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Abstract. We propose a new framework for the study of continuous time dynamical systems on
networks. We view such dynamical systems as collections of interacting control systems. We show
that a class of maps between graphs called graph fibrations give rise to maps between dynamical
systems on networks. This allows us to produce conjugacy between dynamical systems out of com-
binatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in
networks. The injective graph fibrations, on the other hand, give rise to surjective maps from large
dynamical systems to smaller ones. One can view these surjections as a kind of “fast/slow” variable
decompositions or as “abstractions” in the computer science sense of the word.
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1. Introduction

1.1. Overview

A fundamental question in the study of dynamical systems is to determine the existence
and properties of a map that intertwines the dynamics of two different systems. Stated
concretely, given two manifolds M,N , and two flows ϕt : M → M,ψt : N → N , does
there exist a map h : M → N such that

h ◦ ϕt = ψt ◦ h ? (1.1.1)
Equivalently, given two manifolds and two vector fields X : M → TM , Y : N → TN ,
does there exist a map h such that

dh ◦X = Y ◦ h ? (1.1.2)

If there is an h that satisfies (1.1.1) or (1.1.2), then we call it a map of dynamical sys-
tems. Given such a map h, we would like to understand its properties and to compute it
explicitly.

A common restriction requires that h be invertible. In this case, it is said that we have
exhibited a conjugacy between the two dynamical systems, and this means that all of
the dynamical features of the flow are the same.1 The notion of conjugacy of dynamical
systems goes back at least to Poincaré [4–6], it was further developed by Smale and
collaborators [1, 7], and is now the basic notion in modern dynamical systems theory.

A more general notion of conjugacy arises from the relaxation of the assumption of
invertibility; here, the existence of the map h still produces significant information. For
example, the flow ψt has a fixed point iff we can exhibit a map h : {∗} → N , where
{∗} is a one-point set, and h satisfies (1.1.1). If M = S1 and the flow ϕt is given by
ϕt (e

iθ ) = e2πit/T eiθ , then the existence of h : M → N satisfying (1.1.1) amounts to the
flow ψt having a periodic orbit of period T .

It is also common for h to be chosen to be surjective. In this case the map is typically
termed a semiconjugacy [2,8] and certain nice properties follow. We do not expand on this
here, but we will exploit the existence of semiconjugacies for networked systems below
in Section 5.

The question of determining whether a map relating two dynamical systems exists,
and what its properties might be, is exceedingly difficult [9–12] in general. In some cases,
even if such an h is known to exist, determining its form (or even qualitative properties)
can be challenging.

1 Note that what we mean by “the same” depends on the category in which we work. For instance
if h is a homeomorphism then we say that the dynamical systems are topologically the same. Many
of the implications of the existence of a conjugacy are worked out in [1–3].
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In a different direction, dynamical systems defined on networks have become the fun-
damental object of study across a variety of fields. Some examples include the design
of communication networks [13]; cognitive science, computational neuroscience, and
robotics (see, for example [14–19]); gene regulatory networks [20–22] and more general
complex biochemical networks [23]; and finally in complex active media [24–28].

There are multiple definitions in the literature of what it means to define a “dynamical
system on a network” and we will not compare them here. A common thread running
through these definitions is that imposing a network structure on a dynamical system
should mean that component j of the system depends upon component i of the system iff
the underlying graph has an edge i → j .

In this paper we show that an imposition of a “network structure” on a dynamical sys-
tem allows us to produce maps between dynamical systems in a precise, computable and
combinatorial manner from finite data. Thus the purpose of this manuscript is twofold:
first, to present a notion of a dynamical system “consistent with a graph”; second, to show
that certain maps between graphs induce maps between the dynamical systems that live on
them. In particular, we will show below that all graph maps that respect a particular com-
binatorial structure induce maps between the dynamical systems living on these graphs.

We focus on the case where the dynamics is modeled by vector fields on manifolds.
The interactions of subsystems are coded by directed (multi-)graphs with “labels”. These
labels in particular assign to each node of a graph the phase space of the relevant subsys-
tem.The ideas of the paper can be extended to both discrete-time, hybrid and stochastic
systems, and we plan to do so in future work.

As stated above, the main result of the paper is the construction of maps of dynam-
ical systems from maps of labeled graphs. In particular we show that surjective maps
of graphs, such as the one arising from quotienting a graph by an appropriate equiva-
lence relation, give rise to embeddings of dynamical systems; second, injective maps of
graphs give rise to submersions of the corresponding phase spaces and surjective maps
of dynamical systems. The former is very useful in characterizing the “modularity” of a
networked dynamical system; the latter gives a precise mathematical formulation of some
intuitive notions of whether and how we can think of a large dynamical system driven by
a subsystem.

1.2. Background and previous work

The present paper is inspired by several distinct bodies of work that are well known in the
applied mathematics communities.

The first body of work has been mainly applied to chemical reaction systems, and,
in some specific cases, to Petri nets; this work has been used in both the deterministic
and stochastic settings. One of the earliest results in this direction is the “zero deficiency
theorem” of Feinberg [29–34], first used to show the existence of stable equilibria in
biochemical systems and then expanded to statements about the existence and structure of
the equilibria in stochastic biochemical systems [35]. This type of methodology has also
been expanded to Petri nets [36–38] and models describing gene regulatory networks [21].
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The second body of work is due to Golubitsky, Stewart, and various collaborators [39–
63]. These authors considered a notion of ODEs (vector fields defined on Euclidean
spaces) that were consistent with a graph structure. The resulting networks are called
coupled cell systems and the approach the groupoid formalism.The main idea was to con-
sider “balanced” equivalence relations on the vertices of a graph. They showed that these
relations lead to the existence of certain invariant subspaces termed “polydiagonals.” We
will see that the quotient maps resulting from balanced equivalence relations are instances
of graph fibration in the sense of Boldi and Vigna [64]. However, while we are greatly
indebted to this body of work for its intellectual inspiration, we also point out that our
approach differs from this work in some very specific ways. We elucidate the connections
and contrasts in Remark 4.3.3 below.

An alternative approach to coupled cell systems has been developed by Field and
collaborators [65–67]. They also considered ODEs and other types of dynamical systems
consistent with directed graphs. This approach is considered to be broadly equivalent to
that of Golubitsky et al.

1.3. The contributions of the paper

In this paper we propose a new framework for the study of continuous time dynamical
systems on networks. We view such dynamical systems as collections of interacting con-
trol systems. We show that a class of maps between graphs called graph fibrations give
rise to maps between dynamical systems on networks. This allows us to produce conju-
gacy between dynamical systems out of combinatorial data. While the current work is
certainly inspired by the methods and results of both the Feinberg et al., Golubitsky et
al. and, to a lesser extent, Field et al. groups, our approach and results differ in several
important respects.

1. Our basic philosophy is that of category theory—so rather than study dynamical sys-
tems one at a time we aim to study maps between all relevant dynamical systems at
once. To quote Silverman [68]:

A meta-mathematical principle is that one first studies (isomorphism classes of) objects,
then one studies the maps between objects that preserve the objects’ properties, then the
maps themselves become objects for study and one tries to put a “nice” structure on the
collection of maps (often modulo some equivalence relation).

2. Our set-up is coordinate-free and works for vector fields on manifolds, not just Rn. In
this case we are enlarging both the scope of the Feinberg et al. work (polynomial vector
fields on positive orthants) and that of Golubitsky et al. (vector fields on Euclidean
spaces). This aspect of our approach is similar to the work of Field et al. There are
several motivations for working on manifolds as opposed to ODEs living in Euclidean
spaces. These include dealing effectively with constraints, and extending the results to
the setting of geometrical mechanics.

3. It will be evident from the construction below that the quotient maps of graphs by bal-
anced equivalence relations of [60] are special cases of graph fibrations—they are the
surjective graph fibrations. However, even in the case of surjective graph fibrations our
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maps of dynamical systems have the opposite direction from the maps in the groupoid
formalism. Rather than restricting from polydiagonals we extend from polydiagonals.
This allows us to deal with surjective and general graph fibration on the same footing.

1.4. Motivating example

Consider an ODE in (Rn)3 of the form

ẋ1 = f (x2), ẋ2 = f (x1), ẋ3 = f (x2) (1.4.1)

for some smooth function f : Rn→ Rn. That is, consider the flow of the vector field

F : (Rn)3 → (Rn)3, F (x1, x2, x3) = (f (x2), f (x1), f (x2)).

It is easy to check that F is tangent to the diagonal

Rn ' 1 = {(x1, x2, x3) ∈ (Rn)3 | x1 = x2 = x3}

and that the restriction of the flow of F to 1 is the flow of the ODE

u̇ = f (u).

One can also see another invariant submanifold of F :

(Rn)2 ' 1′ = {(x1, x2, x3) ∈ (Rn)3 | x1 = x3}.

On 1′ the flow of F is the flow of the ODE

v̇1 = f (v2), v̇2 = f (v1).

