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Abstract. We study so-called real zeros of holomorphic Hecke cusp forms, that is, zeros on three
geodesic segments on which the cusp form (or a multiple of it) takes real values. Ghosh and Sarnak,
who were the first to study this problem, showed the existence of many such zeros if many short
intervals contain numbers whose prime factors all belong to a certain subset of the primes. We prove
new results concerning this sieving problem which leads to improved lower bounds for the number
of real zeros.
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1. Introduction

For an even integer k, let us consider holomorphic Hecke forms of weight k for the full
modular group 0 = PSL(2,Z). By the valence formula each such form has k/12+O(1)
zeros in 0 \H. We are interested in the distribution of these zeros and write Z(f ) for the
zero set.

Rankin and Swinnerton-Dyer [16] have shown that all zeros of an Eisenstein series
Ek(z) are on the geodesic segment

δ3 = {z ∈ H : |z| = 1, 0 ≤ <z ≤ 1/2}.

Here we consider the rest of the Hecke eigenforms, that is, the cusp forms. We write Hk
for the finite set of (Fourier-)normalized holomorphic Hecke cusp forms of weight k for
the full modular group 0 and use the letter f for a generic form in Hk . As a consequence
of the holomorphic Quantum Unique Ergodicity conjecture, proved recently by Holowin-
sky and Soundararajan [7], we know by work of Rudnick [17] that Z(f ) is equidistributed
(with respect to the hyperbolic area) as k→∞.

In [3] Ghosh and Sarnak initiate the study of so-called real zeros of f ∈ Hk , that is,
zeros on three geodesic segments δi, i = 1, 2, 3. The segment δ3 is as above,

δ1 = {z ∈ H : |z| > 1, <z = 0} and δ2 = {z ∈ H : |z| > 1, <z = 1/2}.
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The zeros of f are symmetric with respect to δi and the zeros on these segments are
called real because f (z) is real-valued on δ1 and δ2 while zk/2f (z) is real-valued on δ3.
For an illustrative figure on the distribution of the zeros in the fundamental domain, see
[3, Figure 2].

Ghosh and Sarnak showed that the number of the real zeros grows quite rapidly
with k—indeed, they proved that, for any ε > 0 and large enough k,

|Z(f ) ∩ (δ1 ∪ δ2)| �ε k
1/4−1/80−ε

and that “1/80” can be removed under the Riemann hypothesis. Here we will demonstrate
that this removal can be done unconditionally.

Theorem 1.1. Let k→∞ and f ∈ Hk . Then

|Z(f ) ∩ (δ1 ∪ δ2)| �ε k
1/4−ε for any ε > 0.

In the previous theorem and in many statements below, an assumption of the type x →∞
means that the claim holds for all sufficiently large x.

Ghosh and Sarnak also showed that the number of zeros on each of the lines δ1 and δ2
goes to infinity with k, and the proof of this automatically gave a lower bound |Z(f )∩δj |
� log k. Here we will prove a polynomial lower bound.

Theorem 1.2. Let k→∞ and f ∈ Hk . Then

|Z(f ) ∩ δ1| � k1/300 and |Z(f ) ∩ δ2| �ε k
1/8−ε

for any ε > 0.

The apparent weakness of the lower bound for the number of zeros in δ1 stems from weak
knowledge about negative Hecke eigenvalues, as can be seen from Theorem 5.5 below.

Furthermore Ghosh and Sarnak were led to conjecture that there are � k1/2 log k
real zeros. This was backed up by both arithmetic considerations and a random model.
Recalling that |Hk| � k, the following theorem states that the number of real zeros cannot
often be of significantly smaller order.

Theorem 1.3. There exists an absolute constant η > 0 such that, for any fixed ε > 0 and
for k→∞, there are at most k1−ηε forms f ∈ Hk for which

|Z(f ) ∩ (δ1 ∪ δ2)| ≤ k
1/2−ε.

As will be explained in Remark 5.4, the reason why we have to contend with k1/4−ε rather
than k1/2−ε when allowing no exceptional forms is that we cannot rule out the possibility
that the normalized Fourier coefficients λf (p) of f have very small absolute values for
all primes p ≤ k1/2.

We will describe the strategy of the proofs in detail in the next section. To summa-
rize, Ghosh and Sarnak [3] showed essentially that, for some values of =z, a single term
dominates in the Fourier expansion

f (z) =

∞∑
n=1

λf (n)n
(k−1)/2e(nz),
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where e(x) = e2πix . Recall that the normalized Fourier coefficients λf (n) are real and
satisfy the Hecke relation

λf (m)λf (n) =
∑
d|(m,n)

λf

(
mn

d2

)
,

so that in particular they are multiplicative and

λf (p)
2
= λf (p

2)+ 1. (1.1)

Using these properties one quickly encounters a problem in multiplicative number theory:
Show that many short intervals contain numbers with all prime factors in certain subsets
of the primes. Section 4 is devoted to this problem, which, thought of the other way round,
is a sieving problem.

In this paper we study only zeros α + iy with y � k1/2 log k and thus zeros in δ1
and δ2. It would also be interesting to gain an understanding of zeros with smaller y and
of zeros in δ3.

2. Strategy

Our approach follows that in the pioneering work of Ghosh and Sarnak [3]. A crucial
ingredient is the following immediate consequence of [3, Theorem 3.1], which says that,
for some values of y, f (α+iy) is almost determined by a single Fourier coefficient λf (l).

Proposition 2.1. There are positive constants β1, β2 and δ such that, for all integers
l ∈ (β1, β2

√
k/ log k) and all f ∈ Hk ,

(e/ l)(k−1)/2f (α + iyl) = λf (l)e(αl)+O(k
−δ), where yl =

k − 1
4πl

.

Let α ∈ {0, 1/2} and ε′ > 0 be any fixed small constant, and let k be large. Recalling
that f (α + iy) is real for these α, the proposition immediately implies that if we can find
numbers l1, l2 ∈ (β1, β2

√
k/ log k) with

λf (l1)e(αl1) < −ε
′ < ε′ < λf (l2)e(αl2), (2.1)

then f (z) has a zero α + iy with y between yl1 and yl2 .
This way we can get information about the zeros in

FY = {z : −1/2 < <z ≤ 1/2, =z ≥ Y } (2.2)

with
β ′1

√
k log k ≤ Y ≤ β ′2k (2.3)

for certain positive constants β ′1 and β ′2.
If we are happy with zeros on either of the lines δ1 and δ2, it is enough to find l1

and l2 of different parity such that |λf (li)| ≥ ε′; for such l1 and l2 (interchanging them
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if necessary), (2.1) must hold with α = 0 or with α = 1/2. To find these l1 and l2 of
different parity, write ωf = 2 if |λf (2)| ≥ 1/2, and ωf = 4 otherwise. From (1.1) with
p = 2 we see that |λf (ωf )| ≥ 1/2, and so it suffices to find odd l′1 and l′2 for which
|λf (l

′

1)|, |λf (l
′

2)| ≥ 2ε′, as we can take l1 = ωf l′1 and l2 = l′2.
Combining these observations and noticing that if we can find many consecutive pairs

l1, l2, we get many zeros, we get the following proposition. Here and later we say that
a claim holds for a proportion σ of y ∈ [C1Y,C2Y ] if the measure of the set of those
y ∈ [C1Y,C2Y ] for which the claim holds is at least σ(C2 − C1)Y . Also, the notation
y ∼ Y means y ∈ [Y, 2Y ].

