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Abstract. We propose a new family of natural generalizations of the pentagram map from 2D to
higher dimensions and prove their integrability on generic twisted and closed polygons. In dimen-
sion d there are d − 1 such generalizations called dented pentagram maps, and we describe their
geometry, continuous limit, and Lax representations with a spectral parameter. We prove algebraic-
geometric integrability of the dented pentagram maps in the 3D case and compare the dimensions
of invariant tori for the dented maps with those for the higher pentagram maps constructed with the
help of short diagonal hyperplanes. When restricted to corrugated polygons, the dented pentagram
maps coincide with one another and with the corresponding corrugated pentagram map. Finally, we
prove integrability for a variety of pentagram maps for generic and partially corrugated polygons in
higher dimensions.

Keywords. Pentagram maps, space polygons, Lax representation, discrete integrable system, KdV
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Introduction

The pentagram map was originally defined in [10] as a map on plane convex polygons
considered up to projective equivalence, where a new polygon is spanned by the shortest
diagonals of the initial one (see Figure 1). This map is the identity for pentagons, it is an
involution for hexagons, while for polygons with more vertices it was shown to exhibit
quasi-periodic behaviour under iterations. The pentagram map was extended to the case
of twisted polygons and its integrability in 2D was proved in [9] (see also [12]).

Fig. 1. The image T (P ) of a hexagon P under the 2D pentagram map.

While this map is in a sense unique in 2D, its generalizations to higher dimensions
seem to allow more freedom. A natural requirement for such generalizations, though, is
their integrability. In [4] we observed that there is no natural generalization of this map
to polyhedra and suggested a natural integrable generalization of the pentagram map to
generic twisted space polygons (see Figure 2). This generalization in any dimension was
defined via intersections of “short diagonal” hyperplanes, which are symmetric higher-
dimensional analogs of polygon diagonals (see Section 1 below). This map turned out
to be scale invariant (see [9] for 2D, [4] for 3D, [8] for higher D) and integrable in any
dimension as it admits a Lax representation with a spectral parameter [4].

Fig. 2. A space pentagram map is applied to a twisted polygon in 3D.
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A different integrable generalization to higher dimensions was proposed in [2], where
the pentagram map was defined not on generic, but on so-called corrugated polygons.
These are piecewise linear curves in RPd whose pairs of edges with indices differing by d
lie in one two-dimensional plane. It turned out that the pentagram map on corrugated
polygons is integrable and it admits an explicit description of the Poisson structure, a
cluster algebra structure, and other interesting features [2].

In this paper we present a variety of integrable generalized pentagram maps, which
unifies these two approaches. “Primary integrable maps” in our construction are called the
dented pentagram maps. These maps are defined for generic twisted polygons in RPd .
It turns out that the pentagram maps for corrugated polygons considered in [2] are a
particular case (more precisely, a restriction) of these dented maps. We describe in detail
how to perform such a reduction in Section 5.

To define the dented maps, we propose a definition of a “dented diagonal hyperplane”
depending on a parameter m = 1, . . . , d − 1, where d is the dimension of the projective
space. The parameter m marks the skipped vertex of the polygon, and in dimension d
there are d − 1 different dented integrable maps. The vertices in the “dented diagonal
hyperplanes” are chosen in a nonsymmetric way (as opposed to the unique symmetric
choice in [4]). We would like to stress that in spite of the nonsymmetric choice, the inte-
grability property is preserved, and each of the dented maps can be regarded as a natural
generalization of the classical 2D pentagram map of [10]. We describe the geometry and
Lax representations of the dented maps and their generalizations, the deep-dented pen-
tagram maps, and prove their algebraic-geometric integrability in 3D. In a sense, from
now on a new challenge would be to find examples of nonintegrable Hamiltonian maps
of pentagram type (cf. [5]).

We emphasize that throughout the paper we understand integrability as the existence
of a Lax representation with a spectral parameter corresponding to scaling invariance of
a given dynamical system. We show how it is used to prove algebraic-geometric integra-
bility for the primary maps in CP3. In any dimension, the Lax representation provides
first integrals (as the coefficients of the corresponding spectral curve) and allows one to
use algebraic-geometric machinery to prove various integrability properties. We also note
that while most of the paper deals with n-gons satisfying the condition gcd(n, d+1) = 1,
the results hold in full generality and we show how they are adapted to the general setting
in Section 2.2. While most of the definitions below work both over R and C, throughout
the paper we describe the geometric features of pentagram maps over R, while their Lax
representations over C.

Here are the main results of the paper.

• We define generalized pentagram maps TI,J on (projective equivalence classes of)
twisted polygons in RPd , associated with (d − 1)-tuples I and J of numbers: the tuple I
defines which vertices to take in the definition of the diagonal hyperplanes, while J deter-
mines which of the hyperplanes to intersect in order to get the image point. In Section 1
we prove a duality between such pentagram maps:

T −1
I,J = TJ ∗,I∗ ◦ Sh,
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where I ∗ and J ∗ stand for the (d − 1)-tuples taken in the opposite order, and Sh is any
shift in the indices of polygon vertices.

• The dented pentagram maps Tm on polygons (vk) in RPd are defined by intersecting d
consecutive diagonal hyperplanes. Each hyperplane Pk passes through all vertices but one
from vk to vk+d by skipping only the vertex vk+m. The main theorem on such maps is the
following (cf. Theorem 2.6):

Theorem 0.1. The dented pentagram map Tm on both twisted and closed n-gons in any
dimension d and any m = 1, . . . , d − 1 is an integrable system in the sense that it admits
a Lax representation with a spectral parameter.

We also describe the dual dented maps, prove their scale invariance (see Section 3), and
study their geometry in detail. Theorem 2.15 shows that in dimension 3 the algebraic-
geometric integrability follows from the proposed Lax representation for both dented
pentagram maps and the short-diagonal pentagram map.

• The continuous limit of any dented pentagram map Tm (and more generally, of any
generalized pentagram map) in dimension d is the (2, d + 1)-KdV flow of the Adler–
Gelfand–Dickey hierarchy on the circle (see Theorem 4.1). For 2D this is the classical
Boussinesq equation on the circle, ut t + 2(u2)xx + uxxxx = 0, which appears as the
continuous limit of the 2D pentagram map [9, 11].

• Consider the space of corrugated polygons in RPd , i.e., twisted polygons whose vertices
vk−1, vk, vk+d−1, and vk+d span a projective two-dimensional plane for every k ∈ Z, fol-
lowing [2]. It turns out that the pentagram map Tcor on them can be viewed as a particular
case of the dented pentagram map (see Theorem 5.3):

Theorem 0.2. This pentagram map Tcor is a restriction of the dented pentagram map Tm
for any m = 1, . . . , d − 1 from generic n-gons Pn in RPd to corrugated ones Pcor

n (or
differs from it by a shift in vertex indices). In particular, these restrictions for different m
coincide modulo an index shift.

We also describe the algebraic-geometric integrability for corrugated pentagram map
in CP3 (see Section 5.2).

• Finally, we provide an application of dented pentagram maps. The latter can be regarded
as “primary” objects, simplest integrable systems of pentagram type. By considering more
general diagonal hyperplanes, such as “deep-dented diagonals”, i.e., those skipping more
than one vertex, one can construct new integrable systems (see Theorem 6.2):

Theorem 0.3. The deep-dented pentagram maps in RPd are restrictions of inte-
grable systems to invariant submanifolds and have Lax representations with a spectral
parameter.
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The main tool to prove integrability in this more general setting is an introduction of the
corresponding notion of partially corrugated polygons, occupying an intermediate posi-
tion between corrugated and generic ones (see Section 6). The pentagram map on such
polygons also turns out to be integrable. This work brings about the following question,
which manifests the change of perspective on generalized pentagram maps:

Problem 0.4. Is it possible to choose the diagonal hyperplane so that the corresponding
pentagram map is nonintegrable?

Some numerical evidence in this direction is presented in [5].

1. Duality of pentagram maps in higher dimensions

We start with the notion of a twisted n-gon in dimension d.

Definition 1.1. A twisted n-gon in a projective space RPd with monodromy M ∈

SLd+1(R) is a map φ : Z → RPd such that φ(k + n) = M ◦ φ(k) for each k ∈ Z
and whereM acts naturally on RPd . Two twisted n-gons are equivalent if there is a trans-
formation g ∈ SLd+1(R) such that g ◦ φ1 = φ2.

We assume that the vertices vk := φ(k), k ∈ Z, are in general position (i.e., no d + 1
consecutive vertices lie in the same hyperplane in RPd ), and we denote by Pn the space of
generic twisted n-gons considered up to the above equivalence. Define general pentagram
maps as follows.

Definition 1.2. Let I = (i1, . . . , id−1) and J = (j1, . . . , jd−1) be (d − 1)-tuples of
numbers i`, jm ∈ N. For a generic twisted n-gon in RPd one can define an I -diagonal
hyperplane Pk as the one passing through d vertices of the n-gon by taking every i`th
vertex starting from vk , i.e.,

Pk := (vk, vk+i1 , vk+i1+i2 , . . . , vk+i1+···+id−1)

(see Figure 3).