Moreover the projection

π : (Rn)3 → 1′, π(x1, x2, x3) = (x1, x2, x1),

intertwines the flows of F on (Rn)3 and on1′. We have thus observed two subsystems of
((Rn)3, F ) and three maps between the three dynamical systems:

(1, F |1) ↪→ ((Rn)3, F ) ←↩→
π
(1′, F |1′) (1.4.2)

Where do these subsystems and maps come from? There is no obvious symmetry of
(Rn)3 that preserves the vector field F and fixes the diagonal 1 and thus could account
for the existence of this invariant submanifold. Nor is there any F -preserving symmetry
that fixes1′. In fact the vector field F does not seem to have any symmetry. The graphG
recording the interdependence of the variables (x1, x2, x3) in the ODE (1.4.1) has three
vertices and three arrows:

G = 1 2 3::
//

zz
(1.4.3)
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The graph has no non-trivial symmetries. Nonetheless, the existence of the subsystems
(1, F |1), (1′, F |1′) and the whole diagram of the dynamical systems (1.4.2) can be
deduced from certain properties of the graph G. There are two surjective maps of graphs:

ϕ : G→
|| and ψ : G→ a b::

zz

with ψ defined on the vertices by ψ(2) = b, ψ(1) = a = ψ(3), and one embedding

τ : a b::

zz
↪→ 1 2 3::

//
zz

We can collect all of these maps into one diagram

||
1 2 3;;

//
{{

a b;;

{{
ϕoo

τoo

ψ
// (1.4.4)

A comparison of (1.4.2) and (1.4.4) evokes a pattern: for every map which intertwines
dynamical systems in (1.4.2), there is a corresponding map of graphs in (1.4.4) with the
arrows reversed, and vice versa.

The same pattern holds when we replace the vector space Rn by an arbitrary mani-
fold M . Given a pair of manifolds U and N , we think of a map X : U × N → TN with
X(u, n) ∈ TnN as a control system with the points of U controlling the dynamics on N .
Now consider a vector field

F : M3
→ T (M3) = TM × TM × TM

of the form
F(x1, x2, x3) = (f (x2, x1), f (x1, x2), f (x2, x3))

for some control system

f : M ×M → TM with f (u, v) ∈ TvM.

Then once again the three maps of graphs in the diagram (1.4.4) give rise to maps of
dynamical systems

(1M , F |1M ) ↪→ (M3, F ) ←↩→
π
(1′M , F |1′M

) (1.4.5)

What accounts for the patterns we have seen? Notice that the dynamical systems (1.4.5)
are constructed out of one control system f : M×M → TM . At the same time, in each of
the graphs in (1.4.4), every vertex has exactly one incoming arc. This is not a coincidence.
The rough idea for the technology which generalizes this example is this: if we have
a dynamical system made up of repeated control system modules whose couplings are
encoded in graphs, then the appropriate maps of graphs lift to maps of dynamical systems.
Making this precise requires a number of constructions and theorems; these make up the
bulk of this paper.
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1.5. Main ideas of the paper

We study dependency and modularity of networks and their effect on the concomitant
dynamical systems.

By dependency we mean the following. Each node in a network corresponds to a
single dynamical variable living on a particular manifold. We then require that the variable
corresponding to node i can depend on the variable corresponding to node j iff there is
an edge in the graph from node j to node i. We give a more precise description of this
requirement below and we will denote the space all vector fields with this property by
S(G,P); see Section 2.4 below for a definition.

The rough idea of modularity is that if we ever have multiple nodes of the graph
that are “the same” and have “the same” inputs, then we require that these nodes are
interchangeable in the dynamical system. Speaking more precisely, we will assume that
in each network, each node has a “type” (it will, in fact, be a manifold attached to this
node which corresponds to the phase space of the variables associated to that node), and if
we ever see two nodes, each with type x, with n inputs in the graph, such that these inputs
are of type x1, . . . , xn, then the vector field defined on these two nodes must depend on
their inputs in exactly the same manner. We will denote all vector fields that respect this
principle of modularity as V(G,P) and give a precise definition of these vector fields in
Section 3.

In the example in the previous subsection, the principle of dependency tells us that the
system living on the graph in (1.4.3) must be of the form

ẋ1 = f (x1, x2), ẋ2 = g(x2, x1), ẋ3 = h(x3, x2), (1.5.1)

but x1 cannot depend on x3, for example. The principle of modularity tells us that the
functions f, g, h must all be the same, i.e.

ẋ1 = f (x1, x2), ẋ2 = f (x2, x1), ẋ3 = f (x3, x2), (1.5.2)

Therefore, all systems in S(G,P) must satisfy (1.5.1), but those in V(G,P) must satisfy
the stricter requirements (1.5.2).

2. Networks and dynamics on networks

The goal of this section is to define networks and dynamics on networks in the context
of continuous time dynamical systems. It is not uncommon to read that “a network is
a graph.” This could not be a complete story since by a network one usually means a
collection of interconnected subsystems. We now make this precise.

2.1. Graphs, manifolds and networks

Throughout the paper, graphs are directed multigraphs, possibly with loops and multiple
edges between nodes. More precisely, we use the following definition:



2984 Lee DeVille, Eugene Lerman

2.1.1. Definition. A graphG consists of two sets,G1 (of arrows, or edges),G0 (of nodes,
or vertices), and two maps s, t : G1 → G0 (source, target):

G = {s, t : G1 → G0}.

We write G = {G1 ⇒ G0}. A graph G is finite if it has finitely many arrows and edges.

2.1.2. Definition. A map of graphs ϕ : A→ B from a graph A to a graph B is a pair of
maps ϕ1 : A1 → B1, ϕ0 : A0 → B0 taking edges of A to edges of B, and nodes of A to
nodes of B, so that for any edge γ of A we have

ϕ0(s(γ )) = s(ϕ1(γ )) and ϕ0(t (γ )) = t (ϕ1(γ )).

We will usually omit the indices 0 and 1 and write ϕ(γ ) for ϕ1(γ ) and ϕ(a) for ϕ0(a).

2.1.3. Remark. The collection of graphs and maps of graphs form a category Graph. The
subcollection of finite graphs and maps of graphs forms a full subcategory FinGraph.

To construct a network from a graph we need to attach phase spaces to its vertices. Since
we are interested in continuous time dynamical systems, we choose phase spaces to be
(finite-dimensional paracompact Hausdorff) manifolds. Other choices, of course, may
also be reasonable, such as coordinate vector spaces Rn or manifolds with corners.

2.1.4. Definition (Network). A network is a pair (G,P) where G is a finite graph and P
is a function that assigns to each node a ∈ G0 of G a manifold P(a). We refer to P as a
phase space function. Note that the target of the function P is the collection Man of all
manifolds: P : G0 → Man.

A map of networks from (G,P) to (G′,P ′) is a map of graphs ϕ : G→ G′ such that

P ′ ◦ ϕ = P.
2.1.5. Remark. It is easy to see that composition of two maps of networks is again a map
of networks. In other words networks form a category. We denote it by FinGraph/Man.

Given a network (G,P) as defined above, a state of the network is completely determined
by the states of its nodes. Hence the total phase space of the network should be the product

P(G,P) :=
l

a∈G0

P(a).

Note, however, a small issue: there is no natural ordering on the vertices of the graph G.
We could choose an ordering (a1, . . . , an) of the vertices and define the total phase space
as the Cartesian product

P(G,P) :=
n∏
i=1

P(ai).

However, it will be convenient not to choose an ordering of vertices and use a slightly
different notion of product. This version of the product is used, for example, in chemical
reaction network literature [37].

2.1.6. Definition. Given a family {Ms}s∈S of manifolds indexed by a finite set S, denote
by
⊔
s∈SMs their disjoint union.2 The categorical product of the family {Ms}s∈S is the

2 The disjoint union may be defined by
⊔
s∈S Ms :=

⋃
s∈S(Ms × {s}).
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manifold l

s∈S

Ms :=

{
x : S →

⊔
s∈S

Ms

∣∣∣ x(s) ∈ Ms for all s ∈ S
}
.

We note that for each s ∈ S we have a projection map πs :
d
s′∈SMs′ → Ms defined by

πs(x) = x(s).

These projections are surjective submersions.
We denote x(s) ∈ Ms by xs and think of it as the sth “coordinate” of an element

x ∈
d
s∈SMs . Equivalently we may think of elements of the categorical product

d
s∈SMs

as unordered tuples (xs)s∈S with xs ∈ Ms .

2.1.7. Remark. It is not hard to show that the categorical product, as defined above, has
the following universal property: given a manifold N and a family {fs : N → Ms}s∈S of
smooth maps there is a unique map f : N →

d
s∈SMs with

πs ◦ f = fs for all s ∈ S.

In fact categorical products are usually defined by this universal property [69].

2.1.8. Remark. For a family {Ms}s∈S of manifolds indexed by a finite set S, every order-
ing {s1, . . . , sn} of elements of S identifies the categorical product

d
s∈SMs (as a mani-

fold) with the Cartesian product Ms1 × · · · ×Msn .

We are now in a position to state:

2.1.9. Definition (total phase space of a network (G,P)). For a pair (G,P) consisting
of a graphG and a phase space function P we define the total phase space of the network
(G,P) to be the manifold

PG ≡ P(G,P) :=
l

a∈G0

P(a),

the categorical product of manifolds attached to the nodes of G by the phase space func-
tion P .

2.1.10. Example. Consider the graph

G = a b

α

88

β

&&

Define P : G0 → Man by P(a) = S2 (the two-sphere) and P(b) = S3. Then the total
phase space P(G,P) is the Cartesian product S2

× S3.

