) that approach (1, 0) from q < 1; one of them, de-
noted by Tc, has slope (c −

√
c2 − 4f ′(1))/2 < 0 at (1, 0), and the other has slope

(c +
√
c2 − 4f ′(1))/2 > 0 at (1, 0). A part of Tc that lies in the set S := {(q, p) :

0 ≤ q ≤ 1, p ≥ 0} and contains (1, 0) is a curve which can be expressed as p = Pc(q),
q ∈ [qc, 1], where qc ∈ [0, 1), Pc(q) > 0 in (qc, 1) and the point (qc, Pc(qc)) lies on the
boundary of S. Thus Pc(q) satisfies

P ′ = c −
f (q)

P
in (qc, 1), P (1) = 0, P ′(1) =

c −
√
c2 − 4f ′(1)

2
. (6.4)

Clearly, when qc > 0 we have Pc(qc) = 0.
If qc > 0, then as q decreases from 1, Pc(q) stays positive and approaches 0 from

above as q decreases to qc. Checking the sign of P ′c(q) by the differential equation we
easily see that this cannot happen before q reaches θ̃ , where

θ̃ =

{
0 in the (fM) case,
θ in the (fB) and (fC) cases.

Thus we always have qc ≤ θ̃ . For convenience of notation, we assume that Pc(q) = 0
for q ∈ [0, qc) when qc > 0, so that Pc(q) is always defined for q ∈ [0, 1]. Denote
T 1
c := {(q, p) : p = Pc(q), q ∈ [0, 1]}.

Since

0 >
c −

√
c2 − 4f ′(1)

2
> −

√
−f ′(1) = P ′0(1),

we have P ′c(1) > P ′0(1), and by comparing the differential equations of Pc(q) and P0(q)

we easily see that Pc(q) never touches P0(q) from below as q decreases from 1 to qc.
Thus

0 < Pc(q) < P0(q) for q ∈ (qc, 1),

which implies Pc(q) < P0(q) for q ∈ (0, 1).
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In (qc, 1), we have

(P 2
c − P

2
0 )
′
= 2cPc ≤ 2cP0 ≤ 2cM := 2c‖P0‖L∞([0,1]).

Integrating this inequality over [q, 1] ⊂ [qc, 1] we obtain

P0(q) ≥ Pc(q) ≥

√
P 2

0 (q)− 2cM(1− q) for q ∈ (qc, 1].

This means that for sufficiently small c > 0 we have qc = 0 and Pc(q) > 0 in [0, 1).
Define

c0 := sup3, 3 := {ξ > 0 : Pc(q) > 0 in [0, 1) for all c ∈ (0, ξ ]}. (6.5)

Then the above observation implies that c0 ∈ (0,∞]. We claim that

c0 ≤ 2
√
K, where K := sup

s>0
f (s)/s. (6.6)

Since f (u) ≤ Ku for u ≥ 0, we have

P ′c ≥ c −Kq/Pc in (qc, 1).

If c ≥ 2
√
K , then the linear function L(q) = c+

√
c2−4K
2 q satisfies

L′ = c −Kq/L for q ∈ R1.

It follows that Pc(q) ≤ L(q) in (qc, 1), which implies that Pc(qc) = 0 and c 6∈ 3.
Therefore c0 ≤ c for any such c, and hence c0 ≤ 2

√
K .

Lemma 6.1. For any 0 ≤ c1 < c2 ≤ c0 and c̄ ≥ 0,

Pc1(q) > Pc2(q) in [0, 1), lim
c→c̄

Pc(q) = Pc̄(q) uniformly in [0, 1].

Moreover, Pc0(0) = 0 and Pc0(q) > 0 in (0, 1). Furthermore, when f is of (fB) or (fC)
type, then qc > 0 for c > c0, and when f is of (fM) type, then Pc(0) = 0 and Pc(q) > 0
in (0, 1) for all c ≥ c0.