Fig. 3. The diagonal hyperplane for the jump tuple I = (3, 1, 2) in RP4.
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The image of vk under the generalized pentagram map TI,J is defined by intersecting
every jmth out of the I -diagonal hyperplanes starting with Pk:

TI,J vk := Pk ∩ Pk+j1 ∩ Pk+j1+j2 ∩ · · · ∩ Pk+j1+···+jd−1 .

(Thus I defines the structure of the diagonal hyperplane, while J governs which of them
to intersect.) The corresponding map TI,J is considered (and is generically defined) on the
space Pn of equivalence classes of n-gons in RPd . As usual, we assume that the vertices
are in “general position,” and any d hyperplanes Pi intersect in one point in RPd .

Example 1.3. Consider the case of I = (2, . . . , 2) and J = (1, . . . , 1) in RPd . This
choice of I corresponds to “short diagonal hyperplanes”, i.e., every I -diagonal hyper-
plane passes through d vertices by taking every other vertex of the twisted polygon. The
choice of J corresponds to taking intersections of d consecutive hyperplanes. This recov-
ers the definition of the short-diagonal (or higher) pentagram maps from [4]. Note that
the classical 2D pentagram map has I and J each consisting of one number: I = (2) and
J = (1).

Denote by I ∗ = (id−1, . . . , i1) the (d − 1)-tuple I taken in the opposite order and by
Sh the operation of any index shift on the sequence of vertices.

Theorem 1.4 (Duality). There is the following duality for the generalized pentagram
maps TI,J :

T −1
I,J = TJ ∗,I∗ ◦ Sh,

where Sh stands for some shift in indices of vertices.

Proof. To prove this theorem we introduce the following duality maps (cf. [9]).

Definition 1.5. Given a generic sequence of points φ(j) ∈ RPd , j ∈ Z, and a (d − 1)-
tuple I = (i1, . . . , id−1), we define the following sequence of hyperplanes in RPd :

αI (φ(j)) := (φ(j), φ(j + i1), . . . , φ(j + i1 + · · · + id−1)),

which is regarded as a sequence of points in the dual space: αI (φ(j)) ∈ (RPd)∗.

The generalized pentagram map TI,J can be defined as a composition of two such maps
up to a shift of indices: TI,J = αI ◦ αJ ◦ Sh.

Note that for a special I = (p, . . . , p) the maps αI are involutions modulo index
shifts (i.e., α2

I = Sh), but for general I the maps αI are no longer involutions. However,
one can see from their construction that they have the following duality property: αI ◦αI∗
= Sh, and they commute with index shifts: αI ◦ Sh = Sh ◦ αI .

Now we see that

TI,J ◦ TJ ∗,I∗ = (αI ◦ αJ ◦ Sh) ◦ (αJ ∗ ◦ αI∗ ◦ Sh) = Sh,

as required. ut
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Remark 1.6. For d-tuples I = (p, . . . , p) and J = (r, . . . , r) the generalized pentagram
maps correspond to the general pentagram maps Tp,r = TI,J discussed in [4], and they
exhibit the following duality: T −1

p,r = Tr,p ◦ Sh.
Note that in [7] one considered the intersection of the hyperplane Pk with a chord

joining two vertices, which leads to a different generalization of the pentagram map and
for which an analog of the above duality is yet unknown.

In [4] we studied the case T2,1 of short diagonal hyperplanes: I = (2, . . . , 2) and
J = (1, . . . , 1), which is a very symmetric way of choosing the hyperplanes and their
intersections. In this paper we consider the general, nonsymmetric choice of vertices.

Theorem 1.7. If J = J ∗ (i.e., αJ is an involution), then modulo a shift in indices
(i) the pentagram maps TI,J and TJ,I∗ are inverses of each other;

(ii) the pentagram maps TI,J and TJ,I (and hence TI,J and T −1
I∗,J ) are conjugate to each

other, i.e., the map αJ conjugates the map TI,J on n-gons in RPd to the map TJ,I on
n-gons in (RPd)∗.

In particular, all four maps TI,J , TI∗,J , TJ,I and TJ,I∗ are integrable or nonintegrable
simultaneously. Whenever they are integrable, their integrability characteristics, e.g. the
dimensions of invariant tori, the periods of the corresponding orbits, etc., coincide.
Proof. The statement (i) follows from Theorem 1.4. To prove (ii) we note that for J = J ∗

one has α2
J = Sh and therefore

αJ ◦ TI,J ◦ α
−1
J = αJ ◦ (αI ◦ αJ ◦ Sh) ◦ αJ = (αJ ◦ αI ◦ Sh) ◦ α2

J = TJ,I ◦ Sh.

Hence modulo index shifts, the pentagram map TI,J is conjugate to TJ,I , while by (i) they
are also inverses of TJ,I∗ and TI∗,J respectively. This proves the theorem. ut

2. Dented pentagram maps

2.1. Integrability of dented pentagram maps

From now on we consider the case of J = 1 := (1, . . . , 1) = J ∗ for different I ’s, i.e., we
take the intersection of consecutive I -diagonal hyperplanes.

Definition 2.1. Fix an integer parameter m ∈ {1, . . . , d − 1} and for the (d − 1)-tuple I
set I = Im := (1, . . . , 1, 2, 1, . . . , 1), where the only 2 is at the mth place. This choice
of I corresponds to the diagonal plane Pk which passes through consecutive vertices
vk, vk+1, . . . , vk+m−1, then skips vertex vk+m and continues passing through consecutive
vertices vk+m+1, . . . , vk+d :

Pk := (vk, vk+1, . . . , vk+m−1, vk+m+1, vk+m+2, . . . , vk+d).

We call such a plane Pk a dented (or m-dented) diagonal plane, as it is “dented” at the
vertex vk+m (see Figure 4). We define the dented pentagram map Tm by intersecting d
consecutive planes Pk:

Tmvk := Pk ∩ Pk+1 ∩ · · · ∩ Pk+d−1.

In other words, the dented pentagram map is Tm := TIm,1, i.e. TIm,J where J = 1.
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Fig. 4. The dented diagonal hyperplane Pk for m = 2 in RP5.

Corollary 2.2. The dented map Tm is conjugate (by means of the involution α1) to T −1
d−m

modulo shifts.

Proof. Indeed, Im = I ∗d−m and hence, due to Theorem 1.7, one has α1 ◦ Tm ◦ α1 =

α1 ◦ TIm,1 ◦ α1 = T1,Im ◦ Sh = T −1
I∗m,1
◦ Sh = T −1

Id−m,1 ◦ Sh = T −1
d−m ◦ Sh, where α1 stands

for αJ with J = (1, . . . , 1). ut

One can also see that for m = 0 or m = d all the vertices defining the hyperplane Pk are
taken consecutively, and Tm is the identity modulo a shift in the indices of vk .

For 2D the only option for the dented map is I = (2) and J = (1), and we have
m = 1, so Tm coincides with the classical pentagram transformation T = T2,1 in 2D.
Thus the above definition of Tm for various m is another natural higher-dimensional gen-
eralization of the 2D pentagram map. Unlike the definition of the short-diagonal penta-
gram map T2,1 in RPd , the dented pentagram map is not unique for each dimension d,
but also has one more integer parameter m = 1, . . . , d − 1.

It turns out that the dented pentagram map Tm defined this way, i.e., as TIm,1 for
Im = (1, . . . , 1, 2, 1, . . . , 1) and 1 = (1, 1, . . . , 1), has a special scaling invariance. To
describe it we need to introduce coordinates on the space Pn of twisted n-gons.

Now we complexify the setting and consider the spaces and maps over C.

Remark-Definition 2.3. One can show that there exists a lift of the vertices vk = φ(k)
∈ CPd to vectors Vk ∈ Cd+1 satisfying det(Vj , Vj+1, . . . , Vj+d) = 1 and Vj+n = MVj ,
j ∈ Z, where M ∈ SLd+1(C), provided that gcd(n, d + 1) = 1. The corresponding lifted
vectors satisfy difference equations of the form

Vj+d+1 = aj,dVj+d + aj,d−1Vj+d−1 + · · · + aj,1Vj+1 + (−1)dVj , j ∈ Z, (1)

with coefficients n-periodic in j . This allows one to introduce coordinates {aj,k , 0 ≤ j ≤
n − 1, 1 ≤ k ≤ d} on the space of twisted n-gons in CPd . In the theorems below we
assume gcd(n, d + 1) = 1 whenever we use explicit formulas in the coordinates {aj,k}.
However, the statements hold in full generality and we discuss how the corresponding
formulas can be adapted in Section 2.2. (Strictly speaking, the lift from vertices to vectors
is not unique, because it is defined up to simultaneous multiplication of all vectors by ε,
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where εd+1
= 1, but the coordinates {aj,k} are well-defined as they have the same values

for all lifts.)1

Theorem 2.4 (Scaling invariance). The dented pentagram map Tm on twisted n-gons
in CPd with hyperplanes Pk defined by taking the vertices in a row but skipping the mth
vertex is invariant with respect to the following scaling transformations:

aj,1 → s−1aj,1, aj,2 → s−2aj,2, . . . , aj,m→ s−maj,m,

aj,m+1 → sd−maj,m+1, . . . , aj,d → saj,d ,

for all s ∈ C∗.

