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Abstract. We give a general definition of branched, self-similar Lie algebras, and show that im-
portant examples of Lie algebras fall into that class. We give sufficient conditions for a self-similar
Lie algebra to be nil, and prove in this manner that the self-similar algebras associated with Grig-
orchuk’s and Gupta–Sidki’s torsion groups are nil as well as self-similar. We derive the same results
for a class of examples constructed by Petrogradsky, Shestakov and Zelmanov.

Keywords. Groups acting on trees, Lie algebras, wreath products

1. Introduction

Since its origins, mankind has been divided into hunters and gatherers. This paper is
resolutely of the latter kind, and brings together Caranti et al.’s Lie algebras of maximal
class [9–12,24], self-similar Lie algebras associated with self-similar groups from [4], the
self-similar associative algebras from [3], and Petrogradsky et al.’s nil Lie algebras [34,
35,40]. Contrary to tradition [1, Gen 4.8], we do not proclaim superiority of gatherers; yet
we reprove, in what seems a more natural language, the main results of these last papers.
In particular, we extend their criteria for growth (Propositions 2.17 and 3.12) and nillity
(Corollary 2.9).

The fundamental notion we consider is that of a self-similar algebra (Definition 2.1).
For L a Lie algebra and X a commutative algebra, whose Lie algebra of derivations is
written DerX, their wreath product L oDerX is the Lie algebraX⊗L oDerX. A self-
similar Lie algebra is then a Lie algebra endowed with a map ψ : L → L oDerX.

Every Lie algebra is self-similar via the map ψ(a) = 1 ⊗ a; branched self-similar
Lie algebras, on the contrary, are algebras such that ψ is an isomorphism up to finite
codimension (see Definition 3.3 for the precise definition). We offer “branchness” as the
important unifying concept relating the examples mentioned above.

We show how, starting from a self-similar group such as the Grigorchuk and Gupta–
Sidki group, we get natural examples of self-similar nil Lie algebras of polynomial
growth. The main connections we develop are summarized as follows:
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We give in §§2–3 a sufficient condition for a self-similar Lie algebra L to be nil, that
is, for ad(x) to be a nilpotent endomorphism of L for all x ∈ L . Our condition is then
applied in §4 to known examples, and provides systematic proofs of their nillity. We also
prove, by different means, the nillity of a Lie algebra associated with Grigorchuk’s group
(Theorem 4.12).

In particular, we show that the Lie algebras in [34,40] are contained in finitely gener-
ated self-similar Lie algebras, a fact hinted at, but never explicitly stated or used in these
papers. The self-similar Lie algebra we consider has more properties than the original
one, e.g. it is just infinite.

Golod [15, 16] constructed infinite-dimensional, finitely generated nil associative al-
gebras. These algebras have exponential growth—indeed, this is how they are proved
to be infinite-dimensional—and are quite intractable. In searching for more examples,
Small asked whether there existed such examples with finite Gelfand–Kirillov dimension
(i.e., roughly speaking, of polynomial growth). That question was answered positively by
Lenagan and Smoktunowicz [28].

The question may also be asked for Lie algebras; one then has the concrete construc-
tions described in §4. Alas, none of their enveloping algebras seems to be nil, though they
may be written as the sum of two nil subalgebras (Proposition 5.3); in particular, all their
homogeneous elements are nil.

In §5 we construct a natural self-similar associative algebra from a self-similar Lie
algebra. In §6 we construct a natural self-similar Lie algebra from a self-similar group
acting “cyclically” on an alphabet of prime order. We relate in this manner the examples
from §4 to the well-studied Grigorchuk [18] and Gupta–Sidki [21] groups:

Theorem 1.1. The Lie algebra associated with the Grigorchuk group, after quotienting
by its centre; the Lie algebra associated with the Gupta–Sidki group; and the extended
Petrogradsky–Shestakov–Zelmanov Lie algebras enjoy the following properties:

They are self-similar, nil, just infinite, not PI, and of finite Gelfand–Kirillov dimension.
Furthermore, the first one is of maximal class. Their descriptions as self-similar Lie

algebras are given in §§4.2, 4.1 and 4.5 respectively.

We might venture the following

Conjecture 1.2. If G is a torsion group, then its associated Lie algebra is nil.
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1.1. Preliminaries

All our algebras (Lie or associative) are over a commutative domain k. If k is of positive
characteristic p, a Lie algebra L over k may be restricted, in the sense that it admits
a semilinear map x 7→ xp satisfying the usual axioms of raising-to-the-pth-power, e.g.
(ξa)2 = ξ2a2 and (a + b)2 = a2

+ b2
+ [a, b] if p = 2. The centre of L is denoted

by ζ(L ). Note that if L is centreless, then the p-mapping is unique if it exists. Unless
otherwise stated (see e.g. §4.3), we will assume that our algebras are restricted. We will
also, by convention, say that algebras in characteristic 0 are restricted. See [23] or [22,
Chapter V] for an introduction to restricted algebras.

If L ,M are Lie algebras, with M acting on L by right derivations, their semidirect
product L o M is L ⊕M qua k-module, with Lie bracket [`1 + m1, `2 + m2] =

[`1, `2] + [m1, m2] + `1 · m2 − `2 · m1. In other words, the original Lie brackets of L
and M are kept, and the bracket of L with M is given by the action.

The tensor algebra over a k-module V is written T (V ). It is the free associative al-
gebra generated by V , and is, qua k-module,

⊕
n≥0 V

⊗n. Every Lie algebra has a univer-
sal enveloping algebra, unique up to isomorphism. In characteristic 0, or for unrestricted
Lie algebras, it is the associative algebra

U(L ) = T (L )/〈a ⊗ b − b ⊗ a − [a, b] for all a, b ∈ L 〉.

If however L is restricted, it is the associative algebra

U(L ) = T (L )/〈a ⊗ b − b ⊗ a − [a, b] for all a, b ∈ L , a⊗p − ap for all a ∈ L 〉.

No confusion should arise, because it is always the latter algebra that is meant in this text
if k has positive characteristic.

Wreath products of Lie algebras have appeared in various places in the literature [9,
13, 24, 43, 44, 46]. We use them as a fundamental tool in describing and constructing Lie
algebras; though they are essentially (at least, in the case of a wreath product with the
trivial Lie algebra k) equivalent to the inflation/deflation procedures of [9].

2. Self-similar Lie algebras

Just as self-similar sets contain many “shrunk” copies of themselves, a self-similar Lie
algebra is a Lie algebra containing embedded, “infinitesimal” copies of itself:

Definition 2.1. LetX be a commutative ring with 1, and let DerX denote the Lie algebra
of derivations ofX. A Lie algebra L is self-similar if it is endowed with a homomorphism

ψ : L → X ⊗L oDerX =: L oDerX,

in which the derivations act on X ⊗L by deriving the first coordinate.



3116 Laurent Bartholdi

If emphasis is needed, X is called the alphabet of L , and ψ is its self-similarity
structure.

We note that, under this definition, every Lie algebra is self-similar—though, probably,
not interestingly so; indeed, the definition does not forbidψ = 0. The condition below, on
faithfulness of the action (1), will make it clear in which sense an example is interesting
or not.

Running example. The following simple example is sufficiently rich to explain the main
concepts, and will be used throughout this section. Consider X = Fp[x]/(xp) and
L = Fpa, the one-dimensional Lie algebra. Set ψ(a) = xp−1

⊗ a + d/dx.

If k has characteristic p, then L may be a restricted Lie algebra (see §1.1). Note that
DerX is naturally a restricted Lie algebra, and so isX⊗L for the p-mapping (x⊗a)p =
xp ⊗ ap. A restricted algebra is self-similar if furthermore ψ preserves the p-mapping.

Running example. Consider the restricted Lie algebra L ′=
⊕

k≥0 Fpap
k

extending L .
Its Lie bracket is trivial (the algebra is abelian), and its p-mapping is (ap

k
)p = ap

k+1
. The

homomorphism ψ is extended by ψ(ap
k+1
) = 1⊗ ap

k
.

A self-similar Lie algebra L has a natural action on the direct sum
⊕

n≥0X
⊗n, defined

as follows: given a ∈ L and an elementary tensor v = x1⊗· · ·⊗xn ∈ X
⊗n, set a ·v = 0

if n = 0; otherwise, compute ψ(a) =
∑
yi ⊗ ai + δ ∈ L oDerX, and set

a · v =
∑

x1yi ⊗ (ai · x2 ⊗ · · · ⊗ xn)+ (δx1)⊗ x2 ⊗ · · · ⊗ xn. (1)

Extend the action by linearity to
⊕

n≥0X
⊗n. Note that this defines an action of L pre-

cisely because ψ is a homomorphism.
We insist that L does not act by derivations of T (X) qua free associative algebra, but

only by endomorphisms of the underlying k-module.

Running example. We may view X⊗n as truncated polynomials in n variables x0, . . . ,

xn−1. The elementary tensor xα0 ⊗· · ·⊗xαn−1 is then written xα0
0 · · · x

αn−1
n−1 . The action of

a is given by a · 1 = 0 and

a · (x
αi
i · · · x

αn−1
n−1 ) = αix

p−1
0 · · · x

p−1
i−1 x

αi−1
i x

αi+1
i+1 · · · x

αn−1
n−1 ,

when αi 6= 0. In other words, if α0 = · · · = αi−1 = 0 6= αi , then the action of a sets
α0, . . . , αi−1 to p − 1 and decreases αi by 1.

The element ap
k

acts similarly: the first α0, . . . , αk−1 are ignored. If αk = · · · =
αi−1 = 0 6= αi , then αk, . . . , αi−1 are set to p − 1 and αi is decreased by 1.

A self-similar Lie algebra is faithful if its natural action is faithful. From now on, we will
tacitly assume that all our Lie algebras satisfy this condition.

There are natural embeddings X⊗n → X⊗n+1, given by v 7→ v ⊗ 1; and for all
a ∈ L we have

X⊗n −−−−→ X⊗n+1

a

y ya
X⊗n −−−−→ X⊗n+1

(2)
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We define R(X) =
⋃
n≥0X

⊗n under these embeddings; or, what is the same, as the
quotient

⊕
n≥0X

⊗n/〈u ⊗ 1 − u : u ∈
⊕

n≥0X
⊗n
〉. Note that L acts on R(X); more

precisely, the action of L on R(X) restricts to the action of L on X⊗n given in (1).

Running example. R(X) is the ring of truncated polynomials in countably many vari-
ables x0, x1, . . . .

Self-similar Lie algebras may be defined by considering F a free Lie algebra, and ψ :
F → F oDerX a homomorphism. The self-similar Lie algebra defined by these data is
the quotient of F that acts faithfully on R(X), namely, the quotient of F by the kernel
of the action homomorphism F → DerR(X). It is the largest quotient of F on which
ψ induces an injective homomorphism.

We may iterate a self-similarity structure, and in this manner obtain a self-similarity
structure with a larger alphabet. If in L oDerX we apply 1⊗ψ to the “X⊗L ”’ summand,
we obtain a map to X⊗ (X⊗L oDerX)oDerX; now both X⊗DerX and DerX are
Lie subalgebras of Der(X⊗2), so the map (1⊗ψ)ψ has range in X⊗2

⊗L oDer(X⊗2).
More generally, there is a map, which by abuse of notation we denote by ψn, from L to
X⊗n ⊗L oDer(X⊗n) = L oDer(X⊗n).

2.1. Matrix recursions

We assume now thatX is finite-dimensional, with basis {x1, . . . , xd}. For x ∈ X, consider
the d × d matrix mx describing multiplication by x on X. Similarly, for a derivation
δ ∈ DerX, consider the d × d matrix mδ describing its action on X. Recall that U(L )

denotes the universal enveloping algebra of L . Consider the map

ψ ′ :

{
L → Matd×d(L ⊕ k) ⊂ Matd×d(U(L )),

a 7→
∑
myiai +mδ if ψ(a) =

∑
yi ⊗ ai + δ.

(3)

We will see in Proposition 5.1 that ψ ′ is a homomorphism, and extends to a homomor-
phism again writtenψ : U(L )→ Matd×d(U(L )). We may therefore use this convenient
matrix notation to define self-similar Lie algebras, and study their related enveloping al-
gebras.