Proof. When 0 ≤ c1 < c2, from the formula for P ′c(1) we find P ′c1
(1) < P ′c2

(1). Since

P ′c1
< c2 − f (q)/Pc1 ,

we find that as q decreases from q = 1, the curve p = Pc2(q) remains below the curve
p = Pc1(q). Therefore, qc2 ≥ qc1 and for q ∈ (qc2 , 1), Pc1(q) > Pc2(q). It follows
that Pc(q) is nonincreasing in c for q ∈ [0, 1]. Therefore for any c̄ ≥ 0, as c increases
to c̄, Pc(q) converges monotonically to some R(q) in [0, 1] uniformly. R(q) represents a
trajectory of (6.2) with c = c̄ that approaches (1, 0) from q < 1, and its slope at (1, 0)
is negative. Therefore by the uniqueness of Tc̄, R(q) must coincide with Pc̄(q). We can
similarly show that Pc(q) converges to Pc̄(q) when c decreases to c̄. Thus the curve T 1

c

varies continuously in c for c ≥ 0.
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If we assume further that c2 < c0, then by the definition of c0 we know that Pci (q) > 0
in [0, 1) for i = 1, 2. Thus in this case the above argument yields Pc1(q) > Pc2(q) for
q ∈ [0, 1).

We now consider Pc0(q). We must have Pc0(0) = 0, for otherwise Pc0(0) > 0, which
implies that Pc1(0) > 0 for c1 > c0 but close to c0. However, this implies that Pc(q) > 0
in [0, 1) for all c ∈ (0, c1] and thus (0, c1] ⊂ 3. But this implies c0 ≥ c1, a contradiction.
Thus we always have Pc0(0) = 0.

To show that Pc0(q) > 0 in (0, 1), it suffices to prove that qc0 = 0. Suppose by way
of contradiction that qc0 > 0. Since qc0 ≤ θ̃ , and θ̃ = 0 when f is monostable, we find
that qc0 > 0 cannot happen if f is of (fM ) type.

Suppose that f is of bistable type. Choose η ∈ (0, qc0) ⊂ (0, θ). Since (η, 0) is
a regular point for (6.2), there is a unique trajectory Tc,η passing through (η, 0). Since
f (η) < 0, Tc,η has a part in S that is a curve that can be expressed by p = Vc(q),
q ∈ [η, qc] for some qc ∈ (η, 1], and (qc, Vc(qc)) lies on the boundary of S, Vc(q) > 0
in (η, qc),

V ′c = c − f (q)/Vc in (η, qc).

The curve p = Vc0(q), q ∈ (η, q
c0), is increasing for q ∈ (0, θ) and it cannot inter-

sect T 1
c0

. Hence it remains above T 1
c0

. This implies that qc0 = 1. It cannot join (1, 0) since
Tc0 is the only trajectory approaching this point with a nonpositive slope there. Therefore
necessarily Vc0(1) > 0. Thus this curve is a piece of trajectory of (6.2) with c = c0
that stays away from any equilibrium point. Hence for all c close to c0, Vc(q) stays close
to Vc0(q) in [η, 1]. In particular, for all c < c0 close to c0, Vc(q) > 0 in (η, 1]. This
implies that for such c, T 1

c must lie below the curve p = Vc(q) (η ≤ q ≤ 1). This is
impossible since by the definition of c0, for such c, Pc(q) > 0 in [0, 1), which leads to
0 = Vc(η) ≥ Pc(η) > 0.

For f of combustion type, the arguments need to be modified, since now (η, 0) is an
equilibrium point of (6.2). Choose ε > 0 small so that η − εc−1 > 0. Then (η, ε) is
a regular point of (6.2), and hence there is a unique trajectory Tη,c,ε passing through it.
Since f (u) = 0 in (0, θ], we see that the trajectory is a straight line with slope c near
(η, ε), and it intersects the q-axis at (η − εc−1, 0). Much as in the bistable case above, a
piece of Tη,c,ε in S can be expressed as p = V̂c(q), and p = V̂c0(q) lies above T 1

c0
with

V̂c0(1) > 0. We can now derive a contradiction in the same way as in the bistable case.
Thus we must have qc0 = 0.

