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Abstract. Let p be a prime number. This paper introduces the Roquette category Rp of finite
p-groups, which is an additive tensor category containing all finite p-groups among its objects.
In Rp , every finite p-group P admits a canonical direct summand ∂P , called the edge of P . More-
over P splits uniquely as a direct sum of edges of Roquette p-groups, and the tensor structure of Rp
can be described in terms of such edges.

The main motivation for considering this category is that the additive functors from Rp to
abelian groups are exactly the rational p-biset functors. This yields in particular very efficient ways
of computing such functors on arbitrary p-groups: this applies to the representation functors RK ,
where K is any field of characteristic 0, but also to the functor of units of Burnside rings, or to the
torsion part of the Dade group.
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1. Introduction

Let p be a prime number. This article introduces the Roquette category Rp of finite
p-groups, which is an additive tensor category with the following properties:

• Every finite p-group can be viewed as an object of Rp. The tensor product of two finite
p-groups P and Q in Rp is the direct product P ×Q.
• In Rp, any finite p-group has a direct summand ∂P , called the edge of P , such that

P ∼=
⊕
NEP

∂(P/N).

Moreover, if the center of P is not cyclic, then ∂P = 0.
• In Rp, every finite p-group P decomposes as a direct sum

P ∼=
⊕
R∈S

∂R,

where S is a finite sequence of Roquette groups, i.e. p-groups of normal p-rank 1, and
such a decomposition is essentially unique. Given the group P , such a decomposition
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can be obtained explicitly from the knowledge of a genetic basis of P (Theorem 3.11
and Proposition 5.14).
• The tensor product ∂P × ∂Q of the edges of two Roquette p-groups P and Q is

isomorphic to a direct sum of a certain number νP,Q of copies of the edge ∂(P � Q)
of another Roquette group (where both νP,Q and P � Q are known explicitly—see
Theorem 4.20 and Corollary 4.24).
• The additive functors from Rp to the category of abelian groups are exactly the rational
p-biset functors introduced in [Bou05].

The latter is the main motivation for considering this category: any structural result on Rp

will provide for free some information on such rational functors for p-groups, e.g. the
representation functors RK , where K is a field of characteristic 0 (see [Bou96], [Bou04],
and L. Barker’s article [Bar08]), the functor of units of Burnside rings [Bou07], or the
torsion part of the Dade group [Bou06].

In particular, the above results on Rp yield isomorphisms describing the structure of
some p-groups as objects of this category, and this is enough to compute the evaluations
of rational p-biset functors. For example (Example 3.13), an elementary abelian p-group
of rank n splits as

(Cp)
n ∼= 1⊕

pn − 1
p − 1

∂Cp

in Rp. Similarly (equation (5.25)), in the category R2, the product of n copies of a dihe-
dral group of order 8 splits as

(D8)
n ∼= 1⊕ (5n − 1) · ∂C2.

More generally, Proposition 5.40 gives a formula for (D2m)
n. A straightforward conse-

quence, applying the functor RQ, is the following

Example 1.1. For any n ∈ N, the group (D8)
n has 5n conjugacy classes of cyclic sub-

groups.

Another important by-product of the above result giving the tensor structure of Rp is the
explicit description of a genetic basis of a direct product P×Q, in terms of a genetic basis
of P and a genetic basis of Q (Theorem 5.20). This allows in particular for a quick com-
putation of the torsion part of the Dade group of some p-groups, e.g. (Theorem 5.36(1)
& (3)):

Example 1.2. • Let P be an arbitrary finite direct product of groups of order 2 and
dihedral 2-groups. Then the Dade group of any factor group of P is torsion free.
• Let n be a positive integer. For any integer m ≥ 4, let P = SD2m be a semidihedral

group of order 2m, and let P ∗n denote the central product of n copies of P . Then the
torsion part of the Dade group of P ∗n is isomorphic to (Z/2Z)2(n−1)(m−3)

.

This also yields similar results on groups of units of Burnside rings of these groups (Re-
mark 5.39), or on representations of central products of p-groups, as in Examples 5.34
and 5.35:



The Roquette category of finite p-groups 2845

Example 1.3. Let p be a prime, let X be an extraspecial p-group, and let Q be a non-
trivial p-group. Let K be a field of characteristic 0. Then Q has the same number (possi-
bly 0) of isomorphism classes of faithful irreducible representations overK as any central
product X ∗Q.

Another possibly interesting phenomenon is that some non-isomorphic p-groups may
become isomorphic in the category Rp. This means that some non-isomorphic p-groups
cannot be distinguished using only rational p-biset functors. When p = 2, there are even
examples where this occurs for groups of different orders (Example 5.16). When p > 2,
saying that the p-groups P and Q are isomorphic in Rp is equivalent to saying that the
group algebras QP and QQ have isomorphic centers (Proposition 5.17).

The category Rp is built as follows: consider first the category R]
p, which is the quo-

tient category of the biset category of finite p-groups (in which objects are finite p-groups
and morphisms are virtual bisets) obtained by killing a specific element δ in the Burnside
group of the Sylow p-subgroup of PGL(3,Fp). Then take idempotent completion, and
additive completion of the resulting category.

In particular, this construction relies on bisets, and related functors. Consequently, the
paper is organized as follows: Section 2 is a (not so) quick summary of the background
on biset functors, Roquette groups, genetic bases of p-groups, and rational p-biset func-
tors. The category Rp is introduced in Section 3, and in Section 4, its tensor structure is
described. Finally Section 5 gives some examples and applications.

2. Rational p-biset functors

2.1. Biset functors. The biset category C of finite groups is defined as follows:

• The objects of C are the finite groups.
• Let G and H be finite groups. Then

HomC(G,H) = B(H,G),

where B(H,G) denotes the Grothendieck group of the category of finite (H,G)-bisets,
i.e. the Burnside group of the group H ×Gop.
• Let G, H , and K be finite groups. The composition of morphisms

B(K,H)× B(H,G)→ B(K,G)

in the category C is the linear extension of the product induced by the product of bisets
(V ,U) 7→ V ×H U , where V is a (K,H)-biset, and U is an (H,G)-biset.
• The identity morphism of the finite group G is the image in B(G,G) of the set G,

endowed with its (G,G)-biset structure given by left and right multiplication.

Definition 2.2. A biset functor is an additive functor from C to the category of abelian
groups. A morphism of biset functors is a natural transformation of functors.

Morphisms of biset functors can be composed, and the resulting category of biset functors
is denoted by F . It is an abelian category.



2846 Serge Bouc

Example 2.3. 1. The correspondence B sending a finite group G to its Burnside group
B(G) is a biset functor, called the Burnside functor: indeed, B(G) = HomC(1,G), so
B is in fact the Yoneda functor HomC(1,−).

2. The formalism of bisets gives a single framework for the usual operations of induc-
tion, restriction, inflation, deflation, and transport by isomorphism via the following
correspondences:

• If H is a subgroup of G, then let IndGH ∈ B(G,H) denote the set G with left action
of G and right action of H by multiplication.
• If H is a subgroup of G, then let ResGH ∈ B(H,G) denote the set G with left action

of H and right action of G by multiplication.
• IfN EG andH = G/N , then let InfGH ∈ B(G,H) denote the setH with left action

of G by projection and multiplication, and right action of H by multiplication.
• IfN EG andH = G/N , then let DefGH ∈ B(H,G) denote the setH with left action

of H by multiplication, and right action of G by projection and multiplication.
• If ϕ : G→ H is a group isomorphism, then let IsoHG = IsoHG (ϕ) ∈ B(H,G) denote

the set H with left action of H by multiplication, and right action of G by taking
image under ϕ, and then multiplying in H .
• When H is a subgroup of G, let DefresGNG(H)/H ∈ B(NG(H)/H,G) denote

the set H\G viewed as an (NG(H)/H,G)-biset. It is equal to the composition
DefNG(H)NG(H)/H

◦ResGNG(H).
• When H is a subgroup of G, let IndinfGNG(H)/H ∈ B(G,NG(H)/H) denote

the set G/H viewed as a (G,NG(H)/H)-biset. It is equal to the composition
IndGNG(H) ◦ InfNG(H)NG(H)/H

.

2.4. p-biset functors. From now on, the symbol p will denote a prime number.

Definition and Notation 2.5. • The biset category Cp of finite p-groups is the full sub-
category of C consisting of finite p-groups.
• A p-biset functor is an additive functor from Cp to the category of abelian groups.

A morphism of p-biset functors is a natural transformation of functors.
• The p-biset functors form an abelian category Fp.

2.6. Roquette p-groups

Definition 2.7. A finite group G is called a Roquette group if it has normal rank 1, i.e.
all the normal abelian subgroups of G are cyclic.

The Roquette p-groups have been first classified by. . . Roquette [Roq58] (see also
[Gor68]): these are the cyclic groups if p > 2, and Roquette 2-groups are the cyclic
groups, the generalized quaternion groups, the dihedral and semidihedral groups of order
at least 16.

More generally, the p-hyperelementary Roquette groups have been classified by Ham-
bleton, Taylor, and Williams [HTW90, Theorem 3.A.6].
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The following schematic diagram represents the lattice of subgroups of the dihedral
group D16, the quaternion group Q16, and the semidihedral group SD16 (a horizontal
dotted link between two vertices means that the corresponding subgroups are conjugate):

•D16

•D8 •C8 •D8

• • • • •

• • • • • • • • •

•

D16

•Q16

•Q8 •C8 •Q8

• • • • •

•

•

Q16

•SD16

•D8 •C8 •Q8

• • • • •

• • • • •

•

SD16

These diagrams give a good idea of the general case.

Definition 2.8. Let G be a finite group, of exponent e. An axis of G is a cyclic subgroup
of order e in G. An axial subgroup of G is a subgroup of an axis of G.

With these definitions, let us recall without proof the following properties of Roquette
p-groups:

Lemma 2.9. Let P be a non-trivial Roquette p-group, of exponent eP .

(1) The center of P is cyclic, hence P admits a unique central subgroup ZP of order p.
(2) There exists a non-trivial subgroup Q of P such that Q ∩ Z(P ) = 1 if and only

if p = 2 and P is dihedral or semidihedral. In this case moreover |Q| = 2 and
NP (Q) = QZP .

(3) If P is not cyclic, then p = 2 and eP = |P |/2.
(4) There is a unique axis in P , except in the case P ∼= Q8, where there are three of

them. Any axis of P is normal in P .
(5) If R is a non-trivial axial subgroup of P , then R ≥ ZP and REP . If moreover
|R| ≥ p2, then CP (R) is the only axis of P containing R.
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Let us also recall the following:

Lemma 2.10 ([Bou10, Proposition 9.3.5]). Let P be a finite Roquette p-group. Then
there is a unique simple faithful QP -module 8P , up to isomorphism.

Example 2.11. Let P be a cyclic group of order pm, and suppose first that m ≥ 1. The
algebra QP is isomorphic to the algebra A = Q[X]/(Xpm − 1). As

Xp
m

− 1 = (Xp
m−1
− 1)9pm(X),

where 9pm denotes the pm-th cyclotomic polynomial, it follows that there is a split exact
sequence of A-modules

0→ Q[X]/(9pm)→ A→ Q[X]/(Xp
m−1
− 1)→ 0,

which can be viewed as a sequence of QP -modules

0→ 8P → QP → Q(P/Z)→ 0,

where Z is the unique subgroup of order p of P . It follows that there is an isomorphism
of Q-algebras

EndQP 8P ∼= Q[X]/(9pm) ∼= Q(ζpm),

where ζpm is a primitive pm-th root of unity in C.
Now if m = 0, then P = 1, 8P = Q, and EndQP 8P ∼= Q too.

2.12. Expansive and genetic subgroups

Definition 2.13. A subgroup H of a group G is called expansive if for any g ∈ G such
that H g

6= H , the group (H g
∩ NG(H))H/H contains a non-trivial normal subgroup of

NG(H)/H , i.e.

g ∈ G−NG(H) ⇒
⋂

n∈NG(H)

(H gn
∩NG(H))H > H.

Example 2.14. If H EG, then H is expansive in G. More generally, if NG(H)EG,
then H is expansive in G. Indeed, NG(H g) = NG(H) for any g ∈ G. Hence for g
in G−NG(H),⋂

n∈NG(H)

(H gn
∩NG(H))H = (H

g
∩NG(H))H = H

g
·H > H.

Notation 2.15. When H is a subgroup of the group G, denote by ZG(H) the subgroup
of NG(H), containing H , defined by

ZG(H)/H = Z(NG(H)/H).

The following is an easy consequence of well known properties of p-groups:



The Roquette category of finite p-groups 2849

Lemma 2.16 ([Bou10, Lemma 9.5.2]). LetQ be a subgroup of a finite p-group P . Then
Q is expansive in P if and only if

∀g ∈ P, Qg
∩ ZP (Q) ≤ Q ⇒ Qg

= Q.

Example 2.17. Let P be a p-group, and let

1(P ) = {(x, x) ∈ P × P | x ∈ P }

denote the diagonal subgroup of P × P . Then NP×P (1(P ))/1(P ) ∼= Z(P ), and 1(P )
is expansive in P × P if and only if

∀x ∈ P, [P, x] ∩ Z(P ) = {1} ⇒ x ∈ Z(P ),

where [P, x] is the set of commutators [y, x] = y−1x−1yx = y−1yx for y ∈ P .
In particular, if [P, P ] ≤ Z(P ), then 1(P ) is expansive in P × P .

Proof. Indeed, NP×P (1(P )) consists of pairs (a, b) ∈ P × P such that ab−1
∈ Z(P ).

This shows that NP×P (1(P ))/1(P ) ∼= Z(P ), and that

ZP×P (1(P )) = NP×P (1(P )) = (1× Z(P ))1(P ).

Now 1(P )(u,v) = 1(P )(1,x) for any (u, v) ∈ P × P , where x = u−1v, and

1(P )(1,x) ∩ ZP×P (1(P )) = {(t, t
x) | t ∈ P, t−1tx ∈ Z(P )}.

