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Abstract. For two-dimensional, immersed closed surfaces f : 6 → Rn, we study the curvature
functionals Ep(f ) and Wp(f )with integrands (1+|A|2)p/2 and (1+|H |2)p/2, respectively. Here
A is the second fundamental form, H is the mean curvature and we assume p > 2. Our main result
asserts that W2,p critical points are smooth in both cases. We also prove a compactness theorem
for Wp-bounded sequences. In the case of Ep this is just Langer’s theorem [16], while for Wp

we have to impose a bound for the Willmore energy strictly below 8π as an additional condition.
Finally, we establish versions of the Palais–Smale condition for both functionals.

Keywords. Curvature functionals, Palais–Smale condition

1. Introduction

Let6 be a two-dimensional, closed differentiable manifold andp>2, henceW 2,p(6,Rn)
⊂C1,1−2/p(6,Rn) by the Sobolev embedding theorem. On the open subsetW 2,p

im (6,Rn)
of immersions we consider the two functionals

Ep(f ) =
1
4

∫
6

(1+ |A|2)p/2 dµg, Wp(f ) =
1
4

∫
6

(1+ |H |2)p/2 dµg.

Here g denotes the first fundamental form with induced measure µg , A = (D2f )⊥ the
second fundamental form, and H is the mean curvature vector. We prove regularity of
critical points for both functionals.

Theorem 1.1. Let f ∈ W 2,p
im (6,Rn) be a critical point of Wp or Ep, where 2 < p

<∞. Then local graph representations of f are smooth.
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In a graph representation, the Euler–Lagrange equations become fourth order elliptic sys-
tems, where the principal term has a double divergence structure. The systems are de-
generate, in the sense that in both cases the coefficient of the principal term involves a
(p− 2)-th power of the curvature, which a priori may not be bounded. For the functional
Wp(f ), our first step towards regularity is an improvement of the integrability of H . For
this we employ an iteration based on a new test function argument. More precisely, we
solve the equation Lgϕ = |H |λ−1H for appropriate λ > 1 and then insert ϕ as a test
function. Here the operator Lg =

√
det g gαβ∂2

αβ comes up in the principal term of the
equation.

Unfortunately, the same strategy does not apply in the case of the functional Ep(f ),
since then the corresponding operator is a full Hessian and hence the equation would
be overdetermined. Instead we first use a hole-filling argument to show power decay for
the Lp integral of the second derivatives, and derive L2 bounds for the third derivatives
by a difference-quotient argument; these steps follow closely the ideas of Morrey [19]
and L. Simon [22]. In the final critical step we adapt a Gehring type lemma due to Bild-
hauer, Fuchs & Zhong [7] as well as the Moser–Trudinger inequality to conclude that the
solution is of class C2. Since it is also not immediate how to modify the Ep(f ) approach
to cover the functional Wp(f ), we decided to include both independent arguments.

As a second issue we address the existence of minimizers for the functionals. By
the compactness theorem of Langer [16], sequences of closed immersed surfaces fk :
6 → Rn with Ep(fk) ≤ C subconverge weakly to an f ∈ W 2,p

im (6,Rn), after suitable
translation and reparametrization. In particular, we obtain the existence of a smooth Ep
minimizer in the class of immersions f : 6 → Rn for p > 2. On the other hand,
boundedness of Wp(f ) is not sufficient to guarantee the required compactness. This is
easily illustrated by joining two round spheres by a shrinking catenoid neck, showing that
the 8π bound in the following result is optimal.

Theorem 1.2. Let 6 be a closed surface and fk ∈ W
2,p
im (6,Rn) be a sequence of im-

mersions with 0 ∈ fk(6) and

Wp(fk) ≤ C and lim inf
k→∞

1
4

∫
6

|Hk|
2 dµgk < 8π.

After passing to fk ◦ ϕk for appropriate ϕk ∈ C∞(6,6) and selecting a subsequence,
the fk converge weakly in W 2,p(6,Rk) to an f ∈ W 2,p

im (6,Rn). In particular, the con-
vergence is in C1,β(6,Rn) for any β < 1− 2/p and we have

Wp(f ) ≤ lim inf
k→∞

Wp(fk).

We remark that Mondino [18] recently proved the existence and partial regularity of var-
ifolds minimizing functionals which satisfy similar growth conditions as Ep and Wp in
general dimensions and codimensions.

A classical approach to the construction of harmonic maps, due to Sacks & Uhlenbeck
[21], is by introducing perturbed functionals involving a power p > 2 of the gradient. One
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motivation for our analysis is an analogous approximation for the Willmore functional

W(f ) =
1
4

∫
6

|H |2 dµg =
1
4

∫
6

|A|2 dµg + πχ(6). (1.1)

The Willmore functional does not satisfy a Palais–Smale type condition, since it is invari-
ant under the group of Möbius transformations. In Section 5 we verify suitable versions
of the Palais–Smale condition for the functionals Ep and Wp with p > 2.

Curvature functionals with nonquadratic growth appear also in the work of Bellettini,
Dal Maso & Paolini [3] as well as Ambrosio & Masnou [1]. However, their focus is much
different, for instance the latter paper is motivated by applications to image restoration.

2. The Euler–Lagrange equations

Here we compute in local coordinates the Euler–Lagrange equations of the functionals
Ep(f ) and Wp(f ). For an immersed surface the fundamental forms are

gαβ = 〈∂αf, ∂βf 〉 and Aαβ = P
⊥(∂2

αβf ).

Here P⊥ is the projection onto the normal space given by

P⊥ = Id− gαβ〈∂αf, ·〉∂βf.

We compute further

|A|2 = gαγ gβλ〈P⊥∂2
αβf, ∂

2
γ λf 〉 and |H |2 = gαβgγ λ〈P⊥∂2

αβf, ∂
2
γ λf 〉.

On the open set of W 2,p immersions, both Ep and Wp are differentiable in the sense of
Fréchet. The derivative of Ep is given by

DEp(f )φ =
p

4

∫
6

(1+ |A|2)(p−2)/2gαγ gβλ〈P⊥∂2
αβf, ∂

2
γ λφ〉

√
det g

+
p

8

∫
�

(1+ |A|2)(p−2)/2
〈
∂(gαγ gβλP⊥)

∂pkµ
∂µφ

k∂2
αβf, ∂

2
γ λf

〉√
det g

+
1
4

∫
�

(1+ |A|2)p/2
∂
√

det g
∂pkµ

∂µφ
k.

In particular, if f (x) = (x, u(x)) where u ∈ W 2,p(�,Rn−2), then f is a critical point
of Ep if and only if u is a weak solution of the system

∂2
αβ(a

αβ
i (Du,D

2u))+ ∂α(b
α
i (Du,D

2u)) = 0 (1 ≤ i ≤ n− 2), (2.1)
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where the coefficients are given by

a
αβ
i (Du,D

2u) = (1+ |A|2)(p−2)/2
√

det g gαγ gβλ(δij − gµν∂µui∂νuj )∂2
γ λu

j ,

bαi (Du,D
2u) = −

1
2
(1+ |A|2)(p−2)/2 ∂(g

γµgλν(δjk − g
στp

j
σp

k
τ ))

∂piα
∂2
γ λu

j∂2
µνu

k
√

det g

−
1
p
(1+ |A|2)p/2

∂
√

det g
∂piα

.

For |p| ≤ 3 and V = (1 + |q|2)1/2, where p, q are the variables corresponding to
Du,D2u, one easily checks the bounds

|Dqa| ≤ C(3)V
p−2,

|a| + |Dpa| + |Dqb| ≤ C(3)V
p−1,

|b| + |Dpb| ≤ C(3)V
p.

Moreover, the system satisfies the ellipticity condition

∂a
αβ
i

∂q
j
γ λ

ξ iαβξ
j
γ λ ≥ λV

p−2
|ξ |2 where λ = λ(3) > 0,

For the first variation of Wp(f ) one obtains

DWp(f )φ =
p

4

∫
6

(1+ |H |2)(p−2)/2
〈H, gγ λ∂2

γ λφ〉
√

det g

+
p

8

∫
�

(1+ |H |2)(p−2)/2
〈
∂(gαβgγ λP⊥)

∂pkµ
∂µφ

k∂2
αβf, ∂

2
γ λf

〉√
det g

+
1
4

∫
�

(1+ |H |2)p/2
∂
√

det g
∂pkµ

∂µφ
k.

If we set Lgφ =
√

det g gγ λ∂2
γ λφ, the first variation takes the form

DWp(f )φ =
p

4

∫
�

(1+ |H |2)(p−2)/2
〈H,Lgφ〉 +

∫
�

Bαi (Df,D
2f )∂αφ

i, (2.2)

where

Bαi (Df,D
2f ) =

p

8
(1+ |H |2)(p−2)/2

〈
∂(gγ λgµνP⊥)

∂piα
∂2
γ λf, ∂

2
µνf

〉√
det g

+
1
4
(1+ |H |2)p/2

∂
√

det g
∂piα

.

