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Abstract. In a highly influential paper, Bidigare, Hanlon and Rockmore showed that a number of
popular Markov chains are random walks on the faces of a hyperplane arrangement. Their analysis
of these Markov chains took advantage of the monoid structure on the set of faces. This theory was
later extended by Brown to a larger class of monoids called left regular bands. In both cases, the
representation theory of these monoids played a prominent role. In particular, it was used to com-
pute the spectrum of the transition operators of the Markov chains and to prove diagonalizability of
the transition operators.

In this paper, we establish a close connection between algebraic and combinatorial invariants of
a left regular band: we show that certain homological invariants of the algebra of a left regular band
coincide with the cohomology of order complexes of posets naturally associated to the left regular
band. For instance, we show that the global dimension of these algebras is bounded above by the
Leray number of the associated order complex. Conversely, we associate to every flag complex a left
regular band whose algebra has global dimension precisely the Leray number of the flag complex.

Keywords. Global dimension, hereditary algebra, cohomology, classifying space, left regular
band, hyperplane arrangements, order complex, Leray number, chordal graph

1. Introduction

In a highly influential paper [12], Bidigare, Hanlon and Rockmore showed that a number
of popular Markov chains, including the Tsetlin library and the riffle shuffle, are random
walks on the faces of a hyperplane arrangement (the braid arrangement for these two
examples). More importantly, they showed that the representation theory of the monoid
of faces, where the monoid structure on the faces of a central hyperplane arrangement is
given by the Tits projections [89], could be used to analyze these Markov chains and, in
particular, to compute the spectrum of their transition operators.
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Using the topology of arrangements, Brown and Diaconis [25] found resolutions of
the simple modules for the face monoid, which were later shown by the second author [80]
to be the minimal projective resolutions. Brown and Diaconis used these resolutions to
prove diagonalizability of the transition operator. Bounds on rates of convergence to sta-
tionarity were obtained in [12, 25]. They observed, moreover, that one can replace the
faces of a hyperplane arrangement by the covectors of an oriented matroid [16] and the
theory carries through. We remark that the original version of Brown’s book on build-
ings [20] makes no mention of the face monoid of a hyperplane arrangement, whereas it
plays a prominent role in the new edition [1]. Hyperplane face monoids also have a salient
position in the work of Aguiar and Mahajan [3, 4] on combinatorial Hopf algebras.

The representation theory of hyperplane face monoids is closely connected to
Solomon’s descent algebra [84]. Bidigare showed in his thesis [11] (see also [24]) that
if W is a finite Coxeter group and AW is the associated reflection arrangement, then the
descent algebra of W is the algebra of invariants for the action of W on the algebra of
the face monoid of AW . This, together with his study of the representation theory of hy-
perplane face monoids [80], allowed the second author [79] to compute the quiver of the
descent algebra in types A and B (see also [82]).

The face monoid of a hyperplane arrangement satisfies the identities x2
= x and

xyx = xy. A semigroup satisfying these identities is known in the literature as a left
regular band. Brown [23, 24] developed a theory of random walks on finite left regular
bands. He gave numerous examples that do not come from hyperplane arrangements,
as well as examples of hyperplane walks that could more easily be modeled on simpler
left regular bands. For example, Brown considered random walks on bases of matroids.
He used the representation theory of left regular bands to extend the spectral results of
Bidigare, Hanlon and Rockmore [12] and gave an algebraic proof of the diagonalizability
of random walks on left regular bands.

Brown’s theory has since been used and further developed by numerous authors.
Diaconis highlighted hyperplane face monoid and left regular band walks in his 1998
ICM lecture [35]. Björner [14, 15] used it to develop the theory of random walks on
complex hyperplane arrangements and interval greedoids. Athanasiadis and Diaconis [6]
revisited random walks on hyperplane face monoids and left regular bands. Chung and
Graham [29] considered further left regular band random walks associated to graphs.
Saliola and Thomas [81] proposed a definition of oriented interval greedoids by general-
izing the left regular bands associated to oriented matroids and antimatroids. See also the
recent work of Reiner, Saliola and Welker [74] on symmetrized random walks on hyper-
plane face monoids. Left regular bands have also appeared in Lawvere’s work [55, 56] in
topos theory.

Left regular bands have directed quasi-hereditary algebras and hence have acyclic
quivers and finite global dimension. The second author [80] computed the Ext-spaces
between simple modules in the case of the algebras of face monoids of hyperplane ar-
rangements using the resolutions of Brown and Diaconis coming from the topology of
hyperplane arrangements. Consequently, he computed the global dimension of these al-
gebras. In [78] he computed the projective indecomposable modules for arbitrary left
regular band algebras and also the quiver. In this setting, one did not seem to have any
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topology available to compute the minimal resolutions and so he was unable to compute
Ext-spaces between simple modules.

The paper [78] also contained an intriguing unpublished result of Ken Brown stating
that the algebra of a free left regular band is hereditary. The proof is via a computation
of the quiver and amounts to proving that the dimension of the path algebra is the cardi-
nality of the free left regular band. The right Cayley graph of a free left regular band is a
tree (after removing loop edges) and this leads one to suspect that there is a topological
explanation to the fact that its algebra has global dimension one. This paper arose in part
to give a conceptual explanation of this result of Brown.

There seem to be only a handful of results in the finite-dimensional algebra literature
that use topological techniques to compute homological invariants of algebras. The pri-
mary examples seem to be in the setting of incidence algebras where the order complex
of the poset plays a key role [30, 44, 49]. A more general setting is considered in [26].
In this paper we use topological techniques to compute the Ext-spaces between simple
modules of the algebra of a left regular band. In particular, we use order complexes of
posets and classifying spaces of small categories (in the sense of Segal [83]) to achieve
this. A fundamental role is played by Quillen’s celebrated Theorem A, which gives a
sufficient condition for a functor between categories to induce a homotopy equivalence
of classifying spaces. Somewhat surprisingly to us, a combinatorial invariant of simpli-
cial complexes, the Leray number [50, 51], plays an important part in this paper. The
Leray number is tied to the Castelnuovo–Mumford regularity of Stanley–Reisner rings.
In particular, the paper gives a new, non-commutative interpretation of the regularity of
the Stanley–Reisner ring of a flag complex.

Let us give a more technical overview of the paper. We will assume that all left regular
bands are finite. Our goal is to study the algebra kB of a left regular band B over a
commutative ring with unit k. The reader should feel free to assume that k is a field if
he/she likes. The principal goal is to compute ExtnkB(kX,kY ) for all n ≥ 0, where kX
and kY are certain kB-modules; if k is a field, these are the simple kB-modules. Our
main result identifies these Ext-spaces with the cohomology of order complexes of posets
naturally associated to the left regular band. This establishes a close connection between
these algebraic invariants and the combinatorics of these order complexes. For instance,
we show that the global dimension of kB is bounded above by the Leray number [50, 51]
of the associated order complex. Conversely, we associate to every flag complex K a left
regular band whose algebra has global dimension precisely the Leray number of K .

The article is outlined as follows. In Section 2 we recall the definitions and properties
of left regular bands and related constructions. Section 3 surveys several examples of
left regular bands. We illustrate how some of the left regular bands that have appeared
in the literature are special cases of classical semigroup-theoretic constructions. We also
introduce some new examples: free partially commutative left regular bands, which are
analogues of trace monoids and right-angled Artin groups [10]; geometric left regular
bands, which include nearly all the left regular bands that have appeared in the algebraic
combinatorics literature; and the left regular band of an acyclic quiver whose semigroup
algebra is the path algebra of the quiver.
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Since the proof of our main theorem is rather involved, we decided to discuss its ap-
plications before presenting its proof. So Section 4 is devoted to applications of the main
theorem. We begin with a new description of the quiver of a left regular band algebra. We
show that the algebra’s global dimension is bounded above by the Leray number of the
order complex of the left regular band. This leads to a characterization of the free par-
tially commutative left regular bands with a hereditary algebra as those constructed from
chordal graphs.

The proof of the main theorem is split across two sections. Section 5 reviews the sec-
ond author’s construction of a complete set of orthogonal idempotents, which are then
used to identify the Schützenberger representations of the left regular band as projec-
tive modules (indecomposable over a field). We construct projective resolutions of the
modules kX, which recasts the computation of ExtnkB(kX,kY ) into one involving monoid
cohomology and classifying spaces.

Section 6 contains the crux of the proof. Our main tools are classifying spaces and
the cohomology of monoids and small categories. Although we are mostly interested in
monoid cohomology, which is a natural generalization of group cohomology, we will
also need to work with categories that are not monoids; namely, posets and the semidirect
product of a monoid with a set (also known as the Grothendieck construction, or category
of elements).

2. Left regular bands

2.1. Bands and left regular bands

A band is a semigroup in which all elements are idempotents. In this paper we assume
that bands are monoids, that is, have an identity element. A particularly important class
of bands arising in probability theory and in algebraic combinatorics is the class of left
regular bands [3, 14, 15, 23–25, 29, 78, 80].

Definition 2.1. A band is a monoid B satisfying the identity

x2
= x for all x ∈ B. (2.1)

A band is left regular if it satisfies the identity

xyx = xy for all x, y ∈ B. (2.2)

The “left regular” property in (2.2) is a special case of the following notion, which is due
to von Neumann in the context of ring theory and plays a fundamental role in semigroup
theory as well.

Definition 2.2. An element x of a semigroup S is said to be (von Neumann) regular if
there exists y ∈ S such that xyx = x. A semigroup S is said to be regular if each element
of S is regular.

In particular, any semigroup (not necessarily a monoid) satisfying (2.1) and (2.2) is a
regular semigroup. Any band is clearly a regular semigroup. But not every band is a left
regular band. This is an unfortunate overuse of the term “regular” in semigroup theory.
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The class of left regular bands, being defined by identities, is a variety of bands. It
is known (cf. [76, Proposition 7.3.2]) to be generated as a variety by the band {0,+,−}
where 0 is the identity element and the binary operation ◦ is given by

+ ◦ + = + ◦ − = + and − ◦ + = − ◦ − = −.

Important examples of left regular bands arising in combinatorics are real and complex
hyperplane face semigroups, oriented matroids, matroids and interval greedoids. Other
interesting examples will be seen in Section 3.

One can characterize the bands that are left regular as those for which the left ideals
are also right ideals (and thus they are two-sided ideals).

Lemma 2.3. A band B is left regular if and only if each principal left ideal of B is a
two-sided ideal of B.

Proof. Suppose B is left regular and let Ba be a principal left ideal of B. For xa ∈ Ba
and b ∈ B, we have (xa)b = x(ab) = x(aba) = (xab)a ∈ Ba. Thus, Ba is also a right
ideal of B.

Conversely, suppose every principal left ideal is also a right ideal. Let a, b ∈ B; we
need to prove aba = ab. Since Ba is a principal left ideal, it is also a right ideal. Thus,
ab ∈ Ba and so there exists x ∈ B such that ab = xa. Since a2

= a for all a ∈ B, we
have aba = xaa = xa = ab. ut

2.2. Support lattice and the support map

If B is a band (which is a monoid by our conventions), then it was shown by Clif-
ford [31, 32] that the principal ideals are closed under intersection and hence form a
(meet) semilattice 3(B) with maximum. More precisely, he proved that BaB ∩ BbB =
BabB and hence σ : B → 3(B) given by σ(a) = BaB is a monoid homomorphism. It
is known that σ is the universal map from B to a semilattice.

If B is a finite left regular band, then 3(B) is the set of principal left ideals, which is
a lattice under inclusion with intersection as the meet. Following the standard convention
of lattice theory, we denote by 1̂ the top of 3(B) (which is B itself) and by 0̂ the bottom
(called the minimal ideal of B). Brown calls3(B) the support lattice of B [23, 24] (actu-
ally, he uses the opposite ordering). The map σ : B → 3(B) above becomes σ(a) = Ba
and is called the support map. It is possible to give a definition of left regular bands in
terms of the support map; see e.g. [23, Appendix B] for a proof of the following.

Proposition 2.4. A finite monoid M is a left regular band if and only if there exist a lat-
tice 3 and a surjection σ : M → 3 satisfying the following properties for all x, y ∈ M:

σ(xy) = σ(x) ∧ σ(y), (2.3)
xy = x if and only if σ(y) ≥ σ(x), (2.4)

where ∧ denotes the meet operation (greatest lower bound) of the lattice 3.

In semigroup parlance, this is the well known fact that a left regular band is the same
thing as a semilattice of left zero semigroups.
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2.3. Green’s R-order

LetM be a monoid. Green’s R-preorder is defined onM by m ≤R n if mM ⊆ nM . The
associated equivalence relation is denoted R and is one of Green’s relations on a monoid.
See [32, 46].

