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Abstract. We prove a singular version of Beilinson–Bernstein localization for a complex semi-
simple Lie algebra following ideas from the positive characteristic case settled by [BMR06]. We
apply this theory to translation functors, singular blocks in the Bernstein–Gelfand–Gelfand category
O and Whittaker modules.
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1. Introduction

1.1.

Let g be a semisimple complex Lie algebra with enveloping algebra U and center Z ⊂ U.
Let h ⊂ g be a Cartan subalgebra and B be the flag manifold of g. Let λ ∈ h∗ be regular
and dominant and Iλ ⊂ Z be the corresponding maximal ideal determined by the Harish
Chandra homomorphism. Set Uλ := U /(Iλ). Let Dλ

B be the sheaf of λ-twisted differential
operators on B. The celebrated localization theorem of Beilinson and Bernstein [BB81]
states that the global section functor gives an equivalence Mod(Dλ

B)
∼= Mod(Uλ). For

applications and more information, see [HTT08].
A localization theory for singular λ was much later found in positive characteristic by

Bezrukavnikov, Mirković and Rumynin [BMR06]. Let us sketch their basic construction
(which makes sense in all characteristics):

Let G be a semisimple algebraic group such that LieG = g. Instead of B consider
a parabolic flag manifold P = G/P , where P ⊆ G is a parabolic subgroup whose
parabolic roots coincide with the singular roots of λ. Replace the sheaf Dλ

B by a sheaf
Dλ
P := π∗(DG/R)

L modulo a certain ideal defined by λ. Here L is the Levi factor, R is
the unipotent radical of P and π : G/R→ P is the projection. The L-invariants are taken
with respect to the right L-action on G/R. The sheaf π∗(DG/R)L is locally isomorphic
to DP ⊗ U(l), where l = LieL. When P = B we have Dλ

P = Dλ
B and when P = G we
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arrive at a tautological solution: Dλ
P = Uλ⊗ “sheaf of differential operators on a point”

= Uλ.
We use this construction to prove a singular localization theorem in characteristic

zero, Theorem 5.1. This is probably well known to the experts but it is not in the lit-
erature. Our proof is similar to the original proof of [BB81], though parabolicity leads
to some new complications. For instance, [BB81] introduced the method of tensoring a
DB-module with a trivial bundle and then to filter this bundle withG-equivariant line bun-
dles as subquotients. In the parabolic setting the subquotients will necessarily be vector
bundles—which are harder to control—since irreducible representations of P are gener-
ally not one-dimensional.

In Theorem 4.10 we show that the global sections 0(Dλ
P ) equal Uλ by passing to the

associated graded level, i.e. to the level of a parabolic Springer resolution. That this works
follows from the usual Springer resolution (Lemma 3.2).

Our localization theorem gives an equivalence at the level of abelian categories just
like [BB81] does. This is different from positive characteristic where the localization
theorem only holds at the level of derived categories.

1.2.

Our principal motivation comes from quantum groups. We do not wish to get into de-
tails here, but let us at least mention that we will need a singular localization theory for
quantum groups in order to establish quantum analogs of fundamental constructions from
[BMR08, BMR06, BMS13] that relate modular representation theory to (commutative)
algebraic geometry. By our previous work [BK08], we know that the derived representa-
tion categories of quantum groups at roots of unity are equivalent to derived categories of
coherent sheaves on Springer fibers in T ∗B.

To extend this to the level of abelian categories we must transport the tautological
t-structure on the representation-theoretical derived category to a t-structure on the co-
herent sheaf side. It so happens that to describe this so called exotic t-structure (see also
[Bez06]), a family of singular localizations is needed (even for a regular block).

We showed in [BK06] that a localization theory for quantum groups can be neatly
formulated in terms of equivariant sheaves. The “space” G/B does not admit a quanti-
zation. However, one can quantize the function algebras O(G) and O(B) and thus the
category of B-equivariant (= O(B)-coequivariant) O(G)-modules. This is just the cate-
gory of quasicoherent sheaves on G/B. Therefore, to prepare for the quantum case we
have taken thorough care to write down our results in an equivariant categorical language
and at the same time to explain what is going on geometrically while this is still possible.

1.3.

The theory of singular localization of g-modules clarifies many aspects of representation
theory and will have many applications in its own right. Here we discuss a few of them.

It is a basic principle in representation theory that understanding of representations
at singular central characters enhances the understanding also at regular central char-
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acters. This is illustrated by our D-module interpretation of translation functors (Sec-
tion 6). Using regular localization only, such a theory was developed by Beilinson and
Ginzburg [BG99]. Singular localization simplifies their picture for the plain reason that
wall-crossing functors between regular blocks factor through a singular block. We shall
also need these results in our work on quantum groups.

The localization theorem implies that a (perhaps singular) block Oλ in category O
corresponds to certain bi-equivariant D-modules on G (Section 7). From this we directly
retrieve Bernstein and Gelfand’s [BeGe81] classical result that Oλ is equivalent to a cate-
gory of Harish-Chandra bimodules (Corollary 7.4).

Singular localization also leads to the useful observation that one should study Harish-
Chandra g-l-bimodules, where l is the Levi factor of p = LieP , rather than g-g-bimodules
(as well as the only proof we know that such bimodules are equivalent to Oλ). For in-
stance, Theorem 8.1 gives this way a very short proof for Miličić and Soergel’s [MS97]
equivalence between Oλ and a block in the category of Whittaker modules, and Corol-
lary 8.6 gives one for its parabolic generalization due to Webster [W09]. These Whittaker
categories have encountered recent interest because they are equivalent to modules over
finite W -algebras (e.g. [W09]). It is probably well worth the effort to further investigate
the relationship between singular localization and finite W -algebras, in particular in the
affine case.

We also retrieve and generalize some other known equivalences between representa-
tion categories (see e.g. [Soe86]).

1.4.

An interesting task will be to develop a theory for “holonomic” Dλ
P -modules. Those

which are “smooth along the Bruhat stratification of P” and have “regular singularities”
will correspond to Oλ. One should then establish a “Riemann–Hilbert correspondence”
between holonomic Dλ

P -modules with regular singularities and a suitable category of
constructible sheaves on P . Ideally the latter category would be accessible to the machin-
ery of Hodge theory. This would further strengthen the interplay between representation
theory and algebraic topology. Because of the simple local description of Dλ

P we believe
that all this can be done and is a good starting point for generalizing D-module theory.
We shall return to this topic later on.

Another topic we would like to approach via singular localization is the singular-
parabolic Koszul duality for O of [BGS96].

2. Preliminaries

Here we fix notation and collect mostly well known results that we shall need.

2.1. Notation

We work over C. Unless stated otherwise, ⊗ = ⊗C. Let X be an algebraic variety, OX

the sheaf of regular functions on X and O(X) its global sections. Mod(OX) denotes the
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category of quasi-coherent sheaves on X, and 0 := 0X : Mod(OX) → Mod(O(X)) is
the global section functor. If Y is another variety, πYX will denote the obvious projection
X→ Y if there is such.

For A a sheaf of algebras on X such that OX ⊆ A (e.g., an algebra if X = pt) we
abbreviate “an A-module” for a sheaf of A-modules that is quasi-coherent over OX. We
denote by Mod(A) the category of A-modules. More generally, we will encounter cate-
gories such as Mod(A, additional data) that consists of A-modules with some additional
data. We will then denote by mod(A, additional data) its full subcategory of noetherian
objects.

Throughout this paper, G will denote a semisimple complex linear algebraic group.
We have assumed semisimplicity to simplify notation; all our results can be straightfor-
wardly extended to the case of G reductive. We mention this fact in those proofs that
reduce to (reductive) Levi subgroups of G.

2.2. Root data

Let B ⊂ G be a Borel subgroup of our semisimple group G and let T ⊂ B be a maximal
torus. Let h ⊂ b ⊂ g be their respective Lie algebras. For any parabolic subgroup P ofG
containing B, denote by R = RP its unipotent radical, by L := LP its Levi subgroup
and by p = LieP , r = rP = LieR and l = lP = LieL their Lie algebras. We denote by
B := G/B the flag manifold and by P := G/P the parabolic flag manifold corresponding
to P .

Let 3 be the lattice of integral weights and let 3r be the root lattice. Let 3+ and
3r+ be the positive weights and the positive linear combinations of the simple roots,
respectively.

Let W be the Weyl group of g. Let 1 be the simple roots and let 1P := {α ∈ 1 :
g−α ⊂ p} be the subset of P -parabolic roots. Let WP be the subgroup of W generated
by simple reflections sα for α ∈ 1P . Note that h is a Cartan subalgebra of the reductive
Lie algebra lP . Denote by S(h)WP the WP -invariants in S(h) with respect to the •-action
(here w • λ := w(λ + ρ) − ρ for λ ∈ h∗ and w ∈ W; ρ is the half sum of the positive
roots).

Let Z(l) be the center of U(l) and set Z := Z(g). We have the Harish-Chandra iso-
morphism S(h)WP ∼= Z(l) (thus S(h)W ∼= Z).