Proposition 2.2. Let ε′, θ > 0 and C ≥ 1 be fixed and k→∞. Let Y be as in (2.3) and
X = k/(20Y ).

(i) Let j ∈ {1, 2}. Assume that for a positive proportion of x ∼ X there exist two distinct
l1, l2 ∈ [x, x + CX

θ
] for which

(−1)(j−1)l1λf (l1) < −ε
′ < ε′ < (−1)(j−1)l2λf (l2).

Then
|Zf ∩ δj ∩ FY | � X1−θ .

(ii) Assume that for a positive proportion of x ∼ X there exist odd l1 ∈ [x, x + CXθ ]
and l2 ∈ [x/ωf , (x + CXθ )/ωf ] for which |λf (l1)|, |λf (l2)| ≥ ε′. Then

|Zf ∩ (δ1 ∪ δ2) ∩ FY | � X1−θ .

Intervals around x and x/ωf are completely analogous and so it is enough to consider
only the intervals [x, x + CXθ ]. But to guarantee that for a positive proportion of x ∼ X
one finds the desired numbers both in [x, x + CXθ ] and in [x/ωf , (x + CXθ )/ωf ], we
need to show that strictly more than half of both collections of intervals are “good”.

Since we are dealing with rather small li (li �
√
k/log k), it is difficult to say much

about the Fourier coefficients, although for almost all forms, a large sieve inequality works
well even for small li . Fortunately, (1.1) comes to our rescue: it implies a much-exploited
property (first used by Iwaniec and Sarnak [8]) that |λf (p)| and |λf (p2)| cannot be small
simultaneously. Let η > 0 and write, for j = 1, 2,

Pj = {p ∈ [Xη, X] : |λf (pj )| ≥ 1/5}, Nj = {n ∈ N : p | n⇒ p ∈ Pj }. (2.4)

Then
P1 ∪ P2 = P ∩ [Xη, X]

by (1.1) and if nj ∈ Nj ∩ [1, 3X] is square-free, then by multiplicativity |λf (n
j
j )| ≥

(1/5)2/η (since n has at most 2/η prime divisors). Notice that Nj ∩ [1, 3X] contains at
most 3X1−η non-square-free numbers and so Nj ∩ [x, x + CXθ ] contains more than
Xθ/(logX)10 non-square-free numbers for o(X) of x ∼ X.

Combining these observations we have the following proposition; here and later we
write, for any set C ⊆ R and real numbers x ≤ y, C(x, y) = C ∩ [x, y].
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Proposition 2.3. Let δ, θ ∈ (0, 1], C ≥ 1, k → ∞ and f ∈ Hk . Let Pj and Nj be as
in (2.4), Y as in (2.3) and X = k/(20Y ).

(i) Assume that, for ν = 1 and for ν = ωf , one has, for at least 1/2+ δ of x ∼ X,

N1(x/ν, (x + CX
θ )/ν)� Xθ/(logX)5. (2.5)

Then
|Zf ∩ (δ1 ∪ δ2) ∩ FY | � X1−θ .

(ii) Assume that, for ν = 1 and for ν = ωf , one has, for at least 1/2+ δ of x ∼ X1/2,

N2(x/ν
1/2, (x + CXθ )/ν1/2)� Xθ/(logX)5. (2.6)

Then
|Zf ∩ (δ1 ∪ δ2) ∩ FY | � X1/2−θ .

We will show that when ε > 0 and η is small enough (depending on ε), either (2.6) holds
for almost all x ∼ X1/2 with θ = ε, or

N1(x/ν
1/2, (x + CXε)/ν1/2)� Xε/logX (2.7)

for a certain proportion β of x ∈ [C1X
1/2, C2X

1/2
] for any constants C2 > C1 > 0.

In the latter case we can multiply numbers from these sets to find that (2.5) holds with
θ = 1/2+ ε for β − o(1) of x ∼ X. Actually if β > 1/2, one could use the pigeon-hole
principle to show that (2.5) holds for all x ∼ X. A similar idea was introduced by Croot
[1] in the study of smooth numbers in short intervals.

Unfortunately we can only show (2.7) for 1/2 − o(1) of x ∈ [C1X
1/2, C2X

1/2
]. To

recover the proportion 1/2+ δ of x ∼ X needed in Proposition 2.3, we will use a variant
of Freiman’s 3k − 3 theorem from additive combinatorics.

We will prove the necessary lemmas for studying Ni(x, x + CX
θ ) in Section 4, uti-

lizing tools used in considerations of primes in almost all short intervals as well as sieve
methods and respective results on long intervals. Some auxiliary results are introduced in
Section 3 and the main theorems will be proved in Section 5.

The difference from the approach of Ghosh and Sarnak [3] is that they only looked for
primes in short intervals rather than products of primes, that is, they considered P1 ∪ P2
= P rather than N1 ∪N2 in short intervals. This left room for improvement since almost
all intervals [x, x + Xε] are unconditionally known to contain primes only for ε > 1/20
(see [9]), whereas we will be able to say something for any ε > 0.

3. Auxiliary results

We start by stating the Rosser–Iwaniec upper bound β-sieve (see [2, Chapter 11, in par-
ticular Theorem 11.12]) in a form which is convenient for us. The parameters κ and D
below are respectively called the dimension and the level of the sieve.



128 Kaisa Matomäki

Lemma 3.1. Let D ≥ 1 and κ > 0. There exists a sequence (λ+d )d∈N, a real number βκ
and a function Fκ : R+→ R≥0 (depending only on κ) such that:

(1) λ+1 = 1, λ+d = 0 for d > D and |λ+d | ≤ 1 for all d.
(2) For all n > 1, ∑

d|n

λ+d ≥ 0.

(3) Let z = D1/s with s > 0. For all multiplicative functions g(d) satisfying 0 ≤ g(p)
< 1 for all p ∈ P, and∏

w1≤p<w2

(1− g(p))−1
≤

(
1+

L

logw1

)(
logw2

logw1

)κ
for all w2 > w1 ≥ 2 and some constant L ≥ 1, one has∑
d|
∏
p<z p

λ+d g(d) ≤
(
Fκ(s)+Oκ,L((logD)−1/6)

)∏
p<z

(1− g(p)) for s > βκ − 1.

(4) βκ ∈ [1, 2] for κ ∈ [1/2, 1].
(5) Fκ(s) = 1+Oκ(e−s), F1/2(1) = 2

√
eγ /π and Fκ(s) is continuous with respect to κ

and s.

In the proof of Theorem 1.3 we will use a large sieve inequality for the Fourier coefficients
λf (n). The version we apply is the following special case N = j = 1 of a more general
theorem [12, Theorem 1] due to Lau and Wu.

Lemma 3.2. Let ν ≥ 1 be a fixed integer and let (bp)p∈P be such that |bp| ≤ B for all
primes p. Then

∑
f∈Hk

∣∣∣∣ ∑
P<p≤Q

bp
λf (p

ν)

p

∣∣∣∣2 �ν k
B2

P logP
+ k10/11 B

2Qν/5

(logP)2

uniformly for
B > 0, 2 | k, 2 ≤ P < Q ≤ 2P.