Hence 1(P )(1,x) ∩ ZP×P (1(P )) ≤ 1(P ) if and only if for any t ∈ P , the assumption
t−1tx ∈ Z(P ) implies t = tx , i.e. [t, x] = 1, in other words if [P, x]∩Z(P ) = {1}. Hence
1(P ) is expansive in P ×P if and only if for any x ∈ P , the assumption [P, x]∩Z(P ) =
{1} implies (1, x) ∈ NP×P (1(P )), i.e. x ∈ Z(P ), as claimed. The last assertion follows
trivially. ut

Definition 2.18. LetQ be a subgroup of the finite p-group P . ThenQ is called a genetic
subgroup of P if Q is expansive in P and NP (Q)/Q is a Roquette group.

Definition 2.19. Define a relation ̂P on the set of subgroups of the finite p-group P
by

Q̂P R ⇔ ∃g ∈ P, Q
g
∩ ZP (R) ≤ R and gR ∩ ZP (Q) ≤ Q.

Lemma 2.20. Let P be a finite p-group. If Q and R are subgroups of P such that
NP (Q) = NP (R)EP , then

Q̂P R ⇔ Q =P R.

Proof. Indeed, since P is a p-group, saying that Qg
∩ ZP (R) ≤ R is equivalent to

saying that the subgroup (Qg
∩NP (R))R/R of NP (R)/R contains no non-trivial normal

subgroup of NP (R)/R, i.e. ⋂
n∈NP (R)

(Qgn
∩NP (R))R = R.
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But if NP (Q)EP , then NP (Q) = NP (Qg) = NP (R) for any g ∈ G. Hence⋂
n∈NP (R)

(Qgn
∩NP (R))R = Q

g
· R.

This is equal to R if and only if Qg
≤ R. Similarly gR ∩ ZP (Q) ≤ Q if and only if

gR ≤ Q. Hence Qg
= R. ut

Definition 2.21. Let G be a group.

• A section ofG is a pair (T , S) of subgroups ofG such that SE T . The quotient T/S is
called the corresponding subquotient of G.
• Two sections (T , S) and (Y,X) of G are said to be linked (notation (T , S) (Y,X))

if
S(T ∩ Y ) = T , X(T ∩ Y ) = Y, T ∩X = S ∩ Y.

They are said to be linked moduloG (notation (T , S) G (Y,X)) if there exists g ∈ G
such that (T , S) (gY , gX).

Observe in particular that if (T , S) G (Y,X), then the corresponding subquotients T/S
and Y/X are isomorphic.

Theorem 2.22 ([Bou10, Theorem 9.6.1]). Let P be a finite p-group.

(1) If S is a genetic subgroup of P , then the module

V (S) = IndPNP (S) InfNP (S)NP (S)/S
8NP (S)/S

is a simple QP -module. Moreover, the functor IndPNP (S) InfNP (S)NP (S)/S
induces an iso-

morphism of Q-algebras

EndQP V (S) ∼= EndQNP (S)/S 8NP (S)/S .

(2) If V is a simple QP -module, then there exists a genetic subgroup S of P such that
V ∼= V (S).

(3) If S and T are genetic subgroups of P , then

V (S) ∼= V (T ) ⇔ S ̂P T ⇔ (NP (S), S) P (NP (T ), T ).

In particular, if S ̂P T , then NP (S)/S ∼= NP (T )/T . Moreover, the relation ̂P is
an equivalence relation on the set of genetic subgroups of P , and the corresponding
set of equivalence classes is in one-to-one correspondence with the set of isomor-
phism classes of simple QP -modules.

Definition 2.23. Let P be a finite p-group. A genetic basis of P is a set of representatives
of equivalence classes of genetic subgroups of P for the relation ̂P .
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2.24. Faithful elements (cf. [Bou10, Sections 6.2 and 6.3]). Let G be a finite group. If
N is a normal subgroup of G, recall from Example 2.3 that InfGG/N denotes the set G/N
viewed as a (G,G/N)-biset for the actions given by (projection to the factor group and)
multiplication in G/N . Similarly DefGG/N denotes the same set G/N considered as a
(G/N,G)-biset.

There is an isomorphism of (G/N,G/N)-bisets

(2.25) IdG/N ∼= DefGG/N ◦ InfGG/N .

More generally, if M and N are normal subgroups of G, there is an isomorphism of
(G/M,G/N)-bisets

(2.26) DefGG/M ◦ InfGG/N = InfG/MG/MN ◦ DefG/NG/MN .

It follows that if jGN is defined by

jGN = InfGG/N ◦ DefGG/N ,

then jGM ◦ j
G
N = jGMN . In particular jGN is an idempotent of B(G,G). Moreover, by a

standard orthogonalization procedure, the elements fGN defined for N EG by

fGN =
∑

N≤MEG

µEG(N,M)j
G
M ,

where µEG(N,M) is the Möbius function of the poset of normal subgroups of G, are
orthogonal idempotents of B(G,G), and their sum is equal to IdG/N . The idempotent fG1
is of special importance:

Lemma 2.27. Let G be a finite group, and N be a normal subgroup of G.

(1) fGN = InfGG/N ◦f
G/N

1 ◦ DefGG/N in B(G,G).
(2) If N 6= 1, then DefGG/N ◦f

G
1 = 0 in B(G/N,G), and fG1 ◦ InfGG/N = 0 in

B(G,G/N).

Proof. Assertion (1) is [Bou10, Remark 6.2.9], and (2) is a special case of Proposi-
tion 6.2.6. ut

If F is a biset functor, the set ∂F (G) of faithful elements of F(G) is defined by

∂F (G) = F(fG1 )F (G).

It can be shown [Bou10, Lemma 6.3.2] that

∂F (G) =
⋂

1<NEG

KerF(DefGG/N ).

Example 2.28. Let F = RK be the representation functor over a field K of characteris-
tic 0. Then for a finite groupG, the group ∂RK(G) is the direct summand of RK(G) with
basis the set of (isomorphism classes of) faithful irreducible KG-modules.
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Lemma 2.29. Let G be a group, and S be a subgroup of G such that S ∩ Z(G) 6= 1.
Then DefresGNG(S)/S f

G
1 = 0 in B(NG(S)/S,G).

Proof. Set N = S ∩ Z(G), G = G/N , and S = S/N . Then

DefresGNG(S)/S = DefresG
NG(S)/S

DefGG/N .

Now DefGG/N f
G
1 = 0 if N 6= 1, by Lemma 2.27. ut

Theorem 2.30 ([Bou10, Theorem 10.1.1]). Let P be a finite p-group, and B be a genetic
basis of P . Then, for any p-biset functor F , the map

IB =
⊕
S∈B

IndinfPNP (S)/S :
⊕
S∈B

∂F (NP (S)/S)→ F(P )

is split injective. A left inverse is the map

DB =
⊕
S∈B

f
NP (S)/S

1 ◦ DefresPNP (S)/S : F(P )→
⊕
S∈B

∂F (NP (S)/S).

One can show [Bou10, Lemma 10.1.2] that if B and B′ are genetic bases of P , the map
IB is an isomorphism if and only if IB′ is. This motivates the following definition:

Definition 2.31. A p-biset functor F is called rational if for any finite p-group P , there
exists a genetic basis B of P such that the map IB is an isomorphism.

So F is rational if and only if for any finite p-group P and any genetic basis B of P , the
map IB is an isomorphism.

Example 2.32. • The functor RQ of rational representations, which sends the finite
p-group P to the group RQ(P ), is a rational p-biset functor. This example is of course
the reason for calling the p-biset functors of Definition 2.31 rational. This choice has
proved rather unfortunate, since the p-biset functor RC of complex representations is also
a rational functor. . . More generally, if K is a field of characteristic 0, then the functor
RK is a rational p-biset functor.
• The functor of units of the Burnside ring, sending a p-group P to the group of units

B×(P ) of its Burnside ring, is a rational p-biset functor (see [Bou07]).
• Let k be a field of characteristic p. The correspondence sending a finite p-group P

to the torsion part Dtk(P ) of the Dade group of P over k is not a biset functor in general,
because of phenomena of Galois twists, but still the maps IB and DB can be defined
for Dtk , and Theorem 2.30 holds (see [Bou06]).
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3. The Roquette category

Notation 3.1. Let π be a projective plane over Fp, and let X denote a Sylow p-subgroup
of Aut(π) ∼= PGL(3,Fp). Let L be the set of lines of π , and let P be the set of points
of π , both viewed as elements of B(X). Let δ = L− P ∈ B(X). Equivalently

δ = (X/I −X/IZ)− (X/J −X/JZ),

where I and J are non-conjugate non-central subgroups of order p of X, and Z is the
center of X.

Let Bδ denote the p-biset subfunctor of B generated by δ.

Remark 3.2. When p = 2, the group X is dihedral of order 8, and δ is well defined
up to sign. When p > 2, the group X is an extraspecial p-group of order p3 and expo-
nent p, and there are several possible choices for the element δ. However, in any case, the
functor Bδ does not depend on the choice of δ.

Definition 3.3. The Roquette category Rp of finite p-groups is defined as the idempotent
additive completion of the category R]

p, quotient of the biset category Cp, defined as
follows:

• The objects of R]
p are the finite p-groups.

• If P and Q are finite p-groups, then

HomR]
p
(P,Q) = (B/Bδ)(Q, P )

is the quotient of B(Q× P op) by Bδ(Q× P op).
• The composition in R]

p is induced by the composition of bisets.
• The identity morphism of the finite p-group P in R]

p is the image of IdP in the group
(B/Bδ)(P, P ).

Remark 3.4. It was shown in [Bou08] that R]
p is indeed a category. It was also shown

there that if p > 2, the functor Bδ is equal to the kernel K of the linearization morphism
B → RQ. It follows that in this case, for any two finite p-groups P and Q,

HomR]
p
(P,Q) ∼= RQ(Q× P

op)

is isomorphic to the Grothendieck group of (QQ,QP)-bimodules, or equivalently, by
the Ritter–Segal theorem, to the Grothendieck group of the subcategory of (QQ,QP)-
permutation bimodules. In other words, in this case the category R]

p is the full subcat-
egory of the category considered by Barker [Bar08], consisting of finite p-groups. The
construction of the category R]

p is also very similar to the construction of the category
QG-Morita by Hambleton, Taylor, and Williams [HTW90, Definition 1.A.4].

In the case p = 2, the situation is more complicated: the functor Bδ is a proper
subfunctor of the kernel K , and there is a short exact sequence

0→ K/Bδ → B/Bδ → RQ→ 0
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of p-biset functors. Moreover, for each p-group P , the group (K/Bδ)(P ) is a finite ele-
mentary abelian 2-group of rank equal to the number of groups S in a genetic basis of P
for which NP (S)/S is dihedral.

Lemma 3.5. The direct product (P,Q) 7→ P × Q of p-groups induces a well defined
symmetric monoidal structure on R]

p.

Proof. Let P , P ′, Q, and Q′ be finite p-groups. If U is a finite (P ′, P )-biset and V is a
finite (Q′,Q)-biset, then U ×V is a (P ′×Q′, P ×Q)-biset. This induces a bilinear map

π : B(P ′, P )× B(Q′,Q)→ B(P ′ ×Q′, P ×Q),

and this clearly induces a symmetric monoidal structure on the biset category Cp. The
latter induces a monoidal structure on the quotient category if

π(Bδ(P
′, P ), B(Q′,Q)) ⊆ Bδ(P

′
×Q′, P ×Q).

But this is a consequence of the following. Let X be as defined in Notation 3.1, let U be
a finite (P ′, P ×X)-set, let D be an X-set, and V be a finite (Q′,Q)-biset. Clearly, there
is an isomorphism of (P ′ ×Q′, P ×Q)-sets

(U ×X D)× V ∼= (U × V )×X D,

where the right action of X on U × V is defined in the obvious way

∀(u, v) ∈ U × V, ∀x ∈ X, (u, v)x = (ux, v).

The lemma follows. ut

3.6. Recall that the objects of the idempotent additive completion Rp are by definition
formal sums

⊕
(P,e)∈P (P, e), where P is a finite sequence of pairs (P, e) consisting of

a finite p-group P and an idempotent e in the endomorphism ring HomR]
p
(P, P ) =

(B/Bδ)(P, P ). A morphism

ϕ :
⊕

(P,e)∈P
(P, e)→

⊕
(Q,f )∈Q

(Q, f )

in Rp is a matrix indexed by P×Q, where the coefficient ϕ(P,e),(Q,f ) indexed by the pair
((P, e), (Q, f )) belongs to f HomR]

p
(P,Q)e. The composition of morphisms is given

by matrix multiplication. In particular:

Definition and Notation 3.7. Let P be a finite p-group.

• The object (P, IdP ) of Rp is denoted by P . Similarly, when Q is a finite p-group and
f ∈ B(Q,P ), the corresponding morphism from (P, IdP ) to (Q, IdP ) in the category
Rp is simply denoted by f .
• The edge ∂P of P is the object (P, f P1 ) of Rp.
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The category of additive functors from Rp to abelian groups is equivalent to the category
of additive functors from R]

p to abelian groups. It was shown in [Bou08] that the latter is
exactly the category of rational p-biset functors. If F ] is such a functor, then F ] extends
to a functor F on Rp defined as follows:

F
( ⊕
(P,e)∈P

(P, e)
)
=

⊕
(P,e)∈P

F ](e)(F ](P )),

with the obvious definition of F(ϕ) for a morphism ϕ in the category Rp. In particular,
with the above notation,

F(∂P ) = ∂F ](P ).

We will use the same symbol for F and F ], writing in particular F(∂P ) = ∂F (P ).

Proposition 3.8. Let P be a finite p-group. Then

P ∼=
⊕
NEP

∂(P/N) in the category Rp.

