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Abstract. We give the first example of a transitive quadratic map whose real and complex geomet-
ric pressure functions have a high-order phase transition. In fact, we show that this phase transition
resembles a Kosterlitz–Thouless singularity: Near the critical parameter the geometric pressure
function behaves as x 7→ exp(−x−2) near x = 0, before becoming linear. This quadratic map has
a non-recurrent critical point, so it is non-uniformly hyperbolic in a strong sense.
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1. Introduction

This paper is concerned with the thermodynamic formalism of smooth dynamical sys-
tems. This study was initiated by Sinaı̆, Ruelle, and Bowen [Sin72, Bow75, Rue76] in
the context of uniformly hyperbolic diffeomorphisms and Hölder continuous potentials.
In the last decades there have been important efforts to extend the theory beyond the
uniformly hyperbolic setting, specially in real and complex dimension 1 where a com-
plete picture is emerging; see for example [BT09, MS00, MS03, PS08, PRL11, PRL13]
and references therein. See also [Sar11, UZ09, VV10] and references therein for (recent)
results in higher dimensions.

For a smooth map f in real or complex dimension 1 and a real parameter t , we con-
sider the pressure of f with respect to the geometric potential −t log |Df | (see §1.1 for
the details). The function of t so defined is the geometric pressure function of f . It is
closely related to several multifractal spectra and large deviation rate functions associated
with f ; see for example [BMS03, Lemma 2], [GPR10], [IT11], [KN92, Theorems 1.2
and 1.3], [PRL11, Appendix B], and references therein.
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We exhibit a transitive quadratic map whose geometric pressure function behaves, for
some constants A > 0 and χ > 0 and for t near a certain parameter t∗, as the function

t 7→

{
−tχ + exp(−A(t∗ − t)−2) if t < t∗,

−tχ if t ≥ t∗

(see the Main Theorem in §1.1). Thus, the geometric pressure function of this map has
a phase transition at t = t∗ that resembles a Kosterlitz–Thouless type singularity (see
for example [DGM08] or [LBMB04, §7.6]). It is the first example of a transitive smooth
dynamical system having a second-order phase transition that does not correspond to a
power law singularity. This example is also robust: Every family of sufficiently regular
unimodal maps that is close to the quadratic family has a member with the same property.

The quadratic map we study has a non-recurrent critical point, so it is non-uniformly
hyperbolic in a strong sense. Thus, roughly speaking, lack of expansion is not responsible
for the phase transition. Instead, it is the irregular behavior of the critical orbit that is one
of the mechanisms behind the phase transition. Considering a different behavior of the
critical orbit, in the companion paper [CRL12] we gave the first example of a quadratic
map having a phase transition at a large value of t , that is, of a “low-temperature phase
transition”; see also [MS03, §5] for some conformal Cantor sets with similar properties.
In contrast with the example studied here, the geometric pressure function of the quadratic
map studied in [CRL12] is not differentiable at the phase transition, that is, it is a phase
transition of first order.

Another interesting feature of the quadratic map we study is that it has no equilibrium
state at the phase transition. At a low-temperature phase transition there can be at most one
equilibrium state,1 and in the companion paper [CRL12] we provide an example of a
quadratic map having one.

There are various examples in the literature of transitive smooth maps whose geo-
metric pressure function has a first-order phase transition. This includes quadratic maps
that have an absolutely continuous invariant measure, and that do not satisfy the Collet–
Eckmann condition.2 By the work of Makarov and Smirnov [MS00], this also includes
those phase transitions in the complex case that occur at a parameter in (−∞, 0). See
also [DGR11, DGR14, LOR11] for examples of first-order phase transitions of some
transitive 3-dimensional diffeomorphisms.

The only known phase transitions that are not of first order are those related to the
existence of a neutral periodic point. For a given α ≥ 1, consider the map fα given
by x 7→ x(1+ xα) mod 1, which has a neutral fixed point at x = 0. It is the prototypical
example of an interval map with a neutral periodic point. The geometric pressure function
of fα is studied in [Lop93]. It has a phase transition at t = 1 with a power law singularity

1 See [Dob15, Theorem 6] in the real setting, and [Dob12, Theorem 8] in the complex setting.
2 For such a map, the geometric pressure function is identically zero after its first zero (see [NS98,

Theorem A] or [RL12, Corollary 1.3] in the real case and [PRLS03, Main Theorem] in the complex
case). On the other hand, since every absolutely continuous invariant measure has a strictly positive
Lyapunov exponent, the existence of such a measure easily implies that the geometric pressure
function is not differentiable at its first zero.
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of exponent α. Thus, it is natural to expect that for a quadratic map f having a periodic
point p of period n ≥ 1 satisfying Df n(p) = ±1, the geometric pressure function of f
has a unique phase transition, and that this phase transition corresponds to a power law
singularity.3

1.1. Statement of results

For c, z ∈ C, write fc(z) := z2
+c. We consider a set of real parameters c close to−2 such

that fc(c) > c, the interval Ic := [c, fc(c)] of R is invariant by fc, and fc is topologically
exact on Ic. We consider two dynamical systems associated to fc: the interval map fc|Ic
and the complex quadratic polynomial fc acting on its Julia set Jc.

For such c, define

χcrit(c) := lim inf
m→∞

1
m

log |Dfmc (c)|,

and denote by MR
c the space of Borel probability measures supported on Ic that are

invariant by fc. For a measure µ in MR
c denote by hµ(fc) the measure-theoretic entropy

of fc with respect to µ, and for each t in R set

PR
c (t) := sup

{
hµ(fc)− t

∫
log |Dfc| dµ

∣∣∣∣ µ ∈MR
c

}
,

which is finite. The function PR
c : R → R so defined is called the geometric pressure

function of fc|Ic ; it is convex and nonincreasing.
Similarly, denote by MC

c the space of Borel probability measures supported on Jc that
are invariant by fc, and for a measure µ in MC

c , denote by hµ(fc) the measure-theoretic
entropy of fc with respect to µ. Then the geometric pressure function PC

c : R→ R of fc
is defined by

PC
c (t) := sup

{
hµ(fc)− t

∫
log |Dfc| dµ

∣∣∣∣ µ ∈MC
c

}
.

Main Theorem. There is a real parameter c such that the critical point of fc is non-
recurrent, for some t∗ > 0 and every t ≥ t∗ we have

PR
c (t) = P

C
c (t) = −tχcrit(c)/2,

and for some constants A,B+, B− > 0 and every t in (0, t∗) close to t∗,

−tχcrit(c)/2+ 2
−

(
A
t∗−t
+B−

)2

≤ PR
c (t) ≤ P

C
c (t) ≤ −tχcrit(c)/2+ 2

−

(
A
t∗−t
−B+

)2

.

In particular, both PR
c and PC

c are of class C2 at t = t∗, but neither is real analytic
at t = t∗.

3 Notice that when Df n(p) = 1 (resp. Df n(p) = −1), the function x 7→ f n(x) − x (resp.
x 7→ f 2n(x) − x) is of the order of (x − p)2 (resp. (x − p)3) near p (see for example [CG93,
Mil06]).
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We show in addition that for each t ≥ t∗ there is no equilibrium state of fc for the
potential −t log |Dfc|, there is a unique associated conformal measure, and this measure
is dissipative and purely atomic (supported on the backward orbit of the critical point);4

see §3.1 for the relevant definitions and for a strengthened version of the Main Theorem.
It can also be shown that if for each t in (0, t∗) we denote by νt the unique equilibrium
state of fc for the potential −t log |Dfc|, then the measure νt converges as t → t−∗ to
the invariant probability measure supported on a certain periodic point of period 3 of fc.
Thus, roughly speaking, the quadratic map in the Main Theorem is a low-temperature
analog of the quadratic map that has a physical measure supported on a repelling fixed
point, studied in [HK90].

Since the critical point of a map fc as in the Main Theorem is non-recurrent, it follows
that fc satisfies the Collet–Eckmann condition: χcrit(c) > 0 (see [Mis81] for the real case
and [Mañ93] for the complex case). So, t∗ in the Main Theorem is strictly larger than
the first zero of the geometric pressure function of fc, that is, fc has a “low-temperature”
phase transition at t = t∗ in the sense of [CRL12].

1.2. Notes and references

For complex rational maps, Makarov and Smirnov showed that every phase transition
occurring at a negative parameter is removable, in the sense that the geometric pressure
function has a real analytic continuation to all of (−∞, 0) [MS00, Theorem B]. In con-
trast, the geometric pressure function of a map as in the Main Theorem cannot admit a
real analytic continuation beyond the phase transition.

For a map as in the Main Theorem, the non-existence of equilibrium states also fol-
lows from [IRRL12, Corollary 1.3].

For a quadratic map having a phase transition at the first zero of the pressure function,
that is, a high-temperature phase transition, the number of ergodic equilibrium states can
be arbitrary; see [CRL10, Corollaries 2 and 3], and also [BK98, Example 5.4] and [BT06,
Corollary 2] for an example having no equilibrium state.

Bruin and Todd [BT15] study certain piecewise linear models (with an infinite number
of break points) of the smooth unimodal maps having a wild attractor in [BKNvS96].
They show that for a large value of the order of the critical point, the piecewise linear
model has a high-order phase transition. Notice that no quadratic map can have a wild
attractor (see [Lyu94]).

1.3. Strategy and organization

To prove the Main Theorem, we consider the set of parameters introduced in [CRL12].
For each parameter c in this set, the critical value is eventually mapped to an expanding
Cantor set, denoted by 3c. For such a parameter, the behavior of the geometric pressure
function at low temperatures is intimately related to the derivatives of the map along the

4 In contrast, for each t < t∗ there is a unique equilibrium state of fc for the potential−t log |fc|,
there is a unique associated conformal measure, and this last measure is supported on the conical
Julia set (see [PRL13] for the real case and [PRL11] for the complex case).
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critical orbit (Proposition 5.6). As a first approximation we use the multipliers of the two
periodic orbits of period 3 of fc to estimate these derivatives. However, the distortion
constants in these estimates are too big to achieve the level of precision needed to prove
the Main Theorem. To achieve a higher precision, we estimate these distortion constants
in terms of the total distortion along certain homoclinic orbits connecting the two periodic
orbits of period 3 (Proposition 3.1 in §3.2).

We now proceed to describe the organization of the paper more precisely.
After some preliminaries in §2, we state a strengthened version of the Main Theorem

in §3.1, as the “Main Technical Theorem”. In §3.3 we introduce an abstract two-variable
series that captures the behavior of the geometric pressure function at low temperatures
(Proposition A). Its definition is based on an approximation of the derivatives at the criti-
cal value in terms of its itinerary in 3c (Proposition 3.1), as mentioned above.

In §4, which is independent of the rest of the paper, we study in an abstract setting the
two-variable series for a specific class of itineraries. We show that this series has a phase
transition with an asymptotic behavior as in the Main Theorem. The itineraries are defined
in §4.1, and the estimates of the corresponding two-variable series are made in §4.2.

The proof of the Main Technical Theorem is given in §5. After some general results
about conformal measures in §5.1, we make some technical estimates in §5.2. The proof
of the Main Technical Theorem is in §5.3, after recalling a few results from [CRL12].