If B is a band, one has aB ⊆ bB if and only if ba = a. Hence,

a ≤R b if and only if ba = a.

In a left regular band, if ba = a and ab = b, then a = aba = ab = b. It follows that a left
regular band B is partially ordered with respect to ≤R . (In fact, a band is left regular if
and only if ≤R is a partial order.) We call this partial order the R-order on B and denote
it simply by ≤. Note that the support map σ : B → 3(B) is order-preserving: if a ≤ b,
then σ(a) ≤ σ(b). Figures 1, 3 and 4 illustrate the R-order on three examples.

The following is a special case of an elementary result of Rhodes [75].

Lemma 2.5. Let B be a left regular band with support map σ : B → 3(B).

(1) If b0 < b1 < · · · < bn in B, then σ(b0) < σ(b1) < · · · < σ(bn).
(2) If X0 < X1 < · · · < Xn is a chain in3(B), then there is a chain b0 < b1 < · · · < bn

in B with σ(bi) = Xi for all 0 ≤ i ≤ n.

Proof. For the first statement, it suffices to observe that if a ≤ b and σ(a) = σ(b), then
a = ba = b. For the second statement, choose ai with σ(ai) = Xi for 0 ≤ i ≤ n, and
define bi = anan−1 · · · ai for 0 ≤ i ≤ n. ut

2.4. Local, induced and interval submonoids

If X ∈ 3(B), then
B≥X = {b ∈ B | σ(b) ≥ X}

is a submonoid of B. The set B6≥X = B \ B≥X is a prime ideal of B and all prime ideals
of B are obtained in this way. (Recall that an ideal P is prime if ab ∈ P implies a ∈ P
or b ∈ P .)

Note that
a↑ = {b ∈ B | b ≥ a} = {b ∈ B | ba = a}

is a submonoid of B, in fact, it is the left stabilizer of a. Notice that if a ∈ B, then
aB = aBa is a left regular band with identity a and the map b 7→ ab gives a retraction
τa : B → aB. The monoid aB is called the local submonoid of B at a. One has3(aB) =
3(B)≤σ(a), the principal downset of3(B) generated by σ(a). If σ(a) = X = σ(b), then
aB ∼= bB via the restriction of τa to bB and the restriction of τb to aB. The corresponding
left regular band (well-defined up to isomorphism) will be denoted B[X] and called the
induced submonoid on X.

If X ≤ Y in 3(B), then B≥X[Y ] ∼= B[Y ]≥X and this left regular band will be de-
noted B[X, Y ]. It has support lattice the interval [X, Y ] of 3(B). Hence we shall call
B[X, Y ] the interval submonoid of B associated to [X, Y ]. Of course, B [̂0, X] = B[X]
and B[X, 1̂] = B≥X. It will be convenient to denote by B[X, Y ) the ideal of B[X, Y ]
obtained by removing the identity.
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3. Examples of left regular bands

This section surveys some examples of left regular bands. We illustrate how several of
the examples of left regular bands found in the combinatorics literature are special cases
of certain semigroup-theoretic constructions; and we introduce a new class of examples:
free partially commutative left regular bands.

3.1. Free left regular bands

The free left regular band on a set A is denoted F(A), and the free left regular band on
n-generators will be written Fn. The word problem for F(A) is quite elegant. Let A∗ de-
note the free monoid onA. One can view F(A) as consisting of all injective words overA,
i.e., those elements of A∗ with no repeated letters. Multiplication is given by concatena-
tion followed by removal of repetitions (reading from left to right). In particular, if A is
finite, then so is F(A). Hence any finitely generated left regular band is finite (actually
any finitely generated band is finite). The support lattice of F(A) can be identified with
the power set P(A) with the operation of union. The support map σ takes an injective
word to its content (or alphabet). If C ( B ⊆ A, then F(A)[B,C] ∼= F(B \ C).

cbacabbcabacacbabc

cbcabcbaacab

cba

1

{a, b, c}

{b, c}{a, c}{a, b}

{c}{b}{a}

∅

Fig. 1. The R-order and the support lattice of F({a, b, c}).

3.2. Hyperplane face monoids and oriented matroids

The set of faces of a hyperplane arrangement, and more generally the set of covectors of
an oriented matroid, is endowed with a natural associative product providing an important
source of examples of left regular bands. These turn out to be submonoids of {0,+,−}n,
where {0,+,−} is as defined in Section 2.1.

We recall the construction and properties of these left regular bands, referring the
reader to [23, Appendix A] for details. A central hyperplane arrangement in V = Rn is
a finite collection A of hyperplanes of V passing through the origin. For each hyperplane
H ∈ A, fix a labelling H+ and H− of the two open half-spaces of V determined by H ;
the choice of labels H+ and H− is arbitrary, but fixed throughout. For convenience, let
H 0
= H .
A face x of A is a non-empty intersection of the form x =

⋂
H∈AH

εH with εH in
{0,+,−}. Consequently, for every hyperplaneH ∈ A, a face of A is contained in exactly
one of H+, H− or H 0. If y is a face of A and H ∈ A, let εH (y) ∈ {0,+,−} be such that
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(000)

(+++)

(0++)

(−++)

(−+ 0)(−+−)(−0−)

(−−−)

(0−−)

(+−−)

(+− 0) (+−+) (+0+)

Fig. 2. The sign sequences of the faces of the hyperplane arrangement in R2 consisting of three
distinct lines.

(−−−)

(0−−)

(+−−)

(+− 0)

(+−+)

(+0+)

(+++)

(0++)

(−++)

(−+ 0)

(−+−)

(−0−)

(000)

Fig. 3. The R-order on the face monoid of Figure 2.

y ⊆ H εH (y). The sequence ε(y) = (εH (y))H∈A is called the sign sequence of y and it
completely determines y.

Let F denote the set of faces of A. The image of ε identifies F with a submonoid of
{0,+,−}A and so we obtain a monoid structure on F by defining the product of x, y ∈ F
to be the face with sign sequence ε(x)◦ε(y). In other words, xy is defined by the property
that xy lies: on the same side of H as x if x 6⊆ H ; on the same side of H as y if x ⊆ H ,
but y 6⊆ H ; and inside H if x, y ⊆ H . This product admits an alternative geometric
description: xy is the unique face—possibly x itself—containing the point obtained by
moving a small positive distance along a straight line from a point in x toward a point in y.

The left regular band F is called the face monoid of A. The lattice 3(F) of principal
left ideals of F is isomorphic to the intersection lattice L of A; it is the set of subspaces
of V that can be expressed as an intersection of hyperplanes from A ordered by reverse
inclusion. Under this isomorphism, the universal map σ : F → 3(F) corresponds to the
map from F to L that sends a face x to the smallest subspace

⋂
{H∈A|x⊆H }H ∈ L that

contains x. Observe that for X < Y in L, F[X, Y ] is the face monoid of the hyperplane
arrangement in X obtained by intersecting X with the hyperplanes H ∈ A containing Y
but not X.

3.2.1. Oriented matroids. An oriented matroid X is an abstraction of the properties
enjoyed by a configuration of vectors in a vector space over an ordered field (such as R),
or what amounts to the same thing by working instead with their orthogonal complements,
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a hyperplane arrangement. They are also submonoids of the left regular band {0,+,−}n

[16, §4.1], but not all submonoids of {0,+,−}n are oriented matroids (cf. §3.7). Much
of the monoid structure of X , as well as the structure of its monoid algebra, parallels the
theory for the face monoid of a hyperplane arrangement. See [25, §6] and [80, §11] for
details.

3.3. Complex hyperplane arrangements

In this section we describe a left regular band associated to a complex hyperplane arrange-
ment following [14] and [17]. All unproved assertions can be found in these references.

Define a left regular band structure on S = {0,+,−, i, j} via the multiplication table
in Figure 4. The Hasse diagram of the R-order of S is also depicted in Figure 4.

0 + − i j

0 0 + − i j

+ + + + i j

− − − − i j

i i i i i i

j j j j j j

0

+ −

i j

Fig. 4. The multiplication table and R-order of S.

Define a function s : C→ S by

s(x + iy) =



i if y > 0,
j if y < 0,
+ if y = 0, x > 0,
− if y = 0, x < 0,
0 if x = 0 = y.

A complex hyperplane arrangement is a set A = {H1, . . . , Hn} where Hi is the
zero set of a complex linear form fi on Cd for 1 ≤ i ≤ n. We always assume that
H1 ∩ · · · ∩ Hn = {0}. The position of a point z ∈ Cd relative to A can be described by
the map τ : Cd → Sn given by

τ(z1, . . . , zd) = (s(f1(z1)), . . . , s(fd(zd))).

The image F = τ(Cd) is a submonoid of Sn. Moreover, for each F ∈ F , τ−1(F ) is a
relatively open convex cone.

By identifying Cd with R2d , we consider the unit sphere S2d−1 of R2d as a subset of
Cd . Then the intersections τ−1(F )∩S2d−1 are the open cells of a regular CW decomposi-
tion of S2d−1, and the face poset of this decomposition is the opposite of the R-order on F
(where the identity corresponds to the empty face). See [17, Theorem 2.5] for details. For
this reason, elements of F will be called faces and we will call F the face monoid of A.
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The minimal ideal of F consists of all elements of F ∩ {i, j}n (cf. [14, Proposition 3.1]).
It is shown in [17, Theorem 3.5] that the R-order on the ideal F ∩ (S \ {0})n of F is
the face poset of a regular CW complex that is homotopy equivalent to the complement
Cd \ (H1 ∪ · · · ∪Hn).

The augmented intersection lattice L of A is the collection of all intersections of
elements of

Aaug = {H1, . . . , Hn, H
R
1 , . . . , H

R
n }

ordered by reverse inclusion. Here HRi = {z ∈ C
d
| s(fi(z)) ∈ {0,+,−}}, which is

a real hyperplane defined by =(fi(z)) = 0. One sees that L is the support lattice of F
and the support map takes F ∈ F to the intersection of all elements of Aaug containing
τ−1(F ) [14, Proposition 3.3]. The lattice L is a semimodular lattice of length 2d [14,
Proposition 3.2]. More generally, if X < Y in L then the length of the longest chain from
X to Y in L is dimX − dimY .

3.4. The Karnofsky–Rhodes expansion

If L is a lattice generated (under meet) by a finite set A, then there is a universal A-gener-
ated left regular band with support lattice L, known as the Karnofsky–Rhodes expansion
of L. Let us first describe the construction for monoids in general.

Let M be a monoid with generating set A; we do not assume A ⊆ M although we
treat it this way notationally. If w ∈ A∗, then [w]M will denote the image of w under the
canonical projection A∗ → M . Let 0A(M) be the right Cayley graph of M with respect
to the generators A; so 0A(M) is the digraph (or quiver, if you like) with vertex set M
and edge set M × A where the edge (m, a) goes from m to ma. We usually think of this
edge as being labelled by a and draw it

m
a
−→ ma.

Given any vertex m ∈ 0A(M) and word w ∈ A∗, there is a unique path labelled by w
with initial vertexm (the terminal vertex will bem[w]M ). We call this the path read by w
from m. Let us say that an edge e of 0A(M) is a transition edge if its initial and terminal
vertices are in different strongly connected components of 0A(M).

Define an equivalence relation on A∗ by writing u ≡ v if and only if:
• [u]M = [v]M ;
• the sets of transition edges visited by the paths read from 1 in 0A(M) by u and v

coincide.
It is known that ≡ is a congruence [40]; clearly it is contained in the kernel congruence
of the projection A∗ → M . The Karnofsky–Rhodes expansion of M with respect to gen-
erators A is given by M̂A = A

∗/≡. This construction is an endofunctor of the category of
A-generated monoids (with morphisms preserving generators). Moreover, the collection
of canonical projections ηM : M̂A→ M constitute a natural transformation to the identity
functor.

Suppose now that L is an A-generated meet semilattice with identity. Since each
strongly connected component of the Cayley graph of L has a unique vertex, the word
problem for L̂A is much simpler. Let w = a1 · · · an be in A∗ with the ai in A. We say that
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ai is a transition ofw if [a1 · · · ai−1]L > [a1 · · · ai]L. The empty string has no transitions.
Notice that a1 is a transition if and only if [a1]L 6= 1. The transitions of w are exactly the
labels of the transition edges visited in 0A(L) by the path read from 1 by w.

We say that w is reduced if either it is empty, or all its letters are transitions. In other
words, w = a1 · · · an is reduced if and only if

1 > [a1]L > [a1a2]L > · · · > [a1 · · · an]L.