Proof. Let
a : P →

⊕
NEP

∂(P/N)

be the direct sum of the morphisms induced by the elements f P/N1 DefPP/N ofB(P/N,P ),
and let

b :
⊕
NEP

∂(P/N)→ P

be defined similarly from the elements InfPP/N f
P/N

1 of B(P, P/N).
By Lemma 2.27, ∑

NEP

InfPP/N f
P/N

1 DefPP/N =
∑
NEP

f PN = IdP

in B(P, P ), thus a ◦ b is equal to the identity morphism of P in Rp. Conversely, for
normal subgroups N and M of P ,

f
P/N

1 DefPP/N InfPP/M f
P/M

1 = f
P/N

1 InfP/NP/NM DefP/MP/NM f
P/M

1 ,

by (2.25). This is equal to 0 if N 6= M , by Lemma 2.27. And if N = M , this is equal
to f P/N1 . It follows that b ◦ a is equal to the identity morphism of

⊕
NEP ∂(P/N), and

this completes the proof. ut

Corollary 3.9. If P is non-trivial, with cyclic center, then

P ∼= ∂P ⊕ (P/Z) in Rp,

where Z is the unique central subgroup of order p in P .

Proof. Indeed, if N is a non-trivial normal subgroup of P , then N ≥ Z. Thus

P ∼= ∂P ⊕
⊕
N≥Z

∂(P/N) ∼= ∂P ⊕ (P/Z) in Rp. ut
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Remark 3.10. More generally, let P be a finite p-group, and letN be a normal subgroup
of P . Since

P/N ∼=
⊕

N≤MEP

∂((P/N)
/
(M/N)) ∼=

⊕
N≤MEP

∂(P/M) in Rp,

it follows that P/N is isomorphic to a direct summand of P in the category Rp.

Theorem 3.11. (1) The Roquette category Rp is an additive tensor category.
(2) Let P be a finite p-group, and B be a genetic basis of P . Then

P ∼=
⊕
S∈B

∂NP (S) in Rp,

where NP (S) = NP (S)/S.
(3) Let P be a finite p-group, and B be a genetic basis of P . Then

∂P ∼=
⊕
S∈B

S∩Z(P )=1

∂NP (S) in Rp.

Proof. Assertion (1) results from standard results: in particular, the tensor product of the
objects

⊕
(P,e)∈P (P, e) and

⊕
(Q,f )∈Q(Q, f ) is defined by( ⊕

(P,e)∈P
(P, e)

)
×

( ⊕
(Q,f )∈Q

(Q, f )
)
=

⊕
(P,e)∈P
(Q,f )∈Q

(P ×Q, e × f ).

For (2), by [Bou10, Proposition 10.7.2], if F is a rational p-biset functor, the functor FP
obtained from F by the Yoneda–Dress construction at P is also a rational p-biset functor.
This applies in particular to the functor Y = B/Bδ , so the functor YP is rational. Hence,
if Q is any finite p-group and BQ is a genetic basis of Q, there are mutually inverse
isomorphisms

YP (Q)
DQ // ⊕

S∈BQ
∂YP (NQ(S))

IQ
oo

where IQ =
⊕

S∈BQ IndinfP
NP (S)

and DQ =
⊕

S∈BQ f
NP (S)
1 ◦ DefresP

NP (S)
.

Thus for any f ∈ YP (Q),

f =
( ∑
S∈BQ

IndinfP
NP (S)

f
NP (S)
1 DefresP

NP (S)

)
◦ f.

Applying this to Q = P , BQ = B, and f = IdP gives IP ◦ DP = IdP . On the other
hand, by [Bou10, Proposition 6.4.4 and Theorem 9.6.1], for S, T ∈ B, the composition

f
NP (T )
1 DefresP

NP (T )
◦ IndinfP

NP (S)
f
NP (S)
1

is equal to fNP (S)1 in B(NP (S),NP (S)) if T = S, and to 0 if T 6= S. It follows that
DP ◦ IP is also equal to the identity map of the direct sum

⊕
S∈B ∂YP (NP (S)) in the

category Rp.
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For (3), observe that by Lemma 2.29,

f
NP (S)
1 DefresP

NP (S)
f P1 = 0

if S ∩ Z(P ) 6= 1. Taking opposite bisets gives also

f P1 IndinfP
NP (S)

f
NP (S)
1 = 0,

so the isomorphism of (2) restricts to an isomorphism

∂P ∼=
⊕
S∈B

S∩Z(P )=1

∂NP (S),

as the diagram

P
∼= //⊕

S∈B ∂NP (S)

∂P

f P1

OO

//⊕
S∈B, S∩Z(P )=1 ∂NP (S)

?�

OO

is commutative. ut

Corollary 3.12. Let P be a finite p-group. If Z(P ) is non-cyclic, then ∂P = 0 in Rp.

Proof. This follows from Theorem 3.11(3). Suppose indeed that there exists a genetic
subgroup S of P such that S ∩ Z(P ) = 1. Then the group Z(P ) maps injectively in the
center of the Roquette group NP (S), which is cyclic. Hence Z(P ) is cyclic. ut

Example 3.13. 1. Let P = D8 be the dihedral group of order 8. Let A, B, and C be the
subgroups of index 2 in P , and let I be a non-central subgroup of order 2 in P . Then the
set {P,A,B,C, I } is a genetic basis of P , and there is an isomorphism

P ∼= 1⊕ 4 · ∂C2 in R2,

where 4 · ∂C2 denotes the direct sum of four copies of ∂C2: indeed, for S ∈ {A,B,C, I },
the group NP (S) is isomorphic to C2.

2. Let P = Q8 be the quaternion group of order 8. Let A, B, and C be the subgroups
of index 2 in P . Then the set {P,A,B,C, 1} is a genetic basis of P (such a basis is unique
in this case), and there is an isomorphism

P ∼= 1⊕ 3 · ∂C2 ⊕ ∂Q8 in R2.

3. Let P = (Cp)n be an elementary abelian p-group of rank n. Then P has a unique
genetic basis, consisting of P and all its subgroups of index p. Hence

P ∼= 1⊕
pn − 1
p − 1

· ∂Cp in Rp.
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4. The tensor structure

Notation 4.1. Let G and H be groups. When L is a subgroup of G×H , set

p1(L) = {g ∈ G | ∃h ∈ H, (g, h) ∈ L},

p2(L) = {h ∈ H | ∃g ∈ G, (g, h) ∈ L},

k1(L) = {g ∈ G | (g, 1) ∈ L},
k2(L) = {h ∈ H | (1, h) ∈ L}.

Recall [Bou10, 2.3.18 and 2.3.21] that ki(L)Epi(L) for i ∈ {1, 2}, and the direct product
k1(L) × k2(L) is normal in L. Moreover, setting q(L) = L/(k1(L) × k2(L)), we have
canonical group isomorphisms

q(L) ∼= p1(L)/k1(L) ∼= p2(L)/k2(L).

Definition 4.2. LetG and H be groups. A subgroup L ofG×H will be called diagonal
if

L ∩ (G× 1) = L ∩ (1×H) = 1,

i.e. k1(L) = 1 and k2(L) = 1.
The subgroup L will be called centrally diagonal if

L ∩ (Z(G)× 1) = L ∩ (1× Z(H)) = 1,

i.e. k1(L) ∩ Z(G) = 1 and k2(L) ∩ Z(H) = 1.

Notation 4.3. Let G and H be groups. When K is a subgroup of G, and ϕ : K → H is
a group homomorphism, set

−→
1 ϕ(K) = {(x, ϕ(x)) | x ∈ K} ≤ G×H,

←−
1 ϕ(K) = {(ϕ(x), x) | x ∈ K} ≤ H ×G.

Remark 4.4. The subgroup L ofG×H is diagonal if and only if there exists a subgroup
K ≤ G and an injective group homomorphism ϕ : K ↪→ H such that L =

−→
1 ϕ(K).

Lemma 4.5. Let P andQ be p-groups, and let L and L′ be genetic subgroups of P ×Q
such that L̂P×Q L

′. Then L is centrally diagonal in P ×Q if and only if L′ is centrally
diagonal in P ×Q.

Proof. Let (x, y) ∈ P ×Q be such that L′(x,y) ∩ZP×Q(L) ≤ L. Since Z(P )×Z(Q) ≤
ZP×Q(L), it follows that

L′ ∩ (Z(P )× 1) = (L′ ∩ (Z(P )× 1))(x,y) = L′(x,y) ∩ (Z(P )× 1)
= L′(x,y) ∩ ZP×Q(L) ∩ (Z(P )× 1) ≤ L ∩ (Z(P )× 1) = 1.

A similar argument shows that L′ ∩ (1× Z(Q)) = 1. ut

Recall from Definition 2.8 that an axial subgroup of a finite group G is a subgroup of a
cyclic subgroup of maximal order of G:
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Theorem 4.6. Let P and Q be non-trivial Roquette p-groups, let eP (resp. eQ) denote
the exponent of P (resp.Q), and letZP (resp.ZQ) denote the central subgroup of order p
in P (resp. in Q).

(1) Let L be a centrally diagonal genetic subgroup of P ×Q. Then L =
−→
1 ϕ(H), where

H ≤ P and ϕ : H ↪→ Q is an injective group homomorphism. Moreover, either
P ∼= Q ∼= Q8 and H = P , or H is an axial subgroup of P of order min(eP , eQ)
such that ϕ(H) is an axial subgroup of Q.

(2) Conversely:
(a) If P ∼= Q ∼= Q8, let L = Lϕ =

−→
1 ϕ(P ), where ϕ : P → Q is a group

isomorphism. Then L is a centrally diagonal genetic subgroup of P × Q and
NP×Q(L)/L ∼= C2.

(b) In all other cases, let L = Lϕ =
−→
1 ϕ(H), where H is an axial subgroup of P

of order min(eP , eQ) and ϕ : H ↪→ Q is an injective group homomorphism
such that ϕ(H) is an axial subgroup ofQ. Then L is a centrally diagonal genetic
subgroup of P ×Q. Moreover, the isomorphism class of the group NP×Q(L)/L
depends only on P and Q.

Proof. •Observe first that the group (ZP×ZQ)L/L is a central subgroup of the Roquette
groupNP×Q(L)/L, hence it is cyclic. Hence (ZP×ZQ)∩L 6= 1. Since both (ZP×1)∩L
and (1× ZQ) ∩ L are trivial, it follows that (ZP × ZQ) ∩ L is equal to

(4.7)
−→
1ψ (ZP ) = {(z, ψ(z)) | z ∈ ZP },

where ψ : ZP
∼=
−→ ZQ is some group isomorphism. In particular p1(L) contains ZP , and

p2(L) contains ZQ.
• Let us prove now that L is diagonal, i.e. there exists a subgroup H of P and an

injective group homomorphism ϕ : H ↪→ Q such that

L =
−→
1 ϕ(H) = {(h, ϕ(h)) | h ∈ H }.

Otherwise, at least one of the groups k1(L) or k2(L) is non-trivial. But the assumption
L∩ (Z(P )×1) = 1 is equivalent to L∩ (ZP ×1) = 1, i.e. k1(L)∩ZP = 1, and similarly
the assumption L ∩ (1× Z(Q)) = 1 is equivalent to k2(L) ∩ ZQ = 1. But if there exists
a non-trivial subgroup X of P such that X ∩ ZP = 1, then p = 2, X has order 2, and P
is dihedral or semidihedral (Lemma 2.9). So if L is not diagonal, then p = 2, and at least
one of P or Q is dihedral or semidihedral.

Up to exchanging P and Q, one can assume that the group C = k1(L) is non-
trivial, hence non-central of order 2 in P . Set A = p1(L). Since A ≤ NP (C) = CZP
(Lemma 2.9), it follows that q(L) = A/C has order 1 or 2.

If q(L) = 1, then A = C and L = C ×D, where D = k2(L) = p2(L). In this case

NP×Q(L)/L = (NP (C)/C)× (NQ(D)/D) ∼= C2 × (NQ(D)/D)

cannot be a Roquette group, since NQ(D)/D is non-trivial (as D ∩ ZQ = 1).
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And if |q(L)| = 2, then A = CZP . If (a, b) ∈ NP×Q(L), then in particular

a ∈ NP (A,C) = A.

Thus NP×Q(L) ≤ A×Q. Now NP (A) is a proper subgroup of P , since A is elementary
abelian of rank 2, and P is a Roquette group. Choose x ∈ P − NP (A), whence Ax ∩ A
= ZP . If (a, b) ∈ L(x,1)∩(A×Q), then a ∈ Ax∩A = ZP , hence (a, b) = (x,1)(a, b) ∈ L.
Thus L(x,1) ∩ (A×Q) ≤ L, and

L(x,1) ∩ ZP×Q(L) ≤ L
(x,1)
∩NP×Q(L) ≤ L

(x,1)
∩ (A×Q) ≤ L

but L(x,1) 6= L, since Ax 6= A. It follows that L is not expansive in P ×Q, hence L is
not a genetic subgroup of P ×Q.
• Hence L is diagonal in P ×Q, i.e.

L =
−→
1 ϕ(H) = {(h, ϕ(h)) | h ∈ H }

for some subgroup H ≥ ZP of P and some ϕ : H ↪→ Q such that ϕ(H) ≥ ZQ. Then

NP×Q(L) = {(x, y) ∈ NP (H)×NQ(ϕ(H)) | ∀h ∈ H, ϕ(
xh) = yϕ(h)}.

The unique central subgroup of order p of the Roquette group NP×Q(L)/L is equal
to Z/L, where

(4.8) Z = (ZP × 1)L = (1× ZQ)L.

For any (x, y) ∈ (P ×Q), saying that L(x,y) ∩ ZP×Q(L) is contained in L is equivalent
to saying that the group I = L(x,y) ∩ Z is contained in L. In particular, for y = 1,

I = L(x,1) ∩ (ZP × 1)L
= {(hx, ϕ(h)) | h ∈ H, ∃z ∈ ZP , ∃h

′
∈ H, (hx, ϕ(h)) = (zh′, ϕ(h′))}

= {(hx, ϕ(h)) | h ∈ H, h−1hx ∈ ZP },

since ϕ(h) = ϕ(h′) implies h = h′, and since ZP is central in P . Denoting by [h, x] =
h−1hx the commutator of h and x, it follows that I ≤ L if and only if

∀h ∈ H, [h, x] ∈ ZP ⇒ hx ∈ H, (hx, ϕ(h)) = (hx, ϕ(hx)).