2. Preliminaries

We use N to denote the set of integers greater than or equal to 1, and N0 := N ∪ {0}.

2.1. Quadratic polynomials, Green’s functions, and Böttcher coordinates

In this subsection and the next we recall some basic facts about the dynamics of complex
quadratic polynomials; see for instance [CG93] or [Mil06] for references

For c in C we denote by fc the complex quadratic polynomial

fc(z) = z
2
+ c,

and byKc the filled Julia set of fc, that is, the set of all points z in C whose forward orbit
under fc is bounded in C. The set Kc is compact and its complement is the connected
set consisting of all points whose orbit converges to infinity in the Riemann sphere. Fur-
thermore, f−1

c (Kc) = Kc and fc(Kc) = Kc. The boundary Jc of Kc is the Julia set
of fc.

For a parameter c in C, the Green’s function of Kc is the function Gc : C→ [0,∞)
that is identically 0 on Kc, and that for z outside Kc is given by the limit

Gc(z) = lim
n→∞

1
2n

log |f nc (z)| > 0. (2.1)

The function Gc is continuous, subharmonic, satisfies Gc ◦ fc = 2Gc on C, and it is
harmonic and strictly positive outside Kc. On the other hand, the critical values ofGc are
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bounded from above by Gc(0), and the open set

Uc := {z ∈ C | Gc(z) > Gc(0)}

is homeomorphic to a punctured disk. Notice that Gc(c) = 2Gc(0), thus Uc contains c.
By Böttcher’s Theorem there is a unique conformal representation

ϕc : Uc → {z ∈ C | |z| > exp(Gc(0))},

and this map conjugates fc to z 7→ z2. It is called the Böttcher coordinate of fc and
satisfies Gc = log |ϕc|.

2.2. External rays and equipotentials

Let c be in C. For v > 0 the equipotential v of fc is by definition G−1
c (v). A Green’s

line of Gc is a smooth curve in the complement of Kc in C that is orthogonal to the
equipotentials of Gc and that is maximal with this property. Given t in R/Z, the external
ray of angle t of fc, denoted by Rc(t), is the Green’s line of Gc containing

{ϕ−1
c (r exp(2πit)) | exp(Gc(0)) < r <∞}.

By the identity Gc ◦ fc = 2Gc, for each v > 0 and each t in R/Z the map fc maps
the equipotential v to the equipotential 2v, and maps Rc(t) to Rc(2t). For t in R/Z the
external ray Rc(t) lands at a point z ifGc : Rc(t)→ (0,∞) is a bijection andGc|−1

Rc(t)
(v)

converges to z as v converges to 0 in (0,∞). By the continuity ofGc, every landing point
is in Jc = ∂Kc.

The Mandelbrot set M is the subset of C of those parameters c for which Kc is
connected. The function

8 : C \M→ C \ cl(D), c 7→ 8(c) := ϕc(c),

is a conformal representation (see [DH84, VIII, Théorème 1]). For v > 0 the equipoten-
tial v of M is by definition

E(v) := 8−1({z ∈ C | |z| = v}).

On the other hand, for t in R/Z the set

R(t) := 8−1({r exp(2πit) | r > 1})

is called the external ray of angle t of M. We say that R(t) lands at a point z in C
if 8−1(r exp(2πit)) converges to z as r ↘ 1. When this happens, z belongs to ∂M.
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2.3. The wake 1/2

In this subsection we recall a few facts that can be found for example in [DH84]
or [Mil00].

The external rays R(1/3) and R(2/3) of M land at the parameter c = −3/4, and
these are the only external rays of M that land at this point (see for example [Mil00,
Theorem 1.2]). In particular, the complement in C of the set

R(1/3) ∪R(2/3) ∪ {−3/4}

has two connected components; we denote by W the connected component containing
the point c = −2 of M.

For each parameter c in W the map fc has two distinct fixed points; one of them is
the landing point of the external ray Rc(0) and it is denoted by β(c); the other is denoted
by α(c). The only external ray landing at β(c) is Rc(0), and the only external ray landing
at −β(c) is Rc(1/2).

Moreover, for every c in W the only external rays of fc landing at α(c) are Rc(1/3)
and Rc(2/3) (see for example [Mil00, Theorem 1.2]). The complement of Rc(1/3) ∪
Rc(2/3) ∪ {α(c)} in C has two connected components: one containing −β(c) and z = c,
and the other containing β(c) and z = 0. On the other hand, the point α(c) has two preim-
ages by fc: itself and α̃(c) := −α(c). The only external rays landing at α̃(c) are Rc(1/6)
and Rc(5/6).

2.4. Yoccoz puzzles and para-puzzles

In this subsection we recall the definitions of Yoccoz puzzle and para-puzzle. We follow
[Roe00].

Definition 2.1 (Yoccoz puzzles). Fix c in W and consider the open regionXc :={z∈C |
Gc(z) < 1}. The Yoccoz puzzle of fc is the sequence (Ic,n)∞n=0 of graphs defined by

Ic,0 := ∂Xc ∪ (Xc ∩ cl(Rc(1/3)) ∩ cl(Rc(2/3))) and Ic,n := f
−n
c (Ic,0) for n ≥ 1.

The puzzle pieces of depth n are the connected components of f−nc (Xc)\ Ic,n. The puzzle
piece of depth n containing a point z is denoted by Pc,n(z).

Note that for a real parameter c, every puzzle piece intersecting the real line is invariant
under complex conjugation. Since puzzle pieces are simply connected, it follows that the
intersection of such a puzzle piece with R is an interval.

Definition 2.2 (Yoccoz para-puzzles5). Given an integer n ≥ 0, set

Jn := {t ∈ [1/3, 2/3] | 2nt (mod 1) ∈ {1/3, 2/3}},

5 In contrast with [Roe00], we only consider para-puzzles contained in W .
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let Xn be the intersection of W with the open region in the parameter plane bounded by
the equipotential E(2−n) of M, and define

In := ∂Xn ∪
(
Xn ∩

⋃
t∈Jn

cl(R(t))
)
.

Then the Yoccoz para-puzzle of W is the sequence (In)∞n=0 of graphs. The para-puzzle
pieces of depth n are the connected components of Xn \ In. The para-puzzle piece of
depth n containing a parameter c is denoted by Pn(c).

Observe that there is only one para-puzzle piece of depth 0, and only one of depth 1; they
are bounded by the same external rays but different equipotentials. Both contain c = −2.

Fix c in P0(−2). There are precisely two puzzle pieces of depth 0: Pc,0(β(c))
and Pc,0(−β(c)). Each is bounded by the equipotential 1 and by the closures of the
external rays landing at α(c). Furthermore, the critical value c of fc is contained
in Pc,0(−β(c)), and the critical point in Pc,0(β(c)). It follows that f−1

c (Pc,0(β(c))) is the
disjoint union of Pc,1(−β(c)) and Pc,1(β(c)), so fc maps each of the sets Pc,1(−β(c))
and Pc,1(β(c)) biholomorphically onto Pc,0(β(c)). Moreover, there are precisely three
puzzle pieces of depth 1:

Pc,1(−β(c)), Pc,1(0), Pc,1(β(c));

Pc,1(−β(c)) is bounded by the equipotential 1/2 and by the closures of the external rays
that land at α(c); Pc,1(β(c)) is bounded by the equipotential 1/2 and by the closures of
the external rays that land at α̃(c); and Pc,1(0) is bounded by the equipotential 1/2 and
by the closures of the external rays that land at α(c) and at α̃(c). In particular, the closure
of Pc,1(β(c)) is contained in Pc,0(β(c)). It follows that for each integer n ≥ 1 the map f nc
maps Pc,n(−β(c)) biholomorphically onto Pc,0(β(c)).

The following is used several times (see [CRL12, Lemma 3.3]).

Lemma 2.3. For each integer n ≥ 1, the following properties hold.

(i) The para-puzzle piece Pn(−2) contains the closure of Pn+1(−2).
(ii) For each parameter c in Pn(−2) the critical value c of fc is in Pc,n(−β(c)).

2.5. The uniformly expanding Cantor set

For a parameter c in P3(−2), the maximal invariant set 3c of f 3
c in Pc,1(0) plays an

important role in the proof of the Main Theorem. After recalling some of the properties
of3c shown in [CRL12, §3.3], in this subsection we prove that f 3

c is uniformly expanding
on 3c and we make some distortion estimates for f 3

c on 3c (Lemma 2.4).
Fix c in P3(−2). There are precisely two connected components of f−3

c (Pc,1(0)) con-
tained in Pc,1(0), which we denote by Yc and Ỹc. The closures of these sets are disjoint
and contained in Pc,1(0). The sets Yc and Ỹc are distinguished by the fact that Yc contains
in its boundary the common landing point of the external rays Rc(7/24) and Rc(17/24),
denoted γ (c), while Ỹc contains in its boundary the common landing point of the external
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rays Rc(5/24) and Rc(19/24). The map f 3
c maps each of the sets Yc and Ỹc biholomor-

phically onto Pc,1(0). Thus, if we set

gc : Yc ∪ Ỹc → Pc,1(0), z 7→ gc(z) := f
3
c (z),

then
3c =

⋂
n∈N

g−nc (cl(Pc,1(0))).

The rest of this section is dedicated to proving the following lemma.

Lemma 2.4. There are constants C0, υ0 > 0 such that for every parameter c in P5(−2),
every ` in N, and every connected component W of g−`c (Pc,1(0)), we have

diam(W) ≤ C0 exp(−υ0`);

furthermore, for all z and w in W we have∣∣∣∣ Dgc(z)Dgc(w)
− 1

∣∣∣∣ ≤ C0 exp(−υ0`).

To prove this lemma, we recall some facts from [CRL12, §4.1]. For c in P2(−2), the open
disk Ûc containing −β(c) and bounded by the equipotential 2 and by

Rc(7/24) ∪ {γ (c)} ∪ Rc(17/24)

contains the closure of Pc,0(−β(c)) and is disjoint from Pc,1(β(c)); the set Ŵc :=

f−1
c (Ûc) contains the closure of Pc,1(0) and varies continuously with c in P3(−2).

Lemma 2.5. For every parameter c in P4(−2), each of the maps

ψc := (gc|Yc )
−1 and ψ̃c := (gc|Ỹc )

−1

extends biholomorphically to Ŵc. Moreover, the closures of ψc(Ŵc) and ψ̃c(Ŵc) are both
included in Pc,1(0).

Proof. Fix c in P4(−2). To prove the first assertion, it is sufficient to show that for j
in {0, 1, 2} the critical value c is not in f−jc (Ŵc). By Lemma 2.3(ii), c is in Pc,4(−β(c)).
Then for i in {1, 2, 3} the point f ic (c) is in the set Pc,1(β(c)) disjoint from Ûc. Using
Ŵc = f

−1
c (Ûc), we conclude the proof of the extension.