2.1.11. Notation. If G = {∅⇒ {a}} is a graph with one node a and no arrows, we write
G = {a}. Then for any phase space function P : G0 = {a} → Man we abbreviate
P({∅⇒ {a}},P : {a} → Man) = P({a},P : {a} → Man) as Pa.
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2.1.12. Proposition. A map of networks ϕ : (G,P)→ (G′,P ′) naturally defines a map
of corresponding total phase spaces

Pϕ : PG′→ PG.

Proof. We use the universal property of the product PG =
d
a∈G0

P(a). To define a map
f from any manifold N to PG it is enough to define a family {fa : N → P(a)}a∈G0 of
maps. For any node a′ of G′ we have the canonical projection

π ′a′ : PG
′
→ P ′(a′).

We therefore define

(Pϕ)a := π ′ϕ(a) : PG
′
→ P ′(ϕ(a)) = P(a)

for all a ∈ G0. ut

2.1.13. Example. Suppose G is a graph with two nodes a, b and no edges, G′ is a graph
with one node {c} and no edges, P ′(c) is a manifold M , ϕ : G→ G′ is the only possible
map of graphs (it sends both nodes to c), and P : G0 → Man is given by P(a) = M =
P(b) (so that P ′ ◦ ϕ = P). Then PG′ ' M ,

PG = {(xa, xb) | xa ∈ P(a), xb ∈ P(b)} ' M ×M

and Pϕ : M → M ×M is the unique map with (Pϕ(x))a = x and (Pϕ(x))b = x for all
x ∈ PG′. Thus Pϕ : M → M ×M is the diagonal map x 7→ (x, x).

2.1.14. Example. Let (G,P), (G′,P ′) be as in Example 2.1.13 and ψ : (G′,P ′) →
(G,P) be the map that sends the node c to a. Then Pψ : PG → PG′ sends (xa, xb)
to xa .

2.1.15. Remark. It is not hard to show that if a map of networks ϕ : (G,P)→ (G′,P ′)
is surjective on vertices then Pϕ : PG′ → PG is an embedding. If, on the other hand, ϕ
is injective on vertices, then Pϕ is a surjective submersion.

2.1.16. Remark. The total phase space map P : FinGraph/Man→ Man is a contravari-
ant functor: given two maps of networks

(G,P) ϕ
−→ (G′,P ′) ψ

−→ (G′′,P ′′)

we have
P(ψ ◦ ϕ) = Pϕ ◦ Pψ. (2.1.1)

To indicate that P reverses the direction of maps we write

P : (FinGraph/Man)op→ Man.

The superscript op stands for the opposite category, i.e., the category with the same objects
but all the arrows reversed.
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2.2. Open systems and their interconnections

Having set up a consistent way of assigning phase spaces to graphs (that is, having set
up networks of manifolds) we now take up a construction of continuous time dynamical
systems compatible with the structure of the network. We build vector fields on total
phase spaces of networks by interconnecting appropriate open systems. Our notion of
interconnection is borrowed, to some extent, from the control theory literature. See, for
example, Willems [70]. We therefore start by recalling a definition of an open (control)
systems, which is essentially due to Brockett [71].

2.2.1. Definition. A continuous time control system (or an open system) on a manifold
M is a surjective submersion p : Q→ M and a smooth map F : Q→ TM such that

F(q) ∈ Tp(q)M

for all q ∈ Q (cf., for example, [72]). That is, the diagram

Q TM

M
p &&

F //

π��

commutes, where π : TM → M is the canonical projection.

2.2.2. Given a manifold U of “control variables” we may consider control systems of the
form

F : M × U → TM. (2.2.1)

Here the submersion p : M × U → M is given by p(x, u) = x. The collection of all
such control systems forms a vector space that we denote by Ctrl(M × U → M):

Ctrl(M × U → M) := {F : M × U → TM | F(x, u) ∈ TxM}.

2.2.3. Notation (Space of sections of a vector bundle). Given a vector bundle E → M

we denote the space of sections of E→ M by 0E or by 0(E).

Now suppose we are given a finite family {Fi : Mi × Ui → TMi}
N
i=1 of control systems

and we want to somehow interconnect them to obtain a closed system I (F1, . . . , FN ).
This closed system is a vector field on the product

d
iMi . That is, I (F1, . . . , FN ) is a

section of the tangent bundle T (
d
iMi) →

d
iMi . What additional data do we need to

define the interconnection map

I :
l

i

Ctrl(Mi × Ui → Mi)→ 0
(
T
(l
i

Mi

))
?

The answer is given by the following proposition:
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2.2.4. Proposition. Given a family {pj : Mj ×Uj → Mj }
N
j=1 of projections and a family

{sj :
d
Mi → Mj × Uj } of smooth maps such that the diagrams

Mj × Uj

d
Mi Mj

pj

%%
sj

OO

prj
//

commute for each j , there is an interconnection map I making the diagrams

d
i Ctrl(Mi × Ui → Mi) 0(T (

d
iMi))

Ctrl(Mj × Uj → Mj ) Ctrl(
d
iMi

prj
−→ Mj )

I //

$j=D(prj )◦−��
πj
�� Ij //

commute for each j . The components Ij of the interconnection map I are defined by
Ij (Fj ) := Fj ◦ sj for all j .

Proof. The space 0(T (
d
iMi)) of vector fields on

d
iMi is the product of the vector

spaces Ctrl(
d
iMi → Mj ):

0
(
T
(l
i

Mi

))
=

l

j

Ctrl
(l
i

Mi

prj
−→ Mj

)
.

In other words, a vector field X on
d
iMi is a tuple X = (X1, . . . , XN ), where

Xj := D(prj ) ◦X.

(Here D(prj ) : T (
d
Mi) → TMj ) denotes the differential of the canonical projection

prj :
d
Mi → Mj .) Each component Xj :

d
iMi → TMi is a control system.

To define a map from a vector space into a product of vector spaces it is enough to
define a map into each of the factors. We have the canonical projections

πj :
l

i

Ctrl(Mi × Ui → Mi)→ Ctrl(Mj × Uj → Mj ), j = 1, . . . , N.

Consequently, to define the interconnection map I it is enough to define maps

Ij : Ctrl(Mj × Uj → Mj )→ Ctrl
(l
i

Mi

prj
−→ Mj

)
for each j . We set

Ij (Fj ) := Fj ◦ sj . ut

2.2.5. Remark. It will be useful for us to remember that the canonical projections

$j : 0
(
T
(l

Mi

))
→ Ctrl

(l
Mi → Mj

)
are given by

$j (X) = D(prj ) ◦X.
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2.3. Interconnections and graphs

We next explain how networks of manifolds give rise to interconnection maps. To do this
precisely it is useful to have a notion of input trees of a directed graph. Given a graph, an
input tree I (a) of a vertex a is roughly the vertex itself and all of the arrows leading into
it. We want to think of this as a graph in its own right, as follows.

2.3.1. Definition (Input tree). The input tree I (a) at a vertex a of a graph G is the graph
with the set of vertices

I (a)0 := {a} t t
−1(a),

where, as before, t−1(a) is the set of arrows in G with target a. The set of edges I (a)1 of
the input tree is

I (a)1 := {(a, γ ) | γ ∈ G1, t (γ ) = a},

and the source and target maps I (a)1 ⇒ I (a)0 are defined by

s(a, γ ) = γ and t (a, γ ) = a.

In pictures,

γ a

(a,γ )
**

2.3.2. Example. Consider the graphG = a b

α

99

β

%%
as in Example 2.1.10. Then

the input tree I (a) is the graph with one node a and no edges:

I (a) = a

The input tree I (b) has three nodes and two edges:

I (b) =

α

β

b

(b,α)

%%

(b,β)

99

2.3.3. Remark. For each node a of a graph G we have a natural map of graphs

ξ = ξa : I (a)→ G, ξa(a, γ ) = γ.

We stress that this need not be injective on nodes. For instance in Example 2.3.2 the map
ξb : I (b)→ G sends the nodes α and β to the same node a.
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2.3.4. Example. Consider the graph

G = 1 2 3 4
β 99

α

%% γ //
ζ 99

ε

%%

δ

;; (2.3.1)

The four input trees of G are the graphs

1

α

β

2
''
77 γ 3//

ε

ζ

δ

4
��
//
??

2.3.5. Remark. The input tree I (a) of a graph G is a directed tree of height 1: for any
vertex x of I (a) with x 6= a there is exactly one edge with source x and target a. Also a
is the only vertex of I (a) which is not a source of any edge (it is a root of I (a)), and the
other vertices of I (a) cannot be targets of any edges (they are leaves of I (a)).

2.3.6. Remark. It follows from Remark 2.3.5 above that if ϕ : I (a) → I (b) is an iso-
morphism of two input trees (these graphs may be input trees of two different graphs)
then necessarily ϕ(a) = b.

2.3.7. Remark. Given a network (G,P) and a map of graphs ϕ : H → G we get a map
of networks ϕ : (H,P ◦ ϕ)→ (G,P), hence a map of manifolds Pϕ : PG→ PH .

