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Abstract. We give a complete characterization of the locally compact groups that are nonelemen-
tary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or
continuous one-parameter groups of compacting automorphisms. We moreover give a description
of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a
compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism
groups of semiregular trees acting doubly transitively on the set of ends. As an application, we show
that the class of hyperbolic locally compact groups with a cusp-uniform nonuniform lattice is very
restricted.
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morphisms, compacting automorphisms

1. Introduction

1.1. From negatively curved Lie groups to amenable hyperbolic groups

John Milnor [30] initiated the study of left-invariant Riemannian metrics on general Lie
groups and observed that a connected Lie group admitting a left-invariant negatively
curved Riemannian metric is necessarily soluble; he asked about a more precise character-
ization. This was answered by E. Heintze [20]: a connected Lie group admits a negatively
curved left-invariant Riemannian metric if and only if it can be written as a semidirect
product N oα R, where N is a (nontrivial) nilpotent Lie group that is contracted by the
action of positive elements of R, that is, limt→∞ α(t)x = 1 for all x ∈ N .

All these groups thus constitute examples of locally compact groups that are both
amenable and (nonelementary) Gromov-hyperbolic. The purpose of the present paper is
to study this class of groups.
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It should be emphasized that, although most works devoted to Gromov-hyperbolicity
focus on finitely generated discrete groups, Gromov’s original concept was designed to
encompass more general metric groups. We shall mostly focus here on compactly gener-
ated locally compact groups; this point of view is in fact very natural, as the full isometry
group of a Gromov-hyperbolic metric space might very well be nondiscrete. The defini-
tion reads as follows: A locally compact group G is Gromov-hyperbolic (or, for short,
hyperbolic) if it admits a compact generating set such that the associated word metric is
Gromov-hyperbolic. In particular hyperbolicity is invariant under quasi-isometries. The
definition might look unfamiliar to readers used to deal with locally compact spaces, since
the Cayley graph associated with a compact generating set is in general far from locally
finite; moreover the natural action of the group on its Cayley graph need not be continu-
ous. This is however mitigated by the following characterization, proved in Corollary 2.6
below: a locally compact groupG is Gromov-hyperbolic if and only if it admits a contin-
uous proper cocompact isometric action on a Gromov-hyperbolic proper geodesic metric
space.

Gromov [15, §3.1,§8.2] divides hyperbolic groups into three classes:

• The visual boundary ∂G is empty. This means that G is compact.
• The visual boundary ∂G consists of two points. This holds if and only if G has an

infinite cyclic closed cocompact subgroup. Actually, this can be improved as follows
(Proposition 5.6): G has a (unique) maximal compact normal subgroup W such that
G/W is isomorphic to a cocompact group of isometries of the real line, namely iso-
morphic to Z, Z o {±1}, R, or R o {±1}.
• The visual boundary is uncountable.

Hyperbolic groups belonging to the first two classes are called elementary and the above
description provides for them a largely satisfactory classification; we shall focus on non-
elementary hyperbolic groups. For example, a semisimple real Lie group is nonelemen-
tary hyperbolic if and only if it has real rank one. All Heintze groups mentioned above
are nonelementary hyperbolic.

In order to state our first result, we introduce the following terminology. An automor-
phism α ∈ Aut(H) of a locally compact group H is called compacting if there is some
compact subset V ⊆ H such that for each g ∈ H , we have αn(g) ∈ V for all sufficiently
large n > 0. In the special case where limn→∞ α

n(g) = 1 for all g ∈ G, we say that α is
contracting.

The following result provides a first characterization of amenable hyperbolic groups,
in the spirit of Heintze’s characterization.

Theorem A. A locally compact group is amenable and nonelementary hyperbolic if and
only if it can be written as a semidirect product H oα Z or H oα R, where α(1) is a
compacting automorphism of the noncompact group H .

We give a more detailed statement in Section 7.2. For now, observe that besides Heintze
groups, examples of amenable and nonelementary hyperbolic locally compact groups are
provided by the stabilizer of an end in the full automorphism group of a regular locally
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finite tree. One can also combine these two examples by some kind of warped product
construction, which also yields instances of amenable nonelementary hyperbolic locally
compact groups. As a result of our analysis, it turns out that all amenable hyperbolic
groups are obtained in this way. For this more comprehensive description of amenable
hyperbolic groups, we refer to Theorem 7.3 below. At this point, let us simply mention
the following consequence of that description.

Theorem B. Every amenable hyperbolic locally compact group acts continuously, prop-
erly and cocompactly by isometries on a proper, geodesically complete CAT(−1) space.

These CAT(−1) spaces will be constructed as fibered products of homogeneous nega-
tively curved manifolds with trees. We call them millefeuille spaces; see §7.1 below for
a more precise description. These spaces provide model spaces for amenable hyperbolic
groups; one should keep in mind that for general hyperbolic locally compact groups (even
discrete ones), it is an outstanding problem to determine if they can act properly cocom-
pactly on any CAT(−1) (or even CAT(0)) space [16, §7.B].

Another consequence of our study is an answer to a question appearing at the very
end of the paper [24] by Kaimanovich and Woess: they asked whether there exists a one-
ended locally finite hyperbolic graph with a vertex-transitive group 0 of automorphisms
fixing a point at infinity. For planar graphs, this was recently settled in the negative by
Georgakopoulos and Hamann [13]. We actually show that the answer is negative in full
generality.

Corollary C. If a locally finite hyperbolic graph admits a vertex-transitive group of au-
tomorphisms fixing a point at infinity, then it is quasi-isometric to a regular tree, and in
particular cannot be one-ended.

The proof of Theorem A can be outlined as follows. If a nonelementary hyperbolic locally
compact group G is amenable, it fixes a point in its visual boundary ∂G since otherwise,
the ping-pong lemma provides a discrete free subgroup. Moreover, G must contain some
hyperbolic isometry. The G-action on itself therefore provides a special instance of what
we call a focal action: namely the action of a group 0 on a hyperbolic space X is called
focal if 0 fixes a boundary point ξ ∈ ∂X and contains some hyperbolic isometry. If 0
fixes a point in ∂X but does not contain any hyperbolic isometry, then the action is called
horocyclic. Any group admits a horocyclic action on some hyperbolic space, so that not
much can be said about the latter type. On the other hand, it is perhaps surprising that
focal actions are on the contrary much more restricted: for example any focal action is
quasi-convex (see Proposition 3.2). In addition, we shall see how to associate canonically
a nontrivial Busemann quasi-character β : 0 → R whenever 0 has a focal action on X
fixing ξ ∈ ∂X. Roughly speaking, if b is a Busemann function at ξ , it satisfies, up to a
bounded error, β(g) = b(x)− b(gx) for all (g, x) ∈ 0 × X. We refer the reader to §3.3
for a rigorous definition.

Coming back to the setting of Theorem A, the amenability of G implies that the
Busemann quasi-character is actually a genuine continuous character. The fact that an
element which is not annihilated by the character acts as a compacting automorphism on
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the kernel of that character is finally deduced by analysing the dynamics of the boundary
action, which concludes the proof of one implication.

For the converse, we give a direct proof that the Cayley graph of a semidirect product
of the stated form is Gromov-hyperbolic. This part of the argument happens to use only
metric geometry, without any local compactness assumption. This approach therefore
yields a rather general hyperbolicity criterion, which is stated in Theorem 4.1 below.

1.2. Hyperbolic groups with a cocompact amenable subgroup

We emphasize that, while hyperbolicity of locally compact groups is stable under com-
pact extensions, and even under any quasi-isometry, this is not the case for amenability,
although amenability is of course invariant under quasi-isometries in the class of discrete
groups. Indeed, a noncompact simple Lie groupG is nonamenable but contains a cocom-
pact amenable subgroup, namely the minimal parabolic subgroup P . The issue is that G
is unimodular while P is not, so thatG/P does not carry anyG-invariant measure. In par-
ticular, the class of hyperbolic locally compact groups containing a cocompact amenable
subgroup is strictly larger than the class of amenable hyperbolic locally compact groups.
The following result shows that there are however not so many nonamenable examples in
that class.

Theorem D. Let G be a nonamenable hyperbolic locally compact group. If G contains
a cocompact amenable closed subgroup, then G has a unique maximal compact normal
subgroup W , and exactly one of the following holds:

(1) G/W is the group of isometries of a rank one symmetric space of noncompact type,
or its identity component, which has index at most 2.

(2) G/W has a continuous, proper, faithful action by automorphisms on a locally finite
nonelementary tree T , without inversions and with exactly two orbits of vertices, such
that the induced G-action on the set ∂T of ends is 2-transitive. In particular, G/W
decomposes as a nontrivial amalgam of two profinite groups over a common open
subgroup.

A locally compact group is called a standard rank one group if it has no nontrivial com-
pact normal subgroup and satisfies one of the two conditions (1) or (2) fulfilled by G/W
in Theorem D. Standard rank one groups of type (2) include simple algebraic groups of
rank one over non-Archimedean local fields and complete Kac–Moody groups of rank
two over finite fields. More exotic examples, and a thorough study in connection with
finite primitive groups, are due to Burger and Mozes [10].

Any standard rank one group contains a cocompact amenable subgroup, namely the
stabilizer of a boundary point, so that the converse of Theorem D holds as well. In fact,
several other characterizations of standard rank one groups are provided by Theorem 8.1
below; we shall notably see that they coincide with those noncompact hyperbolic locally
compact groups acting transitively on their boundary.

A consequence of Theorem D is that a nonamenable hyperbolic locally compact group
that contains a cocompact amenable subgroup is necessarily unimodular. This is a note-
worthy fact, since a nonamenable hyperbolic locally compact group has no reason to be
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unimodular in general. For example, consider the HNN extension of Zp by the isomor-
phism between its subgroups pZp and p2Zp given by multiplication by p; this group is
hyperbolic since it lies as a cocompact subgroup in the automorphism group of a (p+p2)-
regular tree, but it is neither amenable nor unimodular.

1.3. When are nonuniform lattices relatively hyperbolic?

Much as the concept of Gromov-hyperbolic groups was designed to axiomatize funda-
mental groups of compact manifolds of negative sectional curvature, relative hyperbol-
icity was introduced, also by Gromov [15], to axiomatize fundamental groups of finite
volume manifolds of pinched negative curvature. Several equivalent definitions exist in
the literature. Let us only recall one of them, which is the most appropriate for our con-
siderations; we refer the reader to the rich literature on relative hyperbolicity for other
definitions and comparisons between those (the most relevant one for the definition we
chose is [42]).

Let G be a locally compact group acting continuously and properly by isometries on
a hyperbolic metric space X. Following P. Tukia [38, p. 74], we say that the G-action
(or G itself if there is no ambiguity on the action) is cusp-uniform if every boundary
point ξ ∈ ∂X is either a conical limit point or a bounded parabolic point (this notion
was introduced by B. Bowditch [7], who called it “geometrically finite”). The group G is
called relatively hyperbolic if it admits some cusp-uniform action on a proper hyperbolic
geodesic metric space.

For example, fundamental groups of finite volume manifolds of pinched negative cur-
vature and, in particular, nonuniform lattices in rank one simple Lie groups, are all rela-
tively hyperbolic: their action on the universal cover of the manifold (resp. on the asso-
ciated symmetric space) is cusp-uniform. Since rank one simple Lie groups are special
instances of hyperbolic locally compact groups, one might expect that nonuniform lat-
tices in more general hyperbolic locally compact groups are always relatively hyperbolic.
The following result shows that this is far from true.

Theorem E. Let X be a proper hyperbolic geodesic metric space and G ≤ Is(X) be a
closed subgroup acting cocompactly. If the action of some noncocompact closed subgroup
0 ≤ G on X is cusp-uniform, then G has a maximal compact normal subgroup W such
that G/W is a standard rank one group.

Some hyperbolic right-angled buildings, as well as most hyperbolic Kac–Moody build-
ings, are known to admit nonuniform lattices. Theorem E implies that, provided the build-
ing has dimension ≥ 2, these lattices are not cusp-uniform (i.e., they are not relatively
hyperbolic with respect to the family of stabilizers of parabolic points).

As remarked above, a nonuniform lattice in a rank one simple Lie group is always rel-
atively hyperbolic. In the case of tree automorphism groups, this is not the case. Necessary
and sufficient conditions for a nonuniform lattice have been described by F. Paulin [36],
the key being that a connected fundamental domain for the action of the lattice on the tree
has finitely many cusps.
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1.4. Amenable relatively hyperbolic groups

As we have seen, there are nontrivial examples of locally compact groups that are both
amenable and hyperbolic. We may wonder whether even more general examples might be
obtained by considering the class of relatively hyperbolic groups. The following shows
that this is in fact not the case.

Theorem F. Let G be an amenable locally compact group. If G is relatively hyperbolic,
then G is hyperbolic.

Organization of the paper

We start with a preliminary section presenting a general construction associating a proper
geodesic metric space X to an arbitrary compactly generated locally group G, together
with a continuous, proper, cocompactG-action by isometries. This provides a useful sub-
stitute for Cayley graphs, which is better behaved since it avoids the lack of continuity
and local compactness that Cayley graphs may exhibit in the nondiscrete case. SinceG is
quasi-isometric to X, the hyperbolicity of the former is equivalent to the hyperbolicity of
the latter.

The proofs of the main results are then spread over the rest of the paper, and roughly
go in three steps. The first part consists in a general study of isometric actions on hyper-
bolic spaces, culminating in the proof of Theorem 4.1 which implies that certain groups
given as semidirect products with cyclic factor are hyperbolic. This part is mostly devel-
oped in a purely metric set-up, without the assumption of local compactness. It occupies
Sections 3 and 4, and yields the implication from right to left in Theorem A.

In Section 5, we start making local compactness assumptions, but not yet exploiting
any deep structural result about locally compact groups. This is where Theorem F is
proven. This chapter moreover provides the implication from left to right in Theorem A,
whose proof is thus completed in Section 6.1.

Finally, a more comprehensive version of Theorem A, as well as its corollaries, is
proved in §7.2 after some preliminary work about the structure of groups admitting com-
pacting automorphisms in Section 6, and on the construction of millefeuille spaces in
§7.1. Similarly, a more comprehensive version of Theorem D is stated and proved in
§8.1. Theorem E is then easily deduced in the next subsection.

2. Preliminaries on geodesic spaces for locally compact groups

It is well-known that a topological group with a proper, cocompact action by isometries
on a locally compact geodesic metric space is necessarily locally compact and compactly
generated. It turns out that the converse is true, and that the space can be chosen to be a
piecewise-manifold. This is the content of Proposition 2.1 below. Its relevance to the rest
of the paper is through Corollary 2.6. The remainder of the section is devoted to its proof
and is independent of the rest of the paper, so the reader can, on a first reading, take the
proposition and its corollary for granted and go directly to Section 3.



Amenable hyperbolic groups 2909

Proposition 2.1. Let G be a compactly generated, locally compact group. There exists
a finite-dimensional (in the sense of topological dimension) locally compact geodesic
metric space X with a continuous, proper, cocompact G-action by isometries.

In fact, X is a connected locally finite gluing of Riemannian manifolds along their
boundaries.

An immediate consequence is that a closed cocompact subgroup of a compactly gener-
ated locally compact group is itself compactly generated. This is well-known and can be
established more simply by a direct algebraic argument, see [28].