To relate short intervals to long intervals, we will use so-called type II information used in
studying primes in almost all short intervals. Here and later, when we say that a statement
holds for almost all x ∈ [X, 2X], we mean that, for any A, the measure of the exceptional
set is OA(X/(logX)A). We will also write τ(n) for the divisor function.

Lemma 3.3. Let ε > η > 0, A ≥ 1, y = x(2X)ε−1 and y1 = x exp(−3(logX)1/3). Let

M(s) =
∑
m∼M

amm
−s and R(s) =

∑
r∼R

crr
−s

be Dirichlet polynomials with am � τ(m)C for some absolute constant C and with cr the
characteristic function of an interval or of primes in an interval. Suppose that MR = X
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and R = Xβ . If β ∈ [η, ε], then∑
x≤mr≤x+y

amcr =
y

y1

∑
x≤mr≤x+y1

amcr +Oε,η,A,C(y(logX)−A)

for almost all x ∈ [X, 2X].

Proof. See [5, Lemma 9.3 and the discussion below it]. The condition θ > 1/25 present
in [5, Chapter 9] is not needed for this lemma. Also the polynomial R(s) satisfies the
needed hypothesis [5, (7.2.3)]: When cr the characteristic function of primes in an inter-
val, this is for instance [5, Lemma 1.5], and the other case is easier. ut

Notice that in the previous lemma, M and R must be in a very narrow range. As often,
this problem will be overcome by considering only products mr where m belongs to a
well-behaved subset of N and sieving is applied only to r . There are more sophisticated
versions of Lemma 3.3 with somewhat wider ranges for M and R (see for instance [5,
Lemma 9.4]), but we do not need them here.

As mentioned in the previous section, in the case of N1, when we pass from very short
intervals [x, x + Xε] with x ∼ X1/2 to longer intervals [x, x + CX1/2+ε

] with x ∼ X,
we will sometimes need to be able to increase the proportion of “good” intervals a bit.
This will be done with the help of properties of sets with small doubling, that is, sets A
for which |A+ A| is small. Here, for sets A,B ⊆ Z, we use the notation

A+ B = {a + b : a ∈ A, b ∈ B}.

Freiman’s 3k− 3 theorem (see [19, Theorem 5.11]) tells us that any finite set A ⊂ Z with
|A+ A| < 3|A| − 3 is contained in a relatively short arithmetic progression, but here we
will need information also about the number of representations

rA+A(c) = |{(a, b) ∈ A× A : a + b = c}|.

Lemma 3.4. Let η ∈ (0, 1/100) and n ≥ 1. If A ⊆ {1, . . . , n} is such that |A| ≥ 3 and∣∣∣∣{c ∈ A+ A : rA+A(c) ≥ η2 |A|
2

|A+ A|

}∣∣∣∣ ≤ (5
2
− 3η

)
|A| − 2,

then there exists an arithmetic progression P such that

|A ∩ P | ≥ (1− η)|A| and |P | ≤ 3
2 |A|. (3.1)

The proof is based on the following lemma, where we write, for E ⊆ A× B,

A
E
+ B = {a + b : (a, b) ∈ E}.

Lemma 3.5. Let A ⊆ {0, . . . , `} be such that 0, ` ∈ A, |A| ≥ 3 and gcd(A) = 1.
Suppose that E ⊆ A× A and K ∈ N are such that

(i) to every a ∈ A, there correspond at mostK elements b ∈ A such that (a, b) 6∈ E and
at most K elements b′ ∈ A such that (b′, a) 6∈ E;
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(ii) if rA+A(c) ≥ K , then c ∈ A
E
+ A.

Then

|A
E
+ A| ≥

{
|A| + `− 2K if ` ≤ 2|A| − 2K − 3,
3+
√

5
2 |A| − 6K − 2 if ` ≥ 2|A| − 2K − 2.

Proof. This follows immediately from Lev [13, Theorem 1] by taking s = K = K and

R := |{(a, b) ∈ A× A : a + b 6∈ A
E
+ A}| ⊆ (A× A) \ E

there (notice that A
R
+ A in [13] has complementary meaning to A

E
+ A here). ut

Proof of Lemma 3.4. For

E =

{
(a, b) ∈ A× A : rA+A(a + b) ≥ η

2 |A|
2

|A+ A|

}
,

one has |A|2 ≤ |E| + |A+ A| · η2 |A|2
|A+A|

, so that |E| ≥ (1− η2)|A|2. Take

A′ = {a ∈ A : (a, b) 6∈ E for at most η|A| of b ∈ A}
= {a ∈ A : (a, b) ∈ E for at least (1− η)|A| of b ∈ A}.

Now

(1− η2)|A|2 ≤ |E| ≤ |A′| |A| + (|A| − |A′|)(1− η)|A| ⇒ |A′| ≥ (1− η)|A|.

By definitions of E andA′, the setsA′ and E′ = E∩(A′×A′) satisfy assumptions (i) and
(ii) of Lemma 3.5 with K = bη|A|c. Shifting A′ (and E′) to the left by minA′ = x0, say,
and then dividing by the largest common divisor d, say, we obtain a set A′′ ⊆ {0, . . . , `}
such that 0, ` ∈ A′′, gcd(A′′) = 1, and a set E′′ with similar properties to E′.

Applying Lemma 3.5 with K = bη|A|c, we see that either ` ≤ 3|A|/2− 1, or∣∣∣∣{c ∈ A+ A : rA+A(c) ≥ η2 |A|
2

|A+ A|

}∣∣∣∣ ≥ |A′ E′+ A′| = |A′′ E′′+ A′′|
≥ min

{
|A′| +

3
2
|A| − 1− 2η|A|,

3+
√

5
2
|A′| − 6η|A| − 2

}
>

(
5
2
− 3η

)
|A| − 2

since η < 1/100. Hence, by assumption, we must have ` ≤ 3|A|/2 − 1, in which case
one can take P = {x0 + jd : j = 0, . . . , `} ⊇ A′. ut

4. Sieving short intervals

Let P be a subset of the primes and consider the set

N = {n ∈ N : p | n⇒ p ∈ P} = {n ∈ N : p | n⇒ p 6∈ Pc}.

We are interested in the short interval distribution of N . This question was studied by Har-
man and the author [6], where we used a 1− τ -dimensional sieve to prove the following
result.



Real zeros of cusp forms and sieving short intervals 131

Lemma 4.1. Let τ ∈ (1/2, 1] and assume that∑
p∈P(2,x)

logp
p
= τ log x +O(1) for all x ≥ 2. (4.1)

Then there exists a positive constant δ = δ(τ ) such that

|N (x, x + x1−δ)| �
x1−δ

(log x)1−τ
for all large enough x.

Unfortunately this is nowhere near what we need—we want to find numbers in shorter
intervals and with a more wildly behaving set P . In Subsection 4.2 we will show that if
we have more than half of the primes just in one interval [xβ1 , xβ2 ], then, for any ε > 0,
we get a lower bound of the correct order of magnitude for |N (x, x +Xε)| for almost all
x ∼ X and for |N (x, x+ x1/2+ε)| for all large enough x. In Subsection 4.3 we will show
that even if (4.1) holds for some τ ≤ 1/2, we can find a lower bound of the correct order
for |N (x, x +Xε)| for a certain proportion of x ∼ X.