In other words [h, x] ∈ ZP implies hx = h. Thus I ≤ L if and only if

∀h ∈ H, [h, x] ∈ ZP ⇒ [h, x] = 1.

Equivalently [H, x] ∩ ZP = {1}, where [H, x] denotes the set of commutators [h, x] for
h ∈ H .

Since L =
−→
1 ϕ(H) is expansive in P ×Q it follows that

[H, x] ∩ ZP = {1} ⇒ L(x,1) = L.
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Now (x, 1) normalizes L if and only if x ∈ CP (H), i.e. if [H, x] = {1}. Hence

(4.9) [H, x] ∩ ZP = {1} ⇒ [H, x] = {1}.

• Let us show now that unless H = P ∼= Q ∼= Q8, the group H is an axial subgroup
of P , and the subgroup ϕ(H) is an axial subgroup of Q.

Let X be a cyclic subgroup of P of order eP , let x be a generator of X, and suppose
that H � X. Then in particular P is not cyclic, so p = 2, the group X is a (normal)
subgroup of index 2 of P (Lemma 2.9), and X is equal to its centralizer in P . Moreover
|H : H ∩ X| = 2 since H · X = P . The set [H, x] is equal to {1, x2

} if P is cyclic or
generalized quaternion, or to {1, x2+2n−2

} if P is semidihedral: indeed, the image of H
in the group of automorphisms of X has order 2, as H ∩ X centralizes X, and H does
not. Since ZP is generated by x2n−2

, it follows that [H, x] ∩ ZP = {1} if n ≥ 4, i.e. if
|P | ≥ 16. But [H, x] 6= {1}, hence L is not expansive in P ×Q if P ≥ 16.

So if H � X, then p = 2, and P is non-cyclic, of order at most 8. Hence P ∼= Q8. If
H 6= P , thenH is cyclic, andH � X. Thus |H | = 4 = eP , and in particularH is an axis
of P . Since H embeds into Q, it follows that |H | = min(eP , eQ). The same argument
applied to ϕ(H) shows that ϕ(H) is an axial subgroup of Q, as claimed.

In this case moreover, the group Q cannot be isomorphic to Q8. Indeed, otherwise
one can assume that P = Q and L = 1(H) is the diagonal embedding. Then

NP×P (L) = {(a, b) | a
−1b ∈ H }.

The group NP×P (L)/L has order 8, generated by the cyclic subgroup

C = {(a, 1)L | a ∈ H }

of index 2, and the involution (b, b)L, where b ∈ P − H . Hence NP×P (L)/L ∼= D8 is
not a Roquette group, and L is not a genetic subgroup of P × P .

If H is non-cyclic, then H = P , and the same argument applied to ϕ(H) shows
that Q ∼= Q8. And indeed

−→
1 ϕ(P ) is a genetic subgroup of P × Q: this follows from

Example 2.17, since the map (x, y) 7→ (x, ϕ−1(y)) is a group isomorphism from P ×Q

to P ×P , sending
−→
1 ϕ(P ) to1(P ). Moreover [P, P ] ≤ Z(P ), and Z(P ) has order 2. In

particular

(4.10) NP×Q(L)/L ∼= C2

does not depend on ϕ, up to isomorphism. This proves (2)(a).
• In the remaining cases L =

−→
1 ϕ(H), where H is a non-trivial axial subgroup of P ,

and ϕ : H ↪→ Q is such that ϕ(H) is an axial subgroup of Q. In particular H is cyclic
and non-trivial. As H ∼= ϕ(H) ≤ Q, it follows that |H | ≤ min(eP , eQ).

LetCeP be an axis of P containingH , andCeQ be an axis ofQ containing ϕ(Q). Then
(CeP ×CeQ)/1ϕ(H) is an abelian normal subgroup of the Roquette group NP×Q(L)/L,
hence it is cyclic. In particular L = 1ϕ(H) is not contained in the Frattini subgroup
CeP /p × CeQ/p of CeP × CeQ . Thus p1(L) = CeP or p2(L) = CeQ . In other words
H = CeP or ϕ(H) = CeQ , hence |H | = min(eP , eQ). This completes the proof of (1).
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• Now assume that P or Q is not isomorphic to Q8. Assume also that eP ≤ eQ, and
letH be an axis of P ; thenH is unique if P 6∼= Q8, and there are three possibilities forH
if P ∼= Q8 (Lemma 2.9). In any case H EP . Let K denote an axial subgroup of Q of
order eP . Such a group is unique except if p = 2, eP = 4, and Q ∼= Q8 (thus P ∼= C4 as
P has exponent 4, and is not isomorphic to Q8). In any case K EQ.

Let ϕ : H
∼=
−→ K be any group isomorphism, and set Lϕ =

−→
1 ϕ(H) ≤ P ×Q. Then

Lϕ is obviously centrally diagonal, and

NP×Q(Lϕ) = {(a, b) ∈ P ×Q | ∀h ∈ H, ϕ(
ah) = bϕ(h)}.

Since H is cyclic of order eP , the map

πH : (Z/ePZ)× 3 r 7→ (x 7→ xr) ∈ Aut(H)

is a canonical group isomorphism. Similarly, the map

πK : (Z/ePZ)× 3 r 7→ (x 7→ xr) ∈ Aut(K)

is a canonical group isomorphism.

Let α : P → Aut(H)
π−1
H
−−→ (Z/ePZ)× (resp. β : Q → Aut(K)

π−1
K
−−→ (Z/ePZ)×)

denote the group homomorphism obtained from the action of P on its normal subgroupH
by conjugation (resp. from the action of Q on its normal subgroup K). Then

NP×Q(Lϕ) = {(a, b) ∈ P ×Q | α(a) = β(b)}.

Now the group (Z/ePZ)× is abelian. The map

2 : P ×Q 3 (a, b) 7→ β(b)−1
· α(a) ∈ (Z/ePZ)×

is a group homomorphism, andNP×Q(Lϕ) = Ker2. In particular, it is a normal subgroup
of P × Q which does not depend on ϕ once H and K = ϕ(H) are fixed. In particular
Lϕ is an expansive subgroup of P × Q, by Example 2.14. Moreover if we set IP,Q =
Im(α) ∩ Im(β), there is an exact sequence

(4.11) 1→ CP (H)× CQ(K)→ NP×Q(Lϕ)
9
−→ IP,Q→ 1,

where 9(a, b) = α(a) = β(b) for (a, b) ∈ NP×Q(Lϕ).
Suppose first that eP = p, i.e. P ∼= Cp. In this case H = ZP = P , and K = ZQ, so

Lϕ is central in P ×Q. Moreover

(4.12) NP×Q(Lϕ)/Lϕ = (P ×Q)/Lϕ = (P ×Q)/
−→
1 ϕ(P ) ∼= Q

is a Roquette group, independent of ϕ up to isomorphism. In particular Lϕ is a genetic
subgroup of P ×Q.

Assume from now on that eP ≥ p2. Then CP (H) ∼= CeP and CQ(K) ∼= CeQ , by
Lemma 2.9.
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If p > 2, then P and Q are cyclic, hence H = P , and

(4.13) NP×Q(Lϕ)/Lϕ ∼= (P ×Q)/
−→
1 ϕ(P ) ∼= Q

as above. It is a Roquette group, independent of ϕ up to isomorphism. In particular Lϕ is
genetic in P ×Q.

Assume now that p = 2. The image of α has order |P : CP (H)|, which is equal to 1
if P is cyclic, and to 2 otherwise. Similarly, the image of β has order |Q : CQ(K)|, which
is equal to 1 if K is central in Q, i.e. if Q is cyclic (since |K| = eP ≥ 4 by assumption),
and to 2 otherwise. Set IP,Q = Im(α) ∩ Im(β). Then IP,Q has order 1 or 2, and there is
an exact sequence

(4.14) 1→ CeP × CeQ → NP×Q(Lϕ)→ IP,Q→ 1.

Note that IP,Q does not depend on ϕ : H
∼=
−→ K . More precisely,

Im(α) =

 {1} if P is cyclic,
{1,−1} if P is dihedral or generalized quaternion,
{1, eP /2− 1} if P is semidihedral.

So Im(α) only depends on the type of P .
Similarly

Im(β) =

 {1} if Q is cyclic,
{1,−1} if Q is dihedral or generalized quaternion,
{1, eQ/2− 1} if Q is semidihedral.

Moreover if Q is semidihedral and eQ > eP , then eQ/2 − 1 ≡ −1 (mod eP ), hence
Im(β) = {1,−1}. In other words, the group IP,Q is trivial in each of the following cases:

• P or Q is cyclic,
• P is dihedral or generalized quaternion, Q is semidihedral, and eP = eQ,

(i.e. equivalently |P | = |Q|),
• P is semidihedral, and Q is dihedral or generalized quaternion,
• P and Q are semidihedral, and eP < eQ (i.e. equivalently |P | < |Q|),

and the group IP,Q has order 2 in all other cases, i.e. in each of the following cases:

• P and Q are dihedral or generalized quaternion,
• P is dihedral or generalized quaternion, Q is semidihedral, and |Q| > |P |,
• P and Q are semidihedral, and P ∼= Q.

As Lϕ ≤ CeP × CeQ , the exact sequence (4.14) yields the exact sequence

(4.15) 1→ (CeP × CeQ)/Lϕ → NP×Q(Lϕ)/Lϕ → IP,Q→ 1.

Case 1: If IP,Q is trivial, then NP×Q(Lϕ) ∼= CeP × CeQ , and

(4.16) NP×Q(Lϕ)/Lϕ ∼= CeQ ,
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which is a Roquette group, independent of ϕ up to isomorphism. In particular Lϕ is a
genetic subgroup of P ×Q.

Case 2: Suppose now that IP,Q has order 2, i.e. Im(α) = Im(β) = {1, ε}, where ε is
either−1 or eQ/2−1 (in the case where P andQ are semidihedral and isomorphic). One
can choose an element u ∈ P , of order 2 if P is dihedral or semidihedral, and of order 4
if P is generalized quaternion, such that α(u) = ε. Similarly, one can choose an element
v ∈ Q, of order 2 if Q is dihedral or semidihedral, and of order 4 if Q is generalized
quaternion, such that β(v) = ε. These choices imply that (u, v) ∈ NP×Q(Lϕ).

In the exact sequence (4.15),

1→ (CeP × CeQ)/Lϕ → NP×Q(Lϕ)/Lϕ → {1, ε} → 1,

the group C = (CeP ×CeQ)/Lϕ is cyclic, isomorphic to CeQ . The element π = (u, v)Lϕ
of NP×Q(Lϕ)/Lϕ acts on C in the same way that v acts on the subgroup CeQ of Q,
namely by inversion if Q is dihedral or generalized quaternion, and by raising elements
to the power eQ/2 − 1 if Q is semidihedral. Finally π2

= (u2, v2)Lϕ = Lϕ if none
of P and Q is generalized quaternion. If P is generalized quaternion and Q is not, then
π2
= (zP , 1)Lϕ ∈ C − {1}, where zP is a generator of ZP . Similarly, if Q is generalized

quaternion and P is not, then π2
= (1, zQ)Lϕ ∈ C−{1}, where zQ is a generator of ZQ.

In these two cases
π4
= (1, 1)Lϕ = Lϕ,

so π has order 4 in NP×Q(Lϕ)/Lϕ . And finally, if both P and Q are generalized quater-
nion, then π2

= (zP , zQ)Lϕ = Lϕ , since ϕ(ZP ) = ZQ.
It follows that the group NP×Q(Lϕ)/Lϕ has order 2eQ = |Q|, and that it is:

(4.17)

• dihedral if P and Q are both dihedral, or both generalized quaternion,
• generalized quaternion if one of P , Q is generalized quaternion, and the

other is dihedral,
• semidihedral if Q is semidihedral.

So NP×Q(Lϕ)/Lϕ is a Roquette group, independent of ϕ up to isomorphism. In particu-
lar, Lϕ is a genetic subgroup of P ×Q. This completes the proof of Theorem 4.6. ut

Notation 4.18. • Let P and Q be Roquette p-groups. If P and Q are non-trivial, set
P � Q = NP×Q(L)/L, where L is a centrally diagonal genetic subgroup of P × Q.
Set moreover 1 � P = P � 1 = P .
• Let P and Q be Roquette p-groups. If P and Q are non-trivial, let νP,Q denote the

number of equivalence classes of centrally diagonal genetic subgroups of P × Q for
the relation ̂P×Q. Set moreover ν1,P = νP,1 = 1.

Remark 4.19. If P = 1 and Q is a Roquette p-group, then P × Q ∼= Q, and the
centrally diagonal genetic subgroups of P × Q are the subgroups 1 × R, where R is a
genetic subgroup of Q such that R ∩ Z(Q) = 1. The only such subgroup is R = 1, so
NQ(R)/R ∼= Q ∼= NP×Q(1×R)/(1×R). Hence the above definition of P �Q and νP,Q
is consistent in the case P = 1.
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Theorem 4.20. Let P andQ be Roquette p-groups, of exponents eP and eQ, respectively.
Suppose eP ≤ eQ, and set q = |Q|. Then

P �Q ∼=



Q if P = 1 or P ∼= Cp,
C2 if P ∼= Q ∼= Q8,
Dq if q ≥ 16 and P and Q are both dihedral,

or both generalized quaternion,
Qq if one of P,Q is dihedral,

and the other one is generalized quaternion,
SDq if Q is semidihedral, and either

• P is dihedral or generalized quaternion,
and |P | < |Q|, or
• P ∼= Q,

CeQ otherwise.

Proof. The case P = 1 is trivial, the case P ∼= Cp follows from (4.12), the case P ∼=
Q ∼= Q8 follows from (4.10), the three next cases in the list follow from (4.17), and the
last case follows from (4.13) and (4.16). ut

Theorem 4.21. Let P andQ be Roquette p-groups, of exponent eP and eQ, respectively,
and let m = min(eP , eQ).