Let us begin by illustrating Proposition 2.1 with significant examples.

• When G is discrete, we consider its Cayley graph with respect to a finite generating
set.
• When G is a connected Lie group, X is taken as G endowed with a left-invariant Rie-

mannian metric.
• When G is an arbitrary (possibly disconnected) Lie group, we pick a finite subset S

whose image in G/G◦ is a generating subset and endow the (disconnected) manifold
G with a left-invariant Riemannian metric; then for each coset L ofG◦ and each s ∈ S,
we consider a stripL×[0, 1] (with the product Riemannian metric) and attach it toG by
identifying (g, 0) to g and (g, 1) to gs. The resulting spaceG is path-connected and en-
dowed with the inner length metric associated to the Riemannian metric on each strip.
• When G is totally disconnected, a Cayley–Abels graph construction is available, gen-

eralizing the discrete case. It goes back to Abels [1, Beispiel 5.2]. It consists in picking
a compact generating subset S that is bi-invariant under the action of some compact
open subgroup K , considering the (oriented, but unlabeled) Cayley graph of G with
respect to S, and modding out by the right action of K . The resulting graph is locally
finite; the action of G is continuous, vertex-transitive and proper, the stabilizer of the
base vertex is K .

The general case is a common denominator between the last two constructions. Roughly
speaking, we construct X by fibering a Lie quotient associated to G◦ over a Cayley–
Abels graph for G/G◦. The following classical theorem allows us to bypass some of the
technical difficulties.

Theorem 2.2 (H. Yamabe). Let G be a connected-by-compact locally compact group.
Then G is compact-by-(virtually connected Lie).

(By convention (A)-by-(B) means with a normal subgroup satisfying (A) so that the quo-
tient group satisfies (B).)

Proof. See [33, Theorem 4.6]. ut

Lemma 2.3. LetG be any locally compact group. There is a compact subgroupK whose
image in G/G◦ is open. If G◦ is Lie, then we can assume that K ∩G◦ = 1.

Proof of Lemma 2.3. By van Dantzig’s theorem [39, p. 18], the totally disconnected group
G/G◦ contains a compact open subgroup; let H be the pre-image in G of that subgroup,
so that H is open in G and H/H ◦ is compact; notice that H ◦ = H ∩G◦.
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Thus Yamabe’s theorem applies and H contains a compact normal subgroup K such
that H/K is a Lie group. Since H/H ◦ is compact, it follows that H/K has finitely many
connected components, and therefore, upon replacing H by a smaller open subgroup, we
can assume thatH/K is a connected Lie group. The next lemma, of independent interest,
implies in particular that H ◦K = H ; thus indeed the image of K in G/G◦ is the open
subgroup H/H ◦.

For the additional statement, assume that G◦ is Lie. Then there exists a neighbour-
hood V of 1 such that V ∩G◦ contains no nontrivial subgroup. Since any compact group
is pro-Lie (by Peter–Weyl’s Theorem), V contains a normal subgroup K ′ of K such that
K/K ′ is Lie; clearly we have K ′ ∩ G◦ = 1. If π is the projection to G/G◦, it follows
that π(K)/π(K ′) is both Lie and profinite, hence finite, so π(K ′) is open in G/G◦ as
well. ut

Lemma 2.4. Let G be a locally compact group with a quotient map π : G � L onto a
Lie group L. Then π(G◦) = L◦.

Proof. Obviously (considering π−1(L◦) → L◦) we can suppose that L is connected.
We have to show that NG◦ = G, where N is the kernel of π . Since G/NG◦ is both a
quotient of the connected group L = G/N and of the totally disconnected group G/G◦,
it is trivial, in particular NG◦ is dense. This allows us to conclude the proof at least when
N is compact or G is a Lie group (not assumed to be connected). Indeed, in both cases
this assumption implies that NG◦ is closed (when G is a Lie group, to see this, mod out
by N ∩G◦).

In general, let � be an open subgroup of G such that �/G◦ is compact. Since π is
an open map, π(�) is an open subgroup of L and therefore is equal to L. This allows us
to assume thatG is connected-by-compact. By Yamabe’s theorem, G thus has a maximal
compact normal subgroup W . We can factor π as the composition of two quotient maps
G→ G/(N ∩W)→ G/N = L. The left-hand map has compact kernel, andG/(N ∩W)
has a continuous injective map into G/N × G/W and therefore is a Lie group. So the
result follows from the two special cases above. ut

Remark 2.5. The assumption that L is a Lie group is essential in Lemma 2.4. Indeed, let
G = R× Zp, where Zp denotes the (compact) additive group of the p-adic integers. Let
Z be a copy of Z embedded diagonally in G, and let L = G/Z be the quotient group.
The group L is the so-called solenoid and can alternatively be defined as the inverse limit
of the iterated p-fold covers of the circle group. It is connected (but not locally arcwise
connected). The image of G◦ = R under the quotient map π : G → L is dense, but
properly contained, in L.

Proof of Proposition 2.1. Let G be a compactly generated locally compact group. Upon
modding out G by the unique maximal compact normal subgroup of G◦, we can assume
that G◦ is a Lie group and endow it with a left-invariant Riemannian metric. Set Q =
G/G◦. By Lemma 2.3, there is a compact subgroup U < G whose imageW inQ is open
and U ∩G◦ = 1.

Let S ⊆ Q be a compact generating set with S = S−1
= WSW . Since W is open,

W\S/W is finite and we pick a finite set {z1, . . . , zr} of representatives zi ∈ S. We define,
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for 1 = 1, . . . , r ,

Wi := W∩ziWz
−1
i , Li := UG

◦
∩ziUG

◦z−1
i , Vi := Li∩U Xi := G/Vi×[0, 1].

We recall that a Cayley–Abels graph for Q is given by the discrete vertex set Q/W and
the r (oriented edge)-sets Q/Wi , with natural Q-action and source and target maps. On
the other hand, there are canonical surjective G-maps Xi � Q/Wi . The fibres of these
maps are Li/Vi × [0, 1] ∼= G◦ × [0, 1], which are indeed connected Riemannian man-
ifolds. By construction, the G-action is compatible with the gluings of boundary com-
ponents of Xi determined by the map to the Cayley–Abels graph, and we endow the
resulting connected space X with the inner length metric associated to the Riemannian
structure. Explicitly, the gluing is generated by identifying (gVi, 0) with (hVj , 0) when-
ever gU = hU , and (gVi, 1) with (hVi, 0) whenever gziU = hU . ut

The above construction is of course much more general than what is needed in the present
article. Indeed, as a consequence of the results of the article, a hyperbolic locally com-
pact group has a continuous proper cocompact action either on a millefeuille space (this
includes the special case when this space is simply a homogeneous negatively curved
manifold), or on a connected graph. Actually, the latter description shows that in addition
the space can be chosen to be contractible: indeed, in the case of a connected graph, the
Rips complex construction as described in [15, 1.7.A] is applicable.

For the time being, we only record the following consequence of Proposition 2.1.

Corollary 2.6. For a locally compact group G, the following are equivalent:

(i) G is hyperbolic, i.e. compactly generated and word hyperbolic with respect to some
compact generating set.

(ii) G has a continuous proper cocompact isometric action on a proper geodesic hyper-
bolic space. ut

3. Actions on hyperbolic spaces

Ça faut avouer, dit Trouscaillon qui, dans cette simple ellipse, utilisait
hyperboliquement le cercle vicieux de la parabole.

(R. Queneau, Zazie dans le métro, 1959)

After reviewing some basic features of groups acting on hyperbolic spaces, the goal of
this section is to highlight the importance of focal actions (see Section 3.1 below for the
precise definitions). Indeed, while actions of general type have been studied in thorough
detail in a myriad of papers on hyperbolic spaces, other actions, sometimes termed as
“elementary”, have been considered uninteresting. Notably, and as a consequence of an
inadequate terminology, the distinction between horocyclic and focal actions has been
eclipsed. Several basic results in this section (especially Proposition 3.2, Lemma 3.4, and
Proposition 5.5) illustrate how different these two types of actions are and how essential
it is to take a specific look at focal actions.

Throughout this section, we let X be a Gromov-hyperbolic geodesic metric space.
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Recall that X is called proper if closed balls are compact; due to the Hopf–Rinow
theorem for length spaces, it is equivalent to require that X be locally compact and com-
plete. Recall further that the full isometry group Is(X), endowed with the compact-open
topology, is a second countable locally compact group. We emphasize that X will not be
assumed proper, unless explicitly stated otherwise.

3.1. Gromov’s classification

The material in this section follows from [15, 3.1]. Let 0 be an abstract group, and con-
sider an arbitrary isometric action α of 0 on a nonempty hyperbolic geodesic metric
space X.

The visual boundary (or boundary) ∂X of X is defined as follows. Fix a basepoint x
in X, define the norm |y|x = d(x, y) and the Gromov product

2(y|z)x = |y|x + |z|x − d(y, z).

Note that |(y|z)x − (y|z)w| ≤ d(x,w). A sequence (xn) in X is Cauchy–Gromov if
(xn|xm)x tends to infinity when n,m both tend to∞; by the previous inequality, this does
not depend on the choice of x. We identify two Cauchy–Gromov sequences (yn) and (zn)
if (yn|zn) tends to infinity. This is indeed an equivalence relation if X is δ-hyperbolic, in
view of the inequality

(y|z)x ≥ min[(y|w)x, (w|z)x] − δ,

whose validity is a definition of δ-hyperbolicity (if it holds for all x, y, z, w). The bound-
ary ∂X is the quotient set of Cauchy–Gromov sequences by this equivalence relation. (In
other words, consider the uniform structure given by the entourages {(y, z) : (y|z)x ≥ r}
as r ranges over R; then ∂X is the completion from which the canonical image of X has
been removed.)

If 0 is a group acting on X by isometries, the boundary ∂X0, also called the limit
set of 0 in X, consists of those elements (yn) in the boundary that can be represented
by a Cauchy–Gromov sequence of the form (gnx) with gn ∈ 0. Since (gnx) and (gnw)
are equivalent for all x,w, this does not depend on x. The action of 0 induces an action
on ∂X, which preserves the subset ∂X0.

A crucial case is when 0 is generated by one isometry φ. Recall that φ is called

– elliptic if it has bounded orbits;
– parabolic if it has unbounded orbits and limn→∞ n

−1
|φn(x)|x = 0;

– hyperbolic if limn→∞ n
−1
|φn(x)|x > 0.

The above limit always exists by subadditivity, and the definition clearly does not depend
on the choice of x. Also, it is straightforward that if φ preserves a geodesic subset Y , then
the type of φ|Y is the same as the type of φ. In terms of boundary, it can be checked [11,
Chap. 9] that

• φ is elliptic⇔ ∂X〈φ〉 is empty;
• φ is parabolic⇔ ∂X〈φ〉 is a singleton;
• φ is hyperbolic⇔ ∂X〈φ〉 consists of exactly two points.
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For an action of an arbitrary group 0, Gromov’s classification [15, 3.1] goes as follows.
The action is called

• elementary and
– bounded if orbits are bounded;
– horocyclic if it is unbounded and has no hyperbolic element;
– lineal if it has a hyperbolic element and any two hyperbolic elements have the same

endpoints;
• nonelementary1 and

– focal if it has a hyperbolic element, is not lineal, and any two hyperbolic elements
have a common endpoint (it easily follows that there is a common endpoint for all
hyperbolic elements);

– of general type if it has two hyperbolic elements with no common endpoint.

These conditions can be described in terms of the boundary ∂X0.

Proposition 3.1. The action of 0 is

• bounded if and only if ∂X0 is empty;
• horocyclic if and only if ∂X0 is reduced to one point; then ∂X0 is the unique finite orbit

of 0 in ∂X;
• lineal if and only if ∂X0 consists of two points; then ∂X0 contains all finite orbits of 0

in ∂X;
• focal if and only if ∂X0 is uncountable and 0 has a fixed point ξ in ∂X0; then {ξ} is

the unique finite orbit of 0 in ∂X;
• of general type if and only if ∂X0 is uncountable and 0 has no finite orbit in ∂X.

In particular, the action is elementary if and only if ∂X0 has at most two elements, and
otherwise ∂X0 is uncountable.

Sketch of proof. If the action is horocyclic, the proof of [11, Theorem 9.2.1] shows that
for every sequence (gn) such that |gnx|x tends to infinity, the sequence (gnx) is Cauchy–
Gromov; it follows that ∂X0 is a singleton. Hence in particular the intersection of an orbit
with any quasi-geodesic is bounded.

If ∂X0 = {ξ} and 0 has another finite orbit on the boundary, then we can suppose
that it has another fixed point η by passing to a subgroup of finite index. Let us consider a
(metric) ultrapowerX∗ ofX, obtained as follows: endow the space of bounded sequences
inX with the pseudo-distance defined as the limit of the distances along a nonprincipal ul-
trafilter; thenX∗ is the metric space obtained by identifying sequences at pseudo-distance
zero. It admits a canonical isometric embedding of X; it is also a geodesic metric space
and is hyperbolic with the same hyperbolicity constant, and the 0-action canonically ex-
tends to an action on X∗. There is a natural inclusion ∂X ⊂ ∂X∗; since X is 0-invariant,
it follows that ∂X0 = ∂X∗0 and in particular, the type of the action on X∗ is the same as

1 We follow Gromov’s convention. It turns out that in the special case of proper actions of discrete
groups, focal actions do not exist and thus elementary actions are precisely those with a finite orbit
on the boundary. For this reason, Gromov’s conventions were misinterpreted by several authors,
who unaccurately consider the focal case as elementary.
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the type of the action on X, i.e., horocyclic. Moreover, any pair of distinct points in ∂X
can be joined by a geodesic in X∗. Consider a geodesic in X∗ joining ξ and η. Its 0-orbit
is a 0-invariant quasi-geodesic. Since the action is horocyclic, the above remark shows
that the action of 0 on this quasi-geodesic, and hence on X, is bounded, a contradiction.

The other verifications are left to the reader (the uncountability of ∂X0 in the nonele-
mentary cases follows from Lemma 3.3). ut

3.2. Basic properties of actions and quasi-convexity

As before, X is a hyperbolic geodesic space, without properness assumptions. Recall that
a subset Y ⊂ X is quasi-convex if there exists c ≥ 0 such that for all x, y ∈ Y there exists
a sequence x = x0, . . . , xn = y in Y with d(xi, xi+1) ≤ c for all i and n ≤ c(d(x, y)+1).
We say that an action is quasi-convex if some (and hence every) orbit is quasi-convex. If
the acting group 0 is locally compact and the action is metrically proper, this is equivalent
to the requirement that 0 is compactly generated and undistorted in X (i.e. the orbit map
g 7→ gx is a quasi-isometric embedding for some/all x ∈ X).

The notions of horocyclic and focal actions, i.e. those unbounded actions with a
unique fixed point at infinity, are gathered under the term of quasi-parabolic actions
in [15, 27], while horocyclic actions were termed parabolic. Nevertheless, the follow-
ing proposition, which does not seem to appear in the literature, shows that horocyclic
and focal actions exhibit a dramatically opposite behaviour.