When passing to graphs we have, under the assumption |p| ≤ 3,

|B| + |DpB| ≤ C(3)V
p−2
|q|2 and |DqB| ≤ C(3)V

p−2
|q|. (2.3)
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3. Regularity of critical points

3.1. The functional Wp

For � ⊂ R2 and p > 2, let f : �→ Rn be the graph of a function u ∈ W 2,p(�,Rn−2).
Recall from (2.2) that f is a critical point of Wp if and only if∫

�

〈H, Lgϕ〉 +
∫
�

Bαi (Du,D
2u)∂αϕ

i
= 0 for all ϕ ∈ W 2,p

0 (�,Rn). (3.1)

Here H = (1+ |H |2)p/2−1H and the functions Biα satisfy the bounds (2.3). We have the
following result.

Theorem 3.1. Weak solutions u ∈ W 2,p(�,Rn−2) of (3.1) are smooth.

3.1.1. W 2,q -regularity. We start by stating a regularity property for the mean curvature
system. For a graph of a function u ∈ W 2,p(�,Rn−2), the weak mean curvature satisfies
for j = 1, . . . , n− 2 the formula

gαβ(δij − g
λµ∂λu

i∂µu
j )∂2

αβu
i
= H j+2. (3.2)

Since p > 2 the left hand side may be viewed as a linear operator of the form a
αβ
ij ∂

2
αβu

i ,
where the coefficients are Hölder continuous with exponent 1−2/p > 0 and the ellipticity
constant is controlled by the W 2,p norm of the function u. In particular, if we know H ∈

Lq(�,Rn) for some q ∈ (p,∞), then standard Lq theory yields u ∈ W 2,q
loc (�,R

n−2)

together with a local estimate

‖u‖W 2,q (�′) ≤ C(p, q,3) (‖H‖Lq (�) + 1) if ‖u‖W 2,p(�) ≤ 3. (3.3)

The dependence on the domains �′ ⊂⊂ � is not mentioned explicitly here.

Lemma 3.2. Let u ∈ W 2,p(�,Rn−2) be a weak solution of (3.1). Then for any ϕ ∈
W 2,p(�) and any test function η ∈ C2

0(�) we have∫
�

η〈H, Lgϕ〉 ≤ C
∫

spt η
(1+ |D2u|2)p/2(|ϕ| + |Dϕ|), where C = C(‖η‖C2).

Proof. Expanding

Lg(ηϕ) = ηLgϕ + ϕLgη + 2
√

det g gαβ∂αη∂βϕ,

we see by combining with (3.1) and (2.3) that∫
�

η〈H, Lgϕ〉 ≤ C
∫
�

(1+ |D2u|2)p/2(|Dη| |ϕ| + |η| |Dϕ|)

+C

∫
�

(1+ |D2u|2)(p−1)/2(|D2η| |ϕ| + |Dη| |Dϕ|).

This implies the lemma. ut

We are now ready to improve the integrability of D2u.
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Theorem 3.3. Let u ∈ W 2,p(�,Rn−2) be a weak solution of (3.1) where p > 2. Then
u ∈ W

2,q
loc (�,R

n−2) for any q ∈ [p,∞).

Proof. Assume we already know ‖u‖W 2,q (Br )
≤3 where q ≥ p. For |H |A=min(|H |, A)

with A > 0 and a parameter λ ∈ (1, q), we use Lq theory to obtain a solution ϕ ∈
W 2,q

∩W
1,q
0 (Br ,Rn) of the linear equation

Lgϕ = |H |
λ−1
A H.

As 1 < q/λ <∞ the function ϕ satisfies

‖ϕ‖W 2,q/λ(Br )
≤ C

∥∥|H |λ−1
A H

∥∥
Lq/λ(Br )

≤ C;

here and in the rest of the proof, the constant C is independent of A. By the Sobolev
embedding theorem, we have for λ < q/2 the estimate

‖ϕ‖C1(Br )
≤ C,

while for q/2 < λ < q we get instead

‖ϕ‖W 1,s (Br )
≤ C for s =

2q
2λ− q

∈ [1,∞).

Now Lemma 3.2 implies that∫
Br/2

|H |p|H |λ−1
A ≤ C

∫
Br

(1+ |D2u|2)p/2(|ϕ| + |Dϕ|) ≤ C,

under the condition that either 1 < λ < q/2, or q/2 < λ < q with

p

q
+

1
s
≤ 1 ⇔ λ ≤ 3q/2− p.

Letting A ↗ ∞ we get H ∈ Lp+λ−1(Br/2), and so u ∈ W 2,p+λ−1(Br/4,Rn−2) from
(3.3). We can now set up an iteration to get u ∈ W 2,q

loc (�) for all q < ∞. As the initial
step we choose q = p and 1 < λ < p/2, which brings us to q < 3p/2 − 1. For
p < q < 2p we can take λ = 3q/2 − p, improving the exponent to 3q/2 − 1. After
finitely many iterations, we arrive at some q > 2p. Now we continue with q/2 < λ =

q − p + 2 < 3q/2− p and obtain the desired higher integrability. ut

3.1.2. W 1,2
loc -regularity of H. In this subsection we use difference quotient methods in

order to show that H ∈ W 1,2
loc . For h > 0, f : �→ Rk and fixed ν ∈ {1, 2} we define

fh(x) =
1
h
(f (x + heν)− f (x)).
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In the following we denote by 8(·, h) an arbitrary measurable function which satisfies,
for all 1 ≤ q <∞ and all �′ ⊂⊂ �,∫

�′
|8(x, h)|q ≤ C(q).

Lemma 3.4. Let u be as in Theorem 3.1 and let �′ ⊂⊂ �. Then, for all h > 0 small
enough and all x ∈ �′,

|(|H |2)h|(x)+ |Hh|(x) ≤ 8(x, h)|Hh|(x).

Proof. We have |H|2 = (1+ |H |2)p−2
|H |2 and from the mean value theorem we get

(|H|2)h(x) = ((1+ |H |2)p−2)h(x)|H |
2(x + heν)+ (1+ |H |2)p−2(x)(|H |2)h(x)

= (|H |2)h(x)
[
(p − 2)(1+ ξ(x))p−3

|H |2(x + hev)+ (1+ |H |2)p−2(x)
]
,

(3.4)

where 0 ≤ ξ(x) ≤ |H |2(x)+ |H |2(x + heν). Hence

|(|H |2)h|(x) ≤ |(|H|2)h|(x).

On the other hand we calculate

(|H|2)h(x) = (H)h(x)H(x + heν)+ (H)h(x)H(x).

Combining this with Theorem 3.3 proves the first estimate.
Another application of the mean value theorem yields

Hh(x) = Hh(x)(1+ |H |2)p/2−1(x + heν)+ (p/2− 1)(1+ ξ(x))p/2−2(|H |2)h(x)H(x),

where 0 ≤ ξ(x) ≤ |H |2 + |H |2h, and hence the second estimate follows from the first
one. ut

Corollary 3.5. Let u be as in Theorem 3.1 and let Br ⊂ �. Then, for every 1 < s < ∞

and all h > 0 small enough,∫
Br

η2s
|(D2u)h|

s
≤ C

∫
Br

8(x, h)(η2s
|(H)h|s + 1), (3.5)

where η ∈ C∞c (Br) is a smooth cut-off function.

Proof. Using (3.2) we see that uh solves

a
αβ
ij (· + heν)∂

2
αβu

i
h = H

j+2
h − (a

αβ
ij )h∂

2
αβu

i
=: H̃ j (x),

where aαβij = g
αβ(δij − g

λµ∂λu
i∂µu

j ).
Using Theorem 3.3, Lemma 3.4, and a standard estimate shows that for h > 0 small

we have

|H̃ |(x) ≤8(x, h)(|Hh| + 1).
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Next we use standard Lp theory in order to get, for every 1 < s <∞,∫
Br

|D2(η2uh)|
s
≤ C

∫
Br

8(x, h)(|Hh|
s
+ 1).

Since moreover ∫
Br

η2s
|(D2u)h|

s
≤ C

∫
Br

|D2(η2uh)|
s
+ C,

this finishes the proof of the corollary. ut

Now we are in a position to prove that H ∈ W 1,2
loc (�).

Proposition 3.6. Let u ∈ W 2,p(�,Rn−2) be as in Theorem 3.1. Then H ∈ W 1,2
loc (�,R

n).
Moreover, H ∈ W 1,s

loc (�,R
n) and u ∈ W 3,s

loc (�,R
n) for every 1 < s < 2.

Proof. Taking difference quotients of equation (3.1) we get

∂2
αβ(
√
g gαβH)h − ∂α(Bα(Du,D2u))h = 0. (3.6)

We abbreviateU(x) = (Du(x),D2u(x)) and we use the fundamental theorem of calculus
to write

(f ◦ U)h (x) =
1
h

(
f (U(x + heν))− f (U(x))

)
=

1
h

∫ 1

0

d

dt
f
(
(1− t)U(x)+ t U(x + heν)

)
dt

=

∫ 1

0
Df

(
(1− t)U(x)+ t U(x + heν)

)
dt · Uh(x).