Set 1λ := {α ∈ 1 : λ(Hα) = −1} for λ ∈ h∗, where Hα ∈ h is the coroot
corresponding to α. Let χl,λ : Z(l) → C be the character such that Il,λ := Kerχl,λ
annihilates the Verma module Mλ (for U(l)) with highest weight λ. Thus, χl,λ = χl,µ ⇔
µ ∈WP • λ. We have λ = χh,λ and we write χλ := χg,λ and Iλ := Kerχλ.

Let U := U(g) be the enveloping algebra of g and Ũ := U⊗ZS(h) the extended
enveloping algebra; thus Ũ has a natural W-action such that the invariant ring ŨW is
canonically isomorphic to U. Let Uλ := U /(Iλ). We say that:

• λ ∈ h∗ is P -dominant if λ(Hα) /∈ {−2,−3,−4, . . .} for α ∈ 1P ; and λ is dominant if
it is G-dominant.
• λ is P -regular if1λ ⊆ 1P , and regular if it isB-regular, that is, ifw•λ = λ⇒ w = e,

for w ∈W .
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• λ is a P -character if it extends to a character of P ; thus λ is a P -character iff λ is
integral and λ|1P = 0.

Suppose now that λ ∈ h∗ is integral and P -dominant. Then there is an irreducible finite-
dimensional P -representation VP (λ) with highest weight λ. Note that VL(λ) := VP (λ) is
an irreducible representation for L. Of course, dimVP (λ) = 1⇔ λ is a P -character.

The following is well-known:

Lemma 2.1. Let λ ∈ h∗. Then λ is dominant iff χλ+µ 6= χλ for all µ ∈ 3r+ \ {0}.

We also have

Lemma 2.2. Let λ ∈ h∗ be P -regular and dominant. Let µ be a P -character and let V
be the finite-dimensional irreducible representation of g with extremal weight µ. Then for
any weight ψ of V , ψ 6= µ, we have χλ+µ 6= χλ+ψ .

Proof. This is well known for P = B. We reduce to that case as follows: Let g′ be the
semisimple Lie subalgebra of g generated by X±α , α ∈ 1 \1P . Let h′ := g′ ∩ h be the
Cartan subalgebra of g′. The inclusion h′ ↪→ h gives the projection p : h∗ → h′∗. Con-
sider the restriction V |g′ and let V ′ denote the irreducible g′-module with highest weight
p(µ); V ′ is a direct summand in V |g′ . Let 3(V ) denote the set of weights of V . Then
p(3(V )) = 3′(V |g′), the weights of V |g′ . By the assumption that µ is a P -character,
it follows that p(3(V )) is contained in the convex hull 3′(V ′) of 3′(V ′). Since p(λ) is
regular and dominant, it is well known that p(λ + µ) /∈ W ′(p(λ) + 3(V ′)). But then
p(λ+ µ) /∈W ′(p(λ)+3(V ′)). Now W ′ = p(W), so λ+ µ /∈W(λ+3(V )). ut

2.3. Equivariant O-modules and induction

See [Jan83] for details on this material.
Let K be a linear algebraic group and J a closed algebraic subgroup. For X an al-

gebraic variety equipped with a right (or left) action of K we denote by Mod(OX,K)

the category of K-equivariant sheaves of (quasi-coherent) OX-modules. For M in
Mod(OX,K) there is the sheaf (πX/KX∗ M)K on X/K of K-invariant local sections in
the direct image πX/KX∗ M . If the K-action is free and the quotient is nice we have the
equivalence

[π
X/K
X∗ ( )]K : Mod(OX,K)� Mod(OX/K) : π

X/K∗
X .

We denote by 0(K,J ) the global section functor on Mod(OK , J ) that corresponds to
0K/J under the equivalence Mod(OK , J ) ∼= Mod(OK/J ). Then 0(K,J )(M) = MJ for
M ∈ Mod(OK , J ).

Let Rep(K) denote the category of algebraic representations of K . We have O(K) ∈
Rep(K) via (gf )(x) := f (g−1x) for g, x ∈ K and f ∈ O(K). We shall also consider
the left J -action on O(K) given by (kf )(x) := f (xk) for k ∈ J , x ∈ K and f ∈ O(K).
These actions commute.

For V ∈ Rep(J ) we consider the diagonal left J -action on Ṽ := O(K)⊗ V . The left
K-action on O(K) defines a leftK-action on Ṽ that commutes with the J -action, and the
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multiplication map O(K)⊗ Ṽ → Ṽ is K- and J -linear. Thus Ṽ belongs to the category
Mod(K,O(K), J ) of K-J -bi-equivariant O(K)-modules. This gives the functor

p∗ : Rep(J )→ Mod(K,O(K), J ), V 7→ Ṽ

(induced bundle of a representation, p symbolizes projection from K to pt/J ).
Let IndKJ V := Ṽ

J
∈ Rep(K).

We have the factorization IndKJ = ( )
J
◦ p∗. One can show that R( )J ◦ p∗ ∼= RIndKJ

where R( )J and RIndKJ are computed in suitable derived categories. An important for-
mula is the tensor identity

RIndKJ (V ⊗W) ∼= RIndKJ (V )⊗W for V ∈ Rep(J ),W ∈ Rep(K). (2.1)

(In particular RIndKJ (W) ∼= W ⊗ RIndKJ (C) for W ∈ Rep(K) and C the trivial represen-
tations.)

3. Parabolic Springer resolutions

In order to treat sheaves of extended differential operators on parabolic flag varieties in
the next section, we will here gather information about their associated graded objects.
This is encoded in the geometry of the parabolic Grothendieck–Springer resolution.

3.1. Parabolic flag varieties

The parabolic flag variety P has a natural left G-action. There is a bijection between
representations of P and G-equivariant vector bundles on P; a representation V of P
corresponds to the induced bundle G ×P V on P . We denote by O(V ) := OP (V ) the
corresponding locally free sheaf on P , which hence has a left G-equivariant structure.

Let λ ∈ h∗ be a P -character and write O(λ) := O(VP (λ)) for the line-bundle corre-
sponding to the one-dimensional P -representation VP (λ). We have Pic(P) = PicG(P) ∼=
group of P -characters (but note that not all vector bundles on P are G-equivariant). The
ample line bundles O(−µ) are given by P -characters µ such that µ(Hα) > 0 for all
α ∈ 1 \1P .

Next we define the parabolic Grothendieck resolution:

Definition 3.1. g̃P := {(P ′, x) : P ′ ∈ P, x ∈ g∗, x|rP ′ = 0}.

Note that g̃P = G×P (g/rP )∗. Recall that L = LP is the Levi factor of P , U = UP its
unipotent radical and l = lP , r = rP their Lie algebras. We have a commutative square

g̃P l∗/L = h∗/WP

g∗ h∗/W

-

? ?
-

(3.1)
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where the top map sends (P ′, x) to x|lP ′/LP ′ ∈ l∗
P ′
/LP ′ ∼= l∗/L. Note that the last

isomorphism is canonical. (We can call l∗/L the universal coadjoint quotient of the Levi
Lie subalgebra.) This induces a map

πP : g̃P → g∗ ×h∗/W h∗/WP . (3.2)

Lemma 3.2. RπP∗Og̃P = Og∗×h∗/Wh∗/WP
.

Proof. We shall reduce to the well known case of the ordinary Grothendieck resolution
for P = B. It states that

RπB∗Og̃B = Og∗×h∗/Wh∗ . (3.3)

Translating this to the equivariant language yields

RIndGB (S(g/n)) = S(g)⊗S(h)W S(h) (3.4)

where n := [b, b]. To see this, observe first that, since g∗ ×h∗/W h∗ is affine, the equality
(3.3) is, after taking global sections, equivalent to the equality

R0(Og̃B ) = O(g∗ ×h∗/W h∗) = S(g)⊗S(h)W S(h)

of G-modules. Moreover, since the bundle projection p : g̃B → B with fiber (g/n)∗

is affine, p∗ is exact and hence R0(Og̃B ) = R0(p∗(Og̃B )). Under the identification
Mod(OB) = Mod(OG, B), p∗(Og̃B ) corresponds to S(g/n)⊗O(G), so its derived global
sections are given by RIndGB (S(g/n)) as stated. This proves (3.4).