Proposition 3.2. If the action of 0 is bounded, lineal or focal, then it is quasi-convex.
On the other hand, a horocyclic action is never quasi-convex, while an action of general
type can be either quasi-convex or not.

Proof. The bounded case is trivial, and in the lineal case, 0 preserves a subset at bounded
Hausdorff distance from a geodesic and is thus quasi-convex.

Assume that the action is focal with ξ ∈ ∂X as a global fixed point. We have to prove
that some orbit is quasi-convex. Let α be a hyperbolic element, and let x0 be a point on
a geodesic line [ξ, η] between the two fixed points ξ and η of α (embed if necessary X
into a (metric) ultrapower X∗ as in the proof of Proposition 3.1 to ensure the existence of
this geodesic). The 〈α〉-orbit of x0 is a discrete quasi-geodesic. Observe that the orbit 0x0
is the union of quasi-geodesics g〈α〉x0, with g varying in 0. In particular, 0x0 contains
quasi-geodesics between all its points and ξ . Now, let x and y be two points in 0x0. Recall
that given a quasi-geodesic triangle between three points in the union of a hyperbolic
space with its boundary, the union of two edges of this triangle is quasi-convex. Applying
this to x, y and ξ , we see that a quasi-geodesic between x and y can be found in the
orbit 0x0, which is therefore quasi-convex.

If the action of 0 is horocyclic, we observed in the proof of Proposition 3.1 that the
intersection of any orbit with a quasi-geodesic is bounded. More precisely, for every c
there exists c′ (depending only on δ and c) such that the intersection of any orbit and any
c-quasi-geodesic is contained in the union of two c′-balls. If the action is quasi-convex,
given x there exists c such that any two points in 0x are joined by a c-quasi-geodesic
within 0x; taking two points at distance > 2c′ + c we obtain a contradiction.



Amenable hyperbolic groups 2915

For the last statement, it suffices to exhibit classical examples: for instance SL2(Z)
has a proper cocompact action on a tree, but its action on the hyperbolic plane is not
quasi-convex. ut

Let 0 act on X by isometries. Recall that a Schottky subsemigroup, resp. subgroup, for
the action of 0 on X is a pair (a, b) such that the orbit map g 7→ gx is a quasi-isometric
embedding of the free semigroup (resp. subgroup) on (a, b). An elementary application
of the ping-pong lemma [15, 8.2.E, 8.2.F] yields the following.

Lemma 3.3. If the action of 0 is focal (resp. of general type), then there is a Schottky
subsemigroup (resp. subgroup) for the action of 0 on X. ut

It is useful to use a (metrizable) topology on ∂X. A basis of neighbourhoods of the bound-
ary point represented by the Cauchy–Gromov sequence (xi) is

Vn = {(yi) : lim inf(yi |xi) ≥ n}.

Gromov shows [15, 8.2.H] that if the action is of general type, then the actions of 0
on ∂X0 and on ∂X0×∂X0 are topologically transitive. This very important (and classical)
fact will not be used in the paper. On the other hand, in the focal case, we have the
following observation, which, as far as we know, is original.

Lemma 3.4. Let the isometric action of 0 on X be focal with ξ ∈ ∂X as a fixed point.
Then the action of 0 on ∂X0 − {ξ} is topologically transitive.

Proof. By Proposition 3.2, there is no loss of generality in assuming that the action of 0
on X is cobounded, so that X is covered by r-balls around points of an orbit 0x for some
r <∞. Fix a point η and an open subset� in ∂X−{ξ}. For some c there exists a c-quasi-
geodesic D in 0x joining ξ and η; let gx be one of its points. There exists an r-ball B
such that every c-quasi-geodesic with endpoint ξ and passing through B has its second
endpoint in �. There exists h ∈ 0 such that hgx ∈ B. It follows that the second endpoint
of hD, which equals hη, lies in �. ut

Lemma 3.5. Let the isometric action of 0 on X be horocyclic with fixed point ξ in ∂X.
Fix x ∈ X and endow 0 with the left-invariant (pseudo)distance dx(g, h) = d(gx, hx).
Then the action of 0 on ∂X−{ξ} has the following property (akin to metric properness):
for every closed subset K of ∂X not containing ξ , the set {g ∈ 0 : gK ∩ K 6= ∅} is
bounded in (0, dx).

Proof. We can replace X by a (metric) ultrapower (see the proof of Proposition 3.1),
allowing the existence of geodesics between any two points (at infinity or not).

Let K be a closed subset of ∂X not containing ξ . Note that there exists a ball B of
radius 10δ such that every geodesic whose endpoints are ξ and some point in K , passes
through B. Fix g ∈ 0 such that gK ∩K 6= ∅. In particular, there exists a geodesicD such
that both D and gD are issued from ξ and pass through B. It follows that before hitting
B, D and gD lie at bounded distance (say, ≤ 50δ) from each other. Fix some y ∈ D ∩ B
and let Dy be the geodesic ray in D joining y to ξ . Then either gDy is contained in the
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50δ-neighbourhood of Dy , or vice versa. Since g is not hyperbolic, using the inequality
d(g2y, y) ≤ d(gy, y)+2δ (see [11, Lemma 9.2.2]) it easily follows (using the fact that y,
gy and g2y are close to the geodesic rayDy and the equality d(y, gy) = d(gy, g2y)) that
d(y, gy) ≤ 152δ. Thus {g ∈ 0 : gK ∩K 6= ∅} is dy-bounded, hence dx-bounded. ut

Define the bounded radical of 0 as the union BX(0) of all normal subgroups N that are
X-bounded, i.e. such that the action of N on X is bounded.

Lemma 3.6. Suppose that the 0-action is not horocyclic. Then:

(a) The action of BX(0) on X is bounded.
(b) If moreover the 0-action is not lineal, then BX(0) is equal to the kernel K of the

action of 0 on ∂X0.

Proof. IfN is anX-bounded normal subgroup, thenNx is bounded, and therefore theNy
are uniformly bounded when y ranges over an orbit 0x. In particular, the action of N on
∂X0 is trivial. This proves the inclusion BX(0) ⊂ K (without assumption on the action).

Note that the action of K on ∂XK is trivial, so by Proposition 3.1, the action of K
is bounded, lineal or horocyclic; Lemma 3.5 then shows that the action of K cannot be
horocyclic.

• If the action of K on ∂XK is bounded, it follows from the definition of BX(0) that
K ⊂ BX(0), and both (a) and (b) follow.
• If the action of K on ∂XK is lineal, its 2-element boundary is preserved by 0 and

therefore the action of 0 is lineal as well (so we do have to consider (b)). Since BX(0)
consists of elliptic isometries, its action is either bounded or horocyclic, but since a
horocyclic action cannot preserve a 2-element subset in ∂X0 by Proposition 3.1, the
action of BX(0) ⊂ K cannot be horocyclic and hence is bounded, so (a) is proved. ut

3.3. Horofunctions and the Busemann quasi-character

The material in this section is based on [15, 7.5.D] and [29, Sec. 4].
Let X be an arbitrary hyperbolic space and ξ ∈ ∂X be a point at infinity. We de-

fine a horokernel based at ξ to be any accumulation point (in the topology of pointwise
convergence) of a sequence of functions

X ×X→ R, (x, y) 7→ d(x, xn)− d(y, xn),

where {xn} is any sequence in X converging to ξ , i.e. a Cauchy–Gromov sequence rep-
resenting ξ . By the Tychonoff theorem, the collection Hξ of all horokernels based at
ξ is nonempty; it consists of continuous functions, indeed 1-Lipschitz in each variable.
Moreover, any horokernel is antisymmetric by definition. For definiteness, many authors
propose the gordian definition of the Busemann kernel bξ of ξ as the supremum of Hξ

(losing continuity and antisymmetry in general); it turns out that it remains at bounded
distance from any horokernel, the bound depending only on the hyperbolicity constant
of X (see [14, §8]). Let us also mention the notion of horofunction h′(x) = h(x, x0),
which depends on the choice of a basepoint x0, where h ∈ Hξ .
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Recall that a function f : 0 → R defined on a group 0 is a quasi-character (also
known as quasi-morphism) if the defect

sup
g,h∈G

|f (g)+ f (h)− f (gh)|

is finite; it is called homogeneous if moreover f (gn) = nf (g) for all g ∈ G and n ∈ Z;
in that case, f is constant on conjugacy classes. Given an isometric group action on X
fixing ξ , there is a canonical homogeneous quasi-character associated to the action, which
was constructed by J. Manning [29, Sec. 4]. The following is a variant of an idea appearing
in T. Bühler’s (unpublished) Master’s thesis.

Proposition 3.7. Let G be a locally compact group acting continuously by isometries
on X. Let ξ ∈ ∂X, h ∈ Hξ and x ∈ X. Then the function

βξ : Gξ → R, βξ (g) = lim
n→∞

1
n
h(x, gnx),

is a well-defined continuous homogeneous quasi-character, called Busemann quasi-char-
acter of Gξ , and is independent of h ∈ Hξ and of x ∈ X.

Moreover, the differences βξ (g)− h(x, gx) and βξ (g)− bξ (x, gx) are bounded (the
bound depending only on the hyperbolicity constant of X).

Proof. By a direct computation, we have

h(x, g1g2x)− h(x, g1x)− h(x, g2x) = h(g1x, g1g2x)− h(x, g2x);

since ξ is fixed by g1, the latter quantity is bounded by a constant depending only on the
hyperbolicity ofX. Therefore, the function g 7→ h(x, gx) is a continuous quasi-character.
Given any quasi-character f on a group G, it is well-known that for all g, the sequence
f (gn)/n converges (because the sequence {f (gn)−c}n is subadditive, where the constant
c is the defect) and that the limit is a homogeneous quasi-character (by an elementary
verification). This limit is the unique homogeneous quasi-character at bounded distance
from f , and a bounded perturbation of f yields the same limit. Returning to our situation,
it only remains to justify that the limit is continuous. It is Borel by definition, and any
Borel homogeneous quasi-character on a locally compact group is continuous [9, 7.4]. ut

The Busemann quasi-character is useful for some very basic analysis of boundary dynam-
ics:

Lemma 3.8. Let 0 act on X by isometries and let ξ be a boundary point. Then the
(possibly empty) set of hyperbolic isometries in 0ξ is {g ∈ 0ξ : βξ (g) 6= 0}, and the
set of those with attracting fixed point ξ is {g ∈ 0ξ : βξ (g) > 0}. In particular, the action
of 0ξ is bounded/horocyclic if and only if βξ = 0, and lineal/focal otherwise.

Proof. Elements g of 0ξ acting as hyperbolic isometries with attracting fixed point ξ
satisfy βξ (g) > 0, as we see by direct comparison with horokernels. In particular all
elements g acting as hyperbolic isometries satisfy βξ (g) 6= 0.
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Conversely, if g ∈ 0ξ satisfies βξ (g) > 0, then βξ (gn) being linear in n, the sequence
{gnx : n ∈ Z} is a quasi-geodesic with the ∞-endpoint at ξ . By hyperbolicity of X, it
follows that g is a hyperbolic isometry with attracting fixed point ξ . It also follows that if
g ∈ 0ξ satisfies βξ (g) 6= 0 then it acts as a hyperbolic isometry. ut

The Busemann quasi-character βξ is particularly nice in connection with amenability:
indeed, as a corollary of Proposition 3.7, we deduce the following.

Corollary 3.9. LetG be a locally compact group acting continuously by isometries onX
and fixing the boundary point ξ ∈ ∂X. Assume that G is amenable, or that X is proper.
Then the Busemann quasi-character βξ : G → R is a continuous group homomorphism
(then called the Busemann character) at bounded distance from g 7→ bξ (x, gx) indepen-
dently of x ∈ X.

Proof of Corollary 3.9. The well-known fact that a homogeneous quasi-character f of an
amenable group M is a homomorphism can be verified explicitly by observing that one
has f (g) = m(h 7→ f (gh)− f (h)) when m is an invariant mean on M .

If G is amenable, this applies directly. Now assume that X is proper. If βξ = 0 the
result is trivial, so assume that the action is lineal/focal. SinceX is proper, we can suppose
that G = Is(X)ξ (and thus acts properly) and we argue as follows. By Proposition 3.2,
sufficiently large bounded neighbourhoods of a G-orbit are quasi-geodesic. Therefore,
replacing X by such a subset if necessary, we can assume that the G-action on X is
cocompact, so that Lemma 3.10 below applies to show that Is(X)ξ is amenable. We are
thus reduced to the previous case. ut

A metric space is called quasi-geodesic if there is some constant c such that any two
points can be joined by a c-quasi-geodesic. For example, any orbit of a quasi-convex
group of isometries in a hyperbolic metric space is quasi-geodesic. Note that it is always
possible to embed a quasi-geodesic subset coboundedly into a geodesic space (by gluing
geodesic paths), but it is delicate to get a proper geodesic space.

Lemma 3.10 (S. Adams). Let X be a proper quasi-geodesic hyperbolic space having a
cocompact isometry group (or more generally, having bounded geometry). Then for every
ξ ∈ ∂X, the stabilizer Is(X)ξ is amenable.

Proof. See [2, 6.8]; another simpler proof can be found in [23]. In [2], the result is stated
assuming X is geodesic, but quasi-geodesic is enough with no alteration of the proof, and
is a more robust statement because it allows passing to a quasi-convex subset. ut

Remark 3.11. If X is proper, one can also use the amenability of Is(X)ξ to prove the
existence of a (noncanonical) Is(X)ξ -invariant function X × X → R at bounded dis-
tance from the horokernels based at ξ . Indeed, the Tychonoff theorem implies that Hξ is
compact and the desired function is obtained by integrating an invariant measure on Hξ .
More generally, one can use the amenability of the Is(X)-action on ∂X to make an Is(X)-
equivariant choice of such Busemann-like functions, depending measurably on ∂X.

Example 3.12. There are many instances where the Busemann quasi-character is a char-
acter: the trivial case of bounded/horocyclic actions, and also the case when X is proper,
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by Corollary 3.9. It is also the case when the hyperbolic spaceX is CAT(0): indeed, in this
case there is a unique horokernel based at each ξ ∈ ∂X. Therefore, this unique horokernel
coincides with the Busemann function bξ and moreover we then have βξ (g) = bξ (x, gx)
for all g ∈ Is(X)ξ and all x ∈ X.

On the other hand, here is an example of an oriented lineal action where the Buse-
mann character βξ is not a homomorphism. Consider the centralizer in Homeo(R) of the
translation t 7→ t + 1. This can be interpreted as the universal covering of the group of

oriented homeomorphisms of the circle, and we thus denote it by H = H̃omeo
+

(R/Z).
Endow R with the structure of Cayley graph with respect to the generating set [−1, 1],
i.e. with the incidence relation x ∼ y if |x − y| ≤ 1. This incidence relation is preserved
by the action of H , which thus acts on the Cayley graph. This Cayley graph is obviously
quasi-isometric to R and this action is transitive and lineal. If ξ = ∞, then βξ is the trans-
lation number βξ (g) = lim gn(0)/n, which is a classical example of a nonhomomorphic
homogeneous quasi-character. Actually, when restricted to some suitable subgroups (e.g.
the inverse image of PSL2(Z) in H ), this quasi-character remains nonhomomorphic, and
this provides examples where the acting group is finitely generated.