If f is of (fM ) type, then for c ≥ c0, Pc(0) ≤ Pc0(0) = 0. On the other hand, since
qc = 0 we know that Pc(q) > 0 for q ∈ (0, 1). Thus for such c, Pc(0) = 0 and Pc(q) > 0
in (0, 1).

If f is of (fB ) type, then (0, 0) is a saddle equilibrium point of (6.2) for all c ≥ 0,
and from the ODE theory we find that there are exactly two trajectories of (6.2) that
approach (0, 0) from q > 0, one denoted by T 0

c has slope (c +
√
c2 − 4f ′(0))/2 > 0 at

(0, 0), the other has slope (c −
√
c2 − 4f ′(0))/2 < 0 at (0, 0). For such f , if there exists

c > c0 such that qc = 0, then we must have Pc(0) = 0, for otherwise Pc(0) > 0 and
by the monotonicity of Pc(q) in c we deduce c0 ≥ c, contradicting the choice of c. Thus
Pc(0) = 0, and p = Pc(q), q ∈ [0, 1], represents a trajectory of (6.2) that connects (0, 0)
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and (1, 0). So it must coincide with T 0
c and hence P ′c(0) = (c +

√
c2 − 4f ′(0))/2 > 0.

For the same reason we have P ′c0
(0) = (c0 +

√
c2

0 − 4f ′(0))/2 > 0. It follows that
P ′c(0) > P ′c0

(0). On the other hand, from

P ′c(1) =
c −

√
c2 − 4f ′(1)

2
and P ′c0

(1) =
c0 −

√
c2

0 − 4f ′(1)

2

we deduce P ′c(1) > P ′c0
(1). Thus there exists q∗ ∈ (0, 1) such that Pc(q) > Pc0(q)

in (0, q∗) and Pc(q∗) > Pc0(q∗). It follows that P ′c(q∗) ≤ P ′c0
(q∗). However, from the

differential equations we deduce P ′c(q∗) − P
′
c0
(q∗) = c − c0 > 0. This contradiction

shows that we must have qc > 0 for c > c0 in the (fB ) case.
If f is of (fC) type, and if qc = 0 for some c > c0, then 0 ≤ Pc(0) ≤ Pc0(0) = 0,

and thus Pc(0) = 0. We notice from the differential equation for Pc(q) that P ′c(q) = c in
(0, θ] and hence Pc(q) = cq in this range. For the same reason Pc0(q) = c0q in (0, θ].
Thus we again have P ′c(0) > P ′c0

(0). We can now derive a contradiction as in the (fB )
case above. ut

Theorem 6.2. Let c0 and Pc0(q) be defined as above. Then the trajectory represented by
p = Pc0(q), q ∈ (0, 1), gives rise to a solution q0(z) of the problem{

q ′′ − cq ′ + f (q) = 0 for z ∈ R1,

q(−∞) = 0, q(∞) = 1, q(z) > 0 for z ∈ R1,
(6.7)

with c = c0. Moreover, q0(z) is unique up to translation of the variable z. This problem
has no solution for any other nonnegative value of c if f is of (fB) or (fC) type, and when
f is of (fM) type, it has a unique solution (up to translation) for every c ≥ c0, and has
no solution for c ∈ [0, c0).

For each µ > 0, there exists a unique c∗ = c∗µ ∈ (0, c0) such that Pc∗(0) = c∗/µ.
Moreover, (6.1) has a unique solution (c, q) = (c∗, q∗) satisfying q ′(0) = c/µ, and c∗µ is
increasing in µ with

lim
µ→∞

c∗µ = c0.

