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Abstract. We consider the functional

I�(v) =
∫
�
[f (|Dv|)− v] dx,

where � is a bounded domain and f is a convex function. Under general assumptions on f , Crasta
[Cr1] has shown that if I� admits a minimizer in W1,1

0 (�) depending only on the distance from
the boundary of �, then � must be a ball. With some restrictions on f , we prove that spherical
symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the
boundary (i.e. it has only a level surface in common with the distance).

We then discuss how these results extend to more general settings, in particular to functionals
that are not differentiable and to solutions of fully nonlinear elliptic and parabolic equations.

Keywords. Overdetermined problems, minimizers of integral functionals

1. Introduction

We consider a bounded domain � in RN (N ≥ 2) and, for x ∈ �, denote by d(x) the
distance of x from RN \�, that is,

d(x) = min
y∈RN\�

|x − y|, x ∈ �;

d is Lipschitz continuous on �. For a positive number δ, we define the parallel surface
to the boundary ∂� of � as

0δ = {x ∈ � : d(x) = δ}.

In this paper, we shall be concerned with minimizers of variational problems and
solutions of quite general nonlinear elliptic and parabolic partial differential equations,
which admit a single level surface that is parallel to ∂�.
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A motivation is the work of G. Crasta [Cr1] on the minimizers of certain problems of
the calculus of variations in the class of the so-called web functions, that is, functions that
depend only on the distance from the boundary (see [CG] and [Ga], where the term web
function was introduced for the first time). In [Cr1], it is proved that, if � is a smooth
domain and the functional

I�(v) =
∫
�

[f (|Dv|)− v] dx (1.1)

has a minimizer in the class of W 1,1
0 (�)-regular web functions, then � must be a ball.

The assumptions on the lagrangian f are very general: f is merely required to be convex
and the function p 7→ f (|p|) to be differentiable.

Related to Crasta’s result, here, we consider the variational problem

inf{I�(v) : v ∈ W 1,∞
0 (�)}, (1.2)

under the following assumptions on f : [0,∞)→ R:

(f1) f ∈ C1([0,∞)) is a convex, nondecreasing function such that f (0) = 0 and

lim
s→∞

f (s)/s = ∞;

(f2) there exists σ ≥ 0 such that f ′(s) = 0 for every 0 ≤ s ≤ σ , f ′(s) > 0 for s > σ

and f ∈ C2,α(σ,∞) (0 < α < 1), with f ′′(s) > 0 for s > σ.

Also, we suppose that there exists a domain G such that

G ⊂ �, ∂G ∈ C1 satisfies the interior sphere condition, and ∂G = 0δ, (1.3)

for some δ > 0.
The main result in this paper is the following.

Theorem 1.1. Let � ⊂ RN be a bounded domain and let f and G satisfy assumptions
(f1)–(f2) and (1.3), respectively. Let u be the solution of (1.2) and suppose u isC1-smooth
in a tubular neighborhood of 0δ. If

u = c on 0δ (1.4)

for some constant c > 0, then � must be a ball.

Thus, at the cost of requiring more restrictive growth and regularity assumptions on f,
we can sensibly improve Crasta’s theorem: indeed, if u is a web function, then all its
level surfaces are parallel to ∂�.We also point out that we make no (explicit) assumption
on the regularity of ∂�: we only require that the parallel surface 0δ has some special
topology and is mildly smooth.

In Theorem 3.6, we will extend this result to a case in which the function p 7→ f (|p|)

is no longer differentiable at p = 0.Our interest in this kind of functionals (not considered
in [Cr1]) is motivated by their relevance in the study of complex-valued solutions of the
eikonal equation (see [MT1]–[MT4] and [CeM]).
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The reason why we need stricter assumptions on f is a different method of proof.
While in [Cr1] one obtains symmetry by directly working with Euler’s equation for I�
(which only involves f ′), in the proof of Theorem 1.1 we rely on the fact that minimizers
of I� satisfy in a generalized sense a nonlinear equation of type

F(u,Du,D2u) = 0 in �, (1.5)

(which involves f ′′); moreover, to obtain symmetry, we use the method of moving planes
that requires extra regularity for f ′′.