Here is an example of a focal action, based on the same group. Set C = Z/2Z (or
any nontrivial finite group). Consider the permutational wreath product G = C oR H =
C(R) o H , where H acts by shifting the indices in C(R) =

⊕
t∈R C according to its

action on R. Let A ⊂ C(R) be the subgroup of elements with support in [0,∞) and let
W ⊂ H be the set of elements with translation number in [−1, 1] (i.e. those elements φ
such that φ(0) ∈ [−1, 1]). Then G is generated by A ∪W and the corresponding Cayley
graph is hyperbolic, the action of G being focal. To see this, first observe that if α ∈ H is
the translation t 7→ t + 1, then 〈α〉 is cobounded in H and thus it suffices to check that
C(R) o 〈α〉, with the word metric associated to the generating set W ∪ {α}, is hyperbolic
focal. But this is indeed the case by Theorem 4.1.

4. Focal actions and confining automorphisms

Recall from the introduction that the action of a group 0 on a hyperbolic metric space X
is called focal if it fixes a unique boundary point ξ and if some element of 0 acts as a
hyperbolic isometry. Let β : 0 → R be the associated Busemann quasi-character, as in
§3.3. The action of 0 is said to be regular focal if β is a homomorphism. This holds in
particular if X is CAT(0), or if X is proper (i.e. if balls are compact). The latter case will
in fact be crucial in the proof of Theorem 7.3. Example 3.12 illustrates that a focal action
need not be regular in general.

Let H be a group (with no further structure a priori), let α be an automorphism of H
and A a subset of H . We say that the action of α is [strictly] confining H into A (we omit
H when no ambiguity incurs) if it satisfies the following three conditions:

• α(A) is [strictly] contained in A;
• H =

⋃
n≥0 α

−n(A);
• αn0(A · A) ⊂ A for some nonnegative integer n0.
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In case H is a locally compact group, there is a close relation between confining and
compacting automorphisms, which will be clarified in Corollary 6.2 below.

Notice that the group G = H o 〈α〉 is generated by the set S = {α±} ∪ A. Endow G

with the word metric dS associated to S. Given an action of a group 0 on a metric spaceX
and a point x ∈ X, define a pseudo-metric on 0 by dx(g, h) = d(g · x, h · x).

Theorem 4.1. Let 0 be a group with a cobounded isometric action on a geodesic metric
space X. Then the following assertions are equivalent:

(i) X is hyperbolic and the 0-action is regular focal.
(ii) There exist α ∈ 0 and A ⊂ [0,0] such that

• the image of α in 0/[0,0] has infinite order;
• the action of α on [0,0] is confining into A;
• setting G = [0,0]o 〈α〉 (viewed as a subgroup of 0) and S = A ∪ {α±}, the in-

clusion map (G, dS)→ (0, dx) is a quasi-isometry for some (hence every) x ∈ X.

Moreover if (ii) holds, the Busemann character in (i) is proportional, when restricted
to G, with the obvious projection to Z.

The implication (ii)⇒(i) includes the fact that for every G = H o Z as above, (G, dS) is
Gromov-hyperbolic (see Proposition 4.6); this remains true when α(A) = A but in that
case (G, dS) is elementary hyperbolic and quasi-isometric to the real line.

Beyond the locally compact case, a simple example of a groupH as above is a Banach
space, A being the unit ball and α being multiplication by some positive scalar λ < 1.

4.1. From focal actions to focal hyperbolic groups

The following proposition reduces the proof of Theorem 4.1 to a statement in terms of
metric groups: A group (0, d) is regular focal if and only if it has a subgroup G with a
semidirect decomposition G = H o 〈α〉 and a subset A such that α is confining into A
and the inclusion map (G, dS)→ (0, d) is a quasi-isometry.

Proposition 4.2. Let G be a group acting by isometries on a hyperbolic metric space X,
and let o ∈ X. Let dG be any left-invariant pseudo-metric on G such that the orbit map
(G, dG)→ G · o is a quasi-isometry. Then:

(i) The action is focal if and only if (G, dG) is hyperbolic and the left G-action on
(G, dG) is focal.

(ii) The action is regular focal if and only if (G, dG) is hyperbolic and the left G-action
on (G, dG) is regular focal.

Let us start with two useful lemmas.

Lemma 4.3. Let f be a homogeneous quasi-character on a group G. Suppose that f is
bounded when restricted to some normal subgroup N . Then f induces a (homogeneous)
quasi-character on G/N . In particular if all homogeneous quasi-characters of G/N are
characters, then so is f .
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Proof. Let g ∈ G and n ∈ N . Since f is bounded on N , we get

f (gn) = f ((gn)k)/k = f (gknk)/k = f (g
k)/k + A/k = f (g)+ A/k

for some nk ∈ N and some bounded A = A(g, n, k). Letting k tend to infinity, we obtain
f (gn) = f (g), which proves the lemma. ut

Lemma 4.4. Let f1 and f2 be homogeneous quasi-characters on a group G such that

C−1f1 − C ≤ f2 ≤ Cf1 + C

for some C ≥ 1. If f1 is a character, then so is f2.

Proof. Since f1 and f2 are homogeneous, we have C−1f1 ≤ f2 ≤ Cf1. Let N =
Ker(f1). By the previous lemma, both f1 and f2 induce a homogeneous quasi-character
of the quotient G/N , and their value on G is completely determined by their value on
G/N . Since the quotient G/N = f1(G) is abelian, all its homogeneous quasi-characters
are characters, and the claim follows. ut

Proof of Proposition 4.2. Recall that the orbits of a focal action are quasi-convex (Propo-
sition 3.2), hence are quasi-geodesic subspaces of X. Therefore, whether the action is
focal (resp. regular focal) or not can be read off from the restriction of the action to one
orbit of G. In other words, this proves the proposition when dG is exactly the distance
induced by the orbit map. Now we need to prove that being focal (resp. regular focal) for
a metric group G only depends on a choice of metric up to quasi-isometry. This is clear
for being focal, since a quasi-isometry induces a homeomorphism between the bound-
aries, and therefore does not change the dynamics of the G-action on its boundary. The
quasi-isometric invariance of the regularity condition follows from Lemma 4.4. ut

4.2. From regular focal groups to confining automorphisms

The implication (i)⇒(ii) in Theorem 4.1 will be deduced from the following.

Proposition 4.5. Let (0, d) be a regular focal hyperbolic metric group. Let ξ be the
unique fixed point of the boundary and βξ be the corresponding Buseman character. Set
H = [0,0] ⊆ Ker(βξ ) and let α 6∈ Ker(βξ ). Then:

(i) 〈H ∪ {α}〉 ∼= H o 〈α〉 is a cobounded, normal subgroup of (0, d). (In particular,
if 0 is locally compact and the action is continuous and proper, this subgroup is a
cocompact closed normal subgroup of 0.)

(ii) There exist r0 > 0 satisfying: for all r > 0 there exists n0 such that for all n ≥ n0,
αn(B(1, r)∩H) ⊂ B(1, r0)∩H. In particular, α is confining into A = B(1, r0)∩H .

Proof. We start with a preliminary observation. Since α acts as a hyperbolic isometry,
the focal point ξ must be either its attracting or repelling fixed point. Upon replacing α
by α−1, we may assume that it is attracting. In particular, the sequence (1, α, α2, . . . )

defines a quasi-geodesic ray tending to ξ . Therefore, so does (g, gα, gα2, . . . ) for any
g ∈ 0. Recall that there is a constant r0 (depending only on the hyperbolicity constant
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of (0, d)) such that any two quasi-geodesic rays with the same endpoint are eventually
r0-close to each other. In particular, if |βξ (g)| ≤ C, then d(αn, gαn) ≤ C + r0 for all n
larger than some n0, where n0 depends only on d(1, g).

We now turn to assertion (i). The only nontrivial statement is that H o 〈α〉 is co-
bounded.

Let thus g ∈ 0 be arbitrary, and let k ∈ Z be such that |βξ (g) − βξ (αk)| < C =

|βξ (α)|. By the preliminary observation, we have d(gαn, αn+k) ≤ C + r0. Therefore

d(g, [g, α−n]αk) = d(g, gα−ng−1αn+k) ≤ C + r0.

Since [g, α−n]αk ∈ H o 〈α〉, this proves that H o 〈α〉 is (C + r0)-dense in 0, as desired.
Assertion (ii) also follows from the preliminary observation, since for all g ∈ H , we

have βξ (g) = 0. ut

4.3. From confining automorphisms to hyperbolic groups

We now turn to the converse implication in Theorem 4.1, which is summarized in the
following proposition.

Proposition 4.6. LetH be a group and let α be an automorphism ofH which confinesH
into some subset A ⊂ H . Let S = {α±} ∪ A. Then the group G = H o 〈α〉 is Gromov-
hyperbolic with respect to the left-invariant word metric associated to the generating
set S. If the inclusion α(A) ⊂ A is strict, then G is focal.

Upon replacing A by A∪A−1
∪ {1}, we may assume that A is symmetric and contains 1.

The group H o 〈α〉 is endowed with the word metric associated with the symmetric
generating set S = {α±} ∪ A. Observe that this metric is 1-geodesic, in the sense that for
all x, x′ ∈ H o 〈α〉 at distance ≤ n from each other, there exists a so-called 1-geodesic
between them, i.e. x = x0, . . . , xn = x

′ such that d(xi, xi+1) = 1. Denote by B(n) = Sn

the n-ball in this metric.
The following easy but crucial observation is a quantitative version of the fact that

unbounded horocyclic actions are always distorted (see Proposition 3.2).

Lemma 4.7. There exists a positive integer k0 such that all 1-geodesics of G = H o 〈α〉
contained in H have length ≤ k0.

Proof. Actually, we will prove a stronger statement, which, roughly speaking, says that
H is exponentially distorted inside H o 〈α〉. Note that

A2
⊂ α−n0(A).

Since S = {±α} ∪ A, we infer more generally that

(B(1) ∩H)2
m

= A2m
⊂ α−n0m(A) ⊂ B(2n0m+ 1) ∩H.

Hence, if there exists a 1-geodesic of length 2m contained in H , then m must satisfy
2m ≤ 2n0m+1, which obviously implies that it is bounded by some number k0 depending
only on n0 (say, k0 = 4 log2(n0 + 2)). ut
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Now let us go further and describe 1-geodesics inG = Ho〈α〉. Observe that a 1-geodesic
between 1 and x can be seen as an element in the free semigroup over S of minimal length
representing x (note that in this semigroup we do not have ss−1

= 1; the reason we work
in the free semigroup rather than free group is that the loop sns−n is not viewed as being
at bounded distance from the trivial loop).

Lemma 4.8. Every path emanating from 1, of the form αn1h1α
n2h2 . . . α

nkhkα
nk+1 with

ni ∈ Z and hi ∈ H , is at distance ≤ k(k+1) from a path of the form α−ig1 . . . gkα
j with

i, j ≥ 0 and gi ∈ A.
In particular, every 1-geodesic from 1 to x inHo〈α〉 is at uniformly bounded distance

from a word of the form α−ig1 . . . gkα
j with i, j ≥ 0, k ≤ k0, and gs ∈ A for all s, where

k0 is the constant from Lemma 4.7.

Proof. Let m = αn1h1α
n2h2 . . . α

nkhkα
nk+1 be a word in S representing a path joining 1

to some x ∈ H , such that hi ∈ A − {1} and ni ∈ Z. Note that every subword of the
form hα−n (resp. αnh), with h ∈ A, and n ≥ 0 can be replaced by α−nh′ (resp. h′αn),
with h′ = αnhα−n ∈ A. Such an operation moves the 1-geodesic to another 1-geodesic
at distance one (because αkhα−k ∈ A for all k = 0, . . . , n).

With this process we can move positive powers of α all the way to the right, and
negative powers to the left, obtaining after at most k(k + 1) operations a minimal writing
of x as m′ = α−ig1 . . . gkα

j with i, j ≥ 0, and gs ∈ A for all s. This proves the first
assertion.

Assuming now that m is of minimal length among words representing x. In the above
process of moving around powers of α, the word never gets longer, and since m is min-
imal, it cannot get shorter either. Since the word g1 . . . gk has minimal length, it forms a
geodesic in H and we deduce from Lemma 4.8 that k ≤ k0 and m′ is at distance at most
k0(k0 + 1) from m. ut

Proof of Proposition 4.6. Consider a 1-geodesic triangle T in H o 〈α〉. By Lemma 4.8,
we can suppose that T is of the form

T = [α−i1u1α
j1 ][α−i2u2α

j2 ][α−i3u3α
j3 ],

where u1, u2, u3 are words of length ≤ k0 in A and is, js ≥ 0. Since T forms a loop, its
image under the projection map onto 〈α〉 is also a loop, hence i1+ i2+ i3 = j1+ j2+ j3.

Let us prove that T is thin, in the sense that every edge of the triangle lies in the
δ-neighbourhood of the union of the other two edges. Note that if after removing a back-
track in a triangle (in terms of words this means we simplify ss−1), we obtain a δ-thin
triangle, then it means that the original triangle was δ-thin. Upon removing the three pos-
sible backtracks, permuting cyclically the edges, and changing the orientation, we can
suppose that

T = [α−k1u1α
k2 ][u2][α

−k3u3]

with k1, k2, k3 ≥ 0 and k1 + k3 = k2.
By Lemma 4.8, the 1-path u2α

−k3 is a distance≤ k0 from a 1-geodesic segment of the
form α−k3v2 (where v2 has length ≤ k0), and removing a backtrack by replacing αk2α−k3
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by αk1 we get a triangle T ′ = [α−k1u1α
k1 ][v2][u3]. Invoking Lemma 4.8 once more,

we see that αk1v2u3 is at distance ≤ 2k0 from a 1-geodesic segment w2α
k1 , so T ′ is at

distance ≤ 2k0 from the triangle [αk1 ][u1][w2α
k1 ], which after removing a backtrack is

the bounded digon [u1][w2], which is k0-thin. Thus the original triangle is 4k0-thin and
the space is δ-hyperbolic with δ = 16 log2(n0 + 2). ut

4.4. Proof of Theorem 4.1

(i)⇒(ii). Let do be the left-invariant pseudo-metric on 0 defined by do(g, h) =
d(g.o, h.o), where o ∈ X is a basepoint.

By assumption, the 0-action is regular focal and cobounded on the hyperbolic
space X. By Proposition 4.2, the pair (0, do) is a regular focal hyperbolic group. Let
β : 0→ R be the associated Busemann character, let H = [0,0] ⊆ Ker(β) and α 6∈ H .
By Proposition 4.5, the group G = H o 〈α〉 is a cobounded normal subgroup of 0 (in
particular (G, d) is quasi-isometric to (0, do), where d denotes the restriction of do toG),
and H contains some bounded subset A such that α is confining into A.

Let S = {α±} ∪ A. It remains to verify that the identity map (G, dS) → (G, d) is a
quasi-isometry. First it is Lipschitz since S is bounded for d . We then need to check that
(G, d)→ (G, dS) is large-scale Lipschitz. Since d is quasi-geodesic by Proposition 3.2,
it suffices to prove that a subset of G is bounded for dS if it is bounded for d . After
restriction to H , this follows from Proposition 4.5(ii). We conclude thanks to the fact that
bounded sets of (G, d) are mapped by β to bounded sets of R.