2.3.8. Let (G,P) be a network and let a be a node ofG. Consider the graph {a} with one
node and no arrows. Denote the inclusion of {a} inG by ιa and the inclusion into its input
tree I (a) by ja . Then the diagram

{a} I (a)

G

ja //

ιa �� ξa��

commutes. By Remarks 2.3.7 and 2.1.16 we have a commuting diagram of maps of man-
ifolds

P{a} PI (a)

PG

oo Pja
ZZ

Pιa

DD

Pξa
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2.3.9. Let us now examine more closely the map Pja : PI (a) → Pa in 2.3.8 above.
Since the set of nodes I (a)0 of the input tree I (a) is the disjoint union

I (a)0 = {a} t t
−1(a),

and since ξa(γ ) is the source s(γ ) for any γ ∈ t−1(a) ⊂ I (a)0, we have

PI (a) = P(a)×
l

γ∈t−1(a)

P(s(γ )).

Since ja : {a} → I (a)0 = {a} t t
−1(a) is the inclusion, Pja : PI (a) → Pa is the

projection
P(a)×

l

γ∈t−1(a)

P(s(γ ))→ P(a).

Similarly Pιa : PG→ Pa is the projection
d
b∈G0

P(b)→ P(a).

Putting 2.3.8 and 2.3.9 together we get

2.3.10. Proposition. For each node a of a network (G,P) the diagrams

PI (a) P(a)×
d
γ∈t−1(a) P(s(γ )) P(a)

d
b∈G0

P(b)

Pja //

Pιa

77

Pξa

OO

commute.

2.3.11. Example. Suppose G = a b

α

99

β

%%
is a graph as in Example 2.1.10 and

suppose P : G0 → Man is a phase space function. Then

PI (b) = P(a)× P(a)× P(b),

Pjb is the projection P(a)× P(a)× P(b)→ P(b) and

Ctrl(PI (b)→ Pb) = Ctrl(P(a)× P(a)× P(b)→ P(b)).

On the other hand, PI (a) = P(a), Pja : P(a)→ P(a) is the identity map and

Ctrl(PI (a)→ Pa) = 0(TP(a)),

the space of sections of the tangent bundle TP(a), that is, the space of vector fields on
the manifold P(a).
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2.4. Dependency

Given a network (G,P) we have a product of vector spaces
l

a∈G0

Ctrl(PI (a)→ Pa).

The elements of the product are unordered tuples (wa)a∈G0 of control systems (cf. 2.1.6).
We may think of them as sections of the vector bundle

Control(G,P) :=
⊔
a∈G0

Ctrl(PI (a)→ Pa)→ G0 (2.4.1)

over the vertices of G. This is the main reason for thinking of the collection
{Ctrl(PI (a)→ Pa)}a∈G0 of infinite-dimensional vector spaces as a vector bundle over a
finite set. It will be convenient to have a notation for the space of sections of the bundle
Control(G,P)→ G0.

2.4.1. Definition. Let (G,P) be a network as above. We refer to the bundleControl(G,P)
→ G0 as the control bundle of the network (G,P). We call the sections (wa)a∈G0 of
the control bundle virtual vector fields on the network (G,P). We denote the space of
sections by S(G,P). Thus

S(G,P) :=
l

a∈G0

Ctrl(PI (a)→ Pa).

We now argue that an application of the interconnection map I : S(G,P) →
0T (P(G,P)) turns these “virtual vector fields” into actual vector fields on the total phase
space P(G,P) of the network. Indeed observe that Propositions 2.2.4 and 2.3.10 give us

2.4.2. Theorem. For a network (G,P) there exists a natural interconnection map

I :
l

a∈G0

Ctrl(PI (a)→ Pa)→ 0(T PG))

with
$a ◦I ((wb)b∈G0) = wa ◦ Pja

for all nodes a ∈ G0. Here $a : 0(T PG)→ Ctrl(PG0
Pιa
−−→ Pa) are the projection maps

defined by $a(X) = D(Pιa) ◦X (see Remark 2.2.5).

2.4.3. Example. Consider the graph G = a b

α

99

β

%%
as in Example 2.1.10 with

a phase space function P : G0 → Man. Then the vector field

X = I (wa, wb) : P(a)× P(b)→ TP(a)× TP(b)
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is of the form

X(x, y) = (wa(x), wb(x, x, y)) for all (x, y) ∈ P(a)× P(b).

If G = a b c
<<

""
// and P : G0 → Man is a phase space function, then

(I (wa, wb, wc)) (x, y, z) = (wa(x), wb(x, x, y), wc(y, z))

for all (wa, wb, wc) ∈ S(G,P) and all (x, y, z) ∈ P(a)× P(b)× P(c)).

3. Modularity

3.1. Symmetry groupoid of a network

In this section we give one possible version of what it means for some of the open subsys-
tems in the tuple (wa)a∈G0 ∈ S(G,P) of the constituent subsystems on a network (G,P)
to be “the same.” We start with a pair of examples.

3.1.1. Example. Consider the graph

G = 1 2 3::
//

zz

from Subsection 1.4. Choose a phase space function P : G0 = {1, 2, 3} → Man with
P(1) = P(2) = P(3) = M for some manifold M . Then a typical tuple of open sub-
systems in S(G,P) that defines the dynamics on the network is a triple of the form
(f1 : M × M → TM, f2 : M × M → TM, f3 : M × M → TM). It makes sense
to require that f1 = f2 = f3. We can do so because the input trees I (1), I (2), I (3) and
the corresponding networks (I (i),P ◦ ξi), 1 ≤ i ≤ 3, are all isomorphic (here as before
ξi : I (i)→ G are the canonical maps, see Remark 2.3.3).

3.1.2. Example. Consider the graph

G =

1

2

3 4**44 99
%%

Again define a phase function P by setting P(i) to be the same manifold M for all i. An
element of S(G,P) is then of the form

(f1 : M → TM, f2 : M → TM, f3 : M ×M ×M → TM, f4 : M ×M ×M → TM).

Now it does not make sense to require that f3 = f1 but it does make sense to require
that f1 = f2 and f3 = f4 (!). Note that in this example the networks (I (1),P ◦ ξ1) and
(I (2),P ◦ ξ2) are isomorphic, as are the networks (I (3),P ◦ ξ3) and (I (4),P ◦ ξ4).
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If we were to set P(1) = P(2) = P(3) = M and P(4) = N 6= M , then an element
of S(G,P) would be of the form

(f1 : M → TM, f2 : M → TM, f3 : M ×M ×M → TM, f4 : M ×M ×N → TN).

In this case setting f1 = f2 would make sense but setting f3 = f4 would not. And while
(I (1),P ◦ ξ1) and (I (2),P ◦ ξ2) would still be isomorphic, the networks (I (3),P ◦ ξ3)

and (I (4),P ◦ ξ4) would not.

3.1.3. Remark. In Example 3.1.1 there are 32 isomorphisms

ϕij : (I (j),P ◦ ξj )→ (I (i),P ◦ ξi), 1 ≤ i, j ≤ 3,

with

ϕij ◦ ϕjk = ϕik for all i, j, k,
ϕii = id for all i

(and consequently ϕji = ϕ−1
ij ). These nine maps are an example of a groupoid.

We recall the shortest definition of a groupoid:

3.1.4. Definition. A groupoid is a category with every morphism an isomorphism.

3.1.5. Remark. One may think of a groupoid H as a directed graph {H1 ⇒ H0} together
with an associative multiplication of pairs of edges with matched source and target:

(a
α
←− b

β
←− c) 7→ (a

αβ
←− b),

an inversion map

(a
α
←− b) 7→ (a

α−1
−−→ b),

and a unit edge ida : a → a for every vertex a of H. We refer to the elements of H0 as
the objects of the groupoid H and to the elements of H1 as isomorphisms of H.

3.1.6. Example. In Remark 3.1.3 the groupoid G associated to the network (G,P) has
three objects, namely the networks (I (i),P ◦ ξi), 1 ≤ i ≤ 3, and nine isomorphisms ϕij ,
1 ≤ i, j ≤ 3. For the corresponding graph see (3.1.1) below.

3.1.7. Definition (Symmetry groupoid G(G,P) of a network). The symmetry groupoid
G = G(G,P) of a network (G,P) is a category with the following sets of objects and
isomorphisms. The set G0 of objects of G is the set of input networks

{(I (a),P ◦ ξa)}a∈G0 .

The set G1 of isomorphisms of G is the set of all possible isomorphisms of the input
networks.
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3.1.8. Example. Consider the network of Example 3.1.1. As already pointed out, the
symmetry groupoid G of this network has three objects and nine isomorphisms. It can be
pictured as follows:

G =

I (1)

I (2)

I (3)

FF

��
22rr

ee

%%

``>>

��

(3.1.1)

3.2. Groupoid-invariant vector fields

Given a network (G,P)with a groupoid symmetry we should be able to talk about invari-
ant elements of the vector space S(G,P) of constituent open subsystems. This is indeed
the case. There are several ways of making sense of invariants. The most concrete cuts out
the subspace of invariants by appropriate equations. To set this up we need a number of
short technical lemmas. We formulate them in a generality that is not needed immediately
but will be useful later. The point of the lemmas is to prove that for a given a network
(G,P) there is a natural action of its symmetry groupoid G(G,P) on the vector bundle
Control(G,P)→ G0.

We start by spelling out what we mean by the action of G(G,P) on Control(G,P).