We will prove statements that are stronger than we need—in particular we would be
happy with finding fewer square-free numbers in each interval, and this could be done
for example with a weaker auxiliary result than Lemma 4.3 below. However, here we aim
to prove lower bounds of the right order of magnitude under weak assumptions, which
might be of benefit in further applications.

4.1. Long intervals

At the end we want to prove that even short intervals contain numbers in N . However,
when doing that we will need to understand long intervals well, and we start by quoting
results concerning them.

Our first result is an asymptotic formula for the mean value of any well-behaved
multiplicative function. The argument goes back to Wirsing [20] but we quote a more
general statement which is [2, Theorem A.5].

Lemma 4.2. Let k > −1/2. Suppose that g is a multiplicative function which satisfies∑
p≤x

g(p) logp = k log x +O(1) for all x ≥ 2.

Assume further that∏
w≤p<z

(1+ |g(p)|)�
(

log z
logw

)|k|
for all z > w ≥ 2

and ∑
p∈P

g(p)2 logp <∞.

Then ∑
n≤x

g(n)|µ(n)| =
(log x)k

0(k + 1)

∏
p∈P

(
1−

1
p

)k
(1+ g(p))+O((log x)|k|−1).
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The following lemma which is a direct consequence of [4, Theorem 1 combined with
Remark 1.4] shows that, under a mild assumption, |N (x, (1 + δ)x)| is of the expected
order of magnitude. This will allow us to generate very regular subsets N ′ ⊂ N .

Lemma 4.3. There exists an absolute constant λ > 1 such that if δ, η > 0 and x →∞,
then the following holds. If P is a set of primes for which∑

p∈P(xη,x)

1
p
≥ λ,

then

|N (x, (1+ δ)x)| �η δx
∏

p∈Pc(2,x)

(
1−

1
p

)
.

4.2. When P contains more than half of the primes somewhere

Using a very simple sieve idea together with Lemmas 3.3 and 4.3 we can prove the fol-
lowing result.

Lemma 4.4. Let λ be as in Lemma 4.3, let δ, ε, η > 0 with η < min{ε, 1 − 2ε}, and let
X→∞. Assume that there exist w, z ∈ [Xη, Xε] with z > (1+ η)w such that∑

p∈P(w,z)

1
p
≥ (1/2+ δ)

∑
p∈P(w,z)

1
p
. (4.2)

Assume further that ∑
p∈P(Xη,X1−2ε)

1
p
≥ λ.

Then

|N (x, x +Xε)| �ε,δ,η X
ε

(
log z

w

logX

)2 ∏
p∈Pc(2,X)

(
1−

1
p

)
for almost all x ∈ [X, 2X].

Proof. Let η′ be a small positive constant (small compared to δ). By restricting to a subin-
terval it is enough to prove the statement when log z

logw < 1+ η′.
Let N ′ ⊂ N (X/z2, 2X/w2) and cη > 0 be such that∑

n∈N ′(x/z,x/w)

1
n
∈ [1− η′, 1+ η′] · cη log

z

w

∏
p∈Pc(2,X)

(
1−

1
p

)
for all x ∈ [X/z, 2X/w]. Such a set N ′ can be found by dividing [X/z2, 2X/w2

] into
disjoint subintervals [x, (1+ η′2)x] and using Lemma 4.3 to find

cηη
′2x

∏
p∈Pc(2,X)

(
1−

1
p

)
+O(1)

members of N from each of these (here cη is the implied constant in Lemma 4.3).
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Write
A = {p1p2n : pi ∈ P(w, z), n ∈ N ′},

where elements are counted with multiplicity (which is at most 2/η2
� 1 for n ∈

A(1, 3X)). Now, for any x2 ≥ x1 ≥ 1,

|A(x1, x2)| ≥ |{p1p2n ∈ [x1, x2] : p1 ∈ P(w, z), p2 ∈ P(w, z), n ∈ N ′}|
− |{p1p2n ∈ [x1, x2] : p1 ∈ P(w, z), p2 ∈ Pc(w, z), n ∈ N ′}|
= |A1(x1, x2)| − |A2(x1, x2)|, (4.3)

say.
The point is that in each Ai there is a variable ranging over all primes in an interval,

so that we can apply Lemma 3.3. Besides, since the relative density of P(w, z) is strictly
more than half, one expects that A1 is larger than A2, so that we do not lose too much
in (4.3). Our next task is to confirm this line of thought.

Let y = x(2X)ε−1 and y1 = x exp(−3(logX)1/3). By Lemma 3.3 with r = p2,

|A1(x, x+y)| =
∑

x≤mp2≤x+y
p2∈P(w,z)

( ∑
m=p1n

p1∈P(w,z), n∈N ′

1
)
=
y

y1
|A1(x, x+y1)|+O(y(logX)−A)

(4.4)

for almost all x ∈ [X, 2X].
Furthermore

|A1(x, x + y1)| =
∑

p1∈P(w,z)

∑
n∈N ′

∑
p2∈P(w,z)
x
np1
≤p2≤

x+y1
np1

1

≥ (1− o(1))
y1

log z

∑
p1∈P(w,z)

1
p1

∑
n∈N ′( x

zp1
, x
wp1

)

1
n

≥ (1− o(1))
y1

log z

(
1
2
+ δ

)( ∑
w≤p≤z

1
p

)
cη(1− η′) log

z

w

∏
p∈Pc(2,X)

(
1−

1
p

)
. (4.5)

Similarly |A2(x, x + y)| =
y
y1
|A2(x, x + y1)| + O(y(logX)−A) for almost all x ∼ X

and

|A2(x, x + y1)|

≤ (1+ o(1))
y1

logw

(
1
2
− δ

)( ∑
w≤p≤z

1
p

)
cη(1+ η′) log

z

w

∏
p∈Pc(2,X)

(
1−

1
p

)
. (4.6)

Since log z
logw < 1+ η′ and since η′ is small compared to δ, from (4.3)–(4.6) we get

|A(x, x+y)| ≥ |A1(x, x+y)|−|A2(x, x+y)| � y
log z

w

log x

( ∑
w≤p≤z

1
p

) ∏
p∈Pc(2,X)

(
1−

1
p

)
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for almost all x ∈ [X, 2X]. This implies the claim since |N (x, x+Xε)| � |A(x, x+ y)|
for all x ∼ X and ∑

w≤p≤z

1
p
�

log z
w

logw

when log z� logw. ut

The assumption (4.2) in the previous lemma could be relaxed to∑
p∈P(w,z)
p≡a (mod q)

1
p
≥ (1/2+ δ)

∑
p∈P(w,z)
p≡a (mod q)

1
p

for some w and z as in the lemma and some bounded coprime a and q. The proof could
also be modified to give the following improvement of Lemma 4.1.

Lemma 4.5. Let λ be as in Lemma 4.3, let δ, ε, η > 0 with η < min{ε/2, 1/2 − ε} and
let x →∞. Assume that there exist w, z ∈ [xη, xε] with z > (1+ η)w such that∑

p∈P(w,z)

1
p
≥ (1/2+ δ)

∑
p∈P(w,z)

1
p
.

Assume further that ∑
p∈P(xη,x1/2−ε)

1
p
≥ λ.