Running example. In the basis {xi/i! | i = 0, . . . , p− 1} of divided powers, the matrix
ψ ′(a) is the permutation matrix with 1’s just above the diagonal and a in the lower left
corner, and ψ ′(ap

k+1
) is the scalar matrix with ap

k
on its diagonal:

a 7→


0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
−a · · · · · · 0

 , ap
k+1
7→


ap

k
0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 ap

k

 .
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2.2. Gradings

Assume that X is graded, say by an abelian group 3. Then, as a module, T (X) is
3[λ]-graded, where the degree of x1 ⊗ · · · ⊗ xn is

∑n
i=1 deg(xi)λi−1 for homogeneous

x1, . . . , xn. Here λ is a formal parameter, called the dilation of the grading; though we
sometimes force it to take a value in R. Similarly, R(X) is 3[λ]-graded.

If L is both a graded Lie algebra and a self-similar Lie algebra, its grading and
self-similarity structures are compatible if, for homogeneous a ∈ L , one has deg(a) =
deg(yi)+ λ deg(ai) = deg(δ) for all i, where ψ(a) =

∑
yi ⊗ ai + δ. In other words, ψ

is a degree-preserving map.
We prefer to grade the ring X negatively, so that L , acting by derivations, is graded

in positive degree. This convention is of course arbitrary.

Running example. Set deg(ap
n
) = pn. This turns L and L ′ into self-similar graded

algebras, if one sets λ = p. Indeed then xα0
0 · · · x

αn−1
n−1 has degree −

∑n−1
i=0 αip

i , and this

degree is increased by pk under the action of ap
k
.

2.3. The full self-similar algebra

Assume that X is finite-dimensional. Recall that every self-similar Lie algebra L with
alphabet X admits an action on

⊕
n≥0X

⊗n; namely, it admits for all n ∈ N a homomor-
phism L → Der(X⊗n), whose image actually lies in X⊗n−1

⊗DerX. Via the embed-
ding (2), the algebra L acts on R(X). On the other hand, X⊗n ⊗ DerX also acts on
R(X), by

(x1 ⊗ · · · ⊗ xn ⊗ δ) · y1 ⊗ · · · ⊗ ym = x1y1 ⊗ · · · xnyn ⊗ δ(yn+1)⊗ yn+2 ⊗ · · · ⊗ ym,

in which m > n is ensured by appending 1⊗ · · · ⊗ 1 if necessary to y1 ⊗ · · · ⊗ ym.
We now define a self-similar algebra W (X) acting on R(X), maximal in the sense

that it contains all images of self-similar algebras as above. Qua k-module,

W (X) =

∞∏
n=0

(X⊗n ⊗DerX). (4)

Elements of W (X) are written (a0, a1, . . . ), with an ∈ X⊗n ⊗DerX.
The Lie bracket and p-mapping on W (X) can be described explicitly as follows.

Consider a, b ∈ W (X), and assume first that all coordinates an, bn are trivial except
am = x1 ⊗ · · · ⊗ xm ⊗ δ and bn = y1 ⊗ · · · ⊗ yn ⊗ ε. Then all coordinates of [a, b] are
trivial except

[a, b]max(m,n) =


x1y1 ⊗ · · · ⊗ xmym ⊗ δym+1 ⊗ · · · ⊗ yn ⊗ ε if m < n,

x1y1 ⊗ · · · ⊗ xmym ⊗ [δ, ε] if m = n,
−x1y1 ⊗ · · · ⊗ xnyn ⊗ εxn+1 ⊗ · · · ⊗ xm ⊗ δ if m > n,

(5)

and
ap = x

p

1 ⊗ · · · ⊗ x
p
m ⊗ δ

p.
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Since coordinate m of [a, b] only depends on coordinates ≤ m of a and b, this definition
extends to the infinite product (4). Likewise, for any a ∈ W (X) and any y ∈ X⊗n

⊂ R(X), at most one coordinate of a acts non-trivially on y, so W (X) acts on R(X).
The algebra W (X) is (tautologically) self-similar. Indeed, choose a basis {x1, . . . , xd}

of X. Given (a0, a1, . . . ) ∈ W (X), write each an+1 as
∑d
i=1 xi ⊗ bn,i for some

bn,i ∈ W (X); then the self-similarity structure of W (X) is defined by

ψ(a0, a1, . . . ) =

d∑
i=1

xi ⊗ (b0,i, b1,i, . . . )+ a0, (6)

or more compactly ψ(a0, a1, . . . ) = (a1, a2, . . . ) + a0 with, on the right-hand side of
the equation, ai+1 now seen as an element of X ⊗ (X⊗i ⊗DerX) ≤ X ⊗ W (X). Note
that (6) is a bijection. The algebra W (X) is maximal in the sense that every self-similar
Lie algebra with alphabet X is a subalgebra of W (X). Also note that W (X) is restricted.

We note that if X is a 3-graded ring, then W (X) is a 3[λ]-graded self-similar Lie
algebra; for homogeneous x1, . . . , xn ∈ X and δ ∈ DerX, we set

deg(x1 ⊗ · · · ⊗ xn ⊗ δ) =

n∑
i=1

deg(xi)λi−1
+ λn deg(δ).

We shall consider here subalgebras of W (X) that satisfy a finiteness condition. The
most important is the following:

Definition 2.2. An element a ∈ W (X) is finite state if there exists a finite-dimensional
subspace S of W (X) containing a such that the self-similarity structure ψ : W (X) →

W (X) oDerX restricts to a map S → X ⊗ S ⊕DerX.

More generally, define a self-map ψ̂ on subspaces of W (X) by

ψ̂(V ) =
⋂
{W | W ≤ W (X) with ψ(V ) ≤ X ⊗W ⊕DerX}.

Then a ∈ W (X) is finite state if and only if
∑
n≥0 ψ̂

n(ka) is finite-dimensional.
If X is finite-dimensional, a finite state element may be described by a finite amount

of data in k, as follows. Choose a basis (ei) of S, and write a as well as the coordinates
of ψ(ei) in that basis, for all i.

Running example. The element a is finite state: take S = L , which is 1-dimensional.
More generally, ap

k
is finite state: take S = 〈ap

j
: 0 ≤ j ≤ k〉.

2.4. Hausdorff dimension

Consider a self-similar Lie algebra L with self-similarity structure ψ : L → L oDerX.
As noted in §2.3, L is a subalgebra of W (X); and both act on X⊗n for all n ∈ N.

We wish to measure “how much of W (X)” is “filled in” by L . We essentially copy,
and translate to Lie algebras, the definitions from [3, §3.2].
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Let Ln, respectively W (X)n, denote the image of L , respectively W (X), in
Der(X⊗n). We compute

dim W (X)n =

n−1∑
i=0

(dimX)i dimDerX =
(dimX)n − 1

dimX − 1
dimDerX,

and define the Hausdorff dimension of L by

Hdim(L ) = lim inf
n→∞

dim Ln

dim W (X)n
= lim inf

n→∞

dim Ln

(dimX)n − 1
dimX − 1
dimDerX

.

Furthermore, there may exist a subalgebra P of DerX such that ψ : L → L oP;
our typical examples will have the form X = k[x]/(xd), and P = kd/dx a one-
dimensional Lie algebra; in that case, L is called an algebra of special derivations. We
then define the relative Hausdorff dimension of L by

HdimP (L ) = lim inf
n→∞

dim Ln

(dimX)n − 1
dimX − 1

dim P
.

2.5. Bounded Lie algebras

We now define a subalgebra of W (X), important because it contains many interesting ex-
amples, yet gives control on the nillity of the algebra’s p-mapping. We suppose through-
out this subsection that k is a ring of characteristic p, so that W (X) is a restricted Lie
algebra.

We suppose that X is an augmented algebra: there is a homomorphism ε : X → k
with kernel $ . This gives a splitting X⊗n+1

→ X⊗n of (2), given by v ⊗ xn+1 7→

ε(xn+1)v. The algebra X⊗n also admits an augmentation ideal,

$n = ker(ε ⊗ · · · ⊗ ε) =
∑

X ⊗ · · · ⊗$ ⊗ · · · ⊗X.

The union of the $n defines an augmentation ideal, again written $ , in R(X).
There is a natural action of R(X) on W (X): given a = x1 ⊗ · · · ⊗ xm ∈ R(X) and

b = y1 ⊗ · · · ⊗ yn ⊗ δ ∈ W (X), first replace a by a ⊗ 1 ⊗ · · · ⊗ 1 with enough 1’s so
that m ≥ n; then set

a · b = ε(xn+1) · · · ε(xm)x1y1 ⊗ · · · ⊗ xnyn ⊗ δ.

Definition 2.3. An element a ∈ W (X) is bounded if there exists a constant m such that
$ma = 0. Writing a = (a0, a1, . . . ), this means $mai = 0 for all i. The set of bounded
elements is written M(X).

The bounded norm ‖a‖ of a is then the minimal such m.

Running example. The alphabet X is augmented, with $ = xX the set of polyno-
mials without constant term. The element a is bounded, of bounded norm 1. Indeed
a = (x

p−1
0 · · · x

p−1
i ⊗ d/dx)i≥0, so xia = 0 for all i ∈ N, so $a = 0. More generally,

ap
k

is bounded of norm (p− 1)k+ 1, since ap
k
= (0, . . . , 0, xp−1

k · · · x
p−1
i ⊗ d/dx)i≥0,

and every monomial in $ (p−1)k+1 contains a non-zero power of some xj with j ≥ k.
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The following statement is inspired by [40, Lemma 1].

Lemma 2.4. The set M = M(X) of bounded elements forms a restricted Lie subalgebra
of W (X). More precisely, the bounded norm of [a, b] is at most max{‖a‖, ‖b‖} + 1, and
‖ap‖ ≤ ‖a‖ + p − 1.

Proof. Consider first f ∈ X⊗n and δ ∈ DerX. If$mf = 0, then$m+1δf ⊆ δ($m+1f )

− δ($m+1)f = 0 since δ($m+1) ⊆ $m. Consider now elementary tensors a = f ⊗ δ
∈ M of bounded norm m and b = g ⊗ ε ∈ M of bounded norm n. It follows from (5)
that the bounded norm of [a, b] is at most max{m, n} + 1. The same estimate then holds
for arbitrary a, b ∈ M , by linearity.

Consider next a = (a0, a1, . . . ) ∈ M , of bounded normm. Write each ai =
∑
fi⊗δi .

Then api =
∑
f
p
i ⊗ δ

p
i +commutators of weight p; now $mf

p
i ⊗ δ

p
i = 0 and, by the

first paragraph, commutators are annihilated by $m+p−1. ut

We now suppose for simplicity that the alphabet has the form X = k[x]/(xp). Its
augmentation ideal is $ = xX, and satisfies $p

= 0. We seek conditions on elements
a ∈ M(X) that ensure that they are nil, that is, there exists n ∈ N such that ap

n
=

(((ap)p) · · · )p = 0. The standard derivation d/dx of X is written ∂x .

Definition 2.5. An element a ∈ W (X) is `-evanescent, for ` ∈ N, if when we write a =
(a0, a1, . . . ), each ai has the form

∑
bi⊗ci⊗∂x with bi ∈ X⊗max{i−`,0}, ci ∈ X

⊗min{i,`},
and deg(ci) < (p − 1)`.

An element is evanescent if it is `-evanescent for some ` ∈ N.

In words, a is `-evanescent if, in all coordinates ai of a, the derivation is ∂x and the
maximal degree is never reached in each of the last ` alphabet variables.

Running example. The element a is not evanescent, but the element b defined by ψ(b)
= xp−1

⊗ b + 1⊗ d/dx is 1-evanescent. Indeed, b = (xp−1
0 · · · x

p−1
i−1 x

0
i ⊗ ∂x)i≥0.

Lemma 2.6. The set of `-evanescent elements forms a restricted Lie subalgebra
of W (X).

Proof. Clearly linear combinations of `-evanescent elements are `-evanescent. Consider
then `-evanescent elements a, b ∈ W (X), and without loss of generality assume a =
x1 ⊗ · · · ⊗ xm ⊗ ∂x , b = y1 ⊗ · · · ⊗ yn ⊗ ∂x and m ≤ n. If m = n, then [a, b] = 0, while
if m < n then [a, b] = x1y1 ⊗ · · · ⊗ ∂xym+1 ⊗ · · · ⊗ yn ⊗ ∂x . If n − m > ` then there
is nothing to do, while if n−m ≤ ` then deg(δym+1) < p − 1, so the total degree in the
last ` alphabet variables of [a, b] is < (p − 1)`.

Finally, the p-mapping is trivial on elementary tensors x1 ⊗ · · · ⊗ xn ⊗ ∂x because
∂
p
x = 0 in DerX. ut

The following statement is inspired by [40, Lemma 2].