Define the reduction reduce(w) to be the word obtained from w by erasing all its let-
ters that are not transitions. Notice that w is reduced if and only if w = reduce(w).
It is easy to see from the definition of the Karnofsky–Rhodes expansion that w and
reduce(w) represent the same element of L̂A and that distinct reduced words represent
distinct elements of L̂A. Thus L̂A can be viewed as the set of reduced words with product
vw = reduce(vw). It is routine to verify that L̂A is a left regular band and ηL : L̂A → L

is the support map. It follows from the universal property of the Karnofsky–Rhodes ex-
pansion given by Elston [40] that if B is any A-generated left regular band with support
lattice L (with the support map σ the identity on A), then there is a unique surjective
homomorphism ϕ : L̂A→ B such that the diagram

L̂A
ϕ //

ηL
  

B

σ
��

L

commutes.

Remark 3.1. Ken Brown [23] considers reduced words as part of his proof of the diag-
onalizability of random walks on left regular bands. His proof essentially boils down to
showing that a random walk on a Karnofsky–Rhodes expansion of a semilattice is diago-
nalizable and then deducing the result for arbitrary left regular bands from this case.

We now consider some examples. Nearly all of these examples can be found in Brown’s
paper [23].

Example 3.2 (Free left regular band). Consider the free semilattice on a finite set A;
it is the power set P(A) ordered by reverse inclusion (and so the operation is union).
Then a letter ai of w = a1 · · · an is a transition if and only if ai /∈ {a1, . . . , ai−1}.
Thus the reduced words are precisely the injective words. If w is an arbitrary word, then
reduce(w) is obtained from w by removing repeated letters (reading from left to right).
Thus P̂ (A)A = F(A). One can also easily deduce this from the universal property.

Example 3.3. The following example is from [23, Section 5.1]. Let F n be the quotient
of Fn that identifies an injective word w of length n− 1 with the unique injective word of
length nwithw as a prefix. LetL(n) be the quotient of the free semilattice on n-generators
that identifies all subsets of size n− 1 with the subset of size n. Then F n = L̂(n)A where
A = {1, . . . , n}.
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Example 3.4 (q-analogue). Next we consider the example from [23, Section 1.4]. Let q
be a prime power and let Fq denote the field of q elements. Define Fn,q to consist of all
ordered linearly independent subsets (x1, . . . , xs) of Fnq with product

(x1, . . . , xs)(y1, . . . , yt ) = (x1, . . . , xs, y1, . . . , yt )
∧

where ∧ means delete any vector that is linearly dependent on the preceding vectors.
Set L(n, q) to be the lattice of subspaces of Fnq ordered by reverse inclusion and put
A = Fnq \ {0}. Define σ : A→ L(n, q) by sending a vector v 6= 0 to the one-dimensional

subspace it spans. Then it is easy to see that L̂(n, q)A = Fn,q .

Example 3.5 (Matroids). The following example is from [23, Section 6.2]. Let M be
a matroid with underlying set E; see [70] for the basic definitions. The associated mon-
oidM consists of all ordered independent subsets (x1, . . . , xs) of E. The product is given
by

(x1, . . . , xs)(y1, . . . , yt ) = (x1, . . . , xs, y1, . . . , yt )
∧

where ∧ means delete any element that depends on earlier elements. Let A be the set of
non-loops of E and let L be the lattice of flats of M ordered by reverse inclusion. Let
σ : A → L be given by sending a ∈ A to its closure. Then it is not hard to check that
M = L̂A.

Example 3.6 (Interval greedoids). Let L be a semimodular lattice and let E be the set
of join-irreducible elements of L. Make L a monoid via the join operation. Then the dual
lattice L∨ is a meet semilattice. Björner [14] associates an interval greedoid and a left
regular band to the pair (L,E). It is easy to see that his left regular band is the submonoid
of L̂∨E consisting of those reduced words whose associated chain consists of covers in
the order.

Notice that if L is an A-generated lattice, X ∈ L and A≥X denotes the set of elements of
A which are above X, then (L̂A)≥X = (L̂≥X)A≥X .

3.5. The Rhodes expansion

Next we consider the Rhodes expansion of a lattice. The notion is defined more generally
for monoids (cf. [88]). Let L be a finite lattice with top 1̂, which we view as a monoid via
its meet. If X ⊆ L and e ∈ L, then write eX = {ex | x ∈ X}. If X ⊆ L is a chain, then
minX denotes the minimum element of X. The (monoidal right) Rhodes expansion of L
is the set L̂ of all chains of L containing 1̂ with the multiplication

X · Y = X ∪ (minX)Y.

More explicitly, the product is given by

(̂1 > x1 > · · · > xn) · (̂1 > y1 > · · · > ym)

= reduce(̂1 > x1 > · · · > xn ≥ xny1 ≥ · · · ≥ xnym)

where ‘reduce’ means to remove repetitions. The identity is the chain consisting only of 1̂.
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It is not hard to see that the monoid discussed in [23, Section 5.2] and the monoid S
associated to a matroid in [23, Section 6.2] are submonoids of Rhodes expansions of
lattices.

3.6. Free partially commutative left regular bands

If 0 = (V ,E) is a simple graph, then the free partially commutative left regular band
associated to 0 is the left regular band B(0) with presentation

〈V | xy = yx for all (x, y) ∈ E〉.

This is the left regular band analogue of free partially commutative monoids (also called
trace monoids or graph monoids [28, 36]) and of free partially commutative groups (also
called right-angled Artin groups or graph groups [10]). For example, if 0 is a complete
graph, then B(0) is the free semilattice on the vertex set of 0, whereas if 0 has no edges,
then B(0) is the free left regular band on the vertex set.

The Tsetlin library Markov chain can be modelled as a hyperplane random walk, but
is most naturally a random walk on the free left regular band (see [23, 24]). Similarly,
the random walk on acyclic orientations of a graph considered by Athanasiadis and Dia-
conis [6] as a function of a hyperplane walk is most naturally a random walk on a free
partially commutative left regular band.

Let us first solve the word problem for B(0). We need to determine when two el-
ements of F(V ) yield the same element of B(0). It turns out that two injective words
represent the same element of 0 if and only if they represent the same element of the
trace monoid associated to 0. We will not assume, however, prior knowledge of trace
theory.

It will be convenient to denote by 0 the complementary graph of 0 = (V ,E). If
W ⊆ V , then 0[W ] denotes the induced subgraph of 0 with vertex set W , and 0[W ] the
induced subgraph of 0 with vertex set W . Note that 0[W ] = 0[W ].

If w ∈ F(V ) with support σ(w) ⊆ V , then define an acyclic orientation O(w) of
0[σ(w)] by directing the edge (x, y) from x to y if x comes before y in w. The following
theorem is inspired by [36, Theorem 2.36].

Theorem 3.7. Let 0 = (V ,E) be a graph. Two elements v,w ∈ F(V ) are equal in B(0)
if and only if σ(v) = σ(w) and O(v) = O(w). Moreover, if W ⊆ V and O is an acyclic
orientation of 0[W ], then O = O(w) if and only if σ(w) = W and w is a topological
sorting of the directed graph (0[W ],O).

Proof. Suppose first σ(v) = σ(w) and O(v) = O(w); call this orientation O. By con-
struction, it follows that v and w are topological sortings of (0[W ],O). But it is well
known that any two topological sortings of an acyclic digraph can be obtained from each
other by repeatedly transposing consecutive vertices which are not connected by an edge
(cf. [36, Lemma 2.3.5]). Thus the defining relations of B(0) let us transform v tow (since
vertices not connected by an edge of 0 commute in B(0)). We conclude that v and w are
equal in B(0).
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For the converse, first note that the support map σ : F(V ) → P(V ) factors through
B(0), and so if v and w are equal in B(0), then σ(v) = σ(w); call this common
support W . To verify that O(v) = O(w), it suffices to show that if (x, y) is an edge
of 0[W ], then x and y appear in the same order in both v and w. Define a mapping
τ : V → {0,+,−} by

τ(z) =


+ if z = x,
− if z = y,
0 else.

Since (x, y) is not an edge of 0, it follows that if (s, t) ∈ E, then at least one of s
and t maps to 0. Thus τ extends to a homomorphism τ : B(0) → {0,+,−} and so
τ(v) = τ(w). But clearly τ(v) is + if x appears before y, and − if y appears before x,
and similarly for w. Thus O(v) = O(w). ut

It follows from the theorem that we can identify B(0) with the set of pairs (W,O) where
W ⊆ V and O is an acyclic orientation of 0[W ]. A vertex v ∈ V is identified with the
trivial acyclic orientation on the induced subgraph 0[{v}], which contains no arrows. The
product is then given by

(W1,O1)(W2,O2) = (W1 ∪W2,O)

where O is the orientation satisfying (x, y) ∈ O if (x, y) ∈ O1, or if x ∈ W1 and
y ∈ W2 \W1, or if x, y ∈ W2 \W1 and (x, y) ∈ O2. The support lattice is P(V ) ordered
by reverse inclusion. The minimal ideal consists of the acyclic orientations of 0.

If v ∈ V and (V ,O) is an acyclic orientation of 0, then v · (V ,O) is the orientation
of 0 that orients all edges containing v away from v and which otherwise agrees with O.
Thus the random walk on the minimal ideal of B(0) driven by a probability supported on
V is exactly the random walk on acyclic orientations of 0 considered by Athanasiadis and
Diaconis [6]. The computation of the spectrum and the bounds on the rate of convergence
to stationary can be more easily computed using this monoid. Actually, as in the case of
the Tsetlin library (which corresponds to 0 having no edges), to obtain the best bounds
on the rate of convergence, one should use the quotient of B(0) that identifies the image
of a word in F(V ) of length |V | − 1 with the unique word of length |V | containing that
word as a prefix.

If U ( W ⊆ V , then one easily verifies B(0)[W,U ] ∼= B(0[W \ U ]). Thus the
interval submonoids of B(0) are precisely the free partially commutative monoids on
induced subgraphs of 0.

3.7. Geometric and right hereditary left regular bands

We say that a left regular band B is geometric if a↑ = {b ∈ B | b ≥ a} is commutative
(and hence a lattice under the order ≤ with the meet given by the product) for all a ∈ B.
For example, {0,+,−} is geometric. The class of geometric left regular bands is closed
under taking direct products and submonoids. Therefore, the left regular bands associated
to hyperplane arrangements and oriented matroids are geometric, whence the name. If B
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is geometric, then so is any local submonoid and interval submonoid of B. An example
of a non-geometric left regular band is obtained by taking any left regular band which
is not a lattice and adjoining a multiplicative zero. However, almost all the left regular
bands appearing so far in the algebraic combinatorics literature are geometric. The main
exception is the class of complex hyperplane arrangement face monoids discussed above.

Let us say that B is right hereditary if the Hasse diagram of the order ≤ is a tree. For
example, the free left regular band is right hereditary, as are the Rhodes and Karnofsky–
Rhodes expansions of a lattice. In particular, the left regular bands associated by Brown
to matroids (Example 3.5) and by Björner to interval greedoids (Example 3.6) are right
hereditary.

Notice that if B is right hereditary, then so are its submonoids, as well as its local sub-
monoids and interval submonoids. Clearly, a left regular band B which is right hereditary
is geometric since each poset of the form a↑ is a chain. The reason for the terminology
‘right hereditary’ is that a left regular band B is right hereditary if and only if each right
ideal of B is projective in the category of right B-sets [39]. This is an amusing coinci-
dence of terminology since we shall see later that the algebra of a right hereditary, left
regular band over a field is hereditary in the ring-theoretic sense!

Free partially commutative left regular bands are also geometric. This follows from
the proof of Theorem 3.7, which shows that B(0) embeds in {0, 1}V ×{0,+,−}E , where
E is the edge set of 0. In fact, a well-known result from trace theory [36, Proposi-
tion 5.5.1] implies that each subset a↑ of B(0) is a distributive lattice.

3.8. Left regular bands associated to acyclic quivers

Here we construct from any finite acyclic quiver Q a left regular band B≺Q whose monoid
algebra is isomorphic to the path algebra of Q. For quivers and their path algebras, we
adhere to the notation and conventions of [5].

Let Q = (Q0,Q1) be a finite acyclic quiver with vertex set Q0 and set of arrows Q1.
If α ∈ Q1, let s(α) denote its source and t (α) denote its target. A path in Q of length l
from v0 to vl is a sequence (v0 | α1, . . . , αl | vl), or (α1 · · ·αl) for brevity, satisfying:
αi ∈ Q1 for all 1 ≤ i ≤ l; s(α1) = v0; t (αi) = s(αi+1) for all 1 ≤ i < l; and t (αl) = vl .
If v ∈ Q0, we denote by εv the stationary (or empty) path (v || v) of length 0 with source
and target equal to v.