Theorem 1.1 (and also Theorems 3.6, 4.1 and 4.2) works out an idea used by the
last two authors in the study of the so-called stationary surfaces of solutions of (non-
degenerate) fast-diffusion parabolic equations (see [MS1]). A stationary surface is a sur-
face 0 ⊂ � of codimension 1 such that, for some function a : (0, T )→ R, u(x, t) = a(t)
for every (x, t) ∈ 0 × (0, T ). In fact, in [MS1], it is proved that if the initial-boundary
value problem

ut −1φ(u) = 0 in �× (0, T ),
u = 0 on �× {0}, u = 1 on ∂�× (0, T )

(here φ is a nonlinearity with derivative φ′ bounded from below and above by positive
constants) admits a solution that has a stationary surface, then � must be a ball.

The crucial arguments used in [MS1] are two: one is the discovery that a stationary
surface must be parallel to the boundary; the other is the application of the method of
moving planes. This method was created by A. D. Aleksandrov to prove the spherical
symmetry of embedded surfaces with constant mean curvature or, more generally, of sur-
faces whose principal curvatures satisfy certain constraints and, ever since, it has been
successfully employed to prove spherical symmetry in many a situation: the theorems
of Serrin for overdetermined boundary value problems [Se2] and those of Gidas, Ni and
Nirenberg for ground states [GNN] are the most celebrated. Here, we will use that method
to prove Theorem 1.1 (and also Theorems 3.6, 4.1 and 4.2). Arguments similar to those
used in [MS1] were recently used in [Sh].

Let us now comment on the connections between the problem considered in Theo-
rem 1.1, the one studied in [Cr1] (both with f (p) = 1

2 |p|
2) and (the simplest instance of)

Serrin’s overdetermined problem:

−1u = 1 in �, (1.6)

u = 0 on ∂�,
∂u

∂ν
= constant on ∂�. (1.7)

It is clear that being a web function is a stronger condition, since it implies both (1.4)
and (1.7). Moreover, even if the constraints (1.4) and (1.7) are not implied by each other,
we observe the following: (i) if (1.4) is satisfied for two positive sequences {δn}n∈N and
{cn}n∈N with δn→ 0 as n→∞, then (1.7) holds true; (ii) conversely, from (1.7) we can
conclude that the oscillation max0δ u − min0δ u is O(δ2) as δ → 0. All in all, it seems
that the constraint (1.4) is weaker than (1.7).
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Another important remark is in order: the method of moving planes is applied to prove
our symmetry results in a much simplified manner than that used for (1.6)–(1.7); indeed,
since the overdetermination takes place in � (and not on ∂�) we need not use Serrin’s
corner lemma (in other words, property (B) in [Se2] for (1.5) is not required). A further
benefit is that no regularity requirement is made on ∂�, thanks to assumption (1.3).

In Section 2 we will present our results on the problem proposed by Crasta (for the
proof of Theorem 1.1, see Subsection 2.2); in Section 3 we will extend them to some
cases which involve nondifferentiable lagrangians. In Section 4 we will discuss how these
results extend to fairly general settings, in particular to solutions of fully nonlinear elliptic
and parabolic equations.

We mention that a stability version of Theorem 1.1 (for the semilinear equation1u =
f (u)) is obtained in the companion paper [CMS].

2. Minima of convex differentiable functionals

We first introduce some notation and prove some preliminary result.

2.1. Uniqueness and comparison results

Let f satisfy (f1)–(f2). The functional I� is differentiable and a critical point u of I�
satisfies − div

(
f ′(|Du|)

|Du|
Du

)
= 1 in �,

u = 0 on ∂�,
(2.1)

in the weak sense, i.e.∫
�

f ′(|Du|)

|Du|
Du ·Dφ dx =

∫
�

φ dx for every φ ∈ C1
0(�). (2.2)

It will be useful to have at hand the solution of (2.1) when � is the ball of given
radius R (centered at the origin): it is given by

uR(x) =

∫ R

|x|

g′
(
s

N

)
ds, (2.3)

where
g(t) = sup{st − f (s) : s ≥ 0}

is the Fenchel conjugate of f . For future use, we notice that |DuR(x)| > σ for x 6= 0.
It is clear that, when σ = 0, (1.2) has a unique solution, since f is strictly convex.

When σ > 0, proving the uniqueness for (1.2) needs some more work. In Theorem 2.3
we shall prove such a result as a consequence of Lemmas 2.1 and 2.2 below.