Lemma 2.7. Let a ∈ M(X) be evanescent. Then there exists s ≥ 1 such that ap
s
∈

$ 2W (X).
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Proof. We put an R-grading on W (X), by using the natural {1− p, . . . , 0}-grading of X
and choosing for λ the largest positive root of f (λ) = λ`+1

− pλ` + λ − 1. We note
that f (+∞) = +∞ and f (0) = −1 < 0, so f has one or three positive roots. Next,
f ′(0) > 0 and f ′ has at most two positive roots in R+, while f (1) = 1−p ≤ f (0), so f
has at most one extremum in (1,∞). Finally, f (p) = p − 1 > 0, so f has a unique zero
in (1, p) and we deduce λ ∈ (1, p).

Consider a homogeneous component h = x1⊗· · ·⊗xn⊗∂x of a. Because deg(∂x) = 1
and− deg(xi) ≤ p−1 for all i and− deg(xm) ≤ p−2 for somem ∈ {n− `+1, . . . , n},
we have

deg(h) ≥ λn − (p − 1)(1+ λ+ · · · + λn−1)+ λm

≥ λn − (p − 1)
λn − 1
λ− 1

+ λn−` =
λn−`

λ− 1
f (λ)+

p − 1
λ− 1

=
p − 1
λ− 1

> 1;

so every homogeneous component of ap
s

has degree ≥ ps .
We now use the assumption a ∈ M(X), say ‖a‖ = m. Then ‖ap

s
‖ ≤ m+ (p − 1)s,

by Lemma 2.4. Write ap
s
= (b0, b1, . . . ) ∈ W (X); then $m+(p−1)s

i bi = 0 for all i ≥ 0.
Let j ≤ i, and assume that bi does not belong to$ 2

j X
⊗i
⊗DerX. Then$ (p−1)j−1

i bi
6= 0, and this can only happen if (p− 1)j − 1 < m+ (p− 1)s. In other words, for every
s ∈ N there exists j ∈ N such that bi ∈ $ 2

j ⊗X
⊗i−j for all i ≥ j .

Consider then the bi with i < j . The degree of a homogeneous component in such a
bi is at most λj ; on the other hand, since it is a homogeneous component of ap

s
, it has

degree at least ps . Now the inequalities

ps ≤ λj , (p − 1)j − 1 < m+ (p − 1)s

cannot simultaneously be satisfied for arbitrarily large s, because λ < p. It follows that,
at least for s large enough, bi = 0 for all i < j , and therefore ap

s
∈ $ 2

j M(X). ut

To make this text self-contained, we reproduce almost verbatim the proof of the following
statement by Shestakov and Zelmanov:

Lemma 2.8 ([40, Lemma 5]). Assume that $ ⊂ X is nilpotent. Then the associative
subalgebra of Endk R(X) generated by $ 2W (X) is locally nilpotent.

Proof. By assumption Xd = 0 for some d ∈ N. Consider a finite collection of elements
ai = x

′

ix
′′

i bi ∈ $
2W (X) for i ∈ {1, . . . , r}, with x′i, x

′′

i ∈ $ and bi ∈ W (X). Let A be
the subalgebra of $ generated by x′1, x

′′

1 , . . . , x
′
r , x
′′
r . From (x′i)

d
= (x′′i )

d
= 0 follows

As = 0 with s = 2r(d − 1)+ 1. Now ai1 · · · ais =
∑
y1 · · · y2sdj1 · · · djq , with q ≤ s and

the yj obtained from the x′i, x
′′

i by (q−s)-fold application of the derivations bk . Therefore
2s − q ≥ s of the yj belong to {x′1, x

′′

1 , . . . , x
′
r , x
′′
r }, so ai1 · · · ais = 0. ut

Corollary 2.9. If L is a subalgebra of W (X) that is generated by bounded, `-evanescent
elements for some ` ∈ N, then L is nil.

Proof. It follows from Lemmata 2.4 and 2.6 that every element a ∈ L is bounded and
`-evanescent; and then from Lemmata 2.7 and 2.8 that a is nil. ut
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2.6. Growth and contraction

Let A denote an algebra, not necessarily associative. For a finite-dimensional subspace
S ≤ A , let Sn denote the span in A of n-fold products of elements of S; if p | n and
A is a restricted Lie algebra in characteristic p, then Sn also contains the pth powers of
elements of Sn/p. Define

GKdim(A , S) = lim sup
log dim Sn

log n
, GKdim(A ) = sup

S≤A
GKdim(A , S),

the (upper) Gelfand–Kirillov dimension of A . Note that if A is generated by the finite-
dimensional subspace S, then GKdim(A ) = GKdim(A , S). We give here conditions for
a self-similar Lie algebra L to have finite Gelfand–Kirillov dimension.

Definition 2.10. Let L be a self-similar Lie algebra with self-similarity structure ψ :
L → L oDerX. It is contracting if there exists a finite-dimensional subspace N ≤ L
with the following property: for every a ∈ L , there exists n0 ∈ N such that, for all
n ≥ n0, we have ψn(a) ∈ X⊗n ⊗N ⊕Der(X⊗n).

The minimal such N , if it exists, is called the nucleus of L .

In words, the nucleus is the minimal subspace of L such that, for every a ∈ L , if one
applies often enough the map ψ to it and its coordinates (discarding the term in DerX),
one obtains only elements of N .

Note that elements of a contracting self-similar algebra are finite state. The following
test is useful in practice to prove that an algebra is contracting, and leads to a simple
algorithm:

Lemma 2.11. Let the self-similar Lie algebra L be generated by the finite-dimensional
subspace S, and consider a finite-dimensional subspace N ≤ L . Then N contains the
nucleus of L if and only if there exist m0, n0 ∈ N such that ψm(S + N + [N, S])
≤ X⊗m ⊗ N ⊕ Der(X⊗m) and ( for restricted algebras) ψn((N + S)p) ≤

X⊗n ⊗N ⊕Der(X⊗n) for all m ≥ m0 and n ≥ n0.

Proof. Note first that if N contains the nucleus N0, then the coordinates of
ψm([N + S, S]) and ψn((N + S)p) will be contained in N0, so a fortiori in N for all
sufficiently large m, n.

Conversely, consider a ∈ L , say a product of ` elements of S. Then applying ` − 1
times the map ψm, we get ψm(`−1)(a) ∈ X⊗m(`−1)

⊗N+Der(X⊗m(`−1)), soN contains
the nucleus. ut

The following algorithm computes the nucleus of a self-similar algebra in case it is finite-
dimensional.

Input: A generating set S
Output: The nucleus N
N ← 0;
repeat

N ′ ← N ;
B ← N + S + [N, S];
N ←

⋂
i≥0

∑
j≥i ψ̂

j (B);
until N = N ′;
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Definition 2.12. Let L be a self-similar algebra; assume that the alphabet X admits an
augmentation ε : X → k, and denote by π the projection L → DerX. We say L is
recurrent if the k-linear map (ε ⊗ 1)ψ : ker(π)→ L is onto.

Lemma 2.13. Let L be a finitely generated, contracting and recurrent self-similar Lie
algebra. Then L is generated by its nucleus.

Proof. Let S be a generating finite-dimensional subspace, and let N denote the nucleus
of L . Because S is finite-dimensional, there exists n ∈ N such that ψn(S) ≤ X⊗n ⊗

N ⊕ Der(X⊗n). Let M denote the subalgebra generated by N ; then, for every a ∈ L ,
we have ψn(a) ∈M oDer(X⊗n); so, because L is recurrent, M = L . ut

Lemma 2.14. Let L be a contracting, finitely generated self-similar Lie algebra, withX
finite-dimensional. Then there exists a finite-dimensional generating subspace N of L
such that

L ≤
∑
n≥0

X⊗n ⊗N.

Proof. Let N0 be the nucleus of L , and let S generate L . Enlarge S, keeping it finite-
dimensional, so that π(N) = π(L ) ≤ DerX. Set finally N = N0 +

∑
n≥0 ψ̂(S).

By the definition of nucleus, L is contained in
∑
n≥0X

⊗n
⊗ N ⊕ Der(X⊗n). Now

using the fact that π(N) = π(L ), we can eliminate the Der(X⊗n) terms while still
staying in X⊗n ⊗N . ut

Lemma 2.15. Let L be an R+-graded self-similar Lie algebra, with dilation λ > 1, and
generated by finitely many elements, all of positive degree. Let X have bounded degree.
Then L is contracting.

Proof. Suppose that deg(x) > −K for all homogeneous x ∈ X. Consider a homogeneous
a ∈ L , and write φ(a) =

∑
yi ⊗ ai + δ; then 0 < deg(ai) < (deg(a) + K)/λ. Let N

denote the linear span of all elements of L of degree ≤ K/(λ − 1); then N is finite-
dimensional and contains the nucleus. ut

Lemma 2.16. Let L be a contracting, R+-graded self-similar Lie algebra, with dila-
tion λ, and letN be as in Lemma 2.14. Consider a homogeneous a ∈ L with deg(a) = d .
Then a ∈

∑n
j=0X

⊗j
⊗N with

n ≥ log(d/m)/log |λ| where m = max
n∈N

deg(n). (7)

If furthermore λ > 1 and L is generated by finitely many positive-degree elements, then
there exists ε > 0 such that every a ∈ L satisfies

n ≤ log(d/ε)/log λ. (8)

Proof. Consider a ∈ X⊗n⊗N ∩L . Then deg(a) ≤ λn max deg(N), and this proves (7).
Now, if L is generated by finitely many positive-degree elements, then there exists

m ∈ N such that all elements ofX⊗m⊗N ∩L have degree> −minx∈X deg(x)/(λ−1).
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Let then ε > 0 be such that all these elements have degree ≥ B := λmε −

minx∈X deg(x)/(λ− 1).
We return to our a, which we write as a =

∑
f ⊗ b with f ∈ X⊗m−n and b ∈

X⊗m ∩ L . Then every homogeneous summand of b has degree at least B, while every
homogeneous summand of f has degree at least minx∈X deg(x)(1+ λ+ · · · + λm−n−1);
so every homogeneous summand of a has degree at least ελn. ut

Proposition 2.17. Let L be an R+-graded self-similar Lie algebra, with dilation λ > 1,
that is generated by finitely many positive-degree elements. Then L has finite Gelfand–
Kirillov dimension; more precisely,

GKdim(L ) ≤
log(dimX)

log λ
.

Proof. Let Ld denote the span of homogeneous elements in L of degree ≤ d . Consider
a ∈ Ld , and, up to expressing a as a sum, assume a = f ⊗ b with f ∈ X⊗n and b ∈ N .
By (8) we have n ≤ logλ(d/ε), so

dim Ld ≤

n∑
j=0

(dimX)j dimN w d log(dimX)/log λ. ut

3. (Weakly) branched Lie algebras

We will concentrate here on some conditions on a self-similar Lie algebra that have conse-
quences on its algebraic structure, and in particular on its possible quotients. We impose,
in this section, restrictions that will be satisfied by all our examples: the alphabet X has
the form k[x]/(xd), and the image of L in DerX is precisely k∂x . Let θ = xd−1 denote
the top-degree element of X.

We consider self-similar Lie algebras L with self-similarity structure ψ : L →

L o k∂x . Let π : L → k∂x denote the natural projection. We recall that L acts on X⊗n

for all n. We denote by U(L ) the universal enveloping algebra of L ; then U(L ) also
acts on X⊗n, and acts on L by derivations. For u = u1 · · · un ∈ U(L ) and a ∈ L , we
write [[u, a]] = [u1, [u2, . . . , [un, a] · · · ]] for this action.

We also identify L with ψ(L ), so as to write, e.g., “θ ⊗ a ∈ L ” when we mean
“θ ⊗ a ∈ ψ(L )”.

Definition 3.1. The self-similar algebra L is transitive if for all v ∈ X⊗n there exists
u ∈ U(L ) with u · (θ⊗n) = v.

We note immediately that if L is transitive, then it is infinite-dimensional.

Lemma 3.2. If U(L ) · θ = X and L is recurrent, then L is transitive.