Proof. Let (q0(z), p0(z)), z ∈ R1, be the trajectory of (6.2) corresponding to p = Pc0(q),
q ∈ (0, 1). Then clearly q0(z) satisfies (6.7) with c = c0. Conversely, a solution of (6.7)
gives rise to a function P(q) satisfying (6.3). Thus P(q) ≡ Pc(q). The conclusions about
the existence and nonexistence of solutions to (6.7) now follow directly from Lemma 6.1.
The solution is unique up to translation because the trajectory T 1

c0
is the only one that

approaches (1, 0) from q < 1 and has a negative slope there.
By Lemma 6.1 and the definition of c0, we find that for each c ∈ [0, c0), Pc(0) > 0

and it decreases continuously as c increases in [0, c0]. Moreover, P0(0) > 0 and
Pc0(0) = 0. We now consider the continuous function

ξ(c) = ξµ(c) := Pc(0)− c/µ, c ∈ [0, c0].
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By the above discussion, ξ(c) is strictly decreasing in [0, c0]. Moreover, ξ(0) =
P0(0) > 0 and ξ(c0) = −c0/µ < 0. Thus there exists a unique c∗ = c∗µ ∈ (0, c0)

such that ξ(c∗) = 0.
If we view (c∗µ, c

∗
µ/µ) as the unique intersection point of the decreasing curve y =

Pc(0) and the increasing line y = c/µ in the cy-plane, then it is clear that c∗µ increases
to c0 as µ increases to∞.

Finally the curve p = Pc∗(q), q ∈ [0, 1), corresponds to a trajectory of (6.2), say
(q∗(z), p∗(z)), z ∈ [0,∞), that connects the regular point (0, Pc∗(0)) to the equilibrium
(1, 0). It follows from (6.2) with c = c∗ that (c∗, q∗) solves (6.1) with (q∗)′(0) = c∗/µ.
If (c, q) is another solution of (6.1) satisfying q ′(0) = c/µ, then it corresponds to a
trajectory of (6.2) connecting (0, c/µ) and (1, 0) in the set S. Since for each c ≥ 0 there
is only one such trajectory to (1, 0), it coincides with p = Pc(q), q ∈ [0, 1). Thus we
necessarily have Pc(0) = c/µ and hence c = c∗. It follows that q = q∗. ut

Remark 6.3. The function q0(z) is usually called a traveling wave with speed c0. Its
existence is well-known. Our proof of the existence of (c0, q0(z)) is somewhat different
from [AW1, AW2], so that our version of the proof can be easily used to obtain the semi-
wave q∗(z) and to reveal the relationship between c∗ and c0. Since (1, 0) is always a
saddle equilibrium point of (6.2), our construction of the connecting orbit between (0, 0)
and (1, 0), based on the latter point, is slightly simpler, compared with that in [AW1,
AW2], where the construction is based on (0, 0) instead.

Proposition 1.9 clearly follows from Theorem 6.2.
Next we show how a suitable perturbation of the above setting can be used to produce

a semi-wave that can be used to construct upper solutions for (1.1). Let θ̂ ∈ (0, 1) be
the biggest maximum point of f in (0, 1). For small ε > 0, let fε(u) be a C1 function
obtained by modifying f (u) over [θ̂ , 2] so that f (u) ≤ fε(u) for u ∈ R1, fε(u) has a
unique zero 1 + ε in [θ̂ , 2], f ′ε(1 + ε) < 0, and fε decreases to f in the C1 norm over
[θ̂ , 2] as ε decreases to 0.

Replacing f by fε, we have a parallel version of Theorem 6.2. We denote the corre-
sponding wave and semi-wave by (cε0, q

ε
0(z)) and (c∗ε , q

∗
ε (z)) respectively. We have the

following result.

Proposition 6.4.

cε0 ≥ c0, c∗ε > c∗, lim
ε→0

cε0 = c0, lim
ε→0

c∗ε = c
∗.

Proof. Let P εc (q) denote the counterpart of Pc(q). Since fε ≥ f , as q decreases from
1+ ε, the curve p = P εc (q) cannot touch the curve p = Pc(q) from above. As before, it
cannot touch p = 0 before q reaches θ̃ . Therefore P εc (q) is positive over (θ̃ , 1 + ε) and
P εc (q) > Pc(q) in [qc, 1). Thus for c ∈ (0, c0), P εc (0) > Pc(0) > 0. This implies that
cε0 ≥ c0.