(1) If p = 2 and one of the groups P or Q is isomorphic to Q8, then L ̂P×Q L′

for any centrally diagonal genetic subgroups L and L′ of P × Q. In other words
νP,Q = 1.

(2) In all other cases, if L and L′ are centrally diagonal genetic subgroups of P × Q,
then L̂P×Q L

′ if and only if L and L′ are conjugate in P ×Q. In particular

νP,Q = φ(m)m
|P �Q|

|P | |Q|
,

where φ is the Euler function.

Proof. Assume eP ≤ eQ, without loss of generality.
• If P = 1, then νP,Q = 1, and P � Q = Q by definition, and eP = 1, so there is

nothing to prove.
• If p = 2 and P ∼= Q ∼= Q8, then by Theorem 4.6, a genetic centrally diagonal

subgroup L of P × Q is of the form Lϕ =
−→
1 ϕ(P ), where ϕ : P → Q is a group

isomorphism. Moreover NP×Q(L)/L ∼= C2, so P �Q ∼= C2.
Now let ϕ,ψ : P → Q be two group isomorphisms. Then Lϕ ̂P×Q Lψ if and only

if there exists (x, y) ∈ (P ×Q) such that

L(x,y)ϕ ∩ ZP×Q(Lψ ) ≤ Lψ ,
(x,y)Lψ ∩ ZP×Q(Lϕ) ≤ Lϕ .

These conditions depend only on the double coset NP×Q(Lϕ)(x, y)NP×Q(Lψ ), which
admits a representative of the form (u, 1).
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Now the condition L(u,1)ϕ ∩ ZP×Q(Lψ ) ≤ Lψ is equivalent to

∀h ∈ P, ϕ(h)−1ψ(hu) ∈ ZQ ⇒ ϕ(h)−1ψ(hu) = 1,

and similarly the condition (u,1)Lψ ∩ ZP×Q(Lϕ) ≤ Lϕ is equivalent to

∀h ∈ P, ψ(h)−1ϕ(uh) ∈ ZQ ⇒ ψ(h)−1ϕ(uh) = 1.

If we apply ψ−1 to the first condition and ϕ−1 to the second one, and set θ = ψ−1ϕ,
these two conditions become

∀h ∈ P, θ(h)−1hu ∈ ZP ⇒ θ(h) = hu,

∀h ∈ P, θ−1(h)−1 uh ∈ ZP ⇒ θ−1(h) = uh.

Since huh−1
∈ [P, P ] = ZP , there are equivalences

2θ(h)−1hu ∈ ZP ⇔ θ(h)−1h ∈ ZP ⇔ h−1θ(h) ∈ ZP ,

θ−1(h)−1 uh ∈ ZP ⇔ θ−1(h)−1h ∈ ZP ⇔ h−1θ(h) ∈ ZP .

Hence, to prove that Lϕ ̂P×Q Lψ for any ϕ,ψ : P
∼=
−→ Q, it is enough to show that

(4.22) ∀θ ∈ Aut(P ), ∃u ∈ P, ∀h ∈ P, θ(h)h−1
∈ ZP ⇒

{
θ(h) = hu,

θ−1(h) = uh.

If h has order 1 or 2, then θ(h) = h = hu for any u ∈ P , hence the conditions θ(h) = hu

and θ−1(h) = uh only have to be checked for |h| = 4. Now the group Aut(P ) permutes
the three cyclic subgroups of order 4 of P , and this gives an exact sequence

1→ Inn(P )→ Aut(P )→ S3 → 1,

where S3 is the symmetric group on three symbols. Saying that θ(h)h−1
∈ ZP is equiva-

lent to saying that θ(〈h〉) = 〈h〉. Hence, there are two possibilities:
Either θ stabilizes the three subgroups of order 4 of P , and in this case θ is inner,

hence there exists u ∈ P such that θ(h) = hu for any h ∈ P , hence θ−1(h) = uh for any
h ∈ P .

Or there exists a unique subgroup C of order 4 of P such that θ(C) = C. Then either
θ(h) = h for any h ∈ C, or θ(h) = h−1 for any h ∈ C. In the first case, take u = 1, and
in the second case take u ∈ P − 〈h〉; then θ(h) = hu for any h ∈ C, hence h = θ−1(h)u

for h ∈ C, since C = θ(C). Thus (4.22) holds. This completes the proof in this case.
• If P ∼= Q8 and Q � Q8, then a centrally diagonal genetic subgroup of P × Q is

of the form L =
−→
1 ϕ(H), where H is one of the three subgroups of order 4 of P , and ϕ

is some isomorphism from H to the unique axial subgroup K of order 4 of Q. Moreover
ZP×Q(L) = L(1× ZQ).

Let H and H ′ be subgroups of order 4 of P . Let ϕ : H → K and ϕ′ : H ′ → K be
group isomorphisms, and set L =

−→
1(ϕ) and L′ =

−→
1 ϕ′(H

′). Suppose first that H 6= H ′,
and let (a, b) ∈ L′ ∩ ZP×Q(L) = L(1 × ZQ). This means that a ∈ H ′ ∩ H = ZP ,
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and there exists z ∈ ZQ such that ϕ′(a) = ϕ(a)z. But the restrictions of ϕ and ϕ′ to ZP
are equal, so ϕ′(a) = ϕ(a), hence z = 1. It follows that L′ ∩ ZP×Q(L) ≤ L, hence
L ∩ ZP×Q(L

′) ≤ L′ by symmetry, so L̂P×Q L
′ in this case.

Now if H = H ′, choose a subgroup H ′′ of order 4 in P , different from H , and a
group isomorphism ϕ′′ : H ′′ → K . Set L′′ =

−→
1 ϕ′′(H

′′). Then L ̂P×Q L
′′ ̂P×Q L

′

by the previous argument, thus L̂P×Q L
′.

Hence νP,Q = 1 in this case, as was to be shown.
• If there are several choices for K , i.e. Q ∼= Q8 and K has order 4 = min(eP , eQ),

it follows that P ∼= C4, since P � Q8. In this case, we can exchange P and Q, and use
the previous argument. Hence νP,Q = 1 in this case as well.
• In all other cases, by Theorem 4.6, a centrally diagonal genetic subgroupL of P×Q

is of the form
−→
1 ϕ(H), whereH ≤ P is the unique axis of P , and ϕ : H ↪→ Q is a group

isomorphism onto the unique axial subgroup K of order eP of Q. The normalizer of L in
P ×Q does not depend on ϕ, by (4.11), so it does not depend on L, since H and K are
also unique.

Let L and L′ be two such centrally diagonal genetic subgroups of P × Q. Then
in particular NP×Q(L) = NP×Q(L

′), thus L ̂P×Q L′ if and only if L and L′ are
conjugate in P ×Q, by Lemma 2.20. Moreover, it follows from the definition of P �Q
that

|NP×Q(L)| = |L| |P �Q| = eP |P �Q|,

so the conjugacy class of L in P ×Q has cardinality |P | |Q|
eP |P�Q|

. Since there are φ(eP ) pos-
sible choices for the isomorphism ϕ : H → K , i.e. φ(eP ) centrally diagonal subgroups
of P ×Q, it follows that

νP,Q = φ(eP )eP
|P �Q|

|P | |Q|
,

as was to be shown. ut

Remark 4.23. Suppose that P ∼= Q8 and Q � Q8. Then |P � Q| = |Q|, by Theo-
rem 4.20. Hence

φ(eP )eP
|P �Q|

|P | |Q|
= 2× 4×

|Q|

8|Q|
= 1 = νP,Q,

so the formula for νP,Q holds in this case. The only case where νP,Q is not equal to
φ(m)m

|P�Q|
|P | |Q|

(where m = min(eP , eQ)) is when P ∼= Q ∼= Q8: in this case νP,Q = 1,
but

φ(m)m
|P �Q|

|P | |Q|
= 2× 4×

2
8× 8

=
1
4
.

Corollary 4.24. Let P and Q be Roquette p-groups. Then, in the category Rp,

∂P × ∂Q ∼= νP,Q · ∂(P �Q).
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In other words, if P has exponent eP ,Q has order q and exponent eQ, and eP ≤ eQ, then

∂P × ∂Q =



∂Q if P = 1 or P ∼= C2,
∂C2 if P ∼= Q ∼= Q8,
φ(eP )

2 · ∂Dq if q ≥ 16 and P and Q are both dihedral,
or both generalized quaternion,

φ(eP )
2 · ∂Qq if one of P,Q is generalized quaternion,

and the other one is dihedral,
φ(eP )

2 · ∂SDq if Q is semidihedral, and either
• P is dihedral or generalized

quaternion, and |P | < |Q|, or
• P ∼= Q,

φ(eP )eP eQ
|P | |Q|

· ∂CeQ otherwise.

Proof. Let B be a genetic basis of the group R = P ×Q. In the category Rp, the product
∂P × ∂Q is equal to (P ×Q,f P1 × f

Q
1 ), and it is a summand of R. By Theorem 3.11,

there are mutually inverse isomorphisms

R
D //⊕

S∈B
∂NR(S),

I
oo

where I is the direct sum of the maps IndinfR
NR(S)

, and D is the direct sum of the maps
f
NR(S)
1 DefresR

NR(S)
. Corollary 4.24 follows from the fact that

(4.25) f
NR(S)
1 DefresR

NR(S)
(f P1 × f

Q
1 ) = 0

unless S is centrally diagonal in R = P ×Q. Indeed, DefresR
NR(S)

is given by the action

of the (NR(S), R)-biset S\R. On the other hand

f P1 × f
Q
1 = (P/1− P/ZP )× (Q/1−Q/ZQ)
= R/(1× 1)− R/(1× ZQ)− R/(ZP × 1)+ R/(ZP × ZQ),

hence DefresR
NR(S)

(f P1 × f
Q
1 ) is equal to

S\R/(1× 1)− S\R/(1× ZQ)− S\R/(ZP × 1)+ S\R/(ZP × ZQ),

which is

(4.26) S\R − S(1× ZQ)\R − S(ZP × 1)\R + S(ZP × ZQ)\R.

If S is not centrally diagonal inR = P×Q, then either S = S(1×ZQ) or S = S(ZP×1).
In each case the sum (4.26) vanishes.

And if S is centrally diagonal in R, then

S(1× ZQ) = S(ZP × 1) = S(ZP × ZQ),
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since the image of these groups in the Roquette groupNR(S) is equal to its unique central
subgroup Ŝ/S of order p. In this case

DefresR
NR(S)

(f P1 × f
Q
1 ) = S\R − Ŝ\R.

Since fNR(S)1 = NR(S)/S−NR(S)/Ŝ, it follows that DefresR
NR(S)

(f P1 ×f
Q
1 ) is invariant

under composition with fNR(S)1 .
Conversely, if S is not centrally diagonal in P ×Q, then

(f P1 × f
Q
1 ) IndinfR

NR(S)
f
NR(S)
1 = 0,

as can be seen by taking opposite bisets in (4.25). And if S is centrally diagonal, then

(f P1 × f
Q
1 ) IndinfR

NR(S)
f
NR(S)
1 = R/S − R/Ŝ = IndinfR

NR(S)
f
NR(S)
1 .

Hence the isomorphisms D and I restrict to mutually inverse isomorphisms between the
product ∂P×∂Q and the direct sum of the edges ∂NR(S), where S is a centrally diagonal
genetic subgroup of R. But for all such subgroups S, the group NR(S) is isomorphic to
P �Q, and there are νP,Q centrally diagonal subgroups in a genetic basis of R = P ×Q.
This completes the proof. ut

5. Examples and applications

5.1. Suppose first that p is odd. Then the Roquette p-groups are just the cyclic groups
Cpn for n ≥ 0. The “multiplication rule” of the edges ∂Cpn is the following:

(5.2) ∀m,∀n ∈ N, ∂Cpm × ∂Cpn = φ(p
min(m,n))∂Cpmax(m,n) ,

where φ is the Euler function (thus φ(pk) = pk−1(p − 1) if k > 0, and φ(1) = 1).

5.3. Some surprising phenomena occur when p = 2:

Proposition 5.4. In R2, the edge ∂C2 is isomorphic to the trivial group 1 (or its edge ∂1).

Proof. Indeed, Corollary 3.12 implies that if E ∼= (C2)
2, then ∂E = 0 in R2. Let X, Y ,

and Z denote the subgroups of order 2 of E. The element

u = ResEX ×Ef
E
1 ×E IndEY

of B(X, Y ) can be viewed as a morphism from Y to X in the category R2, which factors
through ∂E. So this morphism is equal to 0. Since

f E1 = E/1− E/X − E/Y − E/Z + 2E/E,

it follows that

u = IndX1 ResY1 − InfX1 ResY1 − IndX1 DefY1 − Iso(ϕ)+ 2 InfX1 DefY1 ,
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where ϕ is the unique group isomorphism from Y to X. Thus

0 = u Iso(ϕ−1) = IndX1 ResX1 − InfX1 ResX1 − IndX1 DefX1 − IdX +2 InfX1 DefX1 .

Hence in the category R2,

IdX = (IndX1 − InfX1 )(ResX1 −DefX1 )+ InfX1 DefX1 .

It follows that

(5.5) fX1 = f
X
1 (IndX1 − InfX1 )(ResX1 −DefX1 )f

X
1 .

But on the other hand fX1 = IdX − InfX1 DefX1 , so

fX1 (IndX1 − InfX1 ) = f
X
1 IndX1 = IndX1 − InfX1 DefX1 IndX1 = IndX1 − InfX1 .

It follows that

(ResX1 −DefX1 )f
X
1 (IndX1 − InfX1 ) = (ResX1 −DefX1 )(IndX1 − InfX1 )

= 2 Id1− Id1− Id1+ Id1 = Id1 .