Lemma 2.1. Let � be a bounded domain and let u be a solution of (1.2), where f satis-
fies (f1) and (f2), with σ > 0. Then u ≥ 0 and I�(u) < 0.
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Proof. Since u ∈ W 1,∞
0 (�), also |u| ∈ W 1,∞

0 (�). If u < 0 on some open subset of �
(u is continuous), then I�(|u|) < I�(u)—a contradiction.

Now observe that I�(v) < 0 if v ∈ W 1,∞
0 (�) is any nonnegative function, v 6≡ 0,

with Lipschitz constant less than or equal to σ . Thus, I�(u) < 0. ut

In the following, for a given domain A, we shall denote by IA the integral functional

IA(v) =
∫
A

[f (|Dv|)− v] dx;

a local minimizer of IA means a function that minimizes IA among all the functions with
the same boundary values.

Lemma 2.2. Let f satisfy (f1) and (f2) with σ > 0. Let A be a bounded domain and
assume that u0, u1 ∈ W

1,∞(A) are local minimizers of IA with u0 = u1 on ∂A. Next,
define

Ej = {x ∈ A : |Duj | > σ }, j = 0, 1, (2.4)

and assume that |E0 ∪ E1| > 0. Then u0 ≡ u1.

Proof. Let u = 1
2 (u0 + u1); since f is convex, it is clear that u is also a minimizer of IA

and u = u0 = u1 on ∂A. Thus, we have∫
A

[ 1
2f (|Du0|)+

1
2f (|Du1|)− f (|Du|)

]
dx = 0, (2.5)

and since f is convex,
1
2f (|Du0|)+

1
2f (|Du1|)− f (|Du|) = 0 a.e. in A. (2.6)

Assumption (f2) on f and (2.6) imply that

|(E0 ∪ E1) ∩ {|Du0| 6= |Du1|}| = 0, (2.7)

since on (E0 ∪ E1) ∩ {|Du0| 6= |Du1|} the convexity of f holds in the strict sense.
Thus, we have proven that |Du0| = |Du1| a.e. in E0 ∪ E1, and since∫

A

f (|Duj |) dx =

∫
Ej

f (|Duj |) dx, j = 0, 1,

we have ∫
A

f (|Du0|) dx =

∫
A

f (|Du1|) dx.

Now, take v = max(u0, u1); then (2.7) implies that∫
A

f (|Dv|) dx =

∫
A

f (|Du0|) dx =

∫
A

f (|Du1|) dx, (2.8)

and hence IA(v) ≤ IA(u0) = IA(u1), since v ≥ u0, u1. Thus, IA(v) = IA(u0) =

IA(u1); consequently, ∫
A

(v − uj ) dx = 0

for j = 0, 1, and since v ≥ u0, u1, we conclude that v = u0 = u1. ut
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Theorem 2.3. Let f satisfy (f1) and (f2) with σ > 0 and assume that u ∈ W 1,∞
0 (�) is a

solution of (1.2). Then:

(i) |{x ∈ � : |Du| > σ }| > 0;
(ii) u is unique.

Proof. (i) For contradiction, assume that |Du| ≤ σ a.e.; since u satisfies (2.2), we can
easily infer that

∫
�
u dx = 0. Thus, I (u) = 0, which contradicts Lemma 2.1.

(ii) The assertion follows from (i) and Lemma 2.2. ut

As already mentioned in the introduction, our proof of Theorem 1.1 makes use of the
method of moving planes. To apply this method, we need comparison principles for min-
imizers of I� (see also [Ci]).

Proposition 2.4 (Weak comparison principle). Let A be a bounded domain and let f
satisfy (f1) and (f2). Assume that u0, u1 ∈ W

1,∞(A) are local minimizers of IA such that
u0 ≤ u1 on ∂A and suppose that |E0 ∪E1| > 0, where the sets E0, E1 are given by (2.4).
Then u0 ≤ u1 in A.

Proof. If σ = 0 in (f2), then the weak comparison principle is well established (see for
instance [FGK, Lemma 3.7]).

Thus, in the rest of the proof, we assume that σ > 0. Assume for contradiction that
u0 > u1 in a nonempty open subset B of A. We can suppose that B is connected (oth-
erwise the argument can be repeated for each connected component of B). Observe that
since u0 ≤ u1 on ∂A and u0 and u1 are continuous, we have u0 = u1 on ∂B.

We now show that u0 minimizes IB among those functions v with v−u0 ∈ W
1,∞
0 (B).