The path algebra kQ ofQwith coefficients in a commutative ring kwith unit consists
of formal k-linear combinations of paths in Q; the product of two paths is

(α1 · · ·αr)(β1 · · ·βs) =

{
(α1 · · ·αrβ1 · · ·βs) if t (αr) = s(β1),

0 if t (αr) 6= s(β1).

In particular,

εvεu = δv,uεv (3.1)

where δu,v = 1 if u = v and δu,v = 0 if u 6= v.
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Definition 3.8. Fix a total order ≺ on Q0 with the property that s(α) ≺ t (α) for every
arrow α in Q1. For a path (α1 · · ·αn) in Q, define

`(α1 · · ·αn) =
∑

u�t (αn)

εu +

n∑
i=1

(αi · · ·αn)

and let B≺Q denote the image of the paths of Q under the map `:

B≺Q = {`(α1 · · ·αn) | (α1 · · ·αn) is a path of Q}.

That such a total order exists follows from the assumption that Q is acyclic. Of course,
the definition depends on the choice of total order.

Proposition 3.9. Suppose (α1 · · ·αn) and (β1 · · ·βm) are two paths in Q.

(1) If t (αn) � t (βm), then

`(α1 · · ·αn) · `(β1 · · ·βm) = `(α1 · · ·αn).

(2) If there exists r such that t (αn) = s(βr), then

`(α1 · · ·αn) · `(β1 · · ·βm) = `(α1 · · ·αnβr · · ·βm).

(3) If there exists r such that s(βr−1) ≺ t (αn) ≺ s(βr), then

`(α1 · · ·αn) · `(β1 · · ·βm) = `(βr · · ·βm).

where s(β0) is understood as smaller than all vertices.

Proof. The product `(α1 · · ·αn) · `(β1 · · ·βm) expands as

∑
u�t (αn)

∑
v�t (βm)

εuεv +

n∑
i=1

∑
v�t (βm)

(αi · · ·αn)εv

+

m∑
j=1

∑
u�t (αn)

εu(βj · · ·βm)+

n∑
i=1

m∑
j=1

(αi · · ·αn)(βj · · ·βm).

Since εuεv = δu,vεu, it follows that

∑
u�t (αn)

∑
v�t (βm)

εuεv =

{∑
u�t (αn)

εu if t (αn) � t (βm),∑
v�t (βm)

εv if t (βm) � t (αn).

Since (αi · · ·αn)εv = δv,t (αn)(αi · · ·αn),

n∑
i=1

∑
v�t (βm)

(αi · · ·αn)εv =

{∑n
i=1(αi · · ·αn) if t (αn) � t (βm),

0 if t (αn) 6� t (βm).
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Since εu(βj · · ·βm) = δu,s(βj )(βj · · ·βm),

m∑
j=1

∑
u�t (αn)

εu(βj · · ·βm) =

{
0 if s(βj ) 6� t (αn) for all j,∑m
j=r(βj · · ·βm) if s(βr−1) ≺ t (αn) � s(βr).

Since (αi · · ·αn)(βj · · ·βm) = 0 unless t (αn) = s(βj ) for some 1 ≤ j ≤ m,
n∑
i=1

m∑
j=1

(αi · · ·αn)(βj · · ·βm)

=

{
0 if t (αn) 6= s(βj ) for all j,∑n
i=1 (αi · · ·αnβr · · ·βm) if t (αn) = s(βr) for some r.

The result now follows by combining these identities. ut

Theorem 3.10. B≺Q is a left regular band and kB≺Q = kQ.

Proof. We prove B≺Q is a left regular band using Proposition 2.4. Let 3 = (Q0,≺)
op de-

note the lattice with elementsQ0 ordered by the opposite of≺. Define a map σ : B≺Q→ 3

by σ(α1 · · ·αn) = t (αn). By Proposition 3.9, σ(xy) = σ(x) ∧ σ(y), where ∧ denotes
the meet operator of 3, and xy = x iff σ(x) � σ(y). Hence, the conditions of Propo-
sition 2.4 are satisfied. Note that B≺Q is a monoid with identity the stationary path at the
smallest object of Q0.

It is easy to see that B≺Q is a basis for kQ. Indeed, if we order the basis of paths
so that each suffix of a path is larger than the path itself and so that stationary paths of
vertices are ordered using ≺ in the obvious way, then the map sending a path (α1 · · ·αn)

to `(α1 · · ·αn) has an upper triangular matrix with ones along the diagonal. ut

Note that B≺Q is almost never a geometric left regular band.

3.9. Idempotent inner derivations

Let A be an associative algebra over a field k. For an element a ∈ A, let ∂a(x) = xa−ax
denote the associated inner derivation. The following was noticed by Lawvere in his work
on graphical toposes (see below).

Proposition 3.11 (Lawvere [57]). LetA be an associative algebra over a field k of char-
acteristic different from 2. The set of idempotent elements of A for which the associated
inner derivation is also idempotent,

{a ∈ A | a2
= a and ∂2

a = ∂a},

is a left regular band.

3.10. Graphical topos

Left regular bands have also appeared in topos theory. In [55, 56], Lawvere introduced a
class of toposes called graphical. A graphical topos is a topos which is generated by ob-
jects whose endomorphism monoid is a finite left regular band. The topos ofB-sets, where
B is a finite left regular band, is a graphical topos. Lawvere used a different name for
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left regular bands: he called them graphical monoids instead; and he named the identity
xyx = xy the Schützenberger–Kimura identity. The reason for the terminology ‘graph-
ical’ is that if B = {0,+,−}, then the category of B-sets can be identified with the
category of directed graphs with morphisms that are allowed to collapse an edge to a
vertex.

4. Applications of the main result

Since the proof of the main result is rather involved, we defer it to Sections 5 and 6. This
section is devoted to applications of the main result. We begin by stating the main result.
Fix a finite left regular band B and a commutative ring with unit k.

4.1. Statement of the main result

Let X ∈ 3(B). Let kX denote the ring k viewed as a kB-module via the action

b · α =

{
α if σ(b) ≥ X,
0 otherwise,

for all b ∈ B and α ∈ k. These are the simple kB-modules when k is a field (Section
5.3). The main result of this paper is a computation of ExtnkB(kX,kY ) for all n ≥ 0 and all
X, Y ∈ 3(B). It turns out that this coincides with the cohomology of a simplicial complex
associated to a certain subsemigroup of B. Recall from Section 2.4 the definition of the
‘interval subsemigroup’ B[X, Y ) of B:

B[X, Y ) = {b ∈ B : X ≤ σ(b) and b <R y} ,

where y is a fixed element of B with σ(y) = Y , and ≤R is Green’s R-order (defined
in Section 2.3). Then B[X, Y ) is a subposet of B with respect to Green’s R-order. Let
1(B[X, Y )) be its order complex, which is the simplicial complex whose vertex set is
B[X, Y ) and whose simplices are the finite chains in B[X, Y ).

Our main result is the following theorem.

Theorem 4.1. Let B be a finite left regular band and let k be a commutative ring with
unit. Let X, Y ∈ 3(B). Then

ExtnkB(kX,kY ) =


H̃ n−1(1(B[X, Y )),k) if X < Y, n ≥ 1,
k if X = Y, n = 0,
0 otherwise.

4.2. The quiver of a left regular band

Assume for the moment that k is a field. Recall that a finite-dimensional k-algebra A
is split basic if each of its simple modules is one-dimensional. It is well known that
σ : kB → k3(B) is the semisimple quotient and k3(B) ∼= k3(B) (cf. [23]). Thus kB is
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a split basic k-algebra. The (Gabriel) quiver Q(A) of a unital split basic k-algebra A is
the directed graph with vertices the isomorphism classes of simple A-modules and with
the number of edges from S1 to S2 equal to dimk Ext1A(S1, S2).

The second author computed the quiver of a left regular band algebra in [78]. We
give a new description here, using Theorem 4.1, which is more conceptual and therefore
sometimes easier to apply.

Theorem 4.2. Let B be a finite left regular band and k a field. Then the quiver Q(kB)
has vertex set 3(B). The number of arrows from X to Y is zero unless X < Y , in which
case it is one less than the number of connected components of 1(B[X, Y )).

It is not hard to see that the number of connected components of the order complex1(P )
of a poset P coincides with the number of equivalence classes of the equivalence relation
on P generated by the partial order, or equivalently, with the number of components of
the Hasse diagram of P . From this observation, it is straightforward to verify that our
description of the quiver Q(kB) coincides with the one in [78].

Let A be a split basic algebra with an acyclic quiverQ. A result of Bongartz [18] says
that if S1, S2 are the simple A-modules corresponding to vertices v1 and v2 ofQ, then the
number of relations involving paths from v1 to v2 in a minimal quiver presentation of A
is the dimension of Ext2A(S1, S2). Thus Theorem 4.1 admits the following corollary.

Corollary 4.3. If X < Y in 3(B), then the number of relations involving paths from X

to Y in a minimal quiver presentation of kB is given by dimk H̃ 1(1(B[X, Y )),k).

4.3. Global dimension of left regular band algebras

Let us next apply Theorem 4.1 to global dimension. For a detailed discussion of global
dimension the reader is referred to [5, 9, 27].

The notion of global dimension can be formulated in terms of either left modules
or right modules, but it is well known that these two formulations coincide for a finite-
dimensional algebraA over a field k. Thus, it suffices to define the notion for left modules.

The global dimension gl.dimA of a finite-dimensional algebra A over a field k is the
least n such that Extn+1

A (V ,W) = 0 for all finite-dimensionalA-modules V,W . A simple
induction on the length of a composition series and application of the long exact sequence
for Ext shows that gl.dimA is the least n such that Extn+1

A (S1, S2) = 0 for all simple
A-modules S1, S2, or equivalently the least n such that ExtmA(S1, S2) = 0 for all m > n

and all simple A-modules S1, S2 [5, 7, 9].
An algebra A has global dimension zero if and only if it is semisimple. A finite-

dimensional algebra A is said to be hereditary if gl.dimA ≤ 1. This is equivalent to the
property that each submodule of a projective A-module is projective, as well as to the
property that each left ideal of A is a projective module. It follows from a theorem of
Gabriel that a split basic k-algebra (such as the algebra of a finite left regular band) is
hereditary if and only if its quiver is acyclic and it is isomorphic to the path algebra of its
quiver (see [5, Theorem VII.1.7], [9, Proposition 4.2.5], or [7]).
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Let B be a finite left regular band. Nico’s results [66, 68] on global dimension of
the algebra of a regular semigroup (Definition 2.2) imply that the global dimension of
kB is finite and bounded by the length of the longest chain in 3(B) where the length
of a chain C in a poset is |C| − 1. This can also be deduced from the theory of quasi-
hereditary algebras [33] because kB is a directed quasi-hereditary algebra with weight
poset the opposite of 3(B) [62, 72]. We easily recover Nico’s result, restricted to left
regular bands, using Theorem 4.1.

Theorem 4.4. Let B be a finite left regular band and k a field. Then

gl.dimkB = min{n | H̃ n(1(B[X, Y )),k) = 0 for all X < Y ∈ 3(B)}.

In particular,
gl.dimkB ≤ m

where m is the length of the longest chain in 3(B).

Proof. The first statement on global dimension is immediate from Theorem 4.1. If P is
a finite poset, then the dimension of 1(P ) is the length of the longest chain in P . By
Lemma 2.5 the longest chain in 1(B [̂0, 1̂)) has length m− 1. Therefore, for X < Y , one
has dim1(B[X, Y )) ≤ dim1(B [̂0, 1̂)) = m− 1 and so H̃m(1(B[X, Y )),k) = 0. Thus
gl.dimkB ≤ m. ut

As an immediate corollary, we obtain a characterization of those algebras kB that are
hereditary in terms of the order complex of B.

Corollary 4.5. kB is hereditary if and only if each connected component of each simpli-
cial complex 1(B[X, Y )), for X < Y ∈ 3(B), is acyclic.

It is well known that, for a finite-dimensional algebra A, the projective dimension of a
finite-dimensional A-module M is the least d such that Extd+1

A (M, S) = 0 for all simple
A-modules S. The global dimensionA coincides with the maximum projective dimension
of a simple A-module. Theorem 4.1 thus yields the following refinement of Theorem 4.4.