To prove the second assertion, we use the fact that fc(Yc) = fc(Ỹc) and f 2
c (Yc) ⊂

Pc,1(β(c)) (cf. [CRL12, proof of Lemma 3.5]). Denote by Ũc the open disk contain-
ing 0 and bounded by the equipotential 2, the point α̃(c) and the external rays landing
at α̃(c). Observe that Ûc ⊂ Ũc and thus Ŵc is contained in the connected set f−1

c (Ũc).
The latter is contained in the set containing β(c) and bounded by the equipotential 1, by
the preimage α1(c) of α̃(c) contained in Pc,1(−β(c)), and by the external rays Rc(5/12)
and Rc(7/12) that land at α1(c). In particular, f−1

c (Ũc) is disjoint from Pc,4(−β(c)).
This implies that f−2

c (Ũc) has two connected components, one disjoint from Pc,1(β(c))

and the other containing f 2
c (Yc); the closure of the latter is contained in Pc,0(β(c)).



2734 Daniel Coronel, Juan Rivera-Letelier

Since f 2
c (Pc,1(0)) ⊃ Pc,0(β(c)), we conclude that the closures of the connected com-

ponents of f−4
c (Ũc) containing Yc and Ỹc are both contained in Pc,1(0). This proves that

the closures of ψc(Ŵc) and ψ̃c(Ŵc) are both contained in Pc,1(0). ut

Proof of Lemma 2.4. By Lemma 2.3(i), the closure of P5(−2) is a compact set included
in P4(−2). Since Pc,1(0) and Ŵc vary continuously with c in P4(−2) (cf. [CRL12,
Lemma 2.5]), the same holds for

Wc := ψc(Ŵc) and W̃c := ψ̃c(Ŵc).

Therefore, by Lemma 2.5 we have

A := inf
c∈P5(−2)

min
{
mod(Ŵc \ cl(Wc)),mod(Ŵc \ cl(W̃c))

}
> 0,

40 := inf
c∈P5(−2)

dist(∂Ŵc, Pc,1(0)) > 0,

41 := sup
c∈P5(−2)

diam(Pc,1(0)) <∞,

42 := sup
c∈P5(−2)

sup
z∈C,|z|≤241

|Df 3
c (z)| <∞.

For an open topological disk U in C, denote by distU the Poincaré distance on U .
Note that there is a constant Ĉ > 0, which only depends on 40, such that for every c in
P5(−2) the Euclidean and Poincaré distances on Ŵc are comparable with a factor of Ĉ
on Pc,1(0) (see for example [Mil06, Lemma A.8]). On the other hand, by Pick’s Theorem
(see for instance [Mil06]), for every c in P4(−2) the maps ψc and ψ̃c are isometries for
the Poincaré distances on Ŵc and on Wc and W̃c, respectively. Again by Pick’s Theorem,
the inclusion maps from Wc and W̃c into Ŵc are each contractions for the corresponding
Poincaré distances. It follows that there is υ0 > 0, only depending on A, such that each
of these inclusions contracts by a factor of at least exp(−υ0). Thus, for every c in P5(−2)
and all x and y in Ŵc, we have

distŴc (ψc(x), ψc(y)) ≤ exp(−υ0) distŴc (x, y),

distŴc (ψ̃c(x), ψ̃c(y)) ≤ exp(−υ0) distŴc (x, y).

Let ` ≥ 1 be an integer and W a connected component of g−`c (Pc,1(0)). Note
that (g`c |W )

−1 extends to a holomorphic map ψ defined on Ŵc that can be written as
the composition of ` maps in {ψc, ψ̃c}. Thus,

diam(W) = diam(ψ(Pc,1(0))) ≤ Ĉ2 exp(−υ0`) diam(Pc,1(0)).

This proves the first desired estimate with C0 = Ĉ
241.

To prove the remaining estimates, note that for each point w in Yc ∪ Ỹc and every z
in C satisfying |z| = 241, we have

|z− w| ≥ 41 and |Df 3
c (z)−Df

3
c (w)| ≤ 242.
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So for each w in Yc ∪ Ỹc the maximum principle applied to the holomorphic function

z 7→
Df 3

c (z)−Df
3
c (w)

z− w

and to {z ∈ C | |z| ≤ 241} gives, for every z in Yc ∪ Ỹc,

|Dgc(z)−Dgc(w)| = |Df
3
c (z)−Df

3
c (w)| ≤ 2424

−1
1 |z− w|.

On the other hand, since each of the maps ψc and ψ̃c is a contraction for the Poincaré
distance on Ŵc, by the definition of Ĉ for every w in Yc ∪ Ỹc we have |Dgc(w)|−1

≤ Ĉ2.
We conclude that for all z and w in Yc or in Ỹc,∣∣∣∣ Dgc(z)Dgc(w)

− 1
∣∣∣∣ ≤ 2Ĉ2424

−1
1 |z− w|.

Together with the first estimate of the lemma, this implies the second estimate with C0 =

(2Ĉ2424
−1
1 )(Ĉ241). ut

2.6. Parameters

The parameter we use to prove the Main Theorem is chosen from a set introduced
in [CRL12, Proposition 3.1]. In this subsection we recall the definition of this param-
eter set, and give some dynamical properties of the corresponding maps.

Given an integer n ≥ 3, let Kn be the set of all those real parameters c < 0 such that

fc(c) > f 2
c (c) > · · · > f n−1

c (c) > 0 and f nc (c) ∈ 3c.

Note that for c in Kn, the critical point of fc cannot be asymptotic to a non-repelling
periodic point. This implies that all the periodic points of fc in C are hyperbolic repelling,
and therefore Kc = Jc (see [Mil06]). On the other hand, fc(c) > c and the interval Ic =
[c, fc(c)] is invariant by fc. This implies that Ic ⊂ Jc, and hence PR

c (t) ≤ PC
c (t) for

every real t . Note also that fc|Ic is not renormalizable, so fc is topologically exact on Ic
(see for example [dMvS93, Theorem III.4.1]).

Since for c in Kn the critical point of fc is not periodic, for every integer k ≥ 0 we
have f n+3k

c (c) 6= 0. Thus, we can define a sequence ι(c) in {0, 1}N0 for each k ≥ 0 by

ι(c)k :=

{
0 if f n+3k

c (c) ∈ Yc,

1 if f n+3k
c (c) ∈ Ỹc.

Proposition 2.6. For each integer n ≥ 3, the set Kn is a compact subset of

Pn(−2) ∩ (−2,−3/4),

and for every sequence x in {0, 1}N0 there is a unique parameter c in Kn such that
ι(c) = x. Finally, for each δ > 0 there is n0 ≥ 3 such that Kn ⊂ (−2,−2 + δ) for
each n ≥ n0.
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Given an open subset G of C and a univalent map f : G→ C, we say that the distortion
of f on a subset C of G is

sup
x,y∈C

|Df (x)|/|Df (y)|.

The following is a uniform distortion bound for parameters as in the previous proposition.

Lemma 2.7 ([CRL12, Lemma 4.3]). There is a constant 10 > 1 such that for each
integer n ≥ 4 and each parameter c in Kn the following properties hold: For each inte-
germ ≥ 1 and each connected componentW of f−mc (Pc,1(0)) on which fmc is univalent,
fmc maps a neighborhood ofW biholomorphically onto Ŵc and the distortion of this map
on W is bounded by 10.

2.7. Induced map and pressure function

Let n ≥ 5 be an integer and c a parameter in Kn. Throughout this subsection we set
V̂c := Pc,4(0). Note that the critical value c of fc is in Pc,n(−β(c)) (Lemma 2.3(ii) and
Proposition 2.6), so the closure of

Vc := Pc,n+1(0) = f−1
c (Pc,n(−β(c)))

is contained in V̂c = f−1
c (Pc,3(−β(c))) (cf. [CRL12, part 1 of Lemma 3.2]).

Set Dc := {z ∈ Vc | fmc (z) ∈ Vc for some m ≥ 1}. For z in Dc write mc(z) :=
min{m ∈ N | fmc (z) ∈ Vc}, and call it the first return time of z to Vc. The first return map
to Vc is defined by

Fc : Dc → Vc, z 7→ Fc(z) := f
mc(z)
c (z).

It is easy to see thatDc is a disjoint union of puzzle pieces; so each connected component
of Dc is a puzzle piece. Note furthermore that in each puzzle piece W , the return time
function mc is constant; denote its value by mc(W).

Denote by Dc the collection of connected components of Dc and by DR
c the sub-

collection of Dc of those sets intersecting R. For each W in Dc denote by φW : V̂c → Vc
the extension of Fc|−1

W given by [CRL12, Lemma 6.1]. Given an integer ` ≥ 1 we denote
by Ec,` (resp. ER

c,`) the set of all words of length ` in the alphabet Dc (resp. DR
c ). Again

by [CRL12, Lemma 6.1], for each integer ` ≥ 1 and each word W1 · · ·W` in Ec,` the
composition

φW1···W` = φW1 ◦ · · · ◦ φW`

is defined on V̂c. We also set

mc(W1 · · ·W`) := mc(W1)+ · · · +mc(W`).

For t, p in R and an integer ` ≥ 1 define

Z`(t, p) :=
∑

W∈Ec,`

exp(−mc(W)p)(sup{|DφW (z)| | z ∈ Vc})t

ZR
` (t, p) :=

∑
W∈ER

c,`

exp(−mc(W)p)(sup{|DφW (z)| | z ∈ Vc})t .
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For a fixed t and p in R the sequence(
1
`

logZ`(t, p)
)∞
`=1

(
resp.

(
1
`

logZR
` (t, p)

)∞
`=1

)
converges to the pressure function of Fc (resp. Fc|Dc∩R) for the potential −t log |DFc| −
pmc; we denote the limit by PC

c (t, p) (resp. PR
c (t, p)). On the set where it is finite, the

function PC
c (resp. PR

c ) so defined is strictly decreasing in each of its variables.

3. The two-variable series

We start this section by stating a stronger version of the Main Theorem in §3.1. The
rest of this section is dedicated to estimating, for a real parameter c in

⋃
∞

n=6 Kn satis-
fying some mild hypotheses, a certain “postcritical series” in terms of an abstract two-
variable series (Proposition A in §3.3). The postcritical series is used in §5 to estimate
the geometric pressure function. The definition of the two-variable series is based on
an approximation of the derivatives (Df nc (c))

∞

n=1, using the derivatives of gc at its fixed
points p(c) and p̃(c). This approximation, which is more precise than a direct application
of the Koebe principle, incorporates an estimate of the corresponding distortion constants
(Proposition 3.1 in §3.2). This estimate is given in terms of the total distortion of the two
homoclinic orbits of gc connecting p(c) and p̃(c).

3.1. Main Technical Theorem

In this subsection we state the Main Technical Theorem from which the Main Theorem
follows directly. The rest of the paper is dedicated to the proof of the Main Technical
Theorem.