Indeed, if inf IB(v) < IB(u0) for one such function, then the function w defined by

w(x) =

{
v, x ∈ B,

u0, x ∈ A \ B,

would belong to W 1,∞(A), be equal to u0 on ∂A and have IA(w) < IA(u0)—a con-
tradiction. The same argument can be repeated for u1, and hence we have proven that
IB(u0) = IB(u1) (since u0 = u1 on ∂A).

This last equality implies that∫
B

f (|Du0|) dx >

∫
B

f (|Du1|) dx ≥ 0,

since u0 > u1 in B, and hence |E0 ∩ B| > 0.
By applying Lemma 2.2 to IB , we find that u0 ≡ u1 in B—a contradiction. ut

Proposition 2.5 (Strong comparison principle). Let A be a bounded domain and let f
satisfy (f1) and (f2). Assume that u0, u1 ∈ C

1(A) are local minimizers of IA such that
u0 ≤ u1 in A and |Du0|, |Du1| > σ in A. Then either u0 ≡ u1, or u0 < u1 in A.

Proof. As u0 and u1 are solutions of (2.2) with |Du0|, |Du1| > σ , the assertion easily
follows from [Se1, Theorem 1], since by (f2) the needed uniform ellipticity is easily
verified. ut
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Proposition 2.6 (Hopf comparison principle). Let u0, u1 ∈ C
2(A) satisfy the assump-

tions of Proposition 2.5. Assume that u0 = u1 at some point P ∈ ∂A admitting an
internally touching tangent sphere. Then either u0 ≡ u1 in A, or

u0 < u1 in A and
∂u0

∂ν
<
∂u1

∂ν
at P ;

here, ν denotes the inward unit normal to ∂A at P .

Proof. The assertion follows from [Se1, Theorem 2] by using an argument analogous to
the one in the proof of Proposition 2.5. ut

We conclude this subsection by giving a lower bound for |Du| on 0δ when u is the
function considered in Theorem 1.1.

Lemma 2.7. Let �, G and f satisfy the assumptions of Theorem 1.1. Let u ∈ W 1,∞
0 (�)

be a minimizer of (1.2) satisfying (1.4). For x0 ∈ 0δ, let y0 ∈ ∂� be such that dist(y0, 0δ)

= δ and set ν = (x0 − y0)/δ; denote by ρ = ρ(x0) the radius of the optimal interior ball
at x0. Then

lim inf
t→0+

u(x0 + tν)− u(x0)

t
≥ g′

(
ρ

N

)
, (2.9)

where g is the Fenchel conjugate of f .
In particular, inf0δ |Du| > σ in two cases:

(i) if u ∈ C1(0δ);
(ii) if u is differentiable at every x ∈ 0δ and G satisfies the uniform interior sphere

condition.

Proof. Since u − c minimizes the functional IG among the functions vanishing on 0δ,
Lemma 2.1 implies that u ≥ c in G.

Let Bρ ⊂ G be the ball of radius ρ tangent to 0δ at x0. The minimizer w of IBρ with
w = c on ∂Bρ is then w = c + uρ, where uρ given by (2.3) with R = ρ; notice that
u(x0) = w(x0) = c.

Since u ≥ c ≡ w on ∂Bρ , Proposition 2.4 yields u ≥ w in Bρ , and thus

lim inf
t→0+

u(x0 + tν)− c

t
≥
∂w

∂ν
(x0) = g

′

(
ρ

N

)
.

The last part of the lemma (assertions (i) and (ii)) is a straightforward consequence of
(1.3) and (2.9). ut

2.2. The proof of Theorem 1.1

We initially proceed as in [Se2] (see also [Fr]) and further introduce the necessary mod-
ifications as done in [MS1]–[MS2]. For ξ ∈ RN with |ξ | = 1 and λ ∈ R, we denote by
Rλx the reflection x + 2(λ− x · ξ) ξ of any point x ∈ RN in the hyperplane

πλ = {x ∈ RN : x · ξ = λ},
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and set
uλ(x) = u(Rλx) for x ∈ Rλ(�).

Then, for a fixed direction ξ , we define the caps

Gλ = {x ∈ G : x · ξ > λ} and �λ = {x ∈ � : x · ξ > λ},

and set

λ̄ = inf{λ ∈ R : Gλ = ∅},
λ∗ = inf{λ ∈ R : Rµ(Gµ) ⊂ G for every µ ∈ (λ, λ̄)}.