By a similar argument the statement of the lemma is equivalent to proving that

RIndGP (S(g/r)) = S(g)⊗S(h)W S(h)WP . (3.5)

For any M ∈ Mod(B) we have an equality of P -modules

RIndPB (M) = RIndLL∩B(M) (3.6)

where the R-module structure on the RHS is defined by (xf )(g) := g−1xg · f (g) for
f ∈ Mor(L,M)L∩B ∼= IndLL∩B(M), x ∈ U , g ∈ L. Together with the given L-action this
makes the RHS a P -module. In particular we have

RIndPB (S(g/n)) = RIndLL∩B(S(g/n)). (3.7)

We have a decomposition g = rP ⊕ l⊕ r, where rP is the image of r under the Chevalley
involution of g; thus g/n = l/(l ∩ n)⊕ rP . Hence

RIndLL∩B(S(g/n)) = RIndLL∩B(S(l/l ∩ n)⊗ S(rP ))

= RIndLL∩B(S(l/l ∩ n))⊗ S(rP ) = S(g/r)⊗S(h)WP S(h) (3.8)

where the last equality is given by (3.4) applied with G replaced by L, and the second
equality is the tensor identity which applies since S(rP ) is an L-module. Since RIndGB =
RIndGP ◦RIndPB we deduce from (3.4), (3.7) and (3.8) that

S(g)⊗S(h)W S(h) = RIndGP (S(g/r)⊗S(h)WP S(h)) = RIndGP (S(g/r))⊗S(h)WP S(h).

Since S(h) is faithfully flat over S(h)WP , this implies (3.5). ut
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Let P ⊂ Q be two parabolic subgroups. The projection πQ
P : P → Q induces a map

π̃Q
P : g̃P → g̃Q that fits into the following commutative square:

g̃P l∗/L = h∗/WP

g̃Q l∗Q/LQ = h∗/WQ

-

?

π̃Q
P

?
-

(3.9)

With similar arguments to the proof of Lemma 3.2 one can prove

Lemma 3.3. Rπ̃Q
P∗Og̃P = Og̃Q×h∗/WQ

h∗/WP
.

We observe that g̃P is an L-torsor over T ∗P . We set

Definition 3.4. g̃λP = g̃P ×h∗/WP
λ for λ ∈ h∗.

We would like to view g̃λP as the classical Hamiltonian of T ∗(G/R) with respect to the
(right) L-action. We have a moment map µ : T ∗(G/R)→ l∗. Recall that we can take the
Hamiltonian reduction with respect to any subset of l∗ stable under the coadjoint action.
Let Nλ ⊂ l∗ be the preimage of λ/WP ∈ h∗/WP

∼= l∗P /L under the quotient map. Then

T ∗(G/R)//Nλ
L = µ−1(Nλ)/L = g̃λP . (3.10)

Note that we could also reduce with respect to λ ∈ (l∗)L, in which case we would get
twisted cotangent bundles.

4. Extended differential operators on P

In this section we construct the sheaf of extended differential operators on a parabolic flag
manifold and describe its global sections.

4.1. Torsors

Let X be an algebraic variety equipped with a free right action of a linear algebraic
group K and let p : X → X/K be the projection. We assume that X, locally in the
Zariski topology, is of the form Y × K for some variety Y , and p is the first projec-
tion. Such an X is called a K-torsor. We get induced right K-actions on the sheaf DX
of regular differential operators on X and on the direct image sheaf p∗(DX). Denote by
D̃X/K := p∗(DX)K the sheaf on X/K of K-invariant local sections of p∗(DX).

Let k := LieK . The infinitesimal K-action gives algebra homomorphisms ε̂ :
U(k) → DX and ε̃ : U(k) → p∗DX, which are injective since the K-action is free.
It follows from the definition of differentiating a group action that [ε̃(U(k)), D̃X/K ] = 0.

Notice that ε̃(U(k)) * D̃X/K , unless K is abelian, but ε̃(Z(k)) ⊆ D̃X/K . We denote
by ε : Z(k) → D̃X/K the restriction of ε̃ to Z(k). By the discussion above it is a central
embedding.
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Now, since p is locally trivial, we can give a local description of D̃X/K . Let Y × K
be a Zariski open subset of X over which p is trivial. Then DX|Y×K = DY ⊗ DK and
D̃X/K |Y = DY ⊗U(k), where U(k) is identified with the algebra DK

K of right K-invariant
differential operators on K .

Note that ε̃(U(k))|Y×K = 1 ⊗ KDK is the algebra of left K-invariant differential
operators on Y ×K , with respect to the natural left K-action on Y ×K , that are constant
along Y . Since Z(KDK) = Z(DK

K ) we infer that ε is locally given by the embedding

Z(k) ↪→ U(k) ∼= 1⊗ U(k) ↪→ DY ⊗ U(k).

This implies that ε(Z(k)) = Z(D̃X/K).
Denote by Mod(DX,K) the category of weakly equivariant (DX,K)-modules. In

order to simplify the description of this category we assume henceforth that X is quasi-
affine. Its object M is then a left DX-module equipped with an algebraic right action
ρ := {ρU }, where ρU : K → AutCU (M(U))

op are homomorphisms compatible with the
restriction maps in M , for each Zariski open K-invariant subset of X. We require that
DX ⊗ M → M is K-linear (over K-invariant open sets) with respect to the diagonal
K-action on a tensor. (For a general X, ρ must be replaced by a given isomorphism
pr∗M ∼= act∗M satisfying a cocycle condition, where pr and act : X ×K → X are the
projection and the action map, respectively.)

Denote by Mod(DX,K, k) the category of strongly equivariant (DK ,K)-modules. Its
object (M, ρ) is a weakly equivariant (DX,K)-module such that dρ(x)m = ε̂(x)m for
x ∈ k and m ∈ M .

For M ∈ Mod(DX,K) we consider the sheaf (p∗M)K of K-invariant local sections
in p∗M; it has a natural D̃X/K -module structure. Thus we get a functor p∗ whose right
adjoint is p∗ (the pullback in the category of O-modules with its natural equivariant struc-
ture). The following is standard (see [BB93]):

Lemma 4.1. The functors

(i) p∗( )K : Mod(DX,K)� Mod(D̃X/K) : p∗ and
(ii) p∗( )K : Mod(DX,K, k)� Mod(DX/K) : p∗

are mutually inverse equivalences of categories.

4.2. Definition of extended differential operators

On G/R we shall always consider the right L-action (g, h) 7→ gh for g ∈ G and h ∈ L.
Thus, G/R is an L-torsor. We set:

Definition 4.2. D̃P := π
P
G/R∗(DG/R)

L.

By the results of the previous section, locally on P we have D̃P ∼= DP ⊗ U(l), and we
have the central algebra embedding ε : Z(l)→ D̃P .

For λ ∈ h∗ we define:

Definition 4.3. Dλ
P := D̃P ⊗ε(Z(l)) Cλ.



2772 Erik Backelin, Kobi Kremnizer

4.3. Equivariant description

For any Z(l)-algebra S and λ ∈ h∗ let Mod̂λ(S) be the category of left S-modules which
are locally annihilated by some power of Il,λ.

We shall give equivariant descriptions on G and on G/R of the category Mod(D̃P )

and its subcategories Mod(Dλ
P ) and Mod̂λ(D̃P ). It is best to work on G. We start with

G/R as an intermediate step.
By Lemma 4.1 we have mutually inverse equivalences

πP
G/R∗( )

L
: Mod(DG/R, L)� Mod(D̃P ) : π

P∗
G/R. (4.1)

Differentiating the right L-action on G/R gives an algebra embedding U(l) ↪→ DG/R .
This allows us to consider Z(l) ⊆ U(l) as a subalgebra of DG/R . Transporting con-
ditions from the right hand side to the left hand side of (4.1) we see that Mod(Dλ

P )
is equivalent to the full subcategory Mod(DG/R, L, λ) of Mod(DG/R, L) whose ob-
jects M satisfy Il,λ · ML

= 0. Similarly, Mod̂λ(D̃P ) is equivalent to the full subcate-
gory Mod(DG/R, L, λ̂) of Mod(DG/R, L) whose objects M are such that Il,λ is locally
nilpotent on ML.

Now we pass to G. Let us introduce some notation. We have left and right actions µl
and µr of G on O(G) defined by µl(g)f (h) := f (g−1h) and µr(g)f (h) := f (hg−1)

for f ∈ O(G) and g, h ∈ G. Differentiating µl , resp., µr , gives an injective algebra
homomorphism εl : U→ DG, resp., an anti-homomorphism εr : U→ DG. We see that
εl(U) = DG

G consists of right invariant differential operators on G, and εr(U) = GDG
consists of left invariant differential operators on G; moreover Z = εl(U) ∩ εr(U) and
εl |Z = εr |Z.

The actions µl and µr induce left and right actions of G on DG that we denote by the
same symbols.

Let Mod(DG, P , r) be the category whose objects are (M,ρ) where

(1) M is a left DG-module.
(2) ρ is a right algebraic P -action onM such that DG⊗M → M is P -linear, with respect

to the right P -action µr |P on DG and the diagonal P -action on the tensor product.
(3) dρ|r = εr |r on M .

In particular, by (3) the action εr |r is integrable, i.e. this r-action is locally nilpotent. By
(4.1) and Lemma 4.1(ii) (applied to X = G and K = R) we have an equivalence

πP
G∗( )

P
: Mod(DG, P , r)� Mod(D̃P ) : π

P∗
G . (4.2)

Note that the functor on the left hand side (that corresponds to) the global section functor
is the functor of taking P -invariants.