For d = 2 this is the case of the classical pentagram map (see [9]). We prove this theorem
in Section 3.2. The above scale invariance implies the Lax representation, which opens
up the possibility to establish algebraic-geometric integrability of the dented pentagram
maps.

Remark 2.5. Recall that a discrete Lax equation with a spectral parameter is a represen-
tation of a dynamical system in the form

Lj,t+1(λ) = Pj+1,t (λ)Lj,t (λ)P
−1
j,t (λ), (2)

where t stands for the discrete time variable, j refers to the vertex index, and λ is a
complex spectral parameter. It is a discrete version of the classical zero curvature equation
∂tL− ∂xP = [P,L].

Theorem 2.6 (Lax form). The dented pentagram map Tm on both twisted and closed
n-gons in any dimension d and for any m = 1, . . . , d − 1 is an integrable system in
the sense that it admits a Lax representation with a spectral parameter. In particular, for
gcd(n, d + 1) = 1 the Lax matrix is

Lj,t (λ) =


0 0 · · · 0 (−1)d

D(λ)

aj,1
aj,2
· · ·

aj,d


−1

,

with the diagonal d × d matrix D(λ) = diag(1, . . . , 1, λ, 1, . . . 1), where the spectral
parameter λ is at the (m+ 1)th place, and an appropriate matrix Pj,t (λ).

1 Note also that over R for odd d to obtain the lifts of n-gons from RPd to Rd+1 one might need
to switch the sign of the monodromy matrix: M → −M ∈ SLd+1(R), since the field is not alge-
braically closed. These monodromies in SLd+1(R) correspond to the same projective monodromy
in PSLd+1(R).
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Proof. Rewrite the difference equation (1) in matrix form. It is equivalent to the relation
(Vj+1, . . . , Vj+d+1) = (Vj , . . . , Vj+d)Nj , where the transformation matrix Nj is

Nj :=


0 · · · 0 (−1)d

Id
aj,1
· · ·

aj,d

 ,
and where Id stands for the identity d × d matrix.

It turns out that the monodromy M for twisted n-gons is always conjugate to the
product M̃ := N0 . . . Nn−1 (see Remark 2.7 below). Note that the pentagram map de-
fined on classes of projective equivalence preserves the conjugacy class of M and hence
that of M̃ . Using the scaling invariance of the pentagram map Tm, replace aj,k by s∗aj,k
for all k in the right column of Nj to obtain a new matrix Nj (s). The pentagram map
preserves the conjugacy class of the new monodromy M̃(s) := N0(s) . . . Nn−1(s) for
any s, that is, the monodromy can only change to a conjugate one during its pentagram
evolution: M̃t+1(s) = Pt (s)M̃t (s)P

−1
t (s). Then Nj (s) (or, more precisely, Nj,t (s) to

emphasize its dependence on t), being a discretization of the monodromy M̃ , could be
taken as a Lax matrix Lj,t (s). The gauge transformation L−1

j,t (λ) := (g
−1Nj (s)g)/s for

g = diag(s−1, s−2, . . . , s−m−1, sd−m−1, . . . , s, 1) and λ ≡ s−d−1 simplifies the formu-
las and gives the required matrix Lj,t (λ).

Closed polygons are subvarieties defined by polynomial relations on the coefficients
aj,k . These relations ensure that the monodromy M̃(s) has an eigenvalue of multiplicity
d + 1 at s = 1. ut

Remark 2.7. Define the current monodromy M̃j for twisted n-gons by the relation

(Vj+n, . . . , Vj+n+d) = (Vj , . . . , Vj+d)M̃j ,

i.e., as the product M̃j := Nj . . . Nj+n−1. Note that M̃j acts on matrices by multiplication
on the right, whereas in Definition 1.1 the monodromy M acts on vectors Vj on the left.
The theorem above uses the following fact:

Lemma 2.8. All current monodromies M̃j lie in the same conjugacy class in SLd+1(C)
as M .

Proof. All products M̃j := Nj . . . Nj+n−1 are conjugate: M̃j+1 = N−1
j M̃jNj for all

j ∈ Z, since Nj = Nj+n. Furthermore,

(Vj , . . . , Vj+d)M̃j (Vj , . . . , Vj+d)
−1
= (Vj+n, . . . , Vj+n+d)(Vj , . . . , Vj+d)

−1

= M(Vj , . . . , Vj+d)(Vj , . . . , Vj+d)
−1
= M. ut

To prove the scale invariance of dented pentagram maps we need to introduce the appro-
priate notion of the dual map.
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Definition 2.9. The dual dented pentagram map T̂m for twisted polygons in RPd or CPd
is defined as T̂m := T1,I∗m for I ∗m = (1, . . . , 1, 2, 1, . . . , 1) where 2 is at the (d − m)th
place and 1 = (1, . . . , 1). In this case the diagonal planes Pk are defined by taking d
consecutive vertices of the polygon starting from the vertex vk , but to define T̂mvk one
takes the intersection Pk ∩ · · · ∩ Pk+d−m−1 ∩ Pk+d−m+1 ∩ · · · ∩ Pk+d of all but one
consecutive planes by skipping only the plane Pk+d−m.

Remark 2.10. According to Theorem 1.7, the dual map satisfies T̂m = T −1
m ◦ Sh. In par-

ticular, T̂m is also integrable and has the same scaling properties and the Lax matrix as Tm.
The dynamics for T̂m is obtained by reversing time in the dynamics of Tm. Moreover, the
map T̂m is conjugate to Td−m (modulo shifts) by means of the involution α1.

Example 2.11. In dimension d = 3 one has the following explicit Lax representations.
For the case of T1 (i.e., m = 1) one sets D(λ) = (1, λ, 1). The dual map T̂1, being the
inverse of T1, has the same Lax form and scaling.

For the map T2 (where m = 2) one has D(λ) = (1, 1, λ). Similarly, T̂2 is the inverse
of T2. Note that the maps T1 and T −1

2 are conjugate by means of α1. They have the same
dimensions of invariant tori, but their Lax forms differ.

Example 2.12. In dimension d = 4 one has two essentially different cases, according to
whether the dent is on a side of the diagonal plane or in its middle. Namely, the map T2
is the case where the diagonal hyperplane is dented in the middle point, i.e., m = 2 and
Im = (1, 2, 1). In this case D(λ) = (1, 1, λ, 1).

For the side case consider the map T1 (i.e., m = 1 and Im = (2, 1, 1)), whereD(λ) =
(1, λ, 1, 1). The dual map T̂1 is the inverse of T1 and has the same Lax form. The map
T3 has the Lax form with D(λ) = (1, 1, 1, λ) and is conjugate to the inverse T −1

1 (see
Corollary 2.2).

2.2. Coordinates in the general case

In this section we describe how to introduce coordinates on the space of twisted polygons
for any n. If gcd(n, d + 1) 6= 1 one can use quasiperiodic coordinates aj,k subject to a
certain equivalence relation, instead of periodic ones (cf. [4, Section 5.3]).

Definition 2.13. Call d sequences of coordinates {aj,k, k = 1, . . . , d, j ∈ Z} n-quasi-
periodic if there is a (d + 1)-periodic sequence tj , j ∈ Z, satisfying tj . . . tj+d = 1 and
such that aj+n,k = aj,k · tj/tj+k for each j ∈ Z.

This definition arises from the fact that there are different lifts of vertices vj ∈ CPd
to vectors Vj ∈ Cd+1, j ∈ Z, so that det(Vj , . . . , Vj+d) = 1 and vj+n = Mvj for
M ∈ SLd+1(C) and j ∈ Z. (The latter monodromy condition on the vertices vj is weaker
than the condition Vj+n = MVj on the lifted vectors in Definition 2.3.) We take arbitrary
lifts V0, . . . , Vd−1 of the first d vertices v0, . . . , vd−1 and then obtain Vj+n = tjMVj ,
where tj . . . tj+d = 1 and tj+d+1 = tj for all j ∈ Z (see details in [9, 4]). This way
twisted n-gons are described by quasiperiodic coordinate sequences aj,k , k = 1, . . . , d ,
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j ∈ Z, with the equivalence furnished by different choices of tj , j ∈ Z. Indeed, the
defining relation (1) after adding n to all indices j becomes

tjVj+d+1 = aj,dVj+d tj+d+aj,d−1Vj+d−1tj+d−1+· · ·+aj,1Vj+1tj+1+(−1)dVj tj , j ∈ Z,

which is consistent with the quasi-periodicity condition on {aj,k}.
In the case when n satisfies gcd(n, d + 1) = 1, one can choose the parameters tj in

such a way that the sequences {aj,k} are n-periodic in j . For a general n, from n-quasi-
periodic sequences {aj,k, k = 1, . . . , d , j ∈ Z} one can construct n-periodic ones (in j )
as follows:

ãj,k =
aj+1,k−1

aj,kaj+1,d

for j ∈ Z and k = 1, . . . , d , where one sets aj,0 = 1 for all j . These new n-periodic
coordinates {ãj,k , 0 ≤ j ≤ n − 1, 1 ≤ k ≤ d} are well-defined coordinates on twisted
n-gons in CPd (i.e., they do not depend on the choice of the lift coefficients tj ). The
periodic coordinates {ãj,k} are analogs of the cross-ratio coordinates xj , yj in [9] and
xj , yj , zj in [4].