As is well-known from Serrin [Se2], if we assume that � (and hence G) is not ξ -sym-
metric, then for λ = λ∗ at least one of the following two cases occurs:

(i) Gλ is internally tangent to ∂G at some point P ∈ ∂G not in πλ, or
(ii) πλ is orthogonal to ∂G at some point Q.

Now, the crucial remark is given by the following lemma, whose proof is an easy adapta-
tion of those of [MS2, Lemmas 2.1 and 2.2].

Lemma 2.8. Let G satisfy assumption (1.3). Then:

(i) � = G+ Bδ(0) = {x + y : x ∈ G, y ∈ Bδ(0)};
(ii) if Rλ(Gλ) ⊂ G, then Rλ(�λ) ⊂ �.

Let �′λ denote the connected component of Rλ(�λ) whose closure contains P or Q. We
notice that, since u is of class C1 in a neighborhood of 0δ , Lemma 2.7 implies that |Du|
is bounded away from σ in the closure of a set Aδ ⊃ 0δ. This guarantees that Proposition
2.4 can be applied to the two (local) minimizers u and uλ of I�′λ : since u ≥ uλ on ∂�′λ
(and |Aδ ∩�λ|, |Aδ ∩�′λ| > 0), we have u ≥ uλ in �′λ.

If case (i) occurs, we apply Proposition 2.5 to u and uλ in Aδ ∩ �′λ and deduce that
u > uλ in Aδ ∩�′λ, since u 6≡ uλ on 0δ ∩�′λ. This is a contradiction, since P belongs to
both Aδ ∩�′λ and 0δ ∩Rλ(0δ), and hence u(P ) = uλ(P ).

Now, let us consider case (ii). Notice that ξ belongs to the tangent hyperplane to 0δ
at Q. Since u ∈ C1(Aδ) and |Du| is bounded away from σ in the closure of Aδ , standard
elliptic regularity theory (see [To1], [To2] and [GT]) implies that u ∈ C2,γ (Aδ) for some
γ ∈ (0, 1). Thus, applying Proposition 2.6 to u and uλ in Aδ ∩�′λ yields

∂u

∂ξ
(Q) <

∂uλ

∂ξ
(Q).

On the other hand, since 0δ is a level surface of u and u is differentiable at Q, we must
have

∂u

∂ξ
(Q) =

∂uλ

∂ξ
(Q) = 0; (2.10)

this gives the desired contradiction and concludes the proof of the theorem.



Symmetry of minimizers with a level surface parallel to the boundary 2797

Remark 2.9. Notice that if we assume that σ = 0, then the assumption that u is of
class C1 in a neighborhood of 0δ can be removed from Theorem 1.1. Indeed, from elliptic
regularity theory we find that u ∈ C2,γ (�\ {Du = 0}) for some γ ∈ (0, 1); from Lemma
2.7 we know that Du 6= 0 on 0δ , and thus u ∈ C2,γ in an open neighborhood of 0δ . As
far as we know, few regularity results are available in the literature for the case σ > 0
(see [Br], [BCS], [CM] and [SV]); since Hölder estimates for the gradient are missing,
we have to assume that u is continuously differentiable in a neighborhood of 0δ .

Remark 2.10. We notice that (2.10) holds under the weaker assumption that u is Lip-
schitz continuous, as we readily show.

Let ξ and Q be as in the proof of Theorem 1.1. For ε > 0 small enough, we denote
by y(Q− εξ) the projection of Q− εξ on 0δ . Since 0δ is a level surface of u,

u(Q− εξ)− u(Q) = u(Q− εξ)− u(y(Q− εξ)),

and, u being Lipschitz continuous, we have

|u(Q− εξ)− u(y(Q− εξ))| ≤ L|Q− εξ − y(Q− εξ)|

for a positive constant L independent of ε, ξ and Q. Since ξ is a vector belonging to the
tangent hyperplane to 0δ at Q, we have

|Q− εξ − y(Q− εξ)| = o(ε)

as ε→ 0+, and thus

lim
ε→0+

u(Q− εξ)− u(Q)

ε
= 0.

A similar argument applied to uλ yields

lim
ε→0+

uλ(Q− εξ)− uλ(Q)

ε
= 0,

and hence (2.10) holds.