Proof. We proceed by induction on n, the case n = 0 being obvious. Write M = U(L ) ·

θ⊗n+1. Because L is recurrent and by the inductive hypothesis, U(kerπ) · θ⊗n+1
=

θ⊗X⊗n. Then, by hypothesis, there exists in L an element a of the form ∂x+
∑
xi⊗ai ;
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so a·θ⊗n+1
∈ xd−2

⊗θ⊗n+θ⊗X⊗n. BecauseM contains θ⊗X⊗n, it also contains xd−2
⊗

θ⊗n, and again acting with U(kerπ) shows that it contains xd−2
⊗ X⊗n. Continuing in

this manner, we conclude thatM contains xi⊗X⊗n for all i, and therefore equalsX⊗n+1.
ut

Definition 3.3. Let L be a recurrent, transitive, self-similar Lie algebra. It is

• weakly branched if for every n ∈ N there exists a non-zero a ∈ W (X) such that
θ⊗n ⊗ a ∈ L ;
• branched if for every n ∈ N the ideal Kn generated by all θ⊗n ⊗ a ∈ L has finite

codimension in L ;
• regularly weakly branched if there exists a non-trivial ideal K GL such that X ⊗K
≤ ψ(K );
• regularly branched if furthermore there exists such a K of finite codimension in L .

In the last two cases, we say that L is regularly [weakly] branched over K .

The following immediately follows from the definitions:

Lemma 3.4. “Regularly branched” implies both “regularly weakly branched” and
“branched”, and each of these implies “weakly branched”.

Note, as a partial converse, that if L is weakly branched, then

{a ∈ L | θ⊗n ⊗ a ≤ L } = {a ∈ L | X⊗n ⊗ a ≤ L } =: Kn

is a non-trivial ideal in L :

Lemma 3.5. If L is weakly branched, then for every v ∈ X⊗n there exists a non-zero
a ∈ W (X) with v ⊗ a ∈ L .

Proof. Let 0 6= a ∈ W (X) be such that θ⊗n ⊗ a ∈ L ; let Kn denote the ideal generated
by a. Because L is recurrent, θ⊗n ⊗ c ∈ L for all c ∈ K . Because L is transitive,
there exists u ∈ U(L ) with u · θ⊗n = v. Consider then [[u, θ⊗n ⊗ a]]. It is of the form
v ⊗ a +

∑
v′ ⊗ a′ for some a′ ∈ K and v′ > v in reverse lexicographic ordering. By

induction on v in that ordering, v ⊗ a belongs to L . ut

The algebra W (X) itself is branched; indeed, as was noted above, (6) is a bijection. We
remark in passing that if, more generally, L is recurrent and transitive and ψ has finite
cokernel, then L is branched.

We are now ready to deduce some structural properties of (weakly) branched Lie
algebras:

Proposition 3.6. Let L be a weakly branched Lie algebra. Then the centralizer of L
in W (X) is trivial. In particular, L has trivial centre.

Proof. Consider a non-zero a ∈ W (X). There then exists v ∈ X⊗n such that a · v 6= 0;
suppose that n is minimal with that property. Let i ∈ {0, . . . , d − 1} be maximal such
that 1⊗n−1

⊗$ i(a · v) 6= 0. Since L is weakly branch, there exists a non-zero element
b = 1⊗n−1

⊗ xi+1
⊗ b′ ∈ L ; and because b 6= 0, there exists w ∈ X⊗m with b · x 6= 0.
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Consider c = [a, b]; the claim is that c 6= 0. Indeed, c·(v⊗w) = a ·b·(v⊗w)−b·a ·(vw);
and b · (v ⊗ w) = 0, while b · a · (v ⊗ w) = (a · v)⊗ (b · w) 6= 0. ut

Recall that a (not necessarily associative) algebra A is PI (“Polynomial Identity”) if there
exists a non-zero polynomial expression9(X1, . . . , Xn) in non-associative, non-commu-
tative indeterminates such that 9(a1, . . . , an) = 0 for all ai ∈ A .

Proposition 3.7. Let L be a weakly branched Lie algebra. Then L is not PI.

Proof. There should exist a purely Lie-theoretical proof of this fact, but it is shorter to
note that if L is weakly branched, then its associative envelope A (see §5) is weakly
branched in the sense of [3, §3.1.6]. Weakly branched associative algebras satisfy no
polynomial identity by [3, Theorem 3.10], so the same must hold for any Lie subalgebra
that generates A . ut

Recall that a Lie algebra is just infinite if it is infinite-dimensional, but all its proper
quotients are finite-dimensional.

Proposition 3.8. Let L be a regularly branched Lie algebra, with branching ideal K .
If furthermore K /[K ,K ] is finite-dimensional, then L is just infinite.

(Note that the proposition’s conditions are clearly necessary; otherwise, L /[K ,K ]
would itself be a finite-dimensional proper quotient.)

Proof. Consider a non-zero ideal I GL . Without loss of generality, I = 〈a〉 is principal.
Let n ∈ N be minimal such that a · X⊗n 6= 0; so a = xi1 ⊗ · · · ⊗ xin−1 ⊗ ∂x + higher-
order terms. Because L is transitive, we can derive i1+· · ·+ in−1 times a, by an element
u ∈ U(L ), to obtain b = [[u, a]] ∈ I of the form

b = 1⊗n−1
⊗ ∂x + 1⊗n ⊗ b′ + higher-order terms.

Consider now c = θn⊗k ∈ K . Then [b, c] = θn−1
⊗xd−2

⊗k+θn⊗[b′, k]+higher-
order terms.

Consider next d = 1⊗n−1
⊗ x ⊗ ` ∈ K . Then [[b, c], d] = θn ⊗ [k, `] ∈ I .

It follows that I contains X⊗n ⊗ [K ,K ], and so L /I has finite dimension. ut

Corollary 3.9. Let L be a finitely generated, nil, regularly branched Lie algebra. Then
L is just infinite.

Proof. Let K denote the branching ideal of L . Since L is finitely generated and K
has finite index in L , it is also finitely generated [27]. Since L is nil, the abelianization
of K is finite and we may apply Proposition 3.8. ut

Proposition 3.10. Let L be a regularly branched Lie algebra. Then there does not exist
a bound on its nillity.

Proof. Assume that K contains a non-trivial nil element, say a ∈ K with ap
m
= 0 but

ap
m−1
6= 0. Let b ∈ K be such that b = 1⊗` ⊗ ∂x+higher terms. Construct then the

following sequence of elements: a0 = a and an+1 = 1⊗`−1
⊗ θ ⊗ an + b. By induction,

the element an has nillity exactly pm+n. ut

The following is essentially [3, Proposition 3.5]:
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Proposition 3.11. Let L be a regularly branched Lie algebra. Then its Hausdorff di-
mension is a rational number in (0, 1].

Proof. Suppose that L is regularly branched over K . As in §2.4, let Ln denote the
image of L in Der(X⊗n), with quotient map πn : L → Ln. Let M be large enough
so that L /ψ−1(X ⊗ K ) maps isomorphically onto its image in Ln. We have, for all
n ≥ M ,

dim Ln = dim(L /K )+ dimπn(K )

= dim(L /K )+ dim(ψK /(X ⊗K ))+ dimX dimπn−1(K )

= (1− dimX) dim(L /K )+ dim(ψK /(X ⊗K ))+ dimX dim Ln−1.

We write dim Ln = α(dimX)n + β for some α, β to be determined; we have

α(dimX)n + β = (1− dimX) dim(L /K )+ dim(ψK /(X ⊗K ))

+ (dimX)(α(dimX)n−1
+ β),

and so β = dim(L /K ) − dim(ψK /(X ⊗ K ))/(dimX − 1). Then we set α =
(dim LM − β)/(dimX)M . We have solved the recurrence for dim Ln, and α > 0 be-
cause Ln has unbounded dimension, since L is infinite-dimensional.

Now it suffices to note that Hdim(L ) = α to obtain Hdim(L ) > 0. Furthermore only
linear equations with integer coefficients were involved, so Hdim(L ) is rational. ut

Note that if L → L oP is the self-similarity structure, then HdimP (L ) is also positive
and rational.

Proposition 3.12. Let L be a regularly weakly branched self-similar Lie algebra. Sup-
pose L is graded with dilation λ > 1. Then the Gelfand–Kirillov dimension of L is at
least log(dimX)/log λ.

Proof. Suppose L is weakly branched over K ; consider a non-zero a ∈ K . Let ε be
the degree of a. Then L contains for all n ∈ N the subspace X⊗n⊗ ka; and the maximal
degree of these elements is λnε. Let Ld denote the span of elements of degree ≤ d; it
follows that dim Ld ≥ (dimX)n whenever λnε ≤ d , and therefore

dim Ld ≥ (d/ε)
log(dimX)/log λ. ut

4. Examples

We begin by two examples of Lie algebras, inspired and related to group-theoretical con-
structions. The links between the groups and the Lie algebras will be explored in §6. We
then phrase in our language of self-similar algebras an example by Petrogradsky, later
generalized by Shestakov and Zelmanov.
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4.1. The Gupta–Sidki Lie algebra

Inspired by the self-similarity structure (15), we consider X = F3[x]/(x
3) and a Lie

algebra LGS = L generated by a, t with self-similarity structure

ψ :

{
L → L oDerX,

a 7→ ∂x, t 7→ x ⊗ a + x2
⊗ t.

(9)

We put a grading on L such that the generators a, t are homogeneous. The ring X is
Z-graded with deg(x) = −1, so deg(a) = 1, and

deg(t) = −2+ λ deg(t) = −1+ λ deg(a),

so (1− λ)2 = 2 and deg(t) =
√

2; the Lie algebra L is Z[λ]/(λ2
− 2λ− 1)-graded. We

repeat the construction using our matrix notation. For that purpose, we take the divided
powers {1, t, t2/2 = −t2} as a basis of X; the self-similarity structure is then

a 7→

0 1 0
0 0 1
0 0 0

 , t 7→

 0 0 0
a 0 0
−t −a 0

 .
Proposition 4.1. The Lie algebra L is regularly branched on its ideal [L ,L ] of codi-
mension 2.

Proof. First, L is recurrent: indeed, (ε ⊗ 1)ψ[a, t] = a and (ε ⊗ 1)ψ[a, [a, t]] = t .
Then, by Lemma 3.2, L is transitive.

The ideal [L ,L ] is generated by c = [a, t]; to prove that L is branched on [L ,L ],
it suffices to exhibit c′ ∈ [L ,L ] with ψ(c′) = x2

⊗ c. A direct calculation shows that
c′ = [[a, t], t] will do.

Clearly L /[L ,L ] is the commutative algebra k2 generated by a, t . ut

Theorem 4.2. The Lie algebra L is nil, of unbounded nillity, but not nilpotent.

Proof. The ideal 〈t〉 in L has codimension 1; and it is generated by t, [t, a], [t, a, a].
Each of these elements is bounded and 1-evanescent, so Corollary 2.9 applies. Then L
itself is nil, because a3a = 0.

That the nillity in unbounded follows from Proposition 3.10. Clearly L is not nilpo-
tent, since by Proposition 3.7 it is not even PI. ut

Proposition 4.3. The relative Hausdorff dimension of L with respect to P = k∂x is

HdimP (L ) = 4/9.

Proof. We follow the proof of Proposition 3.11. We may take M = 2, and readily com-
pute dim(L /K ) = 2 = dim(K /(X ⊗K )), the latter having basis {[a, t], [a, [a, t]]}.
Letting Ln denote the image of L in Der(X⊗n), we find dim L2 = 3. This gives

dim Ln = 2 · 3n−2
+ 1,

and the claimed result. ut
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Lemma 4.4. The algebra L is contracting.

Proof. Its nucleus is k{a, t}. ut

Corollary 4.5. The Gelfand–Kirillov dimension of L is log 3/log λ.

Proof. This follows immediately from Propositions 2.17 and 3.12. ut

In fact, thanks to Theorem 6.8, a much stronger result holds:

Proposition 4.6 ([4, Corollary 3.9]). Set α1 = 1, α2 = 2, and αn = 2αn−1 + αn−2 for
n ≥ 3. Then, for n ≥ 2, the dimension of the degree-n component of LGS is the number
of ways of writing n− 1 as a sum k1α1 + · · · + ktαt with all ki ∈ {0, 1, 2}.

The Gupta–Sidki Lie algebra generalizes to arbitrary characteristic p, with now ψ(t) =

x ⊗ a + xp−1
⊗ t . We will explore in §6.4 the connections between LGS and the Gupta–

Sidki group.

4.2. The Grigorchuk Lie algebra

Again inspired by the self-similarity structure (14), we consider X = F2[x]/(x
2), a Lie

algebra LG, and a restricted Lie algebra 2LG. Both are generated by a, b, c, d with b +
c + d = 0, and have the same self-similarity structure

ψ :



LG → LG oDer(X) respectively 2LG → 2LG oDer(X),

a 7→ ∂x,

b 7→ x ⊗ (a + c),

c 7→ x ⊗ (a + d),

d 7→ x ⊗ b.