(ii)⇒(i). By Proposition 4.6, the group (G, dS) is hyperbolic. SinceA2n
⊂ α−nn0(A)

for all n, it is clear that A consists of nonhyperbolic isometries. If the inclusion α(A) ⊂ A
is strict, then the chain α−n(A) is strictly ascending and thus A is unbounded, hence
its action on the Cayley graph is horocyclic and thus fixes a unique boundary point; in
particular the action is not lineal. Since α acts as a hyperbolic element (because αn has
word length n), the only possibility is that the action of H o 〈α〉 is focal. (Obviously,
if α(A) = A, then A = H is bounded and the action is lineal.) Since (G, dS) is quasi-
isometric to (0, dx), which in turn is quasi-isometric to X by hypothesis, the desired
conclusion follows from Proposition 4.2. ut

5. Proper actions of locally compact groups on hyperbolic spaces

In this section, we let G be a locally compact group acting isometrically continuously on
the hyperbolic space X. We assume moreover that the action is metrically proper, i.e. the
function L(g) = d(x, gx) is proper for some (and hence all) x ∈ X.

5.1. Preliminary lemmas

Lemma 5.1. If G admits a nonhorocyclic proper isometric action on a hyperbolic space
(e.g. a cocompact action), then G admits a maximal compact normal subgroup.



Amenable hyperbolic groups 2925

Proof. Clearly, every compact normal subgroup is contained in the bounded radi-
cal BX(G). By Lemma 3.6(a), BX(G) acts with bounded orbits, so by properness, its
closure is compact and thus BX(G) is compact. ut

Lemma 5.2. IfG admits a proper isometric action of general type on a hyperbolic space,
then G is nonamenable. Moreover the amenable radical of G (the largest amenable nor-
mal subgroup of G) is compact, and so is any normal closed subgroup N whose action
on X is not of general type.
Proof. By Lemma 3.3, if G admits an action of general type, then it contains a discrete
nonabelian free subgroup and therefore is nonamenable.

Now let us prove the contrapositive statement. Let G admit a proper action on a hy-
perbolic space and assume that N is noncompact. Then the action of N on X is neither
bounded nor of general type, so is horocyclic, lineal, or focal. In particular N preserves a
unique finite subset of cardinality at most 2 in ∂X. This finite set is invariant underG and
it follows that the action of G is not of general type. ut

There is a partial converse to Lemma 5.2.

Lemma 5.3. Let G admit a proper isometric action on a hyperbolic space. Assume that
the action is bounded, lineal, or focal. Then G is amenable.
Proof. By Proposition 3.2, eachG-orbitGo is quasi-convex. Moreover the orbit is closed
and proper, by properness of the action. Thus each orbit is a proper quasi-geodesic hyper-
bolic space on which G acts continuously, properly (and of course cocompactly). There-
fore Lemma 3.10 shows that G is amenable. ut

Remark 5.4. The reader can find an example showing that the conclusion of Lemma 5.1
can fail when the G-action is horocyclic. Actually, the conclusion of Lemma 5.3 also
fails in the horocyclic case. Indeed, as observed by Gromov [15, §6.4], every countable
discrete group has a proper horocyclic action on a hyperbolic space: endow such a group
with a left-invariant proper metric d0, define d(g, h) = log(1+ d0(g, h)), and embed the
group equivariantly as a horosphere into a hyperbolic space (which can be arranged to be
proper).

5.2. Proper actions of amenable groups

Recall from §3.3 that a Busemann quasi-character βξ is defined on the stabilizer in X of
every boundary point ξ ∈ ∂X.

Proposition 5.5. Let X be a hyperbolic space. Let M be an amenable locally compact
group with a continuous, (metrically) proper, cobounded isometric nonelementary action
on X. Then:

(a) The action is focal, with a unique fixed boundary point ξ ∈ ∂X.
(b) βξ is a homomorphism and βξ (M) is a closed nonzero subgroup of R. In particular,

for every α /∈ U = Ker(βξ ), the subgroup 〈U ∪{α}〉 ∼= U o 〈α〉 is closed, cocompact
and normal in M .

(c) The action of U on ∂X \ {ξ} is proper and transitive.
(d) Every α ∈ M with βξ (α) < 0 acts as a compacting automorphism on U .



2926 P.-E. Caprace, Y. Cornulier, N. Monod, R. Tessera

Note that by Lemma 5.3, the conclusion of Proposition 5.5 applies to any proper focal
isometric action of a locally compact group on an arbitrary hyperbolic space X (in (c),
∂X has to be replaced by ∂XM).

Proof. (a) This follows from Lemma 5.2.
(b) First, βξ is a homomorphism by Corollary 3.9; since the action is focal, it is

nonzero by Lemma 3.8. Suppose that βξ (gn) tends to r ∈ R. By Proposition 4.5, we
can write gn = hnsn with d(snx, x) bounded and βξ (hn) ∈ ZR for some R > 0. By
properness, we can assume that the sequence (sn) converges, say to s ∈ G. Observe
that βξ (hn) = βξ (gn) − βξ (sn) converges by continuity of βξ , so the sequence (βξ (hn))
eventually stabilizes. So r = βξ (hns) for large n and thus the image of βξ is closed.

(c) Let us now verify that U is transitive on ∂X \ {ξ}. The action being proper by
Lemma 3.5, we only need to check that the orbit of η is dense. Now observe that the
U -orbit of η coincides with its U o 〈α〉-orbit, which is dense by Lemma 3.4.

(d) Let η be the second fixed point of α. Let W be the stabilizer of η in U , so that
W is compact by properness (Lemma 3.5). The homeomorphism ϕ : U/W → ∂X − {ξ}

mapping u 7→ uη is equivariant when U/W is endowed with the action induced by the
conjugation action of the cyclic group 〈α〉, namely ϕ(αuα−1) = αϕ(u). Since α acts as
a homeomorphism of X − {ξ} contracting on {η}, it follows that conjugation by α acts
as a contracting homeomorphism of U/W and therefore as a compacting automorphism
of U . ut

5.3. Two-ended groups

Proposition 5.6. LetG be a hyperbolic locally compact group. Then the visual boundary
∂G consists of two points if and only ifG has a maximal compact normal subgroupW so
that G/W is isomorphic to a cocompact closed group of isometries of the real line, and
more precisely isomorphic to Z, Z o {±1}, R, or R o {±1}.

It can be seen that these conditions also characterize two-ended groups among all com-
pactly generated locally compact groups. This improves a result of Houghton [21, Theo-
rem 3.7], who obtained a similar statement, but at the cost of passing to a closed cocom-
pact normal subgroup.

Proof of Proposition 5.6. Write ∂G = {ξ, η} and define M as the stabilizer of ξ . By
Lemma 3.5, the action of U = Ker(βξ ) on {η} is proper and therefore U is compact. By
Proposition 5.5(b), D = M/U is isomorphic to either Z or R. Note that U is the kernel
of the action on the boundary and therefore is normal in G. Set E = G/U .

Note that D has index one or two in E. If D = E we are done, so suppose that this
index is two, i.e. the action of E on its boundary is not trivial. Since D is abelian and
E/D is cyclic; D cannot be central in E, otherwise E would be abelian and therefore
isomorphic to Z, R × Z/2Z or Z × Z/2Z and these groups have a trivial action on their
boundary. So for some g ∈ E, the action by conjugation on D is given by multiplication
by −1. Now g2 commutes with g but also belongs to M , so has to be fixed by multiplica-
tion by −1, so g2

= 1, so that E is isomorphic to D o {±1}. This ends the proof. ut
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5.4. Relative hyperbolicity

In this subsection, X is a proper geodesic space. Let G ≤ Is(X) be a closed subgroup.
A point ξ ∈ ∂X is called a conical limit point (with respect to G) if for some (hence any)
geodesic ray % pointing to ξ , there is some tubular neighbourhood of % that intersects a
G-orbit in an unbounded set. A point ξ ∈ ∂X is called bounded parabolic if the stabilizer
Gξ acts cocompactly on ∂X − {ξ}. Following P. Tukia [38], we say that the G-action on
X is cusp-uniform if every point in ∂X is a conical limit point or a nonisolated bounded
parabolic point. In general, a locally compact group is said to be relative hyperbolic if
it admits a proper cusp-uniform continuous action on some proper hyperbolic geodesic
space. The stabilizers in G of the boundary points that are not conical limit points are
called peripheral subgroups andG is more precisely called hyperbolic relative to the col-
lection of (conjugacy classes of) peripheral subgroups. We refer to [42] for a proof of the
equivalence between this definition and other characterizations of relative hyperbolicity
in the discrete setting.

Lemma 5.7. For any G ≤ Is(X), any point ξ in ∂X − ∂XG is neither conical, nor
nonisolated bounded parabolic.

Proof. Obviously ξ is not conical. Fix x ∈ X. If ξ is nonisolated and V is a small enough
neighbourhood of ξ then the convex hull of V is disjoint from the orbitGx, and therefore
ξ is not bounded parabolic. ut

The following appears in [26, Lemma 3.6].

Lemma 5.8. If G ≤ Is(X) is quasi-convex and ∂XG = ∂X, then G acts cocompactly.

Proof. Otherwise, we can find inX a sequence (xn) such that d(xn,Gx0) tends to infinity.
Translating xn by an element of G, we can suppose that d(xn,Gx0) = d(xn, x0). From
the quasi-convexity of Gx0 it follows that for every sequence (yn) in Gx0, the Gromov
product (xn|yn) = 1

2 (d(xn, x0)+ d(yn, x0)− d(xn, yn)) does not tend to infinity, and this
means that any limit point of (xn) lies in ∂X − ∂XG. ut

Theorem F from the introduction is an immediate consequence of the following.

Proposition 5.9. If G ≤ Is(X) is cusp-uniform, then either

• G is cocompact (hence hyperbolic), or
• the action is of general type (hence G is not amenable).

Proof. First observe that the action is not horocyclic: indeed, for a horocyclic action with
fixed point ξ , any point boundary point η 6= ξ is neither bounded parabolic, nor conical.

Suppose that the action is not of general type and let us show that G is cocompact.
By Proposition 3.2, G is quasi-convex. By Lemma 5.7, we have ∂X = ∂XG, and by
Lemma 5.8 this shows that G acts cocompactly. ut
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5.5. Groups of general type

The following is a slight improvement of [31, Th. 21] (in the cocompact case) and [18,
Theorem 1] (the improvement being that in the rank one case we do not need to pass to a
finite index subgroup). It will be used in the proof of Theorem 8.1. The proof we provide
is substantially simpler than the previous ones.

Proposition 5.10. Let X be a proper geodesic hyperbolic space and let G ≤ Is(X) be
a closed subgroup whose action on X is of general type. Then G has a unique maximal
compact normal subgroupW , andG/W is a virtually connected simple adjoint Lie group
of rank one (actually, either the full group of isometries, or its identity component, which
always has index at most two), or G/W is totally disconnected.

Geometrically, this means that a hyperbolic locally compact group of general type has a
proper, isometric and cocompact action on either a rank one symmetric space of noncom-
pact type, or a vertex-transitive locally finite graph. We first prove the following lemma.

Lemma 5.11. Let X be a proper geodesic hyperbolic space, let G ≤ Is(X) be a closed
subgroup and W CG a compact normal subgroup. Then for every nonelementary closed
subgroup H of G, the centralizer Z = {g ∈ G : [g,H ] ⊂ W } of H in G modulo W is
compact.

Proof. Note that W acts trivially on the boundary. The assumption implies that H con-
tains two hyperbolic elements with distinct axes, so each of these axes has to be preserved
by Z. So the action of Z is bounded. Since Z is clearly closed, we are done. ut

Proof of Proposition 5.10. Let V be the amenable radical of G◦. Since G is of general
type, V is compact and G◦ is either compact (in which case we are done) or of general
type by Lemma 5.2. Moreover the quotient S = G◦/V is noncompact semisimple with
trivial centre and no compact factor. A first application of Lemma 5.11 implies that S is
noncompact simple with trivial centre. Let P/V be a maximal parabolic subgroup in S
(“parabolic” is here in the sense of algebraic/Lie groups). Since the normal subgroup G◦

is not compact, it is of general type and hence its cocompact subgroup P is nonelementary
and thus either focal or of general type. Since P has a noncompact amenable radical, the
second case is excluded, and hence P is focal, thus amenable, and in turn it follows that
G has rank one. Let φ : G→ Aut(S) be induced by the action by conjugation, and W its
kernel. Then V ⊂ W and φ induces a topological isomorphism from S to Aut(S)◦.

The kernel W is compact: this follows from a second application of Lemma 5.11,
because W is the centralizer modulo the compact normal subgroup V of the closed
subgroup G◦, which is of general type. Thus G/W is isomorphic to an open subgroup
of Aut(S).

The precise statement follows from the knowledge of Out(S) (see [17, Cor. 2.15] for a
comprehensive list of automorphism groups of adjoint simple connected Lie groups): for
the real or complex hyperbolic space, Out(S) is cyclic of order two, while in the quater-
nionic or octonionic case, it is trivial. (Note that in complex hyperbolic spaces of even
complex dimension, both components consist of orientation-preserving isometries.) ut
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6. Structural results about compacting automorphisms

Brigitte était un de ces caractères qui, sous le marteau de
la persécution, se serrent, deviennent compactes.

(Balzac, Les Petits Bourgeois, Calmann Lévy, 1892, p. 18)

Before tackling the proof of our main theorem, we need to collect a few basic facts on the
algebraic structure of groups admitting compacting automorphisms. This is the purpose
of the present section.

Let H be a locally compact group and α ∈ Aut(H). Recall from the introduction
that α is said to be a compacting automorphism (or a compaction for short) if there is a
compact subset V ⊆ H such that for all g ∈ H there is some n0 ≥ 0 such that αn(g) ∈ V
for all n > n0. Such a subset V is called a pointwise vacuum set for α.

6.1. Basic features of compactions and proof of Theorem A

For the sake of future reference, we collect some basic properties of compactions, which
will be frequently used.

Following [12] we define a vacuum set as a subset � such that for every compact
subset M of H , there is some n0 ≥ 0 such that αn(M) ⊂ � for all n > n0. A vacuum set
is obviously a pointwise vacuum set. The following proposition gives a partial converse,
showing that compactions are uniform on compact subsets. In the case of contractions,
the corresponding result is due to S. P. Wang [40, Prop. 2.1].

Proposition 6.1. Let H be a locally compact group and α an automorphism. Then α is a
compaction if and only if there is a compact vacuum set for α.

In other words, compactions are “uniform on compact subsets”, and thus our choice of
terminology is consistent with that in [12] (modulo the fact that compactions are termed
“contractions” there).

Proof of Proposition 6.1. Assume that C is a compact pointwise vacuum subset, symmet-
ric and containing 1. We are going to show that for some compact normal subgroup W ,
the compact subset W · C · C · C · C is a vacuum set.

Since H =
⋃
n≥0 α

−n(C), it is σ -compact. By [25], H oα Z has a compact normal
subgroup W such that (H o Z)/W is second countable. We may thus assume henceforth
that H is second countable.

For each subset A ⊆ H and all m ≥ 0, we set Am =
⋂
n≥m α

−n(A). Clearly we have
A0 ⊆ A1 ⊆ · · · and Am · Bm ⊆ (A · B)m for all A,B ⊆ H .