Using the notation f h(x) =
∫ 1

0 f
(
(1− t)U(x)+ tU(x + heν)

)
dt we thus get

(f ◦ U)h =

(
∂f

∂q
j
λµ

)h
∂2
λµu

j
h +

(
∂f

∂p
j
λ

)h
∂λu

j
h,

and the system (3.6) takes the form

∂2
αβ

(
(
√
g gαβ)(x + heν)Hh

)
+ ∂2

αβ((
√
g gαβ)hH)− ∂α(B̃α(Duh,D2uh)) = 0. (3.7)

Here the coefficients are as follows:

B̃α(x, z, p, q) =

(
∂Bα

∂q
j
λµ

)h
(x)q

j
λµ +

(
∂Bα

∂p
j
λ

)h
(x)p

j
λ.

Using (2.3) we then obtain

|B̃(Duh,D
2uh)| ≤ C8(x, h)(|D

2uh| + 1). (3.8)
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For ‖Du‖L∞ <∞ we get

|(
√
g g−1)hH|(x) ≤ C(1+ |D2u|2)(p−1)/2(x)|Duh|(x) = 8(x, h), (3.9)

and moreover the operator

L̃v(x) := (
√
g gαβ)(x + heν)∂

2
αβv(x)

is strongly elliptic. We let Br ⊂ � and by standard Lp theory there exists a solution
ϕ̃ ∈ W 2,q

∩W
1,q
0 (Br ,Rn), for every 1 < q <∞, of

L̃ϕ̃ = H

satisfying
‖ϕ̃‖W 2,q (Br )

≤ C‖H‖Lq (Br ) ≤ C.

Next we let η ∈ C∞c (Br) be a smooth cut-off function and we define ϕh = η4ϕ̃h. A stan-
dard computation then shows that

L̃ϕh = η
4Hh − (

√
g gαβ)h(x + heν)∂

2
αβ(η

4ϕ̃)(x + heν)

+ 4η2(η(√g gαβ)(x + heν)∂αη∂β ϕ̃h
+ η(
√
g gαβ)(x + heν)∂

2
αβηϕ̃h + 3(

√
g gαβ)(x + heν)∂αη∂βηϕ̃h

)
= η4Hh + η

28(·, h)

and, by using standard L2 estimates, we conclude

‖ϕh‖W 2,2(Br )
≤ C(‖η2Hh‖L2(Br )

+ 1). (3.10)

Using ϕh as a test function in (3.7) and combining the above estimates, we conclude that
for every δ > 0 and h small enough,∫
Br

η4
|Hh|

2
≤ C

∫
Br

8(·, h)(|D2ϕh| + η
2
|Hh| + |D

2uh| + 1) ≤ δ
∫
Br

η4
|Hh|

2
+ Cδ.

Choosing δ small enough and letting h→ 0 we conclude that H ∈ W 1,2
loc (�,R

n) with∫
K

η4
|DH|2 ≤ C for all K ⊂⊂ �.

Combining the estimate for Hh with Lemma 3.4 yields H ∈ W
1,s
loc (�,R

n) for every
s < 2. Arguing as at the beginning of this subsection we conclude that

u ∈ W
3,s
loc (�,R

n−2) for all 1 < s < 2. ut

3.1.3. Higher regularity. In this last subsection we show the higher regularity for solu-
tions of (3.1). We start by showing that H ∈ W 1,2+γ

loc (�,Rn) for some 0 < γ < 1/2.
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In order to see this, we let Br ⊂ � and we let ϕ1 ∈ W
2,2/(1+γ )

∩W
1,2/(1+γ )
0 (Br ,Rn)

be the solution of
L̃ϕ1 = |Hh|

γHh

satisfying

‖ϕ1‖W 2,2/(1+γ )(Br )
≤ C‖Hh‖

1+γ
L2(Br )

≤ C.

Sobolev’s embedding theorem yields

‖ϕ1‖L∞(Br ) + ‖Dϕ1‖L2/γ (Br )
≤ C.

Next we let η ∈ C∞c (Br) and we define ϕ̃1 = η
4ϕ1. We conclude that

L̃ϕ̃1 = η
4
|Hh|

γHh + 8η3(
√
g gαβ)(x + heν)∂αη∂βϕ1

+ 4η2ϕ1(
√
g gαβ)(x + heν)(3∂αη∂βη + η∂2

αβη)

=: η4
|Hh|

γHh + η
2L[ϕ1,Dϕ1].

Moreover
‖ϕ̃1‖L∞(Br ) + ‖Dϕ̃1‖L2/γ (Br )

+ ‖D2ϕ̃1‖L2/(1+γ )(Br )
≤ C.

Now we use ϕ̃1 as a test function in (3.7) to conclude that∫
Br

η4
|Hh|

2+γ

≤ C

∫
Br

(
|(
√
g g−1)hH| |D2ϕ̃1| + |B̃(Duh,D

2uh)| |Dϕ̃1| + η
2
|Hh| |L[ϕ1,Dϕ1]|

)
≤ C

∫
Br

8(x, h)
(
|D2ϕ̃1| + (|D

2uh| + 1)|Dϕ̃1| + |Hh|(|Dϕ̃1| + 1)
)
≤ C.

Therefore H ∈ W 1,2+γ
loc (�,Rn). In particular this implies that H ∈ L∞loc(�,R

n−2) and
hence

|H|2 ∈ W 1,2+γ
loc (�).

Corollary 3.5 yields u ∈ W 3,2+γ
loc (�,Rn−2). By the Sobolev embedding theorem this

gives
u ∈ C

2,β
loc (�,R

n−2)

for some β > 0. The smoothness of solutions of (3.1) now follows from classical
Schauder theory.

3.2. The functional Ep(f )

Here we consider for p > 2 weak solutions u ∈ W 2,p(�,Rm) of elliptic systems in two
independent variables of the form

∂2
αβ [a

i
αβ(·, u,Du,D

2u)] + ∂α[b
i
α(·, u,Du,D

2u)] + ci(·, u,Du,D2u) = 0. (3.11)
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We assume that a, b, c are C1 functions satisfying the following ellipticity and growth
conditions at all points (x, z, p, q), for V (x, z, p, q) = (1 + |q|2)1/2 and for constants
λ > 0, C <∞:

∂aiαβ

∂q
j
λµ

ξ iαβξ
j
λµ ≥ λV

p−2
|ξ |2, (3.12)

|aq | ≤ CV
p−2,

|a| + |ax | + |az| + |ap| + |bq | + |cq | ≤ CV
p−1, (3.13)

|b| + |bx | + |bz| + |bp| + |c| + |cx | + |cz| + |cp| ≤ CV
p.

As noted in Section 2, the graph function of a critical point for Ep satisfies a system
of the required form, with suitable bounds (3.12) and (3.13). Therefore Theorem 1.1 is a
consequence of the following proposition and standard higher regularity theory, for which
we refer to [19].

Proposition 3.7. Let u ∈ W 2,p(�,Rm) be a weak solution of (3.11), where p > 2 and
� ⊂ R2, and assume that (3.12) and (3.13) hold. Then u ∈ C2,α

loc (�,R
m) for some α > 0.

Remark 3.8. A related regularity result, for functionals where the integrand satisfies a
more general (anisotropic) ellipticity condition but depends only on the second deriva-
tives, was proved in [6]. A crucial ingredient both in [6] and in our paper is the Gehring
type lemma from Bildhauer, Fuchs & Zhong [7].

3.2.1. Growth estimate. In a first step we show a growth estimate for the Lp norm of the
second derivatives of weak solutions of the system (3.11).

Lemma 3.9. Let p > 2. There exist r0, β, C > 0 such that if u ∈ W 2,p(�,Rm) is a
weak solution of the elliptic system (3.11) which satisfies (3.12) and (3.13), then for every
B2r(x) ⊂ � with r < r0, ∫

Br (x)

V p ≤ C(r/r0)
β . (3.14)

Proof. Let r0 > 0. Since u ∈ W 2,p
∩ L∞loc(�,R

m), the Sobolev embedding theorem
implies that u ∈ C1,γ

loc (�,R
m) for some γ > 0. Now we choose x0 ∈ � and we let 0 <

2r < min{2r0, dist(x0, ∂�)}. Moreover we let Ar = B2r\Br(x0) and ϕ ∈ C∞c (B2r(x0))

be a smooth cut-off function which satisfies

0 ≤ ϕ ≤ 1, ϕ = 1 in Br(x0), ‖∇
jϕ‖L∞ ≤ cr

−j
∀j ∈ N. (3.15)

Finally, we define the linear function lr by

lr(x) =
1
|Ar |

∫
Ar

u+ (x − x0) ·
1
|Ar |

∫
Ar

Du.
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From this definition it easily follows that

‖u− lr‖L∞(B2r ) + r‖D(u− lr)‖L∞(B2r ) ≤ Cr
1+γ , (3.16)

‖u− lr‖Lp(Ar ) + r‖D(u− lr)‖Lp(Ar ) ≤ Cr
2
‖D2u‖Lp(Ar ). (3.17)

Now we choose ϕ4(u− lr) as a test function in the weak form of (3.11) to get∣∣∣∣∫
�

ϕ4aiαβ∂
2
αβu

i

∣∣∣∣ ≤ C ∫
�

ϕ4(|b| |D(u− lr)| + |c| |u− lr |)

+ Cr−1
∫
Ar

ϕ3(|a| |D(u− lr)| + |b| |u− lr |)

+ Cr−2
∫
Ar

ϕ2
|a| |u− lr | = I + II + III.