(10)

We seek gradings for these two Lie algebras that make the generators homogeneous.
Again X is Z-graded, with deg(x) = −1, so deg(a) = 1, and deg(b) = deg(c) =
deg(d) = deg(a) = 1, so λ = 2. In other words, LG and 2LG are no more than Z-graded.
Using our matrix notation:

a 7→

(
0 1
0 0

)
, b 7→

(
0 0

a + c 0

)
, c 7→

(
0 0

a + d 0

)
, d 7→

(
0 0
b 0

)
.

In contrast to §4.1, there are important differences between LG and 2LG. Their rela-
tionship is as follows: 2LG is an extension of LG by the abelian algebra k{1⊗n⊗[a, b]2}.

We note that LG is not recurrent. However, let us define e = a + c, f = a + d, and
set L ′ = 〈b, e, f, f 2

〉:

b 7→

(
0 0
e 0

)
, e 7→

(
0 1
f 0

)
, f 7→

(
0 1
b 0

)
.
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Proposition 4.7. L ′ is an ideal of codimension 1 in LG. It is recurrent, transitive, and
regularly branched on its ideal K = 〈[b, e]〉 of codimension 3.

Proof. First, L ′ is recurrent: indeed, (ε ⊗ 1)ψf 2
= b and (ε ⊗ 1)ψ[b, e] = e; note the

relation b + e + f = 0, so L ′ is 2-generated. By Lemma 3.2, L ′ is transitive.
To show that L ′ is branched on K , it suffices to note ψ[[b, e], b] = x ⊗ [b, e],

so ψ(K ) contains X ⊗K . Finally, L ′/K has basis {b, e, e2
}, as a direct calculation

shows. ut

We note, however, that the corresponding subalgebra 2L ′ is not regularly branched on
the restricted ideal 2K = 〈[b, e]〉; indeed, as we noted above, 2K contains 1⊗n⊗[b, e]2

for all n ∈ N, yet does not contain x ⊗ [b, e]2.

Proposition 4.8. The relative Hausdorff dimensions of LG and 2LG with respect to
P = k∂x are

HdimP (LG) = HdimP (2LG) = 1/2.

Proof. We follow the proof of Proposition 3.11. We may take M = 3, and readily com-
pute dim(LG/K ) = 4 while dim(K /(X ⊗K )) = 1, the latter having basis {[a, b]}.
Letting Ln denote the image of LG in Der(X⊗n), we find dim L3 = 7. This gives

dim Ln = 2n−1
+ 3,

and the claimed result. The same arguments apply to 2LG. ut

Note, on the other hand, that dim (2LG)n = 2n−1
+ n, by the same calculation but taking

into account the 1⊗n ⊗ [a, b]2.

Lemma 4.9. The algebra LG is contracting.

Proof. Its nucleus is k{a, b, d}. ut

Corollary 4.10. The Gelfand–Kirillov dimension of LG and 2LG is 1.

Proof. This follows immediately from Propositions 2.17 and 3.12. ut

In fact (see also Theorem 6.6), a much stronger result holds, namely LG and 2LG have
bounded width:

Proposition 4.11. Keeping the notation e = a + c and f = a + d , a basis of LG is{
a, 1⊗ f, xi1 ⊗ · · · ⊗ xin ⊗ e

∣∣ n ∈ N, ik ∈ {0, 1}
}
.

The element a has degree 1, the element 1⊗ f has degree 2, and the element xi1 ⊗ · · · ⊗
xin ⊗ e has degree 2n −

∑
2k−1ik .

A basis of 2LG consists of the above basis, with in addition the elements 1⊗n ⊗ f of
degree 2n for all n ≥ 2.

In particular, in LG there is a one-dimensional subspace of degree n for all n ≥ 3,
while in 2LG there is a two-dimensional subspace of degree n for all n ≥ 2 a power
of two.
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Proof. Follows from b = x ⊗ e and [b, e] = [b, f ] = [e, f ] = 1 ⊗ e and e2
= 1 ⊗ f

and f 2
= 1⊗ b and b2

= 0. ut

Let similarly 2L ′ denote the restricted Lie subalgebra of 2LG generated by b, e, f . Since
b+ e+ f = 0, the algebra 2L ′ is 2-generated, so cannot have maximal class, because it
is infinite-dimensional [37]. It could actually be that the growth of 2L ′ is minimal among
infinite restricted Lie algebras over a field of characteristic 2.

Theorem 4.12. If k = F2, the Lie algebra 2LG is nil; while if k contains F4, then 2LG
is not nil. In all cases, 2LG has unbounded nillity, but is not nilpotent.

Proof. We first prove that 2LG is graded nil when k = F2, that is, homogeneous elements
are nil (alternatively, this follows from Theorem 6.6). Let u ∈ 2LG be homogeneous of
degree n. If n ≥ 2, then ψ(u) = 1 ⊗ v or ψ(u) = x ⊗ v, depending on whether n
is even or odd, with v of lower degree, so we are done by induction. We are left with
proving that degree-1 elements are nil; but they belong to {a, b, c, d}, of nillity 2, or
f, e, a + b of respective nillities 4, 8, 16 because ψ(f 4) = ψ([a, d]2) = 1⊗ b2

= 0 and
ψ(e8) = ψ([a, c]4) = 1⊗ f 4

= 0 and ψ(a + b)16
= ψ([a, b]8) = 1⊗ e8

= 0.
On the other hand, if k contains F4 = {0, 1, ω, ω2

} with ω3
= 1, then consider

u = a + b + ωc + ω2d. Then

ψ(u) = ∂x + x ⊗ ((1+ ω)a + c + ωd + ω2b) = ∂x + ω
2x ⊗ u,

so ψ(u2) = ω2
⊗ u. If we had un = 0 for some n ∈ N, that would imply udn/2e = 0 and

eventually u = 0, a contradiction. Therefore, 2LG ⊗ F4 is not graded nil.
Consider now u ∈ 2LG, and let n denote the maximal degree of its homogeneous

components. Write ψ(u) = α∂x + 1 ⊗ v + x ⊗ w for v,w ∈ 2LG and α ∈ k; then
ψ(u2) = 1⊗ (v2

+ αw)+ x ⊗ [v,w]. Therefore,

u is nil ⇔ u2 is nil ⇔ u′ := v2
+ αw is nil.

The maximal degree of a homogeneous component of u′ is ≤ n; and if n ≥ 2, the de-
gree-n part of u′ is the square of the degree-n part of u, again because the degree-n
component of 2LG is one-dimensional. We proceed with u′ in lieu of u, and (because
the homogeneous component of degree n is nil) eventually obtain an element of maximal
degree ≤ n − 1. Proceeding further, we obtain u homogeneous of degree 1, which is nil
by the first paragraph.

That the nillity in unbounded follows from Proposition 3.10. Clearly 2LG is not nilpo-
tent, since by Proposition 3.7 it is not even PI. ut

We will explore in §6.3 the connections between LG, 2LG and the Grigorchuk group.

4.3. Grigorchuk Lie algebras

We generalize the previous example L ′ as follows. We fix a field k of characteristic p,
the alphabet X = k[x]/(xp), and an infinite sequence ω = ω0ω1 · · · ∈ P1(k)∞. Choose
a projective lift P1(k) → Hom(k2,k), and apply it to ω. Consider also the shift map
σ : ω0ω1 . . . 7→ ω1 . . . .
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Define then a Lie algebra Lω acting on R(X), generated by k2, with (non-self!-)sim-
ilarity structure

ψ :

{
Lω → Lσω oDerX,

k2
3 a 7→ xp−1

⊗ a + ω0(a)∂x .

It is a Z-graded algebra, with dilation λ = p and deg(a) = 1 for all a ∈ k2. To see
better the connection to the Grigorchuk example, consider k = F2 and ω = (ω0ω1ω2)

∞

with ω0, ω1, ω2 the three non-trivial maps k2
→ k. The three non-trivial elements of k2

are b, e, f generating the subalgebra L ′ from the previous subsection. Using our matrix
notation,

b 7→

(
0 0
e 0

)
, e 7→

(
0 1
f 0

)
, f 7→

(
0 1
b 0

)
.

We summarize the findings of the previous subsection in this more general context.
Recall from [9] that a graded algebra L is of maximal class if it is generated by the two-
dimensional subspace L1 and dim Ln = 1 for all n ≥ 2. In particular, it has Gelfand–
Kirillov dimension at most 1.

Proposition 4.13. The algebra Lω is branched and of maximal class.

The construction of Lω is modelled on that of the Grigorchuk groups Gω introduced
in [17]. We now detail the connection to the algebras of maximal class studied by Caranti
et al., and recall their definition of inflation [9, §6]. Let L be a Lie algebra of maximal
class, and let M be a codimension-1 ideal, specified by ω ∈ P1(k): a ∈ L belongs to M
if and only if ω(a1) = 0, where a1 denotes the degree-1 part of a.

Choose s ∈ L \M ; then s acts as a derivation on M . The corresponding inflated
algebra is LM =M⊗k[ε]/(εp)ok, where k acts by the derivation s′ = 1⊗∂ε−s⊗εp−1.
Note (s′)p = s. It is shown in [9] that LM is again an algebra of maximal class. The main
results of [10, 24] are that every infinite-dimensional Lie algebra of maximal class is
obtained through a (possibly infinite) number of steps from elementary building blocks
such as the Albert–Franks algebras.

In fact, LM may also be described as the subalgebra of L ok∂ε generated by M and s′.
The algebra LM is independent (up to isomorphism) of the choice of s, and therefore
solely depends on the choice of ω.

The algebras Lω presented in this subsection are examples of Lie algebras of maximal
class that fall into the “infinitely iterated inflations” subclass [9, §9]. However, they do not
appear here as inverse limits, but rather as countable-dimensional vector spaces, dense in
the algebras constructed by Caranti et al.

If L ′ was obtained from L through inflation, then L may be recovered from L ′

through deflation: choose s′ ∈ L ′ of degree 1 that does not commute with L ′2, and set
(L ′)↓ = k(s′)p ⊕

⊕
n≥1(L

′)pn. Then L ∼= (L ′)↓.
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4.4. Fabrykowski–Gupta Lie algebras

Again inspired by the self-similarity structure of the Fabrykowski–Gupta group [14], we
consider X = Fp[x]/(xp) and a Lie algebra L generated by a, t with self-similarity
structure

ψ :

{
L → L oDerX,

a 7→ ∂x, t 7→ xp−1
⊗ (a + t).

We seek a grading for L that makes the generators homogeneous. Again X is Z-graded
with deg(x) = −1, so deg(a) = 1, and deg(t) = deg(a) = 1, while λ deg(t) = p − 1+
deg(t), so λ = p. In other words, the Lie algebra L is no more than Z-graded. In our
matrix notation,

a 7→


0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0

 , t 7→


0 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
−a − t · · · 0 0

 .
Theorem 4.14. The Lie algebra L is not nil.

Proof. Consider the element x = a + t . A direct calculation gives ψ(xp) = −1 ⊗ x. It
follows that if xp

s
= 0 for some s > 0, then −1⊗ xp

s−1
= 0 so xp

s−1
= 0. Since x 6= 0,

it is not nil. ut

4.5. Petrogradsky–Shestakov–Zelmanov algebras

We consider a field k of characteristic p, and X = k[x]/(xp). We fix an integer m ≥ 2,
and consider the Lie algebra Lm,k with generators d1, . . . , dm−1, v and self-similarity
structure

ψ :


Lm,k→ Lm,k oDerX,

d1 7→ ∂x,

dn+1 7→ 1⊗ dn for n = 1, . . . , m− 2,
v 7→ 1⊗ dm−1 + x

p−1
⊗ v.

In the special case m = 2,k = F2, Petrogradsky [34] actually considered the subalgebra
〈v, [d1, v]〉, of codimension 1 in L2,F2 . Shestakov and Zelmanov [40] consider the case
m = 2; see also [35]. We repeat for clarity that last example (with d = d1) using our
matrix notation. To this end, we take the divided powers {1, x, x2/2, . . . , xp−1/(p− 1)!}
as a basis of X. The endomorphisms mx and m∂x are respectively

mx =


0 0 · · · 0

1
. . .

. . .
...

... 2
. . . 0

0 · · · p − 1 0

 , m∂x =


0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0

 .
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It follows that the matrix decompositions of d, v are

d 7→


0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0

 , v 7→


d 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
−v · · · 0 d

 .
We seek a grading that makes the generators homogeneous. The ring X is Z-graded

by setting deg(x) = −1, so R(X) is Z[λ]-graded. If that grading is to be compatible with
the self-similarity structure, however, we must impose deg(dn) = λn−1 and

deg(v) = λ deg(dm−1) = −(p − 1)+ λ deg(v) = λm−1,

so λm − λm−1
+ 1− p = 0. We therefore grade R(X) and Lm,k by the abelian group

3 = Z[λ]/(λm − λm−1
+ 1− p).

