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Abstract. Let p be a prime number. This paper introduces the Roquette category R of finite
p-groups, which is an additive tensor category containing all finite p-groups among its objects.
In R p, every finite p-group P admits a canonical direct summand 9 P, called the edge of P. More-
over P splits uniquely as a direct sum of edges of Roquette p-groups, and the tensor structure of R,
can be described in terms of such edges.

The main motivation for considering this category is that the additive functors from R to
abelian groups are exactly the rational p-biset functors. This yields in particular very efficient ways
of computing such functors on arbitrary p-groups: this applies to the representation functors Ry,
where K is any field of characteristic 0, but also to the functor of units of Burnside rings, or to the
torsion part of the Dade group.
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1. Introduction

Let p be a prime number. This article introduces the Rogquette category R, of finite
p-groups, which is an additive tensor category with the following properties:

o Every finite p-group can be viewed as an object of R,. The tensor product of two finite
p-groups P and Q in R, is the direct product P x Q.
e In R, any finite p-group has a direct summand 0 P, called the edge of P, such that

P = GB d(P/N).
NP

Moreover, if the center of P is not cyclic, then d P = 0.
e In R, every finite p-group P decomposes as a direct sum

P = @ IR,
ReS

where S is a finite sequence of Roquette groups, i.e. p-groups of normal p-rank 1, and
such a decomposition is essentially unique. Given the group P, such a decomposition

S. Bouc: CNRS-LAMFA, Université de Picardie — Jules Verne, 33 rue St Leu, 80039 Amiens
Cedex 1, France; e-mail: serge.bouc @u-picardie.fr

Mathematics Subject Classification (2010): 18B99, 19A22, 20C99, 20J15



2844 Serge Bouc

can be obtained explicitly from the knowledge of a genetic basis of P (Theorem 3.11
and Proposition 5.14).

e The tensor product 0P x dQ of the edges of two Roquette p-groups P and Q is
isomorphic to a direct sum of a certain number vp o of copies of the edge 9(P ¢ Q)
of another Roquette group (where both vp o and P ¢ Q are known explicitly—see
Theorem 4.20 and Corollary 4.24).

o The additive functors from R, to the category of abelian groups are exactly the rational
p-biset functors introduced in [Bou05].

The latter is the main motivation for considering this category: any structural result on R,
will provide for free some information on such rational functors for p-groups, e.g. the
representation functors Rg, where K is a field of characteristic 0 (see [Bou96], [Bou04],
and L. Barker’s article [Bar08]), the functor of units of Burnside rings [BouO7], or the
torsion part of the Dade group [BouO6].

In particular, the above results on R, yield isomorphisms describing the structure of
some p-groups as objects of this category, and this is enough to compute the evaluations
of rational p-biset functors. For example (Example 3.13), an elementary abelian p-group
of rank n splits as

n

pl—
p—
in R . Similarly (equation (5.25)), in the category R, the product of n copies of a dihe-
dral group of order 8 splits as

Cp)"=1e

1
-0C)

D))" =16 (5" —1)-3Cs.

More generally, Proposition 5.40 gives a formula for (Dy»)". A straightforward conse-
quence, applying the functor R, is the following

Example 1.1. For any n € N, the group (Dg)" has 5" conjugacy classes of cyclic sub-
groups.

Another important by-product of the above result giving the tensor structure of R, is the
explicit description of a genetic basis of a direct product P x Q, in terms of a genetic basis
of P and a genetic basis of Q (Theorem 5.20). This allows in particular for a quick com-
putation of the torsion part of the Dade group of some p-groups, e.g. (Theorem 5.36(1)
& (3)):

Example 1.2. e Let P be an arbitrary finite direct product of groups of order 2 and
dihedral 2-groups. Then the Dade group of any factor group of P is torsion free.

e Let n be a positive integer. For any integer m > 4, let P = SDy» be a semidihedral
group of order 2, and let P*" denote the central product of n copies of P. Then the
torsion part of the Dade group of P*" is isomorphic to (Z/ ZZ)2<n_])(m_3).

This also yields similar results on groups of units of Burnside rings of these groups (Re-

mark 5.39), or on representations of central products of p-groups, as in Examples 5.34

and 5.35:



The Roquette category of finite p-groups 2845

Example 1.3. Let p be a prime, let X be an extraspecial p-group, and let Q be a non-
trivial p-group. Let K be a field of characteristic 0. Then Q has the same number (possi-
bly 0) of isomorphism classes of faithful irreducible representations over K as any central
product X * Q.

Another possibly interesting phenomenon is that some non-isomorphic p-groups may
become isomorphic in the category R,. This means that some non-isomorphic p-groups
cannot be distinguished using only rational p-biset functors. When p = 2, there are even
examples where this occurs for groups of different orders (Example 5.16). When p > 2,
saying that the p-groups P and Q are isomorphic in R, is equivalent to saying that the
group algebras Q P and QQ have isomorphic centers (Proposition 5.17).

The category R, is built as follows: consider first the category R , which is the quo-
tient category of the biset category of finite p-groups (in which objects are finite p-groups
and morphisms are virtual bisets) obtained by killing a specific element § in the Burnside
group of the Sylow p-subgroup of PGL(3, IF,,). Then take idempotent completion, and
additive completion of the resulting category.

In particular, this construction relies on bisets, and related functors. Consequently, the
paper is organized as follows: Section 2 is a (not so) quick summary of the background
on biset functors, Roquette groups, genetic bases of p-groups, and rational p-biset func-
tors. The category R, is introduced in Section 3, and in Section 4, its tensor structure is
described. Finally Section 5 gives some examples and applications.

2. Rational p-biset functors

2.1. Biset functors. The biset category C of finite groups is defined as follows:

e The objects of C are the finite groups.
e Let G and H be finite groups. Then

Home (G, H) = B(H, G),

where B(H, G) denotes the Grothendieck group of the category of finite (H, G)-bisets,
i.e. the Burnside group of the group H x G°P.
e Let G, H, and K be finite groups. The composition of morphisms

B(K, H) x B(H,G) — B(K, G)

in the category C is the linear extension of the product induced by the product of bisets
(V,U)— V xg U, where Visa (K, H)-biset, and U is an (H, G)-biset.

e The identity morphism of the finite group G is the image in B(G, G) of the set G,
endowed with its (G, G)-biset structure given by left and right multiplication.

Definition 2.2. A biset functor is an additive functor from C to the category of abelian
groups. A morphism of biset functors is a natural transformation of functors.

Morphisms of biset functors can be composed, and the resulting category of biset functors
is denoted by F. It is an abelian category.
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Example 2.3. 1. The correspondence B sending a finite group G to its Burnside group
B(G) is a biset functor, called the Burnside functor: indeed, B(G) = Hom¢ (1, G), so
B is in fact the Yoneda functor Hom¢g (1, —).

2. The formalism of bisets gives a single framework for the usual operations of induc-
tion, restriction, inflation, deflation, and transport by isomorphism via the following
correspondences:

e If H is a subgroup of G, then let Indg € B(G, H) denote the set G with left action
of G and right action of H by multiplication.

e If H is a subgroup of G, then let Resg € B(H, G) denote the set G with left action
of H and right action of G by multiplication.

e If NJIGand H = G/N, then let Infg € B(G, H) denote the set H with left action
of G by projection and multiplication, and right action of H by multiplication.

e If N <Gand H = G/N,thenlet Defg € B(H, G) denote the set H with left action
of H by multiplication, and right action of G by projection and multiplication.

e If ¢ : G — H is a group isomorphism, then let Isog = Isog((p) € B(H, G) denote
the set H with left action of H by multiplication, and right action of G by taking
image under ¢, and then multiplying in H.

e When H is a subgroup of G, let Defreng(H)/H € B(Ng(H)/H, G) denote

the set H\G viewed as an (Ng(H)/H, G)-biset. It is equal to the composition

Ng (H) G
Deng(H)/H oResy -
e When H is a subgroup of G, let Indinng(H)/H € B(G,Ng(H)/H) denote

the set G/H viewed as a (G, Ng(H)/H)-biset. It is equal to the composition

G NG (H)
Indy_ ) OIang(H)/H'

2.4. p-biset functors. From now on, the symbol p will denote a prime number.

Definition and Notation 2.5. e The biset category C), of finite p-groups is the full sub-
category of C consisting of finite p-groups.

e A p-biset functor is an additive functor from C, to the category of abelian groups.
A morphism of p-biset functors is a natural transformation of functors.

e The p-biset functors form an abelian category J),.

2.6. Roquette p-groups

Definition 2.7. A finite group G is called a Roquette group if it has normal rank 1, i.e.
all the normal abelian subgroups of G are cyclic.

The Roquette p-groups have been first classified by... Roquette [Roq58] (see also
[Gor68]): these are the cyclic groups if p > 2, and Roquette 2-groups are the cyclic
groups, the generalized quaternion groups, the dihedral and semidihedral groups of order
at least 16.

More generally, the p-hyperelementary Roquette groups have been classified by Ham-
bleton, Taylor, and Williams [HTW90, Theorem 3.A.6].
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The following schematic diagram represents the lattice of subgroups of the dihedral

group Djg, the quaternion group Q1¢, and the semidihedral group SDj¢ (a horizontal
dotted link between two vertices means that the corresponding subgroups are conjugate):

ng/I:G\ODg os/ISOQs
/1IN TN ARNNIZN

N NN
|

Q16

These diagrams give a good idea of the general case.

Definition 2.8. Let G be a finite group, of exponent e. An axis of G is a cyclic subgroup
of order e in G. An axial subgroup of G is a subgroup of an axis of G.

With these definitions, let us recall without proof the following properties of Roquette
p-groups:

Lemma 2.9. Let P be a non-trivial Roquette p-group, of exponent ep.

(1
(@)

3)
“4)

®)

The center of P is cyclic, hence P admits a unique central subgroup Z p of order p.

There exists a non-trivial subgroup Q of P such that Q N Z(P) = 1 if and only
if p = 2 and P is dihedral or semidihedral. In this case moreover |Q| = 2 and
Np(Q) = 0Zp.

If P is not cyclic, then p =2 and ep = |P|/2.

There is a unique axis in P, except in the case P = Qg, where there are three of
them. Any axis of P is normal in P.

If R is a non-trivial axial subgroup of P, then R > Zp and R < P. If moreover
|R| > p?, then Cp(R) is the only axis of P containing R.
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Let us also recall the following:

Lemma 2.10 ([BoulO, Proposition 9.3.5]). Let P be a finite Roquette p-group. Then
there is a unique simple faithful Q P-module ® p, up to isomorphism.

Example 2.11. Let P be a cyclic group of order p™, and suppose first that m > 1. The
algebra QP is isomorphic to the algebra A = Q[X]/(X P" 1), As

7

X7 =1 =X = W (X),

where W, denotes the p™-th cyclotomic polynomial, it follows that there is a split exact
sequence of A-modules

0 — QIX1/(Wpm) > A — QX]/(X”" ™ — 1) >0,
which can be viewed as a sequence of (Q P-modules
0—> ®p > QP - Q(P/Z) — 0O,

where Z is the unique subgroup of order p of P. It follows that there is an isomorphism
of (Q-algebras

Endgp ®p = Q[X1/(¥pm) = Q(pm),

where {,m is a primitive p”-th root of unity in C.
Now if m = 0,then P =1, ®p = Q, and Endgp ®p = Q too.

2.12. Expansive and genetic subgroups

Definition 2.13. A subgroup H of a group G is called expansive if for any g € G such
that H8 # H, the group (Hé N Ng(H))H/H contains a non-trivial normal subgroup of
Ng(H)/H,ie.

geG—Ng(H) = (] (H*NNg(H)H > H.
neNg(H)

Example 2.14. If H <G, then H is expansive in G. More generally, if Ng(H) <G,
then H is expansive in G. Indeed, Ng(H®) = Ng(H) for any ¢ € G. Hence for g
inG — Ng(H),

() (H*" N NG(H)H = (H* \Ng(H)H = H® - H > H.
I’lENg(H)

Notation 2.15. When H is a subgroup of the group G, denote by Zs (H) the subgroup
of Ng(H), containing H, defined by

Z6(H)/H = Z(NG(H)/H).