3.2.1. Notation. Denote the category of real vector spaces and linear maps by Vect.

3.2.2. Definition. An action of the groupoidG(G,P) on the vector bundleControl(G,P)
is a functor

ρ : G(G,P)→ Vect

such that
ρ(I (a),P ◦ ξa) = Ctrl(PI (a)→ Pa)

for all nodes a ofG. Here, as above, Vect denotes the category of vector spaces and linear
maps.

3.2.3. Remark. The definition amounts to the following:

1. For any two vertices a, b ∈ G0 and an isomorphism ϕ : (I (a),P◦ξa)→ (I (b),P◦ξb)
in the groupoid G, there is an isomorphism

ρ(ϕ) : Ctrl(PI (a)→ Pa)→ Ctrl(PI (b)→ Pb).

2. If (I (a),P ◦ ξa)
ϕ
−→ (I (b),P ◦ ξb)

ψ
−→ (I (c),P ◦ ξc) is a pair of isomorphisms in G

then
ρ(ψ ◦ ϕ) = ρ(ψ) ◦ ρ(ϕ).

3. If ϕ : I (a)→ I (a) is the identity isomorphism then ρ(ϕ) is the identity linear map.
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The notion of an action of a groupoid on a vector bundle is fairly old: see, for ex-
ample, [73]. In the case where the vector bundle in question is a collection of vector spaces
parameterized by a finite set of objects of the groupoid, as is the case for Control(G,P),
it reduces to Definition 3.2.2 above.

3.2.4. Lemma. Suppose ψ : (G,P) → (G′,P ′) is an isomorphism of networks. Then
Pψ : PG′→ PG is a diffeomorphism.

Proof. Let ψ−1 denote the inverse of ψ . Then ψ ◦ ψ−1
= id(G,P) and ψ−1

◦ ψ =

id(G′,P ′). Hence

idPG = Pid(G,P) = P(ψ ◦ ψ−1) = P(ψ−1) ◦ Pψ.

By the same argument idPG′ = Pψ ◦ P(ψ−1). Hence Pψ is invertible with inverse
P(ψ−1). ut

3.2.5. Remark. Here is a one-line category-theoretic proof of Lemma 3.2.4: since P is a
functor, it takes isomorphisms to isomorphisms.

3.2.6. Lemma. Suppose (G,P), (G′,P ′) are two networks, ξa : I (a) → G the input
tree of a vertex a of G, ξa′ : I (a′) → G′ the input tree of a vertex a′ of G′, and ϕ :
I (a)→ I (a′) an isomorphism of trees with P ′ ◦ ξa′ ◦ ϕ = P ◦ ξa . Then the linear map

Ctrl(ϕ) : Ctrl(PI (a)→ Pa)→ Ctrl(PI (a′)→ Pa′) (3.2.1)

defined by

Ctrl(ϕ) : (F : PI (a)→ T Pa) 7→ D(Pϕ|{a})−1
◦ F ◦ Pϕ (3.2.2)

is an isomorphism. Here ϕ|{a} : {a} → {a′} is the restriction of ϕ to the subgraph {a}
of G (by Remark 2.3.6, ϕ has to send a to a′); it is an isomorphism.

Proof. By assumption ϕ : (I (a),P◦ξ)→ (I (a′),P ′◦ξ ′) is an isomorphism of networks.
By Lemma 3.2.4, the maps Pϕ and Pϕ|{a} are diffeomorphisms. Therefore Ctrl(ϕ) has an
inverse given by

(F ′ : PI (a′)→ T Pa′) 7→ D(P(ϕ|{a})) ◦ F ◦ Pϕ−1. ut

It follows that we may define the functor ρ : G(G,P) → Vect on isomorphisms of the
groupoid G(G,P) by setting

ρ(ϕ) := Ctrl(ϕ).

3.2.7. Lemma. Given three networks (G,P), (G′,P ′) and (G′′,P ′′), and a pair of iso-
morphism of input networks

(I (a),P ◦ ξ) ϕ
−→ (I (a′),P ′ ◦ ξ ′)) ψ

−→ (I (a′′),P ′′ ◦ ξ ′′),

we have
Ctrl(ψ ◦ ϕ) = Ctrl(ψ) ◦ Ctrl(ϕ). (3.2.3)
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Proof. For F ∈ Ctrl(PI (a)→ Pa) we have

Ctrl(ψ ◦ ϕ)F = D(P(ψ ◦ ϕ)|−1
{a}) ◦ F ◦ P(ψ ◦ ϕ)

= D((Pϕ|{a} ◦ Pψ |{a′})−1) ◦ F ◦ Pϕ ◦ Pψ
(since P is a contravariant functor)

= D(Pψ |{a′})−1) ◦ (D(Pϕ|{a′})−1) ◦ F ◦ Pϕ) ◦ Pψ
= Ctrl(ψ)(Ctrl(ϕ)F ). ut

We are now in a position to prove the main result of the section.

3.2.8. Proposition. The symmetry groupoid G(G,P) of a network (G,P) acts on the
vector bundle Control(G,P)→ G0. The action is given by(
(I (a),P ◦ ξa)

ϕ
−→ (I (b),P ◦ ξb)

)
7→

(
Ctrl(PI (a)→ Pa) Ctrl(ϕ)

−−−−→ Ctrl(PI (b)→ Pb)
)
,

where Ctrl(ϕ) is defined by (3.2.2).

Proof. We need to check that the three conditions listed in Remark 3.2.3 hold for ρ(ϕ) =
Ctrl(ϕ). The first one holds by Lemma 3.2.6, and the second by Lemma 3.2.7. Note finally
that by construction if ϕ : I (a) → I (a) is the identity isomorphism then Ctrl(ϕ) is the
identity linear map. We conclude that the functor

ρ = Ctrl : G(G,P)→ Vect

defines an action of the groupoid G(G,P) on the vector bundle Control(G,P). ut

Our next step is to define the space of invariant sections of the vector bundleControl(G,P)
→ G0 for this action, which is, by definition, the space of invariant virtual vector fields
on the network.

3.2.9. Definition (Invariant virtual vector fields on a network). Let (G,P) be a network
We define the space V(G,P) of groupoid-invariant virtual vector fields on the network
to be

VG ≡ V(G,P) :=
{(wa) ∈ S(G,P) | Ctrl(σ )wa = wb for all σ ∈ G(G,P) with σ : I (a)→ I (b)}.

(3.2.4)

3.2.10. Example. Consider the network of Example 3.1.1. It is easy to see that

V(G,P) = {(f1, f2, f3) ∈ S(G,P) | f1 = f2 = f3},

where, as before fi : M×M → TM are control systems. Note that in this case the space
of invariant virtual vector fields is naturally isomorphic to the space Ctrl(PI (1)→ P1) =
Ctrl(M×M → TM). Note also that Ctrl(M×M → TM) is the space of invariant virtual
vector fields for the network (G′,P) where

G′ =
||

is the graph with one vertex and one edge and the function P assigns the manifold M to
the unique vertex of G′.
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3.2.11. Remark. The reader may wonder in what sense the sections in V(G,P) are “in-
variant.” There are several ways to answer this question. We start with the most concrete
one. Note that the spaceWH ofH -invariant vectors for a representation ρ : H → GL(W)
of a group H satisfies

WH
= {w ∈ W | ρ(σ)w = w for all σ ∈ H }. (3.2.5)

It is easy to see now that (3.2.4) is an analogue of (3.2.5) for groupoids.
More abstractly, we note that the space WH is the limit of the functor ρ : H → Vect.

HereH denotes the category with one object ∗ and the set of morphisms Hom(∗, ∗) = H .
Similarly it is not hard to see that V(G,P) as defined above by (3.2.4) together with the
evident projections V(G,P) → Ctrl(PI (a) → Pa) is the limit of the functor Ctrl :
G(G,P)→ Vect.

3.2.12. Remark. We would like to think of the image I (VG) of the space VG of in-
variant virtual vector fields under the interconnection map I : S(G,P)→ 0T P(G,P)
as the space of “groupoid-invariant vector fields” on P(G,P). Note that this is not liter-
ally correct since there is no natural action of the groupoid G(G,P) either on the tangent
bundle T P(G,P), or on the space of its sections.

3.2.13. Remark. As observed in Remark 2.3.5, the graph underlying the input tree net-
work (I (a),P ◦ ξa) of a network (G,P) is a directed tree of height 1. If ϕ : T1 → T2 is
an isomorphism of trees of height 1, then ϕ necessarily sends the root rt T1 of the first tree
to the root rt T2 of the second tree. Hence if ϕ : (T1,P1)→ (T2,P2) is an isomorphism
of networks and T1, T2 are trees of height 1, it makes sense to define

Ctrl(ϕ) : Ctrl(PT1 → P rt T1)→ Ctrl(PT2 → P rt T2)

by a slight modification of (3.2.2):

Ctrl(ϕ)F := DP(ϕ|rt T1)
−1
◦ F ◦ Pϕ. (3.2.6)

The proof of Proposition 3.2.8 is then easy to modify to show that that Ctrl is a well-
defined functor from the groupoid of height 1 tree networks and their isomorphisms to
the category Vect of (not necessarily finite-dimensional) real vector spaces and linear
maps.