For simplicity, we state the following result only in the case m = 2:

Proposition 4.15. The Lie algebra L2,k is regularly branched on its ideal 〈[v, [d, v]]〉 of
codimension p + 1.

Proof. First, L2,k is recurrent: indeed, (ε ⊗ 1)ψ(v) = d and (ε ⊗ 1)ψ[[dp−1, v]] = v.
Then, by Lemma 3.2, L2,k is transitive.

Write c = [v, [d, v]] and K = 〈c〉. To prove that L2,k is branched on K , it suffices
to exhibit c′ ∈ K with ψ(c′) = xp−1

⊗ c. If p = 2, then c′ = [v, c] will do, while if
p ≥ 3 then take c′ = [[d, v], [[dp−3, c]]].

A direct computation shows that L2,k/K is finite-dimensional, with basis
{d, v, [d, v], . . . , [[dp−1, v]]}. ut

We are now ready to reprove the following main result from Shestakov and Zelmanov:

Theorem 4.16 ([40, Example 1]). The algebra Lm,k is nil but not nilpotent.

Proof. The ideal 〈v〉 has finite codimension and is generated by m-evanescent elements,
so Corollary 2.9 applies to it. We conclude by noting that Lm,k/〈v〉 is abelian and hence
nil. ut

We concentrate again on m = 2 in the following results:

Proposition 4.17. The relative Hausdorff dimension of L2,k with respect to P = k∂x is

HdimP (L2,k) = (p − 1)2/p3.

Proof. We follow the proof of Proposition 3.11, using the notation L = L2,k. We may
take M = 3, and readily compute dim(L /K ) = p + 1 with basis {d, [[d i, v]]} and
dim(K /(X ⊗K )) = (p − 1)2 with basis {[[d i, vj , c]] | i, j ∈ {0, . . . , p − 2}. Letting
Ln denote the image of L in Der(X⊗n), we find dim L3 = p + 1. This gives

dim Ln = (p − 1) · pn−3
+ 2,

and the claimed result. ut
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Lemma 4.18. The algebra Lm,k is contracting.

Proof. Its nucleus is k{d1, . . . , dm−1, v}. ut

Corollary 4.19. The Gelfand–Kirillov dimension of Lm,k is logp/log λ.

Proof. This follows immediately from Propositions 2.17 and 3.12. ut

Note, however, that careful combinatorial calculations give a much sharper result. For
example, again for m = p = 2, the dimension of the span of commutators of length
≤ n in L2,F2 is, for Fk−1 < n ≤ Fk and (Fk) the Fibonacci numbers, the number of
manners of writing Fk − n as a sum of distinct Fibonacci numbers among F1, . . . , Fk−4.
In particular, for n = Fk at least 5, there is precisely one commutator of length n, namely
1⊗k−2

⊗ v.

5. Self-similar associative algebras

At least three associative algebras may be associated with a self-similar Lie algebra L .
The first is the universal enveloping algebra U(L ), which maps onto the other two. The
second is the adjoint algebra of L , that is, the associative subalgebra Adj(L ) of End(L )

generated by the derivations [a,−] : L → L for all a ∈ L . The third one is the thinned
algebra A (L ), defined as follows.

Let d = dimX. Recall from (3) that the self-similarity structure ψ : L → L oDerX
gives rise to a linear map ψ ′ : L → Matd(L ⊕ k). We extend this map multiplicatively
to an algebra homomorphism ψ ′ : T (L )→ Matd(T (L )). Now, for a =

∑
xi ⊗ ai + δ

and b =
∑
yj ⊗ bj + ε in L , we have [a, b] =

∑∑
xiyj ⊗ [ai, bj ] +

∑
δyj ⊗ bj −∑

εxi ⊗ ai + [δ, ε], and therefore

ψ ′(ab − ba − [a, b]) =
∑∑

mxiyj (aibj − bjai − [ai, bj ])

+

∑
(mximε −mεmxi −mεxi )ai

−

∑
(myjmδ −mδmyj −mδyj )bj

+mδmε −mεmδ −m[δ,ε];

the last three summands are zero, so all entries of ψ ′(ab − ba − [a, b]) lie in the ideal
generated by the a′b′ − b′a′ − [a′, b′]. We deduce:

Proposition 5.1. The map ψ ′ induces an algebra homomorphism

ψ ′ : U(L )→ Matd(U(L )).

Now we note that even though ψ : L → L oDerX may be injective, this does not imply
that ψ ′ is injective. As a simple example, consider the Grigorchuk Lie algebra from §4.2.
We have bc 6= 0 in U(L ), but ψ ′(bc) = 0.

Since L acts on R(X) by k-linear maps, the universal enveloping algebra U(L ) also
acts on R(X). Quite clearly, the kernel of the action of U(L ) on R(X) contains the kernel
of ψ ′.
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Definition 5.2. Let L be a self-similar Lie algebra. The thinned enveloping algebra
of L is the quotient A (L ) of U(L ) by the kernel of its natural action on R(X).

Rephrasing the results from §4, we deduce that, for L = the Gupta–Sidki Lie algebra, the
Grigorchuk Lie algebra, and the Petrogradsky–Shestakov–Zelmanov algebras, the image
of L in U(L ) is nil; the same property then holds for the adjoint algebra and the thinned
algebra of L . Apart from this information, the structure of U(L ) or Adj(L ) seems
mysterious.

In case L admits two gradings with different dilations, it is possible to deduce that
U(L ) is a sum of locally nilpotent subalgebras. Assume therefore that L admits two
degree functions, written degλ and degµ. For simplicity, assume also λ > |µ| > 1,
although the case |µ| ≤ 1 can also be handled as a limit, or by a small change in the
argument; indeed increasing |µ| only makes inequalities tighter in what follows. The
following is drawn from [35, Theorem 2.1]:

Proposition 5.3. Let L be a graded self-similar Lie algebra, in characteristic p > 0,
with gradings degλ, degµ, such that L is generated by finitely many positive-degree ele-
ments with respect to degλ. Then there is a decomposition as a sum of subalgebras

U(L ) = U+ ⊕ U0 ⊕ U−,

in which U+,U0,U− are the spans of homogeneous elements a with degµ(a) positive,
zero and negative respectively; and U+ and U− are locally nilpotent. In particular, ho-
mogeneous elements with degµ 6= 0 are nil.

Proof. We first deduce from (7) and (8) that for appropriate constants C,D we have, for
all a ∈ X⊗n ⊗N ,

log|µ|(degµ(a)/C) ≤ n ≤ logλ(degλ(a)/D).

Setting θ = log |µ|/log λ ∈ (0, 1), we get, for a fresh constant C,

degµ(a) ≤ C degλ(a)
θ .

We seek a similar inequality for U(L ). For that purpose, choose a homogeneous basis
(a1, a2, . . . ) of L , and recall that U(L ) has a basis(∏

i≥1

a
ni
i

∣∣∣ ni ∈ Fp, almost all 0
)
.

Each ai belongs to X⊗mi ⊗ N for some minimal mi ∈ N. For j ∈ N, let j̀ denote the
number of mi with mi = j . Then j̀ ≤ (dimX)j dimN .

Consider now u =
∏
i≥1 a

ni
i ∈ U(L ). We have

degλ(u) =
∑
i≥1

niλ
mi , |degµ(u)| ≤

∑
i≥1

ni |µ|
mi ,

and we wish to study cases in which |degµ(u)| is as large as possible for given degλ(u).
Because |µ| < λ and by convexity of the functions λx, |µ|x , this will occur when
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ni = p − 1 whenever mi is small, say mi < K , and ni = 0 whenever mi > K; with
intermediate values whenever mi = K . We have

degλ(u) ≈ (p − 1)
K∑
j=0

j̀λ
j
≈ (λ dimX)K ,

degµ(u) w (p − 1)
K∑
j=0

j̀ |µ|
j
≈ (|µ| dimX)K ,

so
degµ(u) < C degλ(u)

θ ′ , (11)

for a constant C and θ ′ = log(|µ| dimX)/log(λ dimX) ∈ (0, 1).
It is clear that we have a decomposition U(L ) = U+ ⊕U0 ⊕U−. We now show that

U+ is locally nilpotent, the same argument applying to U−. For that purpose, consider
u1, . . . , uk ∈ U+, spanning a subspace V , and set

D = max
i∈{1,...,k}

degλ(ui)
degµ(ui)

.

For s ∈ N, consider a non-zero homogeneous element u in the s-fold product V s . Then
degλ(u) ≤ D degµ(u); combining this with (11) we get

degµ(u) ≤ C(D degµ(u))
θ ′ ,

so degµ(u) is bounded and therefore s is also bounded. ut

Note that if L is generated by a set S such that the degµ(s) with s ∈ S are linearly
independent in R, then U0 = k and therefore homogeneous elements except scalars are
nil in U(L ).

On the other hand, note that even the quotient algebra A (L ) tends to have transcen-
dental elements. For example, A (2LG) contains a + b + ad, which is transcendental
by [3, Theorem 4.20] and Theorem 6.7. It seems that the element a2

+ t of A (LGS) is
transcendental.

Lemma 5.4. If p = αm − αm−1
+ 1 for some α ∈ N, then A (Lm,Fp ) is not nil.

Note that the condition actually says that the maximal dilation factor of the grading is an
integer; in light of Proposition 5.3, the non-nil element will have degree 0.

Proof. Write β = α − 1, and consider the element x = dα
m−2β

1 d
αm−3β
2 · · · d

β

m−1v. Then
ψ(xα) is a lower triangular matrix, with −x at position (p, p). Because x 6= 0, it follows
that xα

n
6= 0 for all n ∈ N, so x is not a nil element. ut

There does not seem to exist such a simple argument for arbitrary primes; for instance,
for p = m = 2 it seems that x = v+ v2

+ vuv has infinite order (its order is at least 210),
while for p = 5 and m = 2 it seems that x = v + d2

− d4 has infinite order (its order is
at least 53).
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5.1. Thinned algebras

The “thinned algebra” from Definition 5.2 is an instance of a self-similar algebra, as
defined in [3]. We recall a basic notion: a self-similar associative algebra is an algebra A
endowed with a homomorphism φ : A → Matd(A ). If furthermore A is augmented
(by ε : A → k), then A acts on R(kd): given a ∈ A and an elementary tensor v =
x1 ⊗ · · · ⊗ xn ∈ R(kd), set a · 1 = ε(a) and recursively

a(v) =

d∑
i,j=1

〈ei |x1〉ej ⊗ aij (x2 ⊗ · · · ⊗ xn)

if ψ(a) = (aij ). Conversely, specifying φ(s), ε(s) for generators s of A defines at most
one self-similar algebra acting faithfully on R(kd).

The first example of self-similar algebra (though not couched in that language) is due
to Sidki [42]. He constructed a primitive ring A containing both the Gupta–Sidki torsion
group (see §6.4) and a transcendental element.

Another example [3] contains both the Grigorchuk group (see §6.3) and an invert-
ible transcendental element, and has quadratic growth. It is also primitive, although the
opposite was erroneously claimed in [3, Theorem 4.29].

The fundamental idea of “linearizing” the definition of a self-similar group (see §6)
already appears in [48].

5.2. Bimodules

The definition of self-similar associative algebra, given above, has the defect of imposing
a specific choice of basis. The following more abstract definition is essentially equivalent.

Definition 5.5. An associative algebra A is self-similar if it is endowed with a covering
bimodule, that is, an A -A -bimodule M that is free qua right A -module.

Indeed, given ψ : A → Matd(A ), define M = kd ⊗A , with natural right action, and
left action

a · (ei ⊗ b) =

d∑
j=1

ej ⊗ aijb for ψ(a) = (aij ).

Conversely, if M is free, choose an isomorphism MA
∼= X ⊗A for a k-module X, and

choose a basis (ei) of X; then write ψ(a) = (aij ) where a · (ei ⊗ 1) =
∑
ej ⊗ aij for

all i.
Note that we had no reason to require X to be finite-dimensional (of dimension d) in

Definition 5.5, though all our examples are of that form.
The natural action of A may be defined without explicit reference to a basis X

of MA : one simply lets A act on the left on⊕
n≥0

M ⊗A · · · ⊗A M ⊗A k.
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It is possible to define self-similar Lie algebras L in a basis-free manner, by requiring
that the universal enveloping algebra U(L ) be endowed with a covering bimodule. We
shall not follow that approach here, because it is not (yet) justified by any applications.