Using the monotonicity of fε on ε, we easily deduce that P εc (q) is nondecreasing
in ε. Thus P εc (q) converges to some R(q) as ε→ 0 uniformly in [0, 1]. Since p = R(q)
represents a trajectory of (6.2) that approaches (1, 0) with a nonpositive slope at (1, 0),



2718 Yihong Du, Bendong Lou

and there is only one such trajectory, R(q) must coincide with Pc(q). In particular,
P εc (0)→ Pc(0) as ε→ 0.

In view of the definition of cε0, the monotonicity of P εc (q) on ε implies that cε0 is
nondecreasing in ε. Therefore ĉ0 := limε→0 c

ε
0 exists and ĉ0 ≥ c0.

Supposing ĉ0 > c0, we are going to deduce a contradiction. Choose c ∈ (c0, ĉ0) and
consider P εc (q). Since c < cε0, we have P εc (q) > 0 in [0, 1+ ε) for all ε.

Then for f of (fB ) or (fC) type, we have (P εc (q))
′
≥ c in (0, θ] and hence P εc (q) ≥ cq

in [0, θ]. Letting ε→ 0, we deduce Pc(q) ≥ cq in [0, θ]. We already know from the proof
of Lemma 6.1 that Pc(q) > 0 in (qc, 1) ⊃ (θ, 1). Thus Pc(q) > 0 in (0, 1). If Pc(0) > 0
then by monotonicity in c we have Pc′(0) > 0 for all c′ ∈ (0, c] and hence c0 ≥ c,
contrary to our choice of c. If Pc(0) = 0, then p = Pc(q), q ∈ (0, 1), represents a
trajectory of (6.2) connecting (0, 0) and (1, 0). By Theorem 6.2 such a trajectory exists
only if c = c0, so we again reach a contradiction.

Thus we have proved that limε→0 c
ε
0 = c0 when f is of (fB ) or (fC) type.

We now consider f of (fM ) type. Suppose that ĉ0 > c0 and fix c ∈ (c0, ĉ0). Note
that from the monotonicity of cε0 in ε, we always have cε0 ≥ ĉ0 > c. Moreover, from
the differential equation we easily see that as ε decreases to 0, P εc (q) decreases to Pc(q)
uniformly in [0, 1], and Pc(q) < Pc1(q) in (0, 1) if c > c1 > c0. We fix such a c1. Thus
for sufficiently small ε > 0, P εc (θ̂) < Pc1(θ̂). We now consider P εc (q) for q ∈ [0, θ̂ ]. We
notice that in this range fε(q) = f (q), and thus P εc (q) satisfies

P ′ = c − f (q)/P

for q ∈ (0, θ̂ ]. Since P εc (θ̂) < Pc1(θ̂), the curve p = P εc (q) remains below the curve
p = Pc1(q) as q decreases from q = θ̂ . Thus, due to Pc1(0) = 0 (because c1 > c0), we
necessarily have P εc (0) = 0. On the other hand, since c < cε0, we must have P εc (0) > 0.
This contradiction shows that ĉ0 = c0 in the monostable case as well.

For c ∈ (0, c0), since P εc (0) > Pc(0), we have ξε(c) := P εc (0) − c/µ > ξ(c) :=

Pc(0) − c/µ. It follows that ξ(c∗) = 0 < ξε(c
∗), which implies c∗ε > c∗ since ξε(c) is

strictly decreasing in c. Since P εc (0) is nondecreasing in ε, we deduce that c∗ε is nonde-
creasing in ε. The fact that c∗ε → c∗ as ε → 0 now follows easily from the uniqueness
of c∗ as a solution of ξ(c) = 0. ut

Finally we show how a semi-wave can be perturbed to give a wave of finite length which
is more convenient to use in the construction of lower solutions for (1.1). So let (c∗, q∗)
be the unique solution to (6.1). Denote ω∗ := c∗/µ and for each c ∈ (0, c∗) consider the
problem

P ′ = c − f (q)/P , P (0) = ω∗. (6.8)