Corollary 4.6. Let B be a finite left regular band and let k be a field. Let X ∈ 3(B).
Then the projective dimension of kX is given by

proj.dimkX = min{n | H̃ n(1(B[X, Y )),k) = 0, ∀Y > X}.

4.4. Leray numbers and an improved upper bound

We can improve greatly on Nico’s upper bound on the global dimension in the case of left
regular bands. First we recall the notion of the Leray number of a simplicial complex. If
K is a simplicial complex with vertex set V and W ⊆ V , then the induced subcomplex
K[W ] is the subcomplex consisting of all simplices whose vertices belong to W .

The k-Leray number of a finite simplicial complex K with vertex set V is defined by

Lk(K) = min{d | H̃ i(K[W ],k) = 0, ∀i ≥ d, ∀W ⊆ V }.

See for instance [50, 51]. Originally, interest in Leray numbers came about because of
connections with Helly-type theorems [51, 58, 91]: the Leray number of a simplicial
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complex provides an obstruction for realizing the complex as the nerve of a collection of
compact convex subsets of Rd .

Leray numbers also play a role in combinatorial commutative algebra. Let K be a
simplicial complex with vertex set {x1, . . . , xn}. Recall that the face ideal IK of K is
the ideal of the polynomial ring k[x1, . . . , xn] generated by all square-free monomials
xi1 · · · xim with {xi1 , . . . , xim} not a face of K . The Stanley–Reisner ring of K over k is
k[x1, . . . , xn]/IK [87]. The k-Leray number of a simplicial complexK turns out to be the
Castelnuovo–Mumford regularity of the Stanley–Reisner ring of K over k [38, 51, 93].
Equivalently, the regularity of the ideal IK is Lk(K)+ 1 [50].

Theorem 4.4 implies the following upper bound on the global dimension of a left
regular band algebra.

Theorem 4.7. LetB be a finite left regular band and k a field. Then gl.dimkB is bounded
above by the Leray number Lk(1(B)) of the order complex of B.

4.5. Right hereditary left regular bands have hereditary algebras

To apply the bound of Theorem 4.7, we need the well-known notion of the clique complex
or flag complex of a graph. If 0 = (V ,E) is a simple graph, then the clique complex
Cliq(0) is the simplicial complex whose vertex set is V and whose simplices are the finite
cliques (subsets of vertices inducing a complete subgraph). Notice that 0 is the 1-skeleton
of Cliq(0) and that Cliq(0) is obtained by ‘filling in’ the 1-skeleton of every q-simplex
found in 0. If W ⊆ V , then Cliq(0)[W ] = Cliq(0[W ]).

As an example, let P be a poset. The comparability graph 0(P ) is the graph with
vertex set P and edge set all pairs (p, q) with p < q or q < p. It is immediate from the
definition that Cliq(0(P )) = 1(P ).

It is known that Lk(K) = 0 if and only if K is a simplex, and Lk(K) ≤ 1 if and
only if K is the clique complex of a chordal graph (cf. [58, 91]). Recall that a graph 0 is
chordal if it contains no induced cycle of length greater than or equal to 4. Of course, any
induced subgraph of a chordal graph is chordal. Let us sketch a proof.

Proposition 4.8 (folklore). LetK be a finite simplicial complex. Then Lk(K) ≤ 1 if and
only if K is the clique complex of a chordal graph. Moreover, Lk(K) = 0 if and only if
K is a simplex.

Proof. Since every induced subcomplex of a simplex is a simplex, clearly the Leray num-
ber of a simplex is 0.

Suppose that Lk(K) ≤ 1. Then K is the clique complex of its 1-skeleton 0. Other-
wise, there is a clique W in 0 which is not a simplex. Necessarily |W | ≥ 3. If we choose
W to be of minimal size, then the induced subcomplex K[W ] is topologically a sphere of
dimension |W |−2. Thus Lk(K) ≥ |W |−1 ≥ 2. ThusK is the clique complex of 0. IfK
is not a simplex, then there is a pair {v,w} of vertices which do not form an edge. The in-
duced subcomplexK[{v,w}] is not connected and so Lk(K) > 0. Therefore, Lk(K) = 0
implies K is a simplex. Next suppose that Cn is an induced n-cycle in 0 with n ≥ 4.
Then since Cliq(Cn) = Cn and H̃ 1(Cn,k) ∼= k, it follows that Lk(Cliq(0)) ≥ 1. Thus
Lk(Cliq(0)) ≤ 1 implies 0 is chordal.
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For the converse, it suffices to show that every connected chordal graph 0 = (V ,E)
has a contractible clique complex (cf. [38, Lemma 3.1]). This is done by induction on
the number of vertices of 0. The proof relies on a classical result of Dirac [37] and of
Boland and Lekkerkerker [58] that every chordal graph has a simplicial vertex v, that is,
a vertex v whose neighbors form a clique. By induction Cliq(0[V \ {v}]) is contractible.
LetX be the set of neighbors of v. ThenX is a simplex of Cliq(0[V \ {v}]) and Cliq(0) is
obtained from Cliq(0[V \ {v}]) by attaching the simplex Y = X ∪ {v} along the facet X.
Thus we can collapse Y into X, yielding a simple homotopy equivalence of Cliq(0) and
Cliq(0[V \ {v}]). This completes the proof. ut

From Proposition 4.8, it follows that the bound in Theorem 4.4 is not tight. Indeed, if L is
a finite lattice, viewed as a left regular band via the meet operation, then gl.dimkL = 0,
but unless L is a chain, its order complex is not a simplex. However, Theorem 4.4 is tight
for right hereditary left regular bands.

Theorem 4.9. Let B be a finite left regular band and k a field. Suppose that the Hasse
diagram of B is a rooted tree, i.e., B is right hereditary. Then kB is hereditary.

Proof. It is well known that the comparability graph of a poset whose Hasse diagram is
a rooted tree is chordal. In fact, it is known that a finite graph has no induced simple path
on four nodes and no induced cycle on four nodes if and only if it is the comparability
graph of a finite poset whose Hasse diagram is a disjoint union of rooted trees [92]. The
idea is that any simple path of length 3 of the form a < b < c or a > b > c has a chord
in the induced subgraph. In a disjoint union of rooted trees, there are no simple paths of
the form a > b < c. ut

Since the free left regular band is right hereditary, this provides a conceptual proof that
the algebra of a free left regular band is hereditary, a result first proved by K. Brown using
quivers and a counting argument [78, Theorem 13.1]. We shall momentarily give another,
more transparent proof of Theorem 4.9, which also makes it simple to compute the quiver
of a right hereditary left regular band.

4.6. Geometric left regular bands and commutation graphs

Suppose now that B is a finite geometric left regular band. Since this class is closed under
taking interval submonoids, we can restrict our attention to 1(B [̂0, 1̂)). We provide a
simplicial complex homotopy equivalent to 1(B [̂0, 1̂)), using the following special case
of Rota’s cross-cut theorem (see the survey paper of Björner [13]). A proof is given for
completeness in Corollary 6.8 below.

Theorem 4.10 (Rota). Let P be a finite poset such that any subset of P with a common
lower bound has a meet. Define a simplicial complex K with vertex set the set M (P ) of
maximal elements of P and with simplices those subsets of M (P ) with a common lower
bound. Then K is homotopy equivalent to the order complex 1(P ).

Let M (B) be the set of maximal elements ofB\{1} and let 0(M (B)) be the commutation
graph of M (B), that is, the graph whose vertex set is M (B) and whose edges are pairs
(a, b) such that ab = ba.
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Theorem 4.11. Let B be a finite geometric left regular band. Then 1(B [̂0, 1̂)) is homo-
topy equivalent to the clique complex Cliq(0(M (B))) of the commutation graph of the
set M (B) of maximal elements of B \ {1}.

Proof. In a finite geometric left regular band, a subset A ⊆ B has a lower bound if and
only if the elements of A all mutually commute, in which case A has a meet, namely
the product of all elements of A. The result now follows from Rota’s cross-cut theorem
(Theorem 4.10), and the definition of the commutation graph. ut

Theorem 4.11 can be used to give another proof that if a left regular band B is right hered-
itary, then kB is hereditary. This proof also leads to an easy computation of the quiver.

Theorem 4.12. Let B be a finite left regular band that is right hereditary and let k be a
field. Then kB is hereditary. The quiverQ(kB) has vertex set3(B). The number of edges
from X to Y is zero unless X < Y . If X < Y , choose eY ∈ B with σ(eY ) = Y . Then the
number of edges from X to Y is one less than the number of children of eY with support
greater than or equal to X.

Proof. If X < Y , then B[X, Y ] is also right hereditary and M (B[X, Y ]) consists of
the children of eY with support greater than or equal to X. Since the Hasse diagram of
B[X, Y ] is a tree, no two elements of M (B[X, Y ]) have a common lower bound and
hence 0(M (B[X, Y ])) has no edges, and so in particular is its own clique complex. Thus
H̃ 0(1(B[X, Y ))) = |M (B[X, Y ])| − 1 and H̃ n(1(B[X, Y ))) = 0 for all n ≥ 1 by
Theorem 4.11. The result now follows immediately from Theorem 4.4. ut

Theorem 4.12 covers the algebras of nearly all the left regular bands considered by
K. Brown [23], except the hyperplane semigroups. It also covers the interval greedoid
left regular bands of Björner [14].

Corollary 4.13. The algebra kFn is hereditary over any field k. The quiver Q(kFn) has
vertex set the subsets of {1, . . . , n}. If X ) Y , then there are |X \ Y | − 1 edges from X

to Y . There are no other edges.

The quiver of kF3 is depicted in Figure 5.

{a, b, c}

>> ``

HHVV BB

{a, b}

dd

{a, c}

]]

{b, c}

::

{a}{b}{c}

∅

Fig. 5. The quiver of kF({a, b, c}) (cf. Figure 1).
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Proof. The free left regular band is right hereditary. If X ) Y and w is a word with
support Y , then the children ofw with support greater than or equal toX are the wordswx
with x ∈ X \ Y . This completes the proof. ut

Let us generalize the above result to Karnofsky–Rhodes expansions.

Corollary 4.14. Let L be a finite lattice with monoid generating set A and let k be a
field. Let L̂A be the Karnofsky–Rhodes expansion of L with respect to A. Then kL̂A is
hereditary. The quiver of kL̂A has vertex set L. The number of edges from X to Y is zero
unless X < Y , in which case it is one less than the number of elements a ∈ A such that
X ≤ Y ∧ a < Y .

Proof. Again, L̂A is right hereditary. If w is a reduced word with support Y , then the
children ofw with support greater than or equal toX are the wordswa such that Y∧a < Y

and Y ∧ a ≥ X. ut

Similarly, the Rhodes expansion of a lattice is right hereditary and one can explicitly
write down its quiver. The number of edges from X to Y when X < Y is one less than the
number of elements Z ≥ X which are covered by Y .

Remark 4.15. One can alternatively prove Theorem 4.12 via a counting argument using
the description above of the quiver and Gabriel’s theorem. Indeed, kB is a quotient of
the path algebra of its quiver; by counting the number of paths in the quiver, it follows
that the dimension of the path algebra is equal to the dimension of kB. As a result, the
two algebras are isomorphic and so kB is hereditary. This argument was first used by
K. Brown to prove that the algebra of the free left regular band is hereditary; for details,
see [78, Theorem 13.1].

4.7. Free partially commutative left regular bands

We prove that the global dimension of a free partially commutative left regular band is
the Leray number of the clique complex of the corresponding graph. This gives a new
interpretation of the Leray number of a clique complex in terms of non-commutative
algebra.

Theorem 4.16. Let 0 = (V ,E) be a finite graph and k a commutative ring with unit.
Then, for W ( U ⊆ V , we have

ExtnkB(0)(kU ,kW ) = H̃
n−1(Cliq(0[U \W ]),k)

for n ≥ 1.

Proof. Since B(0)[U,W ] = B(0[U \ W ]), we may assume without loss of generality
that W = ∅ and U = V . The maximal elements of B(0) \ {1} are the elements of V .
The commutation graph for this set is exactly 0. Since B(0) is a geometric left regular
band, we conclude 1(B(0)[̂0, 1̂)) is homotopy equivalent to Cliq(0) by Theorem 4.11.
The theorem now follows from Theorem 4.1. ut
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We present two immediate corollaries. The first characterizes the free partially commuta-
tive left regular bands with a hereditary k-algebra.

Corollary 4.17. If k is a field and 0 a finite graph, then the global dimension of kB(0)
is the k-Leray number Lk(Cliq(0)). In particular, kB(0) is hereditary if and only if 0 is
a chordal graph.

Our next corollary computes the quiver of the algebra of a free partially commutative left
regular band.