5.3. Growth

Under the assumptions of Propositions 2.17 and 3.12, we may estimate the growth of the
associative algebras U(L ) and A (L ). We begin by U(L ), for which analytic number
theory methods are useful. The following is an adaptation of [31, Theorem 1]. Note that,
with a little more care, Nathanson obtained the same bounds 81 = 82, for α = 1/2.

Lemma 5.6. Let f (x) =
∑
n≥0 anx

n be a power series with positive coefficients, and
consider α ∈ (0, 1).

(1) There exists a homeomorphism 81 : [0,∞] → [0,∞] such that

lim inf
n→∞

log an
nα
≥ L implies lim inf

x→1−
(1− x)α/(1−α) log f (x) ≥ 81(L).

(2) There exists a homeomorphism 82 : [0,∞] → [0,∞] such that

lim sup
n→∞

log an
nα
≤ L implies lim sup

x→1−
(1− x)α/(1−α) log f (x) ≤ 82(L).

Proof. (1) For every ε > 0 there are arbitrarily large n ∈ N with an ≥ e(L−ε)n
α
. Consider

x = e−t with t ∈ R+. Then f (x) ≥ anx−n ≥ e(L−ε)n
α
−tn. This expression is maximized

at t = α(L − ε)nα−1, with t → 0 as n → ∞. Therefore, log f (x) ≥ (1 − α)(L − ε)
×
(

t
α(L−ε)

)α/(α−1)
= Ktα/(α−1) for a function K(L, ε). Now, for t → 0, we have t ≈

1 − x, so (1 − x)α/(1−α) log f (x) ≥ K for x near 1−. Thus 81(L) := limε→0K(L, ε)

satisfies (1).
(2) For every ε > 0 there is N0 ∈ N such that an ≤ e(L−ε)n

α
for all n ≥ N0. Consider

x near 1−, and write again x = e−t . Set N1 =
(

t
α(L+ε)

)1/(α−1). Write

f (x) =
∑
n<N0

anx
n
+

2N1∑
n=N0

anx
n
+

∑
n≥2N1

anx
n.

The first summand is bounded by a function K1(ε). The second is bounded by
2N1e

(L+ε)Nα1 −N1t . For n ≥ 2N1 we have (d/dn)((L + ε)nα − tn) ≤ (2α−1
− 1)

× α(L + ε)Nα−1
1 < 0, so the third summand is bounded by the geometric se-

ries
∑
i≥0 e

(L+ε)(2N1)
α
−t (2N1)e(2

α−1
−1)α(L+ε)Nα−1

1 i . Collecting all three summands into a
bound 82(L) yields (2). ut

Lemma 5.7. Consider the series f (x) =
∏
n≥1(1 − x

n)−n
β
. Then (1 − x)β+1 log f (x)

is bounded away from {0,∞} as x → 1−.
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Proof. We have log f (x) = −
∑
n≥1 n

β log(1−xn); and− log(1−xn) ≥ xn so log f (x)
≥
∑
n≥1 n

βxn ≈ (1 − x)−β−1; therefore Lf := (1 − x)β+1 log f (x) is bounded away
from 0.

Conversely, it makes no difference to consider f (x) or g(x) := f (x)/f (xp), because
Lg = (1− p−1)Lf . Now − log((1− xn)/(1− xpn)) =

∑
i≥1(x

ni
− xpni)/i ≤ pxn, so

log g(x) w p(1− x)−β−1 is bounded away from∞. ut

The following is an improvement on the bounds given in [33, Proposition 1].

Theorem 5.8. Let L be an R+-graded self-similar Lie algebra, with dilation λ > 1, that
is generated by finitely many positive-degree elements. Then the universal enveloping al-
gebra U(L ) has subexponential growth; more precisely, the growth of U(L ) is bounded
as

dim (U(L ))≤d w exp(CdGKdim(L )/(GKdim(L )+1)) for some C > 0. (12)

If furthermore L is regularly weakly branched, then the exponent in (12) is sharp.

Proof. We denote, for an algebra A , by An the homogeneous summand of degree n.
Let f (x) =

∑
n≥0 dim U(L )n x

n denote the Poincaré series of U(L ). By the Poincaré–
Birkhoff–Witt Theorem, we have f (x) = f0(x) =

∏
n≥1(1 − x

n)− dim Ln in charac-
teristic 0, and f (x) = f0(x)/f0(x

p) in characteristic p. By Proposition 2.17, we have

λm+1
−1∑

n=λm

dim Ln w λθm with θ = GKdim(L ). (13)

The estimate (12) only depends on the asymptotics of f (x) near 1, and these change
only by a factor of λ between the extreme cases when the sum in (13) is concentrated
in its first or its last terms. It therefore makes no harm to assume dim Ln w nθ−1, so
(1 − x)θ log(x) is bounded away from ∞ by Lemma 5.7; and the upper bound in (12)
follows from Lemma 5.6(1).

On the other hand, if L is regularly weakly branched then by Proposition 3.12 we
have

∑λm+1
−1

n=λm dim Ln v λθm and the lower bound in (12) follows from Lemma 5.6(2).
ut

We now show that the thinned algebra A (L ) has finite Gelfand–Kirillov dimension,
double that of L , under the same hypotheses:

Theorem 5.9. Let L be an R+-graded self-similar Lie algebra, with dilation λ > 1, that
is generated by finitely many positive-degree elements. Then

GKdim A (L ) ≤ 2
log dimX

log λ
.

On the other hand, if L is regularly weakly branched, then

GKdim A (L ) ≥ 2
log dimX

log λ
.
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Proof. Let Ad denote the span of homogeneous elements in A (L ) of degree ≤ d. Con-
sider a ∈ Ad , and express it in MatX⊗n×X⊗n(N). By (8) we have n ≤ logλ(d/ε), so

dim Ad ≤

n∑
j=0

(dimX)2j dimN w d2 log(dimX)/log λ.

If L is regularly weakly branched then, following the proof of Proposition 3.12, we
have

dim Ad ≥ (d/ε)
2 log(dimX)/log λ. ut

There is yet another notion of growth, which we just mention in passing. For v∈R(X),
consider the orbit growth function

γv(d) = dim(Ldv),

where Ld denotes the span of homogeneous elements in A (L ) of degree ≤ d; and
consider also

γ (d) = sup
v∈R(X)

γv(d).

It seems that γ (d) is closely related to dim Ld , but that may be an artefact of the simplic-
ity of the examples yet considered.

5.4. Sidki’s monomial algebra

Sidki [41] considered a self-similar associative algebra A on two generators s, t , given
by the self-similarity structure

s 7→

(
0 0
1 0

)
, t 7→

(
0 t

0 s

)
.

He gives a presentation for A , all of whose relators are monomial, and shows that mono-
mials are nil in A while s + t is transcendental.

The self-similarity structure of A is close both to that of A (L2), the difference being
the “s” at position (1, 1) ofψ(t); and to the thinned ring A (I4) of a semigroup considered
in [6], the difference being the “1” at position (1, 2) in ψ(s). Note also that A and A (I4)

have the same Gelfand–Kirillov dimension. One is led to wonder whether A may be
obtained as an associated graded of A (I4).

6. Self-similar groups

My starting point, in studying self-similar Lie algebras, was the corresponding notion for
groups:



Self-similar Lie algebras 3143

Definition 6.1. Let X be a set, called the alphabet. A group G is self-similar if it is
endowed with a homomorphism

ψ : G→ GX o SymX =: G o SymX,

called its self-similarity structure.

The first occurrence of this definition seems to be [39, p. 310]; it has also appeared in the
context of groups generated by automata [47].

A self-similar group naturally acts on the set X∗ of words over the alphabet X: given
g ∈ G and v = x1 . . . xn, define recursively

g(v) = π(x1)gx1(x2 . . . xn) where ψ(g) = ((gx)x∈X, π).

Conversely, if ψ(g) is specified for the generators of a group G, this defines at most one
self-similar group acting faithfully on X∗.

Note that we have no reason to require X to be finite, though all our examples are of
that form.

Nekrashevych [32] introduced a more abstract, essentially equivalent notion:

Definition 6.2. A group G is self-similar if it is endowed with a covering biset, that is, a
G-G-biset M that is free qua right G-set.

Indeed, given ψ : G → G o SymX, define M = X × G, with natural right action, and
left action

g(x, h) = (π(x), gxh) for ψ(g) = ((gx)x∈X, π).

Conversely, if M is free, choose an isomorphism MG
∼= X × G for a set X, and write

ψ(g) = ((gx), π) where g(x, 1) = (π(x), gx) for all x ∈ X.
The natural action ofGmay be defined without explicit reference to a “basis”X ofM:

one simply lets G act on the left on⊔
n≥0

M ×G · · · ×G M ×G {∗},

where the fibred product of bisets is M ×G N = M ×N/(mg, n) = (m, gn).
If G is a self-similar group, with self-similarity structure ψ : G → G o SymX,

and k is a ring, then its thinned algebra is a self-similar associative algebra A (G) with
alphabet kX. It is defined as the quotient of the group ring kG acting faithfully on R(kX),
for the self-similarity structure ψ ′ : kG→ MatX(kG) given by

ψ ′(g) =
∑
x∈X

1x,π(x)gx for ψ(g) = ((gx), π),

where 1x,y is the elementary matrix with a 1 at position (x, y).
The definition is even simpler in terms of bisets and bimodules: if G has a covering

biset M , then kG has a covering module kM , turning it into a self-similar associative
algebra.
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6.1. From groups to Lie algebras

We shall consider two methods of associating a Lie algebra to a discrete group. The first
one, quite general, is due to Magnus [29]. Given a group G, consider its lower central
series (γn)n≥1, defined by γ1 = G and γn = [G, γn−1] for n ≥ 2. Form then

L Z(G) =
⊕
n≥1

γn/γn+1.

This is a graded abelian group; and the bracket [gγn+1, hγm+1] = [g, h]γn+m+1, ex-
tended bilinearly, gives it the structure of a graded Lie ring.

Consider now a field k of characteristic p, and define the dimension series (γ pn )n≥1
of G by γ p1 = G and γ pn = [G, γ

p

n−1](γ
p
dn/pe)

p. The corresponding abelian group

L k(G) =
⊕
n≥1

γ
p
n /γ

p

n+1 ⊗Fp k

is now a Lie algebra over k, which furthermore is restricted, with the p-mapping defined
by (xγ pn+1 ⊗ α)

p
= xpγ

p

pn+1 ⊗ α
p.

Note the following alternative definition [36]: The group ring kG is filtered by powers
of its augmentation ideal $ . The corresponding graded ring kG =

⊕
n≥0$

n/$ n+1 is
a Hopf algebra, because $ is a Hopf ideal in kG. Then L k(G) is the Lie algebra of
primitive elements in kG, which itself is the universal enveloping algebra of L k(G).

There is a natural graded map L Z(G) → L k(G), given by gγn+1 7→ gγ
p

n+1 ⊗ 1.
Furthermore, its kernel K1 consists of elements of the form (gγn+1)

p. There is a p-
linear map K1 → L k(G), given by (gγn+1)

p
7→ gpγ

p

pn+1 ⊗ 1, and similarly for higher
kernels Km with m ≥ 2.

We turn now to a second construction, specific for self-similar groups. We assume,
further, that G’s alphabet is Fp, and that the image of ψ : G→ G o SymX lies in G o Fp,
where Fp acts on itself by addition. Finally, we fix a generating set S of G, and assume
that ψ(S) lies in SX × Fp. Let S′ denote a subset of S such that every s ∈ S is of the
form (s′)n for unique s′ ∈ S′ and n ∈ Fp.

Consider now the vector space X′ = Fp[x]/(xp), and the self-similar Lie al-
gebra L (G) acting faithfully on R(X′), with generating set S′, with the following self-
similarity structure: set

ψ ′(s′) =
∑
i∈Fp

xi(x + 1)p−1−ini ⊗ si + n∂x for ψ(s′) = ((snii )i∈Fp , n).

Modify furthermore the self-similarity structure as follows, to obtain a graded algebra
in which the elements of s′ are homogeneous: if ψ ′(s′) =

∑
s∈S′ fs(x) ⊗ s + n∂x , then

let fs denote the leading monomial of fs , and set

ψ(s′) =
∑
s∈S′

fs(x)⊗ s + n∂x .