Thus, if we set

a = fX1 (IndX1 − InfX1 ) ∈ HomR2(1, ∂X),

b = (ResX1 −DefX1 )f
X
1 ∈ HomR2(∂X, 1),

then the composition b◦a is equal to Id1, and (5.5) shows that a ◦b is equal to the identity
of ∂X. So a and b are mutually inverse isomorphisms between 1 and ∂X. ut

Corollary 5.6. Let F be a rational 2-biset functor. Then for any finite 2-group P ,

F(C2 × P) ∼= F(P )⊕ F(P ), F (D8 × P) ∼= F(P )
⊕5.

Proof. Indeed, rational p-biset functors are exactly those p-biset functors which factor
through the category Rp. And in R2, by Theorem 3.11, there is an isomorphism

C2 ∼= 1⊕ ∂C2 ∼= 1⊕ 1.

Thus C2 × P ∼= P ⊕ P , and the first assertion follows. The second one follows from
Example 3.13, which shows that in R2,

D8 ∼= 1⊕ 4 · ∂C2 ∼= 5 · 1.

Hence D8 × P ∼= 5 · P , thus F(D8 × P) ∼= F(P )
⊕5. ut

Proposition 5.7. The edge ∂Q8 is an involution: more precisely,

∂Q8 × ∂Q8 = ∂C2 ∼= 1.

Proof. Indeed, Q8 �Q8 = C2, and νQ8,Q8 = 1 by Theorem 4.21. ut
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Remark 5.8. The “action” of this involution on the edges of other Roquette 2-groups
(that is, different from 1, C2, and Q8) is as follows: it stabilizes cyclic and semidihedral
groups, and exchanges dihedral and generalized quaternion groups. More precisely, it
follows from Corollary 4.24 that

∀n ≥ 2, ∂Q8 × ∂C2n = ∂C2n ,

∀n ≥ 4, ∂Q8 × ∂D2n = ∂Q2n ,

∀n ≥ 4, ∂Q8 × ∂Q2n = ∂D2n ,

∀n ≥ 4, ∂Q8 × ∂SD2n = ∂SD2n .

5.9. By Theorem 3.11, any finite p-group is isomorphic to a direct sum of edges of
Roquette p-groups in the category Rp. The following result shows that the summands
of such an arbitrary direct sum are unique up to group isomorphism, with the possible
exception of the isomorphism 1 = ∂1 ∼= ∂C2 of Proposition 5.4:

Proposition 5.10. Let S and T be finite sequences of Roquette p-groups such that there
exists an isomorphism

(5.11)
⊕
S∈S

∂S ∼=
⊕
T ∈T

∂T in the category Rp.

If p = 2, replace any occurrence of C2 in S and T by the trivial group, which does not
change the existence of the isomorphism (5.11), by Proposition 5.4. Then there exists a
bijection ϕ : S → T such that the groups S and ϕ(S) are isomorphic for any S ∈ S.
Proof. By [Bou04], the simple biset functors SR,Fp , where R is a Roquette p-group dif-
ferent from Cp, are rational biset functors. Moreover, if |R| ≥ p2, then for any finite
p-group P , the dimension of SR,Fp (P ) is equal to the number of groups S in a genetic
basis of P such that NP (S) ∼= R. On the other hand, the Fp-dimension of S1,Fp (P ) is
equal to the number of groups S in a genetic basis of P such that |NP (S)| ≤ p.

The functor SR,Fp extends to an additive functor from Rp to the category of Fp-vector
spaces, and the value of this functor at the edge ∂P is by definition equal to ∂SR,Fp (P ).
Let B be a genetic basis of P . When N EP and N ≤ S ≤ P , set S = S/N , and note
that NP (S)

∼= NP (S). Then the set BN = {S | S ∈ B, S ≥ N} is a genetic basis of
P = P/N .

Thus for any Roquette group R,

|{S ∈ B | NP (S) ∼= R}| =
∑
NEP

∣∣∣{S ∈ B
∣∣∣ NP (S) ∼= R,

⋂
g∈P

Sg = N
}∣∣∣

=

∑
NEP

∣∣∣{S ∈ BN
∣∣∣ NP (S)

∼= R,
⋂
g∈P

S
g
= 1

}∣∣∣
=

∑
NEP

|{S ∈ BN | NP (S)
∼= R, S ∩ Z(P ) = 1}|.

It follows easily from Proposition 3.8 that if |R| ≥ p2, then the Fp-dimension of
∂SR,Fp (P ) is equal to the number of groups S in a genetic basis of P such that
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NP (S) ∼= R and S ∩ Z(P ) = 1. In particular, if P itself is a Roquette group, then

dimFp SR,Fp (∂P ) = dimFp ∂SR,Fp (P ) =

{
1 if P ∼= R,
0 otherwise.

By applying the functor SR,Fp to the isomorphism (5.11), this implies that the number of
terms in the sequence S which are isomorphic to R is equal to the corresponding number
in T .

Similarly, for any finite p-group P , the Fp-dimension of ∂S1,Fp (P ) is equal to the
number of groups S in a genetic basis of P such that NP (S) ≤ p and S ∩ Z(P ) = 1. If
P itself is a Roquette group, this gives

dimFp S1,Fp (∂P ) = dimFp ∂S1,Fp (P ) =

 1 if P ∼= Cp,
1 if P ∼= 1,
0 otherwise.

Hence the number of terms in S which are isomorphic to 1 or Cp is equal to the cor-
responding number in T . If p = 2, there are no S in S ∪ T such that S ∼= C2, by
assumption. It follows that for any Roquette p-group R, the number of terms in S which
are isomorphic to R is equal to the corresponding number in T . The proposition follows
in this case.

If p > 2, the above argument shows that⊕
S∈S
|S|≥p2

∂S ∼=
⊕
T ∈T
|T |≥p2

∂T .

Let M denote this direct sum. The isomorphism (5.11) can be rewritten as

(5.12) m11⊕mCp∂Cp ⊕M ∼= n11⊕ nCp∂Cp ⊕M

for some integers m1, mCp , n1, nCp such that m1 +mCp = n1 + nCp .
Now, let ζ be a primitive (i.e. non-trivial, since p is prime) character (Z/pZ)×→ C.

Such a character exists since p > 2. The functor SCp,ζ is a rational p-biset functor, as
it is a summand of CRC [Bou10, Corollary 7.3.5]. Applying this functor to the isomor-
phism 5.12 and taking dimensions gives

mCp + dimC SCp,ζ (M) = nCp + dimC SCp,ζ (M),

since SCp,ζ (1) = 0 and SCp,ζ (Cp) = ∂SCp,ζ (Cp) ∼= C.
It follows that mCp = nCp , hence m1 = n1, which completes the proof. ut

Corollary 5.13. Let X, Y , and Z be objects of Rp, isomorphic to direct sums of edges
of Roquette p-groups.

(1) If X ⊕ Z ∼= Y ⊕ Z in Rp, then X ∼= Y .
(2) If n is a positive integer, and if n ·X ∼= n · Y in Rp, then X ∼= Y .
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Proof. Decompose X as X ∼=
⊕

R nR(X) · ∂R, where R runs through the set of iso-
morphism classes of Roquette p-groups, and the function R 7→ nR(X) ∈ N has finite
support. Choose similar decompositions Y ∼=

⊕
R nR(Y ) · ∂R and Z ∼=

⊕
R nR(Z) · ∂R.

For (1), if p > 2, it follows from Proposition 5.10 that

nR(X)+ nR(Z) = nR(Y )+ nR(Z)

for each R. Thus nR(X) = nR(Y ) for each R, hence X ∼= Y in Rp.
If p = 2, and if R is a Roquette p-group different from 1 and C2, Proposition 5.10

shows that nR(X)+ nR(Z) = nR(Y )+ nR(Z), hence nR(X) = nR(Y ). Proposition 5.10
also implies that

n1(X)+ nC2(X)+ n1(Z)+ nC2(Z) = n1(Y )+ nC2(Y )+ n1(Z)+ nC2(Z),

whence n1(X)+ nC2(X) = n1(Y )+ nC2(Y ), and X ∼= Y in R2 again, since 1 ∼= C2.
The proof of (2) is similar: if p > 2, Proposition 5.10 shows that

nnR(X) = nnR(Y )

for any R, thus nR(X) = nR(Y ), and X ∼= Y . And if p = 2, the conclusion nR(X) =
nR(Y ) is valid for R different from 1 and C2. Moreover

n(n1(X)+ nC2(X)) = n(n1(Y )+ nC2(Y )),

hence n1(X)+ nC2(X) = n1(Y )+ nC2(Y ), and X ∼= Y , since 1 ∼= C2. ut

In the case of the decomposition of a p-group as a direct sum of edges of Roquette groups,
the above isomorphism ∂C2 ∼= ∂1 does not matter, and the decomposition is unique:

Proposition 5.14. Let P and Q be finite p-groups. The following assertions are equiva-
lent:

(1) P and Q are isomorphic in the category Rp.
(2) There exist genetic bases BP and BQ of P and Q, respectively, and a bijection

σ : BP → BQ such that

(5.15) ∀S ∈ BP , NQ(σ (S))/σ (S) ∼= NP (S)/S.

(3) For any genetic bases BP and BQ of P and Q, respectively, there exists a bijection
σ : BP → BQ such that (5.15) holds.

Proof. (2) implies (1) by Theorem 3.11. Now suppose that (1) holds. Then in particular
F(P ) ∼= F(Q) for any rational p-biset functor F . Let BP and BQ be genetic bases of P
and Q, respectively. If R is a Roquette p-group, set

mP (R) = |{S ∈ B | NP (S)/S ∼= R}|,

and define similarly mQ(R) for the group Q. The integers mP (R) and mQ(R) do not
depend on the choices of the genetic bases BP and BQ.
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If R is not isomorphic to Cp, then the simple functor SR,Fp is rational. Moreover, the
Fp-dimension of SR,Fp (P ) is equal to mP (R) if |R| > p, and to 1 + mP (Cp) if R = 1.
Since P is the only element S of B such that NP (S)/S = 1, it follows that mP (1) = 1;
then mP (R) = mQ(R) for any Roquette p-group R, and (2) follows. The equivalence of
(2) and (3) follows from Theorem 2.22. ut

Example 5.16. • Let p > 2, and let X+ (resp. X−) denote the extraspecial p-group of
order p3 and exponent p (resp. p2). Then X+ ∼= X− in Rp, for if P is one of these
groups, then each genetic basis of P consists of S = P , for which NP (S)/S = 1, of the
p + 1 subgroups S of index p in P , for which NP (S) = P/S ∼= Cp, and an additional
non-normal genetic subgroup S such that NP (S)/S ∼= Cp. In other words

X+ ∼= X
− ∼= 1⊕ (p + 2) · ∂Cp in Rp.

• Similar examples exist for p = 2: if P is one of the groups labelled 6 or 7 in the GAP
list of groups of order 32 (see [GAP13]), with respective structure ((C4×C2)oC2)oC2
and (C8oC2)oC2, then in any genetic basis of P , there is a unique group S (= P) such
that NP (S)/S = 1, there are six groups S such that NP (S)/S ∼= C2, and two groups S
such that NP (S)/S ∼= C4.
• Some 2-groups with different orders may become isomorphic in the category R2:

using GAP, one can show that the elementary abelian group of order 16 is isomorphic to
each of the groups labelled 134, 138, and 177 in GAP’s list of groups of order 64. These
groups have respective structures

((C4 × C4)o C2)o C2,
(
((C4 × C2)o C2)o C2

)
o C2, and (C2 ×D16)o C2.

I could not find any similar example for p > 2. In this case however, the following result
characterizes those p-groups which become isomorphic in the category Rp:

Proposition 5.17. Let p be a prime number, and let P and Q be finite p-groups.

(1) If P ∼= Q in the category Rp, then the Q-algebras ZQP and ZQQ are isomorphic.
(2) If p > 2, and if ZQP and ZQQ are isomorphic Q-algebras, then P ∼= Q in Rp.

Proof. Let G be a genetic basis of P . For S ∈ G, let V (S) denote the corresponding
simple QP -module, defined by

V (S) = IndinfP
NP (S)

8NP (S).

The multiplicity vS of V (S) in the QP -module QP is equal to

vS =
dimQ V (S)

dimQ EndQP (V (S))
.

As S is a genetic subgroup of P , there is an isomorphism of (skew-)fields

EndQP (V (S)) ∼= EndQNP (S)(8NP (S)).
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It follows that there is an isomorphism of Q-algebras

QP ∼=
∏
S∈G

MvS (EndQNP (S)(8NP (S))).

Hence

ZQP ∼=
∏
S∈G

Z(EndQNP (S)(8NP (S))).

This shows that the isomorphism type of the Q-algebra ZQP depends only on the ge-
netic basis G: more precisely, it is determined by the isomorphism type of P in Rp. This
proves (1).

Now if p > 2, the group NP (S) is cyclic, of order pmS say. By Example 2.11, there
is an isomorphism of (skew-)fields

EndQNP (S)(8NP (S))
∼= Q(ζpmS ),

where ζpmS is a primitive root of unity of order pmS . Hence

ZQP ∼=
∏
S∈G

Q(ζpmS ).

Similarly, if H is a genetic basis of Q then

ZQQ ∼=
∏
T ∈H

Q(ζpnT ),

where pnT = |NQ(T )|.
Let l be an integer greater than all the mS’s for S ∈ G, and all the nT ’s for T ∈ H.

Set K = Q(ζpl ), and let G be the Galois group of K over Q. By Galois theory [Sza09,
Theorem 1.5.4 and Remark 1.5.5], the Q-algebras ZQP and ZQQ are isomorphic if and
only if there is an isomorphism of G-sets

Homalg(ZQP,K) ∼= Homalg(ZQQ,K).

When r ≤ l is an integer, let Gr denote the Galois group of K over Q(ζpr ). Then the
G-set Homalg(ZQP,K) is isomorphic to⊔

S∈G
G/GnS .