3.3. An alternative notion of modularity

Throughout the paper we take the point of view that a network is a directed graph G
together with an assignment of a phase space to each vertex of G, that is, a pair

(G,P : G0 → collection of phase spaces).

Golubitsky, Stewart and their collaborators in their work on coupled cell networks addi-
tionally attach colors to edges of graphs. They require that maps of networks preserve the
colors. In particular, edges of input trees acquire colors from their canonical maps into
the defining graphs, and symmetry groupoids consist of color preserving isomorphisms.
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Thus from the point of view of Golubitsky et al. we work with monochromatic graphs.
The results of this paper do have their colored analogues. The proofs, mutatis mutandis,
are the same. See [74].

4. Fibrations and invariant virtual vector fields

We proved in Proposition 2.1.12 that a map of networks ϕ : (G,P) → (G′,P ′) defines
a smooth map Pϕ : PG′ → PG between their total phase spaces (going in the opposite
direction). The map ϕ, in general, does not induce a map between the spaces of vector
fields on the phase spaces PG and PG′. Nor does it induce a map between the spaces
of virtual vector fields S(G,P) and S(G′,P ′), let alone the spaces of groupoid-invariant
virtual vector fields VG and VG′. There is, however, a natural class of maps of networks
that does. Following Boldi and Vigna [64] we call them fibrations. The notion of a graph
fibration is old. It arose independently at different times in different areas of mathematics
under different names. See [75] for a discussion.

The goal of this section is to prove that a fibration of networks ϕ : (G,P)→ (G′,P ′)
naturally defines a linear map ϕ∗ : V(G′,P ′) → V(G,P). In the following sections
we show that the maps ϕ∗ and Pϕ and the interconnection maps of the two networks
are compatible in the best possible way. Consequently, fibrations of networks give rise to
maps of dynamical systems.

4.1. Fibrations

4.1.1. Definition. A map ϕ : G→ G′ of directed graphs is a fibration if for any vertex a
of G and any edge e′ of G′ ending at ϕ(a) there is a unique edge e of G ending at a with
ϕ(e) = e′.

A map of networks ϕ : (G,P)→ (G′,P ′) is a fibration if the corresponding map of
graphs ϕ : G→ G′ is a fibration.

4.1.2. Example. The map of graphs

ϕ :

a1

a2

b

γ

**

δ

44 −→ a b c

δ′

??

γ ′

��
//

sending γ to γ ′ and δ to δ′ is a graph fibration.

4.1.3. Example. All the maps of graphs in (1.4.4) are graph fibrations. If we define the
phase spaces functions on the three graphs by assigning to every node the same manifold
M then the corresponding maps of networks are fibrations.

4.1.4. Given any maps ϕ : G → G′ of graphs and a node a of G, there is an induced
map of input trees

ϕa : I (a)→ I (ϕ(a)).
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On edges of I (a) the map is defined by

ϕ(a, γ ) := (ϕ(a), ϕ(γ ))

(cf. Definition 2.3.1). Moreover the diagram of graphs

I (a) I (ϕ(a))

G G′

ϕa //

ξa

��

ξϕ(a)

��ϕ //

commutes (the map ξa : I (a)→ G from an input tree to the original graph is defined in
Remark 2.3.3).

4.1.5. Lemma. If ϕ : G→ G′ is a graph fibration then the induced maps ϕa : I (a)→
I (ϕ(a)) of input trees defined above are isomorphisms for all nodes a of G.

Proof. Given an edge (ϕ(a), γ ′) of I (ϕ(a)) there is a unique edge γ ofGwith ϕ(γ ) = γ ′

and t (γ ) = a. Consequently, ϕa(a, γ ) = (ϕ(a), γ ′). It follows that ϕa is bijective on
vertices and edges. ut

4.1.6. Corollary. If a map of networks ϕ : (G,P)→ (G′,P ′) is a fibration then

ϕa : (I (a),P ◦ ξa)→ (I (ϕ(a)),P ′ ◦ ξϕ(a))

is an isomorphism of networks.

Proof. This follows immediately from Lemma 4.1.5 above and the definition of an iso-
morphism of networks. ut

4.2. Maps between spaces of invariant virtual vector fields

The goal of this subsection is to show that fibrations of networks send groupoid-invariant
virtual vector fields to groupoid-invariant virtual vector fields. Namely we prove:

4.2.1. Proposition. A fibration ϕ : (G,P)→ (G′,P ′) of networks defines a linear map
ϕ∗ : S(G′,P ′)→ S(G,P) between spaces of sections of control bundles, that is, between
spaces of virtual vector fields on the networks in question.

Moreover ϕ∗ maps the space V(G′,P ′) of groupoid-invariant virtual vector fields to
the space V(G,P).
Proof. Recall (Definition 2.4.1) that S(G,P) =

d
a∈G0

Ctrl(PI (a)→ Pa). We define

ϕ∗ :
l

a′∈G′0

Ctrl(PI (a′)→ Pa′)→
l

a∈G0

Ctrl(PI (a)→ Pa)

by
(ϕ∗w′)a := Ctrl(ϕa)

−1(w′ϕ(a))

for all a ∈ G0. Evidently ϕ∗ is linear.
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We now argue that invariant sections get mapped to invariant sections. Consider w′ ∈
V(G′,P ′). Let σ : (I (a),P ◦ ξa) → (I (b),P ◦ ξb) be an isomorphism in the groupoid
G(G,P). Since ϕ is a fibration, the maps

ϕa : (I (a),P ◦ ξa)→ (I (ϕ(a)),P ′ ◦ ξϕ(a))

and
ϕb : (I (b),P ◦ ξb)→ (I (ϕ(b)),P ′ ◦ ξϕ(b))

are isomorphisms. Therefore

ϕb ◦ σ ◦ ϕ
−1
a : (I (ϕ(a)),P ′ ◦ ξϕ(a))→ (I (ϕ(b)),P ′ ◦ ξϕ(b))

is an isomorphism of networks, hence an isomorphism in the groupoid G(G′,P ′). Since
w′ is G(G′,P ′)-invariant by assumption, we have

Ctrl(ϕb ◦ σ ◦ ϕ
−1
a )w′ϕ(a) = w

′

ϕ(b).

Since Ctrl is a functor on networks of height 1 trees (Remark 3.2.13), it respects compo-
sitions and takes inverses to inverses. Consequently,

Ctrl(ϕb) ◦ Ctrl(σ ) ◦ Ctrl(ϕa)
−1w′ϕ(a) = w

′

ϕ(b).

Thus

Ctrl(σ )(ϕ∗w′)a = Ctrl(σ ) ◦ Ctrl(ϕa)
−1w′ϕ(a) = Ctrl(ϕb)

−1w′ϕ(b) = (ϕ
∗w′)b,

which proves that ϕ∗w′ ∈ V(G,P). ut

4.2.2. Remark. The proof above shows that a fibration ϕ : (G,P) → (G′,P ′) also
induces a fully faithful map of groupoids G(ϕ) : G(G,P)→ G(G′,P ′) given by(
(I (a),P◦ξa)

σ
−→ (I (b),P◦ξb)

)
7→

(
(I (ϕ(a)),P◦ξϕ(a))

ϕb◦σ◦ϕ
−1
a

−−−−−−→ (I (ϕ(b)),P◦ξϕ(b))
)
.

4.2.3. Remark. Here is an alternative, more geometric, way to think of Proposition 4.2.1
and its proof. The collection of maps

{Ctrl(ϕa) : Ctrl(PI (a)→ Pa)→ Ctrl(PI (ϕ(a))→ Pϕ(a))}

define a map of vector bundles

ϕ̃ : Control(G,P)→ Control(G′,P ′),

which restricts to an isomorphism on each fiber. Hence Control(G,P)→ G0 is the pull-
back of Control(G′,P ′) → G′0. Consequently, sections of Control(G′,P ′) → G′0 pull
back to sections of Control(G,P)→ G0. Moreover the vector bundle map ϕ̃ intertwines
the actions of the groupoids G(G,P) and G(G′,P ′). Hence invariant sections pull back
to invariant sections.

4.2.4. Remark. In Section 6 below we show that somewhat surprisingly the map ϕ∗ :
V(G′,P ′)→ V(G,P) of Proposition 4.2.1 is always surjective. We also characterize its
kernel. In particular if ϕ : (G,P)→ (G′,P ′) is a quotient map (in the setting of coupled
cell networks the fibers of such a ϕ are equivalence classes of a balanced equivalence
relation) then ϕ∗ : V(G′,P ′)→ V(G,P) is an isomorphism.
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4.3. Fibrations and maps of dynamical systems

The goal of this subsection is to prove that fibrations of networks give rise to maps be-
tween dynamical systems. This is arguably the main result of the paper. Here is a precise
statement:

4.3.1. Theorem. Let ϕ : (G,P) → (G′,P ′) be a fibration of networks. Then for any
groupoid-invariant virtual vector field w′ ∈ VG′ the map Pϕ : PG′ → PG intertwines
the vector fields I ′(w′) and I (ϕ∗w′):

D(Pϕ) ◦I ′(w′) = I (ϕ∗w′) ◦ Pϕ. (4.3.1)

Equivalently the diagram
T PG′ T PG

PG′ PG

DPϕ //

I ′(w′)

OO

I (ϕ∗w′)

OO

Pϕ //

(4.3.2)

commutes.