Since c < c∗, we easily see that the unique solution P c(q) of this problem stays be-
low Pc∗(q) as q increases from 0. Therefore there exists some Qc

∈ (0, 1] such that
P c(q) > 0 in [0,Qc) and P c(Qc) = 0. We must have Qc < 1 because otherwise
P c(q) ≡ Pc(q) by the uniqueness of the trajectory of (6.2) that approaches (1, 0) from
q < 1 with a nonpositive slope there, which is impossible since Pc(0) > Pc∗(0) = ω∗ =
P c(0). It is also easily seen that, as c increases to c∗, Qc increases to 1 and P c(q) →
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Pc∗(q) uniformly, in the sense that ‖P c − Pc∗‖L∞([0,Qc]) → 0. Let (qc(z), pc(z)) de-
note the trajectory of (6.2) represented by the curve p = P c(q), q ∈ [0,Qc

], with
(qc(0), pc(0)) = (0, ω∗) and (qc(zc), pc(zc)) = (Qc, 0); then clearly qc(z) solves (4.1)
with Z = zc. Moreover,

c < c∗ = µω∗ = µ(qc)′(0), (6.9)
lim
c↗ c∗

zc = ∞, lim
c↗ c∗
‖qc − q∗‖L∞([0,zc]) = 0. (6.10)

6.2. Asymptotic spreading speed

Let (c∗, q∗(z)) be given as in Theorem 6.2. For c ∈ (0, c∗), let qc(z), Qc and zc be as in
the previous subsection. For t ≥ 0 we define

k(t) = kc(t) := z
c
+ ct,

w(t, x) = wc(t, x) :=

 q
c(k(t)− x), x ∈ [ct, k(t)],

qc(zc), x ∈ [−ct, ct],

qc(k(t)+ x), x ∈ [−k(t),−ct].

We will use (w,−k, k) as a lower solution to (1.1) in the proof of the following result.

Lemma 6.5. Let (u, g, h) be a solution of (1.1) for which spreading happens. Then for
any c ∈ (0, c∗) and any δ ∈ (0,−f ′(1)), there exist positive numbers T∗ andM such that
for t ≥ T∗,

(i) [g(t), h(t)] ⊃ [−ct, ct];
(ii) u(t, x) ≥ 1−Me−δ̃t for x ∈ [−ct, ct] and some δ̃ = δ̃(c) ∈ (0, δ);

(iii) u(t, x) ≤ 1+Me−δt for x ∈ [g(t), h(t)].

Proof. (i) Fix ĉ ∈ (c, c∗). Since spreading happens, we can find T1 > 0 such that

[g(T1), h(T1)] ⊃ [−kĉ(0), kĉ(0)] and u(T1, x) > wĉ(0, x) in [−kĉ(0), kĉ(0)].

One then easily checks that (wĉ(t − T1, x),−kĉ(t − T1), kĉ(t − T1)) is a lower solution
of (1.1) for t ≥ T1. Hence for t ≥ T2 with some T2 > T1,

g(t) ≤ −kĉ(t − T1) < −ĉ(t − T1) < −ct, h(t) ≥ kĉ(t − T1) > ĉ(t − T1) > ct,

u(t, x) ≥ wĉ(t − T1, x) for x ∈ [−kĉ(t − T1), kĉ(t − T1)] ⊃ [−ct, ct].

(ii) Since wĉ(t −T1, x) ≡ q
ĉ(zĉ) = Qĉ > Qc for |x| ≤ ct < ĉ(t −T1) for all t ≥ T2,

we find from the above estimate for u that u(t, x) ≥ Qc for −ct ≤ x ≤ ct and t ≥ T2.
Since f ′(1) < 0, for any δ ∈ (0,−f ′(1)) we can find ρ = ρ(δ) ∈ (0, 1) such that

f (u) ≥ δ(1− u) (u ∈ [1− ρ, 1]), f (u) ≤ δ(1− u) (u ∈ [1, 1+ ρ]). (6.11)

Recall that Qc
→ 1 as c increases to c∗. Without loss of generality we may assume that

c has been chosen so that Qc > 1− ρ.
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Fix T ≥ T2 and let ψ be the solution ofψt = ψxx − δ(ψ − 1), −cT < x < cT , t > 0,
ψ(t,±cT ) ≡ Qc, t > 0,
ψ(0, x) ≡ Qc, −cT ≤ x ≤ cT .