3. A class of nondifferentiable functionals

In this section we consider the variational problem (1.2) and assume that f satisfies (f1)
and

(f3) f ′(0) > 0, f ∈ C2,α(0,∞) with 0 < α < 1, and f ′′(s) > 0 for every s > 0.

In this case, the function s 7→ f (|s|) is not differentiable at the origin, and a minimizer
of (1.2) satisfies a variational inequality instead of an Euler–Lagrange equation.

By this nondifferentiability of I�, it may happen that u ≡ 0 is the minimizer of (1.2)
when � is “too small” (see Theorem 3.2); thus, it is clear that the symmetry result of
Theorem 1.1 does not hold in the stated terms. In Theorem 3.6, we will state the additional
conditions that enable us to extend Theorem 1.1 to this case.

We begin with a characterization of solutions to (1.2).
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Proposition 3.1. Let f satisfy (f1) and (f3). Then:

(i) (1.2) has a unique solution u;
(ii) u is characterized by the boundary condition, u = 0 on ∂�, and the inequality∣∣∣∣∫

�]
f ′(|Du|)

Du

|Du|
·Dφ dx −

∫
�

φ dx

∣∣∣∣ ≤ f ′(0) ∫
�0
|Dφ| dx (3.1)

for any φ ∈ C1
0(�). Here

�0
= {x ∈ � : Du(x) = 0} and �] = � \�0. (3.2)

Proof. Since f is strictly convex, the uniqueness of a minimizer follows easily.
Assume that u is a minimizer and let φ ∈ C1

0(�); then∫
�]

f (|Du+ εDφ|)− f (|Du|)

ε
dx +

∫
�0

f (ε|Dφ|)− f (0)
ε

dx −

∫
�

φ dx ≥ 0

for all ε > 0. By taking the limit as ε → 0+, we obtain one of the two inequalities
in (3.1). The remaining inequality is obtained by repeating the argument with −φ.

Conversely, assume that u satisfies (3.1) and let φ ∈ C1
0(�). The convexity of the

function t 7→ f (|Du+ tDφ|) yields

I�(u+φ)−I�(u) =
∫
�]
[f (|Du+Dφ|)−f (|Du|)] dx+

∫
�0
f (|Dφ|) dx−

∫
�

φ dx

≥

∫
�]
f ′(|Du|)

Du

|Du|
·Dφ dx+f ′(0)

∫
�0
|Dφ|−

∫
�

φ dx ≥ 0,

where the last inequality follows from (3.1); thus, u is a minimizer of (1.2). ut

Next, we recall the definition of the Cheeger constant h(�) of a set� (see [Ch] and [KF]):

h(�) = inf{|∂A|/|A| : A ⊂ �, ∂A ∩ ∂� = ∅}. (3.3)

It is well-known (see [De] and [KF]) that an equivalent definition of h(�) is given by

h(�) = inf
φ∈C1

0 (�)

∫
�
|Dφ| dx∫
�
|φ| dx

. (3.4)

Theorem 3.2. Let u be the solution of (1.2), with f satisfying (f1) and (f3). Then u ≡ 0
if and only if

f ′(0)h(�) ≥ 1. (3.5)

Proof. We first observe that

h(�) = inf
φ∈C1

0 (�)

∫
�
|Dφ| dx

|
∫
�
φ dx|

, (3.6)

since we can always assume that the minimizing sequences in (3.4) consist of nonnegative
functions.

Assume that u = 0 is a solution of (1.2); then from (3.1) and (3.6) we easily get (3.5).
Conversely, if (3.5) holds, then thanks to (3.6), u ≡ 0 satisfies (3.1) and Proposition 3.1
implies that u is a solution of (1.2). ut
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Observe that if � is a ball of radius R, then its Cheeger constant is

h(�) = N/R, (3.7)

as seen in [KF]. Thus, Theorem 3.2 informs us that u ≡ 0 is the only minimizer of I�
if and only if R ≤ Nf ′(0), i.e. if � is small enough. In the following proposition we get
an explicit expression of the solution of (1.2) in a ball. Notice that in this case the set �0

always has positive Lebesgue measure.