Let c be a parameter in
⋃
∞

n=6 Kn. An invariant probability measure supported on Ic
(resp. Jc) is said to be an equilibrium state of fc|Ic (resp. fc) for the potential− log |Dfc|
if the supremum defining PR

c (t) (resp. PC
c (t)) is attained at this measure. Given t > 0

and a real number p we say a measure µ is (t, p)-conformal for fc|Ic (resp. fc) if for
every subset U of Ic (resp. Jc) on which fc|Ic (resp. fc) is injective we have

µ(fc|Ic (U)) = exp(p)
∫
U

|Dfc|
t dµ

(
resp. µ(fc(U)) = exp(p)

∫
U

|Dfc|
t dµ

)
.

In the case where PR
c (t) = 0 (resp. PC

c (t) = 0), a (t, 0)-conformal measure is simply
called conformal.

For each c in P3(−2) denote by p(c) the unique fixed point of gc in Yc and by p̃(c)
the unique fixed point of gc in Ỹc. Each of the functions

p : P3(−2)→ C and p̃ : P3(−2)→ C

so defined is holomorphic.
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Main Technical Theorem. There is n1 ≥ 6 such that for every integer n ≥ n1 there are
a parameter c in Kn, an integer q ≥ 3, and real numbers κ in [1, 2] and1 ≥ 1, such that
the following properties are satisfied. Set

t∗ :=
2 log 2

log |Dgc(p(c))|
|Dgc(p̃(c))|

and t0 :=
q − 2
q − 1

· t∗,

and define the functions δ+, δ−, p+, p− : (t0,∞)→ R by

δ+(t) :=

 2 log 2
3 · 2

−q
(

κt∗
q(t∗−t)

−1
)2

if t ∈ (t0, t∗),
0 if t ≥ t∗,

δ−(t) :=

 log 2
3 · 2

−q
(

κt∗
q(t∗−t)

+1
)2

if t ∈ (t0, t∗),
0 if t ≥ t∗,

p+(t) := −tχcrit(c)/2+ δ+(t) and p−(t) := −tχcrit(c)/2+ δ−(t).

Then χcrit(c) > 0, for t > t0 we have

p−(t) ≤ PR
c (t) ≤ P

C
c (t) ≤ p

+(t),

and for t ≥ t∗ there is no equilibrium state of fc|Ic (resp. fc|Jc ) for the poten-
tial −t log |Dfc| and we have

PR
c (t,−tχcrit(c)/2) ≤PC

c (t,−tχcrit(c)/2) < 0.

Moreover, for t ≥ t∗ and for p in R the following properties hold:

(i) If p ≥ −tχcrit(c)/2, then there is a unique (t, p)-conformal probability measure
for fc|Ic (resp. fc) supported on Ic (resp. Jc). Moreover, this measure is dissipative,
purely atomic, and supported on the backward orbit of z = 0.

(ii) If p < −tχcrit(c)/2, then there is no (t, p)-conformal probability measure for fc|Ic
(resp. fc) supported on Ic (resp. Jc).

3.2. Improved distortion estimate

The purpose of this subsection is to prove Proposition 3.1 below. To state it, define for
each c in P3(−2) the itinerary map

ιc : 3c → {0, 1}N0 ,

for x in 3c and k in N0, by

ιc(x)k :=

{
0 if gkc (x) ∈ Yc,
1 if gkc (x) ∈ Ỹc.

We recall from [CRL12, §3.3] that the map ιc conjugates the action of gc on 3c to the
action of the shift map on {0, 1}N0 . For c in Kn, the point f nc (c) is in 3c and the se-
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quence ι(c) defined in §2.6 is equal to ιc(f nc (c)). Finally, for each x in {0, 1}N0 define

Ix : P3(−2)→ C, c 7→ Ix(c) := ι
−1
c (x).

By a normality argument the function Ix is holomorphic.

Proposition 3.1 (Improved distortion estimate). There are analytic functions

ζ : P5(−2)→ (0,∞) and ζ̃ : P5(−2)→ (0,∞),

and constants C1, υ1 > 0, such that for every integer n ≥ 5 and every parameter c in Kn
the following property holds: Let m and m′ be positive integers and let

x = (xj )
∞

j=0 (resp. x̃ = (̃xj )∞j=0)

be a sequence in {0, 1}N0 such that xj = 0 (resp. x̃j = 1) for j in {0, . . . , m − 1}, and
xm+j = 1 (resp. x̃m+j = 0) for j in {0, . . . , m′ − 1}. Then∣∣∣∣log

|Dgmc (Ix(c))|

|Dgc(p(c))|m
− log ζ(c)

∣∣∣∣ ≤ C1 exp(−min{m,m′}υ1),∣∣∣∣log
|Dgmc (Ix̃(c))|

|Dgc(p̃(c))|m
− log ζ̃ (c)

∣∣∣∣ ≤ C1 exp(−min{m,m′}υ1).

The proof of this proposition is at the end of this subsection.
For each integer ` in N0, let

x` = (x`j )
∞

j=0 and x̃` = (̃x`j )
∞

j=0

be the sequences in {0, 1}N0 defined for each j in N0 by

x`j :=

{
0 if j ≤ `− 1,
1 if j ≥ `,

x̃`j :=

{
1 if j ≤ `− 1,
0 if j ≥ `.

Observe that for every c in P3(−2) and every ` in N, the points Ix`(c) and p(c) are in
the same connected component of g−`c (Pc,1(0)), and the same holds for Ix̃`(c) and p̃(c).
Thus, the following is a direct consequence of Lemma 2.4.

Corollary 3.2. Let C0, υ0 > 0 be the constants given by Lemma 2.4. Then, for all c
in P5(−2) and ` in N, we have∣∣∣∣Dgc(Ix`(c))Dgc(p(c))

− 1
∣∣∣∣ ≤ C0 exp(−υ0`) and

∣∣∣∣Dgc(Ix̃`(c))Dgc(p̃(c))
− 1

∣∣∣∣ ≤ C0 exp(−υ0`).

Lemma 3.3 (Homoclinic distortion). For every parameter c in P5(−2), the limits

ζ(c) := lim
m→∞

m∏
`=1

|Dgc(Ix`(c))|

|Dgc(p(c))|
and ζ̃ (c) := lim

m→∞

m∏
`=1

|Dgc(Ix̃`(c))|

|Dgc(p̃(c))|

exist and depend analytically on c in P5(−2).
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Proof. We prove the existence of the first limit and its analytic dependence on c; the proof
of the analogous assertions for the second limit are similar.

Denote by log the logarithm defined in the open disk of C of radius 1 centered at
z = 1. By Corollary 3.2, there is `0 in N such that for every ` ≥ `0 and every c in P5(−2)

we have
∣∣Dgc(Ix` )(c)
Dgc(p(c))

−1
∣∣ < 1, so log

Dgc(Ix` )(c)

Dgc(p(c))
is defined. Corollary 3.2 also implies that

∞∑
`=`0

log
Dgc(Ix`)(c)

Dgc(p(c))

exists and is a holomorphic function of c on P5(−2). Exponentiating, we find that the

infinite product
∏
∞

`=`0

Dgc(Ix` )(c)

Dgc(p(c))
exists and is holomorphic on P5(−2). This implies that

the infinite product starting from ` = 1 also exists and is holomorphic on P5(−2). Taking
the modulus we conclude the proof. ut

Proof of Proposition 3.1. Let C0 and υ0 be the constants given by Lemma 2.4 and let
ζ : P5(−2) → (0,∞) and ζ̃ : P5(−2) → (0,∞) be the continuous functions given by
Lemma 3.3. We only prove the first inequality, the other being similar. We have

log
|Dgmc (Ix(c))|

|Dgc(p(c))|m
− log ζ(c)

=

m−1∑
j=0

log
|Dgc(g

j
c (Ix(c)))|

|Dgc(p(c))|
− lim
m̃→∞

m̃∑
`=1

log
|Dgc(Ix`(c))|

|Dgc(p(c))|

=

m−1∑
j=0

log
|Dgc(g

j
c (Ix(c)))|

|Dgc(p(c))|
−

m∑
`=1

log
|Dgc(Ix`(c))|

|Dgc(p(c))|
− lim
m̃→∞

m̃∑
`=m+1

log
|Dgc(Ix`(c))|

|Dgc(p(c))|
.

Notice that for every j in {0, . . . , m− 1} we have gjc (Ixm(c)) = Ixm−j (c), and gjc (Ix(c))

and gjc (Ixm(c)) are in the same connected component of g−(m+m
′
−j)

c (Pc,1(0)). Using
Lemma 2.4 repeatedly, we get

∣∣∣∣m−1∑
j=0

log
|Dgc(g

j
c (Ix(c)))|

|Dgc(p(c))|
−

m∑
`=1

log
|Dgc(Ix`(c))|

|Dgc(p(c))|

∣∣∣∣
=

∣∣∣∣m−1∑
j=0

log
|Dgc(g

j
c (Ix(c)))|

|Dgc(p(c))|
−

m−1∑
j=0

log
|Dgc(Ixm−j (c))|

|Dgc(p(c))|

∣∣∣∣
=

∣∣∣∣m−1∑
j=0

log
|Dgc(g

j
c (Ix(c)))|

|Dgc(Ixm−j (c))|

∣∣∣∣
=

∣∣∣∣m−1∑
j=0

log
|Dgc(g

j
c (Ix(c)))|

|Dgc(g
j
c (Ixm(c)))|

∣∣∣∣
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≤ C0

m−1∑
j=0

exp(−υ0(m+m
′
− j))

≤
C0 exp(−υ0)

1− exp(−υ0)
exp(−υ0m

′).

On the other hand, by Corollary 3.2 we have, for every integer m̃ ≥ m,∣∣∣∣ m̃∑
`=m+1

log
|Dgc(Ix`(c))|

|Dgc(p(c))|

∣∣∣∣ ≤ C0

m̃∑
`=m+1

exp(−υ0`) ≤
C0 exp(−υ0)

1− exp(−υ0)
exp(−υ0m).

Taking C1 := 2C0 exp(−υ0)
1−exp(−υ0)

and υ1 := υ0 we conclude the proof of the proposition. ut

3.3. The two variable series

For each integer n ≥ 4 and for each parameter c in Kn, denote by

ι(c) := ιc(f
n
c (c))

the itinerary for gc in the Cantor set 3c of the point x = f nc (c) (see §2.6). Furthermore,
denote by Nc : N0 → N0 the function defined by Nc(0) := 0 and

Nc(k) := ]{j ∈ {0, . . . , k − 1} | ι(c)j = 0} for k ≥ 1,

and by Bc : N0 → N0 the function defined by Bc(0) := 0, Bc(1) := 1, and

Bc(k) := 1+ ]{j ∈ {0, . . . , k − 2} | ι(c)j 6= ι(c)j+1} for k ≥ 2.

Note that for k in N the function Bc(k) is equal to the number of blocks of 0’s and 1’s in
the sequence (ι(c)j )k−1

j=0 .
On the other hand, for each parameter c in P5(−2), set

θ(c) :=

∣∣∣∣Dgc(p(c))Dgc(p̃(c))

∣∣∣∣1/2, ξ(c) := −
log(ζ(c)̃ζ (c))

4 log θ(c)
, (3.1)

and define a two-variable series 5c on [0,∞)× [0,∞) by

5c(τ, λ) :=

∞∑
k=0

2−λk−τNc(k)+τξ(c)Bc(k).