The isomorphism ZQP ∼= ZQQ implies that for any r ≤ l, the number of S ∈ G such
that NP (S) has order pr is equal to the number of T ∈ H such that NQ(T ) has order pr .
Now (2) follows from Proposition 5.14. ut
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Remark 5.18. Proposition 5.17(2) is not true for p = 2. Let P = D8 and Q = Q8
denote a dihedral group of order 8 and a quaternion group of order 8, respectively. By
Example 3.13, in a genetic basis of P , there is one group S such that NP (S)/S = 1
(namely S = P ), and four subgroups S such that NP (S)/S ∼= C2 (the three subgroups of
index 2 in P , and a non-central subgroup of order 2 of P ). It follows easily that

QD8 ∼= Q⊕Q⊕Q⊕Q⊕M2(Q).

On the other hand, a genetic basis of Q contains one subgroup S such that NQ(S)/S = 1
(namely S = Q), three subgroups S such that NQ(S)/S ∼= C2 (the three subgroups of
index 2 in Q), and one subgroup S such that NQ(S)/S ∼= Q8 (the trivial subgroup of Q).
Hence

QQ8 ∼= Q⊕Q⊕Q⊕Q⊕HQ,

where HQ is the field of quaternions over Q. Then

ZQD8 ∼= Q5 ∼= ZQQ8.

But D8 and Q8 are not isomorphic in R2, by Proposition 5.14.

5.19. Genetic bases of direct products. Theorem 4.21 yields a way to compute a ge-
netic basis of a direct product of p-groups. More precisely:

Theorem 5.20. Let P and Q be finite p-groups, let BP be a genetic basis of P , and let
BQ be a genetic basis of Q.

(1) For each pair (S, T ) ∈ BP × BQ, let R be a centrally diagonal genetic subgroup of
NP (S)×NQ(T ), and let

R = {(x, y) ∈ NP (S)×NQ(T ) | (xS, yT ) ∈ R}.

Then R is a genetic subgroup of P ×Q such that

NP×Q(R) ∼= NP (S) �NQ(T ).

(2) For (S, T ) ∈ BP × BQ, let ES,T denote the set of subgroups R obtained in (1)
when R runs through a set of representatives of centrally diagonal genetic subgroups
of NP (S) × NQ(T ) for the relation ̂NP (S)×NQ(T )

, as described in Theorem 4.21.
Then the sets ES,T consist of mutually inequivalent genetic subgroups of P ×Q for
the relation ̂P×Q, and the (disjoint) union

BP×Q =
⊔

(S,T )∈BP×BQ
ES,T

is a genetic basis of P ×Q.
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Proof. (1) is straightforward if the group NP (S) is trivial, i.e. S = P , or if the group
NQ(T ) is trivial, i.e. T = Q. So we can assume that S < P and T < Q.

By Theorem 4.6, the group R is diagonal in NP (S) × NQ(T ). Hence k1(R) = S,
k2(R) = T , and R = R/(S × T ). This implies that NP×Q(R) ≤ NP (S)×NQ(T ). More
precisely

NP×Q(R) = {(a, b) ∈ NP (S)×NQ(T ) | (aS, bT ) ∈ NNP (S)×NQ(T )(R)},

and the map (a, b) 7→ (aS, bT ) induces a group isomorphism

NP×Q(R)/R ∼= NNP (S)×NQ(T )(R)/R.

It follows that NP×Q(R)/R is a Roquette group, and by Theorem 4.6 again, and Nota-
tion 4.18,

NP×Q(R)/R ∼= NP (S) �NQ(T ).

Let Ŝ ≥ S denote the subgroup of NP (S) such that Ŝ/S is the unique central subgroup
of order p of the Roquette group NP (S). Define T̂ ≥ T similarly, and let R̂/R be the
unique central subgroup of order p of NP×Q(R)/R. Then

R̂ = (Ŝ × 1)R = (1× T̂ )R.

Let (x, y) ∈ P ×Q be such that R(x,y) ∩ R̂ ≤ R. Intersecting this inclusion with P × 1
gives

(Sx ∩ Ŝ)× 1 ≤ S × 1,
thus Sx ∩ Ŝ ≤ S, and it follows that x ∈ NP (S), since S is an expansive subgroup of P .
Similarly, intersecting the inclusion R(x,y)∩ R̂ ≤ R with 1×Q gives T y ∩ T̂ ≤ T , hence
y ∈ NQ(T ).

Now S × T ≤ R(x,y) ∩ R̂ ≤ R, and taking the quotient by S × T gives

R
(xS,yT )

∩ (R̂/(S × T )) ≤ R.

As R is a genetic subgroup of NP (S) × NQ(T ), it follows that R
(xS,yT )

is equal to R,
hence R(x,y) = R. Thus R is an expansive subgroup of P × Q. Since NP×Q(R)/R is
a Roquette group, the group R is a genetic subgroup of P × Q, and this completes the
proof of (1).

For (2), let (S, T ) and (S′, T ′) be in BP × BQ, and let R ∈ ES,T and R′ ∈ ES′,T ′ be
such that R ̂P×Q R

′. This means that there exists (x, y) ∈ P ×Q such that

(5.21) R(x,y) ∩ R̂′ ≤ R′, (x,y)R′ ∩ R̂ ≤ R.

Intersecting these two inclusions with P × 1 gives

Sx ∩ Ŝ′ ≤ S′, xS′ ∩ Ŝ ≤ S.

Hence S′ ̂P S, thus S′ = S, since S and S′ are in the same genetic basis of P . Moreover
x ∈ NP (S). Similarly, intersecting (5.21) with 1×Q implies T = T ′, and y ∈ NQ(T ).

Quotienting the inclusions (5.21) by S × T gives that R
′ ̂NP (S)×NQ(T )

R. Hence
R′ = R, as was to be shown.
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Now setting
BP×Q =

⊔
(S,T )∈BP×BQ

ES,T

yields a set of genetic subgroups of P ×Q which are inequivalent to each other for the
relation ̂P×Q. But

|ES,T | = νNP (S),NQ(T ),

and NP×Q(R)/R ∼= NP (S) �NQ(T ) for any R ∈ ES,T . It follows that⊕
R∈BP×Q

∂NP×Q(R)/R ∼=
⊕
S∈BP
T ∈BQ

νNP (S),NQ(T )∂(NP (S) �NQ(T ))

∼=

(⊕
S∈BP

∂NP (S)
)
×

( ⊕
T ∈BQ

∂NQ(T )
)
∼= P ×Q.

In particular, the rank lQ(P × Q) of the group RQ(P × Q) is equal to |BP×Q|. Since
BP×Q is contained in a genetic basis of P × Q, which has cardinality lQ(P × Q), it
follows that BP×Q is a genetic basis of P ×Q. ut

Remark 5.22. Theorem 5.20 does not mean that any genetic subgroup of P ×Q can be
obtained by the construction of (1). For example, if [P, P ] ≤ Z(P ) and Z(P ) is cyclic,
then the diagonal R = 1(P ) is a genetic subgroup of P × P , by Example 2.17. But
k1(R) = 1 is not a genetic subgroup of P if P is not a Roquette group.

5.23. Example of application. As explained in Example 3.13, the dihedral group D8
splits as

(5.24) D8 ∼= 1⊕ 4∂C2 in R2.

Hence D8 ∼= 5 · 1 in R2, by Proposition 5.4, and (D8)
n ∼= 5n · 1 for any n ∈ N. In

particular, if F is a rational 2-biset functor such that F(1) = {0}, then F((D8)
n) = {0}.

Hence F(P ) = {0} for any quotient of a direct product of copies of D8, by Remark 3.10.
Actually, one can be more precise: since ∂C2 × ∂C2 ∼= ∂C2 by Corollary 4.24, it

follows that for any n ∈ N,

(5.25) (D8)
n ∼=

n⊕
i=0

(
n

i

)
4i · (∂C2)

i
= 1⊕

n⊕
i=1

(
n

i

)
4i · ∂C2 ∼= 1⊕ (5n − 1) · ∂C2.

This means that a genetic basis of the group P = (D8)
n is made up of the group S = P ,

for which NP (S)/S = 1, and of 5n − 1 subgroups S for which NP (S)/S ∼= C2.
In particular, by [Bou06, Theorem 9.5] (or [Bou10, Corollary 12.10.3]), the Dade

group of P is torsion free, and so is the Dade group of any factor group of P , by Re-
mark 3.10 again. This shows that the Dade group of a central product of any number of
copies ofD8 is torsion free (see Theorem 5.36 for a generalization of this result): this was
proved by Nadia Mazza and myself [BM04, Theorem 9.2]. However, the above argument
cannot be considered as a new proof of this result, since [Bou06, Theorem 9.5] relies on
[BM04, Theorem 9.2].
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5.26. Edges of central products. Let P and Q be non-trivial finite p-groups. We re-
call that a central product P ∗ϕ Q of P and Q is by definition a group of the form
(P×Q)/

−→
1 ϕ(ZP ), whereZP is a central subgroup of order p of P , and ϕ : ZP ↪→ Z(Q)

is some isomorphism from ZP to some central subgroup ZQ of Q.
In the case where p = 2 and the groups P and Q both have cyclic center, the group

ZP is unique, as also is the morphism ϕ, so the central product is simply denoted by P ∗Q
in this case.

Proposition 5.27. Let p be a prime number, and let P and Q be non-trivial finite
p-groups. Let ZP (resp. ZQ) denote a central subgroup of order p of P (resp. Q).

(1) If one of the groups Z(P ) or Z(Q) is non-cyclic, or if |Z(P )| > p and |Z(Q)| > p,
then ∂(P ∗ϕ Q) = 0 in Rp for any group isomorphism ϕ : ZP → ZQ.

(2) If Z(P ) and Z(Q) are cyclic, and if moreover Z(P ) or Z(Q) has order p, then⊕
ϕ:ZP

∼=
−→ZQ

∂(P ∗ϕ Q) ∼= ∂P × ∂Q in Rp.

Proof. The center of the group P ∗ϕ Q is equal to Z(P ) ∗ϕ Z(Q). It is cyclic if and only
if both Z(P ) and Z(Q) are cyclic, and if one of them has order p. This proves (1).

For (2), suppose thatZ(P ) andZ(Q) are cyclic, and one of them has order p. Then the
subgroups ZP and ZQ are uniquely determined, and there are p− 1 group isomorphisms
ϕ : ZP → ZQ. For each of them, the only central subgroup Zϕ of order p of P ∗ϕ Q is
equal to (ZP × ZQ)/

−→
1 ϕ(ZP ), and

(P ∗ϕ Q)/Zϕ ∼= (P ×Q)/(ZP × ZQ) ∼= P ×Q,

where P = P/ZP and Q = Q/ZQ.
By Proposition 3.8,

P ×Q ∼=
⊕

1≤NE(P×Q)

∂((P ×Q)/N),

P ∗ϕ Q ∼=
⊕

1ϕ(ZP )≤NE(P×Q)

∂((P ×Q)/N),

P ×Q ∼=
⊕

(ZP×1)≤NE(P×Q)

∂((P ×Q)/N),

P ×Q ∼=
⊕

(1×ZQ)≤NE(P×Q)

∂((P ×Q)/N),

P ×Q ∼=
⊕

(ZP×ZQ)≤NE(P×Q)

∂((P ×Q)/N).

Set

(5.28) S = ∂(P ×Q)⊕
( ⊕
ϕ:ZP

∼=
→ZQ

(P ∗ϕ Q)
)
⊕ (P ×Q)⊕ (P ×Q).
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Then S is equal to the direct sum of the edges ∂((P × Q)/N) for N E (P × Q), with
multiplicity p + 1 if N ≥ ZP × ZQ, and multiplicity 1 otherwise. Hence

(5.29) S ∼= (P ×Q)+ p · (P ×Q).

Now ∂(P ×Q) = 0 by Corollary 3.12. Also, by Corollary 3.9, for each ϕ : ZP
∼=
−→ ZQ,

P ∗ϕ Q = ∂(P ∗ϕ Q)⊕ (P ×Q).

But P ∼= ∂P ⊕P andQ ∼= ∂Q⊕Q, by Corollary 3.9 again. Replacing P ,Q, and P ∗ϕQ
by these values in (5.28) gives

(5.30) S ∼=
( ⊕
ϕ:ZP

∼=
→ZQ

∂(P ∗ϕ Q)
)
⊕ (p+ 1) · (P ×Q)⊕ (P × (∂Q))⊕ ((∂P )×Q).

But replacing P by ∂P ⊕ P and Q by ∂Q⊕Q in (5.29) gives

(5.31) S ∼= (∂P × ∂Q)⊕ (p + 1) · (P ×Q)⊕ (P × (∂Q))⊕ ((∂P )×Q).

Comparing (5.30) and (5.31) gives⊕
ϕ:ZP

∼=
−→ZQ

∂(P ∗ϕ Q) ∼= ∂P × ∂Q,

by Corollary 5.13. This completes the proof. ut

Corollary 5.32. (1) Let P and Q be non-trivial finite 2-groups with cyclic center, and
assume that Z(P ) or Z(Q) has order 2. Then

∂(P ∗Q) ∼= ∂P × ∂Q in the category R2.

(2) For each i ∈ {1, . . . , n}, let Pi be a finite 2-group with center Zi of order 2. Let

*n
i=1 Pi = P1 ∗ · · · ∗ Pn denote the central product of the groups Pi . Then

n

*i=1

Pi ∼=

n∏
i=1

(∂Pi)⊕

n∏
i=1

(Pi/Zi) in the category R2.