Then

|N (x, x + x1/2+ε)| �ε,δ,η x
1/2+ε

(
log z

w

log x

)2 ∏
p∈Pc(2,x)

(
1−

1
p

)
.

Proof. This time one could take

A = {p1p2n1n2 : pi ∈ P(w, z), ni ≥ x1/2−ε, ni ∈ N ′i },

where N ′i ⊂ N are very regular large sets with N ′2 consisting only of numbers with all
prime factors greater than xη (to avoid counting the same numbers too many times), and
apply type II information used for finding primes in all short intervals (see for instance
[5, Section 7.2]). ut

4.3. When P is regular

Next we prove a lemma which we will use when we do not have strictly more than half
of the primes in any interval. As we will be considering a decomposition P = P1 ∪ P2
at the end, this will mean that both sets contain approximatively half of the primes all the
time and we are able to use a classical sieve method.



Real zeros of cusp forms and sieving short intervals 135

In the proof of the following lemma we will be using constants η5 > η4 > η3 > η2
> η1 (with η5 given), each significantly smaller than the previous one. When we write
o(1) in the proof, we mean that the quantity tends to 0 when these constants (except η5)
tend to 0 and their ratios tend to infinity.

Presence of so many parameters might look confusing at first, so we summarize the
approximate meaning of each here: We will be looking for numbers mn with n from a
well-behaved subset of N and m ∈ [Xη4 , Xη5 ] with all prime factors at least Xη2 . We
will use a linear sieve (κ = 1) with z = Xη2 and D = Xη3 (so that s = η3/η2 is large) to
detect this condition. The smallest constant η1 is used like η′ in the previous subsection;
it is a tiny parameter whose presence affects everything very little.

Lemma 4.6. Let ε, ε′, η5 > 0, κ ∈ (0, 1) and X → ∞. Let Fκ(s) be as in Lemma 3.1.
There exists a small positive constant η2 = η2(ε, ε

′, η5, κ) such that if∑
p∈Pc(w,z)

1
p
≤ κ

∑
p∈P(w,z)

1
p

for all w, z ∈ [Xη2 , Xη5 ] with z > (1+ η2)w, then

N ([x, x +Xε])�ε,ε′,κ,η5 X
ε

∏
p∈Pc(2,X)

(
1−

1
p

)
for at least

eγ κ

Fκ(1)0(1− κ)
− ε′ (4.7)

of x ∈ [X, 2X].

Proof. As said before the lemma, we take very small constants η1 < η2 < η3 < η4 < η5
such that ηi+1/ηi is large. We can clearly assume that η5 + 2η1 < ε and that ε′ is small.
Further, without essentially affecting the final claim, we can enlarge the set Pc(Xη2 , Xη5)

so that ∑
p∈Pc(w,z)

1
p
= κ

∑
p∈P(w,z)

1
p
+O

(
1

logw

)
(4.8)

for all Xη2 ≤ w < z ≤ Xη5 , and consequently by partial summation∑
p∈Pc(w,z)

logp
p
= κ log

z

w
+O(1)

for all Xη2 ≤ w < z ≤ Xη5 .
This time we take N ′ ⊂ N and cη2 > 0 such that∑

n∈N ′(x,(1+η1)x)

1 ∈ [1− η1, 1+ η1]cη2η1x
∏

p∈Pc(2,X)

(
1−

1
p

)

for all x ∈ [X1−ε, 2X]. This is again possible by Lemma 4.3 when η2 < η5e
−2λ/(1−κ).
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We consider the set

A = {mn : n ∈ N ′(2X1−η5 , X1−η4), p |m⇒ p ∈ P(Xη2 , Xη5), m square-free}

counted with multiplicity. We will give a lower bound for |A(X, 2X)|/X and an upper
bound for |A(x, x + Xε)|/Xε for (almost all) x ∼ X. The ratio of these bounds will be
essentially (4.7), and the claim follows.

To be able to apply results from the literature directly, we extend P(Xη2 , Xη5) to a
set Pe of primes in such a way that (4.8) holds for all z ≥ w ≥ 2 and Pe(Xη2 , Xη5) =

P(Xη2 , Xη5). Now (4.8) implies the normal sieve dimension assumption

∏
p∈Pc

e (w,z)

(
1−

1
p

)−1

=

(
1+O

(
1

logw

))(
log z
logw

)κ
(4.9)

for all z > w ≥ 2.
In the long interval [X, 2X], we have

|A(X, 2X)| = (1+ o(1))
∑

Xη4≤m≤Xη5
p|m⇒p∈P(Xη2 ,Xη5 )

|µ(m)|
∑

n∈N ′(X/m,2X/m)
1

≥ cη2(1− o(1))X
∏

p∈Pc(2,X)

(
1−

1
p

) ∑
Xη4≤m≤Xη5

p|m⇒p∈P(Xη2 ,Xη5 )

|µ(m)|

m
. (4.10)

Next we use a simple trick also present in [4, Section 2]: For any disjoint Pa,Pb ⊆ P, we
have

∑
m≤X

p|m⇒p∈(Pa∪Pb)(2,X)

|µ(m)|

m
≤

∏
p∈Pa(2,X)

(
1+

1
p

) ∑
m≤X

p|m⇒p∈Pb(2,X)

|µ(m)|

m
.

Applying this twice shows that the last sum in (4.10) is

∑
1≤m≤Xη5

p|m⇒p∈P(Xη2 ,Xη5 )

|µ(m)|

m
−

∑
1≤m<Xη4

p|m⇒p∈P(Xη2 ,Xη4 )

|µ(m)|

m

≥

∏
p∈Pe(2,Xη2 )

(
1+

1
p

)−1 ∑
1≤m≤Xη5

p|m⇒p∈Pe(2,Xη5 )

|µ(m)|

m
−

∏
p∈P(Xη2 ,Xη4 )

(
1+

1
p

)
. (4.11)

Since the set Pe is very nicely distributed, we can apply Lemma 4.2. Writing χe for
the characteristic function of Pe, recalling (4.9) and applying Mertens’ formula, we find
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that the sum over m is

≥
(logXη5)1−κ

0(1− κ + 1)

∏
p∈P

(
1−

1
p

)1−κ(
1+

χe(p)

p

)
+O(1)

= (1+ o(1))
(logXη5)1−κ

0(2− κ)

(
e−γ

logXη2

)1−κ ∏
p∈Pe(2,Xη2 )

(
1+

1
p

)
+O(1)

=
(1+ o(1))
0(2− κ)

(
η5e
−γ

η2

)1−κ ∏
p∈Pe(2,Xη2 )

(
1+

1
p

)
+O(1).

Substituting this back into (4.11) and (4.10), we get

|A(X, 2X)|
X

≥

(
eγ κ

0(2− κ)
− o(1)

)
cη2e

−γ

(
η5

η2

)1−κ ∏
p∈Pc(2,X)

(
1−

1
p

)
. (4.12)

Consider next the short intervals. Let y=x(2X)ε−η1−1 and y1=x exp(−3(logX)1/3).
We divide A into subsets according to the range of n, that is, forN ∈ [2X1−η5 , X1−η4/2],
we write

A(N)
= {mn : n ∈ N ′(N, 2N), p | m⇒ p ∈ P(Xη2 , Xη5),m square-free}
⊆ {mn : n ∈ N ′(N, 2N), (m,51) = (m,52) = 1},

where
51 =

∏
p∈Pc(Xη2 ,X1−4η3/N)

p and 52 =
∏

p<Xη2

p.