The purpose of this subsection is to prove the following proposition.

Proposition A. There are constants C2 > 1 and υ2 > 0 such that for every integer n ≥ 6
the following property holds. Let c in Kn be such thatNc(k)/k→ 0 as k→∞. Denoting
by (mj )∞j=0 the sequence of the lengths of blocks of 0’s and 1’s in the sequence ι(c),
assume that the sum

∞∑
j=0

exp(−min{mj , mj+1}υ2)
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converges. Then for all t > 0 and δ ≥ 0, we have

C−t2 exp(−nδ)
(

exp(χcrit(c))

|Dfc(β(c))|

)tn/2
5c

(
t
log θ(c)

log 2
,

3δ
log 2

)
≤

∞∑
k=0

exp(−(n+ 3k)(−tχcrit(c)/2+ δ))|Df n+3k
c (c)|−t/2

≤ Ct2 exp(−nδ)
(

exp(χcrit(c))

|Dfc(β(c))|

)tn/2
5c

(
t
log θ(c)

log 2
,

3δ
log 2

)
. (3.2)

The proof of this proposition is at the end of this subsection.

Lemma 3.4. Let 10 be the constant given by Lemma 2.7 and let C1, υ1 > 0 be the
constants given by Proposition 3.1. Moreover, let n ≥ 5 be an integer, let c be a parameter
in Kn, and denote by (mj )∞j=0 the sequence of the lengths of blocks of 0’s and 1’s in the
sequence ι(c). Then for every k in N we have

1−1
0 max

{
ζ(c)

ζ̃ (c)
,
ζ̃ (c)

ζ(c)

}−1/2

exp
(
−C1

Bc(k)−1∑
j=0

exp(−min{mj , mj+1}υ1)

)

≤
|Dgkc (f

n
c (c))|

|Dgc(p̃(c))|k · θ(c)2Nc(k) · (ζ(c)̃ζ (c))Bc(k)/2

≤ 10 max
{
ζ(c)

ζ̃ (c)
,
ζ̃ (c)

ζ(c)

}1/2

exp
(
C1

Bc(k)−1∑
j=0

exp(−min{mj , mj+1}υ1)

)
.

Proof. If the first k entries of ι(c) are equal, then Bc(k) = 1 and the assertion follows
from Lemma 2.7. Suppose otherwise, and let k0 be maximal in {1, . . . , k} such that

ι(c)k0−1 6= ι(c)k0 .

Moreover, denote by B and B̃ the number of blocks of 0’s and 1’s, respectively, in the
sequence (ι(c)j )

k0−1
j=0 . We have Bc(k0) = B + B̃, and

|Bc(k0)− 2B| = |Bc(k0)− 2B̃| ≤ 1. (3.3)

Consider a block of 0’s or 1’s in ι(c) with initial position i and length m, and let m′

be the length of the next block. By Proposition 3.1 we have the following two cases:
If ι(c)i = 0, then∣∣∣∣log

|Dgmc (g
i
c(f

n
c (c)))|

|Dgc(p(c))|m
− log ζ(c)

∣∣∣∣ ≤ C1 exp(−min{m,m′}υ1);

and if ι(c)i = 1, then∣∣∣∣log
|Dgmc (g

i
c(f

n
c (c)))|

|Dgc(p̃(c))|m
− log ζ̃ (c)

∣∣∣∣ ≤ C1 exp(−min{m,m′}υ1).
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Applying these inequalities to each block of 0’s and 1’s in (ι(c)j )
k0−1
j=0 , we obtain

exp
(
−C1

Bc(k0)−1∑
j=0

exp(−min{mj , mj+1}υ1)

)
≤

|Dg
k0
c (f

n
c (c))|

|Dgc(p(c))|Nc(k0)|Dgc(p̃(c))|k0−Nc(k0)ζ(c)B ζ̃ (c)B̃

≤ exp
(
C1

Bc(k0)−1∑
j=0

exp(−min{mj , mj+1}υ1)

)
. (3.4)

Together with (3.3) this implies the desired chain of inequalities in the case where k0 = k.
If k0 ≤ k − 1, then by Lemma 2.7 we have

1−1
0 ≤

|Dg
k−k0
c (g

k0
c (f

n
c (c)))|

|Dgc(p̃(c))|k−k0 · θ(c)2(Nc(k)−Nc(k0))
≤ 10.

This, together with (3.3), (3.4), and Bc(k) = Bc(k0)+ 1, implies the desired conclusion.
ut

Lemma 3.5. Let n ≥ 4 be an integer and let c in Kn be such that Nc(k)/k → 0
as k→∞. Then

χcrit(c) =
1
3 log |Dgc(p̃(c))|.

Proof. Set ĉ := f nc (c). For all k in N and j in {0, 1, 2}, by the chain rule

Df
3k+j
c (c) = Df

j
c ((f

3k
c )(̂c)) ·Df

3k
c (̂c) ·Df

n
c (c) = Df

j
c (g

k
c (̂c)) ·Dg

k
c (̂c) ·Df

n
c (c).

Since |Df jc ((gkc )(̂c))| is bounded independently of k and j , we have

χcrit(c) = lim inf
m→∞

1
m

log |Dfmc (c)| =
1
3

lim inf
k→∞

1
k

log |Dgkc (̂c)|. (3.5)

On the other hand, by Lemma 2.7, there is a constant 10 > 1 such that for each k in N,

1
−Bc(k)
0 ≤

|Dgkc (̂c)|

|Dgc(p̃(c))|k−Nc(k)|Dgc(p(c))|Nc(k)
≤ 1

Bc(k)
0 .

Taking logarithms yields

−Bc(k) log10 +Nc(k) log
|Dgc(p(c))|

|Dgc(p̃(c))|
≤ log |Dgkc (̂c)| − k log |Dgc(p̃(c))|

≤ Bc(k) log10 +Nc(k) log
|Dgc(p(c))|

|Dgc(p̃(c))|
.

Since for each k in N we have Bc(k) ≤ 2Nc(k) + 1, and using the hypothesis that
Nc(k)/k→ 0 as k→∞, we conclude that

lim
k→∞

1
k

log |Dgkc (̂c)| = log |Dgc(p̃(c))|.

Combined with (3.5), this completes the proof of the lemma. ut
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Lemma 3.6 ([CRL12, Lemma 3.6]). There is a constant 11 > 1 such that for each
parameter c in P2(−2), each integer k ≥ 2, and each point y in Pc,k(−β(c)), we have

1−1
1 |Dfc(β(c))|

k
≤ |Df kc (y)| ≤ 11|Dfc(β(c))|

k.

Proof of Proposition A. Let10 be the constant given by Lemma 2.7, let C1 and υ1 be the
constants given by Proposition 3.1, and let 11 be the constant given by Lemma 3.6. Note
that by Proposition 3.1 and Lemma 2.3(i),

1 := sup
c∈P6(−2)

max
{
ζ(c)

ζ̃ (c)
,
ζ̃ (c)

ζ(c)

}
<∞.

Let n, c, and (mj )∞j=0 be as in the statement of the proposition, and set

σ := C1

∞∑
j=0

exp(−min{mj , mj+1}υ1) and Ĉ2 := 10111
1/2 exp(σ ).

Then for every k in N and every t > 0, we have, using

Df n+3k
c (c) = Dgkc (f

n
c (c)) ·Df

n
c (c)

and combining Lemmas 3.4 and 3.6,

Ĉ−t2 θ(c)−2tNc(k)(ζ(c)̃ζ (c))−tBc(k)/2 ≤
|Df n+3k

c (c)|−t

|Dgc(p̃(c))|−tk|Dfc(β(c))|−tn

≤ Ĉt2θ(c)
−2tNc(k)(ζ(c)̃ζ (c))−tBc(k)/2. (3.6)

Since by Lemma 3.5,

exp((n+ 3k)tχcrit(c)) = exp(ntχcrit(c))|Dgc(p̃(c))|
tk,

if we multiply each term in (3.6) by(
exp(χcrit(c))

|Dfc(β(c))|

)tn
,

we get

Ĉ−t2

(
exp(χcrit(c))

|Dfc(β(c))|

)tn
θ(c)−2tNc(k)(ζ(c)̃ζ (c))−tBc(k)/2

≤ exp((n+ 3k)tχcrit(c))|Df
n+3k
c (c)|−t

≤ Ĉt2

(
exp(χcrit(c))

|Dfc(β(c))|

)tn
θ(c)−2tNc(k)(ζ(c)̃ζ (c))−tBc(k)/2.

Taking square roots and then by multiplying by exp(−(n+ 3k)δ), we obtain
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Ĉ
−t/2
2 exp(−nδ)

(
exp(χcrit(c))

|Dfc(β(c))|

)tn/2
exp(−3kδ)θ(c)−tNc(k)(ζ(c)̃ζ (c))−tBc(k)/4

≤ exp
(
−(n+ 3k)(−tχcrit(c)/2+ δ)

)
|Df n+3k

c (c)|−t/2

≤ Ĉ
t/2
2 exp(−nδ)

(
exp(χcrit(c))

|Dfc(β(c))|

)tn/2
exp(−3kδ)θ(c)−tNc(k)(ζ(c)̃ζ (c))−tBc(k)/4.

Note that when k = 0 this chain of inequalities holds by Lemma 2.7 and our definition
of Ĉ2. Summing over k ≥ 0, we obtain the proposition with C2 = Ĉ

1/2
2 . ut

4. Estimating the two-variable series

This section is dedicated to estimating, in an abstract setting, the two-variable series de-
fined in §3.3 for a certain itinerary defined in §4.1. Our main estimate is stated as Propo-
sition B in §4.2.

4.1. The itinerary

Given an integer 4, let q ≥ 3 be a sufficiently large integer such that q + 4 ≥ 1
and 2q−1

≥ q + 1+4. Define the quadratic function

Q : R→ R, s 7→ Q(s) := qs2,

and for each real s in [0,∞) define the following intervals of R:

Is := [2Q(s), 2Q(s) +Q(s + 1)−Q(s)+4),

Js := [2Q(s) +Q(s + 1)−Q(s)+4, 2Q(s+1)).

For integer values of s, the intervals Is and Js form a partition of [1,∞), which we use
below to define a certain itinerary in {0, 1}N0 . For s ∈ [0,∞) that is not necessarily an
integer, the interval Js is used in the proof of Proposition B in §4.2.

Denote by (xj )∞j=0 the sequence in {0, 1}N0 defined by the property that xj = 0 if and
only if there is an integer s ≥ 0 such that j + 1 ∈ Is . Note that the first |I0| = q + 4

entries of (xj )∞j=0 are 0. Moreover, define N : N0 → N0 by N(0) := 0 and

N(k) := ]{j ∈ {0, . . . , k − 1} | xj = 0} for k ≥ 1,

and B : N0 → N0 by B(0) := 0, B(1) := 1, and

B(k) := 1+ ]{j ∈ {0, . . . , k − 2} | xj 6= xj+1} for k ≥ 2.