Let now C ⊆ H be a compact subset such that αn(g) ∈ C for all g ∈ H and all
sufficiently large n. Upon replacing C by C ∪ C−1

∪ {1}, we may assume that C = C−1

and contains the identity. Notice that H =
⋃
m≥0 Cm. By Baire’s theorem (which can be

invoked sinceH is second countable), we deduce that Cm has nonempty interior for some
m > 0. SinceCm ·C−1

m ⊆ (C ·C
−1)m = (C ·C)m, it follows that the compact setA = C ·C

has the property that Am contains some identity neighbourhood and
⋃
n≥0An = H .
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Let now� ⊆ H be any compact subset. Then there is a finite set g1, . . . , gk ∈ � such
that � ⊆

⋃k
i=1 giAm. Since Am ∪ {g1, . . . , gk} ⊆ An for all sufficiently large n > 0, we

deduce that the compact set B = A · A contains αn(�) for all sufficiently large n. ut

We record the following relation between compacting and confining automorphisms, as
defined in Section 4 above.

Corollary 6.2. Let H be a [noncompact] locally compact group and α ∈ Aut(H). Then
α is compacting if and only if there is a compact subset A into which α is [strictly]
confining.

Proof. Assume that α is compacting. By Proposition 6.1, there is a compact vacuum set�
for α. Then αm(�) ⊆ � for some m > 0. Set

A = � ∪ α(�) ∪ · · · ∪ αm−1(�).

Thus A is itself a compact vacuum set; moreover α(A) ⊂ A. It follows that α is confining
into A, as desired.

The converse is obvious from the definitions. ut

Proof of Theorem A. We saw in Corollary 6.2, as an application of Baire’s theorem, that
if α is a compacting automorphism of a [noncompact] locally compact group H , then H
has a compact subset A into which α is [strictly] confining. In particular, Theorem 4.1
(or Proposition 4.6) implies that the semidirect product H o 〈α〉 of a locally compact
group H with the cyclic group generated by a compacting automorphism is hyperbolic.
Since a group of the form H o R contains a cocompact subgroup of the form H o Z, the
“if” part of Theorem A follows.

Conversely, assume that G is nonelementary hyperbolic and amenable. Recall from
Corollary 2.6 that G admits a continuous, proper cocompact action by isometries on
a proper hyperbolic geodesic metric space. The desired conclusion then follows from
Proposition 5.5. ut

We define the limit group of a compacting automorphism as the intersection of all compact
vacuum subsets. The definition makes sense in view of Proposition 6.1. The limit group
need not be a vacuum set unless the ambient group is compact. The main properties of
the limit group are collected in the following.

Lemma 6.3. Let H be a locally compact group and α ∈ Aut(H) be a compacting auto-
morphism with limit group L. Then:

(a) L is an α-invariant compact subgroup.
(b) For every compact subset K ⊂ H we have

⋂
n∈Z α

nK ⊆ L, with equality if K is a
vacuum subset.

(c) L is the largest α-invariant compact subgroup.
(d) A compact subset K of H is a vacuum set if and only if it is a neighbourhood of L.

Proof. For any K ⊆ H , we set L′(K) =
⋂
n∈Z α

nK .
We start with a preliminary observation. If � is a vacuum set and K ⊂ H is any

compact subset, then αnK ⊂ � for all n > 0 sufficiently large. In particular, for any
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infinite set I of positive integers, we have
⋂
n∈I α

nK ⊂ �. This being valid for any
vacuum set �, we infer that

⋂
n∈I α

nK ⊂ L.
(b) The preliminary observation implies that L′(K) ⊆ L for each compact subset K .

If in addition K is a vacuum set, then αnK is a vacuum set for all n, so that L ⊆ L′(K),
whence L = L′(K).

(a) The limit group is obviously compact and α-invariant (because α permutes the
vacuum subsets), but we have to show that it is indeed a subgroup. Fix a vacuum set �.
For some n0, we have αn0(� · �) ⊂ �. In particular, if x, y ∈ L′(�) =

⋂
n α

n�, then
for all n we have α−n(x), α−n(y) ∈ �, so α−n(xy) = α−n(x)α−n(y) ∈ α−n0�, i.e.
xy ∈ αn−n0(�). Similarly one shows that for each x ∈ L′(�) we have x−1

∈ L′(�).
Thus L′(�) is a subgroup and (a) follows from (b).

(c) If M is an α-invariant compact subgroup, it is immediate that M is contained in
every compact vacuum subset, and therefore M ⊂ L.

(d) Let � be a compact vacuum subset of H . Upon enlarging � if necessary, we may
assume that � is a neighbourhood of L. If V is any vacuum subset, then for some n > 0
we have αn� ⊂ V . Since L is α-invariant, it follows that αn�, and hence also V , is a
neighbourhood of L.

Conversely, let V be a neighbourhood of L and suppose for a contradiction that V
is not a vacuum set. Then there exists a compact subset K , an infinite set I of positive
integers and a sequence (xn ∈ K)n∈I such that αnxn 6∈ V for all n ∈ I . Since αnK ⊂ �
for all sufficiently large n > 0, we may assume after passing to a subsequence that αnxn
converges to some x. Since V is a neighbourhood ofL, we have x 6∈ L. On the other hand,
since for each vacuum set �′, there is n0 > 0 such that

⋃
n>n0

αnK ⊆ �′, it follows that
x belongs to all vacuum sets, and hence to L, which is absurd. ut

Here are some more straightforward properties of compactions.

Lemma 6.4. Let H be a locally compact group and α ∈ Aut(H). Then:

(a) If K < H is a compact normal subgroup invariant under α, then α is a compaction
if and only if it induces a compaction on H/K .

(b) If α is compacting, the groupH o 〈α〉 has a maximal compact subgroup, which is the
intersection of all H -conjugates of the limit group L ⊂ H .

(c) α is a compaction if and only if αn is a compaction for some n > 0.
(d) If (αt ) is a continuous one-parameter subgroup of automorphisms of H , then if αt is

a compaction for some t > 0 then it is so for all t > 0, and this implies that H is
connected-by-compact.

(e) IfH is totally disconnected, then α is a compaction if and only if some compact open
subgroup of H is a vacuum set for α.

Proof. For (d), observe that R acts as the identity onH/H ◦ so the latter has to be compact
if α1 is compacting. Then observe that

⋃
t≥0 αt (�) is a compact vacuum subset, and

use (c).
For (e), use Lemma 6.3(d) and the fact that in a totally disconnected group, every

compact subgroup is contained in a compact open subgroup.
The other verifications and details are left to the reader. ut
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Recall that a locally compact group has polynomial growth if for every compact subset S,
the Haar measure of Sn is polynomially bounded with respect to n.

Proposition 6.5. If a locally compact groupH admits a compaction α, then H has poly-
nomial growth (of uniform degree) and thus is unimodular and amenable. In particular,
G = H oα Z is amenable, and is nonunimodular unless H is compact.

Proof. Let V be a compact subset and λ the Haar measure, and let us show that λ(V n)
grows polynomially (with degree depending only on H and α). Replacing V by a larger
compact subset and α by a positive power if necessary, we can suppose that α(V V ) ⊂ V .
Since α is a compacting automorphism, it multiplies the Haar measure of H by some
1/c ≤ 1. The above inclusion implies that for all k ≥ 0 we have V 2k

⊂ α−k(V ). So

V n ⊂ V 2dlog2 ne
⊂ α−dlog2 ne(V ),

and thus

λ(V n) ≤ λ(V )cdlog2 ne ≤ λ(V )cnlog2 c,

which is a polynomial upper bound of degree log2 c. So H has polynomial growth and
therefore is unimodular and amenable. It follows that G is amenable. If moreover H is
noncompact, it follows that G is a semidirect product of two unimodular groups, where
the action of the acting group does not preserve the volume, so G is nonunimodular. ut

6.2. Reduction to connected and totally disconnected cases

Given a locally compact group G, a subgroup H ≤ G is called locally elliptic if every
finite subset of H is contained in a compact subgroup of G. If G is locally elliptic and
second countable, then G is a union of a countable ascending chain of compact open
subgroups. By [37], the closure of a locally elliptic subgroup is locally elliptic, and an
extension of a locally elliptic group by a locally elliptic group is itself locally elliptic. In
particular any locally compact group G has a unique maximal closed normal subgroup
that is locally elliptic, called the locally elliptic radical of G and denoted by RadLE (G).
It is a characteristic subgroup of G, and the quotient G/RadLE (G) has trivial locally
elliptic radical. (Some authors use the confusing terminology (topologically) locally finite
and LF-radical for locally elliptic groups and locally elliptic radical.)

The following result was established in [12] (using the existence of a compact vacuum
set as the definition of a compacting automorphism).

Proposition 6.6. Let H be a locally compact group whose identity component H ◦ has
no nontrivial compact normal subgroup. If H admits a compacting automorphism, then
the product map H ◦ × RadLE (H) → H is an isomorphism onto an open finite index
subgroup of H .

Proof. See [12, Theorem A.5 and Corollary A.6]. ut
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6.3. Compacting automorphisms of totally disconnected groups

The following lemma was established in [12, Proposition 4.6].

Lemma 6.7. Let H be a totally disconnected locally compact group and α be a com-
pacting automorphism. Then H is locally elliptic and G = H o 〈α〉 acts properly and
vertex- and edge-transitively without inversions on a (k + 1)-regular tree T , and fixes an
end ξ ∈ ∂T . In particular G is hyperbolic. The integer k is characterized by the equality
1(G) = {kn : n ∈ Z}, where 1 is the modular function.

About the proof. By Lemma 6.4(e), there is a compact open subgroup � which is vac-
uum for the compaction; replacing � by

⋃
n≥0 α

n(�) if necessary, we can suppose that
α(�) ⊂ � and the associated tree is nothing else than the Bass–Serre tree associated to
the corresponding ascending HNN-extension. ut

6.4. Compacting automorphisms of almost connected groups

Let H be a virtually connected Lie group. Its nilpotent radical is defined here as the
largest normal connected nilpotent subgroup. It is closed and characteristic in H .

There is a general decomposition result for one-parameter groups of compactions.

Proposition 6.8 (Hazod–Siebert [19]). Let H be a connected-by-compact locally com-
pact group with a continuous compacting action α of R. Then the nilpotent radical N
of H ◦ is simply connected and there is an α-invariant semidirect product decomposition

H = N oKα,

where Kα is the limit group of α; moreover N consists exactly of the contracted elements
(i.e. those h ∈ H such that limt→∞ α(t)(h) = 1).

A similar result for arbitrary compactions holds under further assumptions.

Proposition 6.9. Let H be a virtually connected Lie group and N its nilpotent radical.
If H has no nontrivial compact normal subgroup and admits a compacting automor-
phism α, then N is simply connected and for every compacting automorphism α of H ,
denoting by Kα its limit subgroup, we have H = N o Kα and N consists exactly of the
elements of H that are contracted by α.

Lemma 6.10. Let G be a connected solvable Lie group without nontrivial compact nor-
mal subgroup, and N its nilpotent radical. Then for any automorphism α of G, the auto-
morphism induced on G/N has finite order.

Proof. Consider the Zariski closure P of 〈α〉 in Aut(g), and P ◦ its identity component in
the real topology. Write G = G̃/Z with Z discrete and central, and G̃ simply connected.
Then G̃ o P ◦ is a connected solvable Lie group and therefore its derived subgroup is
nilpotent. Now if α has infinite order as an automorphism of G/N , then some power
of α belonging to P ◦ acts nontrivially on G/N , so the connected group [G̃, P ◦] strictly
contains the inverse image Ñ of N in G̃. Its image in G is a connected nilpotent normal
subgroup of G strictly containing N , contradicting the maximality of N . ut
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Lemma 6.11. Let G be a virtually connected Lie group without nontrivial compact nor-
mal subgroup, and N its nilpotent radical, and assume that G/N is compact. Then for
any maximal compact subgroup K of G, we have G = N oK .

Proof. Since G has no nontrivial compact normal subgroup, N is simply connected and
therefore N ∩ K = 1, and we also deduce that G → G/N is a homotopy equivalence.
Since the inclusion K → G is also a homotopy equivalence [34, Theorem 3.1], the com-
posite homomorphism K → G/N is injective and is a homotopy equivalence between
(possibly disconnected) compact manifolds. This is necessarily a homeomorphism and
therefore G = N oK . ut

Proof of Proposition 6.9. Fix a compaction α. By Proposition 6.5, H is amenable. Let R
be the solvable radical of H (the largest connected solvable normal subgroup), so N ⊂ R
and H/R is compact by amenability. By Lemma 6.10, α induces an automorphism of
finite order of R/N and therefore, since α is compacting, we deduce that R/N and hence
H/N is compact.

Let L be the limit group of α. Then α induces a contraction of the manifold H/L;
since H/L is locally contractible, it immediately follows that H/L is contractible (be-
cause it has all its homotopy groups trivial). Therefore L is a maximal compact subgroup
(indeed, if L′ is a maximal compact subgroup containing L, then H/L retracts by de-
formation to L′/L, which is a compact manifold, so cannot be contractible unless it is
reduced to a point). By Lemma 6.11, we deduce that H = N o L.

Finally, the restriction α|N is a compaction, but N has no nontrivial compact sub-
group, so the limit group of α|N is trivial and hence α|N is a contraction. ut

A compaction as in Proposition 6.9 cannot in general be extended to a one-parameter
subgroup; however, we point out the following fact in this direction.

Lemma 6.12. Let H be a virtually connected Lie group without nontrivial compact nor-
mal subgroup and let α ∈ Aut(H) be a compaction. Then there is a proper injective
homomorphism with cocompact image

i : G = H oα Z→ G′ = H ′ o R

with compacting action of R on H ′, so that i(H) is open of finite index in H ′, and i
induces the standard embedding Z→ R (on the compacting factors). Moreover i(G) is
normal in G′ and G′/i(G) is abelian.

To check the lemma, we use the following easy subsidiary fact.

Lemma 6.13. Let G be the group of real points of an affine algebraic group defined
over the reals, viewed as a locally compact group. Let Z be a discrete subgroup of G
isomorphic to Z. Then there exists a closed subgroup P of G, contained in the Zariski
closure of Z, isomorphic to R × F with F finite cyclic, such that Z is contained and
cocompact in P .
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Proof. Let M be the Zariski closure of Z. As a compactly generated abelian Lie group
with finitely many components, it is isomorphic toM◦×F withM◦ an abelian connected
Lie group and F finite [6, II, §2.1]; we can replace F by the projection of Z so we can
suppose F is cyclic. The projection of Z in M◦ is contained in a closed one-parameter
subgroup; its inverse image in M is the desired subgroup P . ut

Proof of Lemma 6.12. We may assume H is noncompact, since otherwise H would be
trivial by hypothesis, in which case the desired conclusions are clear. Let N be the nilpo-
tent radical of H and K be the limit group of α, so that H = N oK by Proposition 6.9.
Observe that Aut(N) is an affine algebraic group; let ρ : KoαZ→ Aut(N) be the homo-
morphism defined by the action by conjugation. The hypothesis that α is a compaction,
together with the fact that H is noncompact, implies that ρ is injective and moreover that
ρ(Z) is a discrete subgroup of Aut(N). Let then P = R × F ⊃ ρ(Z) be a subgroup of
Aut(N) as given by Lemma 6.13. Since K is compact, so is ρ(K), which is thus Zariski
closed in Aut(N) by the Weierstrass approximation theorem. Since P is contained in the
Zariski closure of Z, it normalizes ρ(K). Therefore ρ(K)P is a virtually connected Lie
group. The homomorphism ρ : K oα Z→ ρ(K)P is proper and has a cocompact image,
containing the group of commutators of ρ(K)P since P is abelian and ρ(K) is normal.
Thus we obtain a proper embedding

N o (K oα Z)→ G′ = N o ρ(K)P

whose image contains [G′,G′]. Since P = R×F , we may write ρ(K)P = ρ(K)F oR.
We finally obtain the desired claim by setting H ′ = N o ρ(K)F . ut

We deduce the following corollary, which will be used in the proof of Theorem 7.3.