Proposition 3.3. Let f satisfy (f1) and (f3) and denote by g the Fenchel conjugate of f .
Let � ⊂ RN be the ball of radius R centered at the origin, and let uR be the solution
of (1.2). Then

uR(x) =

∫ R

|x|

g′
(
s

N

)
ds, 0 ≤ |x| ≤ R. (3.8)

Proof. Under very general assumptions on f , a proof of this proposition can be found
in [Cr2]. In the following, we present a simpler ad hoc proof for the case we are consid-
ering.

As we have just noticed, if R ≤ Nf ′(0), then h(BR)f ′(0) ≥ 1, and hence Theorem
3.2 implies that the minimizer of I� must vanish everywhere. Thus, (3.8) holds, since we
know that g′ = 0 in the interval [0, f ′(0)] and hence in [0, R/N].

Now, suppose that R > Nf ′(0) and let φ ∈ C1
0(BR). We compute the number be-

tween the bars in (3.1) with u = uR; since g is the Fenchel conjugate of f , we obtain∫
�]
f ′(|Du|)

Du

|Du|
·Dφ dx −

∫
�

φ dx

= −

∫
Nf ′(0)<|x|<R

x

N
·Dφ dx −

∫
|x|<R

φ dx =

∫
|x|<Nf ′(0)

x

N
·Dφ dx,

after an application of the divergence theorem. Applying the Cauchy–Schwarz inequality
to the last integrand, we obtain∣∣∣∣∫

�]
f ′(|Du|)

Du

|Du|
·Dφ dx −

∫
�

φ dx

∣∣∣∣ ≤ f ′(0) ∫
|x|<Nf ′(0)

|Dφ| dx,

that is, (3.1) holds; the conclusion then follows from Proposition 3.1. ut

In the following two lemmas we derive the weak comparison principle and Hopf lemma
that are necessary to prove our symmetry result.

Lemma 3.4 (Weak comparison principle). Let f satisfy (f1) and (f3) and let A be a
bounded domain. Assume that u0, u1 ∈ W

1,∞(A) are minimizers of IA such that u0 ≤ u1
on ∂A. Then u0 ≤ u1 on A.
Proof. Let B = {x ∈ A : u0(x) > u1(x)} and assume for contradiction that B 6= ∅.
Since u0 ≤ u1, and u0 and u1 are both continuous, we have u0 = u1 on ∂B. Hence, u0
and u1 are two distinct solutions of the problem

inf
{∫

B

[f (|Du|)− u] dx : u(x) = u0(x) on ∂B
}
,

which is a contradiction, on account of the uniqueness of the minimizer of IB . ut
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Lemma 3.5. Let f satisfy (f1) and (f3) and denote by g the Fenchel conjugate of f . Let
� ⊂ RN be a bounded domain and let G satisfy (1.3). Assume that u ∈ W 1,∞

0 (�) is a
minimizer of (1.2) satisfying (1.4). For x0 ∈ 0δ, let y0 ∈ ∂� be such that dist(y0, 0δ) = δ

and set ν = (x0 − y0)/δ; denote by ρ = ρ(x0) the radius of the optimal interior ball
at x0. Then

lim inf
t→0+

u(x0 + tν)− u(x0)

t
≥ g′

(
ρ

N

)
.

In particular, inf0δ |Du| > 0 in two cases:

(i) if u ∈ C1(0δ) and ρ(x0) > Nf ′(0) for any x0 ∈ 0δ;
(ii) if u is differentiable at every x ∈ 0δ , and G satisfies the uniform interior sphere

condition with radius ρ > Nf ′(0).

Proof. Notice that if ρ > Nf ′(0) then Proposition 3.3 implies that uR given by (3.8) with
R = ρ is strictly positive in a ball of radius ρ. Then the proof can be easily adapted from
the proof of Lemma 2.7. ut

Finally, by repeating the argument for Theorem 1.1, we obtain the following theorem.

Theorem 3.6. Let f , � and G satisfy the assumptions of Lemma 3.5. Assume that u ∈
W

1,∞
0 (�) is the minimizer of (1.2) and that (1.4) holds. If u is of class C1 in a tubular

neighborhood of 0δ and ρ > Nf ′(0), then � must be a ball.

Proof. The proof follows the lines of the proof of Theorem 1.1.
In this case, the weak comparison principle (which has to be applied to u and uλ

in �′λ) is given by Lemma 3.4.
Since u is of class C1 in an open neighborhood of 0δ , Lemma 3.5 implies that |Du|

is bounded away from zero in an open set Aδ ⊃ 0δ . Proposition 3.1 then shows that u is
a weak solution of

− div
{
f ′(|Du|)

Du

|Du|

}
= 1

in Aδ. Thus, a strong comparison principle and a Hopf comparison principle analogous
to Propositions 2.5 and 2.6 apply.