Corollary 4.18. Let 0 = (V ,E) be a finite graph. The quiver of kB(0) has vertex set
the power set of V . If U ) W , then the number of edges from U toW is one less than the
number of connected components of 0[U \W ]. There are no other edges.

Example 4.19. Corollary 4.13 can be recovered from these results by specializing to the
case that 0 has no edges.

Example 4.20. It is easy to see that if 0 is triangle-free, that is, has no 3-element cliques,
then Cliq(0) = 0 and so Lk(Cliq(0)) = 2 unless 0 is a forest (in which case 0 is
chordal). This provides a natural infinite family of finite-dimensional algebras of global
dimension 2.

Example 4.21. It is known that Lk(Cliq(0)) is bounded by the minimal number of
chordal graphs needed to cover 0 [93, Theorem 13]. If Cn is the cycle with n nodes
and Pn is the path with n nodes, then

Lk(Cliq(Cn)) = Lk(Cliq(P n)) =

⌊
n− 2

3

⌋
+ 1

for n ≥ 3 [93, Proposition 9]. If 01, 02 are two graphs, then

Lk(Cliq(01 ∗ 02)) = Lk(Cliq(01))+ Lk(Cliq(02))

where ∗ denotes the join of graphs [93, Lemma 8]. If 0 is chordal, then Lk(Cliq(0))
is the maximal size of an induced matching in 0 [93, Corollary 18]. If 0 is planar,
Lk(Cliq(0)) ≤ 3 [93, Proposition 23].

4.8. Hyperplane face monoids

We return to the setting of Section 3.2. Recall that A denotes a central hyperplane arrange-
ment in a d-dimensional real vector space, L its intersection lattice, and F its monoid of
faces. Without loss of generality, we can suppose that the intersection of all the hyper-
planes in A is the origin: otherwise quotient the vector space by this intersection; the
resulting monoid of faces is isomorphic to F .

We argue that 1(F [̂0, 1̂)) is a (d − 1)-sphere. Note that the R-order on F can be
described geometrically as y ≤ x if and only if x ⊆ y, where y denotes the set-theoretic
closure of y. This establishes an order-reversing bijection between the faces F and the
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cells of the regular cell decompositionΣ obtained by intersecting the hyperplane arrange-
ment with a sphere centred at the origin. The dual of Σ is the boundary of a polytope Z
(a zonotope, actually), and so the poset of faces of Z is isomorphic to F [25, Section 2E].
Since the order complex of the poset of faces of a polytope is the barycentric subdivision
of the polytope, it follows that 1(F [̂0, 1̂)) is a (d − 1)-sphere.

This argument also applies to 1(F[X, Y )) for X ≤ Y in L. Indeed, F[X, Y ] is the
face monoid of the hyperplane arrangement in X obtained by intersecting X with the
hyperplanes H ∈ A containing Y but not X. It follows that 1(F[X, Y )) is a sphere of
dimension dimX − dimY − 1. Consequently, we recover [80, Lemma 8.3].

Proposition 4.22. For X, Y ∈ L and n ≥ 0,

ExtnkF (kX,kY ) ∼=

{
k if Y ⊆ X and dimX − dimY = n,

0 otherwise.

Proof. We apply Theorem 4.1. Since 1(F[X, Y )) is a sphere of dimension dimX −

dimY − 1, it follows that H̃ n−1(1(F[X, Y )),k) is 0 unless dimX − dimY = n, in
which case it is k. ut

It follows that the quiver of kF coincides with the Hasse diagram of L ordered by reverse
inclusion.

Corollary 4.23 (Saliola [80, Corollary 8.4]). The quiver of kF has vertex set L. The
number of arrows from X to Y is zero unless Y ( X and dimX − dimY = 1, in which
case there is exactly one arrow.

In [80] a set of quiver relations for kF was described: for each interval of length two in L
take the sum of all paths of length two in the interval. It was also shown that kF is a
Koszul algebra and that its Koszul dual algebra is isomorphic to the incidence algebra of
the intersection lattice L.

4.9. Complex hyperplane face monoids

We show that the situation for complex hyperplane arrangements is similar to that of real
hyperplane arrangements. Things are slightly more complicated in this setting because
interval submonoids of complex hyperplane face monoids are not again complex hyper-
plane face monoids. So we have to exploit much more the PL structure of the cell complex
associated to the arrangement.

Fix a complex hyperplane arrangement A inCd with augmented intersection lattice L.
The main technical result we shall need is the following.

Proposition 4.24. LetX, Y ∈ L withX < Y . Then1(F[X, Y )) is a sphere of dimension
dimRX − dimR Y − 1.

Assuming for the moment the proposition, we obtain the following analogues of the re-
sults from the real case.
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Proposition 4.25. For X, Y ∈ L and n ≥ 0,

ExtnkF (kX,kY ) ∼=

{
k if Y ⊆ X and dimRX − dimR Y = n,
0 otherwise.

Proof. This is an application of Theorem 4.1. Since1(F[X, Y )) is a sphere of dimension
dimRX − dimR Y − 1 by Proposition 4.24, it follows that H̃ n−1(1(F[X, Y )),k) is 0
except when dimRX − dimR Y = n, in which case it is k. ut

An immediate consequence is that the quiver of kF coincides with the Hasse diagram
of L ordered by reverse inclusion, as was the case for real hyperplane arrangements.

Corollary 4.26. The quiver of kF has vertex set L. The number of arrows from X to Y
is zero unless Y ( X and dimX − dimY = 1, in which case there is exactly one arrow.

We now prove Proposition 4.24.

Proof of Proposition 4.24. Viewing Fop as the face poset of a regular CW decomposition
of S2d−1, one finds that Fop

≥X is the subcomplex of Fop corresponding to the intersection
X ∩ S2d−1 (see [14, Theorem 3.5 and the discussion preceding it]). In [17, Theorem 2.6],
it is shown that there is a real hyperplane arrangement A′ in R2d

= Cd such that the
regular CW complex decomposition of S2d−1 induced by A′ is a subdivision of the CW
decomposition associated to A. Recalling that X is a real subspace of Cd , it follows that
the subcomplexX∩S2d−1 has a subdivision coming from the real hyperplane arrangement
A′′ = {H ∩ X | H ∈ A′ and X * H } in X. Thus Fop

≥X is the face poset of a PL regular
CW decomposition of SdimR X−1 (cf. [16, Theorem 2.2.2]). Therefore, the order complex
1(Fop

≥X) is a PL sphere of dimension dimRX − 1 (cf. [16, Lemma 4.7.25]).
Fix F ∈ F with support Y . Let c be a maximal chain in Fop

≥X from the identity
to F . It follows from Lemma 2.5 that the length of c is the same as the length of the
interval [Y, 1̂] of L, which is dimR Y . Next we observe that 1(F[X, Y )op) is the link
of c in 1(Fop

≥X) and thus is a PL sphere of dimension dimRX − dimR Y − 1 by [16,
Theorem 4.7.21(iv)]. Since the order complex of a poset and its opposite are the same, we
have 1(F[X, Y )) ∼= SdimR X−dimR Y−1. ut

5. Proof of the main result: the algebraic component

We begin the proof of the main result. In this section, we develop the tools that will allow
us to recast the computation of ExtnkB(kX,kY ) into one involving monoid cohomology
and classifying spaces. No knowledge of monoid cohomology or classifying spaces is
required to read this section.

Let k be a commutative ring with unit and fix a finite left regular band B. We begin by
describing certain projective modules for a left regular band algebra. The most important
case is when k is a field, but it is conceivable that the case k = Zmay be of interest in the
future and so we do not restrict ourselves here. We use module unqualified to mean left
module.
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5.1. Orthogonal idempotents

Many of the results of the second author [78] from the case where k is a field generalize to
any commutative ring with unit. In particular, he constructed a complete set of orthogonal
idempotents that are defined over ZB. If k is a field, they are the primitive idempotents.
But they are useful in general since they give us a decomposition of kB into a direct sum
of projective modules.

Fix for each X ∈ 3(B) an element fX with X = BfX. Define eX recursively by
ê0 = f̂0 and, for X > 0̂,

eX = fX

(
1−

∑
Y<X

eY

)
. (5.1)

Notice that, by induction, one can write

eX =
∑
b∈B

cbb

with the cb integers such that fX ≥ b for all b with cb 6= 0, and the coefficient of fX in
eX is 1.

The following results are proved in [78, Lemma 4.1 and Theorem 4.2] when k is a
field, but the proofs of (1) and (2) make no use of this assumption.

Theorem 5.1. The elements {eX}X∈3(B) enjoy the following properties:

(1) if b ∈ B and X ∈ 3(B) are such that b ∈ B6≥X, then beX = 0;
(2) {eX}X∈3(B) is a complete set of orthogonal idempotents, that is, eXeY = δX,Y eX and∑

X∈3(B)

eX = 1;

(3) if k is a field, then eX is a primitive idempotent.

The following is [78, Corollary 4.4], but we must adapt the proof since we are not assum-
ing k is a field.

Corollary 5.2. The set {beσ(b) | b ∈ B} is a basis of idempotents for kB.

Proof. Since the map a 7→ ba is a homomorphism B → bB, it follows that left multi-
plication by b is a ring homomorphism kB → kbB and hence beσ(b) is an idempotent.
Consider the module homomorphism ϕ : kB → kB given by b 7→ beσ(b). By the remarks
before Theorem 5.1 and the fact that bfσ(b) = b, it follows that beσ(b) is an integral linear
combination of elements of bB and that the coefficient of b itself is 1. Thus if we order
B in a way compatible with the R-order, then the matrix of ϕ is unitriangular and hence
invertible over any commutative ring with unit. This establishes the corollary. ut

5.2. Schützenberger representations

Next we recall the classical (left) Schützenberger representation associated to an element
X ∈ 3(B). Let LX = σ−1(X); it is called an L -class in the semigroup theory litera-
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ture [32]. Define a kB-module structure on kLX by setting, for a ∈ B and b ∈ LX,

a · b =

{
ab if σ(a) ≥ X,
0 else.

It is proved by the second author [78] that kBeX ∼= kLX when k is a field. The
argument is easily adapted to the general case. Namely, with the use of Corollary 5.2, the
proof of [78, Lemma 5.1] goes through to show that {beX | σ(b) = X} is a k-basis for
kBeX. It is then shown in [78, Proposition 5.2] that the map ϕ : kLX → kBeX given by
b 7→ beX for b ∈ LX is a kB-module homomorphism. Since it sends a basis to a basis, it
is an isomorphism. Putting everything together we obtain the following theorem.

Theorem 5.3. Let B be a left regular band and k a commutative ring with unit. Then the
Schützenberger representations kLX with X ∈ 3(X) are projective and

kB ∼=
⊕

X∈3(B)

kLX.

If k is a field, then this is the decomposition of kB into projective indecomposables.

If X ∈ 3(B), there is a k-algebra homomorphism ρX : kB → kB≥X given by

ρX(b) =

{
b if σ(b) ≥ X,
0 else.

This homomorphism allows us to consider any kB≥X-module M as a kB-module via the
action b ·m = ρX(b)m for all b ∈ B and m ∈ M .

The kernel of ρX is the ideal kB 6≥X. If Y ≥ X, then kLY is a kB≥X-module and is
the corresponding projective module for kB≥X. We thus obtain the following corollary of
Theorem 5.3.

Corollary 5.4. If X ∈ 3(B), then kB≥X is a projective kB-module and we have the
decomposition

kB = kB≥X ⊕
⊕
Y�X

kLY .

Consequently, any projective kB≥X-module is a projective kB-module (via ρX).

As a corollary, we can compute Ext in either kB or kB≥X for kB≥X-modules.

Corollary 5.5. Let X ∈ 3(B) and let M,N be kB≥X-modules. Then

ExtnkB(M,N) ∼= ExtnkB≥X (M,N)

for all n ≥ 0.

Proof. Corollary 5.4 implies that any projective resolution of M over kB≥X is also a
projective resolution over kB. The result is now immediate. ut
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5.3. Computation of ExtnkB(kX,kY )

If X ∈ 3(B), let kX be the trivial kB≥X-module. It is then a kB-module via ρX.
There is a surjective homomorphism εX : kLX → kX sending each element of LX
to 1. If k is a field, then the modules kX form a complete set of non-isomorphic simple
kB-modules and εX : kLX → kX is the projective cover [23, 62, 78]. In general, the
simple kB-modules are the modules of the form (k/m)X where m is a maximal ideal
of k, as follows from the results of [43].

We begin with a construction of a projective resolution of the modules kX with X in
3(B). Recall that these are the simple kB-modules when k is a field.