Conjecture 6.3. Consider a self-similar group G as above, its thinned algebra
A (G) with augmentation ideal $ , and the associated graded algebra A (G) =⊕

n≥0$
n/$ n+1. Then the Lie algebra L (G) is a subalgebra of A (G).
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Conjecture 6.4. Consider a self-similar group G as above, and L k(G) its associated
Lie algebra. Then L (G) is a quotient of L k(G).

These conjectures should be proved roughly along the following construction: first, there
is a natural map π0 : G → G/[G,G] → L (G), sending s ∈ S to its image in L (G).
Then, given gγ pn+1 ∈ L (G), let k ∈ N be maximal such that γ pn acts trivially on Xk , and
consider ψn(g) = (g0...0, . . . , gp−1...p−1). Write then

πk(g) =
∑

i1,...,ik∈Fp

xi1(x + 1)p−1−i1 ⊗ · · · ⊗ xik (x + 1)p−1−ik ⊗ π0(gi1...ik ).

These maps should induce a map L k(G)→ L (G). A similar construction should relate
$ n
≤ A (G) and L (G).
Rather than pursuing this line in its generality, we shall now see, in specific examples,

how L (G) and L k(G) are related, and lead from self-similar groups to the Lie algebras
described in §4.

6.2. The p-Sylow subgroup of the infinite symmetric group

Kaloujnine [26] initiated the study of the Sylow p-subgroup of Sym(pm), and its infinite
generalization [25]. The Sylow subgroup of Sym(pm) is anm-fold iterated wreath product
ofCp, and these groups form a natural projective system; denote their inverse limit byWp.
Then Wp ∼= Wp o Fp, and if we denote this isomorphism by ψ then Wp is a self-similar
group satisfying the conditions of the previous subsection.

Sushchansky and Netreba [45, 46] exploited Kaloujnine’s representation of elements
of Wp by “tableaux” to describe the Lie algebra L Fp (Wp) associated with Wp. This
language is essentially equivalent to ours; Kaloujnine’s “tableau” xe1

1 . . . x
en
n corresponds

to our derivation xp−1−e1 ⊗ · · · ⊗ xp−1−en ⊗ ∂x . See also [4, §3.5] for more details,
and [7, Theorem 11] for an embedding of L Fp (Wp) in the Poisson algebra of truncated
polynomials in countably many variables. The upshot is

Proposition 6.5 ([4, Theorem 3.4]). The Lie algebras L Fp (Wp), L Z(Wp), L (Wp)

and L (Wp) are isomorphic.

6.3. The Grigorchuk groups

An essential example of a self-similar group was thoroughly investigated by Grigorchuk
[18–20]. The “first” Grigorchuk group is defined as follows: it is self-similar; it acts faith-
fully on X∗ for X = F2; it is generated by a, b, c, d; and it has self-similarity structure

ψ :



G→ G o F2,

a 7→ ((1, 1), 1),
b 7→ ((a, c), 0),
c 7→ ((a, d), 0),
d 7→ ((1, b), 0).

(14)
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The following notable properties of G stand out:

• It is an infinite, finitely generated torsion 2-group [2, 18], providing an accessible an-
swer to a question by Burnside [8] about the existence of such groups.
• It has intermediate word-growth [19], namely the number of group elements express-

ible as a word of length ≤ n in the generators grows faster than any polynomial, but
slower than any exponential function. This answered a question by Milnor [30] on the
existence of such groups.
• It has finite width [5, 38], that is, the ranks of the lower central factors γn/γn+1 are

bounded. This disproved a conjecture by Zelmanov [49].

Grigorchuk’s construction was generalized, in [17], to an uncountable collection of
groups Gω, for ω ∈ {0, 1, 2}∞ =: �. They are not self-similar anymore, but are re-
lated to each other by homomorphisms ψ : Gω → Gσω o F2, where σ : � → � is the
one-sided shift. Interpret 0, 1, 2 as the three non-trivial homomorphisms F4 → F2. Then
each Gω is generated by F4 t {a}, and

ψ :


Gω → Gσω o F2,

a 7→ ((1, 1), 1),
F4 3 v 7→ ((aω(v), v), 0).

The “first” Grigorchuk group is then Gω for ω = (012)∞.
The structure of the Lie algebra L Z(G), based on calculations in [38], and of

L F2(G), are described in [5], and more explicitly in [4, Theorem 3.5]. Note, however,
some missing arrows in [4, Figure 2] between 1n(x2) and 1n+2(x). Notice also that
L F2(G) is neither just infinite nor centreless: its centre is spanned by {W(x2) | W ∈

{0,1}∗ \ {1}∗} and has finite codimension.
Recall the upper central series of a Lie algebra L : it is defined inductively by ζ0 = 0,

ζn+1/ζn = ζ(L /ζn), and ζω =
⋃
α<ω ζα . In particular, ζ1 is the centre of L .

Theorem 6.6. The Lie algebras L (G), L F2(G)/ζ(L F2(G)) and 2LG are isomorphic.
The Lie algebras L Z(G)/ζω(L Z(G)) and LG are isomorphic.

Proof. We recall from [4, Theorem 3.5] the following explicit description of L F2(G).
Write e = [a, b]. A basis of L F2(G) is

{a, b, d, [a, d]} ∪ {W(e),W(e2) | W ∈ {0,1}∗},

where a, b, d have degree 1; [a, d] has degree 2; and deg(X1 . . . Xn(e)) = 1 +∑n
i=1Xi2

i−1
+ 2n = 1

2 deg(X1 . . . Xn(e
2)). The 2-mapping sends W(e) to W(e2) and

1n(e2) to 1n+2(e)+ 1n+1(e2) and all other basis vectors to 0.
In particular, the centre of L F2(G) is spanned by the set {W(e2) | W 6∈ {1}∗}, and

L F2(G)/ζ(L F2(G)) is centreless.
Note then the following isomorphism between L F2(G)/ζ(L F2(G)) and 2LG. It

sends a, b, d, [d, a] to a, b, d, [d, a] respectively; and X1 . . . Xn(e
s) to x1−X1 ⊗ · · · ⊗

x1−Xn ⊗ es .
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It follows that L F2(G)/ζ(L F2(G)) admits the injective self-similarity structure (10),
and therefore equals 2LG. On the other hand, direct inspection shows that the self-
similarity structure of L (G) equals that of 2LG.

In the description of L Z(G), the basis elementW(e2) has degree 1+
∑n
i=1Xi2

i−1
+

2n+1. The centre of L Z(G) is spanned by the {1n(e2)}, and more generally ζk(L Z(G))

is spanned by the {X1 . . . Xn(e
2) |

∑n
i=1Xi2

i−1
≥ 2n − k. It then follows that

L Z(G)/ζω(L Z(G)) has a basis {a, b, d, [a, d]} ∪ {W(e)}, and admits the injective self-
similarity structure (10), so it equals LG. ut

Theorem 6.7. The thinned algebras associated with G and L (G) are isomorphic:
A (G) ∼= A (L (G)).

Proof. The algebra A (G) is just infinite [3, Theorem 4.3], and has an explicit presenta-
tion

A (G) = 〈A,B,C,D | R0, σ
n(CACACAC), σ n(DACACAD) for all n ≥ 0〉,

where σ : {A,B,C,D}∗→ {A,B,C,D}∗ is the substitution

A 7→ ACA, B 7→ D, C 7→ B, D 7→ C

and

R0 = {A
2, B2, C2,D2, B + C +D,BC,CB,BD,DB,CD,DC,DAD}.

It is easy to check that ψ(σ(w)) =
(

0 0
w 0

)
for all words w ∈ {A,B,C,D} of

length at least 2 and starting and ending in {B,C,D}; moreover, the relations R0 ∪

{CACACAC,DACACAD} are satisfied in A (L (G)). There exists therefore a homo-
morphism A (G) → A (L (G)), which must be an isomorphism because its image has
infinite dimension. ut

6.4. The Gupta–Sidki group

Another important example of a self-similar group was studied by Gupta and Sidki [21].
This group is defined as follows: it is self-similar; it acts faithfully on X∗ for X = F3; it
is generated by a, t ; and it has self-similarity structure

ψ :


G→ G o F3,

a 7→ ((1, 1, 1), 1),
t 7→ ((a, a−1, t), 0).

(15)

Gupta and Sidki prove that G is an infinite, finitely generated torsion 3-group.
The Lie algebra L Z(G) = L F3(G) is described in [4, Theorem 3.8], where it is

shown that L Z(G) has unbounded width.

Theorem 6.8. The Lie algebras L (G), L F3(G), L Z(G) and LGS are isomorphic.
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Proof. We recall from [4, Theorem 3.8] the following explicit description of L Fp (G).
Write c = [a, t] and u = [a, c]. Define the integers αn by α1 = 1, α2 = 2, and αn =
2αn−1 + αn−2 for n ≥ 3. A basis of L Fp (G) is

{a, t} ∪ {W(c),W(u) | W ∈ {0,1,2}∗},

where a, t have degree 1, and where deg(X1 . . . Xn(c)) = 1 +
∑n
i=1Xiαi + αn+1 =

deg(X1 . . . Xn(u))− αn+1. In that basis, the 3-mapping sends 2n(c) to 2n02(c)+ 2n1(u)
and all other basis vectors to 0.

In particular, L Z(G) and L F3(G) are isomorphic.
Note then the following isomorphism between L Z(G) and 2LG. It sends a, t to a, t

respectively; and X1 . . . Xn(b) to x2−X1 ⊗ · · · ⊗ x2−Xn ⊗ b for b ∈ {c, u}.
It follows that L Z(G) admits the injective self-similarity structure (9), and therefore

equals LGS. On the other hand, direct inspection shows that the self-similarity structure
of L (G) equals that of LGS. ut

It is tempting to conjecture, in view of Theorem 6.7, that the associated graded⊕
n≥0$

n/$ n+1 of A (G) is isomorphic to A (L ); presumably, this could be proven
by finding a presentation of A (G).

6.5. From Lie algebras to groups

We end with some purely speculative remarks. Although we gave a construction of a Lie
algebra starting from a self-similar group, this construction depends on several choices, in
particular of a generating set for the group. Could it be that the resulting algebra L (G),
or L (G), is independent of such choices? Is L (G) always isomorphic to L p(G)?

On the other hand, I do not know of any “interesting” group to associate with a self-
similar Lie algebra—that would, for example, be a torsion group if the Lie algebra is nil,
or have subexponential growth if the Lie algebra has subexponential growth.

A naive attempt is the following. Consider the “Fibonacci” Lie algebra L2,F2
from §4.5. Its corresponding self-similar group should have alphabet X = F2, and gener-
ators a, t with self-similarity structure

ψ :


G→ G o F2,

a 7→ ((1, 1), 1),
t 7→ ((a, at), 0),

at least up to commutators. That group can easily be shown to be contracting, and also
regularly weakly branched on the subgroup 〈[a, t, t]〉G. It has Hausdorff dimension 1/3,
and probably exponential growth.

More generally, are there subgroups of the units in A (L ) that are worth investigation,
for L one of the Lie algebras from §4?

Acknowledgments. I am greatly indebted to Michele D’Adderio and Darij Grinberg for valuable
remarks that helped improve the text, and Efim Zelmanov who pointed out a mistake in a previous
proof of Theorem 4.12.
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ix+89 pp. (2005)

[14] Fabrykowski, J., Gupta, N. D.: On groups with sub-exponential growth functions. J. Indian
Math. Soc. (N.S.) 49, 249–256 (1985) Zbl 0688.20013 MR 0942349

[15] Golod, E. S.: On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk SSSR Ser.
Mat. 28, 273–276 (1964) (in Russian) MR 0161878

[16] Golod, E. S., Shafarevich, I. R.: On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28,
261–272 (1964) (in Russian) Zbl 0136.02602 MR 0161852

[17] Grigorchuk, R. I.: Degrees of growth of p-groups and torsion-free groups. Mat. Sb. (N.S.)
126, 194–214, 286 (1985) Zbl 0568.20033 MR 0784354

[18] Grigorchuk, R. I.: On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen.
14, no. 1, 53–54 (1980) (in Russian); English transl.: Functional Anal. Appl. 14, 41–43 (1980)
Zbl 0595.20029 MR 0565099

[19] Grigorchuk, R. I.: On the Milnor problem of group growth. Dokl. Akad. Nauk SSSR 271,
30–33 (1983) Zbl 0547.20025 MR 0712546

[20] Grigorchuk, R. I.: Solved and unsolved problems around one group. In: Infinite Groups: Geo-
metric, Combinatorial and Dynamical Aspects, Progr. Math. 248, Birkhäuser, 117–218 (2005)
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