Theorem 2.14 (= 2.6′). The dented pentagram map Tm on n-gons in any dimension d
and anym = 1, . . . , d−1 is an integrable system. In the coordinates {ãj,k} its Lax matrix
is

L̃j,t (λ) =


0 0 · · · 0 (−1)d

A(λ)

1
1
· · ·

1


−1

,

where A(λ) = diag(ãj,1, . . . , ãj,m, λãj,m+1, ãj,m+2, . . . , ãj,d).

Note that the Lax matrices L̃ andL are related as follows: L̃j,t (λ)=aj+1,d(h
−1
j+1Lj,t (λ)hj )

for hj = diag(1, aj,1, . . . , aj,d).

2.3. Algebraic-geometric integrability of pentagram maps in 3D

The key ingredient responsible for algebraic-geometric integrability of the pentagram
maps is a Lax representation with a spectral parameter. It allows one to construct the
direct and inverse spectral transforms, which imply that the dynamics of the maps takes
place on invariant tori, the Jacobians of the corresponding spectral curves. The proofs in
3D for the short-diagonal pentagram map T2,1 are presented in detail in [4] (see also [12]
for the 2D case). In dimension 3 we consider two dented pentagram maps T1 and T2,
where the diagonal hyperplane Pk is dented on different sides, as opposed to the short-
diagonal pentagram map T2,1, where the diagonal hyperplane is dented on both sides (see
Figure 5).

The proofs for the maps T1 and T2 follow the same lines as in [4], so in this section
we present only the main statements and outline the necessary changes.
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Fig. 5. Different diagonal planes in 3D: for T2,1, T1, and T2.

For simplicity, in this section we assume that n is odd, which is equivalent to the
condition gcd(n, d + 1) = 1 for d = 3 (this condition may not appear for a different
choice of coordinates, but the results of [4] show that the dimensions of tori may de-
pend on the parity of n). In this section we consider twisted polygons in the complex
space CP3.

Theorem 2.15. In dimension 3 the dented pentagram maps on twisted n-gons generically
are fibered into (Zariski open subsets of ) tori of dimension 3bn/2c − 1 for n odd and
divisible by 3 and of dimension 3bn/2c for n odd and not divisible by 3.

Recall that for the short-diagonal pentagram map in 3D the torus dimension is equal to
3bn/2c for any odd n (see [4]).

Proof. To prove this theorem we need the notion of a spectral curve. Recall that the
product of the Lax functions Lj (λ), 0 ≤ j ≤ n − 1, gives the monodromy operator
T0(λ), which determines the spectral function R(k, λ) := det(T0(λ)− k Id). The zero set
R(k, λ) = 0 is an algebraic curve in C2. A standard procedure (of adding the infinite
points and normalization with a few blow-ups) makes it into a compact Riemann surface,
which we call the spectral curve and denote by 0. Its genus equals the dimension of the
corresponding complex torus, its Jacobian, and Proposition 2.16 below shows how to find
this genus.

As is always the case with integrable systems, the spectral curve 0 is an invariant
of the map and the dynamics takes place on its Jacobian. To describe the dynamics, one
introduces a Floquet–Bloch solution which is formed by eigenvectors of the monodromy
operator T0(λ). After a certain normalization it becomes a uniquely defined meromorphic
vector function ψ0 on the spectral curve 0. Other Floquet–Bloch solutions are defined as
the vector functions ψi+1 = Li . . . L1L0ψ0, 0 ≤ i ≤ n − 1. Theorem 2.15 is based on
the study of 0 and Floquet–Bloch solutions, which we summarize in the tables below.

In each case, the analysis starts with an evaluation of the spectral function R(k, λ).
Then we provide Puiseux series for the singular points at λ = 0 and at λ = ∞. They allow
us to find the genus of the spectral curve and the symplectic leaves for the corresponding
Krichever–Phong universal formula. Then we describe the divisors of the Floquet–Bloch
solutions, which are essential for constructing the inverse spectral transform.

We start by reproducing the corresponding results for the short-diagonal map T2,1 for
odd n, obtained in [4]. We set q := bn/2c. The tables below contain information on the
Puiseux series of the spectral curve, Casimir functions of the pentagram dynamics, and
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divisors (ψi,k) of the components of the Floquet–Bloch solutions ψi (we refer to [4] for
more details).

• For the (symmetric) pentagram map T2,1 defined in [4] by means of short diagonal
hyperplanes, we have D(λ) = diag(λ, 1, λ);

R(k, λ) = k4
−
k3

λn

q∑
j=0

Gjλ
j
+

k2

λq+n

q∑
j=0

Jjλ
j
−

k

λ2n

q∑
j=0

Ijλ
j
+

1
λ2n = 0;

λ = 0 λ = ∞

O1 : k1 = 1/I0 +O(λ) W1,2 : k1,2,3,4 = k∞λ
−n/2(1+O(λ−1)),

O2 : k2,3 = ±
√
−I0/G0 λ

−n/2(1+O(
√
λ)) where k4

∞ + Jqk
2
∞ + 1 = 0

O3 : k4 = G0λ
−n(1+O(λ))

g = 3q, the Casimirs are I0 :=
∏n−1
j=0 aj,3; Jq ;G0 :=

∏n−1
j=0 aj,1

(ψi,1) ≥ −D +O2 − i(O2 +O3)+ (i + 1)(W1 +W2)

(ψi,2) ≥ −D + (1− i)(O2 +O3)+ i(W1 +W2)

(ψi,3) ≥ −D − i(O2 +O3)+ (i + 1)(W1 +W2)

(ψi,4) ≥ −D +O2 + (1− i)(O2 +O3)+ i(W1 +W2)

• For the dented map T1, we have D(λ) = diag(1, λ, 1);

R(k, λ) = k4
−
k3

λq

q∑
j=0

Gjλ
j
+
k2

λn

b2n/3c∑
j=0

Jjλ
j
−
k

λn

bn/3c∑
j=0

Ijλ
j
+

1
λn
= 0;

n odd and not divisible by 3: n = 6l + 1 or n = 6l + 5

λ = 0 λ = ∞

O1,2 : k1,2 = c0 +O(λ), W1 : k1 = Gq +O(λ−1),

where c2
0J0 − c0I0 + 1 = 0 W2 : k2,3,4 = G

−1/3
q λ−n/3(1+O(λ−1/3))

O3 : k3,4 = ±
√
−J0 λ

−n/2(1+O(
√
λ))

g = 3q, the Casimirs are I0; J0 := (−1)n
∏n−1
j=0 aj,2;Gq :=

∏n−1
j=0 aj,1

(ψi,1) ≥ −D +O3 + 2W2 + i(W2 −O3)

(ψi,2) ≥ −D +W1 + 2W2 + i(W2 −O3)

(ψi,3) ≥ −D + 2O3 + i(W2 −O3)

(ψi,4) ≥ −D + 2O3 +W2 + i(W2 −O3)

n odd and divisible by 3: n = 6l + 3

λ = 0 λ = ∞

O1,2 : k1,2 = c0 +O(λ), W1 : k1 = Gq +O(λ−1),

where c2
0J0 − c0I0 + 1 = 0 W2,3,4 : k2,3,4 = k∞λ

−n/3
+O(λ−1), where

O3 : k3,4 = ±
√
−J0 λ

−n/2(1+O(
√
λ)) Gqk

3
∞ − Jb2n/3ck

2
∞ + Ibn/3ck∞ − 1 = 0

g = 3q − 1, the Casimirs are I0; J0;Gq ; Jb2n/3c; Ibn/3c
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• For the dented map T2, we have D(λ) = diag(1, 1, λ);

R(k, λ) = k4
−

k3

λbn/3c

bn/3c∑
j=0

Gjλ
j
+

k2

λb2n/3c

b2n/3c∑
j=0

Jjλ
j
−
k

λn

q∑
j=0

Ijλ
j
+

1
λn
= 0.