The following is an easy consequence of well known properties of p-groups:
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Lemma 2.16 ([BoulO, Lemma 9.5.2]). Let Q be a subgroup of a finite p-group P. Then
Q is expansive in P if and only if

VgeP, Q°NZp(Q) =0 = 0¢=0.
Example 2.17. Let P be a p-group, and let
A(P)={(x,x) e Px P |x € P}

denote the diagonal subgroup of P x P. Then Npyp(A(P))/A(P) = Z(P), and A(P)
is expansive in P x P if and only if

Vxe P, [P,x]NZ(P)={1} = x e Z(P),

where [P, x] is the set of commutators [y, x] = y~'x~lyx = y~1y* fory € P.

In particular, if [P, P] < Z(P), then A(P) is expansive in P x P.

Proof. Indeed, Npyx p(A(P)) consists of pairs (a, b) € P x P such that ab~! € Z(P).
This shows that Npy p(A(P))/A(P) = Z(P), and that

Zpxp(A(P)) = Npxp(A(P)) = (1 X Z(P))A(P).
Now A(P)“?) = A(P)1 for any (u, v) € P x P, where x = u~'v, and
APYYI N Zp p(AP)) ={(t,t%) |t € P, t~'F € Z(P)).

Hence A(P)1) N Zp, p(A(P)) < A(P) if and only if for any € P, the assumption
t~1t* € Z(P) implies t = t*,1i.e. [t, x] = 1, in other words if [P, x]NZ(P) = {1}. Hence
A(P) is expansive in P x P if and only if for any x € P, the assumption [P, x]NZ(P) =
{1} implies (1, x) € Npxp(A(P)),i.e. x € Z(P), as claimed. The last assertion follows
trivially. O

Definition 2.18. Let Q be a subgroup of the finite p-group P. Then Q is called a genetic
subgroup of P if Q is expansive in P and Np(Q)/Q is a Roquette group.

Definition 2.19. Define a relation =p on the set of subgroups of the finite p-group P
by
OQ=pR & Jgec P, O°NZp(R)<Rand®*RNZp(Q) < Q.

Lemma 2.20. Let P be a finite p-group. If Q and R are subgroups of P such that
Np(Q) = Np(R) < P, then

Q=pR & Q=pR.

Proof. Indeed, since P is a p-group, saying that Q8 N Zp(R) < R is equivalent to
saying that the subgroup (Q8 N Np(R))R/R of Np(R)/R contains no non-trivial normal
subgroup of Np(R)/R, i.e.

[ @ NNp(RNR=R.

neNp(R)
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Butif Np(Q) < P, then Np(Q) = Np(Q8) = Np(R) for any g € G. Hence

[ (@ NNpR)HR = 0% -R.

neNp(R)

This is equal to R if and only if Q8 < R. Similarly R N Zp(Q) < Q if and only if
S8R < Q. Hence Q% = R. O

Definition 2.21. Let G be a group.

e A section of G is a pair (T, S) of subgroups of G such that § < T. The quotient 7'/ S is
called the corresponding subquotient of G.

e Two sections (7', ) and (Y, X) of G are said to be linked (notation (T, §) — (Y, X))
if

S(TNY)=T, X(TNY)=Y, TNX=SNY.

They are said to be linked modulo G (notation (T, §) —¢ (Y, X)) if there exists g € G
such that (T, §) — (8Y, ¢X).

Observe in particular that if (7', S) —¢ (¥, X), then the corresponding subquotients 7'/S
and Y/ X are isomorphic.

Theorem 2.22 ([BoulO, Theorem 9.6.1]). Let P be a finite p-group.

(1) If S is a genetic subgroup of P, then the module

P Np(S)
V(S) = Indjy, () Infy7 () /s Pp(s)/s

is a simple QP-module. Moreover, the functor Ind]}\),P ) Inf%ﬁ g; /s induces an iso-

morphism of Q-algebras

Ende V(S) = EndQNp(S)/S chp(S)/S-

(2) If V is a simple QP-module, then there exists a genetic subgroup S of P such that
V ZV(S).
(3) If Sand T are genetic subgroups of P, then

VIS =2VT) & S=pT & (Np(5),S)—p (Np(T),T).

In particular, if S =p T, then Np(S)/S = Np(T)/T. Moreover, the relation ==p is
an equivalence relation on the set of genetic subgroups of P, and the corresponding
set of equivalence classes is in one-to-one correspondence with the set of isomor-
phism classes of simple Q P-modules.

Definition 2.23. Let P be a finite p-group. A genetic basis of P is a set of representatives
of equivalence classes of genetic subgroups of P for the relation =p.
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2.24. Faithful elements (cf. [BoulO, Sections 6.2 and 6.3]). Let G be a finite group. If
N is a normal subgroup of G, recall from Example 2.3 that Infg N denotes the set G/N
viewed as a (G, G/N)-biset for the actions given by (projection to the factor group and)
multiplication in G/N. Similarly Defg /N denotes the same set G/N considered as a
(G/N, G)-biset.

There is an isomorphism of (G/N, G/N)-bisets

(2.25) Idg/n = Defgy o Infg .

More generally, if M and N are normal subgroups of G, there is an isomorphism of
(G/M, G/N)-bisets

(2.26) Defg )y o Infg = Infg)yyy o Defa/y v

It follows that if jﬁ is defined by

iy = Infg/N oDefg/N,

then jﬁ o jﬁ = jgl - In particular jz(\/; is an idempotent of B(G, G). Moreover, by a
standard orthogonalization procedure, the elements f ﬁ defined for N < G by

=Y nacWV,Mji,
N<M<G

where <G (N, M) is the Mobius function of the poset of normal subgroups of G, are
orthogonal idempotents of B(G, G), and their sum is equal to Idg, 5. The idempotent flG
is of special importance:

Lemma 2.27. Let G be a finite group, and N be a normal subgroup of G.
G/N .
(1) fﬁzlnfg/Nofl / oDefg/N in B(G, G).

(@) If N # 1, then Defg/N of = 0in B(G/N,G), and fF o Infg/N = 0in
B(G, G/N).

Proof. Assertion (1) is [BoulO, Remark 6.2.9], and (2) is a special case of Proposi-
tion 6.2.6. o

If F is a biset functor, the set d F (G) of faithful elements of F(G) is defined by
IF(G) = F(fZ)F(G).
It can be shown [Boul0, Lemma 6.3.2] that

0F(G)= [ KerF(Defg,y).
1<NJG

Example 2.28. Let F = Rk be the representation functor over a field K of characteris-
tic 0. Then for a finite group G, the group d Rk (G) is the direct summand of Rg (G) with
basis the set of (isomorphism classes of) faithful irreducible K G-modules.
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Lemma 2.29. Let G be a group, and S be a subgroup of G such that S N Z(G) # 1.
Then Defres§ ¢ /s fi = 0in B(NG(S)/S, G).

Proof. Set N =SNZ(G),G =G/N,and S = S/N. Then

G G
DefresNG(S)/S = DefresNE(g)/g Defg/N .
Now Defg y f’ = 0if N # 1, by Lemma 2.27. a]

Theorem 2.30 ([BoulO, Theorem 10.1.1]). Let P be a finite p-group, and B be a genetic
basis of P. Then, for any p-biset functor F, the map

Ip = P Indinfy, ) /5 : D IF(Np(S)/S) — F(P)
SeB SeB

is split injective. A left inverse is the map

Dp =P £ o Defresy 55 : F(P) - EDaF(Np(S)/5).
SeB SeB

One can show [Boul0, Lemma 10.1.2] that if B and B’ are genetic bases of P, the map
Ip is an isomorphism if and only if Zp is. This motivates the following definition:

Definition 2.31. A p-biset functor F is called rational if for any finite p-group P, there
exists a genetic basis B of P such that the map Zp is an isomorphism.

So F is rational if and only if for any finite p-group P and any genetic basis B of P, the
map Zp is an isomorphism.

Example 2.32. o The functor Rg of rational representations, which sends the finite
p-group P to the group Rg(P), is a rational p-biset functor. This example is of course
the reason for calling the p-biset functors of Definition 2.31 rational. This choice has
proved rather unfortunate, since the p-biset functor Rc of complex representations is also
a rational functor... More generally, if K is a field of characteristic 0, then the functor
R is arational p-biset functor.

e The functor of units of the Burnside ring, sending a p-group P to the group of units
B*(P) of its Burnside ring, is a rational p-biset functor (see [Bou07]).

e Let k be a field of characteristic p. The correspondence sending a finite p-group P
to the torsion part D; (P) of the Dade group of P over k is not a biset functor in general,
because of phenomena of Galois twists, but still the maps Zg and D can be defined
for D,’{, and Theorem 2.30 holds (see [Bou06]).
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3. The Roquette category

Notation 3.1. Let 7 be a projective plane over IF,,, and let X denote a Sylow p-subgroup
of Aut(r) = PGL(3,F,). Let L. be the set of lines of &, and let IP be the set of points
of 7, both viewed as elements of B(X). Let § =L — P € B(X). Equivalently

§=(X/I—X/IZ)— (X)] —X/IZ),

where I and J are non-conjugate non-central subgroups of order p of X, and Z is the
center of X.
Let B; denote the p-biset subfunctor of B generated by 4.

Remark 3.2. When p = 2, the group X is dihedral of order 8, and § is well defined
up to sign. When p > 2, the group X is an extraspecial p-group of order p3 and expo-
nent p, and there are several possible choices for the element §. However, in any case, the
functor Bs does not depend on the choice of §.

Definition 3.3. The Roquette category R, of finite p-groups is defined as the idempotent

additive completion of the category Rﬁ, quotient of the biset category C,, defined as
follows:

e The objects of Rg are the finite p-groups.
If P and Q are finite p-groups, then

Homgp: (P, Q) = (B/Bs)(Q. P)

is the quotient of B(Q x P°P) by Bs(Q x P°P).
e The composition in R,t, is induced by the composition of bisets.

The identity morphism of the finite p-group P in Rf, is the image of Idp in the group
(B/Bs)(P, P).

Remark 3.4. It was shown in [Bou08] that Rg is indeed a category. It was also shown
there that if p > 2, the functor Bs is equal to the kernel K of the linearization morphism
B — Rq. It follows that in this case, for any two finite p-groups P and Q,

Homp: (P, 0) = Ro(Q x PP)

is isomorphic to the Grothendieck group of (QQ, QP)-bimodules, or equivalently, by
the Ritter—Segal theorem, to the Grothendieck group of the subcategory of (QQ, QP)-
permutation bimodules. In other words, in this case the category Rg, is the full subcat-
egory of the category considered by Barker [Bar08], consisting of finite p-groups. The
construction of the category Rf, is also very similar to the construction of the category
QG-Morita by Hambleton, Taylor, and Williams [HTW90, Definition 1.A.4].

In the case p = 2, the situation is more complicated: the functor Bs is a proper
subfunctor of the kernel K, and there is a short exact sequence

0— K/Bs — B/Bs — Rg — 0
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of p-biset functors. Moreover, for each p-group P, the group (K /Bs)(P) is a finite ele-
mentary abelian 2-group of rank equal to the number of groups S in a genetic basis of P
for which Np(S)/S is dihedral.

Lemma 3.5. The direct product (P, Q) — P x Q of p-groups induces a well defined

symmetric monoidal structure on RE,.

Proof. Let P, P’, Q, and Q' be finite p-groups. If U is a finite (P’, P)-biset and V is a

finite (Q’, Q)-biset, then U x V isa (P’ x Q’, P x Q)-biset. This induces a bilinear map
7 :B(P',P)x B(Q',0)— B(P'xQ,PxQ),

and this clearly induces a symmetric monoidal structure on the biset category C,. The
latter induces a monoidal structure on the quotient category if

7 (Bs(P', P), B(Q', Q)) € Bs(P' x Q', P x Q).

But this is a consequence of the following. Let X be as defined in Notation 3.1, let U be
a finite (P’, P x X)-set, let D be an X-set, and V be a finite (Q’, Q)-biset. Clearly, there
is an isomorphism of (P’ x Q’, P x Q)-sets

(UxxD)xVZ=ZUxV)xxD,
where the right action of X on U x V is defined in the obvious way
Yu,v) e U xV,Vx e X, (u,v)x = (ux, ).