(6.12)

Since ψ ≡ Qc is a lower solution of the corresponding elliptic problem of (6.12), and
ψ ≡ 1 is an upper solution,ψ(t, x) increases in t andψ ∈ [Qc, 1]. Moreover,ψ is a lower
solution for the equation satisfied by u(t+T , x) in the region (t, x) ∈ [0,∞)×[−cT , cT ],
and so

ψ(t, x) ≤ u(t + T , x) for −cT ≤ x ≤ cT and t ≥ 0. (6.13)

Set 9 := (ψ −Qc)eδt . Then9t = 9xx + δ(1−Q
c)eδt , −cT < x < cT , t > 0,

9(t,±cT ) ≡ 0, t > 0,
9(0, x) ≡ 0, −cT ≤ x ≤ cT ,

(6.14)

The Green function of this problem can be expressed in the form (see [Fr, p. 84])

G̃(t, x) =
∑
n∈Z
(−1)nG(t, x − 2ncT ),

which yields

G̃(t, x) ≥ Ĝ(t, x) := G(t, x)−G(t, x − 2cT )−G(t, x + 2cT ),

where G is the fundamental solution of the heat equation:

G(t, x) =
1
√

4πt
e−

x2
4t .

Hence

9(t, x) =

∫ t

0
dτ

∫ cT

−cT

G̃(t − τ, x − ξ)δ(1−Qc)eδτ dξ

≥ δ(1−Qc)

∫ t

0
eδτ dτ

∫ cT

−cT

Ĝ(t − τ, x − ξ) dξ.

For any ε ∈ (0, 1), consider (t, x) satisfying

|x| ≤ (1− ε)cT , 0 < t ≤ ε2c2T/4. (6.15)

For such (t, x) and any τ ∈ (0, t), we have

cT ± x

2
√
t − τ

≥
εcT

2
√
t − τ

≥
εcT

2
√
t
=
√
T ·

εc
√
T

2
√
t
≥
√
T ≥ 1. (6.16)
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So for (t, x) satisfying (6.15) we have∫ cT

−cT

G(t − τ, x − ξ) dξ =

(∫
∞

−∞

−

∫
−cT

−∞

−

∫
∞

cT

)
G(t − τ, x − ξ) dξ = 1− I1 − I2,

where

I1 :=
1
√
π

∫
−

cT+x

2
√
t−τ

−∞

e−r
2
dr, I2 :=

1
√
π

∫
∞

cT−x

2
√
t−τ

e−r
2
dr.

Using the elementary inequality∫
∞

y

e−r
2
dr ≤

∫
∞

y

re−r
2/2 dr = e−y

2/2 for all y ≥ 1,

the inequality cT ± x ≥ εcT , and (6.16), we deduce

I1, I2 ≤
1
√
π
e
−
(εcT )2
8(t−τ) .

But (6.16) also yields (εcT )2

8(t−τ) ≥ T/2. Thus

I1, I2 ≤
1
√
π
e−T/2,

and so ∫ cT

−cT

G(t − τ, x − ξ) dξ ≥ 1−
2
√
π
e−T/2.

Similarly,∫ cT

−cT

G(t − τ, x − ξ − 2cT ) dξ =
1
√
π

∫ cT

−cT

1
2
√
t − τ

e
−
(x−ξ−2cT )2

4(t−τ) dξ

≤
1
√
π

∫
∞

−cT

1
2
√
t − τ

e
−
(x−ξ−2cT )2

4(t−τ) dξ

=
1
√
π

∫
∞

cT−x

2
√
t−τ

e−r
2
dr ≤

1
√
π
e−T/2.