We will detect the coprimeness conditions using the sieve weights introduced in
Lemma 3.1: Let (λ+d ) be κ-dimensional upper bound sieve weights of level D1 =

X1−3η3/N and let (̃λ+d ) be linear (κ = 1) upper bound sieve weights of level D2 = X
η3 .

Then using the inclusion above and applying Lemma 3.1(2), we get

|A(N)(x, x + y)| ≤
∑

x≤mn≤x+y

n∈N ′(N,2N)
(m,51)=(m,52)=1

1 ≤
∑

x≤mn≤x+y

n∈N ′(N,2N)

∑
d1|(m,51)

λ+d1

∑
d2|(m,52)

λ̃+d2

=

∑
x≤d1d2m

′n≤x+y

n∈N ′(N,2N), di |5i

λ+d1
λ̃+d2
.

Adding and subtracting y/y1 times the same sum over the interval [x, x + y1], and eval-
uating the sum over m′ in the added term, we get

|A(N)(x, x + y)| ≤
y

y1

∑
n∈N ′(N,2N), di |5i

λ+d1
λ̃+d2
·

(
y1

d1d2n
+O(1)

)
+

∑
x≤d1d2m

′n≤x+y

n∈N ′(N,2N), di |5i

λ+d1
λ̃+d2
−
y

y1

∑
x≤d1d2m

′n≤x+y1
n∈N ′(N,2N), di |5i

λ+d1
λ̃+d2
.
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The expression in the second line is O(y(logX)−A) for almost all x ∼ X by Lemma
3.3 with m = d1d2n and r = m′ ∈ [X/(2ND1D2), 3X/N ] ⊆ [X2η3/2, 3Xη5 ]. Applying
Lemma 3.1(3) to the sums over d1 and d2 in the first line, we see that for almost all x ∼ X,
|A(N)(x, x + y)| is asymptotically at most

∑
n∈N ′(N,2N)

y

n
Fκ

(
log X1−3η3

N

log X1−4η3
N

) ∏
p∈Pc(Xη2 ,X1−4η3/N)

(
1−

1
p

)
F1

(
η3

η2

) ∏
p<Xη2

(
1−

1
p

)

= y(Fκ(1)+ o(1))
∏

p<Xη2

(
1−

1
p

) ∑
n∈N ′(N,2N)

(logXη2)κ

n(logX/N)κ

by Lemma 3.1(5) and (4.9).
Summing over N we see that, for almost all x ∼ X,

|A(x, x + y)| = y(Fκ(1)+ o(1))
e−γ

(logXη2)1−κ

∑
n∈N ′(2X1−η5 ,X1−η4 )

1
n(logX/n)κ

.

Since κ ∈ (0, 1), the last sum is, by partial summation,

≤ cη2(1+ o(1))
∏

p∈Pc(2,X)

(
1−

1
p

)∫ X1−η4

X1−η5

dt

t (logX/t)κ

=
cη2(1+ o(1))
(logX)κ−1

∏
p∈Pc(2,X)

(
1−

1
p

)∫ 1−η4

1−η5

dβ

(1− β)κ

≤
cη2(1+ o(1))
(logX)κ−1

∏
p∈Pc(2,X)

(
1−

1
p

)
η1−κ

5
1− κ

.

Hence

|A(x, x + y)| ≤ y
(
Fκ(1)
1− κ

+ o(1)
)
cη2e

−γ

(
η5

η2

)1−κ ∏
p∈Pc(2,X)

(
1−

1
p

)

for almost all x ∼ X. On the other hand, trivially |A(x, x + y)| � y for all x ∼ X.
Combining these shorter intervals gives

|A(x, x +Xε)|
Xε

≤

(
Fκ(1)
1− κ

+ o(1)
)
cη2e

−γ

(
η5

η2

)1−κ ∏
p∈Pc(2,X)

(
1−

1
p

)
(4.13)

for almost all x ∼ X and |A(x, x +Xε)| � Xε for all x ∼ X.
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Let βX be the measure of the set of those x ∈ [X, 2X] for which |N (x, x + Xε)| ≥
η1X

ε
∏
p∈Pc(2,X)(1− 1/p). By (4.13),

|A(X, 2X)|
X

≤ β

(
Fκ(1)
1− κ

+ o(1)
)
cη2e

−γ

(
η5

η2

)1−κ ∏
p∈Pc(2,X)

(
1−

1
p

)

+ η1
∏

p∈Pc(2,X)

(
1−

1
p

)
+O((logX)−10).

Combining this with the lower bound (4.12) implies that

β ≥
eγ κ(1− κ)

Fκ(1)0(2− κ)
− o(1) =

eγ κ

Fκ(1)0(1− κ)
− o(1). ut

For κ = 1/2, the previous lemma gives the proportion

eγ /2

F1/2(1)0(1/2)
− ε′ =

1
2
− ε′,

which annoyingly just misses what we would like to have (compare with Proposition 2.3
and the discussion thereafter). We are able to overcome this difficulty thanks to the fol-
lowing application of Lemma 3.4.

Lemma 4.7. Let σ ∈ (0, 1), θ ∈ (0, 1/2), η2 > 0 and X → ∞. There exists a small
positive constant η1 = η1(σ, η2, θ) and a large positive constant C2 = C2(σ, η2, θ) such
that the following holds for any B ⊆ N. If, for every X′ ∈ [X1/2/e2η2 , e2η2X1/2

],

|B(x, x +Xθ )| ≥ Y (X)Xθ (4.14)

for proportion σ of x ∈ [X′, eη1X′], then

|{(b1, b2) ∈ B × B : b1b2 ∈ [x, x + C2X
1/2+θ
]}| �σ,η2,θ Y (X)

2X1/2+θ

for at least min{1, 6σ/5} of x ∈ [X/e2η2 , e2η2X].

Proof. Dividing [X/e2η2 , e2η2X] into subintervals, it is clearly enough to prove the claim
in the case η2 is small. The constant η1 will be even smaller. Also, besides C2, we use
another large constant C1 < C2. In this proof we write o(1) for a quantity which tends
to 0 as C1, C2/C1, η2/η1 →∞ and η2 → 0 (the rate of convergence of o(1) will depend
on σ, θ and the original η2). In particular, we can assume in the proof that the Ci are large
enough and the ηi are small enough.

For j ∈ Z, write xj = X1/2 exp(jC1X
θ−1/2). We split [X1/2/eη2 , eη2X1/2

] into
intervals [xj , xj+1] with j ∈ [−J, J −1], where J = η2X

1/2−θ/C1. The assumption that
η2 is small guarantees that

xj+1 − xj = (1+ o(1))C1X
θ
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for every |j | ≤ 2J . We write

A = {j ∈ [−J, J − 1] : |B(xj , xj+1)| ≥ Y (X)X
θ
}.