The lemma follows. ]

3.6. Recall that the objects of the idempotent additive completion R, are by definition

formal sums @( P.e) «p(P, e), where P is a finite sequence of pairs (P, e) consisting of

a finite p-group P and an idempotent e in the endomorphism ring Hom.: (P, P) =
P

(B/Bs)(P, P). A morphism

o: P Pr.oo—> P @

(P.e)eP (Q./)eQ
in R is a matrix indexed by P x Q, where the coefficient ¢(p ¢), (o, r) indexed by the pair
((P,e), (Q, f)) belongs to fHomRn (P, Q)e. The composition of morphisms is given
P

by matrix multiplication. In particular:
Definition and Notation 3.7. Let P be a finite p-group.

e The object (P, Idp) of R, is denoted by P. Similarly, when Q is a finite p-group and
f € B(Q, P), the corresponding morphism from (P, Idp) to (Q, Idp) in the category
R, is simply denoted by f.

e The edge 9 P of P is the object (P, flP) of Rp.
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The category of additive functors from R, to abelian groups is equivalent to the category

of additive functors from Ri to abelian groups. It was shown in [BouO8] that the latter is
exactly the category of rational p-biset functors. If F¥ is such a functor, then F* extends
to a functor F on R, defined as follows:

F( @ .o)= P FeFP),
(P.e)eP (P.e)eP

with the obvious definition of F'(¢) for a morphism ¢ in the category R,. In particular,
with the above notation,

F(OP) = dF*(P).
We will use the same symbol for F' and F g writing in particular F (0 P) = d F(P).

Proposition 3.8. Let P be a finite p-group. Then

pP= @ 0(P/N) in the category R,.
NP
Proof. Let
a:P— d(P/N)
NP
be the direct sum of the morphisms induced by the elements flp/ N Defg /N of B(P/N, P),
and let

b: @ ap/N)—> P

NP
be defined similarly from the elements Inf P/N fP/N of B(P, P/N).
By Lemma 2.27,
Z Inf;/N f1 DefP/N = Z £y =1dp
NP NP

in B(P, P), thus a o b is equal to the identity morphism of P in R,. Conversely, for
normal subgroups N and M of P,

P/M _ P/N PIN o eP/M fP/M

P/N
fi / Defﬁ/N InfP/M fi Infp)np Defp)ym

by (2.25). This is equal to 0 if N # M, by Lemma 2.27. And if N = M, this is equal
to flp/ N 1t follows that b o a is equal to the identity morphism of @, 4 p (P/N), and
this completes the proof. - O

Corollary 3.9. If P is non-trivial, with cyclic center, then
P=0P®(P/Z) inRp,
where Z is the unique central subgroup of order p in P.
Proof. Indeed, if N is a non-trivial normal subgroup of P, then N > Z. Thus

P=3Pad PaP/N)Z0P&(P/Z) inR,. O
N>Z
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Remark 3.10. More generally, let P be a finite p-group, and let N be a normal subgroup
of P. Since

PNz P /NNy @D aP/M) inR,,

N<M P N<M <P
it follows that P/N is isomorphic to a direct summand of P in the category R .

Theorem 3.11. (1) The Roquette category R is an additive tensor category.
(2) Let P be a finite p-group, and B be a genetic basis of P. Then

P=PaNp(S) inR,.
SeB
where N p(S) = Np(S)/S.
(3) Let P be a finite p-group, and B be a genetic basis of P. Then

P = @ INp(S) inR,.
sn2th=t
Proof. Assertion (1) results from standard results: in particular, the tensor product of the
objects @(P,E)GP(P’ e) and @(Q,f)eQ(Q’ f) is defined by

(D ®o)x( D @n)= @ Pxoexp.

(P,e)eP (0,/HeQ (P,e)eP
(Q.NHeQ
For (2), by [BoulO, Proposition 10.7.2], if F is a rational p-biset functor, the functor Fp
obtained from F by the Yoneda—Dress construction at P is also a rational p-biset functor.
This applies in particular to the functor ¥ = B/ Bg, so the functor Yp is rational. Hence,
if Q is any finite p-group and By is a genetic basis of Q, there are mutually inverse
isomorphisms

Do _
Yr(Q) —= EP aYp(Np(S)
o SGBQ

. P Np () P
where Zg = @SEBQ IndlnfﬁP(S) and Dg = ®S€BQ 7o Defresﬁp(s).

Thus for any f € Yp(Q),
_ . cP Np(S) P
f= ( > indinf? oAV Defres? S)) o f.
SEBQ
Applying thisto Q = P, Bg = B, and f = Idp gives Zp o Dp = Idp. On the other
hand, by [Boul0, Proposition 6.4.4 and Theorem 9.6.1], for S, T € B, the composition

Np(T) P P Np(S)
fi Defresﬁp 1 ° Indmfﬁp ) fi

is equal to flﬁ”(s) in B(Np(S), Np(S))if T = S, and to 0if T # S. It follows that
Dp o Ip is also equal to the identity map of the direct sum €p SeB aYp(N p(S)) in the
category Rp.
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For (3), observe that by Lemma 2.29,
Np(S) P P _
h Defresﬁp(s) fi =0
if § N Z(P) # 1. Taking opposite bisets gives also

Py 3. P Np(S) _
fi Indinfg | o fy P =0,

so the isomorphism of (2) restricts to an isomorphism
wP= P INp©),
SeB
SNZ(P)=1

as the diagram

~

P @ IN(S)

a

AP —— DseB. snzp)=1 INP(S)

is commutative. ]

Corollary 3.12. Let P be a finite p-group. If Z(P) is non-cyclic, then 0P = 0in R.

Proof. This follows from Theorem 3.11(3). Suppose indeed that there exists a genetic
subgroup S of P such that § N Z(P) = 1. Then the group Z(P) maps injectively in the
center of the Roquette group N p(S), which is cyclic. Hence Z(P) is cyclic. O

Example 3.13. 1. Let P = Dg be the dihedral group of order 8. Let A, B, and C be the
subgroups of index 2 in P, and let / be a non-central subgroup of order 2 in P. Then the
set {P, A, B, C, I}1is a genetic basis of P, and there is an isomorphism

P=1®4-9C, inRay,

where 4 - 9C; denotes the direct sum of four copies of dC3: indeed, for S € {A, B, C, I},
the group ]VP(S) is isomorphic to Cs.

2. Let P = Qg be the quaternion group of order 8. Let A, B, and C be the subgroups
of index 2 in P. Then the set { P, A, B, C, 1} is a genetic basis of P (such a basis is unique
in this case), and there is an isomorphism

P=Z1p3-0C, ®0Q0g inRy.
3. Let P = (Cp)" be an elementary abelian p-group of rank n. Then P has a unique

genetic basis, consisting of P and all its subgroups of index p. Hence

n
—1
p=1g?
p—1

-0C, inR,.
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4. The tensor structure

Notation 4.1. Let G and H be groups. When L is a subgroup of G x H, set
pi(L)={geG|3heH, (gh el
p2(L)={h e H|3g€G, (g, h) €L}
ki(L)y={ge€G|(g €L}
ko(Ly={he H|(1,h) € L}.
Recall [Boul0,2.3.18 and 2.3.21] that k; (L) < p; (L) fori € {1, 2}, and the direct product
k1(L) x ko(L) is normal in L. Moreover, setting g(L) = L/(k;(L) x ka(L)), we have
canonical group isomorphisms
q(L) = pi(L)/ki(L) = pa(L)/ka(L).

Definition 4.2. Let G and H be groups. A subgroup L of G x H will be called diagonal
if
LN(Gx)=LNAxH)=1,

ie. ki(L)y=1and kr(L) = 1.
The subgroup L will be called centrally diagonal if

LNZG)x1)=LNnAxZ(H)) =1,
ie. ki(L)NZ(G)=1and kr(LYNZ(H) = 1.
Notation 4.3. Let G and H be groups. When K is a subgroup of G,and ¢ : K — H is
a group homomorphism, set
Ky(K) = {(x, () | x € K} < G x H,
Ny(K) = {(p(x).x) | x €K} < H x G.
Remark 4.4. The subgroup L of G x H is diagonal if and only if there exists a subgroup
—
K =< G and an injective group homomorphism ¢ : K < H such that L = A ,(K).

Lemma 4.5. Let P and Q be p-groups, and let L and L' be genetic subgroups of P x Q
suchthat L =py o L'. Then L is centrally diagonal in P x Q ifand only if L' is centrally
diagonalin P x Q.

Proof. Let (x,y) € P x Q be such that L'*Y) N Zp, o(L) < L. Since Z(P) x Z(Q) <
Zpxg(L), it follows that

L'N(Z(P)x1) = (L' N(Z(P) x 1))&Y = L' 0 (Z(P) x 1)
= L' N Zpyo(L)N(Z(P) x 1) < LN(Z(P)x 1) =1.
A similar argument shows that L' N (1 x Z(Q)) = 1. m]

Recall from Definition 2.8 that an axial subgroup of a finite group G is a subgroup of a
cyclic subgroup of maximal order of G:
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Theorem 4.6. Let P and Q be non-trivial Roquette p-groups, let ep (resp. eg) denote
the exponent of P (resp. Q), and let Zp (resp. Z o) denote the central subgroup of order p
in P (resp. in Q).

(1) Let L be a centrally diagonal genetic subgroup of P x Q. Then L = _A)(p(H), where

H < Pand ¢ : H — Q is an injective group homomorphism. Moreover, either

P = Q = Qg and H = P, or H is an axial subgroup of P of order min(ep, eg)

such that ¢ (H) is an axial subgroup of Q.

(2) Conversely:

(@ IfP=Q = Qg let L =L, = X¢(P), where ¢ : P — Q is a group
isomorphism. Then L is a centrally diagonal genetic subgroup of P x Q and
Npxo(L)/L = Cs.

(b) In all other cases, let L = Ly, = _A)(p(H), where H is an axial subgroup of P
of order min(ep,ep) and ¢ : H — Q is an injective group homomorphism
such that ¢ (H) is an axial subgroup of Q. Then L is a centrally diagonal genetic
subgroup of P x Q. Moreover, the isomorphism class of the group Npxo(L)/L
depends only on P and Q.

Proof. e Observe first that the group (Zp x Zp)L /L is a central subgroup of the Roquette
group Npx o (L)/L,henceitis cyclic. Hence (Zp x Zg)NL # 1. Since both (Zp x1)NL
and (1 x Zg) N L are trivial, it follows that (Zp x Zg) N L is equal to

4.7) Ry (Zp) = (2. ¥ () | z € Zp},

where ¥ : Zp — Z is some group isomorphism. In particular p; (L) contains Zp, and
p2(L) contains Zg.

e Let us prove now that L is diagonal, i.e. there exists a subgroup H of P and an
injective group homomorphism ¢ : H < Q such that

L=1R,(H) ={(h. o) | h € H}.

Otherwise, at least one of the groups ki(L) or k(L) is non-trivial. But the assumption
LN(Z(P)x1)=1isequivalentto LN(Zp x1) = 1,i.e. ki (L)NZp =1, and similarly
the assumption L N (1 x Z(Q)) = 1is equivalent to k2 (L) N Zp = 1. But if there exists
a non-trivial subgroup X of P such that X N Zp = 1, then p = 2, X has order 2, and P
is dihedral or semidihedral (Lemma 2.9). So if L is not diagonal, then p = 2, and at least
one of P or Q is dihedral or semidihedral.

Up to exchanging P and Q, one can assume that the group C = k(L) is non-
trivial, hence non-central of order 2 in P. Set A = pi(L). Since A < Np(C) = CZp
(Lemma 2.9), it follows that g (L) = A/C has order 1 or 2.

Ifg(L) =1,then A= C and L = C x D, where D = ky(L) = p>(L). In this case

Npxo(L)/L = (Np(C)/C) x (No(D)/D) = C2 x (No(D)/D)

cannot be a Roquette group, since No(D)/D is non-trivial (as DN Zgp = 1).
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Andif |g(L)| =2,then A = CZp.If (a,b) € Npx (L), then in particular
ae Np(A,C)=A.

Thus Npx (L) < A x Q.Now Np(A) is a proper subgroup of P, since A is elementary
abelian of rank 2, and P is a Roquette group. Choose x € P — Np(A), whence A* N A
= Zp.If(a,b) € LYDVN(Ax Q),thena € A*NA = Zp, hence (a, b) = “V(a,b) € L.
Thus L&V N (A x Q) < L, and

LYY N Zpyp(L) < LD N Npuo(L) <LV N(Ax Q) <L

but L*-D # L, since A* # A. It follows that L is not expansive in P x Q, hence L is
not a genetic subgroup of P x Q.
e Hence L is diagonal in P x Q, i.e.