Let M̃P := U /U ·r be a sort of “P -universal” Verma module for U, and equip it with
the P -action that is induced from the right adjoint action of P on U. Note that the object
OG ⊗ εr(M̃P ) ∈ Mod(DG, P , r) represents global sections and therefore corresponds to
D̃P ∈ Mod(D̃P ).
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Our next task is to describe the (full) subcategories Mod(DG, P , r, λ) and
Mod(DG, P , r, λ̂) of Mod(DG, P , r) corresponding to the subcategories Mod(Dλ

P ) and

Mod̂λ(D̃P ) of Mod(D̃P ), respectively.
Let us consider the smash product DG ∗ U(l) with respect to the adjoint action of l

on g. Thus, DG ∗U(l) = DG ⊗U(l) as a vector space and its (associative) multiplication
is defined by

y ⊗ x · y′ ⊗ x′ := y[εr(x), y
′
] ⊗ x′ + yy′ ⊗ xx′, x ∈ l, x′ ∈ U(l), y, y′ ∈ DG.

Observe that a (DG, L)-module is the same thing as a DG ∗ U(l)-module on which the
action of 1 ⊗ l is integrable (i.e. it is the differential of the given L-action). We have an
algebra isomorphism

DG⊗U(l)
∼
→ DG ∗U(l), y⊗1 7→ y⊗1, 1⊗x 7→ 1⊗x−εr(x)⊗1, y ∈ DG, x ∈ l.

This restricts to the algebra homomorphism

αl : U(l)→ DG ∗ U(l), 1⊗ x 7→ 1⊗ x − εr(x)⊗ 1, x ∈ l. (4.3)

Note that the algebra anti-isomorphism ∗ : U(l)
∼
→ U(l), x 7→ −x for x ∈ l, restricts to

an isomorphism ∗ : Z(l)
∼
→ Z(l).

Proposition 4.4. (i) Let M ∈ Mod(D̃P ) and z ∈ Z(l). Then εl(z) ∈ Z(l) = Z(D̃P ) de-
fines a morphism εl(z) : M → M . By functoriality we get a morphism πP∗

G (εl(z)) :

πP∗
G (M)→ πP∗

G (M). We have πP∗
G (εl(z)) = αl(z

∗)|πP∗
G (M).

(ii) Let M ∈ Mod(DG, P , r). Then M ∈ Mod(DG, P , r, λ) iff

(4) (αl(z
∗)− χl,λ(z))m = 0 for m ∈ M and z ∈ Z(l).

(iii) Let M ∈ Mod(DG, P , r). Then M ∈ Mod(DG, P , r, λ̂) iff

(̂4) αl(z)− χl,λ(z) is locally nilpotent on M for z ∈ Z(l).

Proof. (i) We have πP∗
G (M) = OG ⊗πP−1

G (OP )
πP−1
G (M). Let f ∈ OG and m ∈

πP−1
G (M). Then for x ∈ l we have dρ(x)m = 0, and consequently

αl(−x)(f ⊗m) = (εr(x)− dρ(x))(f ⊗m) = f ⊗ εr(x)m.

Since αl is an algebra homomorphism, for z ∈ Z(l) we get

αl(z
∗)(f ⊗m) = f ⊗ εr(z)m = π

P∗
G (εl(z))(f ⊗m).

This proves (i); (ii) follows from (i); and (iii) is similar to (ii) and left to the reader. ut

Let MP,λ := U /U ·(r + Kerχl,λ) be a left U-module equipped with the right P -action
that is induced from the adjoint action of P on U. Note that the object OG⊗ εr(MP,λ) of
Mod(DG, P , r, λ) represents global sections (= taking P -invariants) and therefore corre-
sponds to Dλ

P ∈ Mod(Dλ
P ).
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Remark 4.5. Note that when l = h condition (4) becomes the traditional condition of
[BB93]: εr(x)m− dρ(x)m = λ(x)m for x ∈ h and m ∈ M .

Remark 4.6. Assume that M ∈ Mod(DG, P , r). Then condition (4) holds for M iff

(4′) (εr(z)− χl,λ(z))m = 0 for m ∈ ML and z ∈ Z(l).

(Because (4′) is obviously equivalent to (πP
G∗M)

L
∈ Mod(Dλ

P ).)
If we consider ML as a sheaf on G/L, its global sections equal 0G(M)L, where

0G(M) is the O(G)-module corresponding to the OG-module M . Since L is reductive,
G/L is affine [Mat60], and therefore we may replace ML by 0G(M)L in (4′).

However, condition (4) is better to work with than (4′), particularly while considering
modules with an additional equivariance condition from the left side (see Section 7).

Example 4.7. Let us consider the simplest case when P = G. Then r = 0 and we write
Mod(DG,G, λ) := Mod(DG,G, rG, λ) for simplicity.

The equivalence Mod(C) ∼= Mod(OG,G), V 7→ OG⊗V , induces for any λ ∈ h∗ the
equivalence Mod(Uλ) ∼= Mod(DG,G, λ) given by V 7→ OG⊗V where (OG⊗V )

G
= V

is a left module for εl(U)λ (and similarly with χλ replaced by χ̂λ).

Example 4.8. Let P = B. Let λ ∈ h∗ and let Mλ be the Verma module for εr(U) with
highest weight λ. Let µ ∈ h∗ be integral. Consider the algebraic B-action ρ onMλ which
after differentiation satisfies

dρ(x)m = (x − λ(x)+ µ(x))m, m ∈ Mλ, x ∈ b.

Denote by Mλ,µ the Verma module Mλ equipped with this B-action. Then

OG ⊗Mλ,µ ∈ Mod(DG, B, n, λ− µ).

For µ = 0 we have mentioned that the functor HomMod(DG,B,n,λ)(OG ⊗ Mλ,0, ) is
naturally equivalent to the global section functor on Mod(DG, B, n, λ), so that we have
OG ⊗Mλ,0 ∼= π

G∗
B Dλ

B. This implies

EndMod(DG,B,n,λ)(OG ⊗Mλ) = 0(Dλ
B) = Uλ . (4.4)

To get an idea of a general OG ⊗Mλ,µ assume for instance that µ ≥ 0. Then there is an
injective map

f : OG ⊗Mλ,µ→ OG ⊗Mλ−µ,0. (4.5)

By the Peter–Weyl theorem OG
∼=

⊕
φ∈3+

V ∗G(φ) ⊗ VG(φ) as a G-bimodule. Let
vφ ∈ VG(φ) be a highest weight vector. Let 1λ and 1λ−µ be highest weight vectors in
Mλ,µ andMλ−µ,0, respectively. We can define f by f (1⊗1λ) := (v⊗vµ)⊗1λ−µ where
v ∈ V ∗G(µ) is any non-zero vector. Then f is injective since both sides of (4.5) are free
over the integral domain OG ⊗ εr(U(n−)). Note that f is not an isomorphism (and the
two objects of (4.5) must be non-isomorphic) unless µ = 0.
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4.4. Global sections

The leftG-action onG/R, (g, g′) 7→ gg′, commutes with the rightL-action and therefore
induces a homomorphism U → D̃P . There is also the map ε : S(h)WP = Z(l) → D̃P .
These maps agree on S(h)W and hence induce a map

ŨWP = U⊗ZS(h)
WP → D̃P .

This induces a homomorphism Uλ = ŨWP /(Il,λ)→ Dλ
P .

Consider the sheaf of algebras OP ⊗U on P with multiplication determined by those
in OP and in U and by the requirement that [A, f ] = ε(A)(f ) for A ∈ g and f ∈ OP .
Then we have a surjective algebra homomorphism η : OP ⊗ U→ D̃P . Its kernel is the
ideal generated by ξ ∈ OP ⊗ r, ξ(x) ∈ px for x ∈ P and px ⊆ g the corresponding
parabolic subalgebra.

Hence, to define a D̃P -module structure on an OP -module M is the same thing
as defining a U-module structure on M such that Ker η vanishes on M and A(fm) =
f (Am)+ ε(A)(f )m for A ∈ g, f ∈ OP and m ∈ M .

Let µ ∈ h∗ be integral and P -dominant. Recall that VP (µ) denotes the corresponding
irreducible representation of P with highest weight µ, and O(VP (µ)) the corresponding
left G-equivariant locally free sheaf on P .

Let M ∈ Mod(D̃P ). We shall show that the OP -module M ⊗OP O(VP (µ)) is natu-
rally a D̃P -module. We proceed as follows:

TheG-action on O(VP (µ)) differentiates to a left g-action on it, which extends to a g-
action on M ⊗OP O(VP (µ)) by Leibniz’s rule. Since VP (µ) is an irreducible P -module
we know that R acts trivially on it (recall VP (µ) = VL(µ)). Hence, r acts trivially on
O(VP (µ)) and from this it now follows that the compatibilities for being a D̃P -module
are satisfied by M ⊗OP O(VP (µ)).

Assume that M ∈ Mod(D̃P ). In the equivariant language on G we see that M
and M ⊗OP O(VP (µ)) correspond to πP∗

G M and MVP (µ) := (πP∗
G M) ⊗ VP (µ) ∈

Mod(DG, P , r), respectively. Here, the DG-action on MVP (µ) is given by the action on
the first factor, and the P -action is diagonal. Again, it is the fact that R acts trivially on
VP (µ) that shows that MVP (µ) is an object of Mod(DG, L, r).