Note that for k ≥ 1 the number B(k) is the number of blocks of 0’s and 1’s in the
sequence (xj )k−1

j=0 .
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Observe that for each s in N0 the following numbers depend on s but not on the
integer k in Js :

N(k) =

s∑
j=0

|Ij | =

s∑
j=0

(Q(j + 1)−Q(j)+4) = Q(s + 1)+4 · (s + 1), (4.1)

B(k) = 2(s + 1). (4.2)

On the other hand, for each s in N0 and k in Is , we have

N(k) = k − (2Q(s) − 1)+Q(s)+4s, (4.3)
B(k) = 2s + 1. (4.4)

Lemma 4.1. The following properties hold for each real s ≥ 0:

(a) 2Q(s) +Q(s + 1)+4 ≤ 2Q(s+1)−1.
(b) |Js | ≥ 2Q(s+1)−1.

Proof. Part (a) with s = 0 is given by our hypothesis 2q−1
≥ q + 1+ 4; and for s > 0,

it follows from this and from the fact that the derivative of the function

s 7→ 2Q(s+1)−1
− (2Q(s) +Q(s + 1)+4)

is strictly positive on [0,∞). Part (b) follows easily from (a). ut

4.2. Estimates

Let 4 be a given integer and let q, N and B be as in the previous subsection. Given a real
number ξ such that 1 ≤ 4− 2ξ ≤ 2, define a two-variable series 5 on [0,∞)× [0,∞)
by

5(τ, λ) :=

∞∑
k=0

2−λk−τN(k)+τξB(k).

This subsection is devoted to proving the following proposition.

Proposition B. For every τ ≥ 1 we have

5(τ, 0) ≤ 2(2τξ + 1).

Furthermore, for each τ in
( q−2
q−1 , 1

)
,

5
(
τ, 2 · 2

−q
(
4−2ξ
q(1−τ)−1

)2)
≤ 10 · 2τξ + 101,

and for each 1 ≥ 1,

21−4
≤ 5

(
τ, 2
−q
(
4−2ξ
q(1−τ)+1

)2)
.

The proof of this proposition is at the end of this subsection.
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For every real s in [0,∞), define

λ(s) := 1/|Js |.

By Lemma 4.1(b) and the hypothesis q ≥ 3, we have 0 < λ(s) ≤ 1/4.

Lemma 4.2. (i) For τ ≥ 1 we have

5(τ, 0) ≤ 2(2τξ + 1).

(ii) For every real s in [0,∞) and every τ in (1/2, 1) satisfying τ > Q(s+1)−1
Q(s+2) ,

5(τ, λ(s)) ≤ 1+ 10 · 2τξ + 5
bsc+1∑
j=0

2(1−τ)Q(j+1)−τ(4−2ξ)(j+1).

(iii) For every real s in [0,∞) and every τ > 0,

1
8 · 2

(1−τ)Q(bsc+1)−τ(4−2ξ)(bsc+1)
≤ 5(τ, λ(s)).

Proof. For τ > 0, λ ≥ 0, and s in N0, define

Is(τ, λ) :=
∑
k∈Is

2−λk−τN(k)+τξB(k) and Js(τ, λ) :=
∑
k∈Js

2−λk−τN(k)+τξB(k),

so that 5(τ, λ) = 1+
∑
∞

s=0 Is(τ, λ)+
∑
∞

s=0 Js(τ, λ).
(i) By (4.3), (4.4), and the hypothesis 4− 2ξ ≥ 1, for all τ > 0 and λ ≥ 0 we have

∞∑
s=0

Is(τ, λ) ≤

∞∑
s=0

|Is |∑
m=1

2−τ(Q(s)+4s+m)+τξ(2s+1)

= 2τξ
∞∑
s=0

2−τ(Q(s)+(4−2ξ)s)
|Is |∑
m=1

2−τm

≤ 2τξ
2−τ

1− 2−τ

∞∑
s=0

2−τ(4−2ξ)s

≤ 2τξ
2−τ

(1− 2−τ )2
. (4.5)

On the other hand, using (4.1), (4.2), the hypothesis 4 − 2ξ ≥ 1, and the fact that for
every s ≥ 0 we have |Js | ≤ 2Q(s+1), we obtain, for every τ ≥ 1,

∞∑
s=0

Js(τ, 0) =
∞∑
s=0

|Js |2−τ(Q(s+1)+4(s+1))+2τξ ·(s+1)

≤

∞∑
s=0

2−(τ−1)Q(s+1)−τ(4−2ξ)(s+1)

≤
2−τ

1− 2−τ
. (4.6)
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Combining inequalities (4.5) and (4.6) we get, for every τ ≥ 1,

5(τ, 0) ≤ 1+ 2τξ
2−τ

(1− 2−τ )2
+

2−τ

1− 2−τ
≤ 2(2τξ + 1).

(ii) Fix s in [0,∞) and set s0 := bsc. We use (4.5) to estimate 5(τ, λ(s)). To
estimate

∑
∞

j=0 Jj (τ, λ(s)), note that by definition of λ(s), for each integer ` satisfy-
ing 1 ≤ ` ≤ |Js | we have

1/2 ≤ 2−λ(s)` ≤ 1.

On the other hand, the hypothesis q ≥ 3 implies that the function j 7→ |Jj | is non-
decreasing on [0,∞). Therefore, for each j in {0, . . . , s0} we have |Jj | ≤ |Js | and so

1
2
|Jj | ≤

|Jj |∑
m=1

2−λ(s)m ≤ |Jj |. (4.7)

On the other hand,
∞∑
m=1

2−λ(s)m =
1

2λ(s) − 1
≤

1
λ(s) log 2

≤ 2|Js |. (4.8)

Note also that, by (4.1), (4.2), and the hypothesis q + 4 ≥ 1, for every j in N0 we have,
by (4.8) and |Js | ≤ 2Q(s+1),

Jj (τ, λ(s)) = 2−τ(Q(j+1)+4·(j+1))+2τξ ·(j+1)
∑
k∈Jj

2−λ(s)k

≤ 2|Js |2−τ(Q(j+1)+(4−2ξ)(j+1))

≤ 2 · 2Q(s+1)−τ(Q(j+1)+(4−2ξ)(j+1)). (4.9)

Taking j = s0 + 1 and using the inequality Q(s + 1) ≤ Q(s0 + 2), we obtain

Js0+1(τ, λ(s)) ≤ 2 · 2(1−τ)Q(s0+2)−τ(4−2ξ)(s0+2). (4.10)

On the other hand, our hypothesis τ ≥ Q(s+1)−1
Q(s+2) implies that for j ≥ s0 + 2,

Q(s + 1)− τQ(j + 1) ≤ Q(s + 1)− τQ(s + 2) ≤ 1.

So, using the hypothesis 4− 2ξ ≥ 1 and summing (4.9) over j ≥ s0 + 2 yields
∞∑

j=s0+2

Jj (τ, λ(s)) ≤

∞∑
j=s0+2

22−τ(4−2ξ)(j+1)
≤

22−3(4−2ξ)τ

1− 2−τ
. (4.11)

Now we complete the estimate of
∑
∞

j=0 Jj (τ, λ(s)), by estimating the terms for which j
is in {0, . . . , s0}. From (4.7), the first equality in (4.9), and |Jj | ≤ 2Q(j+1), we deduce
that for every j in {0, . . . , s0} we have

Jj (τ, λ(s)) ≤ |Jj | · 2−τ(Q(j+1)+(4−2ξ)(j+1))
≤ 2(1−τ)Q(j+1)−τ(4−2ξ)(j+1).

Summing over j in {0, . . . , s0} and using inequalities (4.10) and (4.11), we obtain
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∞∑
j=0

Jj (τ, λ(s))

≤

s0∑
j=0

2(1−τ)Q(j+1)−τ(4−2ξ)(j+1)
+ 2 · 2(1−τ)Q(s0+2)−τ(4−2ξ)(s0+2)

+
22−3(4−2ξ)τ

1− 2−τ

≤ 2
s0+1∑
j=0

2(1−τ)Q(j+1)−τ(4−2ξ)(j+1)
+

22−3(4−2ξ)τ

1− 2−τ
.

Together with (4.5) this implies

5(τ, λ(s)) ≤ 1+
2−τ

(1− 2−τ )2
2τξ + 2

s0+1∑
j=0

2(1−τ)Q(j+1)−τ(4−2ξ)(j+1)
+

22−3(4−2ξ)τ

1− 2−τ
.

(4.12)

Since τ is in (1/2, 1), we have 2−τ /(1− 2−τ )2 ≤ 10. Using in addition the hypothe-
ses q ≥ 3 and 4− 2ξ ≥ 1, we have

22−3(4−2ξ)τ

1− 2−τ
≤ 3 · 23−(4−2ξ+3)τ

≤ 3 · 2(1−τ)Q(1)−(4−2ξ)τ

≤ 3
s0+1∑
j=0

2(1−τ)Q(j+1)−τ(4−2ξ)(j+1).

We obtain (ii) by combining these estimates with (4.12).
(iii) Fix s in [0,∞) and set s0 := bsc. By Lemma 4.1(b) and the definition of λ(s),

for each s in [0,∞) we have

λ(s) = |Js |
−1
≤

1
2Q(s+1)−1 .

From this inequality and from Lemma 4.1(a), for every integer j in {0, . . . , s0} we have

λ(s)(2Q(j) +Q(j + 1)−Q(j)+4− 1) ≤ λ(s)(2Q(j) +Q(j + 1)+4)

≤
2Q(s) +Q(s + 1)+4

2Q(s+1)−1

≤ 1.

In view of Lemma 4.1(b), formulas (4.1) and (4.2), the first inequality of (4.7), the first
equality in (4.9), and the hypothesis q +4 ≥ 1, we deduce that for j = s0,

1
8 · 2

(1−τ)Q(s0+1)−τ(4−2ξ)(s0+1)

≤
1
4 |Js0 |2

−τ(Q(s0+1)+4·(s0+1))+2τξ ·(s0+1)

≤
1
2 |Js0 |2

−λ(s)(2Q(s0)+Q(s0+1)−Q(s0)+4−1)−τ(Q(s0+1)+4·(s0+1))+2τξ ·(s0+1)

≤

(|Js0 |∑
m=1

2−λ(s)m
)

2−λ(s)(2
Q(s0)+Q(s0+1)−Q(s0)+4−1)−τ(Q(s0+1)+4·(s0+1))+2τξ ·(s0+1)

= Js0(τ, λ(s)). ut
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Define s : (−∞, 1)→ R by

s(τ ) =
4− 2ξ
q(1− τ)

.

Lemma 4.3. For every τ in
( q−2
q−1 , 1

)
, we have

5(τ, λ(s(τ )− 2)) ≤ 10 · 2τξ + 101,

and for every � ≥ 0,
2�−3

≤ 5(τ, λ(s(τ )+�)).

Proof. Fix τ in
( q−2
q−1 , 1

)
and� ≥ 0. Note that τ > q−2

q−1 implies τ > q−4
q

, or equivalently

τ >
Q
( 2
q(1−τ) − 1

)
− 1

Q
( 2
q(1−τ)

) .