Proposition 5.6. Let B be a finite left regular band and let X ∈ 3(B). Define a chain
complex C•(B,X) by letting Cn(B,X) be the free kB≥X-module on the set B[X, 1̂)n =
(B≥X \ {1})n. Denote a basis element by [s0| · · · |sn−1]. When n = 0, the unique basis
element is denoted [ ]. The augmentation εX : C0(B,X)→ kX sends [ ] to 1. Define

dn : Cn(B,X)→ Cn−1(B,X)

for n ≥ 1 by

dn([s0| · · · |sn−1]) = s0[s1| · · · |sn−1] +

n−1∑
i=1

(−1)i[s0| · · · |si−1si | · · · |sn−1]

+ (−1)n[s0| · · · |sn−2]

Then C•(B,X)→ kX is a projective resolution of kX as a kB-module.

Proof. Observe that C•(B,X) → kX is the normalized bar resolution of kX as a
kB≥X-module (see [60, Chapter X]). The result now follows from Corollary 5.4. ut

As a consequence, we can show that ExtnkB(kX,kY ) vanishes when Y � X.

Proposition 5.7. Let B be a finite left regular band and k a commutative ring with unit.
Let X, Y ∈ 3(B) and assume Y � X. Then

ExtnkB(kX,kY ) = 0

for all n ≥ 0.

Proof. Let a ∈ B with σ(a) = Y . Then a annihilates kB≥X and acts as the identity
on kY . Thus HomkB(kB≥X,kY ) = 0. The result now follows by using the resolution in
Proposition 5.6 to compute ExtnkB(kX,kY ). ut

We are left studying the case that X ≤ Y . This can be recast in terms of monoid coho-
mology, which we do in the next section.
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6. Proof of the main result: classifying spaces and cohomology

We now turn to classifying spaces and the cohomology of monoids and categories. The
cohomology of monoids, which is a natural generalization of group cohomology [22], is
both a special case of the cohomology of augmented algebras [27] and of the cohomology
of small categories [90]. Although we are mostly interested in monoid cohomology, we
will also need the cohomology of small categories. The main example of a small category
that we need that is neither a monoid nor a poset is the semidirect product of a monoid
with a set.

The approach we take is inspired by the paper of Nunes [69]. In what follows,M will
denote a monoid, and the set of idempotents of M will be denoted by E(M). Of course,
if M is a band, then M = E(M).

6.1. Cohomology of a small category

Let C be a small category and fix a commutative ring k with unit. By a left C -module
(over k) we mean a (covariant) functor F : C → k-mod. For instance, if we view a
monoid M as a one-object category, then a left M-module (over k) is the same thing as a
left kM-module. The category k-modC of left C -modules is well known to be an abelian
category with enough projectives and injectives [64]. The morphisms between C -modules
F,G are natural transformations and we write HomkC (F,G) for the morphism set.

There is a functor 1 : k-mod → k-modC that sends a k-module V to the constant
functor 1(V ) : C → k-mod that sends all objects to V and all arrows to the identity 1V .
For example, ifM is a monoid, then 1(V ) is V with the trivial kM-module structure. The
functor 1 has a right adjoint lim

←−
[61]. For instance, if V is a kM-module, then lim

←−
V is

the k-module ofM-invariants. One has a natural isomorphism lim
←−

F ∼= HomkC (1(k), F )
for any left C -module F . Thus the right derived functors Rn lim

←−
can be identified with

ExtnkC (1(k),−) (where the subscript kC is to indicate we are considering left C -modules
over k). One defines the cohomology of C with coefficients in F by

H n(C , F ) = ExtnkC (1(k), F ) = R
n lim
←−

F

where Rn denotes the nth right derived functor. When C is a monoid or a group, this
agrees with usual monoid and group cohomology. See [8, 42, 73, 90] for more details.

We are primarily interested in monoid cohomology. In this case, we will write k in-
stead of 1(k), as is customary. In particular, if M is a monoid and V is a kM-module,
then H n(M, V ) = ExtnkM(k, V ). See [60, Chapter X] for associated bar resolutions.

There was some work on monoid cohomology in the late sixties and early seventies
[2, 65, 67]. Since the nineties, there has been a surge in papers on monoid homology and
cohomology, in part due to connections with string rewriting systems [21, 34, 45, 47, 48,
52–54, 69, 71, 85].

The following proposition follows immediately from Corollary 5.5 and the definition
of monoid cohomology.
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Proposition 6.1. Let B be a finite left regular band and k a commutative ring with unit.
Let X ∈ 3(B). There is a natural isomorphism of functors

ExtnkB(kX,−) ∼= H
n(B≥X,−)

from the category of kB≥X-modules to the category of k-modules. In particular, if Y ≥X,
then

ExtnkB(kX,kY ) ∼= H
n(B≥X,kY ) (6.1)

for all n ≥ 0.

6.2. The Eckmann–Shapiro lemma

In what follows we shall need a variant of the Eckmann–Shapiro lemma for monoids. It
will be convenient to use a very general Eckmann–Shapiro type lemma in the context of
abelian categories that was proved by Adams and Rieffel [2, Theorem 1] in their study of
semigroup cohomology.

Theorem 6.2. Let A ,B,C be abelian categories such that A has enough injectives
and suppose that one has a diagram of additive functors

A
S ))

B
T

ii
F // C

such that S is right adjoint to T , and S, T are exact. Then there is a natural isomorphism
of functors Rn(F ◦ S) ∼= (RnF) ◦ S for all n ≥ 0.

Let ϕ : M → N be a semigroup homomorphism of monoids, that is, ϕ(m1m2) =

ϕ(m1)ϕ(m2) for all m1, m2 ∈ M , but we do not assume ϕ(1) = 1. Let e = ϕ(1); it
is an idempotent. Then kNe is a kN -kM-bimodule and keN is a kM-kN -bimodule.
If V is a kN -module, then eV is a kM-module via the action mv = ϕ(m)v. Notice
that 1v = ev = v since v ∈ eV . The functor V 7→ eV is exact and has left adjoint
W 7→ kNe ⊗kM W and right adjoint W 7→ HomM(eN,W) where HomM(eN,W) is
the set of all left M-set morphisms f : eN → W with pointwise k-module structure
and N -action nf (n′) = f (n′n). Notice that HomM(eN,W) ∼= HomkM(keN,W) via
restriction to the basis eN . Thus HomM(eN,−) is exact whenever keN is a projective
kM-module. Theorem 6.2 specializes in this context as follows.

Lemma 6.3. Let ϕ : M → N be a semigroup homomorphism of monoids and let
e = ϕ(1). Let k be a commutative ring with unit and suppose that keN is a projec-
tive kM-module. Then, for any kM-module W and kN -module V , one has a natural
isomorphism

ExtnkM(eV,W) ∼= ExtnkN (V ,HomM(eN,W))

for all n ≥ 0. In particular,

H n(M,W) ∼= H
n(N,HomM(eN,W))

for all n ≥ 0.
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Proof. In Theorem 6.2, take A = kM-mod, B = kN -mod and C = k-mod, take
T (V ) = eV , S(W) = HomM(eN,W) and F = HomkN (V ,−) and use the fact that
F ◦ S = HomkN (V ,HomM(eN,−)) ∼= HomkM(eV,−). The final statement follows
because ek = k. ut

A corollary we shall use later for a dimension-shifting argument is the following. Let
e ∈ E(M) be an idempotent and suppose that V is any k-module. Then V eM with the
natural kM-module structure given by mf (m′) = f (m′m) is acyclic for cohomology.

Corollary 6.4. Let V be a k-module and e ∈ E(M). Then

H n(M, V eM) ∼=

{
V if n = 0,
0 else.

Proof. Let {1} denote the trivial monoid and consider the semigroup homomorphism
ϕ : {1} → M with ϕ(1) = e. The algebra of the trivial monoid is k, and keM is a
free k-module. Thus Lemma 6.3 applies. Observe that Hom1(eM, V ) = V eM and so
H n(M, V eM) ∼= H n({1}, V ). The result follows. ut

6.3. Classifying space of a small category

To each small category C , there is naturally associated a CW complex BC called the
classifying space of C . Usually, BC is defined as the geometric realization of a certain
simplicial set called the nerve of C [86], but we follow instead the construction in [77,
Definition 5.3.15].

There is a 0-cell of BC for each object of the category C . For q ≥ 1, there is a q-cell
for each diagram

c0
f0
−→ c1

f1
−→ · · ·

fq−2
−−→ cq−1

fq−1
−−→ cq (6.2)

with no fi an identity arrow. This q-cell (which should be thought of as a q-simplex)
is attached in the obvious way to any cell of smaller dimension that can be obtained
by deleting some ci and, if i /∈ {0, q}, replacing fi−1 and fi by fifi−1 (if this is an
identity morphism then we delete this arrow as well). Notice that BC is homeomorphic
to BC op [73].

A functor F : C → D induces a cellular map BF : BC → BD by applying F to
(6.2) and deleting identity morphisms. Thus B is a functor from the category of small
categories to the category of CW complexes.

Let us give some examples. IfG is a group, viewed as a one-object category, then BG
is Milnor’s classifying space of G and is an Eilenberg–Mac Lane K(G, 1)-space. When
M is a monoid, viewed as a one-object category, BM is the classical classifying space
ofM . It is known that every CW complex is homotopy equivalent to the classifying space
of a monoid [63]. It is easy to see that if V is a k-module, viewed as a kM-module via the
trivial action, then the cochain complex associated to the cellular cohomology of BM with
coefficients in V is precisely the cochain complex used to computeH n(M, V ) if one uses
the standard bar resolution [60, Chapter X] for the trivial kM-module. ThusH •(M, V ) =
H •(BM,V ). More generally, one has the following theorem (see for instance [73], [90,
Theorem 5.3] or [42, Appendix II, 3.3]).
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Theorem 6.5. For a small category C , one has H •(C ,1(V )) ∼= H •(BC , V ) for any
k-module V .

Next we recall that a poset P can be viewed as a category and that the classifying space
of this category is the order complex of P . The set of objects of the category is P itself.
The set of arrows is {(p, q) ∈ P × P | p ≤ q}. The arrow (p, q) goes from p to q, the
identity at p is (p, p), and composition is given by (q, r)(p, q) = (p, r).

From this point of view, several poset-theoretic notions translate to standard notions
of category theory. Order-preserving maps between two posets P andQ (i.e., F : P → Q

such that F(p) ≤ F(p′) for all p ≤ p′) correspond precisely to functors between these
posets (viewed as categories). Adjunctions between functors correspond precisely to Ga-
lois connections between posets: indeed, recall that a Galois connection between two
posets P and Q is a pair of order-preserving maps F : P → Q and G : Q → P such
that, for all p ∈ P and q ∈ Q, we have F(p) ≤ q if and only if p ≤ Q(q). Notice
that the m-cells of the classifying space BP of the category of P are precisely the chains
of length m in P and the gluing is by homeomorphisms of faces. Thus, BP is the order
complex 1(P ) (see [73]).

A key result of Segal [83] is the following (cf. [77, Lemma 5.3.17]).

Lemma 6.6 (Segal). If F,G : C → D are functors between small categories and there
is a natural transformation F ⇒ G, then BF and BG are homotopic.

In particular, if C and D are naturally equivalent, then BC and BD are homotopy equiv-
alent. More generally, if a functor F : C → D has an adjoint, then BC and BD are
homotopy equivalent [86, Corollary 3.7]. Actually, we have the following more general
consequence.

Proposition 6.7. Let F : C → D and G : D → C be functors such that there exist nat-
ural transformations between GF and 1C and between FG and 1D , in either direction.
Then BC is homotopy equivalent to BD .

An important special case is the well-known fact that a Galois connection between posets
yields a homotopy equivalence of their order complexes [13]. The following corollary is
the special case of Rota’s cross-cut theorem [13] that we used earlier (Theorem 4.10).

Corollary 6.8 (Rota). Let P be a finite poset such that any subset of P with a common
lower bound has a meet. Define a simplicial complex K with vertex set the set M (P ) of
maximal elements of P and with simplices those subsets of M (P ) with a common lower
bound. Then K is homotopy equivalent to the order complex 1(P ).

Proof. Let F be the face poset of K . Then it is well known that 1(F ) is the barycentric
subdivision of K and hence homeomorphic to it. Thus it suffices, by Proposition 6.7, to
establish a contravariant Galois connection between P and F . Define F : P → F by
F(p) = {m ∈M (P ) | m ≥ p} and G : F → P by G(X) =

∧
X for a simplex X of K .