Lemma 4.9. Let λ ∈ h∗, M ∈ Mod(Dλ
P ) and let µ ∈ h∗ be integral and P -dominant.

ThenM⊗OP O(VP (µ)) ∈
⊕

ν∈3(VP (µ))
Modλ̂+ν(D̃P ), where3(VP (µ)) denotes the set

of weights of VP (µ).

Proof. In equivariant translation we want to prove that

MVP (µ) ∈

⊕
ν∈3(VP (µ))

Mod(DG, P , r, λ̂+ ν). (4.6)

We use Proposition 4.4(i). We have an action α̃l : U(l) → End(MVP (µ)). We see that
this action is actually the tensor product of the α̃l-action of U(l) on πP∗

G M and the U(l)-
action on VP (µ), which is the differential of the given L-action. Now, since for z ∈ Z(l),
by assumption αl(z) = α̃l(z) acts by χl,λ(z) on πP∗

G M , it follows from [BeGe81] that
(4.6) holds. ut
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Theorem 4.10. (i) RπP
B ∗D̃B = D̃P ⊗Z(l) S(h),

(ii) RπQ
P ∗D̃P = D̃Q ⊗Z(lQ) S(h)

WP ,
(iii) R0(D̃P ) = ŨWP ,
(iv) R0(Dλ

P ) = Uλ.

Proof. By Lemmas 3.2 and 3.3 the associated graded maps (i) and (ii) are isomorphisms;
hence (i) and (ii) are also isomorphisms. (iii) is a special case of (ii), and (iv) follows
from (iii) because R0 commutes with ( )⊗Z(l)Cλ, since D̃P is locally free over Z(l). ut

The functor 0 : Mod(Dλ
P ) → Mod(Uλ) has a left adjoint L := Dλ

P ⊗Uλ ( ), called

the localization functor. Also 0 : Mod̂λ(D̃P ) → Mod̂λ(U) has a left adjoint L :=
lim
←−

nDP/(Iλ)n ⊗U ( ).

5. Singular localization

Here we prove the singular version of Beilinson–Bernstein localization.

Theorem 5.1. Let λ be dominant and P -regular. Then 0 : Mod(Dλ
P )→ Mod(Uλ) is an

equivalence of categories.

Proof (essentially taken from [BB81]). Since 0 has a left adjoint L which is right exact
and since 0 ◦ L(Uλ) = 0(Dλ

P ) = Uλ, the theorem will follow from the following two
claims:

(a) Let λ be dominant. Then 0 : Mod(Dλ
P )→ Mod(Uλ) is exact.

(b) Let λ be dominant and P -regular and M ∈ Mod(Dλ
P ). Then 0(M) = 0 implies that

M = 0.

Let V be a finite-dimensional irreducible G-module and let

0 = V−1 ⊂ V0 ⊂ · · · ⊂ Vn = V

be a filtration of V by P -submodules such that Vi/Vi−1 ∼= VP (µi) is an irreducible
P -module.

We first choose V so that its highest weight µ0 is a P -character. ThusM⊗OO(V0) =

M(−µ0) and we get an embedding M(−µ0) ↪→ M ⊗O O(V ), which twists to the em-
bedding M ↪→ M(µ0) ⊗O O(V ) ∼= M(µ0)

dimV . Now, by Lemmas 2.1, 4.9 and Theo-
rem 4.10(iii), this inclusion splits on derived global sections, so R0(M) is a direct sum-
mand of R0(M(µ0))

dimV . Now, for µ0 large enough and if M is O-coherent, we have
R>00(M(µ0)) = 0 (since O(µ0) is very ample). Hence, R>00(M) = 0 in this case.
A general M is the union of coherent submodules and by a standard limit argument it
follows that R>00(M) = 0. This proves (a).

Now, for (b) we assume instead that the lowest weight µn of V is a P -character. Then
we have a surjection MdimV ∼= M ⊗O O(V ) → M(−µn). Applying global sections
and using Lemmas 2.2, 4.9 and Theorem 4.10(iv) we find that 0(M(−µn)) is a direct
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summand of 0(M)dimV . Forµn small enough we conclude that 0(M(−µn)) 6= 0. Hence,
0(M) 6= 0. This proves (b). ut

Assume that λ is P -regular. Then the projection h∗/WP → h∗/W is unramified at λ,
from which one deduces (see [BG99]) that restriction defines an equivalence of categories
Mod̂λ(ŨWP )

∼
→ Mod̂λ(U).

Theorem 5.2. Let λ be dominant and P -regular. Then 0 : Mod̂λ(D̃P )→ Mod̂λ(ŨWP )
∼= Mod̂λ(U) is an equivalence of categories.
Proof. This follows from Theorem 5.1 and a simple devissage. ut

6. Translation functors

We geometrically describe translation functors on g-modules in the context of singular
localization. For regular localization this was worked out in [BG99]. Singular localization
clarifies the picture.

6.1. Translation functors

Let A be a Z(l)-algebra (or a sheaf of algebras). Let ModZ(l)-fin(A) be the category of
(quasi-coherent) A-modules that are locally finite over Z(l). Thus we have ModZ(l)-fin(A)

=
⊕

µ∈h∗ Mod̂λ(A) and there are exact projections prl,µ̂ : ModZ(l)-fin(A)→ Modµ̂(A).
Assume λ,µ ∈ h∗ with λ − µ integral. Then there is the translation functor (see

[BeGe81])
T
µ

l,λ : Mod̂λ(U(l))→ Modµ̂(U(l)), M 7→ prl,µ̂(M ⊗ E),

where E is an irreducible finite-dimensional representation of l with extremal weight
µ− λ. We set prµ̂ := prg,µ̂ and T µλ := T

µ
g,λ in the case g = l.

Assume that l is the Levi factor of the Lie algebra of a parabolic subgroupQ ⊆ G and
that P ⊆ Q is another parabolic. We assume henceforth that λ,µ ∈ h∗ are weights such
that µ − λ is integral, WP = Wλ and WQ = Wµ. Then we have the algebra inclusion
S(h)WQ ∼= Z(l) ↪→ S(h)WP , which induces an algebra inclusion A ↪→ A⊗Z(l) S(h)

WP .

Lemma 6.1. The inclusion A ↪→ A⊗Z(l) S(h)
WP induces an equivalence of categories

Res : Mod̂λ(A⊗Z(l) S(h)
WP )→ Mod̂λ(A).

Proof. Since λ is P -regular, h∗/WP → h∗/WQ is unramified at λ. The argument of the
proof in [BG99, Lemma 1.2], where the assertion is proved in the case A = U , works
also for A. ut

The functor T µl,λ can be extended to a functor

T̃
µ

l,λ : Mod̂λ(U(l)⊗Z(l) S(h)
WP )→ Modµ̂(U(l)⊗Z(l) S(h)

WP ). (6.1)

We briefly describe its construction here (see [BG99, Proposition 1.4] for details). Let
V ∈ Mod̂λ(U(l) ⊗Z(l) S(h)

WP ). Then a ∈ S(h)WP ⊂ U(l) ⊗Z(l) S(h)
WP ) acts on

T
µ

l,λ(Res(V )) by

a ∗m := T
µ

l,λ(πµ−λa)(m), m ∈ T
µ

l,λ(Res(V )),
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where πµ−λ : S(h)
∼
→ S(h) is induced by the affine translation x 7→ x + µ − λ on h∗.

Combining this with theU(l)-action on T µl,λ(Res(V ))we get an action of U(l)⊗CS(h)WP

on T µl,λ(Res(V )) which factors through a U(l)⊗U(l) S(h)
WP -action. We define T̃ µl,λ(V ) to

be T µl,λ(Res(V )) equipped with this U(l)⊗U(l) S(h)
WP -action.

We shall now give a D-module interpretation of these functors. We use the language
of D̃P -modules; it is a simple task to pass to an equivariant description on G. Define a
geometric translation functor

TµP,λ : Mod̂λ(D̃P )→ Modµ̂(D̃P ), M 7→ prl,µ̂(M ⊗OP O(E)),

for M ∈ Mod̂λ(D̃P ), where E is an irreducible P -representation with highest weight in
WP (µ− λ).

Note that if µ−λ is a P -character then OP (E) = OP (µ−λ) and in this case TµP,λ =
( )⊗OP O(µ− λ) is an equivalence with inverse given by TλP,ν = ( )⊗OP O(λ−µ). In
particular, for P = B we have TµB,λ = ( )⊗OB O(µ− λ) for any µ and λ.

Let us denote D̃Q,P := D̃Q ⊗Z(lQ) S(h)
WP . This gives the category Mod̂λ(D̃Q,P ).

By Theorem 4.10 we have πQ
P∗D̃P ∼= D̃Q,P and 0(D̃Q,P ) ∼= 0(D̃P ) ∼= ŨWP .