Using the ellipticity assumption and the bound |a(x, z, p, 0)| ≤ C (which follows from
(3.13)) we estimate

qiαβa
i
αβ(x, y, z, q) = q

i
αβa

i
αβ(x, y, z, 0)+ qiαβq

j
γ δ

∫ 1

0
ai
αβ,q

j
γ δ

(x, y, z, tq) dt

≥ qiαβa
i
αβ(x, y, z, 0)+ λ|q|2

∫ 1

0
(1+ t2|q|2)(p−2)/2 dt ≥ λ̃V p − C

where λ̃ > 0 is some number. Next we use (3.13), Hölder’s inequality and (3.16) and
(3.17) to obtain

I ≤ Crγ
∫
�

ϕ4V p,

II ≤ Crγ
∫
Ar

V p + Cr−1
‖V ‖

p−1
Lp(Ar )

‖D(u− lr)‖Lp(Ar ) ≤ C

∫
Ar

V p,

III ≤ Cr−2
(∫

Ar

V p
)(p−1)/p

‖u− lr‖Lp(Ar ) ≤ C

∫
Ar

V p.

Combining all these estimates and choosing r0 small enough we conclude that there exists
a constant C1 > 0 such that ∫

Br

V p ≤ C1

∫
Ar

V p + Cr2.

Adding C1
∫
Br
V p to both sides we get∫

Br

V p ≤
C1

C1 + 1

∫
B2r

V p + Cr2.

The estimate (3.14) now follows from a standard iteration argument. ut

3.2.2. Difference quotient estimates. In a second step we use the difference quotient
method to show that every weak solution u ∈ W 2,p

∩ L∞(�,Rm) of (3.11) is in
W 3,2(Br0/4(x0),Rm) and moreover V p/2 ∈ W 1,2(Br0/4(x0)), where x0 ∈ � and r0 is
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as in Lemma 3.9 (in the following we allow the constants to depend on r0). We follow
closely the methods developed in [19] and [22].

Below, we use the abbreviation U(x) = (x, u(x),Du(x),D2u(x)). Applying the
difference quotient to (3.11) and interchanging with the derivatives yields

∂2
αβ [a

i
αβ ◦ U ]h + ∂α[b

i
α ◦ U ]h + [c

i
◦ U ]h = 0. (3.18)

We use the fundamental theorem of calculus to write

[f ◦ U ]h(x) =
1
h

(
f (U(x + heν))− f (U(x))

)
=

1
h

∫ 1

0

d

dt
f
(
(1− t)U(x)+ t U(x + heν)

)
dt

=

∫ 1

0
Df

(
(1− t)U(x)+ t U(x + heν)

)
dt · Uh(x).

Using the notation f h(x) =
∫ 1

0 f
(
(1− t)U(x)+ tU(x + heν)

)
dt we thus get

[f ◦ U ]h =

(
∂f

∂q
j
λµ

)h
∂2
λµu

j
h +

(
∂f

∂p
j
λ

)h
∂λu

j
h +

(
∂f

∂zj

)h
u
j
h +

(
∂f

∂xν

)h
,

and the system (3.18) takes the form

∂2
αβ [ã

i
αβ(·, uh,Duh,D

2uh)] + ∂α[b̃
i
α(·, uh,Duh,D

2uh)] + c̃
i(·, uh,Duh,D

2uh) = 0.
(3.19)

Here the coefficients are as follows:

ãiαβ(x, z, p, q) =

(
∂aiαβ

∂q
j
λµ

)h
(x)q

j
λµ+

(
∂aiαβ

∂p
j
λ

)h
(x)p

j
λ+

(
∂aiαβ

∂zj

)h
(x)zj +

(
∂aiαβ

∂xν

)h
(x),

b̃iα(x, z, p, q) =

(
∂biα

∂q
j
λµ

)h
(x)q

j
λµ+

(
∂biα

∂p
j
λ

)h
(x)p

j
λ+

(
∂biα

∂zj

)h
(x)zj +

(
∂biα

∂xν

)h
(x),

c̃i(x, z, p, q) =

(
∂ci

∂q
j
λµ

)h
(x)q

j
λµ+

(
∂ci

∂p
j
λ

)h
(x)p

j
λ+

(
∂ci

∂zj

)h
(x)zj +

(
∂ci

∂xν

)h
(x).

In order to state bounds for these coefficients, we introduce the abbreviation

Is,h(x) =

∫ 1

0

(
1+ |(1− t)D2u(x)+ tD2u(x + h)|2

)s/2
dt.

Using (3.12) and (3.13) we then obtain

|ã(x, z, p, q)| ≤ C
(
Ip−2,h(x)|q| + Ip−1,h(x)(|p| + |z| + 1)

)
,

|b̃(x, z, p, q)| + |c̃(x, z, p, q)| ≤ C
(
Ip−1,h(x)|q| + Ip,h(x)(|p| + |z| + 1)

)
.
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As above we define the linear function lh,r =: lh by

lh(x) =
1
|Ar |

∫
Ar

uh + (x − x0) ·
1
|Ar |

∫
Ar

Duh.

Using again the test function ϕ4(uh − lh), we infer that∫
ãiαβ∂

2
αβu

i
hϕ

4

≤ C

∫ (
Ip−1,h|D

2uh| + Ip,h(|Duh| + |uh| + 1)
)
(|D(uh − lh)| + |uh − lh|)ϕ

4

+ C

∫ (
Ip−2,h|D(uh − lh)| + Ip−1,h|uh − lh|

)
|D2uh|ϕ

3
|Dϕ|

+ C

∫ (
Ip−1,h|D(uh − lh)| + Ip,h|uh − lh|

)
(|Duh| + |uh| + 1) ϕ3

|Dϕ|

+ C

∫ (
Ip−2,h|D

2uh| + Ip−1,h(|Duh| + |uh| + 1)
)
|uh − lh|ϕ

2(ϕ|D2ϕ| + |Dϕ|2).

(3.20)

On the other hand we have the ellipticity condition (using (3.12))

ãiαβ(x, z, p, q)q
i
αβ =

∫ 1

0

∂aiαβ

∂q
j
λµ

(
(1− t)U(x)+ tU(x + h)

)
qiαβq

j
λµ dt

+

∫ 1

0

∂aiαβ

∂p
j
λ

(
(1− t)U(x)+ tU(x + h)

)
p
j
λq
i
αβ dt

+

∫ 1

0

∂aiαβ

∂zj

(
(1− t)U(x)+ tU(x + h)

)
zjqiαβ dt

+

∫ 1

0

∂aiαβ

∂xν

(
(1− t)U(x)+ tU(x + h)

)
qiαβ dt

≥ CλIp−2,h|q|
2
− CIp−1,h |q|(|p| + |z| + 1).

Combining the two inequalities we arrive at∫
Ip−2,h|D

2uh|
2ϕ4

≤ C

∫
Ip−1,h|D

2uh|
(
|D(uh−lh)|ϕ

4
+|uh−lh|(ϕ

4
+ϕ3
|Dϕ|)+(|Duh|+|uh|+1)ϕ4)

+ C

∫
Ip−2,h|D

2uh|
(
|D(uh−lh)|ϕ

3
|Dϕ|+|uh−lh|ϕ

2(ϕ|D2ϕ|+|Dϕ|2)
)

+ C

∫
Ip,h(|Duh|+|uh|+1)

(
|D(uh−lh)|ϕ

4
+|uh−lh|(ϕ

4
+ϕ3
|Dϕ|)

)
+ C

∫
Ip−1,h(|Duh|+|uh|+1)

(
|D(uh−lh)|ϕ

3
|Dϕ|+|uh−lh|ϕ

2(ϕ|D2ϕ|+|Dϕ|2)
)
.
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Using Ip−1,h ≤ I
1/2
p−2,hI

1/2
p,h and absorbing the second derivatives of uh yields

∫
Ip−2,h|D

2uh|
2ϕ4

≤ C

∫
Ip,h

(
|D(uh − lh)|

2
+ |uh − lh|

2
+ |Duh|

2
+ |uh|

2
+ 1

)
ϕ4

+ C

∫
Ip,h|uh − lh|

2ϕ2
|Dϕ|2

+ C

∫
Ip−2,h

(
|D(uh − lh)|

2ϕ2
|Dϕ|2 + |uh − lh|

2(|Dϕ|4 + ϕ2
|D2ϕ|2)

)
= I + II + III.

Before continuing we need to recall the following lemma which is essentially due to
Morrey [19, Lemma 5.4.2]. In the form stated here, it can be found in [22].