—
L= Ay(H)={(h,eoh)) | heH}
for some subgroup H > Zp of P and some ¢ : H <> Q such that ¢(H) > Zp. Then
Npxo(L) ={(x,y) € Np(H) x No(p(H)) | YVh € H, p(*h) =" p(h)}.

The unique central subgroup of order p of the Roquette group Npyx(L)/L is equal
to Z/L, where

4.8) Z=(Zpx1L=(1x Zy)L.

For any (x, y) € (P x Q), saying that LY N Zpx (L) is contained in L is equivalent
to saying that the group I = L™Y) N Z is contained in L. In particular, for y = 1,

I =L%YN(Zp x1L
={(h*,@h)) | h € H, 3z € Zp, 3" € H, (h*, p(h)) = (zh’, p(h'))}
={(h*, @) |he H, h™'h" € Zp)},

since p(h) = @(h') implies h = K/, and since Zp is central in P. Denoting by [k, x] =
h~1h* the commutator of / and x, it follows that / < L if and only if

Yhe H, [h,x]eZp = h*e€H, (h*,¢h) = (", ph).
In other words [&, x] € Zp implies A* = h. Thus I < L if and only if
Vhe H, [h,x]leZp = [h,x]=1.

Equivalently [H, x] N Zp = {1}, where [H, x] denotes the set of commutators [/, x] for
heH. N
Since L = A ,(H) is expansive in P x Q it follows that

[H,x]ﬂZp = {1} = L(x’l) = L.
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Now (x, 1) normalizes L if and only if x € Cp(H), i.e. if [H, x] = {1}. Hence
4.9) [H,x]NZp = {1} = [H,x]={1}.

e Let us show now that unless H = P = Q = (g, the group H is an axial subgroup
of P, and the subgroup ¢ (H) is an axial subgroup of Q.

Let X be a cyclic subgroup of P of order ep, let x be a generator of X, and suppose
that H «£ X. Then in particular P is not cyclic, so p = 2, the group X is a (normal)
subgroup of index 2 of P (Lemma 2.9), and X is equal to its centralizer in P. Moreover
|H: HNX| =2since H- X = P. The set [H, x] is equal to {1, x2}if Pis cyclic or
generalized quaternion, or to {1,x2+2n72} if P is semidihedral: indeed, the image of H
in the group of automorphisms of X has order 2, as H N X centralizes X, and H does
not. Since Zp is generated by xzn_z, it follows that [H, x] N Zp = {1} if n > 4, ie. if
|P| > 16.But [H, x] # {1}, hence L is not expansive in P x Q if P > 16.

Soif H jé X, then p = 2, and P is non-cyclic, of order at most 8. Hence P = Qg. If
H # P, then H is cyclic, and H £ X. Thus |H| = 4 = ep, and in particular H is an axis
of P. Since H embeds into Q, it follows that |[H| = min(ep, ep). The same argument
applied to ¢ (H) shows that ¢ (H) is an axial subgroup of Q, as claimed.

In this case moreover, the group Q cannot be isomorphic to Qg. Indeed, otherwise
one can assume that P = Q and L = A(H) is the diagonal embedding. Then

Npxp(L) ={(a,b) | a~'b € H}.
The group Np« p(L)/L has order 8, generated by the cyclic subgroup
C={(a, L |ae H)

of index 2, and the involution (b, b)L, where b € P — H. Hence Npxp(L)/L = Dg is
not a Roquette group, and L is not a genetic subgroup of P x P.

If H is non-cyclic, then H = P, and the same argument applied to ¢(H) shows
that 0 = Qg. And indeed Z(p(P) is a genetic subgroup of P x Q: this follows from
Example 2.17, since the map (x, y) — (x, ¢ ~'(y)) is a group isomorphism from P x Q
to P x P, sending Z(p(P) to A(P). Moreover [P, P] < Z(P), and Z(P) has order 2. In
particular

(4.10) Npxo(L)/L = C;

does not depend on ¢, up to isomorphism. This proves (2)(a).

e In the remaining cases L = X(p(H ), where H is a non-trivial axial subgroup of P,
and ¢ : H < Q is such that ¢(H) is an axial subgroup of Q. In particular H is cyclic
and non-trivial. As H = ¢(H) < Q, it follows that |[H| < min(ep, ep).

Let C,,, be an axis of P containing H, and C,,, be an axis of Q containing ¢(Q). Then
(Cep x Cepy)/ Ay (H) is an abelian normal subgroup of the Roquette group Npxo(L)/L,
hence it is cyclic. In particular L = A, (H) is not contained in the Frattini subgroup
Cep/p X CeQ/P of C,p X CeQ. Thus pi(L) = C,p or po(L) = CeQ. In other words
H=C,,orp(H) = CeQ, hence |H| = min(ep, eg). This completes the proof of (1).
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e Now assume that P or Q is not isomorphic to Qg. Assume also that ep < e, and
let H be an axis of P;then H is unique if P Z (g, and there are three possibilities for H
if P = Qg (Lemma 2.9). In any case H < P. Let K denote an axial subgroup of Q of
order ep. Such a group is unique exceptif p =2,ep =4, and Q = Qg (thus P = Cy as
P has exponent 4, and is not isomorphic to Qg). In any case K < Q.

Letyp: H 2k be any group isomorphism, and set L, = Z(p(H) < P x Q. Then
L, is obviously centrally diagonal, and

Npxo(Ly) ={(a,b) € P x Q |Vh € H, ¢(“h) ="p(h)}.
Since H is cyclic of order ep, the map
wy : (Z)epZ)* 51— (x = x") € Aut(H)
is a canonical group isomorphism. Similarly, the map
wx : (Z)epZ)” 51— (x = x") € Aut(K)
is a canonical group isomorphism.

—1 -1

Leta : P — Aut(H) 5 (ZJepZ)* (resp. B : O — Aut(K) 5> (Z/epZ)™)
denote the group homomorphism obtained from the action of P on its normal subgroup H
by conjugation (resp. from the action of Q on its normal subgroup K). Then

Npxo(Ly) ={(a,b) € P x Q| a(a) = B(b)}.
Now the group (Z/epZ)™ is abelian. The map
O©:Px Q>3 (ab)— b)) e (Zepl)*

is a group homomorphism, and Np« g (L) = Ker ©. In particular, it is a normal subgroup
of P x Q which does not depend on ¢ once H and K = ¢(H) are fixed. In particular
L, is an expansive subgroup of P x Q, by Example 2.14. Moreover if we set Ip o =
Im(a) N Im(B), there is an exact sequence

@.11) 1— Cp(H) x Co(K) = Npxg(Ly) - Ip.g — 1,

where W(a, b) = a(a) = B(b) for (a,b) € Npxg(Ly).
Suppose first that ep = p,i.e. P = Cp. Inthiscase H = Zp = P,and K = Zg, s0
L is central in P x Q. Moreover

(4.12) Npxg(Ly)/Ly = (P x Q)/Ly = (P X Q)/X¢(P) =0

is a Roquette group, independent of ¢ up to isomorphism. In particular L, is a genetic
subgroup of P x Q.

Assume from now on that ep > p2. Then Cp(H) = Cep and Co(K) = C,
Lemma 2.9.

eQ» by
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If p > 2, then P and Q are cyclic, hence H = P, and

(4.13) Npwo(Ly)/Ly = (P x Q)/ A ,(P) = Q

as above. It is a Roquette group, independent of ¢ up to isomorphism. In particular L, is
genetic in P x Q.

Assume now that p = 2. The image of « has order |P : Cp(H)|, which is equal to 1
if P is cyclic, and to 2 otherwise. Similarly, the image of § has order |Q : Co(K)|, which
is equal to 1 if K is central in Q, i.e. if Q is cyclic (since |K| = ep > 4 by assumption),
and to 2 otherwise. Set Ip g9 = Im() N Im(B). Then Ip ¢ has order 1 or 2, and there is
an exact sequence

(4.14) 1 — Cep x Cey = Npxo(Ly) = Ipg — 1.

Note that /p o does not depend on ¢ : H = K. More precisely,

{1} if P is cyclic,
Im(x) = { {1, -1} if P is dihedral or generalized quaternion,
{l1,ep/2 — 1} if P is semidihedral.

So Im(«) only depends on the type of P.

Similarly
{1} if Q is cyclic,
Im(B) = { {1, -1} if Q is dihedral or generalized quaternion,
{1,ep/2 — 1} if Q is semidihedral.
Moreover if Q is semidihedral and eg > ep, then eg/2 — 1 = —1 (modep), hence

Im(B) = {1, —1}. In other words, the group /p g is trivial in each of the following cases:

P or Q is cyclic,

e P is dihedral or generalized quaternion, Q is semidihedral, and ep = ey,
(i.e. equivalently |P| = |Q]),

e P is semidihedral, and Q is dihedral or generalized quaternion,

e P and Q are semidihedral, and ep < eg (i.e. equivalently |P| < |Q]),

and the group Ip ¢ has order 2 in all other cases, i.e. in each of the following cases:

e P and Q are dihedral or generalized quaternion,
e P is dihedral or generalized quaternion, Q is semidihedral, and |Q| > | P],
e P and Q are semidihedral, and P = Q.

As Ly, < C,p, x C,,, the exact sequence (4.14) yields the exact sequence

€eQ»
(4.15) 1 = (Cep X Ceg)/Ly — Npxo(Ly)/Ly — Ip.g — 1.

Case I: If Ip ¢ is trivial, then Npy g(Ly) = C,p x C,,, and

egs
(4-16) NPXQ(sz)/L(p = CeQ,
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which is a Roquette group, independent of ¢ up to isomorphism. In particular L, is a
genetic subgroup of P x Q.

Case 2: Suppose now that Ip o has order 2, i.e. Im(a) = Im(B) = {1, €}, where € is
either —1 or e /2 — 1 (in the case where P and Q are semidihedral and isomorphic). One
can choose an element u € P, of order 2 if P is dihedral or semidihedral, and of order 4
if P is generalized quaternion, such that o(u) = €. Similarly, one can choose an element
v € Q, of order 2 if Q is dihedral or semidihedral, and of order 4 if Q is generalized
quaternion, such that (v) = €. These choices imply that (#, v) € Npxo(Ly).

In the exact sequence (4.15),

1 = (Cep X Cop)/Ly = Npxo(Lg)/Ly — {1,€} — 1,

the group C = (C,, x C,,,)/ Ly is cyclic, isomorphic to Ce,. The element 7 = (u, v)L,
of Npxo(Ly)/Ly acts on C in the same way that v acts on the subgroup Ce,, of O,
namely by inversion if Q is dihedral or generalized quaternion, and by raising elements
to the power egp/2 — 1 if Q is semidihedral. Finally 7% = u?, v2)L(p = L, if none
of P and Q is generalized quaternion. If P is generalized quaternion and Q is not, then
2 = (zp, 1)L, € C — {1}, where zp is a generator of Zp. Similarly, if Q is generalized
quaternion and P is not, then 72 = (1, zp)Ly € C — {1}, where z¢ is a generator of Zg.
In these two cases
7t =(1,1)L, = Ly,

so 7 has order 4 in Npx g(Ly)/Ly. And finally, if both P and Q are generalized quater-
nion, then 72 = (zp, 29)Ly = Ly, since p(Zp) = Zyg.
It follows that the group Npy o (Ly)/ Ly has order 2eg = |Q], and that it is:

e dihedral if P and Q are both dihedral, or both generalized quaternion,

e generalized quaternion if one of P, Q is generalized quaternion, and the
other is dihedral,

e semidihedral if Q is semidihedral.

4.17)

So Npxo(Ly)/Ly is a Roquette group, independent of ¢ up to isomorphism. In particu-
lar, L, is a genetic subgroup of P x Q. This completes the proof of Theorem 4.6. O

Notation 4.18. e Let P and Q be Roquette p-groups. If P and Q are non-trivial, set
P o Q = Npxo(L)/L, where L is a centrally diagonal genetic subgroup of P x Q.
Set moreover 1o P =P o1 = P.

e Let P and Q be Roquette p-groups. If P and Q are non-trivial, let vp ¢ denote the
number of equivalence classes of centrally diagonal genetic subgroups of P x Q for
the relation =p, . Set moreover vy, p = vp 1 = L.