The analysis of the spectral curve proceeds similarly:

n odd and not divisible by 3: n = 6l + 1 or n = 6l + 5

λ = 0 λ = ∞

O1 : k1 = 1/I0 +O(λ) W1,2 : k1,2 = c1 +O(λ−1),

O2 : k2,3,4 = I
1/3
0 λ−n/3(1+O(λ1/3)) where c2

1 − c1Gbn/3c + Jb2n/3c = 0

W3 : k3,4 = ±
√
−1/Jb2n/3c λ−n/2(1+O(λ−1/2))

g = 3q, the Casimirs are I0 =
∏n−1
j=0 aj,3; Jb2n/3c := (−1)n

∏n−1
j=0 aj,2;Gbn/3c

(ψi,1) ≥ −D + 2O2 +W3 + i(W3 −O2)

(ψi,2) ≥ −D +O2 +W3 + i(W3 −O2)

(ψi,3) ≥ −D +W1 +W2 +W3 + i(W3 −O2)

(ψi,4) ≥ −D + 3O2 + i(W3 −O2)

As an example, we show how to use these tables to find the genus of the spectral
curve. As before, we assume that n is odd, n = 2q + 1. Recall that for the short-diagonal
pentagram map T2,1 the genus is g = 3q for odd n (see [4]).

Proposition 2.16. The spectral curves for the dented pentagram maps in CP3 generically
have genus g = 3q − 1 for n odd and divisible by 3, and genus g = 3q for n odd and not
divisible by 3.

Proof. Let us compute the genus for the dented pentagram map T1. As follows from the
definition of the spectral curve 0, it is a ramified 4-fold cover of CP1, since the 4 × 4
matrix T̃i,t (λ) (or Ti,t (λ)) has four eigenvalues. By the Riemann–Hurwitz formula the
Euler characteristic of 0 is χ(0) = 4χ(CP1) − ν = 8 − ν, where ν is the ramification
index of the covering. In our setting, the index ν is equal to the sum of the orders of the
branch points at λ = 0 and λ = ∞, plus the number ν̄ of branch points over λ 6= 0,∞,
where we assume that the latter points are all of order 1 generically. On the other hand,
χ(0) = 2− 2g, and once we know ν it allows us to find the genus of the spectral curve 0
from the formula 2− 2g = 8− ν.

The number ν̄ of branch points of 0 on the λ-plane equals the number of zeros of the
function ∂kR(λ, k) aside from the singular points λ = 0 or∞. The function ∂kR(λ, k) is
meromorphic on 0, therefore the number of its zeros equals the number of its poles. One
can see that for any n = 2q+1 the function ∂kR(λ, k) has poles of total order 5n at z = 0,
and it has zeros of total order 2n at z = ∞. Indeed, substitute the local series for k in λ
from the table to the expression for ∂kR(λ, k). (E.g., atO1 one has k = O(1). The leading
terms of ∂kR(λ, k) for the pole at λ = 0 are 4k3,−3k2G0λ

−q , 2kJ0λ
−n,−I0λ

−n. The
last two terms, being of order λ−n, dominate and give the pole of order n = 2q + 1.) For
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n odd and not divisible by 3, the corresponding orders of the poles and zeros of ∂kR(λ, k)
on the curve 0 are summarized as follows:

pole order zero order

O1 n W1 0

O2 n W2 2n

O3 3n

Therefore, for such n, the total order of poles is n+n+3n = 5n, while the total order
of zeros is 0 + 2n = 2n. Consequently, the number of zeros of ∂kR(λ, k) at nonsingular
points λ 6= {0,∞} is ν̄ = 5n − 2n = 3n, and so is the total number of branch points
of 0 in the finite part of the (λ, k) plane (generically, all of them have order 1). For n odd
and not divisible by 3 there is an additional branch point at λ = 0 of order 1 and another
branch point at λ = ∞ of order 2 (see the table for T1). Hence the ramification index is
ν = ν̄ + 3 = 3n+ 3 = 6q + 6. The identity 2− 2g = 8− ν implies that g = 3q.

For n odd and divisible by 3, n = 6l+3, one has the same orders of polesOj ,W1 is of
order zero, while each of the three zeros W2,3,4 is of order 4l + 2. Then the total order of
zeros is still 3(4l+2) = 12l+6 = 2n, and again ν̄ = 5n−2n = 3n. However, there is no
branch point at λ = ∞, and hence the ramification index is ν = ν̄+1 = 3n+1 = 6q+4.
Thus for such n we see from the identity 2− 2g = 8− ν that g = 3q − 1.

Finally, note that T1 and T −1
2 are conjugate by means of the involution α1, and hence

T1 and T2 have the same dimensions of invariant tori. Their spectral curves are related by
a change of coordinates furnished by this involution and have the same genus. ut

3. Dual dented maps

3.1. Properties of dual dented pentagram maps

It turns out that the pentagram dynamics of T̂m has the following simple description. (We
consider the geometric picture over R.)

Proposition 3.1. The dual pentagram map T̂m in RPd sends the vertex vk into the inter-
section of the subspaces of dimensions m and d −m spanned by the vertices:

T̂mvk = (vk+d−m−1, . . . , vk+d−1) ∩ (vk+d , . . . , vk+2d−m).

Proof. As discussed above, the point T̂mvk is defined by taking the intersection of all but
one consecutive hyperplanes:

T̂mvk = Pk ∩ · · · ∩ Pk+d−m−1 ∩ Pk+d−m+1 ∩ · · · ∩ Pk+d .

Note that this point can be described as the intersection of the subspace

Lm1 = Pk ∩ · · · ∩ Pk+d−m−1
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of dimension m and the subspace

Ld−m2 = Pk+d−m+1 ∩ · · · ∩ Pk+d

of dimension d − m in RPd . (Here the upper index stands for dimension.) Since
each of the subspaces L1 and L2 is the intersection of several consecutive hyper-
planes Pj , and each hyperplane Pj is spanned by consecutive vertices, we see that
Lm1 = (vk+d−m−1, . . . , vk+d−1) and Ld−m2 = (vk+d , . . . , vk+2d−m), as required. ut

Consider the shift Sh of vertex indices by d − (m+ 1) to obtain the map

T̂mvk := (T̂m ◦ Sh)vk = (vk, . . . , vk+m) ∩ (vk+m+1, . . . , vk+d+1),

which we will study from now on.

Example 3.2. For d = 3 and m = 2 we have the dual pentagram map T̂2 in RP3 defined
via intersection of the two-dimensional plane L1 = (vk, vk+1, vk+2) and the line L2 =

(vk+3, vk+4):
T̂2vk = (vk, vk+1, vk+2) ∩ (vk+3, vk+4)

(see Figure 6). This map is dual to the dented pentagram map Tm for I = (1, 2) and
J = (1, 1).

Fig. 6. The dual T̂2 to the dented pentagram map Tm for m = 2 in RP3.

Let Vk be the lifts of the vertices vk of a twisted n-gon from RPd to Rd+1. We assume
that n and d + 1 are mutually prime and det(Vk, . . . , Vk+d) = 1 with Vk+n = MVk for
all k ∈ Z to provide lift uniqueness.

Proposition 3.3. Given a twisted polygon (vk) in RPd with coordinates ak,j , the image
T̂mVk in Rd+1 under the dual pentagram map is proportional to the vector

Rk = ak,mVk+m + ak,m−1Vk+m−1 + · · · + ak,1Vk+1 + (−1)dVk

for all k ∈ Z.
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Proof. Since
T̂mVk ∈ (Vk, . . . , Vk+m) ∩ (Vk+m+1, . . . , Vk+d+1),

the vector Wk := T̂mVk can be represented as a linear combination of vectors from either
of the groups:

Wk = µkVk + · · · + µk+mVk+m = νk+m+1Vk+m+1 + · · · + νk+d+1Vk+d+1.

Normalize this vector by setting νk+d+1 = 1. Now recall that

Vk+d+1 = ak,dVk+d + ak,d−1Vk+d−1 + · · · + ak,1Vk+1 + (−1)dVk

for k ∈ Z. Replacing Vk+d+1 by its expression via Vk, . . . , Vk+d we obtain µk = (−1)d ,
µk+1 = ak,1, . . . , µk+m = ak,m. Thus the vector

Rk = ak,mVk+m + ak,m−1Vk+m−1 + · · · + ak,1Vk+1 + (−1)dVk

belongs to both the subspaces, and hence spans their intersection. ut

Note that the image Wk := T̂mVk under the dual map is λkRk , where the coefficients λk
are determined by the condition det(Wk, . . . ,Wk+d) = 1 for all k ∈ Z.

3.2. Proof of scale invariance

In this section we prove scaling invariance in any dimension d for any map T̂m, 1 ≤ m ≤
d−1, dual to the dented pentagram map Tm on twisted n-gons in CPd , whose hyperplanes
Pk are defined by taking consecutive vertices, but skipping the mth vertex.