By the same reasoning as in (6.1) the functor TµQ,λ extends to T̃µQ,λ : Mod̂λ(D̃Q,P )→

Modµ̂(D̃Q,P ). We have

Lemma 6.2. The diagram

Mod̂λ(D̃P ) Modµ̂(D̃P )

Mod̂λ(D̃Q,P ) Modµ̂(D̃Q,P )

-
TµP,λ

?

πQ
P∗

?

πQ
P∗

-
T̃µQ,λ

of exact functors commutes up to natural equivalence.

In the case of P = B and Q = G this was proved in [BG99, Proposition 2.8].
Proof. Let V (resp., V ′) be an irreducible finite-dimensional representation for Q (resp.,
for P ) whose highest weight belongs to WQ(µ − λ) (resp., WP (µ − λ)). Let M ∈
Mod̂λ(D̃P ). Then, since V is a Q-representation, we have OP (V ) = πQ∗

P (OQ(V )),
and therefore it follows from the projection formula that

πQ
P∗(OP (V )⊗OP M) = OQ(V )⊗OQ π

Q
P∗(M).

Thus we get

T̃µQ,λ ◦ π
Q
P∗(M) = prlQ,µ̂(OQ(V )⊗OQ π

Q
P∗(M))

= prlQ,µ̂(π
Q
P∗(OP (V )⊗OP M)) = π

Q
P∗(prl,µ̂(OP (V )⊗OP M))

(∗)
= πQ

P∗(prl,µ̂(OP (V
′)⊗OP M)) = π

Q
P∗ ◦ T̃

µ

P,λ(M).
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The equality (∗) follows from Lemma 2.2 applied to the reductive Lie algebra lQ and its
parabolic subalgebra lQ ∩ p (compare with the proof of the localization theorem). ut

Let us geometrically describe translation to the wall: We assume that λ and µ are dom-
inant and chosen such that µ − λ is a P -character. . By Theorem 5.2 and Lemma 6.2 it
follows that the diagram below commutes up to natural equivalence:

Mod̂λ(ŨWP ) Mod̂λ(D̃P )

Mod̂λ(D̃Q,P ) Modµ̂(D̃P )

Modµ̂(ŨWP ) Modµ̂(D̃Q,P )
?

(4) T µλ

�(1) 0

?

(3) πQ
P∗

Q
Q
Q
Q
Q
Qs

(2) TµP,λ

?

(5) T̃µQ,λ

�
�

�
�

�
�+

(7) πQ
P∗

�(6) 0

(6.2)

Note that (1) and (6) are equivalences by the choices of P and Q, and (2) = ( ) ⊗OP
O(µ− λ) is an equivalence since µ− λ is a P -character.

We see that (3) is an equivalence of categories because both the source and the target
categories are D-affine, since λ is P - andQ-regular, and 0 ◦πQ

P∗ = 0. On the other hand,
the functor (7) is not faithful, because µ is not P -regular, and (5) is not faithful either.
We recall that these functors are all exact.

Translation out of the wall can now be described by considering adjoint functors to the
functors involved in (6.2). For example the adjoint (left and right) of Tµl,λ is T λl,µ, and the

left adjoint of (7) is πQ∗
P . To describe the (in general non-exact) adjoints of the extended

translation functors we refer to [BG99, Proposition 1.5 and surrounding discussion]. We
do not write down the details here.

7. Category O and Harish-Chandra (bi-)modules

Singular localization allows us to interpret blocks of category O as bi-equivariant
DG-modules which in turn are equivalent to categories of Harish-Chandra (bi-)modules.
As we mentioned in the introduction, the novelty here is that we are led to consider
g-l-bimodules, which we believe is a better notion. Parabolic (and singular) blocks of O
are discussed in Section 8.2.

The material here is related to Section 6 because translation functors restrict to func-
tors between blocks in O.

7.1. Category O and generalized twisted Harish-Chandra modules

See [Hum08] for generalities on category O and [Dix77] for generalities on Harish-
Chandra modules.
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We are interested in the Bernstein–Gelfand–Gefand category O of finitely generated
left U-modules which are locally finite over U(n) and semisimple over h. For λ ∈ h∗

we let Oλ,Oλ̂ ⊂ O be the subcategories of modules with central character, respectively,
generalized central character, χλ.

Generalized twisted Harish-Chandra modules. Let K ⊂ G be a subgroup and let k :=
LieK be its Lie algebra. A weak Harish-Chandra (K,U)-module (or simply a (K,U)-
module) is a left U-module M equipped with an algebraic left action of K such that the
action map U⊗M → M is K-equivariant with respect to the adjoint action of K on U.
A Harish-Chandra (K,U)-module (or simply a (k,K,U)-module) is a weak Harish-
Chandra module such that the differential of the K-action coincides with the action of
k ⊂ U.

Similarly, there are (K,Uλ)-modules and (k,K,Uλ)-modules, for λ ∈ h∗.
Let µ ∈ K∗. A µ-twisted Harish-Chandra module is a (K,U)-module M on which

the action of k ⊂ U minus the differential of the K-action is equal to µ.
We shall now give certain generalizations of twisted Harish-Chandra modules in the

case when K = P . Consider the smash-product algebra U ∗U(l) with respect to the
adjoint action of l on U. Observe that an (L,U)-module is the same thing as a U ∗U(l)-
module on which 1 ⊗ l acts semisimply, and 1 ⊗ Hα has integral eigenvalues for each
simple coroot Hα . The algebra anti-homomorphism U(l) → U ∗U(l) defined by x 7→
x ⊗ 1− 1⊗ x for x ∈ l restricts to a homomorphism

αl : Z(l)→ Z(U(g) ∗ U(l)). (7.1)

(Compare with the map αl(z∗) from (4.3).) We define Mod(̂λ, r, P ,Uλ
′

) to be the cate-
gory of (P,Uλ

′

)-modules M such that, if ρ denotes the P -action on M , then dρ|r co-
incides with the action of r ⊂ Uλ

′

on M and for z ∈ Z(l), αl(z) − χl,λ(z) acts locally
nilpotently on M .

Similarly, one defines categories Mod̂λ
′

(̂λ, r, P ,U) and Mod(λ, r, P ,Uλ
′

), etc.
We see that if λ, λ′ ∈ h∗ and λ− λ′ is integral then

Oλ = mod(λ′, n, B,Uλ) and Oλ̂ = mod̂λ(λ′, n, B,U)

are (non-generalized) categories of twisted Harish-Chandra modules. For P 6= B we like
to think of mod(̂λ, r, P ,Uλ

′

) and mod(λ, r, P ,Uλ
′

) as “non-standard parabolic blocks
in O”, although, in reality, they are not even subcategories of O, since the b-action is not
locally finite.

7.2. Harish-Chandra modules to bimodules

The categories of the previous section can be described in terms of Harish-Chandra bi-
modules [BeGe81]. Let H̃(l) be the category of U-U(l)-bimodules on which the adjoint
action of l is integrable and the left action of r is locally nilpotent. Write H̃ := H̃(g)
and replacing g by l write H̃(l, l) for the category of U(l)-U(l)-bimodules on which the
adjoint l-action is integrable.
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Let H(l) ⊂ H̃(l) be the subcategory of noetherian objects. Note that for M ∈ H̃(l)
we have M ∈ H(l)⇔ M is f.g. as a U-U(l)-bimodule⇔ M is f.g. as a left U-module
(and in case l = g this holds if and only if M is f.g. as a right U-module). Set

Z-finH(l) := {M ∈ H(l) : Z acts locally finitely on M from the left},
H(l)Z(l)-fin := {M ∈ H(l) : Z(l) acts locally finitely on M from the right},

Z-finH(l)Z(l)-fin := Z-finH(l) ∩H(l)Z(l)-fin.

Observe that
Z-finH = HZ-fin = Z-finHZ-fin. (7.2)

We set λ′H(l) := {M ∈ H(l) : Iλ′M = 0}, H(l)λ := {M ∈ H(l) : MIl,λ = 0}
and µ̂H(l) := {M ∈ H(l) : Iλ′ acts locally nilpotently on M}, etc. Similarly, we define
λ′H(l)̂λ := λ′H(l) ∩H(l)̂λ, H̃(l)λ, etc.

Lemma 7.1. Mod(λ, r, P ,Uλ
′

) ∼= λ′H(l)λ and Mod(̂λ, r, P ,Uλ
′

) ∼= λ′H(l)̂λ.