Remark 4.19. If P = 1 and Q is a Roquette p-group, then P x Q = (@, and the
centrally diagonal genetic subgroups of P x Q are the subgroups 1 x R, where R is a
genetic subgroup of Q such that R N Z(Q) = 1. The only such subgroup is R = 1, so
No(R)/R = Q = Npxp(1 x R)/(1x R). Hence the above definition of P Q and vp ¢
is consistent in the case P = 1.
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Theorem 4.20. Let P and Q be Roquette p-groups, of exponents ep and e, respectively.
Suppose ep < e, and set ¢ = |Q|. Then

(0] if P=1or P =Cp,

G ifP=Q= 0,

D, if g > 16and P and Q are both dihedral,

or both generalized quaternion,

Qy ifoneof P, Q is dihedral,

PoQ= and the other one is generalized quaternion,

SDy if Q is semidihedral, and either

e P is dihedral or generalized quaternion,
and |P| < |Q|, or

e P =0,

otherwise.

Ceq

Proof. The case P = 1is trivial, the case P = C, follows from (4.12), the case P =
QO = Qg follows from (4.10), the three next cases in the list follow from (4.17), and the
last case follows from (4.13) and (4.16). ]

Theorem 4.21. Let P and Q be Roquette p-groups, of exponent ep and eg, respectively,
and let m = min(ep, eg).

(1) If p = 2 and one of the groups P or Q is isomorphic to Qg, then L =p,o L’
for any centrally diagonal genetic subgroups L and L' of P x Q. In other words
vp.Q = 1.

(2) In all other cases, if L and L' are centrally diagonal genetic subgroups of P x Q,
then L =py o L' ifand only if L and L' are conjugate in P x Q. In particular

|P o Q]
|PI1Q]”

vp,g = ¢(m)m

where ¢ is the Euler function.

Proof. Assume ep < eg, without loss of generality.

olf P=1,thenvp g =1,and P ¢ Q = Q by definition, and ep = 1, so there is
nothing to prove.

olf p=2and P = Q = (g, then by Theorem 4.6, a genetic centrally diagonal
subgroup L of P x Q is of the form L, = XW(P), where ¢ : P — Q is a group
isomorphism. Moreover Npyxo(L)/L = C3,s0 P ¢ Q = C».

Now let ¢, ¥ : P — Q be two group isomorphisms. Then L, =~p ¢ Ly if and only
if there exists (x, y) € (P x Q) such that

LIV N ZpxoLy) < Ly,  “VLy N Zpxo(Ly) < Ly

These conditions depend only on the double coset Npx g (Ly)(x, y)Npxo(Ly), which
admits a representative of the form (u, 1).
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Now the condition L((p“’l) N Zpxo(Ly) < Ly is equivalent to
Vhe P, o) 'y e Zg = o)y (h") =1,
and similarly the condition (”’I)Lw N Zpxo(Ly) < L, is equivalent to
Vhe P, Y oth)eZg = v o"h) = 1.

If we apply ¥ ! to the first condition and ¢! to the second one, and set 6 = ¢,
these two conditions become

Yhe P, O 'WeZp = 0(h) =h",
Vhe P, 67 'W'hezZp = 07 (h) ="h.

Since h“h~! € [P, P] = Zp, there are equivalences

200 ' e Zp & O(W) " 'heZp & hT0h) € Zp,
0~ ') "hezp & 07 TheZp & hOM) € Zp.

Hence, to prove that L, =py o Ly forany ¢, : P i Q, it is enough to show that

0(h) = ht,

(422) VO eAu(P),ueP,YVheP, OMhh'eZp = {el(h) _up,

If & has order 1 or 2, then 8(h) = h = h" for any u € P, hence the conditions 8 (k) = h"
and 6~!(h) = “h only have to be checked for || = 4. Now the group Aut(P) permutes
the three cyclic subgroups of order 4 of P, and this gives an exact sequence

1 - Inn(P) —> Aut(P) —> S3 — 1,

where S is the symmetric group on three symbols. Saying that 8 (h)h~! € Zp is equiva-
lent to saying that 6({h)) = (h). Hence, there are two possibilities:

Either 6 stabilizes the three subgroups of order 4 of P, and in this case 6 is inner,
hence there exists # € P such that §(h) = h* for any h € P, hence 6! (h) = “h for any
heP.

Or there exists a unique subgroup C of order 4 of P such that 6(C) = C. Then either
0(h) = hforany h € C,or6(h) = h=! for any h € C. In the first case, take u = 1, and
in the second case take u € P — (h); then O(h) = h* forany h € C, hence h = 0~ (h)*
for h € C, since C = 6(C). Thus (4.22) holds. This completes the proof in this case.

o If P = Qg and Q 2 Qs, then a centrally diagonal genetic subgroup of P x Q is
of the form L = Xw(H ), where H is one of the three subgroups of order 4 of P, and ¢
is some isomorphism from H to the unique axial subgroup K of order 4 of Q. Moreover
Zpxo(L) =LA x Zg).

Let H and H’ be subgroups of order 4 of P.Let¢p : H — K and ¢’ : H' — K be
group isomorphisms, and set L = Z((p) and L' = Z(/,/(H’). Suppose first that H # H',
and let (a,b) € L'N Zpxo(L) = L(1 x Zgp). This means thata € H' N H = Zp,
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and there exists z € Z¢ such that ¢’(a) = ¢(a)z. But the restrictions of ¢ and ¢’ to Zp
are equal, so ¢'(a) = ¢(a), hence z = 1. It follows that L' N Zpyo(L) < L, hence
LN Zpyxo(L") < L' by symmetry, so L =p, o L’ in this case.

Now if H = H’, choose a subgroup H” of order 4 in P, different from H, and a
group isomorphism ¢” : H” — K. Set L” = an(H”). Then L =pyg L =pyxg L’
by the previous argument, thus L =p, o L.

Hence vp ¢ = 1 in this case, as was to be shown.

o If there are several choices for K, i.e. O = Qg and K has order 4 = min(ep, ep),
it follows that P = Cy, since P 2 Qg. In this case, we can exchange P and Q, and use
the previous argument. Hence vp ¢ = 1 in this case as well.

e In all other cases, by Theorem 4.6, a centrally diagonal genetic subgroup L of P x Q
is of the form Xw(H), where H < P is the unique axis of P, and ¢ : H < Q is a group
isomorphism onto the unique axial subgroup K of order ep of Q. The normalizer of L in
P x Q does not depend on ¢, by (4.11), so it does not depend on L, since H and K are
also unique.

Let L and L’ be two such centrally diagonal genetic subgroups of P x Q. Then
in particular Npy (L) = Npxg(L'), thus L =p, o L’ if and only if L and L are
conjugate in P x Q, by Lemma 2.20. Moreover, it follows from the definition of P ¢ Q
that

INPxo(L)| = |L||P o Q] =ep|P o 0,

so the conjugacy class of L in P x Q has cardinality e‘pfl) Il"‘ngl . Since there are ¢ (ep) pos-

sible choices for the isomorphism ¢ : H — K, i.e. ¢(ep) centrally diagonal subgroups
of P x Q, it follows that

P
vp o = ¢(€P)6Pﬂ

IPI1QI’

as was to be shown. O

Remark 4.23. Suppose that P = Qg and Q 2 Qg. Then |P ¢ Q| = |Q], by Theo-
rem 4.20. Hence

IPo Q) 0]
P Xl oxdax = —1= ,
pler)er ol =2 X gig) vP.Q

so the formula for vp o holds in this case. The only case where vp ¢ is not equal to

¢(m)m ||£‘°|%|| (where m = min(ep, eg)) is when P = Q = Qg: in this case vp g = 1,
but

P 2 1
PoOl _,

d)(m)mm— X 4 X S x 8 4

Corollary 4.24. Let P and Q be Roquette p-groups. Then, in the category R,

IPx 00 Zvpg-3(PoQ).
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In other words, if P has exponent ep, Q has order q and exponent eg, and ep < eg, then

a0 ifP=1or P = Cy,
00, ifP=Q=Qs,
@ -0Dy ifq > 16 and P and Q are both dihedral,
or both generalized quaternion,
@ <00y if one of P, Q is generalized quaternion,
AP x 30 = and the other one is dihedral,
eler)  5g D, if Q is semidihedral, and either
e P is dihedral or generalized
quaternion, and |P| < |Q|, or
«P=Q,
% . 8C6Q otherwise.

Proof. Let B be a genetic basis of the group R = P x Q. In the category R, the product

0P x 9Q isequalto (P x Q, f1P X fIQ), and it is a summand of R. By Theorem 3.11,
there are mutually inverse isomorphisms

D —
R—=PaNr(S).
z SeB

where Z is the direct sum of the maps Indinfj%R 5’ and D is the direct sum of the maps

flﬁR(S) Defres]%R S Corollary 4.24 follows from the fact that
Ng(S
(4.25) fYE® Defresf o (f{ x =0

unless S is centrally diagonal in R = P x Q. Indeed, Defresj%R )

of the (N g (S), R)-biset S\ R. On the other hand

is given by the action

X 2 =P/N—P/Zp)x (Q/1—Q/Zg)
=R/Ax1)—R/(1xZg)—R/(Zp x 1)+ R/(Zp x Zg),

hence Defres%R NG £2) is equal to

S\R/(1 x 1) = S\R/(1 x Zp) — S\R/(Zp x 1) + S\R/(Zp x Zg),
which is
(4.26) S\R — S(1 x Zp)\R — S(Zp x D\R + S(Zp x Zo)\R.

If S is not centrally diagonal in R = P x Q, then either § = S(I1xZg)or S = S(Zp x1).
In each case the sum (4.26) vanishes.
And if S is centrally diagonal in R, then

SAx Zy)=S8(Zp x1) =S(Zp x Zg).
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since the image of these groups in the Roquette group N r(S) is equal to its unique central
subgroup §/S of order p. In this case

Defres]%R(S)(fIP X IQ) = S\R — §\R.

Since fl’V R) — Np(S)/S — Ng(S)/S, it follows that Defresl%R ) fE x £,2) is invariant
under composition with flﬁR(S).

Conversely, if S is not centrally diagonal in P x Q, then

Nr(S) _
r(S) 71 =0

as can be seen by taking opposite bisets in (4.25). And if S is centrally diagonal, then

(ff x f2) Indinf&

’

Ng(S
fR()

U x [ Indint®  pV*S = RS — R/S = Indinf® ]

R(S) r(S)

Hence the isomorphisms D and Z restrict to mutually inverse isomorphisms between the
product 8 P x 3 Q and the direct sum of the edges d N (), where S is a centrally diagonal
genetic subgroup of R. But for all such subgroups S, the group N (S) is isomorphic to
P ¢ Q, and there are vp ¢ centrally diagonal subgroups in a genetic basis of R = P x Q.
This completes the proof. O

5. Examples and applications

5.1. Suppose first that p is odd. Then the Roquette p-groups are just the cyclic groups
Cpn for n > 0. The “multiplication rule” of the edges 9Cpn is the following:

(5.2) Vm,Vn €N,  9Cpm x dCp = ¢(p™"™))C ymaxtn.n),

where ¢ is the Euler function (thus ¢ (p¥) = p*~1(p — 1) ifk > 0, and ¢ (1) = 1).

5.3. Some surprising phenomena occur when p = 2:
Proposition 5.4. In Ry, the edge dC3 is isomorphic to the trivial group 1 (or its edge 91).

Proof. Indeed, Corollary 3.12 implies that if £ = (C2)?, then 9E = 0in Ry. Let X, Y,
and Z denote the subgroups of order 2 of E. The element

u = Res§ x g ff xp Ind}

of B(X, Y) can be viewed as a morphism from Y to X in the category R7, which factors
through 0 E. So this morphism is equal to 0. Since

ff=EN—-E/X—-E/Y—~E/Z+2EJE,
it follows that

u = Ind{ Res] —Inf{ Res! — Ind{ Def} —Iso(g) + 2 Inf{ Def]
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where ¢ is the unique group isomorphism from Y to X. Thus
0=u Iso(p~") = Ind{ Resy — Inf{ Res§ — Ind{ Def¥ — Idy +2 Inf{ Deff .
Hence in the category R,
Idy = (Indf — Inf{)(Res¥ — Def{) + Inf{ Def} .
It follows that
(5.5) £ = £ (Ind{ — Inf{)(Res{ — Def{) £;¥.
But on the other hand f}¥ = Idy — Inf{ Def}’, so
fif (Ind{ —nff) = X Ind{ = Ind{ — Inf{ Def{ Ind{ = Ind{ — Inf{ .
It follows that

(Resf — Deff) f{* (Ind{ —Inf{) = (Res§ — Def{ )(Ind{ — Inf{)
=2Idy —Idy —Idy +1d; = Idy .