Lemma 3.10. Let r > 0 and let q ≥ 0 be a function such that∫
Bs (x)∩Br

q ≤ csγ

for all Bs(x) ⊂ B2r . Then for every ε > 0 there exists Cε > 0 such that∫
Br

q|v|2 ≤ εrγ
∫
Br

|Dv|2 + Cεr
γ−2

∫
Br

|v|2.

Next we use this lemma in order to estimate the terms I–III from above. By the definition
of Ip,h and Lemma 3.9 we get ∫

Bs (x)

Ip,h ≤ Cs
β

for all Bs(x) ⊂ B2r ⊂ Br0 and some 0 < β < 1. Hence we can apply Lemma 3.10 and
Poincaré’s inequality to estimate

II ≤ Crβ−2
‖D(uh − lh)‖

2
L2(Ar )

.

Using the same argument we get

I ≤ Crβ
∫
B2r

ϕ4(|D2uh|
2
+ |D(uh − lh)|

2)

+ Crβ−2
∫
B2r

(
|Duh|

2
+ |D(uh − lh)|

2
+ |uh|

2
+ |uh − lh|

2
+ Ip,h

)
.

Inserting these two estimates into the above estimate for
∫
Ip−2,h|D

2uh|
2ϕ4 we conclude

that
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Ip−2,h|D

2uh|
2ϕ4
≤ Crβ

∫
B2r

ϕ4(|D2uh|
2
+ |D(uh − lh)|

2)

+ Crβ−2
∫
B2r

(
|Duh|

2
+ |D(uh − lh)|

2
+ |uh|

2
+ |uh − lh|

2
+ Ip,h

)
+ C

∫
Ip−2,h

(
|D(uh − lh)|

2ϕ2
|Dϕ|2 + |uh − lh|

2(|Dϕ|4 + ϕ2
|D2ϕ|2)

)
. (3.21)

Next we use Hölder’s and Poincaré’s inequalities to get

∫
Ip−2,h

(
|D(uh − lh)|

2χAr

r2 + |uh − lh|
2χAr

r4

)
≤ C‖Ip−2,h‖Lp/(p−2)(B2r )

(
r−4
‖uh − lh‖

2
Lp(Ar )

+ r−2
‖D(uh − lh)‖Lp(Ar )

)
≤ Cr−2

‖Ip−2,h‖Lp/(p−2)(B2r )
‖D(uh − lh)‖

2
Lp(Ar )

.

Since u ∈ W 2,p(�) we know from [19, Theorem 3.6.8] that

Is,h→ V s in Lp/s ∀1 ≤ s ≤ p.

We combine all the above estimates to get (lh→ –
∫
Ar
∂νu+ (x − x0)–

∫
Ar
∂νDu) for r0

small enough∫
ϕ4Ip−2,h|D

2uh|
2
≤ C(1+ r−2)

∫
B2r

V p + Crβ−2
∫
B2r

|D2u|2 + Crβ .

In particular this estimate is true for r = r0/4 and therefore we can let h→ 0 to conclude∫
Br0/8

V p−2
|D3u|2 ≤ C(1+ r−2

0 )

∫
Br0/4

V p + cr
β−2
0

∫
Br0/4

|D2u|2 + Cr
β

0 . (3.22)

Hence u ∈ W 3,2(Br0/8) and by the Sobolev embedding theorem this implies that u ∈
W

2,q
loc (Br0/8) for all q < ∞. Moreover the above estimate yields V p/2 ∈ W 1,2(Br0/8).

Altogether this shows that we can improve Lemma 3.9 to get the estimate∫
Br

V p ≤ cr2−δ (3.23)

for all r ≤ r0/16 and all δ > 0.

3.2.3. Higher regularity. It turns out that estimating with difference quotients and Mor-
rey’s lemma are not sufficient to get the critical L∞ estimate for D2u. Therefore we
modify the estimates in order to apply a Gehring type lemma from [7].
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Recalling (3.20) we have∫
ϕ4ãiαβ∂

2
αβu

i
h

≤ C

∫
ϕ4(Ip−1,h|D

2uh| + Ip,h(|Duh| + |uh| + 1)
)
(|D(uh − lh)| + |uh − lh|)

+
C

r

∫
ϕ3(Ip−2,h|D(uh − lh)| + Ip−1,h|uh − lh|

)
|D2uh|

+
C

r

∫
ϕ3(Ip−1,h|D(uh − lh)| + Ip,h|uh − lh|

)
(|Duh| + |uh| + 1)

+
C

r2

∫
ϕ2(Ip−2,h|D

2uh| + Ip−1,h(|Duh| + |uh| + 1)
)
|uh − lh|

= I + · · · + IV.

This time we choose lh such that
∫
B2r
(uh − lh) = 0 and

∫
B2r
D(uh − lh) = 0. Because

of (3.23) and the strong convergence Is,h → V s in Lp/s we have, for every r ≤ r0/16,
every h small enough and every δ > 0,∫

Br

Ip,h ≤ cr
2−δ. (3.24)

Now we again estimate each term separately. We start with I . By Young’s inequality we
get

I ≤ ε

∫
ϕ4Ip−2,h|D

2uh|
2
+ C

∫
ϕ4Ip,h(|Duh|

2
+ |uh|

2
+ 1)

+ C

∫
ϕ4Ip,h(|D(uh − lh)|

2
+ |uh − lh|

2),

and we continue to estimate the last term with the help of Lemma 3.10, (3.24) and
Poincaré’s inequality by∫

ϕ4Ip,h(|D(uh − lh)|
2
+ |uh − lh|

2) ≤ Cr2−δ
∫
B2r

(|D2(uh − lh)|
2
+ |D(uh − lh)|

2)

+ Cr−δ
∫
B2r

(|D(uh − lh)|
2
+ |uh − lh|

2)

≤ Cr2−δ
∫
B2r

|D2uh|
2.

Next we estimate

II ≤ ε
∫
ϕ4Ip−2,h|D

2uh|
2
+
C

r2

∫
B2r

Ip,h|uh − lh|
2

+
C

r

(∫
B2r

I
4/3
p−2,h|D

2uh|
4/3
)3/4(∫

B2r

|D(uh − lh)|
4
)1/4

.
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The second term can be estimated as above:

C

r2

∫
B2r

Ip,h|uh − lh|
2
≤ Cr2−δ

∫
B2r

|D2uh|
2,

and for the third term we use the Sobolev–Poincaré inequality to get

C

r

(∫
B2r

I
4/3
p−2,h|D

2uh|
4/3
)3/4(∫

B2r

|D(uh− lh)|
4
)1/4

≤
C

r

(∫
B2r

I
4/3
p−2,h|D

2uh|
4/3
)3/2

.

III can be estimated by

III ≤
γ

r2

∫
B2r

(|D(uh − lh)|
2
+ Ip,h|uh − lh|

2)

+ Cγ

∫
B2r

(I2p−2,h + Ip,h)(|Duh|
2
+ |uh|

2
+ 1)

≤ C(γ + r2−δ)

∫
B2r

|D2uh|
2
+ Cγ

∫
B2r

(I2p−2,h + Ip,h)(|Duh|
2
+ |uh|

2
+ 1).

Finally, using some of the estimates above, the last term is estimated as follows:

IV ≤
C

r2

(∫
B2r

I
4/3
p−2,h|D

2uh|
4/3
)3/4(∫

B2r

|uh − lh|
4
)1/4

+
γ

r4

∫
B2r

|uh − lh|
2
+ Cγ

∫
B2r

I2p−2,h(|Duh|
2
+ |uh|

2
+ 1)

≤
C

r

(∫
Br

I
4/3
p−2,h|D

2uh|
4/3
)3/2

+ Cγ

∫
B2r

|D2uh|
2

+ Cγ

∫
B2r

I2p−2,h(|Duh|
2
+ |uh|

2
+ 1).

We also note that we have the ellipticity estimate∫
ϕ4Ip−2,h|D

2uh|
2
≤ C

∫
ϕ4ãiαβ∂

2
αβu

i
h + C

∫
ϕ4Ip,h(|Duh|

2
+ |uh|

2
+ 1).

Combining all these estimates we get

∫
Br

Ip−2,h|D
2uh|

2
≤
C

r

(∫
B2r

I
4/3
p−2,h|D

2uh|
4/3
)3/2

+ C(γ + r2−δ)

∫
B2r

|D2uh|
2

+ Cγ

∫
B2r

(I2p−2,h + Ip,h)(|Duh|
2
+ |uh|

2
+ 1).
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Since u ∈ W 3,2(Br) and V p/2 ∈ W 1,2(Br) for r ≤ r0/16 we can let h→ 0 and get∫
Br

V p−2
|D3u|2 ≤

C

r

(∫
B2r

V 4(p−2)/3
|D3u|4/3

)3/2

+ C(γ + r2−δ
0 )

∫
B2r

V p−2
|D3u|2

+ Cγ

∫
B2r

V 2p.