Theorem 3.4 (= 2.4̂ ). The dual dented pentagram map T̂m on twisted n-gons in CPd
is invariant with respect to the following scaling transformations:

ak,1 → s−1ak,1, ak,2 → s−2ak,2, . . . , ak,m→ s−mak,m,

ak,m+1 → sd−mak,m+1, . . . , ak,d → sak,d ,

for all s ∈ C∗.

Proof. The dual dented pentagram map is defined by Wk := T̂mVk = λkRk , where the
coefficients λk are determined by the normalization condition det(Wk, . . . ,Wk+d) = 1
for all k ∈ Z. The transformed coordinates are defined using the difference equation

Wk+d+1 = âk,dWk+d + âk,d−1Wj+d−1 + · · · + âk,1Wk+1 + (−1)dWk.

The corresponding coefficients âk,j can be readily found using Cramer’s rule:

âk,j =
λk+d+1

λk+j

det(Rk, . . . , Rk+j−1, Rk+d+1, Rk+j+1, . . . , Rk+d)

det(Rk, . . . , Rk+d)
. (3)

The normalization condition reads λk . . . λk+d det(Rk, . . . , Rk+d) = 1 for all k ∈ Z.
To prove the theorem, it is sufficient to prove that the determinants in (3) are homoge-

nous in s, and to find their degrees of homogeneity.
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Lemma 3.5. The determinant det(Rk, . . . , Rk+d) is homogeneous of degree zero in s.
The determinant in the numerator of (3) has the same degree of homogeneity in s as ak,j .

The theorem immediately follows from this lemma since even if λk’s have some nonzero
degree of homogeneity, it does not depend on k anyway by the definition of scaling trans-
formation, and it cancels out in the ratio. Hence the whole expression (3) for âk,j trans-
forms just like ak,j , i.e., the dented pentagram map is invariant with respect to the scaling.

Proof of Lemma 3.5. Proposition 3.3 implies that the vector Rk := (Vk, . . . , Vk+d)rk has
an expansion

rk = ((−1)d , ak,1, . . . , ak,m, 0, . . . , 0)t

in the basis (Vk, . . . , Vk+d), where t stands for the transposed matrix. Note that the vector
Rk+1 has a similar expression rk = ((−1)d , ak+1,1, . . . , ak+1,m, 0, . . . , 0)t in the shifted
basis (Vk+1, . . . , Vk+d+1), but in the initial basis (Vk, Vk+1, . . . , Vk+d) its expansion has
the form rk+1 = Nkrk for the transformation matrix Nk (see its definition in the proof of
Theorem 2.6), since the relation (1) implies

(Vk+1, . . . , Vk+d+1) = (Vk, . . . , Vk+d)Nk.

Note that formula (3) is independent of the choice of the basis used and we expand
vectors Rk in the basis (Vk+m+1, . . . , Vk+m+1+d). It turns out that the corresponding ex-
pansions rk, . . . , rk+d+1 have a particularly simple form in this basis, which is crucial for
the proof. We use hats, r̂k, . . . , r̂k+d+1, when the vectors Rk, . . . , Rk+d+1 are written in
this new basis. Explicitly we obtain

r̂k = (Nk . . . Nk+m)−1rk = (−ak,m+1,−ak,m+2, . . . ,−ak,d , 1, 0, . . . , 0)t ,

r̂k+1 = (Nk+1 . . . Nk+m)
−1rk+1

= (0,−ak+1,m+1,−ak+1,m+2, . . . ,−ak+1,d , 1, 0, . . . , 0)t ,
. . .

r̂k+m = N−1
k+mrk+m = (0, . . . , 0,−ak+m,m+1,−ak+m,m+2, . . . ,−ak+m,d , 1)t ,

r̂k+m+1 = rk+m+1 = ((−1)d , ak+m+1,1, . . . , ak+m+1,m, 0, . . . , 0)t ,

r̂k+m+2 = Nk+m+1rk+m+2 = (0, (−1)d , ak+m+2,1, . . . , ak+m+2,m, 0, . . . , 0)t ,
r̂k+m+3 = Nk+m+1Nk+m+2rk+m+3

= (0, 0, (−1)d , ak+m+3,1, . . . , ak+m+3,m, 0, . . . , 0)t ,
. . .

r̂k+d+1 = Nk+m+1Nk+m+2 . . . Nk+drk+d+1

= (0, . . . , 0, (−1)d , ak+d+1,1, . . . , ak+d+1,m)
t .

Consider the matrix M = (r̂k, . . . , r̂k+d+1) of size (d + 1)× (d + 2), which is essen-
tially the matrix of the system of linear equations determining âk,j . All its entries are ho-
mogeneous in s. Also note that the determinant det(Rk, . . . , Rk+d) = det(r̂k, . . . , r̂k+d)
is the minor formed by the first d + 1 columns, while the determinant in the numerator of
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formula (3) is up to a sign the (j + 1)th minor, 0 ≤ j ≤ d, formed by crossing out the
(j + 1)th column in M.

For instance, for d = 6 and m = 2 this matrix has the form

M =



−ak,3 0 0 1 0 0 0 0
−ak,4 −ak+1,3 0 ak+3,1 1 0 0 0
−ak,5 −ak+1,4 −ak+2,3 ak+3,2 ak+4,1 1 0 0
−ak,6 −ak+1,5 −ak+2,4 0 ak+4,2 ak+5,1 1 0

1 −ak+1,6 −ak+2,5 0 0 ak+5,2 ak+6,1 1
0 1 −ak+2,6 0 0 0 ak+6,2 ak+7,1
0 0 1 0 0 0 0 ak+7,2


.

Let us form the corresponding matrix D of the same size representing the homogene-
ity degrees of the entries of M given by the scaling transformations. One can assign an
arbitrary degree to a zero entry, and we do this in such a way that within each column the
degrees would change uniformly. Note that those degrees also change uniformly along
all the rows, except for one simultaneous jump after the (m + 1)th column. In the above
example one has

D =



4 5 6 0 1 2 3 4
3 4 5 −1 0 1 2 3
2 3 4 −2 −1 0 1 2
1 2 3 −3 −2 −1 0 1
0 1 2 −4 −3 −2 −1 0
−1 0 1 −5 −4 −3 −2 −1
−2 −1 0 −6 −5 −4 −3 −2


.

Then the determinant of the minors obtained by crossing any of the columns is homo-
geneous. Indeed, elementary transformations on the matrix rows by adding to one row
another multiplied by a function homogeneous in s preserve this table of homogeneity
degrees. On the other hand, producing the upper-triangular form by such transforma-
tions one can easily compute the homogeneity degree of the corresponding minor. For
instance, the minor det(r̂k, r̂k+1, . . . , r̂k+d) formed by the first d + 1 columns has zero
degree. Indeed, we need to find the trace of the corresponding (d + 1) × (d + 1) degree
matrix. It contains m + 1 columns with the diagonal entries of degree d − m, as well
as d − m columns with the diagonal entries of degree −m − 1, i.e., the total degree is
(d−m) · (m+1)+ (−m−1) · (d−m) = 0. (In the example above it is 4 ·3+ (−3) ·4 = 0
on the diagonal for the first seven columns.) Similarly one finds the degree of any j th
minor of the matrix M for arbitrary d and m by calculating the difference of the degrees
for the diagonal (j, j)-entry and the (j, d + 2)-entry in the matrix D. ut

Remark 3.6. The idea of using Cramer’s rule and a simple form of the vectors Rk was
suggested in [8] to prove the scale invariance of the short-diagonal pentagram maps T2,1.
For the maps T̂m we employ this approach along with passing to the dual maps and the
above “retroactive” basis change. This choice of basis in the proof of Theorem 3.4 also
allows one to obtain explicit formulas for the pentagram map via the matrix M.
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4. Continuous limit of general pentagram maps

Consider the continuous limit of the dented pentagram maps on n-gons as n → ∞. In
the limit a generic twisted n-gon becomes a smooth nondegenerate quasi-periodic curve
γ (x) in RPd . Its lift G(x) to Rd+1 is defined by the conditions that the components of
the vector function G(x) = (G1, . . . ,Gd+1)(x) provide the homogeneous coordinates
for γ (x) = (G1 : · · · : Gd+1)(x) in RPd and det(G(x),G′(x), . . . ,G(d)(x)) = 1 for
all x ∈ R. Furthermore, G(x + 2π) = MG(x) for a given M ∈ SLd+1(R). Then G(x)
satisfies a linear differential equation of order d + 1:

G(d+1)
+ ud−1(x)G

(d−1)
+ · · · + u1(x)G

′
+ u0(x)G = 0

with periodic coefficients ui(x), which is a continuous limit of the difference equa-
tions (1). Here ′ stands for d/dx.