Corollary 6.14. Let G = H o R or H o Z be a semidirect product of a locally compact
group H with compacting action of R or Z, and assume in the second case that H is
connected-by-compact. Then G has a proper cocompact isometric action on a homoge-
neous negatively curved Riemannian manifoldX fixing at point at infinity. More precisely,
in the case ofH oR this action is transitive, and in the case ofH oZ, this action has, as
orbits, the subsets {x : b(x) − r ∈ Z} where b is (a scalar multiple of) some Busemann
function and r ∈ R/Z; in particular, the orbit space G\X is a circle in the latter case.

Proof. Note that H is connected-by-compact (this follows by Lemma 6.4(d) in the first
case, and by assumption in the second). Start by modding out by the maximal compact
normal subgroup, so that in particular H is a virtually connected Lie group. Second, in
view of Lemma 6.12, it suffices to deal with the case of a semidirect product by R.

So we assume that G = H o R with compacting action. By Proposition 6.8, we can
write G = N o (K o R) with K compact. By [12, Proposition 4.3] (which relies on
the results of Heintze [20]), the connected manifold G/K admits a G-invariant metric of
negative curvature and the corollary is proved, the orbit description being clear. ut

The following proposition will also be used in the proof of Theorem 7.3.
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Proposition 6.15. Let H be a connected-by-compact locally compact group, and let 3
be either R or Z, and denote by 3+ the set of positive elements in 3. Let G = H o 3

be a semidirect product such that some element α ∈ H o 3+ compacts H . Then every
element in H o3+ compacts H .

We need the following lemma.

Lemma 6.16. Let H be a locally compact group, α a compaction of H and φ an inner
automorphism of H . Then αφ is a compaction as well.

Proof. By the solution to Hilbert’s fifth problem, H ◦ admits a maximal compact normal
subgroup W ; we freely use the observation that an automorphism of H is compacting if
and only it induces a compacting automorphism of H/W .

Write cx(t) = xtx−1. We have to prove that α ◦ cx is a compaction for every x ∈ H .
We have

(αcx)
n(t) = cx(n)(α

n(t)), where x(n) = α(x) . . . αn(x).

So it is enough to check that the sequence (x(n)) is bounded (for each fixed x).
We begin with two particular easier cases. The first is when x belongs to a closed,

α-invariant locally elliptic subgroup; then all αn(x) belong to a single compact subgroup
and thus x(n) is bounded. The second is when x belongs to a closed α-invariant subgroup
which is a simply connected nilpotent Lie group. Then (αn(x)) converges exponentially
to zero and thus is summable, so (x(n)) is bounded.

In general, we claim that if W is the maximal compact normal subgroup in H ◦, then
for every compaction α of H , the group H/W is generated by E1 ∪ N1, where E1 is an
α-invariant closed locally elliptic subgroup andN1 is a characteristic subgroup, which is a
simply connected nilpotent Lie group. Granting the claim, starting from a compaction α,
and choosing E1 and N1 accordingly, we deduce from the first particular case that β =
α ◦ cx is a compaction for all x ∈ E1. Since N1 is β-invariant, it follows from the second
particular case that α ◦ cxy = β ◦ cy is a compaction for all y ∈ N1. Since N1 is normal,
every element inH can be written in the form xy for x ∈ E1 and y ∈ N1, which completes
the proof modulo the claim.

It remains to prove the claim. Modding out if necessary, we can suppose that H ◦ has
no nontrivial compact normal subgroup. Let E be the locally elliptic radical and C the
identity component of H ; by Proposition 6.6, E and C generate their topological direct
product, and E × C is an open subgroup of finite index of H . Let W/E be the maximal
compact normal subgroup ofH/E. ThenW is locally elliptic, and it follows from the def-
inition of E that W = E. So we can apply Proposition 6.9 and get an α-invariant decom-
position H/E = N oK with N a simply connected nilpotent Lie group and K compact;
N is the nilpotent radical of H/E and thus is characteristic. Denote by p the projection
H → H/E. Then Lemma 2.4 implies that p(C) = (H/E)◦, so p−1((H/E)◦) = E×C.
Thus E × C → (H/E)◦ is isomorphic to the projection E × C → C. In particular,
E × N = p−1(N), and N can be identified with the subgroup p−1(N)◦, so p−1(N)

is generated by p−1(N)◦ and Ker(p) ⊂ p−1(K). Thus H is generated by the simply
connected nilpotent Lie group N1 = p−1(N)◦ (which is characteristic) and the locally
elliptic group E1 = p

−1(K), and the claim is proved. ut
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Proof of Proposition 6.15. Let π : G → 3 be the projection homomorphism. By Lem-
ma 6.16, every element in π−1(π(α)) is compacting. In particular there is no loss of gen-
erality in assuming that α ∈ 3. Since an element is compacting if and only if some/every
positive power of it is compacting (see Lemma 6.4), we are done if 3 = Z. In case
3 = R, we let ϕ : R → 3 : t 7→ ϕt be an isomorphism with ϕ1 = α, and C ⊆ H be
a compact vacuum set for α (see Lemma 6.4). Then K =

⋃
0≤s≤1 ϕs(C) is compact and

contains ϕnt (h) for all h ∈ H and all sufficiently large n ≥ 0. Thus every element of 3+
is compacting, whence the claim by Lemma 6.16. ut

6.5. The closure of a contraction subgroup

Recall that to any automorphism α of a locally compact group G, one can associate the
contraction subgroup Uα = {g ∈ G : limn α

ng = 1}. It is important to point out that
this contraction subgroup need not be closed in general: an excellent illustration of this
fact is provided by the group G = Aut(T ) of all automorphisms of a regular locally
finite tree. It is easy to see that the contraction subgroup Uα associated to any hyperbolic
element α ∈ G is never closed. It is therefore natural to study what the closure of the
contraction subgroup Uα can be. The following observation, which will be used in the
proof of Theorem 8.1 therefore provides additional motivation to consider compacting
automorphisms.

Proposition 6.17. Let G be a locally compact group and α ∈ Aut(G). Then the restric-
tion of α to the closure Uα acts as a compacting automorphism.

Proof. Clearly the group Uα is invariant under α. There is thus no loss of generality in
assuming that G = Uα .

We next observe that ifH ≤ G is any α-invariant closed normal subgroup, thenG/H
is a locally compact group such that the contraction subgroup UG/Hα associated to the
automorphism of G/H induced by α is dense. In view of this observation, there is no
loss of generality in assuming that the maximal compact normal subgroup of the identity
component G◦ is trivial. In particular G◦ is a Lie group.

We next apply this observation to H = G◦. The quotient G/G◦ is totally discon-
nected. Given a compact open subgroup V ≤ G/G◦, we set V− =

⋂
n≥0 α

−n(V ) and
V−− =

⋃
n≥0 α

−n(V−). Clearly V− is compact. According to [41, Theorem 1], we can
find a compact open subgroup V such that V−− is closed in G/G◦.

Let u ∈ UG/G
◦

α . Since V is open, there is some N such that αn(u) ∈ V for all n ≥ N .
Thus αN (u) ∈ V−, and hence u ∈ α−N (V−) ≤ V−−. This proves thatUG/G

◦

α is contained
in V−−. Since the latter is closed, we deduce that

G/G◦ = U
G/G◦

α ≤ V−−,

and hence α acts on G/G◦ as a compacting automorphism: indeed, for all g ∈ G/G◦ we
have αn(g) ∈ V− for all sufficiently large n.
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We have shown that G/G◦ admits a compacting automorphism. By Proposition 6.6,
this implies that G/G◦ is locally elliptic. Since the identity component G◦ has no non-
trivial compact normal subgroup, we can invoke [12, Theorem A.5], which ensures thatG
has a characteristic open subgroup splitting as a direct product J ∼= G◦ ·D, whereD ≤ G
is a closed, totally disconnected, locally elliptic and characteristic inG. Since the quotient
G/J is discrete and contains a dense contraction subgroup by the preliminary observation
above, it must be trivial. Thus G ∼= G◦ × D. Since G◦ ∼= G/D is a Lie group with no
nontrivial compact normal subgroup, the contraction subgroupUG/Dα is closed inG/D by
Proposition 6.9. Therefore α acts on G◦ as a contracting automorphism. Thus G◦ ≤ Uα
and the desired result follows since G = G◦ ×D and since we have already established
that α acts on the totally disconnected group D as a compacting automorphism. ut

6.6. Decompositions of compactions

We can wonder whether a converse to Proposition 6.17 holds. Here is a precise formu-
lation of this question: Given a locally compact group H and a compaction α of H , do
we always have H = KUα , where K is the limit group of the compaction and Uα the
contraction subgroup of α? By Baumgartner–Willis [4, Cor. 3.17] (see [22] for the gen-
eral case of possibly nonmetrizable groups), this is true when H is totally disconnected,
and this easily extends (in view of Propositions 6.6 and 6.9) to the case when H ◦ has no
nontrivial compact normal subgroup. A positive answer would simplify the statement in
Theorem 8.1(iv) below, avoiding the need to mod out by a compact normal subgroup.

7. Amenable hyperbolic groups and millefeuille spaces

The purpose of this section is to establish a sharpening of Theorem A, namely Theo-
rem 7.3 below. Theorem B and Corollary C from the introduction will then follow easily.
This first requires a discussion of millefeuille spaces.

7.1. Millefeuille spaces

Fix −κ ≤ 0. Let X be a complete CAT(−κ) metric space and b : X → R a surjective,
1-Lipschitz convex function.

For example if we set b(x) = limn→∞(d(x, xn) − d(x0, xn)) for some sequence xn
tending to infinity along a geodesic ray, then b satisfies these conditions and is a Buse-
mann function (see [8, Proposition II.8.19]).

For k ≥ 1, we define a new CAT(−κ) space X[k] as follows. Let T be the (k + 1)-
regular tree (identified with its 1-skeleton) with a surjective Busemann function b′ (taking
integral values on vertices). As a topological space,

X[k] = {(x, y) ∈ X × T : b(x) = b′(y)}.

Note that X[1] = X. Note that in case X is a d-dimensional Riemannian manifold, the
map b : X → R is a trivial bundle with fibre Rd−1 and thus X[k] is homeomorphic to
Rd−1

× T and in particular is contractible.
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Locally, X[k] is obtained from X by gluing finitely many CAT(−κ) spaces along
closed convex subsets, and thus (see [8, II.11])X[k] is canonically endowed with a locally
CAT(−κ) metric; it is called the millefeuille space of degree k associated toX. This metric
defines the same uniform structure and bornology as the metric induced by inclusion, and
thus in particular X[k] is a complete metric space and if X is proper then so is X[k].

Now letG be a locally compact group with a homomorphism p onto Z, and isometric
actions on X and T satisfying b(gx) = b(x)+p(g) for all (g, x) ∈ G×X and b′(gx) =
b′(x) + p(g) for all (g, x) ∈ G × T (we say that b and b′ are equivariant with respect
to G). Then the product action of G on X × T preserves X[k] and preserves its metric.

The following result is one of the essential steps in the proof of Theorem 7.3, and
provides a precise formulation of the geometric consequences that can be derived from
Theorem 7.3(v). We isolate its statement to emphasize the specific role of the millefeuille
space (the case of a semidirect productH oR was already considered in Corollary 6.14).

Theorem 7.1. Let G = H oα Z be a locally compact group, where Z acts by a com-
paction α of H . Then:

(a) G/RadLE (G) acts properly cocompactly by isometries on a negatively curved mani-

foldX, with an equivariant Busemann function b, and the projectionX
b
→ R→ R/Z

identifies G\X with the circle R/Z.
(b) G/G◦ acts properly, vertex- and edge-transitively on a (k+ 1)-regular tree for some

k, with an equivariant Busemann function b′.
(c) The corresponding product action of G restricts to a proper cocompact action on

the negatively curved millefeuille space X[k], the projection X[k]
β
→ R → R/Z

identifying the orbit space G\X[k] with the circle R/Z.

Proof. By Proposition 6.6,H/RadLE (G) is connected-by-compact, and (a) follows from
Corollary 6.14.

The group G/G◦ is totally disconnected, and (b) follows from Lemma 6.7 (which
also gives the explicit value of k).

It follows that for each r , the product action of H preserves and is transitive on

{(x, y) ∈ X × T : b(x) = r and b′(y) = r};

since the generator of Z adds (1, 1) to (b(x), b(y)), it follows that for every r ∈ R, the
action of G is transitive on {(x, y) ∈ X × T : b(x) = b′(y) ∈ Z + r} ⊂ X[k] and in
particular is cocompact on X[k].

By Proposition 6.6, modulo some compact normal subgroup of G◦, the subgroup
generated by the kernels RadLE (G) and G◦ is a topological direct product; it follows
that the product action is proper. ut

Remark 7.2. Given two hyperbolic spaces with Busemann functions (X, b) and (Y, b′),
a notion of horocyclic product

{(x, y) ∈ X × Y : b(x)+ b′(y) = 0}
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was introduced by Woess and studied by various authors. In the case of two trees, it is
known as the Diestel–Leader graph. Despite an obvious analogy, millefeuille spaces are
not horocyclic products. Actually, horocyclic products are never hyperbolic, except in a
few degenerate uninteresting cases.

7.2. A comprehensive description of amenable hyperbolic groups

The following statement, where all actions and homomorphisms are implicitly assumed
to be continuous, is a more comprehensive version of Theorem A; indeed, the latter is
covered by the equivalence (iii)⇔(v).

Theorem 7.3. Let G be a locally compact group. Then the following assertions are
equivalent.

(i) G is focal hyperbolic.
(ii) G is amenable, hyperbolic and nonunimodular.

(iii) G is amenable and nonelementary hyperbolic.
(iv) G is σ -compact and there exists a homomorphism β : G → R with closed image

such that Ker(β) is noncompact and for some x with β(x) 6= 0, the action by
conjugation of x on Ker(β) is compacting.

(v) One of the following two holds:

• G = N o (K ×R) where N is a nontrivial simply connected nilpotent Lie group
on which R acts by contractions, and K is compact subgroup.
• G = H o Z, where H is closed, noncompact, and the action of Z on H is

compacting.

(vi) G has actions by isometries on a homogeneous negatively curved manifold X and
on a regular tree T with G-equivariant surjective Busemann functions b and b′

(X and T not being both reduced to a line), so that the action on the product X×T
is proper and preserves cocompactly the fibre product

{(x, y) ∈ X × T : b(x) = b′(y)}.