Consequently, for (t, x) satisfying (6.15), we have

9(t, x) ≥ δ(1−Qc)

∫ t

0
eδτ
(

1−
4
√
π
e−T/2

)
dτ = (1−Qc)

[
1−

4
√
π
e−T/2

]
(eδt − 1).

(Here, without loss of generality, we have assumed that T is chosen sufficiently large such
that 4

√
π
e−T/2 < 1.) This implies that, for such (t, x),

ψ(t, x) ≥ 1−
4
√
π
e−T/2 − e−δt .
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Taking t = ε2c2

4 T we obtain

ψ

(
ε2c2

4
T , x

)
≥ 1−

4
√
π
e−T/2 − e−ε

2c2δT /4.

We only focus on small ε > 0 such that ε2c2δ < 2, so

ψ(ε2c2T/4, x) ≥ 1−M0e
−ε2c2δT /4 with M0 := 4/

√
π + 1

for |x| ≤ (1− ε)cT and T ≥ T2.
By (6.13), for such T and x, we have

u(ε2c2T/4+ T , x) ≥ 1−M0e
−ε2c2δT /4.

Finally, if we rewrite t = ε2c2T/4+ T , then T = (1+ ε2c2/4)−1t . Thus

u(t, x) ≥ 1−M0e
−δ̃t for |x| ≤ (1− ε)(1+ ε2c2/4)−1ct and t ≥ T3,

where δ̃ := (ε2c2/4)(1+ ε2c2/4)−1δ and T3 := ε
2c2T2/4+ T2. Since this is true for any

c ∈ (0, c∗) close to c∗, and any small ε > 0, the above estimate implies the conclusion
in (ii).

(iii) Consider the equation η′(t) = f (η) with initial value η(0) = ‖u0‖L∞ + 1. Then
η is an upper solution of (1.1). So u(t, x) ≤ η(t) for all t ≥ 0. Since f (u) < 0 for u > 1,
η(t) is a decreasing function converging to 1 as t →∞. Hence there exists T4 > 0 such
that η(t) < 1+ ρ for t ≥ T4. Now, for t ≥ T4, η′(t) = f (η) ≤ δ(1− η), and so

u(t, x) ≤ η(t) ≤ 1+ ρe−δ(t−T4) for g(t) ≤ x ≤ h(t) and t ≥ T4. ut

Proof of Theorem 1.10. Assume that spreading happens. Then for any given small ε > 0,
we can apply Lemma 6.5 to obtain some T1 > 0 large such that for t ≥ T1,

[g(t), h(t)] ⊃ [−(c∗ − ε)t, (c∗ − ε)t], |u(t, x)− 1| ≤ Me−δt for |x| ≤ (c∗ − ε)t.
(6.17)

We now make use of the perturbation method introduced in the previous subsection.
For small ε1 > 0, we modify f to obtain fε1 and (c∗ε1

, q∗ε1
) as described there. Since

c∗ε1
→ c∗ as ε1 → 0, we can choose ε1 > 0 small enough such that c∗ε1

< c∗ + ε.
By Lemma 6.5 we see that for some large T2 > 0, u(t, x) < 1+ ε1/2 for t ≥ T2. We

then choose M ′ > 0 large enough such that

−c∗ε1
T2 −M

′ < g(T2), c∗ε1
T2 +M

′ > h(T2),

1+ ε1/2 < q∗ε1
(c∗ε1

T2 +M
′
− x) for x ∈ [g(T2), h(T2)].

Therefore if we define

k(t) := c∗ε1
t +M ′, w(t, x) := q∗ε1

(k(t)− x),
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then (w, g, k) is an upper solution of (1.1) for t ≥ T2, and we can use Lemma 2.2 to
deduce that

h(t) ≤ c∗ε1
t +M ′ < (c∗ + ε)t +M ′ for t ≥ T2.

We can similarly show that

g(t) ≥ −(c∗ + ε)t −M ′ for t ≥ T2.

These estimates and (6.17) clearly imply

lim
t→∞

−g(t)

t
= lim
t→∞

h(t)

t
= c∗. ut
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