Fix a small ε > 0 and let I be any (d − 1)-tuple I = (i1, . . . , id−1) of positive
integers. For the I -diagonal hyperplane

Pk := (vk, vk+i1 , vk+i1+i2 , . . . , vk+i1+···+id−1)

its continuous analogue is the hyperplane Pε(x) passing through the d points γ (x),
γ (x + i1ε), . . . , γ (x + (i1 + · · · + id−1)ε) of the curve γ . In what follows we are go-
ing to make a parameter shift in x (equivalent to shift of indices) and define Pε(x) :=
(γ (x + k0ε), . . . , γ (x + kd−1ε)) for any real k0 < · · · < kd−1 such that

∑
l kl = 0.

Let `ε(x) be the envelope curve for the family of the hyperplanes Pε(x) for a fixed
ε. The envelope condition means that Pε(x) are the osculating hyperplanes of the curve
`ε(x), that is, the point `ε(x) belongs to the hyperplane Pε(x), while the vector-derivatives
`′ε(x), . . . , `

(d−1)
ε (x) span this hyperplane for each x. This means that the lift of `ε(x) to

Lε(x) in Rd+1 satisfies the system of d equations

det
(
G(x + k0ε), . . . ,G(x + kd−1ε), L

(j)
ε (x)

)
= 0, j = 0, . . . , d − 1.

A continuous limit of the pentagram map is defined as the evolution of the curve γ in
the direction of the envelope `ε as ε changes. Namely, one can show that the expansion
of Lε(x) has the form

Lε(x) = G(x)+ ε
2B(x)+O(ε3),

where there is no term linear in ε due to the condition
∑
l kl = 0. It satisfies the family of

differential equations

L(d+1)
ε +ud−1,ε(x)L

(d−1)
ε +· · ·+u1,ε(x)L

′
ε+u0,ε(x)Lε = 0, where uj,0(x) = uj (x).

The corresponding expansion of the coefficients, uj,ε(x) = uj (x) + ε
2wj (x) + O(ε3),

defines the continuous limit of the pentagram map as a system of evolution differential
equations duj (x)/dt = wj (x) for j = 0, . . . , d − 1. (This definition of limit assumes
that we have the standard tuple J = 1 := (1, . . . , 1).)
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Theorem 4.1 (Continuous limit). The continuous limit of any generalized pentagram
map TI,J for any I = (i1, . . . , id−1) and J = 1 (and in particular, of any dented
pentagram map Tm) in dimension d defined by the system duj (x)/dt = wj (x), j =
0, . . . , d − 1, for x ∈ S1 is the (2, d + 1)-KdV flow of the Adler–Gelfand–Dickey hierar-
chy on the circle.

Remark 4.2. Recall that the (n, d + 1)-KdV flow is defined on linear differential opera-
tors L = ∂d+1

+ ud−1(x)∂
d−1
+ · · · + u1(x)∂ + u0(x) of order d + 1 with periodic co-

efficients uj (x), where ∂k stands for dk/dxk . One can define the fractional power Ln/d+1

as a pseudo-differential operator for any positive integer n and take its pure differential
part Qn := (L

n/d+1)+. In particular, for n = 2 one has Q2 = ∂
2
+

2
d+1ud−1(x). Then

the (n, d + 1)-KdV equation is the evolution equation on (the coefficients of) L given by
dL/dt = [Qn, L] (see [1]).

For d = 2 the (2, 3)-KdV equation is the classical Boussinesq equation on the circle:
ut t + 2(u2)xx + uxxxx = 0, which appears as the continuous limit of the 2D pentagram
map [9].

Proof of Theorem 4.1. By expanding in the parameter ε one can show that Lε(x) has the
form Lε(x) = G(x) + ε

2Cd,I
(
∂2
+

2
d+1ud−1(x)

)
G(x) +O(ε3) as ε → 0, for a certain

nonzero constant Cd,I (cf. [4, Theorem 4.3]). We obtain the following evolution of the
curveG(x) given by the ε2-term of this expansion: dG/dt =

(
∂2
+

2
d+1ud−1

)
G, or, what

is the same, dG/dt = Q2G.
We would like to find the evolution of the operator L tracing it. For any t , the curveG

and the operator L are related by the differential equation LG = 0 of order d + 1.
Consequently, d(LG)/dt = (dL/dt)G+ L(dG/dt) = 0.

Now note that if the operator L satisfies the (2, d + 1)-KdV equation dL/dt =
[Q2, L] := Q2L− LQ2, and G satisfies dG/dt = Q2G, we have the identity

dL

dt
G+ L

dG

dt
= (Q2L− LQ2)G+ LQ2G = Q2LG = 0.

In virtue of the uniqueness of the linear differential operator L of order d + 1 for a given
fundamental set of solutions G, we conclude that indeed the evolution of L is described
by the (2, d + 1)-KdV equation. ut

5. Corrugated polygons and dented diagonals

5.1. Pentagram maps for corrugated polygons

In [2] pentagram maps were defined on spaces of corrugated polygons in RPd . These
maps turned out to be integrable, while the corresponding Poisson structures are related
to many interesting structures on such polygons. Below we describe how one can view
integrability in the corrugated case as a particular case of the dented maps.

Let (vk) be generic twisted n-gons in RPd (here “generic” means that no d + 1 con-
secutive vertices lie in a projective subspace). The space of equivalence classes of generic
twisted n-gons in RPd has dimension nd and is denoted by Pn.
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Definition 5.1. A twisted polygon (vk) in RPd is corrugated if for every k ∈ Z the
vertices vk, vk+1, vk+d , and vk+d+1 span a projective two-dimensional plane.

The projective group preserves the space of corrugated polygons. Denote by Pcor
n ⊂ Pn

the space of projective equivalence classes of generic corrugated n-gons. One can show
that such polygons form a submanifold of dimension 2n in the nd-dimensional space Pn.

The consecutive d-diagonals (the diagonal lines connecting vk and vk+d ) of a cor-
rugated polygon intersect pairwise, and the intersection points form the vertices of a
new corrugated polygon: Tcorvk := (vk, vk+d) ∩ (vk+1, vk+d+1). This gives the defini-
tion of the pentagram map on (classes of projectively equivalent) corrugated polygons,
Tcor : Pcor

n → Pcor
n (see [2]). In 2D one has Pcor

n = Pn, and this gives the definition of
the classical pentagram map on Pn.

Proposition 5.2 ([2]). The pentagram map Tcor is well defined on Pcor
n , i.e., it sends a

corrugated polygon to a corrugated one.

Proof. The image of the pentagram map Tcor is defined as the intersection of the diag-
onals in the quadrilateral (vk−1, vk, vk+d−1, vk+d). Consider the diagonal (vk, vk+d). It
contains both vertices Tcorvk−1 and Tcorvk , as they are intersections of this diagonal with
the diagonals (vk−1, vk+d−1) and (vk+1, vk+d+1) respectively. Similarly, both vertices
Tcorvk−d−1 and Tcorvk−d belong to the diagonal (vk−d , vk).

Hence we obtain two pairs of new vertices Tcorvk−d−1, Tcorvk−d and Tcorvk−1, Tcorvk
for each k ∈ Z lying in one 2D plane passing through the old vertices (vk−d , vk, vk+d).
Note also that the indices of these new pairs differ by d . Thus they satisfy the corrugated-
ness condition. ut

Theorem 5.3. The pentagram map Tcor : Pcor
n → Pcor

n is the restriction of the dented
pentagram map Tm : Pn→ Pn for anym = 1, . . . , d−1 from generic n-gons Pn in RPd
to corrugated ones Pcor

n (or differs from it by a shift in vertex indices).

In order to prove this theorem we first show that the definition of a corrugated polygon
in RPd is equivalent to the following:

Proposition 5.4. Fix any ` = 2, . . . , d− 1. A generic twisted polygon (vk) is corrugated
if and only if the 2` vertices vk−(`−1), . . . , vk and vk+d−(`−1), . . . , vk+d span a projective
`-space for every k ∈ Z.

Proof. The case ` = 2 is the definition of a corrugated polygon. Denote the above pro-
jective `-dimensional space by Q`

k = (vk−(`−1), . . . , vk, vk+d−(`−1), . . . , vk+d).
Then for any ` > 2 the intersection of the `-spaces Q`

k and Q`
k+1 is spanned by

the vertices (vk−(`−2), . . . , vk, vk+d−(`−2), . . . , vk+d) and has dimension `−1, i.e., is the
spaceQ`−1

k = Q`
k∩Q

`
k+1. This allows one to derive the condition on (`−1)-dimensional

spaces from the condition on `-dimensional spaces, and hence reduce everything to the
case ` = 2.

Conversely, start with the (`− 1)-dimensional spaceQ`−1
k and consider the spaceQ`

k

containing Q`−1
k , as well as the vertices vk−(`−1) and vk+d−(`−1). We claim that after the
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addition of two extra vertices the new space has dimension `, rather than `+1. Indeed, the
four vertices vk−(`−1), vk−(`−2), vk+d−(`−1), vk+d−(`−2) lie in one two-dimensional plane
according to the above reduction. Thus adding two vertices vk−(`−1) and vk+d−(`−1) to
the space Q`−1

k , which already contains vk−(`−2) and vk+d−(`−2), boils down to adding
one more projective direction, because of the corrugated condition, and thus Q`

k has di-
mension ` for all k ∈ Z. ut

Proof of Theorem 5.3. Now we take a generic twisted n-gon in RPd and consider the
dented (d − 1)-dimensional diagonal Pk corresponding to m = 1 and I = (2, 1, . . . , 1),
i.e., the hyperplane passing through the d vertices vk, vk+2, vk+3, . . . , vk+d .