4.3.2. Remark. Note that by Proposition 4.2.1, since w′ is a groupoid-invariant virtual
vector field on the network (G′,P ′), the pullback ϕ∗w′ is a groupoid-invariant virtual
vector field on the network (G,P), i.e., ϕ∗w′ ∈ V(G,P).
Proof of Theorem 4.3.1. Recall that the manifold PG is the product

d
a∈G0

Pa. Hence the
tangent bundle T PG is the product

d
a∈G0

T Pa. In particular for each node a of G, the
canonical projection T PG→ T Pa is the differential of the map Pιa : PG→ Pa. Here,
as before, ιa : {a} ↪→ G is the canonical inclusion of graphs. By the universal property
of products, two maps into T PG are equal if and only if all their components are equal.
Therefore, in order to prove that (4.3.2) commutes it is enough to show that

DPιa ◦I (ϕ∗w′) ◦ Pϕ = DPιa ◦DPϕ ◦I ′(w′)

for all nodes a ∈ G0. By definition of the restriction ϕ|{a} of ϕ : G→ G′ to {a} ↪→ G,
the diagram

{a} {ϕ(a)}

G G′

ϕ|{a} //

ιa

��

ιϕ(a)

��ϕ //

(4.3.3)

commutes. By the definition of the pullback map ϕ∗ and the interconnection maps I , I ′

the diagram
T Pa T Pϕ(a)

PI (a) PI (ϕ(a))

PG PG′

DPϕ|{a}
oo

(ϕ∗w′)a

OO

w′
ϕ(a)

OO

Pξa

OO

Pξϕ(a)

OO
Pϕaoo

Pϕoo

I (ϕ∗w′)a

::

I ′(w′)ϕ(a)

dd

(4.3.4)
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commutes as well. We now compute:

DPιa ◦I (ϕ∗w′) ◦ Pϕ = (I (ϕ∗w′))a ◦ Pϕ by definition of I (ϕ∗w′)a

= DP(ϕ|{a}) ◦I ′(w′)ϕ(a) by (4.3.4)
= DP(ϕ|{a}) ◦DPιϕ(a) ◦I ′(w′) by definition of I ′(w′)ϕ(a)

= DP
(
ιϕ(a) ◦ ϕ|{a}

)
◦I ′(w′) since P is a contravariant functor

= DP (ϕ ◦ ιa) ◦I ′(w′) by (4.3.3)
= DP(ιa) ◦DPϕ ◦I ′(w′). ut

4.3.3. Remark. In Lemma 5.1.1 below we show that surjective fibrations of networks
give rise to embeddings of dynamical systems. Since balanced equivalence relations of
the groupoid formalism of Golubitsky et al. [39–63] define quotient networks, each bal-
anced equivalence relation give rise to a surjective maps of graphs and hence to surjective
fibration of networks in our sense. Thus a special case of Theorem 4.3.1 generalizes one
direction of the groupoid formalism correspondence between invariant subspaces and bal-
anced equivalence relations from ordinary differential equations to vector fields on mani-
folds. More specifically Theorem 4.3.1 is a generalization, to manifolds, of Theorem 5.2
(direction (b)) of [60] and of Theorem 9.2 of [56]. We do not attempt to establish the con-
verse. More specifically, we do not attempt to characterize submanifolds of total phase
spaces of networks that are preserved by all groupoid invariant vector fields—we are only
speaking about the “forward” direction.

5. Dynamical consequence of Theorem 4.3.1

In this section, we will discuss the implications of Theorem 4.3.1. Consider a fibration
ϕ : (G,P)→ (G′,P ′) of networks. Then ϕ defines a map ϕ0 : G0 → G′0 from the set of
vertices of G to the set of vertices of G′. In general ϕ0 is neither injective nor surjective.
However if a graph fibration ϕ : G → G′ is surjective on vertices, it is automatically
surjective on edges. Similarly if a graph fibration ϕ : G → G′ is injective on vertices,
then it is injective on edges as well. From now on we simply talk about injective and
surjective graph fibrations.

Next observe that a given fibration ϕ : (G,P)→ (G′,P ′) can always be factored as
a map onto its image followed by the inclusion of the image:

(G,P) ϕ
−→ (ϕ(G),P ′)

i
↪→ (G′,P ′).

Hence any fibration can be factored as a surjection followed by an injection. We next
analyze surjective and injective fibrations of networks.

5.1. Surjective fibrations

5.1.1. Lemma. Suppose ϕ : (G,P) → (G′,P ′) is a surjective fibration. Then Pϕ :
PG′→ PG is an embedding whose image is a “polydiagonal”

1ϕ = {x ∈ PG | xa = xb whenever ϕ(a) = ϕ(b)}.
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Proof. Assume first for simplicity that G′ has only one vertex ∗ and P ′(∗) = M . Then
for any vertex a of G we have

P(a) = P ′(ϕ(a)) = P ′(∗) = M,

PG′ = M and PG = MG0 , where as before G0 is the set of vertices of the graph G. By
Proposition 2.1.12 the map Pϕ : M → MG0 is of the form

Pϕ(x) = (x, . . . , x)

for all x ∈ M .
In general

Pϕ : PG′ =
l

a′∈G′0

P ′(a′)→
l

a′∈G′0

( l

a∈ϕ−1(a′)

P ′(a′)
)
= PG

is the product of maps of the form

P ′(a′)→
l

a∈ϕ−1(a′)

P ′(a′), x 7→ (x, . . . , x). ut

5.1.2. Example. We consider the following surjective fibration ϕ : (G,P) → (G′,P ′)
of networks. We take G to be the graph

1 2 3
zz

== // // · · · 2n−2 2n−1 2n// // //

(5.1.1)

with 2n vertices (n ≥ 2). We choose a phase space function P that assigns a manifold M
to all odd-numbered vertices and a (different) manifold N to all even-numbered vertices.
We take G′ to be the graph

a b

zz
== (5.1.2)

with two vertices and two arrows. We set P ′(a) = M and P ′(b) = N . We define the
surjective fibration ϕ : G→ G′ by setting

ϕ(n) =

{
a, n odd,
b, n even.

The corresponding total phase space map Pϕ : M ×N → (M ×N)n is given by

P(x, y) = (x, y, x, y, . . . , x, y).

The groupoid G(G′,P ′) is trivial. Consequently, V(G′,P ′) consists of a pair of control
systems w′a : M × N → TM and w′b : N ×M → TN . They interconnect to define a
vector field I ′(w′) : M ×N → TM × TN with

I ′(w′)(x, y) = (w′a(x, y), w
′

b(y, x))

for all (x, y) ∈ M ×N = PG′.
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The groupoid G(G,P) is not trivial: all input networks corresponding to odd-num-
bered vertices are uniquely isomorphic. That is, given the vertices 2k+1 and 2`+1, k 6= `,
there is exactly one isomorphism ψk` : I (2k + 1) → I (2` + 1) as well ψ`k = ψ−1

k` :

I (2`+ 1)→ I (2k+ 1). An analogous statement holds for input networks corresponding
to even-numbered vertices.

The pullback map
ϕ∗ : V(G′,P ′)→ V(G,P)

is easily seen to be given by

ϕ∗(w′a, w
′

b) = (w
′
a, w

′

b, . . . , w
′
a, w

′

b),

and I (ϕ∗w′) ∈ 0T (M ×N)n is given by

I (ϕ∗w′)(x1, y1, . . . , xn, yn) = (w
′
a(x1, y1), w

′

b(y1, x1), . . . , w
′
a(xn, yn), w

′

b(yn, xn)).

It is clear that Pϕ(M × N) is an invariant submanifold of the vector field I (ϕ∗w′), as
should be expected in light of Theorem 4.3.1.

5.2. Injective fibrations

Consider an injective fibration ϕ : (G,P)→ (G′,P ′) of networks. Lemma 5.2.1 below
shows that the map Pϕ : PG′ → PG of total phase spaces is a surjective submersion.
Combining this with Theorem 4.3.1 we see that for any groupoid-invariant virtual vector
field w′ ∈ V(G′,P ′) the map

Pϕ : (PG′,I ′(w′))→ (PG,I (ϕ∗w′))

is a projection of dynamical systems. In particular for any singular point x of the vec-
tor field I (ϕ∗w′), i.e., the point where the vector field is zero, the fiber Pϕ−1(x) is an
invariant submanifold of the vector field I (w′).

Note also that since the map of graphs ϕ : G→ G′ is injective, ϕ : G→ ϕ(G) is an
isomorphism. Since ϕ is also a graph fibration, there are no edges of G′ with the source
in G′ r ϕ(G) and target in ϕ(G). Thus the image of ϕ is a subsystem of G′ that drives
the dynamical system on G′. In other words, the notion of an injective fibration makes
precise the intuitive idea of a subsystem driving a larger network.