On the other hand, the function s 7→ Q(s−1)−1
Q(s)

is strictly increasing on
( q−1
q
,∞

)
. Since

the inequalities 1 ≤ 4 − 2ξ and τ > q−2
q−1 imply s(τ ) > q−1

q
, using 4 − 2ξ ≤ 2 we

deduce
Q(s(τ)− 1)− 1

Q(s(τ))
≤

Q
( 2
q(1−τ) − 1

)
− 1

Q
( 2
q(1−τ)

) < τ.

So the hypotheses of Lemma 4.2(ii) are satisfied with s = s(τ ) − 2. Let F : R→ R be
the quadratic function defined by

F(`) := (1− τ)Q(`)− τ(4− 2ξ)`.

Note that F(0) = 0,

F

(
s(τ )

2

)
=
(4− 2ξ)2

2q
−
4− 2ξ

2

(
s(τ )

2

)
and F(s(τ )) =

(4− 2ξ)2

q
.

Since F is convex, for each ` in [0, s(τ )] we have

F(`) = (1− τ)Q(`)− τ(4− 2ξ)` ≤
(4− 2ξ)2

q
−
4− 2ξ

2
min{`, s(τ )− `}.

Therefore, setting s+ = s(τ )− 2 and using 1 ≤ 4− 2ξ ≤ 2 and q ≥ 3, we have

bs+c+1∑
j=0

2(1−τ)Q(j+1)−τ(4−2ξ)(j+1)
≤ 2

bs+c+2∑
`=0

2
(4−2ξ)2

q
−
4−2ξ

2 `

≤ 2 · 24/q 1
1− 2−1/2 ≤ 20.

The first inequality of the lemma is then obtained using Lemma 4.2(ii) with s = s+.
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To prove the second inequality, note that

F(s(τ )+�) =
(4− 2ξ)2

q
+ (4− 2ξ)(2− τ)�+ q(1− τ)�2

≥ (4− 2ξ)� ≥ �

and F is increasing on the interval
[
τ
2
4−2ξ
q(1−τ) ,∞

)
containing s(τ ). So, if we set s− =

s(τ )+�, then

� ≤ F(s−) ≤ F(bs−c + 1) = (1− τ)Q(bs−c + 1)− τ(4− 2ξ)(bs−c + 1).

Together with Lemma 4.2(iii) with s = s−, we obtain

2� ≤ 2(1−τ)Q(bs
−
c+1)−τ(4−2ξ)(bs−c+1)

≤ 85(τ, λ(s−)),

which is the second inequality of the lemma. ut

Proof of Proposition B. The first inequality is Lemma 4.2(i). To prove the others, note that
by the definition of λ(s) we have λ(s) ≥ 2−Q(s+1). On the other hand, by Lemma 4.1(b)
we have λ(s) ≤ 2 · 2−Q(s+1). So, using the definition of the function s we see that for
each τ in (0, 1) and 1 ≥ 1,

λ(s(τ )− 2) ≤ 2 · 2
−q
(
4−2ξ
q(1−τ)−1

)2

and λ(s(τ )+1− 1) ≥ 2
−q
(
4−2ξ
q(1−τ)+1

)2

.

Then the desired inequalities are a direct consequence of Lemma 4.3 with� = 1−1 and
of the fact that for a fixed τ the function λ 7→ 5(τ, λ) is nonincreasing on the set where
it is finite. ut

5. Estimating the geometric pressure function

In this section we prove the Main Technical Theorem. In §5.1 we show a general re-
sult about conformal measures, and in §5.2 we make some technical estimates (Proposi-
tion 5.2). The proof of the Main Technical Theorem is in §5.3, after recalling a few results
from [CRL12].

5.1. Conformal measures

Recall that, given an integer n ≥ 3 and a parameter c in Kn, the conical or radial Julia set
of fc|Ic (resp. fc) is the set of all points x in Ic (resp. Jc) for which the following property
holds: There exists r > 0 and an unbounded sequence (nj )∞j=1 of positive integers such

that for every j the map fc|
nj
Ic

(resp. f
nj
c ) maps a neighborhood of x in Ic (resp. Jc)

diffeomorphically onto B(f
nj
c (x), r).
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Proposition 5.1. Let n ≥ 4 be an integer, c a parameter in Kn, and let t > 0 and p
in R be given. Then there is at most one (t, p)-conformal probability measure of fc|Ic
(resp. fc) supported on Ic (resp. Jc). If such a measure µ exists, then p ≥ PR

c (t) (resp.
p ≥ PC

c (t)), and either µ is supported on the backward orbit of 0 and dissipative, or µ
is non-atomic and supported on the conical Julia set of fc|Ic (resp. fc). Furthermore, the
former case holds precisely when the following series converges:

∞∑
j=1

exp(−jp)
∑

y∈fc|
−j
Ic
(0)

|Df
j
c (y)|

−t

(
resp.

∞∑
j=1

exp(−jp)
∑

y∈f
−j
c (0)

|Df
j
c (y)|

−t

)
.

(5.1)

Proof. By [Urb03, Theorem 4.2] the conical Julia set of fc is the complement in Jc of
the backward orbit of z = 0. This implies that the conical Julia set of fc|Ic contains the
complement in Ic of the backward orbit of z = 0 under fc|Ic . On the other hand, this last
set is clearly disjoint from the conical Julia set of fc|Ic , so this proves that the conical
Julia set of fc|Ic is the complement in Ic of the backward orbit of z = 0.

Let µ be a (t, p)-conformal probability measure for fc|Ic (resp. fc) supported on Ic
(resp. Jc). If µ is supported on the backward orbit of z = 0, then it is uniquely determined
by the mass it assigns to z = 0, and therefore it is unique up to a scalar factor. Note
moreover that in this case µ is dissipative, because it charges the wandering set {0}. If µ
is not entirely supported on the backward orbit of z = 0, then it charges the conical
Julia set, so µ is non-atomic, it is supported on the conical Julia set and it is the unique
(t, p)-conformal measure of fc|Ic (resp. fc) supported on Ic (resp. Jc), up to a scalar
factor (see [PRL11, Proposition 4.1] for the complex case; the proof of the uniqueness
part of this result applies without change to the real case). This completes the proof that µ
is unique.

To prove that in the complex case p ≥ PC
c (t), let δ > 0 be so small that B(0, 2δ)

is disjoint from the forward orbit of the critical point. It follows that there is a con-
stant K > 1 such that for every integer j ≥ 1 and every y in f−jc (0), the map f jc maps
a neighborhood Wy of y biholomorphically to B(0, δ) with distortion bounded by K .
Therefore,

µ(Wy) ≥ K
−t exp(−jp)|Df jc (y)|−tµ(B(0, δ)).

So, if we set C := K−1µ(B(0, δ)) > 0, then for every integer j ≥ 1 we have

1 ≥
∑

y∈f
−j
c (0)

µ(Wy) ≥ C exp(−jp)
∑

y∈f
−j
c (0)

|Df
j
c (y)|

−t .

Since by [PRLS04, Theorem A] we have

lim
j→∞

1
j

log
∑

y∈f
−j
c (0)

|Df
j
c (y)|

−t
= PC

c (t),

this proves p ≥ PC
c (t).
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To prove that in the real case we have p ≥ PR
c (t), we note that the proof of [PRLS04,

Proposition 2.1] can be adapted to show

lim
j→∞

1
j

log
∑

y∈(fc|Ic )
−j (0)

|Df
j
c (y)|

−t
= PR

c (t),

using the fact that z = 0 is not in the closure of the orbit of the critical value of fc. The
rest of the proof of p ≥ PR

c (t) is similar to the proof above.
To prove the last statement, observe first that if there is a (t, p)-conformal measure

for fc|Ic (resp. fc) that is supported on the backward orbit of z = 0, then its total mass is
equal to (5.1) times the mass at z = 0. This proves that (5.1) is finite. Conversely, if (5.1)
is finite, then

δ0 +

∞∑
j=1

∑
y∈fc|

−j
Ic
(0)

exp(−jp)|Df jc (y)|−tδy

(
resp. δ0 +

∞∑
j=1

∑
y∈f

−j
c (0)

exp(−jp)|Df jc (y)|−tδy

)

is finite and it is a (t, p)-conformal measure for fc|Ic (resp. fc) supported on Ic (resp. Jc).
ut

5.2. Phase transition parameter

Recall that for each parameter c in P5(−2), we have set

θ(c) =

∣∣∣∣Dgc(p(c))Dgc(p̃(c))

∣∣∣∣1/2 and ξ(c) = −
log(ζ(c)̃ζ (c))

4 log θ(c)
.

Write t (c) := log 2/log θ(c) and for every integer n ≥ 5 define

ξn := sup
c∈Kn

ξ(c).

This subsection is dedicated to proving the following estimates, used in the proof of
the Main Technical Theorem.

Proposition 5.2. There is an integer n2 ≥ 5 such that for every integer n ≥ n2 and
every c in Kn, we have d2ξn + 1e − 2ξ(c) ≤ 2. Furthermore, for every constant T > 0
there is n3 ≥ 5 such that for every integer n ≥ n3 and every parameter c in Kn, we
have t (c) ≥ T .

This proposition is a consequence of the following sequence of lemmas.

Lemma 5.3 ([CRL12, Lemma A.1]). We have

∂

∂c
|Df 3

c (p(c))|

∣∣∣∣
c=−2

>
∂

∂c
|Df 3

c (p̃(c))|

∣∣∣∣
c=−2

.
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Lemma 5.4. We have θ(−2) = 1 and Dθ(−2) > 0.

Proof. For c = −2,

{2 cos(2π/7), 2 cos(4π/7), 2 cos(6π/7)}

and
{2 cos(2π/9), 2 cos(4π/9), 2 cos(8π/9)}

are the only orbits of minimal period 3 of f−2. Thus,

|Df 3
−2(p(−2))| = |Df 3

−2(p̃(−2))| = 8 and θ(−2) = 1.

Together with Lemma 5.3, we obtain Dθ(−2) > 0. ut

Lemma 5.5. We have ζ(−2) · ζ̃ (−2) = 1, and the function ξ(c) is real analytic at
c = −2.

Proof. Let c be a parameter in P5(−2). For every integer m ≥ 1 denote by pm(c) the
periodic point in3c whose itinerary consists of the periodic sequence whose period is the
concatenation of m consecutive 0’s and of m consecutive 1’s. By Proposition 3.1,

Dg2m
c (pm(c))

(Dgc(p(c))Dgc(p̃(c)))m
→ ζ(c)̃ζ (c) as m→∞.

On the other hand, using the identity f−2(2 cos(x)) = 2 cos(2x) for x in R, we obtain

Dg2m
−2(pm(−2))

(Dg−2(p(−2))Dg−2(p̃(−2)))m
= 1.