Proof. A (P,Uλ
′

)-module is the same thing as a Uλ
′

∗U(p)-module such that 1⊗ p acts
integrably. Under the algebra isomorphism

Uλ
′

∗U(p)
∼
→ Uλ

′

⊗U(p), 1⊗ x 7→ 1⊗ x + x ⊗ 1, y ⊗ 1 7→ y ⊗ 1,

the latter modules are equivalent to the category of Uλ
′

⊗U(p)-modules on which the
action of 1p is integrable, where 1 : p→ Uλ

′

⊗U(p) is given by 1x := x ⊗ 1+ 1⊗ x.
The 1p-integrability is equivalent to 1l-integrability and that 1r acts locally nilpo-

tently. Thus Mod(r, P ,Uλ
′

) is equivalent to the category of Uλ
′

⊗U(l)-modules such
that the action of 1l is integrable and r ⊂ Uλ

′

acts nilpotently. Thus, using the princi-
pal anti-involution of l to identify Uλ

′

⊗U(l)-modules with Uλ
′

-U(l)-bimodules, we get
Mod(r, P ,Uλ

′

) ∼= λ′H(l). From this one deduces the lemma. ut

7.3. Bi-equivariant D-modules and category O

We want to describe blocks in category O in terms of bi-equivariant DG-modules. Let
λ ∈ h∗. Throughout this section we assume that λ′ ∈ h∗ is a regular dominant weight
such that λ− λ′ is integral.

Denote by Mod(λ′, n, B,DG, P , r, λ̂) the full subcategory of Mod(DG, P , r, λ̂)
whose object M satisfies (1)–(3), (̂4) from Section 4.2 and is in addition equipped with a
left B-action τ : B → Aut(M) that commutes with ρ : P → Aut(M)op and satisfies

(5) dτ(x)m = (εl(x)− λ′(x))m for m ∈ M and x ∈ b.

(Strictly speaking, Mod(λ′, n, B,DG, P , r, λ̂) is obtained from Mod(DG, P , r, λ̂) by
adding a B-action, but since this B-action is determined by its differential, the former
identifies with a subcategory of the latter.)

Lemma 7.2. Assume that λ is P -regular. Then mod(λ′, n, B,DG, P , r, λ̂) ∼= Oλ̂.
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Proof. We recall that since λ is P -regular, restriction defines an equivalence of categories
res : Mod̂λ(ŨWP )

∼
→ Mod̂λ(U). Now (̂4), the two lines preceding it and Theorem 5.2

give the equivalence

Mod(DG, P , r, λ̂) ∼= Mod̂λ(U), V 7→ res(V P ).

From this we deduce that the full subcategory Oλ̂ = mod̂λ(λ′, n, B,U) of Mod̂λ(U) is
equivalent to mod(λ′, n, B,DG, P , r, λ̂). ut

By using the inversion on G, left B-action and right P -action become right B-action
and left P -action, so mod(λ′, n, B,DG, P , r, λ̂) is equivalent to a full subcategory of
Mod(DG, B, n, λ′) that we denote by

mod(̂λ, r, P ,DG, B, n, λ′) (7.3)

and whose definition is obvious. Since λ′ is dominant and regular we deduce from Beilin-
son–Bernstein localization that Mod(DG, B, n, λ′) ∼= Mod(Uλ

′

). This induces an equiv-
alence between (7.3) and mod(̂λ, r, P ,Uλ

′

). (This is not the parabolic-singular Koszul
duality of [BGS96].)

Similarly, if we do not pass to global sections on B, we find that (7.3) is equivalent to
the category mod(̂λ, r, P ,Dλ′

B ), whose definition is also obvious.
Summarizing we get

Proposition 7.3. Oλ̂ ∼= mod(̂λ, r, P ,Uλ
′

) ∼= mod(̂λ, r, P ,Dλ′

B ) for λ dominant and
P -regular.

Thus, by Lemma 7.1 we obtain

Corollary 7.4. Oλ̂ ∼= λ′H(l)̂λ.

Similarly, one shows that Oλ ∼= mod(λ, r, P ,Uλ
′

) ∼= mod(λ, r, P ,Dλ′

B )
∼= λ′H(l)λ.

Example 7.5. Let P = B and let λ ∈ h∗ be regular and dominant. Then Oλ̂ ∼=
mod(̂λ, n, B,Uλ

′

), which is the category of left Uλ
′

-modules which are locally finite over
b (so the h-action need not be semisimple). This equivalence was first established in
[Soe86].

Example 7.6. Let P = G and let λ ∈ h∗ be any weight. Since rG = 0 we write for
simplicity Mod(̂λ,G,Uλ

′

) := Mod(̂λ, rG,G,Uλ
′

). Set O
λ̂+3
:=

⊕
µ∈3 O

λ̂+µ
. Then we

have
Oλ̂

∼
→ mod(̂λ,G,Uλ

′

) and O
λ̂+3

∼
→ mod(G,Uλ

′

),

both given by V 7→ (OG ⊗ V )
B . Thus Oλ̂ ∼= λ′Hλ̂. See [BeGe81], [Soe86].

Remark 7.7. mod(̂λ, r, P ,Dλ′

B ) does not consist of holonomic D-modules, unless P=B.
For instance, if λ = −ρ, P = G and λ′ = 0, then O−̂ρ consists of direct sums of copies
of the simple Verma module M−ρ . To M−ρ corresponds a non-holonomic submodule of
the DB-module DB (see (4.5)).
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8. Whittaker modules

Let f : U(n) → C be an algebra homomorphism, 1f := {α ∈ 1 : f (Xα) 6= 0}
and Jf := Ker f . Let Ñf := Ñ(g)f be the category of left U-modules on which Jf
acts locally nilpotently, and let Nf be its subcategory of modules which are f.g. over U.
Objects of Nf are called Whittaker modules. Replacing g by l and f by f |U(n∩l) we get
the category Nf (l). For regular f , i.e. when 1f = 1, it was studied by Kostant [K78];
he showed that Nf has the exceptionally simple description

Mod(Z)
∼
→ Nf , M 7→ M ⊗Z U /U ·Jf . (8.1)

At the other extreme, when f = 0, Nf is O with the h-semisimplicity condition dropped
and it has the same simple objects as O.

Our main result here is a new proof of Theorem 8.1 of [MS97]. It enables one to
compute the characters of standard Whittaker modules by means of the Kazhdan–Lusztig
conjectures. (For non-integral weights they were computed in [B97].)

Throughout this section we assume λ ∈ h∗ and 1P = 1f = 1λ.

8.1. Equivalence between a block of Nf and of singular O

Fix a character f : U(n)→ C. For µ ∈ h∗ we set

µNf := {M ∈ Nf : IµM = 0}, µ̂Nf := {M ∈ Nf : Iµ acts locally nilpotently on M}.

(The categories µÑf and µ̂Ñf are defined similarly.) Our aim is to prove

Theorem 8.1. Assume that λ, λ′ ∈ 3 are such that1f = 1λ and λ′ is regular dominant.
Then Oλ̂ ∼= λ′Nf .

Before proving this we establish some preliminary results.

Lemma 8.2. (i) For any µ, λ ∈ h∗ with µ dominant and such that Wµ ⊆ Wλ, µHλ̂

identifies with a finite length subcategory of Oλ̂ which is non-zero iff λ−µ is integral
(analogous statements hold with µ and/or λ replaced by µ̂ and/or λ̂).

(ii) µH−̂ρ ∼= mod(C) and µH̃−̂ρ ∼= Mod(C), for µ integral.
(iii) HZ-fin is a finite length category.

Proof. That µHλ̂ = 0 if µ − λ is not integral is a consequence of the fact that every
G-module is a sum of G-modules with integral central characters.

On the other hand, let µ − λ be integral and E be an irreducible G-module with
extremal weightµ−λ. ForM ∈ Hλ we haveE⊗M ∈ Hλ with respect to the diagonal left
U-action and the right U-action on the second factor. Thus, T µλ M = prµ̂(E⊗M) ∈ µ̂Hλ

(and similarly with λ replaced by λ̂).
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Now Uλ ∈ λHλ with its natural bimodule structure. Since Wµ ⊆Wλ it is known that
T
µ
λ is faithful. Hence 0 6= T µλ (U

λ) ∈ µ̂Hλ. Thus, also µHλ and µHλ̂ are non-zero. We
have

µHλ̂
∼= mod(λ,G,Uµ)

L
→ mod(λ,G,DG, B, µ)

∼= mod(µ, B,DG,G, λ̂) ∼= mod̂λ(µ, B,U) = Oλ̂ .

Since µ is dominant we have 0 ◦L = Id. Since Oλ̂ is a finite length category this implies
µHλ̂ is as well. This proves (i). Moreover, the fact that O−̂ρ ∼= mod(C) now implies

µH−̂ρ ∼= mod(C). A similar argument shows µH̃−̂ρ ∼= Mod(C). This proves (ii).
By (7.2), HZ-fin = Z-finHZ-fin. Since µHλ is a finite length category for all µ, λ ∈ h∗,

a devissage implies (iii). ut

Lemma 8.3. Let µ ∈ 3. The functors 2µ := ( )⊗U(n∩l) Cf : µH̃(l, l)̂λ → µÑ (l)f and
2µ̂ := ( )⊗U(n∩l) Cf : µ̂H̃(l, l)̂λ→ µ̂Ñ (l)f are equivalences of categories.