Once these three principles are established, the proof can be completed by using the
method of moving planes, as in Subsection 2.2. ut

4. Symmetry results for fully nonlinear elliptic and parabolic equations

As already mentioned in the Introduction, the argument used in the proof of Theorem 1.1
applies to more general elliptic equations of the form (1.5). Following [Se2, properties
(A)–(D), pp. 309–310], we state our assumptions on F in a very general form and to refer
the reader to the vast literature for the relevant sufficient conditions.

Let u be a viscosity solution of (1.5) in � and assume that u = 0 on ∂�. Let A ⊆ �
denote an open connected set.
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(WCP) We say that (1.5) enjoys the Weak Comparison Principle in A if, for any two
viscosity solutions u and v of (1.5), u ≤ v on ∂A extends to the inequality u ≤ v
on A.

(SCP) We say that (1.5) enjoys the Strong Comparison Principle in A if for any two
viscosity solutions u and v of (1.5), the inequality u ≤ v on ∂A implies that
either u ≡ v in A or u < v in A.

(BPP) Suppose ∂A contains a (relatively open) flat portion H . We say that (1.5) enjoys
the Boundary Point Property at P ∈ H if, for any two solutions u and v of
(1.5), Lipschitz continuous in A and such that u ≤ v in A, then the assumption
u(P ) = v(P ) implies that either u ≡ v in A, or u < v in A and

lim sup
ε→0+

[v − u](P + εν)− [v − u](P )

ε
> 0.

Here, ν denotes the inward unit normal to ∂A at P .

We shall also suppose that

(IR) equation (1.5) is invariant under reflections in any hyperplane;

in other words, we require the following: for any ξ and λ, u is a solution of (1.5) in �
if and only if uλ is a solution of (1.5) in Rλ(�) (here, we use the notation introduced in
Subsection 2.2).

The following symmetry results hold. Here, we state our theorems for continuous
viscosity solutions; however, the same arguments may be applied when the definitions of
classical or weak solutions are considered.

Theorem 4.1. Let� ⊂ RN be a bounded domain and letG satisfy (1.3). Let u = u(x) be
a nonnegative viscosity solution of (1.5) satisfying the homogeneous Dirichlet boundary
condition u = 0 on ∂�. Suppose there exist constants c, δ > 0 such that (1.4) holds. Let
F satisfy (IR) and

(i) (WCP) for A = �;
(ii) (SCP) and (BPP) for some neighborhood Aδ of 0δ .

Then � must be a ball.

The corresponding result for parabolic equations reads as follows.

Theorem 4.2. Let F,� and G satisfy the assumptions of Theorem 4.1. Let u = u(x, t)
be a nonnegative viscosity solution of

ut − F(u,Du,D
2u) = 0 in �× (0, T ), (4.1)

u = 0 on �× {0}, (4.2)
u = 1 on ∂�× (0, T ). (4.3)

If there exist a time t∗ ∈ (0, T ) and constants c, δ > 0 such that

u = c on 0δ × {t∗}, (4.4)

then � must be a ball.
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In the literature, there are a large number of results ensuring that (WCP), (SCP) and
(BPP) hold provided sufficient structure conditions are assumed on F. In the following,
we collect just a few of them.

For a proper equation (see [CIL] for the definition) of the form (1.5), a weak com-
parison principle is given in [KK2] (see also [KK1] and [BM]), where F is assumed to
be locally strictly elliptic and to be locally Lipschitz continuous in the second variable
(the one corresponding to Du). Under the additional assumption that F is uniformly el-
liptic, (SCP) and (BPP) are proved in [Tr]. The assumptions in [KK2] include some kind
of mean curvature type equations and nonhomogeneous p-Laplace equations; however,
they do not include the homogeneous p-Laplace equation and other degenerate elliptic
equations.

We conclude this section by mentioning that, for classical or distributional solutions,
the reader can refer to the monographs [PW], [GT], [Fr] and [PS]. More recent and inter-
esting developments on comparison principles for classical and viscosity solutions can be
found in [BB, Je, CLN1, CLN2, CLN3, DS, SS, Si].
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