(vii) G acts properly and cocompactly by isometries on a proper geodesically complete
CAT(−1) space X 6∼= R and fixes a point in the visual boundary ∂X.

The final subsidiary fact needed for the proof is the following.

Lemma 7.4. Let G be a locally compact group and W a compact normal subgroup such
that G/W ' R. Then G can be written as a direct product W × R.

Proof. Since the outer automorphism group of W is totally disconnected, the G-action
by conjugation on W is by inner automorphisms, so WZ = G where Z is the centralizer
of W . If p : G→ R is the projection modulo W , by an easy case of Lemma 2.4 we have
p(Z◦) = R. By [33, Theorem 4.15.1], the group Z◦ contains a one-parameter subgroup
P such that p(P ) = R. It follows that G = W × P . ut
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Proof of Theorem 7.3. We shall prove that (i)⇔(iii)⇒(iv)⇒(v)⇒(vi)⇒(vii)⇒(iii), and
(ii)⇔(iii). A direct, independent and conceptually different approach for the implication
(iv)⇒(iii) is provided, in a much more general setting, by Theorem 4.1.

(i)⇔(iii). Since G is focal, it is nonelementary by definition and amenable by Lem-
ma 3.10. Conversely if G is amenable and nonelementary hyperbolic, it is either focal or
general type by Proposition 3.1, but cannot be of general type since otherwise it could
contain a discrete nonabelian free subgroup by Lemma 3.3, contradicting amenability.

(ii)⇒(iii). Note that a horocyclic action is never cocompact (see Proposition 3.2).
Therefore an elementary hyperbolic locally compact group is either bounded or lineal, so
it must contain a cyclic group as a uniform lattice (see Proposition 5.6 if necessary). In
particular, it must be unimodular, and the desired implication follows.

(iii)⇒(iv). Follows from Proposition 5.5 and the fact that any hyperbolic locally com-
pact group admits a continuous, proper cocompact action by isometries on a proper hy-
perbolic geodesic metric space (see Corollary 2.6).

(iv)⇒(v). If β has cyclic image, the desired statement is trivial. We assume hence-
forth that β has nondiscrete image. Thus β is surjective. Since G is σ -compact, the ho-
momorphism β is open and is thus a quotient map. Thus it follows from Lemma 2.4 that
β(G◦) = R. By Yamabe’s theorem (see Theorem 2.2) G◦ is a projective limit of Lie
groups. Therefore, [33, Theorem 4.15.1] implies that there exists some one-parameter
subgroup P < G◦ such that β(P ) = R. By Proposition 6.15, the action of P on Ker(β)
is compacting. By Lemma 6.4(d), G is connected-by-compact. By Proposition 6.8, we
can write G = H o (K o P). By Lemma 7.4 below, K o P can be rewritten as a direct
product K × R.

(v)⇒(vi). In the first case when G maps onto R, Corollary 6.14 directly applies. In
the second case, we have G = H o Z and Theorem 7.1 applies.

(vi)⇒(vii). This follows from the remarks preceding Theorem 7.1.
(vii)⇒(iii). Recall from Lemma 3.10 that if X is a proper hyperbolic metric space of

a cocompact isometry group (or, more generally, of bounded geometry), then the stabi-
lizer Is(X)ξ of every point ξ ∈ ∂X is amenable. Thus (iii) follows from (vii) since any
CAT(−1) space is hyperbolic.

(iii)⇒(ii). The only thing to check is that G is nonunimodular. We know that (iii)
implies (v). Thus it suffices to observe that a groupG satisfying (v) cannot be unimodular:
this follows from Proposition 6.5. ut

Clearly, Theorem B is immediate from Theorem 7.3(vii).

Proof of Corollary C. Let 0 be a group acting vertex-transitively on a hyperbolic locally
finite graph and fixing a point at infinity, and letG be its closure in the full automorphism
group of the graph. Then G is hyperbolic totally disconnected and fixes a point on its
boundary, so, if nonelementary (the elementary case being trivial), it satisfies the proper-
ties of Theorem 7.3; in particular, it can be written asNoZ with a compacting action of Z
on the totally disconnected group N . It follows by Lemma 6.7 that G is quasi-isometric
to a regular tree. ut



2942 P.-E. Caprace, Y. Cornulier, N. Monod, R. Tessera

8. Characterizing standard rank one groups

Standard rank one groups were defined after Theorem D in the introduction. The goal of
this section is to prove the following statement.

Theorem 8.1. Let G be a locally compact group. Then the following assertions are
equivalent:

(i) G is hyperbolic of general type and contains a cocompact amenable closed sub-
group.

(ii) G is nonelementary hyperbolic and the action of G on its visual boundary is tran-
sitive.

(iii) G is nonelementary hyperbolic and the action ofG on its visual boundary is 2-tran-
sitive.

(iv) G is unimodular and contains a compact normal subgroup W such that G/W con-
tains an element α such that if we define Uα := {g ∈ G/W : limn→∞ α

ngα−n = 1}
(the contraction subgroup associated with α), then Uα has noncompact closure and
the closed subgroup 〈α〉Uα is cocompact in G/W .

(v) G has a maximal compact normal subgroup W , and G/W is a standard rank one
group.

Notice that condition (iv) in Theorem 8.1 is purely in the language of the category of
locally compact groups: no geometric or analytic property is involved. This feature of
Theorem 8.1 is in fact shared by Theorem A: the geometric condition of negative curva-
ture is deduced from a condition of algebraic/topological nature through the concept of
contraction or compaction.

Let us point out that Theorem D from the introduction now follows immediately:
Proof of Theorem D. All elementary hyperbolic groups are amenable. Moreover, by
Lemma 3.10, a focal hyperbolic group also is amenable. Thus a nonamenable hyper-
bolic group is nonelementary of general type. The implication (i)⇒(v) from Theorem 8.1
therefore yields the desired conclusion. ut

8.1. Proof of Theorem 8.1

The proof requires the following classical lemma (see [3, corollary to Theorem 8] or [5,
Ch. VII, App. 1, Lemme 2]).

Lemma 8.2. Let G be a locally compact, σ -compact group G and X a locally compact
topological space on which G acts continuously and transitively. Then for every x ∈ X,
the orbital map G/Gx → X is a homeomorphism. ut

Proof of Theorem 8.1. We first show that (i)⇔(ii)⇔(iii), because this is based only on
general arguments of hyperbolic geometry from Section 3. Throughout the proof, we let
X be a proper geodesic hyperbolic space on which G acts continuously, properly and
cocompactly by isometries (see Corollary 2.6).

(i)⇒(iii). Let us first check that the action on the visual boundary is transitive. Indeed,
let H be a cocompact amenable subgroup. By Proposition 5.5(c), the action of H on the
visual boundary has exactly two orbits, namely one singleton {ω} and its complement.
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Since G is of general type, it has no fixed point and therefore it has only one orbit. Since
by Proposition 5.5 the stabilizer H is transitive on ∂X − {ω}, we deduce that the action
on the visual boundary is 2-transitive.

(ii)⇒(i). Since ∂X is compact and the action on ∂X is continuous, and G is σ -com-
pact, the stabilizer H of a point is cocompact by Lemma 8.2. By Lemma 3.10, H is
amenable.

(iii)⇒(ii) is trivial.
Now (i)⇔(ii)⇔(iii) is established and we prove the equivalence of these properties

with the last two ones. That (v) implies (ii) is immediate. To establish the equivalence of
(i), (ii), (iii) with (v) we now tackle the following implication.

(iii)⇒(v). Clearly the G-action on X cannot be focal, so G is of general type. By
Lemma 5.1, the group G has a maximal compact normal subgroup W . Upon replacing G
by G/W , there is no loss of generality in assuming that W is trivial.

By Proposition 5.10, G is either virtually a simple adjoint Lie group of rank one (of
the specified type), or is totally disconnected. In the former case, (v) follows and are done.
We thus henceforth assume that G is totally disconnected.

Let ω ∈ ∂X be a point at infinity and set H = Gω. By assumption the orbit map in-
duces a continuous bijection π : G/H → ∂X, which is a homeomorphism by Lemma 8.2.

Since G is Gromov-hyperbolic, it is compactly generated. Recall that any compactly
generated totally disconnected locally compact group acts continuously, properly and
vertex-transitively by automorphisms on some locally finite connected graph g, namely
its Cayley–Abels graph (see the discussion following Proposition 2.1). Since g is quasi-
isometric to G, hence to X, we may assume without loss of generality that g = X, or
equivalently that X is a graph. Since G/H ∼= ∂X, it follows that ∂X is totally discon-
nected. ThusX cannot be one-ended, and must therefore have infinitely many ends. Since
the set of ends of X is a quotient of ∂X, we deduce that G acts transitively on the set of
ends of X. By a result independently due to Möller [32] and Nevo [35], there exists an
equivariant quasi-isometry from X to a locally finite tree T on whichG acts properly and
cocompactly. We can further suppose that this action is minimal and without inversions.
We can also suppose that there is no erasable vertex in T (a vertex is erasable if it has
degree two and its stabilizer fixes both edges emanating from it). Observe that G is the
fundamental group of a certain finite graph of groups with universal covering T , so that
in the graph of groups, all vertex and edge groups are profinite groups, and inclusions are
open.

It is easy to check that for every vertex v of degree at least three, the action of Gv
on the set E(v) of neighbouring edges of v is 2-transitive (see [10, Lemma 3.1.1]). This
moreover holds also for vertices of degree two, since no such vertex is erasable. It follows
that the graph of groups is actually an edge. This edge cannot be a loop, since otherwise
the G-action on T would be focal, which is excluded.

It remains to establish the equivalence between (iv) and the other properties. This
follows from the following two implications.

[(i) and (v)] ⇒ (iv). We start from (i). By Lemma 5.1, G has a maximal compact
normal subgroup W . So by assumption, G/W has a closed amenable cocompact sub-
group G1. Being quasi-isometric to G, the group G1 is nonelementary hyperbolic, and
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therefore, by Theorem 7.3(v), is of the form H o3, where 3 ∈ {Z,R} acts by compact-
ingH . Using Propositions 6.6 and 6.9,G1 admits a closed cocompact subgroupG2 of the
form (N × E)oα Z, where N is a simply connected nilpotent Lie group and E is totally
disconnected, the action of Z preserving the direct decomposition N × E, contracting N
and compacting E. Set

Uα(N × E) =
{
g ∈ N × E : lim

n→∞
αn(g) = 1

}
= N × Uα(E).

Since E is totally disconnected, Corollary 3.17 from Baumgartner–Willis [4] implies that
the closure ofUα(E) is cocompact inE. So the groupG3 = Uα(N × E)oαZ is a closed,
cocompact subgroup of G/W of the required form.

We finally use (v), which implies that the abelianization of G is compact, to deduce
that G is unimodular.

(iv)⇒(i). Let G1 be the subgroup 〈α〉Uα . We are going to show that G1 is hyper-
bolic, amenable, and nonunimodular. Granting this, G1 is nonelementary hyperbolic by
Theorem 7.3, so that G is also nonelementary hyperbolic. But G cannot be amenable
since otherwise by Theorem 7.3, G would be nonunimodular, so G is of general type and
admits the amenable group G1 as a closed amenable cocompact subgroup.

Let us now check that G1 is indeed hyperbolic, amenable, and nonunimodular. Note
that Uα is normal inG1. By Proposition 6.17, the action of α on Uα is compacting; more-
over Uα is noncompact by assumption. In particular, the Haar multiplier of α on Uα is
less than one, while its Haar multiplier on the abelian quotientG1/Uα is obviously trivial.
Thus 1G1(α) 6= 1 and G1 is nonunimodular. By Theorem 7.3(iv) (with β = log1G1 ),
we deduce that G1 is also hyperbolic. Finally, G1 is amenable by Proposition 6.5. ut

8.2. Relatively hyperbolic nonuniform lattices

Theorem E from the introduction follows readily from the combination of Theorem 8.1
and the following.

Proposition 8.3. Let X be a proper hyperbolic geodesic metric space with cocompact
isometry group, and let 0 ≤ Is(X) be a closed cusp-uniform subgroup. If the 0-action is
not cocompact, then Is(X) is doubly transitive on ∂X.

Proof. If Is(X) stabilizes a point or a pair of points in ∂X, then it is amenable by Lem-
ma 3.10, and so is 0. It follows that 0 acts cocompactly by Proposition 5.9, and we are
done.

We may thus assume that Is(X) is of general type, and that the 0-action is not cocom-
pact. Thus there is some ξ ∈ ∂X which is bounded parabolic and not conical with respect
to 0.

Our goal is to show that there is some η ∈ ∂X such that the stabilizer P = Is(X)η
is transitive on ∂X \ {η}. Since Is(X) is of general type, it follows that Is(X) is doubly
transitive on ∂X, as desired.

Since ξ is not conical with respect to 0, we have βξ (0ξ ) = 0. This means that every
horosphere around ξ , defined with respect to some choice of horofunction, say h, is pre-
served by 0ξ up to some fixed constant. Let now ρ : R+→ X be a geodesic ray pointing
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to ξ . Since Is(X) is cocompact, we can find sequences (gn) in G and (tn) in R+ such
that limn tn = ∞, lim gn(ρ(tn)) = x0 for some x0 ∈ X, and gnρ converges uniformly
on compact sets to some geodesic line ` passing through x0. In particular, one of the two
endpoints of `, say η, coincides with limn gnξ . Let P = Is(X)η.

We claim that there is some constant R such that PNR(`) = X, where NR(`) denotes
the R-neighbourhood of `. Since η is an endpoint of `, this immediately implies that P
acts transitively on ∂X \ {η}, so the claim implies the theorem.

Indeed, let x ∈ X. Since g−1
n (x) converges to ξ within some bounded neighbourhood

of the ray ρ, we have h(g−1
n x) = −∞, where h is the horofunction which was chosen

above. Now we observe that the assumption that ξ is bounded parabolic implies that there
is some constant R such that for all z ∈ X, if h(z) < 0 then there is some γ ∈ 0 such
that γ.z is a distance at most R from ρ. In particular, for all n large enough, we can find
γn ∈ 0ξ such that γng−1

n (x) ∈ NR(ρ). Thus

gnγng
−1
n (x) ∈ NR(gnρ). (8.1)

Combining the fact that g−1
n (x) remains at bounded distance from ρ and βξ (γn) = 0, we

deduce that d(γng−1
n (x), g−1

n (x)) is bounded. Hence the sequence gnγng−1
n is bounded

in Is(X) and we can assume, upon passing to a subsequence, that it converges to some
h ∈ Is(X). Since limn gnξ = η, we have h ∈ P . Letting n → ∞ in (8.1), we obtain
h(x) ∈ NR(`), which proves the claim. ut
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Progr. Math. 83, Birkhäuser Boston, Boston, MA (1990) Zbl 0731.20025 MR 1086648

[15] Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8,
Springer, New York, 75–263 (1987) Zbl 0634.20015 MR 0919829

[16] Gromov, M.: Asymptotic invariants of infinite groups. In: G. Niblo and M. Roller (eds.),
Geometric Group Theory, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press,
1–295 (1993) Zbl 0841.20039 MR 1253544
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