Defining f = (V (p−2)/2
|D3u|)4/3, g = V 2(p−2)/3, h = V 4p/3 and d = 3/2 we conclude

that(
–
∫
Br

f d
)1/d

≤ C –
∫
B2r

fg + C(γ + r2−δ
0 )1/d

(
–
∫
B2r

f d
)1/d

+ Cγ

(
–
∫
B2r

hd
)1/d

(3.25)

for all balls Br ⊂ Br0/16. Next we need the following Gehring type lemma, which slightly
generalizes Lemma 1.2 of Bildhauer, Fuchs & Zhong [7] (see also [11, Theorem 1.1]).

Lemma 3.11. Let d > 1 and β > 0 be two constants. There exists ε0 > 0 such that for
all ε < ε0 and all non-negative functions f, g, h : � ⊂ Rn→ R satisfying

f, h ∈ Ldloc(�), eβg
d

∈ L1
loc(�)

and ( for some constant C > 0)(
–
∫
B

f d
)1/d

≤ C –
∫

2B
fg + ε

(
–
∫

2B
f d
)1/d

+ C

(
–
∫

2B
hd
)1/d

(3.26)

for all balls B = Br(x) with B2r(x) ⊂⊂ �, there exists c0 = c0(n, d, C) > 0 such that if

hd logc0β(e + h) ∈ L1
loc(�),

then the same is true for f . Moreover, for all balls B as above we have

–
∫
B

f d logc0β

(
e +

f

‖f ‖d,2B

)
≤ c

(
–
∫

2B
eβg

d

)(
–
∫

2B
f d
)

+ c –
∫

2B
hd logc0β

(
e +

f

‖f ‖d,2B

)
, (3.27)

where c = c(n, d, β, C) > 0 and ‖f ‖d,2B = (–
∫

2B f
d)1/d .

Proof. The proof is very similar to the one of [7, Lemma 1.2] and therefore we only
comment on the differences.

We define B0 = 2B and we assume without loss of generality that∫
B0

f d = 1.

Next we define the functions d(x) = dist(x,Rn\B0) and

f̃ (x) = d(x)n/df, h̃(x) = d(x)n/dh, w(x) = χB0(x),



3100 Ernst Kuwert et al.

where χB0 is the characteristic function of B0. As in [7] it is now easy to see that because
of (3.26) these new functions satisfy(

–
∫
B

f̃ d
)1/d

≤ C –
∫

2B
f̃ g + Cε

(
–
∫

2B
f̃ d
)1/d

+ C

(
–
∫

2B
h̃d
)1/d

+ C

(
–
∫

2B
w

)1/d

,

and now this inequality is true for all balls B ⊂ Rn. Hence, by taking the supremum over
all radii, we get (here M(f ) denotes the maximal function of f )

M(f̃ d)1/d ≤ CM(f̃ g)+ CεM(f̃ d)1/d + CM(h̃d)1/d + CM(w)1/d .

For ε0 small enough we therefore have

M(f̃ d)1/d ≤ CM(f̃ g)+ CM(h̃d)1/d + CM(w)1/d ,

and with the help of this inequality we can copy the rest of the argument from [7, proof
of Lemma 1.2] to finish the proof. ut

Now we want to apply this lemma to our estimate (3.25). From the previous subsection
we know that

f d = V p−2
|D3u|2 ∈ L1

loc(Br0/16), hd = V 2p
∈ L1

loc(Br0/16).

Hence it remains to check that

eβg
d

= eβV
p−2
∈ L1

loc(Br0/16) (3.28)

for some constant β > 0. We actually claim that this is true for all β > 0. In order to see
this, we note that by (3.22) we have∫

Br0/8

|D(V p/2)|2 ≤ c1(r0).

Next we let η ∈ C∞c (Br0/8) be a cut-off function such that 0 ≤ η ≤ 1, η(x) ≡ 1 for all
x ∈ Br0/16 and ‖Dη‖L∞(Br0/8) ≤ cr

−1
0 . Defining v = ηV p/2 we get∫

Br0/8

|Dv|2 ≤ cr−2
0

∫
Br0/8

V p + c

∫
Br0/8

|DV p/2|2 ≤ c2(r0).

Hence we see that u = v/
√
c2(r0) ∈ H

1
0 (Br0/8) and∫

Br0/8

|Du|2 ≤ 1.

Therefore, by the Moser–Trudinger inequality (see [23]), there exist constants β0, C =

C(r0) > 0 such that ∫
Br0/16

eβ0V
p

≤

∫
Br0/8

ec2(r0)β0u
2
≤ C.



Two-dimensional curvature functionals 3101

In particular this implies with the help of Young’s inequality that for every β > 0,∫
Br0/16

eβV
p−2
≤ c(β, β0)

∫
Br0/16

eβ0V
p

≤ C(r0, β, β0).

Since also
hd logα(e + h) = V 2p logα(e + V 4p/3) ∈ L1

loc(Br0/16)

for every α > 0, Lemma 3.11 implies that

f d logα(e + f ) ∈ L1
loc(Br0/16)

for every α > 0. Hence

|D3u|2 logα(e + |D3u|) ∈ L1
loc(Br0/16)

for every α > 0. In particular, this is true for α > 1 and therefore we can apply [10,
Corollary 4.6 and Example 4.18(iv)] (see also [12, Example 5.3] for a different proof of
this result) in order to conclude that

u ∈ C2(Br0/32).

In particular this implies that∫
Br

V p ≤ cr2 for all r ≤ r0/32. (3.29)

In order to show the Hölder continuity of D2u we go back to (3.21) and we estimate the
last term by∫

Ip−2,h

(
|D(uh − lh)|

2χAr

r2 + |uh − lh|
2χAr

r4

)
≤ C

∫
Ar

|D2uh|
2.

Inserting this estimate into (3.21), letting h→ 0 and using (3.29) we conclude that∫
Br

|D3u|2 ≤ C

∫
Ar

|D3u|2 + Crβ for every r ≤ r0/32. (3.30)

Remark 3.12. This estimate is sufficient for our purposes, but by repeating all the esti-
mates from Subsection 3.2.2 and replacing every application of Lemma 3.9 by (3.29) one
can actually improve this inequality in the sense that the term rβ on the right hand side
can be replaced by r2.

The Hölder continuity of D2u now follows from (3.30) by another hole-filling argument.
This finishes the proof of Proposition 3.7.
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4. Compactness results and existence of minimizers

4.1. Compactness results

We start by quoting the fundamental compactness theorem of J. Langer (see also [8]).

Theorem 4.1 ([16]). Let6 be a closed surface andp>2. Assume that fk ∈W
2,p
im (6,Rn)

is a sequence satisfying 0 ∈ fk(6) for all k ∈ N and

Ep(fk) ≤ C. (4.1)

After replacing fk by fk ◦ ϕk for suitable diffeomorphisms ϕk ∈ C∞(6,6) and passing
to a subsequence, the fk converge weakly in W 2,p(6,Rn) to an f ∈ W 2,p

im (6,Rn). In
particular, the convergence is in C1,β(6,Rn) for any β < 1− 2/p, and

Ep(f ) ≤ lim inf
k→∞

Ep(fk). (4.2)

In this section we prove Theorem 1.2, which replaces the Ep bound in Langer’s theorem
by a bound only for Wp, under the additional assumption that the Willmore energy is
bounded by 8π . Before entering the proof we include two remarks about the statement.

Remark 4.2. One can allow sequences fk : 6k → Rn in Theorem 1.2, where 6k are
arbitrary closed oriented surfaces. In fact, a bound on the genus follows from the condition
lim infk→∞W(fk) < 8π by a result of Kuwert, Li & Schätzle [14].

Remark 4.3. Connecting two round spheres by a shrinking catenoid neck yields a se-
quence of smoothly embedded surfaces with bounded Wp energy and Willmore energy
less than 8π . As the convergence is not in C1, this shows that the assumption on the Will-
more energy in Theorem 1.2 cannot be weakened. Similar constructions are also possible
for higher genus: see Kühnel & Pinkall [13] and Simon [22].

To prove Theorem 1.2 we need the following area ratio bounds, which are immediate
consequences of Simon’s monotonicity identity [22].

Lemma 4.4. Let f : 6→ Rn be an embedded closed surface. Then

σ−2µf (Bσ ) ≤ CW(f ) for all σ > 0. (4.3)

Moreover, for any p > 2,

σ−2µf (Bσ ) ≤
1
4W(f )+ Cσ (p−2)/p for all σ > 0, (4.4)

where the constant C depends on Wp(f ).
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Proof. By [22, (1.2)], for 0 < σ < ρ <∞ we have

σ−2µf (Bσ ) ≤ ρ
−2µf (Bρ)+

1
4W(f )

+
1
2

∫
6∩Bρ

ρ−2
〈x,H 〉 dµ−

1
2

∫
6∩Bσ

σ−2
〈x,H 〉 dµ.

Letting ρ →∞ we conclude that for every σ > 0,

σ−2µf (Bσ )≤
1
4W(f )+

1
2σ

∫
6∩Bσ

|H | dµ≤ 1
4W(f )+Cσ (p−2)/p(Wp(f ))1/p, (4.5)

where we have used Hölder’s inequality in the last step. ut

As a second ingredient, we need the following lemma yielding an Lp estimate for the
prescribed mean curvature system.