This proves ζ(−2) · ζ̃ (−2) = 1.
To prove that ξ is real analytic at c = −2, notice that θ , ζ , and ζ̃ are all real analytic

at c = −2 (Proposition 3.1). Since ζ(−2) · ζ̃ (−2) = 1 and θ(−2) = 1 (Lemma 5.4), the
functions A and B defined for c in P5(−2) by

A(c) := log(ζ(c)̃ζ (c))/(c + 2) and B(c) := log θ(c)/(c + 2)

are also real analytic at c = −2. Moreover,B(−2) 6= 0 sinceDθ(−2) 6= 0 by Lemma 5.4.
Thus, the quotient 4ξ(c) = A(c)/B(c) is real analytic at c = −2. ut

Proof of Proposition 5.2. By Lemma 5.4, there is δ > 0 such that for every c in
(−2,−2+ δ) we have

1 < θ(c) < 21/T .

On the other hand, by Proposition 2.6, there is n0 ≥ 3 such that Kn ⊂ (−2,−2 + δ) for
every n ≥ n0. These assertions imply the second part of the proposition.

To prove the first part, notice that by Lemma 5.5 there is ε > 0 such that ξ(c) is
uniformly continuous on [−2,−2 + ε]. By Proposition 2.6, for every sufficiently large
integer n we have Kn ⊂ [−2,−2 + ε] and moreover the diameter of Kn converges to 0
as n→∞. Thus, for every sufficiently large n we have

ξn − ξ(c) < 1/2.

This implies the first assertion of the proposition and concludes the proof. ut
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5.3. Proof of the Main Technical Theorem

We start by recalling some results from [CRL12].

Proposition 5.6 ([CRL12, Proposition D]). There is an integer n5 ≥ 4 and a con-
stant C3 > 1 such that for every integer n ≥ n5 and every parameter c in Kn, the
following properties hold for each t ≥ 3:

(i) For p in [−tχcrit(c)/2, 0) satisfying
∞∑
k=0

exp(−(n+ 3k)p)|Df n+3k
c (c)|−t/2 ≥ Ct3,

we have PR
c (t, p) > 0 and PR

c (t) ≥ p.
(ii) For p ≥ −tχcrit(c)/2 satisfying

∞∑
k=0

exp(−(n+ 3k)p)|Df n+3k
c (c)|−t/2 ≤ C−t3 ,

we have PC
c (t, p) < 0 and PC

c (t) ≤ p.

Lemma 5.7 ([CRL12, Proposition 6.2]). For all n ≥ 5, c in Kn, and t > 0, we have

PC
c (t) ≥ P

R
c (t) ≥ −tχcrit(c)/2.

Lemma 5.8 ([CRL12, Lemma 6.5]). There is n6 ≥ 5 such that for all n ≥ n6, c in Kn,
t ≥ 3 and

p ≥ PR
c (t) (resp. p ≥ PC

c (t))

satisfying PR
c (t, p) < 0 (resp. PC

c (t, p) < 0), the sum (5.1) is finite.

Proof of the Main Technical Theorem. Let C2 and υ2 be the constants given by Propo-
sition A, n5 and C3 the constants given by Proposition 5.6, and n6 the constant given by
Lemma 5.8. Since for c = −2 we have

|Dg−2(p̃(−2))|1/3 = 2 and |Df−2(β(−2))| = 4,

there is δ > 0 such that for each c in (−2,−2+ δ) we have

|Dgc(p̃(c))|
1/3

|fc(β(c))|
<

2
3
. (5.2)

By Proposition 2.6 there is n0 ≥ 3 such that for all n ≥ n0 the set Kn is contained
in (−2,−2 + δ); thus for every c in Kn we have (5.2). Since the closure of P6(−2) is
contained in P5(−2) (Lemma 2.3(i)), by Proposition 3.1 we have

Z := sup
c∈P6(−2)

−
log(ζ(c)̃ζ (c))

4 log 2
<∞.

Fix n ≥ max{6, n0, n5, n6} large enough that

C2
( 2

3

)n/2
(10 · 2Z + 101) < C−1

3 . (5.3)
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In view of Proposition 5.2, we can take n larger if necessary so that for every c in Kn we
have

t (c) =
log 2

log θ(c)
≥ 6,

and if we set
4 := d2ξn + 1e,

then 4− 2ξ(c) ≤ 2 for every c in Kn. Consider the sequence (xj )∞j=0 in {0, 1}N0 defined
in §4.1 for this value of 4 and for some integer q ≥ 3 satisfying in addition

q +4 ≥ 1 and 2q−1
≥ q + 1+4.

By Proposition 2.6, there is a parameter c in Kn such that ι(c) = (xj )∞j=0. Finally, set t∗ :=
t (c), and fix 1 ≥ 1 sufficiently large such that

C
−t∗
2 exp(−n)

(
exp(χcrit(c))

|Dfc(β(c))|

)t∗n/2
21−4 > C

t∗
3 . (5.4)

Write
t0 :=

q − 2
q − 1

t∗, ξ := ξ(c), κ := 4− 2ξ,

and define functions δ+, δ−, p+, p− : (t0,∞) → R as in the statement of the Main
Technical Theorem. Taking 1 larger if necessary, assume that p−(t) < 0 for every t
in (t0,∞).

We start by showing that c satisfies the hypotheses of Proposition A. By (4.1)
and (4.3),

Nc(k)/k→ 0 as k→∞. (5.5)

Denote by (mj )∞j=0 the sequence of the lengths of blocks of 0’s and 1’s in ι(c). So, using
the notation in §4.1, for every integer s ≥ 0 we have m2s = |Is | and m2s+1 = |Js |. By
Lemma 4.1(a), for every integer s ≥ 0 we have

min{m2s, m2s+1} = min{|Is |, |Js |} = |Is | = q(2s + 1)+4,

and for every integer s ≥ 1,

min{m2s+1, m2s+2} = min{|Js |, |Is+1|} = |Is+1| = q(2s + 3)+4.

Thus
∞∑
j=2

exp(−min{mj , mj+1}υ2) ≤ 2
∞∑
s=1

exp(−(q(2s + 1)+4)υ2) <∞.

This proves that c satisfies the hypotheses of Proposition A.
Note that by our choice of n and the hypothesis q ≥ 3, we have

t0 =
q − 2
q − 1

t∗ ≥
1
2
t∗ ≥ 3.
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On the other hand, by (5.5) and Lemma 3.5 we have

exp(χcrit(c)) = |Dgc(p̃(c))|
1/3. (5.6)

In particular, χcrit(c) > 0. Consider the two-variable series 5 defined as in §4.2 for the
above choices of 4, q, and ξ , and note that it coincides with the two-variable series 5c
defined in §3.3 for our choice of c.

To prove that PR
c (t) ≥ p−(t) for every t > t0, note first that when t ≥ t∗, this is

given by Lemma 5.7. On the other hand, from Propositions A and B, (5.2), (5.4), (5.6),
and from the fact that δ−(t) ≤ 1 for every t in (t0, t∗), we deduce

∞∑
k=0

exp(−(n+ 3k)p−(t))|Df n+3k
c (c)|−t/2

=

∞∑
k=0

exp
(
−(n+ 3k)(−tχcrit(c)/2+ δ−(t))

)
|Df n+3k

c (c)|−t/2

≥ C−t2 exp(−nδ−(t))
(

exp(χcrit(c))

|Dfc(β(c))|

)tn/2
5

(
t
log θ(c)

log 2
,

3δ−(t)
log 2

)
≥ C−t2 exp(−nδ−(t))

(
exp(χcrit(c))

|Dfc(β(c))|

)tn/2
21−4

> C
t∗
3

≥ Ct3.

Since p−(t) < 0 for each t in (t0, t∗), the inequality above combined with Proposi-
tion 5.6(i) implies that PR

c (t) ≥ p
−(t) for every t in (t0, t∗) .

Now we turn to the proof that PC
c (t) ≤ p

+(t) for t > t0 and PC
c (t,−tχcrit(c)/2) < 0

for t ≥ t∗. Combining Propositions A and B, using the definition of ξ = ξ(c) and Z, and
using (5.2), (5.3) and (5.6), we deduce that for every t ≥ t∗,

∞∑
k=0

exp(−(n+ 3k)p+(t))|Df n+3k
c (c)|−t/2

=

∞∑
k=0

exp
(
−(n+ 3k)(−tχcrit(c)/2)

)
|Df n+3k

c (c)|−t/2

≤ Ct2

(
exp(χcrit(c))

|Dfc(β(c))|

)tn/2
5

(
t
log θ(c)

log 2
, 0
)

≤ Ct2

(
exp(χcrit(c))

|Dfc(β(c))|

)tn/2
2(2t

log θ(c)
log 2 ξ

+ 1)

≤ Ct2

(
exp(χcrit(c))

|Dfc(β(c))|

)tn/2
2(2tZ + 1)

< C−t3 ,
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and for every t in (t0, t∗),

∞∑
k=0

exp(−(n+ 3k)p+(t))|Df n+3k
c (c)|−t/2

=

∞∑
k=0

exp
(
−(n+ 3k)(−tχcrit(c)/2+ δ+(t))

)
|Df n+3k

c (c)|−t/2

≤ Ct2 exp(−nδ+(t))
(

exp(χcrit(c))

|Dfc(β(c))|

)tn/2
5

(
t
log θ(c)

log 2
,

3δ+(t)
log 2

)
≤ Ct2 exp(−nδ+(t))

(
exp(χcrit(c))

|Dfc(β(c))|

)tn/2
(10 · 2t

log θ(c)
log 2 ξ

+ 101)

≤ Ct2 exp(−nδ+(t))
(

exp(χcrit(c))

|Dfc(β(c))|

)tn/2
(10 · 2tZ + 101)

< C−t3 .

Since p+(t) ≥ −tχcrit(c)/2 for t > t0, applying Proposition 5.6(ii) we deduce that
for t > t0 we have PC

c (t) ≤ p
+(t) and PC

c (t,−tχcrit(c)/2) < 0.
To prove the assertions concerning conformal measures, recall that we have proved

that for t ≥ t∗ we have
PR
c (t) = P

C
c (t) = −tχcrit(c)/2

and PC
c (t,−tχcrit(c)/2) < 0. This implies that for p ≥ −tχcrit(c)/2,

PR
c (t, p) ≤PC

c (t, p) ≤PC
c (t,−tχcrit(c)/2) < 0.

So the assertions about conformal measures follow from Proposition 5.1 and Lemma 5.8.
To prove the assertions about equilibrium states, let t ≥ t∗ and suppose for

contradiction that there is an equilibrium state ρ of fc|Ic (resp. fc) for the poten-
tial −t log |Dfc|. Since fc satisfies the Collet–Eckmann condition, the Lyapunov expo-
nent of ρ is strictly positive (see [NS98, Theorem A] or [RL12, Main Theorem] for the
real case and [PRLS03, Main Theorem] for the complex case). Then [Dob15, Theorem 6]
in the real case and [Dob12, Theorem 8] in the complex case imply that ρ is absolutely
continuous with respect to the (t,−tχcrit(c)/2)-conformal measure for fc|Ic (resp. fc)
that is supported on Ic (resp. Jc). This implies in particular that ρ is supported on the
backward orbit of z = 0, and hence that ρ charges z = 0. This is impossible because this
point is not periodic. This contradiction shows that there is no equilibrium state of fc|Ic
(resp. fc) for the potential −t log |Dfc|, and completes the proof of the Main Technical
Theorem. ut
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