Thus, if we set

a = f{(Ind{ —Inf{) € Homg, (1, 8X),
b = (Resy —Def}) f{* € Homg, (3X, 1),

then the composition boa is equal to Idy, and (5.5) shows that a o b is equal to the identity
of X. So a and b are mutually inverse isomorphisms between 1 and 0 X. O

Corollary 5.6. Let F be a rational 2-biset functor. Then for any finite 2-group P,
F(Cy x P)Z F(P)® F(P), F(Dgx P)= F(P)®.

Proof. Indeed, rational p-biset functors are exactly those p-biset functors which factor
through the category R ;. And in R, by Theorem 3.11, there is an isomorphism

CrE100C, =E101.

Thus C» x P = P @ P, and the first assertion follows. The second one follows from
Example 3.13, which shows that in R,

Ds=1®4.-0C,=5-1.
Hence Dg x P =5 - P, thus F(Dg x P) = F(P)%. u]
Proposition 5.7. The edge 0 Qg is an involution: more precisely,

008 x Qg =0dCy = 1.
Proof. Indeed, Qg ¢ Qg = C3, and vg, g, = 1 by Theorem 4.21. O
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Remark 5.8. The “action” of this involution on the edges of other Roquette 2-groups
(that is, different from 1, C», and Qg) is as follows: it stabilizes cyclic and semidihedral
groups, and exchanges dihedral and generalized quaternion groups. More precisely, it
follows from Corollary 4.24 that

Vn > 2, 008 x dCyn = 9Copn,
Vn>4, 09QgxdDy =00,
Vn >4, 0Q0gxdQm = 030D,
Vn>4, 003 %X 3dSDy =03SDyn.

5.9. By Theorem 3.11, any finite p-group is isomorphic to a direct sum of edges of
Roquette p-groups in the category R,. The following result shows that the summands
of such an arbitrary direct sum are unique up to group isomorphism, with the possible
exception of the isomorphism 1 = 91 = 9C, of Proposition 5.4:

Proposition 5.10. Let S and T be finite sequences of Roquette p-groups such that there
exists an isomorphism

(5.11) @ 0S = @ 0T  in the category Rp.

SeS TeT
If p = 2, replace any occurrence of Co in S and T by the trivial group, which does not
change the existence of the isomorphism (5.11), by Proposition 5.4. Then there exists a
bijection ¢ : S — T such that the groups S and ¢(S) are isomorphic for any S € S.
Proof. By [Bou04], the simple biset functors Sg r,, where R is a Roquette p-group dif-
ferent from C,, are rational biset functors. Moreover, if |R| > pz, then for any finite
p-group P, the dimension of Sg r,(P) is equal to the number of groups S in a genetic
basis of P such that Np(S) = R. On the other hand, the F)-dimension of Sl.,JFp(P) is
equal to the number of groups S in a genetic basis of P such that [N p(S)| < p.

The functor Sk, extends to an additive functor from R, to the category of F,-vector
spaces, and the value of this functor at the edge P is by definition equal to dSg F, (P).
Let B be a genetic basis of P. When NIP and N < § < P, set S = S/N, and note
that N5(S) = Np(S). Then the set By = {S | S € B, S > N} is a genetic basis of
P = P/N.

Thus for any Roquette group R,

3 HSGB‘IVP(S)zR, ﬂngNH
NJP gepP

> |{senv|Fp®=r N5 =1
NP P

gepP

(S € B Np(S) = R}

> S eBy INp(S) =R, SNZ(P)=1).
NP

It follows easily from Proposition 3.8 that if |[R| > p?, then the IF,-dimension of
dSgF,(P) is equal to the number of groups § in a genetic basis of P such that
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Np(S)ZRand SNZ(P)=1.In particular, if P itself is a Roquette group, then

1 if P=R,

dimg, Sg r, (0 P) = dimg, dSgF,(P) = {0 otherwise

By applying the functor Sg F, to the isomorphism (5.11), this implies that the number of
terms in the sequence S which are isomorphic to R is equal to the corresponding number
in7.

Similarly, for any finite p-group P, the [,-dimension of 951 r,(P) is equal to the
number of groups S in a genetic basis of P such that Np(S) < pand SN Z(P) = 1. If
P itself is a Roquette group, this gives

1 if P=Cp,
dimﬂ:p Sl,]Fp (0P) = dim[pp 8SI,F,;(P) =11 ifP=1,
0 otherwise.

Hence the number of terms in & which are isomorphic to 1 or C), is equal to the cor-
responding number in 7. If p = 2, there are no S in S U T such that § = C», by
assumption. It follows that for any Roquette p-group R, the number of terms in S which
are isomorphic to R is equal to the corresponding number in 7. The proposition follows
in this case.

If p > 2, the above argument shows that

@ 9S = @ aT.
SeS TeT
|S|=p? |T|>p?

Let M denote this direct sum. The isomorphism (5.11) can be rewritten as
(5.12) mil@®mc,dC, ® M =n11®nc,dCp & M

for some integers m1, mc,, ni, nc, such that mq + mc, =ni+nc,.

Now, let ¢ be a primitive (i.e. non-trivial, since p is prime) character (Z/pZ)>* — C.
Such a character exists since p > 2. The functor Sc, ; is a rational p-biset functor, as
it is a summand of CR¢ [Boul0, Corollary 7.3.5]. Applying this functor to the isomor-
phism 5.12 and taking dimensions gives

mc, + dim¢ SC,,,{(M) =nc, + dim¢ Scpﬁg(M),

since Sc, (1) = 0and Sc, ¢ (Cp) =9S¢, :(Cp) =C.
It follows that mc, =nc,, hence m1 = ny, which completes the proof. ]

Corollary 5.13. Let X, Y, and Z be objects of 'R, isomorphic to direct sums of edges
of Roquette p-groups.

D) IfFXSZ=YDZinRy, then X =Y.
(2) If n is a positive integer, and if n - X =n - Y in R, then X =Y.
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Proof. Decompose X as X = P g 1R(X) - R, where R runs through the set of iso-

morphism classes of Roquette p-groups, and the function R +— ng(X) € N has finite

support. Choose similar decompositions ¥ = @z ng(¥Y)-0R and Z = Py nr(Z) - IR.
For (1), if p > 2, it follows from Proposition 5.10 that

nr(X) +ngr(Z2) =ng(Y) +ng(2)

for each R. Thus ng(X) = ng(Y) for each R, hence X =Y in R,,.

If p = 2, and if R is a Roquette p-group different from 1 and C,, Proposition 5.10
shows that ng(X) + ngr(Z) = ngr(Y) +ng(Z), hence ng(X) = ng(Y). Proposition 5.10
also implies that

n1(X) + nc,(X) +n1(Z2) +nc,(Z2) = n(Y) +ne,(Y) +n1(2) +nc,(2),

whence n1(X) + nc,(X) =n1(Y) +nc,(Y), and X = Y in R; again, since 1 = C;.
The proof of (2) is similar: if p > 2, Proposition 5.10 shows that

nng(X) = nng(Y)

for any R, thus ng(X) = ng(Y),and X = Y. And if p = 2, the conclusion ng(X) =
ng(Y) is valid for R different from 1 and C,. Moreover

n(n1(X) +nc, (X)) = n(n1(Y) +nc,(Y)),

hence n1(X) +nc,(X) =n1(Y) +nc,(Y),and X = Y, since 1 = C». m]

In the case of the decomposition of a p-group as a direct sum of edges of Roquette groups,
the above isomorphism dC> = 91 does not matter, and the decomposition is unique:

Proposition 5.14. Let P and Q be finite p-groups. The following assertions are equiva-
lent:

(1) P and Q are isomorphic in the category R .
(2) There exist genetic bases Bp and Bg of P and Q, respectively, and a bijection
o : Bp — Bg such that

(5.15) VS € Bp, Ng(a(8))/a(S) = Np(S)/S.

(3) For any genetic bases Bp and Bg of P and Q, respectively, there exists a bijection
o : Bp — Bg such that (5.15) holds.

Proof. (2) implies (1) by Theorem 3.11. Now suppose that (1) holds. Then in particular
F(P) = F(Q) for any rational p-biset functor F. Let Bp and B¢ be genetic bases of P
and Q, respectively. If R is a Roquette p-group, set

mp(R) = |{S € B| Np(5)/S = R},

and define similarly m g (R) for the group Q. The integers mp(R) and mg(R) do not
depend on the choices of the genetic bases Bp and Byp.
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If R is not isomorphic to C),, then the simple functor Sg ) is rational. Moreover, the
[F)-dimension of Sg r,(P) is equal to mp(R) if [R| > p,andto 1 + mp(C,) if R = 1.
Since P is the only element S of B such that Np(S)/S = 1, it follows that mp (1) = 1;
then m p (R) = mg(R) for any Roquette p-group R, and (2) follows. The equivalence of
(2) and (3) follows from Theorem 2.22. O

Example 5.16. o Let p > 2, and let X (resp. X ™) denote the extraspecial p-group of
order p® and exponent p (resp. p?). Then XT = X~ in Rp, for if P is one of these
groups, then each genetic basis of P consists of S = P, for which Np(S)/S = 1, of the
p + 1 subgroups S of index p in P, for which Np(S) = P/S = C,, and an additional
non-normal genetic subgroup S such that Np(S)/S = C),. In other words

XT=X" =10 (p+2)-9C, iR,

e Similar examples exist for p = 2: if P is one of the groups labelled 6 or 7 in the GAP
list of groups of order 32 (see [GAP13]), with respective structure ((Cq x C3) X C2) x Ca
and (Cg x C2) x C3, then in any genetic basis of P, there is a unique group S (= P) such
that Np(S)/S = 1, there are six groups S such that Np(S)/S = C,, and two groups S
such that Np(S)/S = Cy.

e Some 2-groups with different orders may become isomorphic in the category R,:
using GAP, one can show that the elementary abelian group of order 16 is isomorphic to
each of the groups labelled 134, 138, and 177 in GAP’s list of groups of order 64. These
groups have respective structures

((C4 x C4) ¥ C2) X C3, (((C4 x C2) x C2) X C2) X Ca, and  (Cy X Dig) x4 Ca.

I could not find any similar example for p > 2. In this case however, the following result
characterizes those p-groups which become isomorphic in the category R ,:

Proposition 5.17. Let p be a prime number, and let P and Q be finite p-groups.

(1) If P = Q in the category Rp, then the Q-algebras ZQP and ZQQ are isomorphic.
(2) If p > 2, and if ZQP and ZQQ are isomorphic Q-algebras, then P = Q in R,

Proof. Let G be a genetic basis of P. For § € G, let V(S) denote the corresponding
simple Q P-module, defined by

— infl _
V() = Indmfﬁp(s) (DNP(S)'

The multiplicity vg of V (S) in the Q P-module QP is equal to

dimg V (S)
Vs = .
$ 7 dimg Endgp (V(S))

As S is a genetic subgroup of P, there is an isomorphism of (skew-)fields

Endgp (V(S)) = Endgy s, (P57 ,s)-
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It follows that there is an isomorphism of Q-algebras

QP = ]_ngs(EndQﬁMS)(cbﬁp(S))).
Se

Hence

ZQP = ]_[ ZEndgy, s (Px,s)-
Seg

This shows that the isomorphism type of the Q-algebra ZQP depends only on the ge-
netic basis G: more precisely, it is determined by the isomorphism type of P in R ,. This
proves (1).

Now if p > 2, the group N p(S) is cyclic, of order p”'s say. By Example 2.11, there
is an isomorphism of (skew-)fields

End@ﬁp(S)(q)]VP(s)) = Q(gpms),

where ¢p,ns is a primitive root of unity of order p™'S. Hence

zQP = [T Qpms)-

Seg

Similarly, if H is a genetic basis of Q then

7Q0 = [] Q@prr),
TeH

where p"T = |N o(T)|.