Proof. This certainly holds for l = h and from that we immediately reduce to the case
g = l, 1f = 1 and λ = −ρ. We must then show that the functor

2µ : µH̃−̂ρ → µÑf , M 7→ M ⊗U(n) Cf ,

is an equivalence of categories. It follows from Kostant’s equivalence (8.1) that µÑf is
equivalent to Mod(C) (for all µ ∈ h∗). By Lemma 8.2(ii) also µH̃−̂ρ ∼= Mod(C); hence
it suffices to show that 2µ takes simples to simples. The 2µ’s commute with translation
functors, so since U−ρ ∈ −ρH−̂ρ we get

2µT
µ
−ρ(U

−ρ) = T
µ
−ρ2−ρ(U

−ρ) = T
µ
−ρ(U

−ρ
⊗U(n) Cf ).

By [K78] the latter is simple. This implies both that T µ−ρ(U
−ρ) is a simple generator for

µH̃−̂ρ and that 2µ takes simples to simples. Thus 2µ is an equivalence.
A devissage using Lemma 8.4 now shows that 2µ̂ is an equivalence. ut

Lemma 8.4. Each M ∈ H̃−̂ρ which is countably generated as a left U-module is faith-
fully flat as a right U(n)-module.

Proof. Assume first that M is simple. Then it follows from Schur’s lemma that M ∈
µH−̂ρ for some integral µ ∈ h∗. By Lemma 8.2 we know that µH−̂ρ ∼= mod(C). Hence,
M ∼= T

µ
−ρ(U

−ρ) as this is simple (and hence a simple generator for µH−̂ρ) by the proof
of Lemma 8.3. By an adjunction argument, M is projective as a right U−ρ-module. By
Kostant’s separation of variables theorem [K63], U−ρ is free over U(n). Hence M is
projective over U(n).

Assume now that M ∈ H−̂ρ is finitely generated. By Lemma 8.2, M has finite length
and an induction on its length shows that M is again projective as a right U(n)-module.
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For arbitrary M choose a filtration M0 ⊆ M1 ⊆ · · · ⊆ M of finitely generated
submodules. Set Mi = Mi/Mi−1. Since all Mi and Mi are projective, Mi

∼=
⊕
j≤iMj

and thus
M = lim

−→
Mi
∼= lim
−→

⊕
j≤i

Mj =
⊕
i∈N

Mi

is projective, and therefore flat, as a right U(n)-module.
To see that M is faithful over U(n), we observe that the above implies that M , as a

right U(n)-module, is a direct sum of modules of the form T
µ
−ρ(U

−ρ), so it suffices to
show that T µ−ρ(U

−ρ) is faithful over U(n). Let V ∈ Mod(U(n)) be non-zero. We have

T
µ
−ρ(U

−ρ)⊗U(n) V ∼= T
µ
−ρ(U

−ρ
⊗U(n) V ) 6= 0,

since U−ρ ⊗U(n) V 6= 0 and T µ−ρ is faithful (as Wµ ⊆W−ρ). ut

Lemma 8.5. Let µ ∈ 3 and M ∈ µ̂Nf . Then M =
⊕

ν∈3 prl,̂νM .

Proof. Note that M has a filtration M0 ⊆ M1 ⊆ · · · ⊆ Mn = M such that each subquo-
tient M i := Mi/Mi−1 is generated over U by a vector vi such that Jf · vi = Iµ · vi = 0.
Thus each M i is a quotient of a sum of copies of Uµ /Uµ ·Jf , and by [MS97] the latter
has a filtration with subquotients of the form Uµ /Uµ(Il,w·µ + Jf ), w ∈W . These are in
turn quotients of Uµ /Uµ ·Il,w·µ. Thus, it is enough to prove that

Uµ /Uµ ·Il,w·µ =
⊕
ν∈3

prl,̂ν Uµ /Uµ ·Il,w·µ, w ∈W.

Since ν̂H(l, l)w·µ = 0 for ν /∈ w · µ+3 = 3, and since Uµ /Uµ ·Il,w·µ ∈ H̃(l, l)w·µ =
Z(l)-finH̃(l, l)w·µ, we are done. ut

Proof of Theorem 8.1. We have Oλ̂ ∼= λ′H(l)̂λ, so we need to construct an equivalence

2 : λ′H(l)̂λ
∼
→ λ′Nf , M 7→ M ⊗U(n∩l) Cf . (8.2)

Consider the restriction functor res : λ′H(l)̂λ → H̃(l, l)̂λ. A “reductive version” of
Lemma 8.4 applied to l shows that each object of H(l, l)̂λ is faithfully flat as a right
U(n ∩ l)-module. Hence, 2 is faithful and exact.

Denote by 9 the right adjoint of 2. Thus

9V = HomC(lim
←−

i U(l)/(Il,λ)i ⊗U(n∩l) Cf , V )l-int,

where ( )l-int is the functor that assigns a maximal l-integrable subobject. (The left
U-module structure on 9V comes from the left U-action on V , and its right U(l)-module
structure comes from the left U(l)-action on lim

←−
i U(l)/(Il,λ)i ⊗U(n∩l) Cf .)

In order to prove that 2 is an equivalence it is enough to show that the natural trans-
formation 2 ◦9 → Id is an isomorphism. Take V ∈ λ′Nf and set

K := Ker{29V → V }, C := Coker{29V → V }.
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By Lemma 8.5 we have K =
⊕

ν∈3 prl,̂νK and C =
⊕

ν∈3 prl,̂νC. Let 9ν̂ be the
right adjoint of the functor 2ν̂ from Lemma 8.3. Note that prl,̂νV ∈ ν̂Ñ (l)f and that
prl,̂νK = Ker{2ν̂9ν̂prl,̂νV → prl,̂νV } and prl,̂νC = Coker{2ν̂9ν̂prl,̂νV → prl,̂νV }.

Assume ν ∈ 3. Then 2ν̂ is an equivalence of categories, by Lemma 8.3, and hence
prl,̂νK = prl,̂νC = 0. Thus K = C = 0, by Lemma 8.5, and consequently 2 is an
equivalence. ut

8.2. Singular and parabolic case

Let Q ⊆ G be a parabolic, q := LieQ, Q := G/Q and Iq := Ker{U → D(G/Q)}. It
is known that Iq = AnnU(U⊗U(q)C), U /Iq

∼
→ D(Q), and there is a parabolic version

of (regular) Beilinson–Bernstein localization: Mod(DG,Q, q) ∼= Mod(D(Q)) [BoBr82].
Let Oq

:= {M ∈ O : q acts locally finitely on M} be q-parabolic category O, Oq
λ :=

Oq
∩ Oλ and Oq

λ̂
:= Oq

∩ Oλ̂.
All results from Section 7 extend to these categories. We assume here for simplicity

that λ is integral and so we can take λ′ := 0. Then

Oq
λ = mod(q,Q,Uλ), Oq

λ̂
= mod̂λ(q,Q,U). (8.3)

As before we get (with self-explanatory notation)

Oq

λ̂
∼= mod(q,Q,DG, P , rP , λ̂)
∼= mod(̂λ, rp, P ,DG,Q, q) ∼= mod(̂λ, rp, P ,D(Q)) ∼= H(D(Q), lP )̂λ.

Here H(D(Q), lP )̂λ is the category of D(Q)-U(lP )-bimodules on which the adjoint
lP -action is integrable, Il,λ acts locally nilpotently from the right, and rP acts locally
nilpotently from the left. Let N q

f := {M ∈ Nf : IqM = 0}. Thus the equivalence of
Theorem 8.1 induces an equivalence

Corollary 8.6 ([W09]). Oq

λ̂
∼= N q

f .
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[Soe86] Soergel, W.: Équivalence de certaines catégories de g-modules. C. R. Acad. Sci. Paris
Sér. I 303, 725–727 (1986) Zbl 0623.17005 MR 0872544

[W09] Webster, B.: Singular blocks of parabolic categoryO and finite W-algebras. J. Pure
Appl. Algebra 215, 2797–2804 (2011) Zbl 1295.17009 MR 2811563

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0910.05068&format=complete
http://www.ams.org/mathscinet-getitem?mr=1659527
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0864.17006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1322847
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0445.17006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0581584
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1135.17011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2275638
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1220.17009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2415389
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1125.17006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2285230
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1293.17021&format=complete
http://www.ams.org/mathscinet-getitem?mr=3092472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0504.22015&format=complete
http://www.ams.org/mathscinet-getitem?mr=0679767
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0339.17007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0498740
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1136.14009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2357361
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1177.17001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2428237
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1034.20041&format=complete
http://www.ams.org/mathscinet-getitem?mr=2015057
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0124.26802&format=complete
http://www.ams.org/mathscinet-getitem?mr=0158024
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0405.22013&format=complete
http://www.ams.org/mathscinet-getitem?mr=0507800
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0094.28201&format=complete
http://www.ams.org/mathscinet-getitem?mr=0109854
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0956.17004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1600134
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0623.17005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0872544
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1295.17009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2811563

	Introduction
	Preliminaries
	Parabolic Springer resolutions
	Extended differential operators on P
	Singular localization
	Translation functors
	Category O and Harish-Chandra (bi-)modules
	Whittaker modules
	References