By our assumptions
|A| ≥ (σ − o(1))2J, (4.15)

Notice that if rA+A(j) ≥ η1J , then

|{(b1, b2) ∈ B × B : b1b2 ∈ [X
1/2xj , X

1/2xj+2]}| � JY (X)2X2θ (4.16)

and therefore

|{(b1, b2) ∈ B × B : b1b2 ∈ [x, x + 5C1X
1/2+θ
]}| � Y (X)2X1/2+θ

for every x ∈ [X1/2xj−2, X
1/2xj−1].

Hence the claim holds unless

|{j ∈ A+ A : rA+A(j) ≥ η1J }| < min
{

1,
(

6
5
+

1
100

)
σ

}
(4J − 1).

The right hand side is at most (5/2− 1/50)σ · 2J ≤ (5/2− 3 · 1/200)|A| − 2 by (4.15)
since J is large. Now

η1J ≤
η1

σ 2 ·
(σ · 2J )2

4J
≤

(
2η1/2

1
σ

)2

·
|A|2

|2A|

by (4.15), and so by Lemma 3.4 with η = 2η1/2
1 /σ there is an arithmetic progression

P = a0 + [−a1, a2]v ⊆ [−J, J − 1] such that

|A ∩ P | ≥ (1− o(1))|A| and |P | ≤ 3
2 |A|.

Certainly the common difference v is at most 1/σ + o(1) and we can force a0 ∈

[0, 1/σ + o(1)]. By the assumption that A contains many elements from both ends of
the interval, P must span over most of the interval, and hence we must have a1, a2 ≥

(1− o(1))J/v = J ∗, say.
Since

|(a0 + [−J
∗, J ∗]v) ∩ A| ≥ (2/3− o(1))2J ∗

we see by the pigeon-hole principle that rA+A(2a0)� J . Furthermore

|(a0 + [−I, J
∗
]v) ∩ A| ≥ (1/2+ η1)(I + J

∗)

if I ≥ (1/3+o(1))J ∗, and the same holds when [−I, J ∗] is replaced by [−J ∗, I ]. Hence
by the pigeon-hole principle

rA+A(2a0 + j
′v)� J for every j ′ ∈ [(−2/3+ o(1))J ∗, (2/3− o(1))J ∗],
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and so (4.16) holds for all these j = 2a0 + j
′v. Hence∣∣∣∣{(b1, b2) ∈ B × B : b1b2 ∈

[
x, x +

10C1

σ
X1/2+θ

]}∣∣∣∣� Y (X)2X1+θ

for every x ∈ [X/eη2/2, eη2/2X].
Repeating the argument for [X/e2η2 , X/eη2/2] and [eη2/2X, e2η2X], and so forth, we

eventually reach the desired proportion. ut

That the assumption of lemma must be satisfied for almost all x ∈ [X′, eη1X′] for all
X′ ∈ [X/e2η2 , e2η2X] is not a problem; whenever we can prove the assumption for an
interval like [X′, 2X′], we can do it for any [cX′, CX′]. In particular, the interval [X, 2X]
in Lemmas 4.4 and 4.6 can be replaced by [X′, eη1X′]. Combining the previous lemma
with Lemma 4.6, we get the following result.

Lemma 4.8. Let ε, ε′, η5 > 0, κ ∈ (0, 1) and X → ∞. Let Fκ(s) be as in Lemma
3.1. There exists a small positive constant η2 = η2(ε, ε

′, η5, κ) and a constant C =
C(ε, ε′, η5, κ) such that if ∑

p∈Pc(w,z)

1
p
≤ κ

∑
p∈P(w,z)

1
p

(4.17)

for all w, z ∈ [Xη2 , Xη5 ] with z > (1+ η2)w, then

N ([x, x + CX1/2+ε
])�ε,ε′,η5,κ

X1/2+ε

maxn∈N (X,3X) τ(n)

∏
p∈Pc(2,X)

(
1−

1
p

)2

for at least

min
{

1,
6
5
·

eγ κ

Fκ(1)0(1− κ)
− ε′

}
of x ∈ [X, 2X].

5. Proofs of Theorems 1.1–1.3

5.1. Almost all forms—proof of Theorem 1.3

We first prove Theorem 1.3 as its reduction from results in the previous section is easiest.
We need the following lemma in the reduction.

Lemma 5.1. Let 0 < β1 < β2 ≤ 1/25. Then∑
kβ1≤p≤kβ2
|λf (p)|≥1/5

1
p
≥

(
1
2
+

1
24

) ∑
k
β
1≤p≤k

β2

1
p
+O(k−β1/5)

for all f ∈ Hk with� k1−β1/2 exceptions.
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Proof. This follows as [11, Lemma 4.1] but using the large sieve inequality (Lemma 3.2)
instead of holomorphy and non-vanishing at s = 1 of the second, fourth and sixth sym-
metric power L-functions. The main point of the proof is existence of a polynomial

Y (x) =
1
2
+

1
24
+ α2U2(x)+ α4U4(x)+ α6U6(x)

such that

Y (x) ≤

{
0 if |x| < 1/5,
1 if |x| ∈ [1/5, 2].

Here Uj (x) is the j th Chebyshev polynomial, so that Uj (λf (p)) = λf (pj ). ut

Remark 5.2. One could get much better numbers than 1/2 + 1/24 and 1/5 in the pre-
vious lemma by using larger powers λf (pj )—indeed one could approach the Sato–Tate
distribution when β2 → 0. However, this lemma suffices for our needs. Also one could
prove a similar result for smaller p, which could be used to prove a slightly stronger form
of Theorem 1.3.

Proof of Theorem 1.3. We can assume that ε < 1/25. Let λ be as in Lemma 4.3 and
let η = εe−2λ, Y = k1/2 log k, X = k/(20Y ), and let P1 and N1 be as in (2.4). By the
previous lemma ∑

p∈P1(Xη,Xε)

1
p
≥

(
1
2
+

1
30

) ∑
p∈P(Xη,Xε)

1
p
≥ λ

for all f ∈ Hk with� k1−η/2 exceptions.
By feeding this into Lemma 4.4, we see that, for all but� k1−η/2 cusp forms f ∈ Hk ,

one has, for both ν = 1 and for ν = ωf ,

N1(x/ν, (x +X
ε)/ν)�

Xε

logX

for almost all x ∼ X. Consequently, by Proposition 2.3(i),

|Z(f ) ∩ (δ1 ∪ δ2)| � X1−ε
�

(
k1/2

log k

)1−ε

� k1/2−2ε/3

for all but� k1−η/2 cusp forms. ut

5.2. All forms—proof of Theorem 1.1

We will give a bit more precise information about location of zeros than Theorem 1.1 and
consider FY (defined in (2.2)) with Y in the range√

k log k � Y <
1

100
k. (5.1)
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Ghosh and Sarnak [3, Theorem 1.2] showed that in this range

|Z(f ) ∩ FY | � k/Y

and

|Z(f ) ∩ FY ∩ (δ1 ∪ δ2)| �ε (k/Y )
1/2−1/40−ε.

Here we remove the fraction 1/40, which was done in [3] only under the Riemann hy-
pothesis.

Theorem 5.3. Let ε > 0 and k→∞. If (5.1) holds, then

|Z(f ) ∩ FY ∩ (δ1 ∪ δ2)| �ε (k/Y )
1/2−ε.