(3) In particular, for any positive integer n, and any integer m ≥ 4, there are isomor-
phisms

(D2m)
∗n ∼= 2(n−1)(m−3)

· ∂D2m ⊕ (D2m−1)
n,

(SD2m)
∗n ∼= 2(n−1)(m−3)

· ∂SD2m ⊕ (D2m−1)
n,

(Q2m)
∗n ∼=

{
2(n−1)(m−3)

· ∂D2m ⊕ (D2m−1)n if n is even,
2(n−1)(m−3)

· ∂Q2m ⊕ (D2m−1)n if n is odd,

in the category R2, where P ∗n denotes the central product of n copies of P .
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Proof. For (1), the assumptions imply that there is a unique group isomorphism ϕ :

ZP → ZQ. Hence there is only one term in the summation of Proposition 5.27.
(2) follows from Corollary 3.9, which gives an isomorphism

n

*i=1

Pi ∼= ∂
( n

*i=1

Pi

)
⊕

(( n

*i=1

Pi

)
/Y
)
,

where Y is the unique central subgroup of order 2 in *n
i=1 Pi . Now an easy induction

argument, using (1), shows that ∂(*n
i=1 Pi)

∼=
∏n
i=1(∂Pi), and that (*n

i=1 Pi)/Y
∼=∏n

i=1(Pi/Zi).
Finally, when P is one of the groups D2m , SD2m , or Q2m , then P/Z ∼= D2m−1 . Now

(3) follows from (2) and from an easy induction argument using Corollary 4.24. ut

Remark 5.33. It follows from (3) that when n is even, the groups (D2m)
∗n and (Q2m)

∗n

are isomorphic in the category R2; it is actually easy to check that they are isomorphic as
groups.

Example 5.34. From Corollary 4.24 and (1), it follows that:
• ∂((D8)

∗n) ∼= ∂C2.

• ∂((Q8)
∗n) ∼=

{
∂C2 if n is even,
∂Q8 if n is odd.

• ∂((SD2m)
∗n) ∼= 2(n−1)(m−3)

· ∂SD2m for m ≥ 4.
More generally, if P is any central product of groups isomorphic to D8 or Q8, that is,
if P is an extraspecial 2-group, then ∂P ∼= ∂C2 or ∂P ∼= ∂Q8. In particular (see Ex-
ample 2.28), we recover the well known fact that P has a unique faithful rational irre-
ducible representation. But more is true. Let Q be a non-trivial 2-group. If the center
of Q is not cyclic, then the center of any central product P ∗ Q is not cyclic, hence
∂Q = ∂(P ∗ Q) = 0 in R2. If the center of Q is cyclic, then there is a unique central
product P ∗Q. By Theorem 3.11, there is a finite sequence S of Roquette 2-groups such
that

∂Q ∼=
⊕
R∈S

∂R in R2.

By Corollary 5.32(1), it follows that

∂(P ∗Q) ∼=
⊕
R∈S

(∂P × ∂R).

Now ∂P ∼= ∂C2 or ∂P ∼= ∂Q8. In both cases, by Propositions 5.4 and 5.7, multiplication
by ∂P is a permutation of the edges of the Roquette 2-groups. It follows that there is a
sequence S ′ of Roquette 2-groups, of the same length as S, such that

∂(P ∗Q) ∼=
⊕
R∈S ′

∂R.

In particular, for any field K of characteristic 0, the groups

RK(∂P ) = ∂RK(P ) and RK(∂(P ∗Q)) = ∂RK(P ∗Q)

are free of the same rank, equal to the length of S or S ′.
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Hence in any case, the groups Q and P ∗Q have the same number (possibly 0 if the
center of Q is not cyclic) of faithful irreducible representations over K , up to isomor-
phism.

Similarly, the last example above means in particular that the group (SD2m)
∗n admits

2(n−1)(m−3) non-isomorphic faithful rational irreducible representations.

Example 5.35. Let p be an odd prime, and let P = Xε (where ε ∈ {±1}) be one of the
extraspecial groups of order p3 considered in Example 5.16. Then ∂P ∼= ∂Cp. Moreover
Z(P ) has order p, and any automorphism of Z(P ) = ZP can be extended to an auto-
morphism of P . It follows that P ∗ϕ Q is independent (up to a group isomorphism) of
the choice of an embedding ϕ : P ↪→ Z(Q), for any non-trivial p-group Q with cyclic
center, so we can denote this group by P ∗Q.

Now if Q is a non-trivial p-group, and B is a genetic basis of Q, it follows from
Theorem 3.11 that

∂Q ∼=
⊕
S∈B

S∩Z(Q)=1

∂NQ(S),

and the right hand side is a direct sum of edges of non-trivial Roquette p-groups. By (5.2),
for any non-trivial Roquette p-group R,

∂Cp × ∂R ∼= (p − 1)∂R.

Hence for any non-trivial p-group Q,

∂Cp × ∂Q ∼= (p − 1)∂Q.

It follows that if Q is a non-trivial p-group with cyclic center, and if P ∼= Xε , then⊕
ϕ:ZP

∼=
→ZQ

∂(P ∗ϕ Q) ∼= (p − 1)∂(P ∗Q) ∼= ∂Cp × ∂Q ∼= (p − 1)∂Q,

hence ∂(Xε ∗ Q) ∼= ∂Q, by Corollary 5.13. Note that this is also true (for any central
product of Xε with Q) if the center of Q is non-trivial, since in this case the center of
Xε ∗Q is also non-trivial, and then ∂(Xε ∗Q) ∼= ∂Q ∼= 0 in Rp, by Corollary 3.12.

It follows easily by induction that if P is any central product of groups isomorphic
to X+ or X−, i.e. if P is an extraspecial p-group, then ∂P ∼= ∂Cp. We thus recover the
well known fact that for p > 2 too, extraspecial p-groups have a unique faithful rational
irreducible representation. The same argument shows more generally that ∂(P ∗Q) ∼= ∂Q
in Rp for any non-trivial p-groupQ. In particularQ and P ∗Q have the same number of
faithful irreducible representations over a given field K of characteristic 0.

Theorem 5.36. (1) Let P be an arbitrary finite direct product of groups of order 2 and
dihedral 2-groups. Then the Dade group of any factor group of P is torsion free.

(2) Let 4 ≤ m1 ≤ · · · ≤ mn be a non-decreasing sequence of integers. Set s =∑n−1
i=1 (mi − 3). Then the torsion part of the Dade group of *n

i=1 SD2mi is iso-
morphic to (Z/2Z)2s−1

if m1 < mn, and to (Z/2Z)2s if m1 = mn.
(3) In particular, for any integers n ≥ 1 and m ≥ 4, the torsion part of the Dade group

of (SD2m)
∗n is isomorphic to (Z/2Z)2(n−1)(m−3)

.
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Proof. First, by Example 3.13,

D8 ∼= 1⊕ 4 · ∂C2 in R2.

Now by Corollary 3.9, since the center Z of D16 has order 2, and since D16/Z ∼= D8,

D16 ∼= 1⊕ 4 · ∂C2 ⊕ ∂D16.

Since for n ≥ 3, the group D2n has a center Z of order 2, and since D2n/Z ∼= D2n−1 , it
follows by induction that

(5.37) D2n ∼= 1⊕ 4 · ∂C2 ⊕

n⊕
l=4

∂D2l .

Now by Corollary 4.24, the product ∂D2l ×∂D2m for l ≤ m is isomorphic to 2l−3
·∂D2m .

Moreover ∂C2 × ∂P ∼= ∂P for any 2-group P , and since ∂C2 ∼= 1 by Proposition 5.4,
it follows that any product of dihedral 2-groups and groups of order 2 is isomorphic to a
direct sum of edges of the trivial group, of the edge of the group of order 2, and of edges
of dihedral 2-groups.

It follows that if P is a direct product of dihedral 2-groups and groups of order 2, then
P is isomorphic in R2 to the direct sum of the trivial group, and some copies of edges of
the group of order 2 and the edge of dihedral 2-groups. In other words, if S is a genetic
subgroup of P , then NP (S)/S is either trivial, or of order 2, or dihedral. Now the Dade
group of dihedral 2-groups is torsion free (by [CT00, Theorem 10.3 (a)]), and the Dade
groups of the trivial group and of the group of order 2 are trivial. It follows that the Dade
group of P is torsion free, as also is the Dade group of any quotient of P , being a direct
summand of the Dade group of P . This proves (1).

For (2), set P =*n
i=1 SD2mi . By Corollary 5.32(2),

(5.38) P ∼=

m∏
i=1

∂SD2mi ⊕

n∏
i=1

D2mi−1 in R2.

Now an easy induction on n, using Corollary 4.24, shows that

n∏
i=1

∂SD2mi ∼=

{
2s−1
· ∂C2mn−1 if m1 < mn,

2s · ∂SD2mn if m1 = mn,

where s =
∑n−1
i=1 (mi − 3).

By (5.38), this means that in a genetic basis B of P , there are 2s−1 or 2s subgroups S
such that NP (S)/S is semidihedral, depending on whether m1 < mn or m1 = mn, and
for the other S ∈ B, the group NP (S)/S is trivial, of order 2, or dihedral.

The Dade group of a dihedral 2-group is torsion free, and the Dade groups of the
trivial group and of C2 are trivial. Moreover, the faithful torsion part ∂Dt (C2m) of the
Dade group of C2m is isomorphic to Z/2Z if m ≥ 2 (see [Bou10, Theorem 12.10.3]).
Similarly, the faithful torsion part ∂Dt (SD2m) for m ≥ 4 is isomorphic to Z/2Z. This
completes the proof of (2); and (3) is a particular case of (2). ut
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Remark 5.39. Let P be a finite product of groups of order 2 and dihedral 2-groups, as
in (1), and let Q be a quotient of P . If T is a genetic subgroup of Q, then NQ(T )/T is
either trivial, of order 2, or dihedral: indeed, T lifts to a genetic subgroup S of P such
that NP (S)/S ∼= NQ(T )/T . It follows in particular that the map

εQ : B
×(Q)→ HomZ(RQ(Q),F2)

introduced in [Bou07, Notation 8.4] is a group isomorphism from the group of units of
the Burnside ring of Q to the F2-dual of RQ(Q). Indeed, there are non-negative integers
a and bi for i ∈ {4, . . . , m} such that

Q ∼= 1⊕ a · ∂C2 ⊕

m⊕
i=4

bi · ∂D2i in R2.

Then B×(Q) ∼= (F2)
r , where r = 1+ a +

∑m
i=4 bi , by [Bou07, Theorem 8.5]. Similarly

RQ(Q) ∼= Zr (hence r is equal to the number of conjugacy classes of cyclic subgroups
of Q), so HomZ(RQ(Q),F2) ∼= (F2)

r . As ε is injective, it is an isomorphism.

Proposition 5.40. Let m ≥ 3 be an integer. Then for any integer n, there is an isomor-
phism

(5.41) (D2m)
n ∼= 1⊕(5n−1) ·∂C2⊕

m⊕
l=4

(3+2l−2)n−(3+2l−3)n

2l−3 ·∂D2l in R2.

Proof. Let Sp denote the full subcategory of Rp consisting of all finite direct sums of
edges of Roquette p-groups, and let 0 = K0(Sp) be the Grothendieck group of this
category, for relations given by direct sum decomposition. Then Corollary 5.13 shows
that 0 is a free abelian group, and that two objects of Sp have the same image in 0 if
and only if they are isomorphic in Rp. Moreover, by Corollary 4.24, the category Sp is a
tensor subcategory of Rp, and 0 is actually a commutative ring.

It follows that 0 identifies to a subring of the Q-algebra Q0 = Q⊗Z 0, and to prove
the proposition, it suffices to check that the two sides of (5.41) have the same image
in Q0. Let c denote the image of ∂C2 in 0, and for l ≥ 4, let dl denote the image of ∂D2l

in 0. Note that c = 1 by Proposition 5.4. By (5.37), the image im of D2m in 0 is equal to

im = 1+ 4c +
m∑
l=4

dl = 5+
m∑
l=4

dl .

By Corollary 4.24, for 4 ≤ l ≤ k,

dl × dk = 2l−3dk.

It follows that the elements el = 1
2l−3 dl of Q0, for l ≥ 4, are such that

∀l, k, 4 ≤ l ≤ k, el × ek = ek.
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In particular el is an idempotent, and the elements

fl = el − el+1 for 4 ≤ l < m, and fm = em

are orthogonal idempotents of Q0. With this notation, for l ≥ 4,

el = fl + fl+1 + · · · + fm,

and the element im can be written as

im = 5+
m∑
l=4

dl = 5+
m∑
l=4

2l−3(fl + fl+1 + · · · + fm) = 5+
m∑
l=4

2(2l−3
− 1)fl .

Thus

(im)
n
= 5n +

n∑
j=1

(
n

j

)
5n−j

( m∑
l=4

2(2l−3
− 1)fl

)j
= 5n +

n∑
j=1

(
n

j

)
5n−j

m∑
l=4

2j (2l−3
− 1)jfl

= 5n +
m∑
l=4

( n∑
j=1

(
n

j

)
5n−j2j (2l−3

− 1)j
)
fl

= 5n +
m∑
l=4

((5+ 2(2l−3
− 1))n − 5n)fl

= 5n +
m∑
l=4

((3+ 2l−2)n − 5n)fl = 5n +
m∑
l=4

((3+ 2l−2)n − (3+ 2l−3)n)el .

The proposition follows, since 5n = 1+ (5n − 1)c, and since el = 1
2l−3 dl . ut

Remark 5.42. The isomorphism (5.41) is equivalent to saying that a genetic basis of the
group P = (D2m)

n consists of one subgroup S such that NP (S)/S ∼= 1 (namely S = P ),
of 5n−1 subgroups S such thatNP (S)/S ∼= C2, and, for 4 ≤ l ≤ m, of (3+2l−2)n−(3+2l−3)n

2l−3

subgroups S such that NP (S)/S ∼= D2l .

Together with Corollary 5.32(3), this also gives the structure of genetic bases of the groups
(D2m)

∗n, (SD2m)
∗n, (Q2m)

∗n:

Corollary 5.43. Let P be one of the groups D2m , SD2m , or Q2m , for m ≥ 4. Then, for
any positive integer n, any genetic basis of the group Q = P ∗n consists:

• of one group S such that NQ(S)/S = 1 (namely S = Q);
• of 5n − 1 subgroups S such that NQ(S)/S ∼= C2;

• for 4 ≤ l ≤ m− 1, of (3+2l−2)n−(3+2l−3)n

2l−3 subgroups S such that NQ(S)/S ∼= D2l ;
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• of 2(n−1)(m−3) subgroups S such that NQ(S)/S is isomorphic to
D2m if P = D2m ,

SD2m if P = SD2m ,

D2m if P = Q2m and n is even,
Q2m if P = Q2m and n is odd.
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