Let / be an integer greater than all the mg’s for S € G, and all the n7’s for T € H.
Set K = Q(¢,), and let G be the Galois group of K over Q. By Galois theory [Sza09,
Theorem 1.5.4 and Remark 1.5.5], the Q-algebras ZQP and ZQQ are isomorphic if and
only if there is an isomorphism of G-sets

Homyg(ZQP, K) = Homyg(ZQQ, K).

When r < [ is an integer, let G, denote the Galois group of K over Q(¢,r). Then the
G-set Homy o (ZQP, K) is isomorphic to

| | G/Gus.

Seg

The isomorphism ZQP = ZQQ implies that for any r < /, the number of S € G such
that N p(S) has order p” is equal to the number of T € H such that N o (T) has order p".
Now (2) follows from Proposition 5.14. O
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Remark 5.18. Proposition 5.17(2) is not true for p = 2. Let P = Dg and Q = Qg
denote a dihedral group of order 8 and a quaternion group of order 8, respectively. By
Example 3.13, in a genetic basis of P, there is one group S such that Np(S)/S =1
(namely S = P), and four subgroups S such that Np(S)/S = C; (the three subgroups of
index 2 in P, and a non-central subgroup of order 2 of P). It follows easily that

QD =Qe Qe Qo Qo M2(Q).

On the other hand, a genetic basis of Q contains one subgroup S such that Np(S)/S =1
(namely § = Q), three subgroups § such that Ng(S)/S = C; (the three subgroups of
index 2 in Q), and one subgroup S such that Np(S)/S = Qg (the trivial subgroup of Q).
Hence

Q0s=QeQae Qe Q@ Hg,

where Hp is the field of quaternions over Q. Then

ZQDg = Q° = ZQQs.

But Dg and Qg are not isomorphic in Ry, by Proposition 5.14.

5.19. Genetic bases of direct products. Theorem 4.21 yields a way to compute a ge-
netic basis of a direct product of p-groups. More precisely:

Theorem 5.20. Let P and Q be finite p-groups, let Bp be a genetic basis of P, and let
Bo be a genetic basis of Q.

(1) For each pair (S, T) € Bp x B, let R be a centrally diagonal genetic subgroup of
Np(S) x No(T), and let

R ={(x,y) € Np(S) x No(T) | (xS, yT) € R}.
Then R is a genetic subgroup of P x Q such that
Npyo(R) = Np(S)o No(T).

(2) For (S,T) € Bp x Bg, let Es. 7 denote the set of subgroups R obtained in (1)
when R runs through a set of representatives of centrally diagonal genetic subgroups
of Np(S) x N g(T) for the relation =N p($)xNo(T) @S described in Theorem 4.21.

Then the sets Es 1 consist of mutually inequivalent genetic subgroups of P x Q for
the relation =py g, and the (disjoint) union

Brxo= || s
(8.7)eBpxBg

is a genetic basis of P x Q.
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Proof. (1) is straightforward if the group Np (S) is trivial, i.e. § = P, or if the group
IVQ(T) is trivial, i.e. T = Q. So we can assume that S < Pand T < Q.

By Theorem 4.6, the group R is diagonal in N p(S) x IVQ(T). Hence k1 (R) = S,
ky(R) = T,and R = R/(S x T). This implies that Npxg(R) < Np(S) x No(T). More
precisely

Npxo(R) = {(a,b) € Np(S) x No(T) | (@S, bT) € Ny, (s, (r) (B}
and the map (a, b) — (aS§, bT) induces a group isomorphism
Npxo(R)/R = Ny, (5)x7 o) (R)/R.

It follows that Npyx o (R)/R is a Roquette group, and by Theorem 4.6 again, and Nota-
tion 4.18,

Npxo(R)/R = Np(S) o No(T).
Let § > S denote the subgroup of Np(S) such that S /S is the unique central subgroup
of order p of the Roquette group N p(S). Define T>T similarly, and let R, /R be the
unique central subgroup of order p of Npyxo(R)/R. Then

R=Ex1DR=(1xT)R.

Let (x,y) € P x Q be such that R®Y) N R < R. Intersecting this inclusion with P x 1
gives
S NS x1<8x1,
thus $* NS < S, and it follows that x € N p(S) since § is an expansive subgroup of P.
Similarly, intersecting the inclusion R®*¥) N R < R with 1 x Qgives TN T < T, hence
y € No(T).
Now S x T < R&) N R < R, and taking the quotient by S x T gives

(xS,yT)

R N(R/(S x T)) <R.

As R is a genetic subgroup of N p(S) x NQ(T) it follows that R*>" is equal to R,

hence R*Y) = R. Thus R is an expansive subgroup of P x Q. Since Npxo(R)/R is
a Roquette group, the group R is a genetic subgroup of P x Q, and this completes the
proof of (1).

For (2), let (S, T) and (S', T’) be in Bp x Bp, andlet R € 57 and R’ € Eg 1/ be
such that R =p, o R’. This means that there exists (x, y) € P x Q such that

(5.21) REYNR <R, “YRAR<R.
Intersecting these two inclusions with P x 1 gives
S NS <8, *NS<S.
Hence S =p S, thus §’ = §, since S and S’ are in the same genetic basis of P. Moreover
x € Np(S). Similarly, intersecting (5.21) with 1 x Q 1mphes T =T ,andy e No(T).
Quotienting the inclusions (5.21) by § x T gives that R =N p($)xNo(T) R. Hence
R’ = R, as was to be shown.
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Now setting
Bpxo = |_| Es,t
(8,T)eBpxBg
yields a set of genetic subgroups of P x Q which are inequivalent to each other for the
relation =p . But

|5S,T| = vﬁp(S),lVQ(T)’
and Npxo(R)/R = Np(S) o IVQ(T) for any R € &g 7. It follows that

@ 8NPXQ(R)/R = @ VNP(S),IVQ(T)B(]VP(S)OIVQ(T))
REBPXQ SEgP
TebBo

~ (EB aﬁp(S)) x (@ aﬁQ(T)) ~PxQ.
SeBp TeBg

In particular, the rank Ig(P x Q) of the group Rg(P x Q) is equal to |[Bpxgl. Since
Bpx o is contained in a genetic basis of P x Q, which has cardinality Ip(P x Q), it
follows that Bpy ¢ is a genetic basis of P x Q. O

Remark 5.22. Theorem 5.20 does not mean that any genetic subgroup of P x Q can be
obtained by the construction of (1). For example, if [P, P] < Z(P) and Z(P) is cyclic,
then the diagonal R = A(P) is a genetic subgroup of P x P, by Example 2.17. But
k1(R) = 1is not a genetic subgroup of P if P is not a Roquette group.

5.23. Example of application. As explained in Example 3.13, the dihedral group Dg
splits as

(5.249) Dg=1®49C; inR,.

Hence Dg = 5 -1 in R,, by Proposition 5.4, and (Dg)" = 5" - 1 for any n € N. In
particular, if F is a rational 2-biset functor such that F (1) = {0}, then F((Ds)") = {0}.
Hence F'(P) = {0} for any quotient of a direct product of copies of Dg, by Remark 3.10.

Actually, one can be more precise: since dCy x dCy = 9C, by Corollary 4.24, it
follows that for any n € N,

n n
(5.25) (Dg)" = @ (’7)4" (G =1 @ (’7)4" G Z1@ (5" —1)-9Cs.

i=0 \! i=1 \!
This means that a genetic basis of the group P = (Dg)" is made up of the group S = P,
for which Np(S)/S =1, and of 5" — 1 subgroups S for which Np(S)/S = C;.

In particular, by [Bou06, Theorem 9.5] (or [BoulO, Corollary 12.10.3]), the Dade
group of P is torsion free, and so is the Dade group of any factor group of P, by Re-
mark 3.10 again. This shows that the Dade group of a central product of any number of
copies of Ds is torsion free (see Theorem 5.36 for a generalization of this result): this was
proved by Nadia Mazza and myself [BM04, Theorem 9.2]. However, the above argument
cannot be considered as a new proof of this result, since [Bou06, Theorem 9.5] relies on
[BMO04, Theorem 9.2].
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5.26. Edges of central products. Let P and Q be non-trivial finite p-groups. We re-
call that a central product P x, Q of P and Q is by definition a group of the form
(P x Q)/_A)W(Zp), where Z p is a central subgroup of order p of P,and ¢ : Zp — Z(Q)
is some isomorphism from Zp to some central subgroup Z¢ of Q.

In the case where p = 2 and the groups P and Q both have cyclic center, the group
Z p is unique, as also is the morphism ¢, so the central product is simply denoted by P x Q
in this case.

Proposition 5.27. Let p be a prime number, and let P and Q be non-trivial finite
p-groups. Let Zp (resp. Zg) denote a central subgroup of order p of P (resp. Q).

(1) If one of the groups Z(P) or Z(Q) is non-cyclic, or if |Z(P)| > p and |Z(Q)| > p,
then d(P *, Q) = 0in R, for any group isomorphism ¢ : Zp — Zg.
(2) If Z(P) and Z(Q) are cyclic, and if moreover Z(P) or Z(Q) has order p, then

P aPx Q=P x0Q inR,.
0:Zp S Zgo
Proof. The center of the group P %, Q is equal to Z(P) *x, Z(Q). Itis cyclic if and only
if both Z(P) and Z(Q) are cyclic, and if one of them has order p. This proves (1).
For (2), suppose that Z(P) and Z(Q) are cyclic, and one of them has order p. Then the

subgroups Zp and Z g are uniquely determined, and there are p — 1 group isomorphisms
@ : Zp — Zg. For each of them, the only central subgroup Z, of order p of P %, Q is

equal to (Zp x ZQ)/Z(p(Zp), and
(Pxy Q)/Zy = (P x Q)/(Zp x Zg) =P x Q,
where P = P/Zp and Q = 0/Zg.
By Proposition 3.8,

Px0= @ P xQ)/N),

1<N J(Px Q)

Py Q= P (P x Q)/N),

Ay(Zp)=N I(PxQ)

PxQ= (P x Q)/N),
(ZpxD)<N (Px Q)
PxQ= 3((P x Q)/N),
(AxZg)<N A(PxQ)
PxQX a((P x Q)/N).
(ZpxZg)<N UPxQ)
Set
(5.28) Sza(PxQ)ea( D (P*(pQ)>GB(I7xQ)€B(Px§).

go:ZpiZQ
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Then § is equal to the direct sum of the edges d((P x Q)/N) for N < (P x Q), with
multiplicity p + 1if N > Zp x Zg, and multiplicity 1 otherwise. Hence

(5.29) SZ(PxQ)+p-(PxQ).
Now a(P x Q) = 0 by Corollary 3.12. Also, by Corollary 3.9, foreach ¢ : Zp 3 Zy,
Px, Q=03(Px, Q) ® (P x Q).
But P =3P @Pand Q = 3dQ @ Q, by Corollary 3.9 again. Replacing P, Q, and P *p O
by these values in (5.28) gives
(5.30) S = ( P oarx, Q)) ®(p+1)-(PxQ)@®(Px(0Q0)d((P)x Q).
0:Zp>Zg
But replacing P by 9P @ P and Q by 40 @ Q in (5.29) gives
(5.31) SZOPxaQ)d(p+1)-(PxQ)® (P x(30)®(0P)x Q).
Comparing (5.30) and (5.31) gives
EB (P xy Q) =3P x 30,
0 Zp—Zg
by Corollary 5.13. This completes the proof. O

Corollary 5.32. (1) Let P and Q be non-trivial finite 2-groups with cyclic center, and
assume that Z(P) or Z(Q) has order 2. Then

O(PxQ)=0P xdQ inthe category R;.
(2) For each i € {1,...,n}, let P; be a finite 2-group with center Z; of order 2. Let
ski_, Pi = Py % --- % P, denote the central product of the groups P;. Then

n n n
sk r=[JerP)e[[(P/z) inthe category Ro.
i=1 i=1 i=1

(3) In particular, for any positive integer n, and any integer m > 4, there are isomor-
phisms
(Dym)*" = 2(n=1)(m=3) dDym @ (D2m71)n’
(SDzm)*n o~ o=D(m=3) | S D ® (Dzm—l)n,
Qo)™ = 20=Dm=3) . §Dr @ (Dym-1)"  if n is even,
2 F ) 20-D0=3) 500 @ (Dywt)"  if 1 is odd,

in the category R, where P*" denotes the central product of n copies of P.
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Proof. For (1), the assumptions imply that there is a unique group isomorphism ¢ :
Zp — Zg. Hence there is only one term in the summation of Proposition 5.27.
(2) follows from Corollary 3.9, which gives an isomorphism

s n=o(sk n) o (k7))

where Y is the unique central subgroup of order 2 in 3k_, P;. Now an easy induction
argument, using (1), shows that a(sk;_, P;) = [[/_,(@P), and that (3k]_, P)/Y =

[T (Pi/Z)).
Finally, when P is one of the groups Dam, SDom, or Qom, then P/Z = D,u-1. Now
(3) follows from (2) and from an easy induction argument using Corollary 4.24. O

Remark 5.33. It follows from (3) that when n is even, the groups (Dy=)*"* and (Qom)*"
are isomorphic in the category R»; it is actually easy to check that they are isomorphic as
groups.