Proof. We can assume that Y satisfies (2.3)—for smaller Y the claim follows from the
claim for Y = β ′1

√
k log k and for larger Y the claim follows from the result of Ghosh and

Sarnak. Also we can clearly assume that ε is small. Choose κ > 1/2 such that

6
5
·

eκγ

Fκ(1)0(1− κ)
>

1
2
+

1
100

. (5.2)

Such a κ exists by continuity since for κ = 1/2 the left hand side is 3/5 > 1/2+ 1/100.
Let η2 be the constant obtained from Lemma 4.8 with κ and ε as here, ε′ = 1/1000 and
η5 = ε. Let η = min{η2, e

−5λε}, where λ is as in Lemma 4.3.
Let X = k/(20Y ) and consider the sets P1,P2,N1 and N2 introduced in (2.4). Re-

calling that P1 ∪ P2 = P(Xη, X) we split into three cases.

Case 1: P2 satisfies the assumptions of Lemma 4.4 with X, η and ε there X1/2, 2η and 2ε
here and δ = κ − 1/2. By Lemma 4.4, we have, for both ν = 1 and ν = ωf ,

N2(x/ν
1/2, (x +Xε)/ν1/2)� Xε/(logX)3

for almost all x ∼ X1/2, and the claim follows from Proposition 2.3(ii).

Case 2: P1 satisfies the assumptions of Lemma 4.8 withX, ε, ε′, η2, η5 and κ as here. Re-
calling that η2 was chosen to be the parameter in Lemma 4.8, we can apply that lemma
to find that, by (5.2), for at least 1/2+ 1/200 of x ∼ X, one has N1(x, x +CX

1/2+ε)�

X1/2+ε/(logX)2. The same holds for N1(x/ωf , (x + CX
1/2+ε)/ωf ) and the claim fol-

lows from Proposition 2.3(i).

Case 3: The remaining case. Since P1 ∪ P2 = P(Xη, X), the condition (4.2) for P2 and
the condition (4.17) for P1 are complementary. Hence if we are not in Cases 1 or 2, then

∑
p∈P2(Xη,X1/2−2ε)

1
p
≤ λ.
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Since η ≤ e−5λε, this implies that∑
p∈P1(Xη,Xε)

1
p
≥

∑
p∈P(Xη,Xε)

1
p
− λ ≥

(
1
2
+

1
4

) ∑
p∈P(Xη,Xε)

1
p
+

1
4

log
ε

η
− o(1)− λ

≥

(
1
2
+

1
4

) ∑
p∈P(Xη,Xε)

1
p
≥ λ.

Hence P1 satisfies the assumptions of Lemma 4.4 with δ = 1/4 and X, η, ε as here, so,
for ν = 1 and ν = ωf ,

N1(x/ν, (x +X
ε)/ν)� Xε/logX

for almost all x ∼ X. Hence in this case Proposition 2.3(i) gives even

|Z(f ) ∩ FY ∩ (δ1 ∪ δ2)| �ε (k/Y )
1−ε. ut

Remark 5.4. Improving Theorem 5.3 significantly seems difficult at least in this Y range.
This is because we cannot rule out the possibility that |λf (p)| is extremely small for all
primes p ≤ k1/2, in which case (by the proof of our Proposition 2.1 in [3]), f (α + iy)
would be dominated by a multiple of (−1)ωf (l)e(αl2) for y in long intervals, and there
indeed would not be many real zeros with y > k1/2 log k. On the other hand, existence of
many real zeros with y > k1/2 log k would provide information about the Fourier coef-
ficients. It is worth mentioning that Serre [18] has shown that λf (p) cannot be exactly 0
often, but since the proof uses algebraic methods it cannot be extended to ruling out small
values.

5.3. Zeros on both lines—proof of Theorem 1.2

Below we prove a result which depends on n̂, the smallest prime power such that λf (n̂) ≤
−ε0 for some constant ε0. Theorem 1.2 follows since Ghosh and Sarnak [3, Proposition
4.4] showed that the arguments in [11] and [14] on smallest negative eigenvalue together
with k-aspect subconvexity bounds for L(s, f ) from [15] and [10] yield n̂� k0.4963.

Theorem 5.5. Let ε > 0, k→∞ and f ∈ Hk . Then

|Z(f ) ∩ δ2| �ε k
1/8−ε.

Let further ε0 > 0 and let n̂ be the smallest prime power such that λf (n̂) ≤ −ε0. If
n̂ ≤ k1/2−ε, then

|Z(f ) ∩ δ1| �ε,ε0 min{k1/2−ε/n̂, k1/8−ε
}.

Proof. Let Y = k1/2 log k,X = k/(20Y ) and let ρ be such that n̂ = kρ . We first prove
the claim concerning δ1. We can clearly assume that ε < 1/2−ρ and ε0 < 1/10. Assume
first that ρ > ε/4. By (1.1) we must have λf (p) ≥ 1/2 for every p < kρ/2. Let λ
be as in Lemma 4.3 and η = e−8λε. Let θ = 2(ρ + ε). By Lemma 3.3, for almost all
x ∼ X, the interval [x, x + Xθ ] contains products of � 1/ρ distinct odd primes all of
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which are smaller than kρ/2. Let l′2 be such a product, so that λf (l′2) ≥ (1/2)
O(1/ρ). Now

Xθ/n̂ = X2(ρ+ε)/kρ ≥ Xε, so similarly Lemma 3.3 implies that, for almost all x ∼ X,
the interval [x/n̂, (x + Xθ )/n̂] contains l′1 such that λf (l′1) ≥ (1/2)O(1/ρ). The claim
follows from Proposition 2.2(i) for intervals [x, x +Xθ ] with l1 = n̂l′1 and l2 = l′2.

On the other hand, if ρ ≤ ε/4, we can argue as in Section 5.2 to show that, for
any constants C2 > C1 > 0, for at least 1/2 + 1/200 of x ∈ [C1X

1/2, C2X
1/2
], the

interval [x, x + CX1/4+ε
] contains coprime odd numbers n1, n2, n3 with |λf (ni)| � 1.

Then multiplying two of these with the same signs, we see that, for at least 1/2+ 1/300
of x ∼ X, the interval [x, x + 3CX3/4+ε

] contains a number l′2 such that λf (l′2) � 1.
Similarly for at least 1/2+1/300 of x ∼ X the interval [x/n̂, (x+3CX3/4+ε)/n̂] contains
numbers l′1 with λf (l′1) � 1. The claim follows from Proposition 2.2(i) for intervals
[x, x + 3CX3/4+ε

] with l1 = n̂l′1 and l2 = l′2.
This finishes the proof for δ1 and we can turn to δ2. By [3, Lemma 4.1], there is b � 1

such that λf (2b) ≥ 1/10. Now we can use the argument above in the case ρ ≤ ε/4 with
2b in place of n̂ to find l1 and l2 with different parity such that λf (l1), λf (l2) � 1, and
the claim again follows from Proposition 2.2(i). ut

There are some chances to improve the exponent slightly—from the proof of n̂� k0.4963

we actually know that there must be more than one n� k0.4963 with λf (n) ≤ −ε0, which
might be advantageous. However, the improvement would probably not be that great since
the proof does not guarantee very many of them—one could just have something of sort
λf (p

10) < −ε0 for p10
∈ [k0.496, k0.497

]. Due to this weak knowledge about negative
eigenvalues it seems difficult to improve the exponent significantly.
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