Then X ≤ F(p) if and only if p ≤ G(X) and so F and G form a contravariant Galois
connection. ut

Another well-known corollary is that a category with a terminal object has a contractible
classifying space [86, Corollary 3.7].
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Corollary 6.9. If C is a category with a terminal object, then BC is contractible.
Proof. Let {1} denote the trivial monoid and let t be the terminal object of C . Then the
unique functor F : C → {1} and the functor G : {1} → C sending the unique object
of {1} to t form an adjoint pair. ut

Let us prove the folklore result that a monoid with a left zero element has a contractible
classifying space. Our proof is easier than the one in [63].

Proposition 6.10 (folklore). Let M be a monoid with a left zero element. Then BM is
contractible.
Proof. Let ϕ : M → {1} be the trivial homomorphism and ψ : {1} → M be the inclusion.
Trivially, ϕψ = 1{1}. Next we define a natural transformation η : 1M ⇒ ψϕ. Let z be the
left zero. The component of η at the unique object of M is z. Then, for m ∈ M , one has
zm = z = ψϕ(m)z, i.e., η is a natural transformation. Thus BM is contractible. ut

6.4. Quillen’s Theorem A

An important tool for determining whether a functor F : C → D induces a homotopy
equivalence of classifying spaces is Quillen’s famous Theorem A [73, 86]. If d is an
object of D , then the left fibre category F/d has object set all morphisms f : F(c)→ d

with c an object of C . A morphism from f : F(c) → d to f ′ : F(c′) → d in F/d is a
morphism g : c→ c′ such that

F(c)
F(g) //

f
!!

F(c′)

f ′}}
d

commutes.

Remark 6.11. If F : C → D is a functor with D a poset, then there is at most one arrow
F(x) → d. Thus F/d can be identified with the full subcategory of C with object set
F−1(D≤d) where D≤d consists of all objects of D less than or equal to d in the order.

We now state Quillen’s Theorem A; see [73, 86] for a proof.

Theorem 6.12 (Quillen’s Theorem A). Let F : C → D be a functor such that the left
fibre categories F/d have contractible classifying spaces for all objects d of D . Then F
induces a homotopy equivalence of classifying spaces.

6.5. Semidirect product of a monoid with a set

The main example of a small category which is not a monoid or a poset that we shall
need is the semidirect product of a monoid with a set. Let M be a monoid and let X be
a right M-set. The semidirect product (also known as the category of elements, or the
Grothendieck construction) X o M has object set X and arrow set X × M . An arrow
(x,m) has domain xm and range x, and we draw it

(x,m) = xm
m
−→ x.
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Composition is given by (x,m)(xm, n) = (x,mn), or in pictures

xmn
n //

mn

;;xm
m // x .

The identity at x is (x, 1). The assignment X 7→ XoM is a functor from the category of
right M-sets to the category of small categories.

There is an exact pair of adjoint functors between the categories kM-mod and
k-modXoM to which we can apply the Adams–Rieffel theorem. Namely, if V is a
kM-module, we can define a left X o M-module PV on objects by PV (x) = V for
all x ∈ X. We define PV (x,m) : V → V on a morphism (x,m) by v 7→ mv. The functor
P : kM-mod → k-modXoM given by P(V ) = PV on objects (with the obvious effect
on morphisms) is clearly exact. It has right adjoint G which sends a left X oM-module
Q to the direct product

∏
x∈XQ(x) with action given by (mf )(x) = Q(x,m)f (xm)

where we view an element of the direct product as a mapping f : X→
∐
x∈XQ(x) with

f (x) ∈ Q(x) for all x ∈ X. Plainly G is an exact functor. The isomorphism

Homk(XoM)(P (V ),Q)→ HomkM(V ,G(Q))

sends a natural transformation η : PV ⇒ Q to the mapping
∏
x∈X ηx where

ηx : V → Q(x) is the component of η at the object x. Conversely, any homomorphism
η : V → G(Q) gives rise to a natural transformation PV ⇒ Q whose component at x is
the composition of η with the projection to the factor Q(x).

Theorem 6.13. LetM be a monoid andX a rightM-set. Then one has a natural isomor-
phism

Ext•k(XoM)(P (V ),Q) ∼= Ext•kM(V ,G(Q))

where P and G are the adjoint functors considered above. In particular,

H •(X oM,Q) ∼= H •(M,G(Q)).

Proof. Apply Theorem 6.2 taking A = k-modXoM , B = kM-mod, C = k-mod,
S =G, T = P and F =HomkM(V ,−). One uses the fact that F ◦S =HomkM(V ,G(−))
∼= Homk(XoM)(P (V ),−). The final statement follows because P(k) = 1(k). ut

Let V be a k-module. Then one computes readily thatG(1(V )) = V X with the kM-mod-
ule structure given via the left action mf (x) = f (xm). Thus we have the following
corollary to Theorem 6.13. It is the dual of a result of Nunes proved for homology [69];
see also the appendix of [59]. Our proof though is more conceptual.

Corollary 6.14. LetM be a monoid and k a commutative ring with unit. Suppose that X
is a right M-set and V is a k-module. Then

H n(M, V X) ∼= H
n(X oM,1(V )) ∼= H n(B(X oM), V )

for n ≥ 0.
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From now on, we say that a rightM-setX is contractible if B(XoM) is contractible. Let
X be a rightM-set and denote by�(X) the poset of all cyclicM-subsets xM with x ∈ X
ordered by inclusion. There is a natural functor8X : XoM → �(X) given by x 7→ xM

on objects and by sending the arrow (x,m) : xm→ x to the unique arrow xmM → xM .
The following result is a key tool in computing the global dimension of left regular band
algebras.

Theorem 6.15. Suppose thatX is a rightM-set such that each cyclicM-subset xM with
x ∈ X is contractible. Then 8X : X oM → �(X) induces a homotopy equivalence of
classifying spaces.

Proof. By Quillen’s Theorem A it suffices to show B(8X/xM) is contractible for each
x ∈ X. By Remark 6.11, 8X/xM is the full subcategory of X o M on those objects
y ∈ X with yM ⊆ xM . But this subcategory is precisely xMoM , which has contractible
classifying space by assumption. Thus 8X is a homotopy equivalence. ut

The key example of a monoid M and a right M-set to which the theorem will be applied
is a right ideal X of a regular monoid M (Definition 2.2), or more generally a right PP
monoid (defined below).

Proposition 6.16. The right M-set M is contractible.

Proof. Notice that 1 is a terminal object of M oM since (1, m) : m → 1 is the unique
arrow from m to 1. Therefore, B(M oM) is contractible by Corollary 6.9. ut

Let SetM
op

be the category of right M-sets. This is a special case of a presheaf category
and so the statements below can be obtained from the more general statements in this con-
text that one can find in a standard text in category theory, e.g., [19]. The epimorphisms
in SetM

op
are precisely the surjective maps. Projective objects in this category are defined

in the usual way. An M-set is indecomposable if it cannot be expressed as a coproduct
(equals disjoint union) of two M-sets. Up to isomorphism the projective indecomposable
M-sets are those of the form eM with e an idempotent of M . These are also the cyclic
projective M-sets up to isomorphism.

Proposition 6.17. A projective indecomposable right M-set is contractible.

Proof. Let P be a projective indecomposable right M-set. Then P is cyclic, being iso-
morphic to eM for some idempotent e, and so there is an epimorphism ϕ : M → P . Then
ϕ splits and so P is a retract of M . Hence, by functoriality, P oM is a retract of M oM
and so B(P o M) is a retract of B(M o M). Since retracts of contractible spaces are
contractible, we are done by Proposition 6.16. ut

6.6. Application to right PP monoids

A monoidM is called a right PP monoid if each principal right ideal mM is projective in
SetM

op
. For example, every band is a right PP monoid, as is every regular monoid (Defi-

nition 2.2). Right PP monoids were first characterized in [39]. The following description
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of right PP monoids is due to Fountain [41]. Two elements m, n of M are said to be
L ∗-equivalent provided mx = my if and only if nx = ny for all x, y ∈ M . Note that
m L ∗ n if and only if there is an isomorphism mM to nM taking m to n. A monoid is
right PP if and only if each L ∗-class of M contains an idempotent [39, 41].

Recall that R denotes the relation associated to Green’s R-preorder onM (see Section
2.3). If R is a right ideal of M , then the poset R/R can be identified with the poset of
principal right ideals of M contained in R.

Corollary 6.18. Let M be a right PP monoid, for example a left regular band, and let R
be a right ideal of M . Then B(R oM) is homotopy equivalent to 1(R/R).

Proof. In this case, �(R) = R/R. Since M is right PP, each principal ideal mM is
projective and hence contractible by Proposition 6.17. Theorem 6.15 now provides the
desired result. ut

We continue to denote by k a commutative ring with unit. The following results are re-
lated to results of Nunes [69], proved using spectral sequences, in the context of monoid
homology. Let M be a monoid and e ∈ E(M) an idempotent. Suppose that ∅ 6= R ( eM
is a right ideal. Let V be a k-module. The exact sequence of right kM-modules

0→ kR→ keM → keM/kR→ 0

gives rise to an exact sequence of left kM-modules

0→ W → V eM → V R → 0 (6.3)

where W = {f ∈ V eM | f (R) = 0} and the map V eM → V R is given by restriction.

Theorem 6.19. Let M be a monoid and e ∈ E(M). Let ∅ 6= R ( eM be a right ideal
and V a k-module. Let W = {f ∈ V eM | f (R) = 0}. Then

H n+1(M,W) ∼= H̃
n(B(R oM), V )

for all n ≥ 0. Moreover, if M is a right PP monoid then

H n+1(M,W) ∼= H̃
n(1(R/R), V )

where R/R is the poset of principal right ideals contained in R.

Proof. Corollary 6.4 implies that H n(M, V eM) = 0 for n ≥ 1. Thus the long exact
sequence for cohomology applied to (6.3) yields a short exact sequence

0→ H n(M, V R)→ H n+1(M,W)→ 0

for each n ≥ 1. In light of Corollary 6.14, this proves the first statement of the the-
orem for n ≥ 1. Let us examine the initial terms of the long exact sequence. Note
that H 0(M,W) = 0 because if f ∈ W is fixed by M and r ∈ R, m ∈ M , then
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f (em) = mf (e) = mrf (e) = f (erm) = 0. Also H 1(M, V eM) = 0 so we have a
short exact sequence

0→ H 0(M, V eM)
π∗
−→ H 0(M, V R)→ H 1(M,W)→ 0.

If X is a right M-set, the isomorphism

H 0(M, V X) ∼= H
0(X oM,1(V )) ∼= H 0(B(X oM), V )

in Corollary 6.14 allows us to identify H 0(M, V X) with those functions f : X → V

which are constant on connected components of B(X oM). Since B(eM oM) is con-
tractible, hence connected, H 0(M, V eM) consists of the constant functions eM → V

and so the image of π∗ is the set of functions which are constant on R. Thus cokerπ∗ =
H̃ 0(B(R oM), V ). This completes the proof of the first statement. The final statement
follows from Corollary 6.18. ut

Suppose now that B is a finite left regular band and let 0̂ 6= Y ∈ 3(B). Suppose that
Y = Be. Then R = eB \ {e} is a right ideal and

kY ∼= {f ∈ keB | f (R) = 0}

via the map f 7→ f (e). Applying Theorem 6.19 we obtain the following corollary.

Corollary 6.20. Let B be a left regular band and let 0̂ 6=Y ∈ 3(B). ThenH 0(B,kY )=0
and

H n+1(B, kY ) ∼= H̃ n(1(B [̂0, Y )),k)

for all n ≥ 0 where 1(B [̂0, Y )) is the order complex of B [̂0, Y ).

6.7. The proof of Theorem 4.1

At this point, we can give the proof of our main result, Theorem 4.1. Let B be a finite left
regular band. Suppose that X < Y in 3(B) and let 1(B[X, Y )) be the order complex of
B[X, Y ).

Theorem 4.1. Let B be a finite left regular band and let k be a commutative ring with
unit. Let X, Y ∈ 3(B). Then

ExtnkB(kX,kY ) =


H̃ n−1(1(B[X, Y )),k) if X < Y, n ≥ 1,
k if X = Y, n = 0,
0 else.

Proof. If Y � X, the result is Proposition 5.7. For X ≤ Y , we have ExtnkB(kX,kY ) =
H n(B≥X,kY ) by Proposition 6.1. Next suppose that X = Y . Then H n(B≥X,kX) =
H n(BB≥X,k). Any element of B≥X with support X is a left zero and hence BB≥X is
contractible by Proposition 6.10. Thus we are left with the case X < Y . But this is
handled by Corollary 6.20. ut
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