Example 5.34. From Corollary 4.24 and (1), it follows that:
o J((Dg)*™) = 0C,.
0C, ifniseven
*NN ~ s
e 0(Q™) = { 905 if n is odd.
o I((SDyn)*) = 20=Dn=3) . 59 D>w for m > 4.

More generally, if P is any central product of groups isomorphic to Dg or Qg, that is,
if P is an extraspecial 2-group, then 9P = 9C, or P = 9(Qs. In particular (see Ex-
ample 2.28), we recover the well known fact that P has a unique faithful rational irre-
ducible representation. But more is true. Let Q be a non-trivial 2-group. If the center
of Q is not cyclic, then the center of any central product P *x Q is not cyclic, hence
a0 = 9(P x Q) = 0in Ry. If the center of Q is cyclic, then there is a unique central
product P x Q. By Theorem 3.11, there is a finite sequence S of Roquette 2-groups such
that
30 = EB dR inR,.
ReS
By Corollary 5.32(1), it follows that

AP Q)= @(ap X OR).
ReS

Now dP = 9C, or d P = 9 Qg. In both cases, by Propositions 5.4 and 5.7, multiplication
by 9 P is a permutation of the edges of the Roquette 2-groups. It follows that there is a
sequence S’ of Roquette 2-groups, of the same length as S, such that

AP x Q)= @ dR.

ReS'
In particular, for any field K of characteristic 0, the groups

Rx(@P) =0Rg(P) and Ryx((P % Q)) = dRkx(P x Q)

are free of the same rank, equal to the length of S or §'.
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Hence in any case, the groups Q and P * Q have the same number (possibly 0 if the
center of Q is not cyclic) of faithful irreducible representations over K, up to isomor-
phism.

Similarly, the last example above means in particular that the group (SDo»)*" admits
21=D(m=3) non-isomorphic faithful rational irreducible representations.

Example 5.35. Let p be an odd prime, and let P = X€ (where € € {£1}) be one of the
extraspecial groups of order p? considered in Example 5.16. Then d P = 9C »- Moreover
Z(P) has order p, and any automorphism of Z(P) = Zp can be extended to an auto-
morphism of P. It follows that P %, Q is independent (up to a group isomorphism) of
the choice of an embedding ¢ : P — Z(Q), for any non-trivial p-group Q with cyclic
center, so we can denote this group by P * Q.

Now if Q is a non-trivial p-group, and B is a genetic basis of Q, it follows from
Theorem 3.11 that

90 = @ AN (S),
SeB
SNZ(Q)=1
and the right hand side is a direct sum of edges of non-trivial Roquette p-groups. By (5.2),
for any non-trivial Roquette p-group R,

9C, x IR = (p — 1)IR.
Hence for any non-trivial p-group Q,
0C, x3Q = (p— 1)oQ.
It follows that if Q is a non-trivial p-group with cyclic center, and if P = X¢€, then

P PO =(p—-1IP*0)=03C, xIQ = (p— 10O,

gﬂ:ZpiZQ

hence d(X€ % Q) = 9Q, by Corollary 5.13. Note that this is also true (for any central
product of X€¢ with Q) if the center of Q is non-trivial, since in this case the center of
X€ x Q is also non-trivial, and then 3(X€ * Q) = 9Q = 0in R, by Corollary 3.12.

It follows easily by induction that if P is any central product of groups isomorphic
to XT or X, i.e. if P is an extraspecial p-group, then 9P = 9C,. We thus recover the
well known fact that for p > 2 too, extraspecial p-groups have a unique faithful rational
irreducible representation. The same argument shows more generally that 3(Px Q) = 9 Q
in R, for any non-trivial p-group Q. In particular Q and P * Q have the same number of
faithful irreducible representations over a given field K of characteristic 0.

Theorem 5.36. (1) Let P be an arbitrary finite direct product of groups of order 2 and
dihedral 2-groups. Then the Dade group of any factor group of P is torsion free.

2) Let 4 < my < --- < my be a non-decreasing sequence of integers. Set s =
Z:':[l (m; — 3). Then the torsion part of the Dade group of Ki_, SDym; is iso-
morphic to (Z/ZZ)ZJ_1 if mi < my, and to (Z)27)% if m; = m,,.

(3) In particular, for any integers n > 1 and m > 4, the torsion part of the Dade group
of (SDym)* is isomorphic to (Z/ZZ)WH)(WM).
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Proof. First, by Example 3.13,
Ds=Z194-9C, inRs.

Now by Corollary 3.9, since the center Z of D14 has order 2, and since D1¢/Z = Dg,
Dis=1®4-9C, ®dDys.

Since for n > 3, the group Dy« has a center Z of order 2, and since Dyn /Z = Dyn—1, it
follows by induction that

n
(5.37) Dy =1®4-9C, & P aDy.
1=4

Now by Corollary 4.24, the product d Dy x d Dom for I < m is isomorphic to 21739 Dom.
Moreover dC> x dP = 9P for any 2-group P, and since 0C, = 1 by Proposition 5.4,
it follows that any product of dihedral 2-groups and groups of order 2 is isomorphic to a
direct sum of edges of the trivial group, of the edge of the group of order 2, and of edges
of dihedral 2-groups.

It follows that if P is a direct product of dihedral 2-groups and groups of order 2, then
P is isomorphic in R to the direct sum of the trivial group, and some copies of edges of
the group of order 2 and the edge of dihedral 2-groups. In other words, if S is a genetic
subgroup of P, then Np(S)/S is either trivial, or of order 2, or dihedral. Now the Dade
group of dihedral 2-groups is torsion free (by [CT00, Theorem 10.3 (a)]), and the Dade
groups of the trivial group and of the group of order 2 are trivial. It follows that the Dade
group of P is torsion free, as also is the Dade group of any quotient of P, being a direct
summand of the Dade group of P. This proves (1).

For (2), set P = >}<7:1 S Dym; . By Corollary 5.32(2),

m n
(5.38) P=[[osDy @ [[ Dyt inRa.
i=1 i=1

Now an easy induction on n, using Corollary 4.24, shows that

n .

~ 278G ifmy < my,
HaSDzml' - {Z‘V-aSngn ifm1 =m,,
1=

where s = Z?;I] (m; —3).

By (5.38), this means that in a genetic basis B of P, there are 2°~! or 2° subgroups §
such that Np(S)/S is semidihedral, depending on whether m; < m, or m; = m,, and
for the other S € B, the group Np(S)/S is trivial, of order 2, or dihedral.

The Dade group of a dihedral 2-group is torsion free, and the Dade groups of the
trivial group and of C; are trivial. Moreover, the faithful torsion part d D’ (Com) of the
Dade group of Cym is isomorphic to Z/27Z if m > 2 (see [BoulO, Theorem 12.10.3]).
Similarly, the faithful torsion part d D' (SDym) for m > 4 is isomorphic to Z/27Z. This
completes the proof of (2); and (3) is a particular case of (2). O
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Remark 5.39. Let P be a finite product of groups of order 2 and dihedral 2-groups, as
in (1), and let Q be a quotient of P. If T is a genetic subgroup of Q, then No(T)/T is
either trivial, of order 2, or dihedral: indeed, T lifts to a genetic subgroup S of P such
that Np(S)/S = No(T)/T. It follows in particular that the map

€0 1 B*(Q) — Homz(Rq(Q). F2)

introduced in [BouO7, Notation 8.4] is a group isomorphism from the group of units of
the Burnside ring of Q to the F>-dual of Rg(Q). Indeed, there are non-negative integers
a and b; fori € {4, ..., m} such that

m
Q=1®a - 90C; &P bi-0Dy  inRy.
i=4
Then B*(Q) = (IF,)", wherer = 1 +a + Z:”=4 bi, by [BouO7, Theorem 8.5]. Similarly

Rg(Q) = 7" (hence r is equal to the number of conjugacy classes of cyclic subgroups
of Q), so Homz(Rg(Q), F2) = (IF2)". As € is injective, it is an isomorphism.

Proposition 5.40. Let m > 3 be an integer. Then for any integer n, there is an isomor-
phism

G+272)" -3 +27)"
21-3

541) (D))" =10(5"— 1).3@2@@
1=4

-0Dy  inRa.

Proof. Let S, denote the full subcategory of R, consisting of all finite direct sums of
edges of Roquette p-groups, and let I' = K((S,) be the Grothendieck group of this
category, for relations given by direct sum decomposition. Then Corollary 5.13 shows
that I is a free abelian group, and that two objects of S, have the same image in I" if
and only if they are isomorphic in R,. Moreover, by Corollary 4.24, the category S, is a
tensor subcategory of R, and I' is actually a commutative ring.

It follows that I identifies to a subring of the Q-algebra QI' = Q ®z I', and to prove
the proposition, it suffices to check that the two sides of (5.41) have the same image
in QI'. Let ¢ denote the image of dC> in I', and for [ > 4, let d; denote the image of 9 D
in I". Note that ¢ = 1 by Proposition 5.4. By (5.37), the image i,, of Dy in T is equal to

m m
i =1 +4c+2d1 =5+Zd1.
=4 =4

By Corollary 4.24, for4 <1 <k,
dy x dy = 2'734;.
It follows that the elements ¢; = #dl of QI, for [ > 4, are such that

20-3

Vi, k, 4 <l <k, e] X ey = e.
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In particular ¢; is an idempotent, and the elements
fi=e —ey1 ford<l<m, and f, =epn
are orthogonal idempotents of QI". With this notation, for / > 4,
= fi+ fir1++ s

and the element i,, can be written as

m m m
in =5+ di=5+) 27(fi+ fir+ A+ fa) =5+ 227~ D i
=4 =4

=4

Thus

(im)"

~.

Z(n)sn J 22(21 3—1)f1)
(J)sn 1221(21 -1/ f

R (e

||
m n M

=5"+ Z((s +2Q77 =) =5 f
=4

=5"+) (B+2)'=5fi=5+) (B+27)" =3 +2 e
=4 —

1 d. [m}

The proposition follows, since 5" = 1 4+ (5" — 1)¢, and since ¢; = 7

Remark 5.42. The isomorphism (5.41) is equivalent to saying that a genetic basis of the
group P = (Dpm)" consists of one subgroup § such that Np(S)/S = 1 (namely S = P),

[—2\n [—3\n
of 5" —1 subgroups S such that Np(S)/S = C», and, for4 <[ < m, of G3+2 )2,13” )
subgroups S such that Np(S)/S = Dy.

Together with Corollary 5.32(3), this also gives the structure of genetic bases of the groups
(Dam)™, (SDyn)™, (Qom)™:
Corollary 5.43. Let P be one of the groups Dym, SDom, or Qom, for m > 4. Then, for
any positive integer n, any genetic basis of the group Q = P*" consists:
e of one group S such that Np(S)/S =1 (namely S = Q),
o of 5" — 1 subgroups S such that No(S)/S = Ca;
(3+2'~ 2)"—(3+21* )" ~
o ford<l<m-—1,of subgroups S such that No(S)/S = Dy;
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o of 2=D0=3) syuberoups S such that Ng(S8)/S is isomorphic to

Dom l:fP = Dom,

SDom if P = SDom,

Dom if P = Qom and n is even,
Qom  if P = Qym andn is odd.
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