Lemma 4.5. Let u ∈ W 2,p(B%,Rk), where B% = {x ∈ R2
: |x| < %} and 0 < % < ∞,

p ∈ (1,∞), be a solution of the system

a
αβ
ij ∂

2
αβu

i
= ϕj for j = 1, . . . , k.

There is an ε0 = ε0(p) > 0 such that if

|a
αβ
ij (x)− δ

αβδij | ≤ ε0 for all x ∈ B%,

then for some C = C(p) <∞ we have the estimate

‖D2u‖Lp(B%/2) ≤ C(‖ϕ‖Lp(B%) + %
−1
‖Du‖Lp(B%)).

Proof. We may assume that % = 1 and that u has mean value zero onB1. For η ∈ C∞0 (B1)

satisfying η = 1 on B1/2 and η = 0 in B1 \ B3/4, we calculate

a
αβ
ij ∂

2
αβ(ηu

i) = ηϕj + a
αβ
ij (∂

2
αβη)u

i
+ a

αβ
ij (∂αη ∂βu

i
+ ∂βη ∂αu

i).

Hence we have

1(ηuj ) = (δαβδij − a
αβ
ij )∂

2
αβ(ηu

i)+ ηϕj

+ a
αβ
ij (∂

2
αβη)u

i
+ a

αβ
ij (∂αη ∂βu

i
+ ∂βη ∂αu

i).

From standard Lp estimates and the Poincaré inequality we obtain

‖D2(ηu)‖Lp(B1) ≤ Cε0‖D
2(ηu)‖Lp(B1) + C(‖ϕ‖Lp(B1) + ‖Du‖Lp(B1)),

for a constant C = C(p) <∞. This shows the desired result. ut

Proof of Theorem 1.2. Let fk : 6 → Rn be a sequence as in the theorem. For each
q ∈ 6, we let rk(q) > 0 be the maximal radius on which fk is represented as a graph
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over the tangent plane at q. We denote by uk,q : Brk(q)→ Rn−2 the corresponding graph
function, obtained by choosing a suitable rigid motion. In particular

uk,q(0) = 0 and Duk,q(0) = 0.

For ε > 0 we define rk(q, ε) = sup{r ∈ (0, rk(q)] : ‖Duk,q‖C0(Br )
< ε} and

rk = inf
q∈6

rk(q, ε).

By compactness, the infimum is attained at some point qk ∈ 6 and we have rk > 0. We
will show by contradiction that

lim inf
k→∞

rk > 0. (4.6)

Assuming that rk → 0 we rescale by setting

f̃k : 6→ Rn, f̃k(p) =
1
rk
(fk(p)− fk(qk)).

Clearly, the f̃k have local graph representations

ũk,q : Brk(q)/rk → Rn−2, ũk,q(x) =
1
rk
uk,q(rkx),

where ũk,q(0) = 0 and Dũk,q(0) = 0, and

‖ũk,q‖C0(B1)
+ ‖Dũk,q‖C0(B1)

≤ Cε.

From the bound Wp(fk) ≤ C we further infer that∫
6

|H
f̃k
|
p dµ

f̃k
= r

p−2
k

∫
6

|Hfk |
p dµfk ≤ Cr

p−2
k → 0.

The prescribed mean curvature system (3.2) for the uk fulfills the assumption of Lem-
ma 4.5 if ε = ε(p) > 0 is sufficiently small. Therefore we get the Lp estimate

‖D2ũk,q‖Lp(B1/2) ≤ C(‖Hf̃k
‖Lp(B1) + ‖Dũk,q‖Lp(B1)) ≤ C.

Moreover the monotonicity formula (4.3) yields, for BR = BR(0) ⊂ Rn,

µ
f̃k
(BR) ≤ CR

2 for any R ∈ (0,∞).

We now apply a localized version of Langer’s compactness theorem. This is proved in
[8, Thm. 1.3] assuming local curvature bounds; the necessary modifications for the case
of Lp bounds are known from the compact case—see [16] or [8, Thm. 1.1]. We thus
obtain a proper immersion f0 : 60 → Rn such that (up to the choice of a subsequence)
the f̃k converge to f0 locally in C1,β , for every 0 < β < 1−2/p, up to diffeomorphisms.
Weak lower semicontinuity of Wp implies

Hf0 = 0.
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The Gauß–Bonnet theorem yields∫
6

|Afk |
2 dµfk = 4W(fk)− 4πχ(6) ≤ C,

and thus we get further∫
60

|Af0 |
2 dµf0 ≤ lim inf

k→∞

∫
6

|A
f̃k
|
2 dµ

f̃k
≤ C.

Summarizing, f0 : 60 → Rn is a properly immersed minimal surface with finite total
curvature. By results of Chern & Osserman [9], f0 admits a conformal reparametrization
on a compact surface with finitely many punctures, corresponding to the ends. Moreover,
each end has a well-defined tangent plane and multiplicity. Now the monotonicity formula
from (4.4) implies

µ
f̃k
(BR)

πR2 =
µfk (BrkR)

π(Rrk)2
≤

1
4π

W(fk)+ C(Rrk)
(p−2)/p for all R > 0.

Letting k→∞ and then R→∞ we conclude that

lim sup
R→∞

µf0(BR)

πR2 < 2. (4.7)

This means that f0 has just one simple end, and is in fact a plane. We now argue that
the Gauß map converges to a constant locally uniformly on 60 = R2, contradicting
the definition of rk . More precisely, from the compactness theorem in [8] we know that
f̃k ◦ φk → f0 locally in C1 and moreover

‖f̃k ◦ φk − f0‖C0(Uk)
→ 0,

where the Uk ⊂ R2 are open sets with U1 ⊂ U2 ⊂ · · · and R2
=
⋃
∞

k=1 Uk such that
φk : Uk → f̃−1

k (Bk(0)) is diffeomorphic. Now f̃k(qk) = 0 by construction, therefore
there exists a pk ∈ Uk with φk(pk) = qk . In particular

f0(pk) = f0(pk)− (f̃k ◦ φk)(pk)→ 0.

Since f0 is proper, we get pk → p ∈ R2 after passing to a subsequence. Now by the
indirect assumption, there exist xk ∈ B1(0) such that for all k,

|Dũk,qk (xk)−Dũk,qk (0)| ≥ ε/2 > 0.

Denote the corresponding point by q ′k ∈ 6. Then |f̃k(q ′k)| ≤ C, and hence there are
points p′k ∈ Uk (for k large enough) with φk(p′k) = q

′

k . This implies

|f0(p
′

k)| ≤ |f0(p
′

k)− (f̃k ◦ φk)(p
′

k)| + |f̃k(q
′

k)| ≤ C.

Using again the fact that f0 is proper, we conclude after passing to a further subsequence
that p′k → p′ ∈ R2. But now Tpf0 = limk→∞ Tpk (f̃k ◦ φk) = limk→∞ Tqk f̃k , and
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analogously Tp′f0 = limk→∞ Tq ′k
f̃k . From the indirect assumption, we obtain Tpf0 6=

Tp′f0, contradicting the fact that f0 parametrizes a plane.
Given (4.6) we may finally use Lemma 4.5 with % := infk∈N rk > 0 to get∫

B%/2

|D2uk,q |
p
≤ C for all q ∈ 6, k ∈ N.

The global area bound and a standard covering argument then imply that

Ep(fk) ≤ C for all k ∈ N.

The desired conclusion now follows from Theorem 4.1. ut

4.2. Existence of minimizers

Combining Theorem 4.1 with our regularity from Theorem 1.1 we immediately get

Theorem 4.6. For a closed surface 6 and p > 2, denote by αn6(p) the infimum of the
energy Ep among all smooth immersions from 6 into Rn. Then αn6(p) is attained by a
smooth immersion f : 6→ Rn.

Proof. Using mollification it is easy to see that

αn6(p) = inf{Ep(f ) : f ∈ W 2,p
im (6,Rn)}.

Thus the limiting map f ∈ W 2,p
im (6,Rn) of a minimizing sequence obtained from Theo-

rem 4.1 is a critical point of Ep, and hence smooth after composing with a diffeomorphism
by Theorem 1.1. ut

For any fixed immersion f : 6→ Rn we have

lim
q→p

αn6(q) ≤ lim
q→p

Eq(f ) = Ep(f ).

Taking the infimum with respect to f shows that the function αn6 : [2,∞)→ R is upper
semicontinuous. In particular, it is right continuous since it is non-decreasing. For λ > 0
and f : 6→ Rn fixed we also note that

αn6(2) ≤ E2(λf ) =
λ2

4
µg(6)+

1
4

∫
6

|A|2 dµg.

Letting λ↘ 0 and taking the infimum with respect to f shows that

αn6(2) = inf
f :6→Rn

1
4

∫
6

|A|2 dµg. (4.8)

Recall that by the Gauß equation and the Gauß–Bonnet theorem

W(f ) =
1
4

∫
6

|A|2 dµg + πχ(6). (4.9)
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The infimum of the Willmore energy among immersions of 6 into Rn satisfies βn6 < 8π
(see [2]). Thus for p > 2 close to 2, we conclude for a minimizer f of Ep that

W(f ) ≤ Ep(f )+ πχ(6) = αn6(p)+ πχ(6) < 8π.