5.2.1. Lemma. Suppose ϕ : (G,P) → (G′,P ′) is an injective fibration. Then Pϕ :
PG′→ PG is a surjective submersion.

Proof. Since ϕ : G→ G′ is injective, the set G′0 of nodes of G′ can be partitioned as the
disjoint union of the image ϕ(G0), which is a copy of G0, and the complement. Hence

PG′ '
l

a∈G0

P(ϕ(a))×
l

a′ 6∈ϕ(G0)

P ′(a′) ' PG×
l

a′ 6∈ϕ(G0)

P ′(a′).
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With respect to this identification of PG′ with PG ×
d
a′ 6∈ϕ(G0)

P ′(a′) the map Pϕ :
PG′→ PG is the projection

PG×
l

a′ 6∈ϕ(G0)

P ′(a′)→ PG,

which is a surjective submersion. ut

5.2.2. Example. Consider the injective graph fibration

G

G′

1 2 3
<<

//
||

1 2 3

10
4 5 6

79 8

zz

::
//

GG

��

OO

��

OO

��

hh
� � i //

(5.2.1)

Choose phase space functions P,P ′ so that i : (G,P) → (G′,P ′) is a map of net-
works. By the discussion above, for any choice of a groupoid-invariant virtual vector field
w′ ∈ V(G′,P ′) the dynamics in the subsystem (PG,I (i∗w′)) drives the entire system
(PG′,I (w′)). This is intuitively clear from the graph (5.2.1) since there are no “feed-
backs” from vertices 4, . . . , 10 back into 1, 2, 3.

5.3. General maps

As observed at the beginning of the section, any fibration ϕ : (G,P)→ (G′,P ′) can be
factored as a surjection

ϕ : (G,P)→ (ϕ(G),P ′)

followed by the inclusion
i : (ϕ(G),P ′) ↪→ (G′,P ′).

It follows from the two subsections above that for any groupoid-invariant virtual vector
field w′ ∈ V(G′,P ′) the map of dynamical systems

Pϕ : (PG′,I ′(w′))→ (PG,I (ϕ∗w′))

factors as a projection of dynamical systems

Pi : (PG′,I ′(w′))� (Pϕ(G),I ′(i∗w′))

followed by the embedding

(Pϕ(G),I ′(i∗w′))→ (PG,I (ϕ∗w′)).
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5.3.1. Example. Consider the graph fibration

G

a1

a2

b

γ

**

δ

44
ϕ
−→ a b c

G′

δ′

??

γ ′

��
//

from Example 4.1.2. Choose a phase space function P ′ on G′ and define P : G0 → Man
by P(a1) = P(a2) = P ′(a), P(b) = P ′(b). Then ϕ : (G,P) → (G′,P ′) is a fibration
of networks. It factors as

a1

a2

b
**
44

ϕ
−→ a b??

�� i
↪→ a b c??

��
//

6. Spaces of invariant virtual vector fields

The purpose of this section is to characterize further and more precisely the space of
groupoid-invariant virtual vector fields on a network (G,P) and to understand better
the pullback maps ϕ∗ : V(G′,P ′) → (G,P) induced by fibrations of networks ϕ :
(G,P)→ (G′,P ′).

6.1. The space V(G,P) as a product of spaces of fixed vectors

It will be useful to introduce a bit more notation.

6.1.1. Notation. Given a network (G,P) we have an evident bijection between the set
G0 of vertices of the graph G and the set G0 = {(I (a),P ◦ ξa)}a∈G0 of objects of the
groupoid G(G,P). It will be convenient to identify the two sets:

G(G,P)0 = G0.

6.1.2. Definition (Automorphism group). For a vertex a of a graphG, hence for an object
of the symmetry groupoid G(G,P) of a network (G,P), we set

Aut(a) := {ψ : (I (a),P ◦ ξa)→ (I (a),P ◦ ξa) | ψ is an isomorphism of networks}.

Clearly Aut(a) is a group under composition. We call it the automorphism group of the
vertex a.

6.1.3. Remark. Note that Aut(a) is the collection of isomorphisms of the groupoid
G(G,P) with source and target a. By construction Aut(a) acts on the vector space
Ctrl(PI (a)→ Pa), the fiber of the bundle Control(G,P)→ G0. We denote the space of
fixed vectors by Ctrl(PI (a)→ Pa)Aut(a).
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6.1.4. Remark. In general, given an object a of a groupoid H = {H1 ⇒ H0}, we have a
group Aut(a) consisting of isomorphisms of H with source and target a.

6.1.5. Definition. Given a groupoid H, we say that two objects a and b of H are isomor-
phic if there is an isomorphism γ of H with source a and target b.

6.1.6. Remark. It follows easily from the definition of a groupoid that being isomorphic
is an equivalence relation on the objects. We denote the collection of isomorphism classes
of objects of a groupoid H by H0/H1 and denote the isomorphism class of an object a
by [a].

6.1.7. Lemma. Let (G,P) be a network. The space V(G,P) of groupoid-invariant vir-
tual vector fields is isomorphic (as a vector space) to the product⊔

[a]∈G0/G1

Ctrl(PI (a)→ Pa)Aut(a).

Here, as in Remark 6.1.3, Ctrl(PI (a) → Pa)Aut(a) is the space of vectors fixed by the
action of Aut(a).

Proof. Suppose w ∈ V(G,P) is an invariant section of Control(G,P)→ G0. Then for
any node a of G0 and any automorphism ψ ∈ Aut(a) we have

Ctrl(ψ)wa = wa .

Hence wa ∈ Ctrl(PI (a)→ Pa)Aut(a).
If a and b are two isomorphic objects in the groupoid G(G,P) by way of ψ :

(I (a),P ◦ ξa)→ (I (b),P ◦ ξb) then

wb = Ctrl(ψ)wb.

It follows that if we pick representatives a1, . . . , aN ∈ G0 of the equivalence classes in
G0/G1 then the restriction map

V(G,P)→
N⊔
i=1

Ctrl(PI (ai)→ Pai)Aut(ai ), w 7→ (wa1 , . . . , waN ),

is an isomorphism of vector spaces. This proves the lemma. ut

6.1.8. Example. Consider the network (G,P) where G is the graph

1 2 3

10
4 5 6

79 8

zz

::
//

GG

��

OO

��

OO

��

hh
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and P assigns the same manifoldM to each vertex ofG. Then the input trees ofG are all
of the form

a b//

and the corresponding input networks are all isomorphic. Moreover they have trivial au-
tomorphism groups. Consequently,

V(G,P) ' Ctrl(M ×M → TM).

This is quite small compared to the space of all vector fields on the total phase space
PG ' M10.

6.2. Maps between spaces of invariant virtual vector fields

The goal of this subsection is to understand the pullback map ϕ∗ : V(G′,P ′)→ V(G,P)
between groupoid-invariant virtual vector fields induced by a fibration ϕ : (G,P) →
(G′,P) of networks. We will see that ϕ∗ is always surjective. To describe its kernel we
need the following concept.

6.2.1. Definition. Let ϕ : (G,P) → (G′,P) be a fibration of networks. The essential
image essimϕ ⊂ G′0 of ϕ consists of all the vertices a′ ∈ G′0 for which there is an
isomorphism

ψ : (I (a′),P ′ ◦ ξa′)→ (I (ϕ(a)),P ◦ ξϕ(a))
of input networks for some vertex a of G.

We say that ϕ is essentially surjective if essimϕ = G′0.

6.2.2. Example. The map

G

G′

1 2 3
<<

//
||

1 2 3

10
4 5 6

79 8

zz

::
//

GG

��

OO

��

OO

��

hh
� � i //

of networks is not surjective. But it is essentially surjective if P ′(i) = P ′(j) for all
1 ≤ i < j ≤ 10, i.e., if we assign the same manifold to all vertices of the graphs.

6.2.3. Theorem. Let ϕ : (G,P) → (G′,P ′) be a fibration of networks. Then ϕ∗ :
V(G′,P ′)→ V(G,P) is surjective. The kernel of ϕ∗ is the space

kerϕ∗ = {w′ ∈ V(G′,P ′) | w′a′ = 0 for all a′ ∈ essimϕ},

where essimϕ is the essential image of ϕ defined above.

Proof. For w′ ∈ V(G′,P ′) the pullback ϕ∗w′ is zero if and only if (ϕ∗w′)a = 0 for all
a ∈ G0. Since (ϕ∗w′)a = Ctrl(ϕa)

−1wϕ(a) (see proof of Proposition 4.2.1) and since
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Ctrl(ϕa)
−1 is an isomorphism, we conclude that

ϕ∗w′ = 0 ⇔ w′ϕ(a) for all a ∈ G0.

Finally note that an invariant section w′ ∈ V(G′,P ′) vanishes on the image of ϕ if and
only if it vanishes on the essential image of ϕ. ut

6.2.4. Corollary. If ϕ : (G,P) → (G′,P ′) is an essentially surjective fibration of net-
works then ϕ∗ : V(G′,P ′)→ V(G,P) is an isomorphism. In particular ϕ∗ is an isomor-
phism if ϕ is surjective.

6.2.5. Example. Consider the map i of networks in Example 6.2.2. Since i is injective
and essentially surjective, the map i∗ : V(G′,P ′)→ V(G,P) is an isomorphism. Com-
pare with Example 6.1.8. Clearly the map i is very far from being surjective.

6.2.6. Remark. As pointed out in Remark 4.3.3, in the groupoid formalism of Golu-
bitsky et al. the quotient maps defined by balanced equivalence relations are surjective.
Hence the spaces of groupoid-invariant vector fields on a network and on its quotient by
a balanced equivalence relation are always isomorphic.
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