In particular, these minimizers are embedded by the Li–Yau inequality [17].
Next we define the number βn6(p) as the infimum of the energy Wp among all smooth

immersions from6 into Rn. Repeating the previous discussion with βn6 instead of αn6 we
conclude that for every sequence of immersions fk : 6 → Rn with Wp(fk)→ βn6 and
p − 2 small enough we have

W(fk) ≤Wp(fk)→ βn6(p) < 8π.

Combining this estimate with Theorems 1.2 and 3.1, and arguing as in the proof of The-
orem 4.6, we get

Theorem 4.7. For every closed surface 6 there exists a number 2 < p0 < ∞ such that
for every 2 < p < p0 the number βn6(p) is attained by a smooth immersion f : 6→ Rn.

The numbers αn6(p) and βn6(p) depend only on the topological type of6. This can be re-
fined by minimizing in regular homotopy classes of immersions f : 6 → Rn. Theorems
4.6 and 4.7 extend without any difficulties.

5. Palais–Smale condition

Here we show that for p > 2 the functionals Ep resp. Wp satisfy the Palais–Smale
condition resp. a modified Palais–Smale condition, up to the action of diffeomorphisms
on 6. For f ∈ W 2,p

im (6,Rn) and any V ∈ W 2,p(6,Rn) we define the norm

‖V ‖
W

2,p
f (6)

=

(∫
6

(
|∇(DV )|

p
g + |DV |

p
g + |V |

p
)
dµg

)1/p

,

where g ∈ W 1,p(T 0,26) is the metric induced by f and ∇ denotes its Levi-Civita con-
nection, with Christoffel symbols locally in Lp. In particular, the norm is well-defined.
Now set

‖DEp(f )‖f = sup{DEp(f )V : V ∈ W 2,p(6,Rn), ‖V ‖
W

2,p
f (6)

≤ 1},

resp.

‖DWp(f )‖f = sup{DWp(f )V : V ∈ W 2,p(6,Rn), ‖V ‖
W

2,p
f (6)

≤ 1},

For any diffeomorphism ϕ ∈ W 2,p(6,6) we have (f ◦ ϕ)∗geuc = ϕ∗(f ∗geuc), which
implies ‖V ◦ ϕ‖

W
2,p
f ◦ϕ(6)

= ‖V ‖
W

2,p
f (6)

and therefore

‖DEp(f ◦ ϕ)‖f ◦ϕ = ‖DEp(f )‖f , (5.1)
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resp.

‖DWp(f ◦ ϕ)‖f ◦ϕ = ‖DWp(f )‖f . (5.2)

Now we can formulate the main results of this section.

Theorem 5.1. Let fk ∈ W
2,p
im (6,Rn), p > 2, be a sequence satisfying

Ep(fk) ≤ C and ‖DEp(fk)‖fk → 0.

Then, after choosing a subsequence and passing to fk ◦ ϕk for suitable diffeomorphisms
ϕk ∈ C

∞(6,6), the fk converge strongly in W 2,p(6,Rn) to some f ∈ W 2,p
im (6,Rn),

and f is a smooth critical point of Ep.

Theorem 5.2. Let fk ∈ W
2,p
im (6,Rn), δ > 0, p > 2, be a sequence satisfying

Wp(fk) ≤ C, W(fk) ≤ 8π − δ and ‖DWp(fk)‖fk → 0.

Then, after choosing a subsequence and passing to fk ◦ ϕk for suitable diffeomorphisms
ϕk ∈ C

∞(6,6), the fk converge strongly in W 2,p(6,Rn) to some f ∈ W 2,p
im (6,Rn),

and f is a smooth critical point of Wp.

We recall that the Palais–Smale condition cannot hold for the Willmore functional its-
self due to Möbius invariance. For sequences of critical points, i.e. Willmore surfaces, a
concentration-compactness alternative was proved by Kuwert & Schätzle [15], and a full
description of the bubbling was given by Bernard & Rivière [5] when the conformal type
is non-degenerating. They also proved that weak limits of Palais–Smale sequences are
conformal Willmore [4].

Since the arguments for the two results are very similar (thanks to Theorems 4.1 and
1.2) we only present the proof of Theorem 5.1.

Proof of Theorem 5.1. Langer’s compactness theorem [16] implies that after passing to
a subsequence fk ◦ ϕk → f in the C1 topology and weakly in W 2,p(6,Rn), where
f ∈ W

2,p
im (6,Rn) and ϕk ∈ C∞(6,6) are diffeomorphisms. It remains to see that

the convergence is strong in W 2,p(6,Rn), for which it suffices to consider the local
convergence of the graph representations over a disk Br ⊂ R2. Namely, the assumption
then implies that f is a critical point of Ep and is hence smooth by Theorem 1.1, after
composing with a further diffeomorphism.

Let uk, u ∈ W 2,p(Br ,Rn−2) be the graph functions for fk and f , respectively. Then
uk → u in C1(Br), weakly in W 2,p(Br), and we can assume

‖Duk‖C0(Br )
≤ L ≤ 1 and ‖uk‖

p

W 2,p(Br )
≤ C Ep(fk) ≤ C. (5.3)

We let ψk = η(uk − u) where χBr/2 ≤ η ≤ χBr is a cut-off function. Clearly

‖ψk‖C1(Br )
→ 0 and ‖ψk‖W 2,p(Br )

≤ C. (5.4)
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Next we recall from (2.1) the Fréchet derivative, in a graph representation:

DEp(fk)(0, ψk) =
∫
Br

(
a
αβ
i (Duk,D

2uk)∂
2
αβψ

i
k + b

α
i (Duk,D

2uk)∂αψ
i
k

)
, (5.5)

where

a
αβ
i (Duk,D

2uk) =
p

4
(1+ |Ak|2)(p−2)/2B

αβ,γ λ

ij (Duk)∂
2
γ λu

j
k

√
det gk,

bαi (Duk,D
2uk) =

p

8
(1+ |Ak|2)(p−2)/2

∂B
γ λ,µν

jm

∂piα
(Duk)∂

2
γ λu

j
k∂µνu

m
k

√
det gk

+
1
4
(1+ |Ak|2)p/2

∂
√

det gk
∂piα

(Duk).

Here (gk)αβ = δαβ+〈∂αuk, ∂βuk〉 and Bαβ,γ λij (Duk) = g
αγ

k g
βλ
k (δij −g

µν
k ∂µu

i
k∂νu

j
k). We

see easily that

a
αβ
i (Duk,D

2uk) ≤ C(1+ |D2uk|
2)(p−1)/2,

bαi (Duk,D
2uk) ≤ CL(1+ |D2uk|

2)p/2,

and obtain, as k→∞,∫
Br

a
αβ
i (Duk,D

2uk)
(
∂2
αβψ

i
k − η∂

2
αβ(u

i
k − u

i)
)
→ 0, (5.6)∫

Br

bαi (Duk,D
2uk)∂αψ

i
k → 0. (5.7)

Now using (5.3) and (5.4) we get ‖(0, ψk)‖W 2,p
fk

(6)
≤ C‖ψk‖W 2,p ≤ C, and hence

DEp(fk)(0, ψk)→ 0 as k→∞,

using the assumption of the theorem and (5.1). Combining this with (5.6) and (5.7), and
noting that aαβi (Du,D

2u) ∈ Lp(Br ,Rn−2)′, we conclude that∫
Br

η
(
a
αβ
i (Duk,D

2uk)− a
αβ
i (Du,D

2u)
)
∂2
αβ(u

i
k − u

i)→ 0 as k→∞.

But since uk → u in C1(Br ,Rn−2) we also have∫
Br

η
(
a
αβ
i (Duk,D

2uk)− a
αβ
i (Du,D

2uk)
)
∂2
αβ(u

i
k − u

i)→ 0,

and by adding the last two equations we get∫
Br

η
(
a
αβ
i (Du,D

2uk)− a
αβ
i (Du,D

2u)
)
∂2
αβ(u

i
k − u

i)→ 0 as k→∞.
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Finally, we use the ellipticity (see (3.12)) to estimate∫
Br

η
(
a
αβ
i (Du,D

2uk)− a
αβ
i (Du,D

2u)
)
∂2
αβ(u

i
k − u

i)

=

∫
Br

η

∫ 1

0

∂a
αβ
i

∂q
j
λµ

(
Du,D2u+ tD2(uk − u)

)
∂2
λµ(u

j
k − u

j )∂2
αβ(u

i
k − u

i) dt

≥ λ

∫
Br

η

∫ 1

0

(
1+ |D2u+ tD2(uk − u)|

2)(p−2)/2
|D2(uk − u)|

2 dt

≥ cλ

∫
Br/2

|D2(uk − u)|
p.

In the last step we have used the elementary Lemma 19.27 from [20]. Altogether we have
proved local and hence global convergence in W 2,p. ut
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