For a corrugated n-gon in RPd , according to the proposition above, such a diagonal
hyperplane will also pass through the vertices vk−(`−1), . . . , vk−1, i.e., it coincides with
the space Q`

k for ` = d − 1:

Pk = Q
d−1
k = (vk−(d−2), . . . , vk, vk+2, . . . , vk+d)

(see Figure 7).

T̂corvk

Tcorvk

Fig. 7. The diagonal hyperplane Pk coincides with the hyperplane Q3
k

in RP4. Definitions of the
corrugated pentagram map and its dual.

Now the intersection of d consecutive hyperplanes Pk ∩· · ·∩Pk+d−1, by the repeated
use of the relation Q`−1

k = Q`
k ∩Q

`
k+1 for ` = d − 1, d − 2, . . . , 3, reduces to the inter-

section ofQ2
k ∩Q

2
k+1 ∩Q

2
k+2. The latter is the intersection of the diagonals inQ2

k+1, i.e.,
(vk+1, vk+d+1) ∩ (vk+2, vk+d+2) =: Tcorvk+1. Thus the definition of the dented penta-
gram map Tm for m = 1 upon restriction to corrugated polygons reduces to the definition
of the pentagram map T on the latter (modulo shifts).

For any m = 1, . . . , d − 1 we consider the dented diagonal hyperplane

Pk−m+1 = (vk−m+1, . . . , vk, vk+2, vk+3, . . . , vk+d−m+1).

For corrugated n-gons in RPd this diagonal hyperplane coincides with the spaceQ`
k−m+1

for ` = d − 1 since it passes through all vertices from vk−(d−2) to vk+d except vk+1:

Pk−m+1 = Q
d−1
k = (vk−(d−2), . . . , vk, vk+2, . . . , vk+d).

Thus the corresponding intersection of d consecutive dented diagonal hyperplanes start-
ing with Pk−m+1 will differ only by a shift of indices from the one for m = 1. ut
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Corollary 5.5. For dented pentagram maps Tm with different values of m, their restric-
tions from generic to corrugated twisted polygons in RPd coincide modulo an index shift.

Note that the inverse dented pentagram map T̂m upon restriction to corrugated polygons
also coincides with the inverse corrugated pentagram map T̂cor. The latter is defined as fol-
lows: for a corrugated polygon (vk) in RPd for every k ∈ Z consider the two-dimensional
plane spanned by the vertices vk−1, vk, vk+d−1, and vk+d . In this plane take the inter-
section of (the continuations of) the sides of the polygon, i.e., the lines (vk−1, vk) and
(vk+d−1, vk+d), and set

T̂corvk := (vk−1, vk) ∩ (vk+d−1, vk+d).

Corollary 5.6. The continuous limit of the pentagram map Tcor for corrugated polygons
in RPd is a restriction of the (2, d + 1)-KdV equation.

The continuous limit for dented maps is found by means of the general procedure de-
scribed in Section 4. The restriction of the universal (2, d + 1)-KdV system from generic
to corrugated curves might lead to other interesting equations on the submanifold. (This
phenomenon could be similar to the KP hierarchy on generic pseudo-differential operators
∂ +

∑
j≥1 uj (x)∂

−j , which when restricted to operators of the form ∂ + ψ(x)∂−1ψ∗(x)

gives the NLS equation; see [6].)

Remark 5.7. One of applications of corrugated polygons is related to the fact that there is
a natural map from generic polygons in 2D to corrugated polygons in any dimension (see
[2] and Remark 5.8 below), which is generically a local diffeomorphism. Furthermore,
this map commutes with the pentagram map, i.e., it takes deeper diagonals, which join
vertices vi and vi+p, in 2D polygons to the intersecting diagonals of corrugated polygons
in RPp. This way one obtains a representation of the deeper diagonal pentagram map Tp,1
in RP2 via the corrugated pentagram map in higher dimensions (see Figure 8).

Fig. 8. Deeper pentagram map T3,1 in 2D.

As a corollary, the deeper diagonal pentagram map Tp,1 in RP2 is also an integrable
system [2]. Indeed, integrability of corrugated pentagram maps implies integrability of the
pentagram map for deeper diagonals in 2D, since first integrals and other structures for
the corrugated pentagram map in higher dimensions descend to those for the pentagram
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map on generic polygons in 2D thanks to the equivariant local diffeomorphism between
them. Explicit formulas for the invariants seem to be complicated because of a nontrivial
relation between coordinates for polygons in RP2 and in RPp.

5.2. Integrability for corrugated polygons

Generally speaking, the algebraic-geometric integrability of the pentagram map on the
space Pn (see Theorem 2.15 for the 3D case) would not necessarily imply the algebraic-
geometric integrability for a subsystem, the pentagram map on the subspace Pcor

n of cor-
rugated polygons.

However, a Lax representation with a spectral parameter for corrugated polygons nat-
urally follows from that for generic ones. In this section, we perform its analysis in the
3D case (similarly to what has been done in Theorem 2.15), which implies the algebraic-
geometric integrability for corrugated polygons in the 3D case. It exhibits some interest-
ing features: the dynamics on the Jacobian depends on whether n is a multiple of 3, and
if it is, it resembles a “staircase”, but with shifts in three different directions. We also
establish the equivalence of our Lax representation with that found in [2].

For simplicity, we assume that gcd(n, d + 1) = 1 (see Remark 2.3). In 3D this just
means that n has to be odd. Note that this condition is technical, as one can get rid of it
by using coordinates introduced in Section 2.2.2

Remark 5.8. The coordinates on the space Pcor
n may be introduced using the same dif-

ference equation (1) for gcd(n, d + 1) = 1. Since corrugatedness means that the vectors
Vj , Vj+1, Vj+d and Vj+d+1 are linearly dependent for all j ∈ Z, the subset Pcor

n of corru-
gated polygons is singled out in the space of generic twisted polygons Pn by the relations
aj,l = 0, 2 ≤ l ≤ d − 1, in equation (1), i.e., they are defined by the equations

Vj+d+1 = aj,dVj+d + aj,1Vj+1 + (−1)dVj , j ∈ Z. (4)

Furthermore, this relation also allows one to define a map ψ from generic twisted
n-gons in RP2 to corrugated ones in RPd for any dimension d (see [2]). Indeed, consider
a lift of vertices vj ∈ RP2 to vectors Vj ∈ R3 so that they satisfy (4) for all j ∈ Z. Note
that for d ≥ 3 this is a nonstandard normalization of the lifts Vj ∈ R3, different from the
one given in (1) for d = 2, since the vectors on the right-hand side are not consecutive.
Now by considering solutions Vj ∈ Rd+1 of (4) modulo the natural action of SLd+1(R)
we obtain a polygon in RPd satisfying the corrugatedness condition. The constructed map
ψ commutes with the pentagram maps (since all operations are projectively invariant) and
is a local diffeomorphism. Observe that the subset Pcor

n ⊂ Pn has dimension 2n.

Now we return to considerations over C. The above restriction gcd(n, d + 1) = 1 allows
one to define a Lax function in a straightforward way. Here is an analogue of Theo-
rem 2.15:

2 Another way to introduce the coordinates is by means of the difference equation Vj+d+1 =
Vj+d + bj,d−1Vj+d−1 + · · · + bj,1Vj+1 + bj,0Vj , used in [2].
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Theorem 5.9. In dimension 3 the subspace Pcor
n ⊂ Pn is generically fibred into (Zariski

open subsets of ) tori of dimension g = n− 3 if n = 3l, and g = n− 1 otherwise.

Proof. The Lax function for the map T2 restricted to the space Pcor
n is

L−1
j,t (λ) =


0 0 0 −1
1 0 0 aj,1
0 1 0 0
0 0 λ aj,3

 .
Now the spectral function has the form

R(k, λ) = k4
−

k3

λbn/3c

bn/3c∑
j=0

Gjλ
j
+

k2

λb2n/3c

N0∑
j=0

Jjλ
j
−
k

λn

bn/3c∑
j=0

Ijλ
j
+

1
λn

where N0 = bn/3c − bgcd(n − 1, 3)/3c. One can show that Gbn/3c =
∏n−1
j=0 aj,1 and

I0 =
∏n−1
j=0 aj,3. Below we present the summary of relevant computations for the spectral

functions, Casimirs, and the Floquet–Bloch solutions (cf. Section 2.3).

n = 3l + 1; n = 3l + 2

λ = 0 λ = ∞

O1 : k1 = 1/I0 +O(λ) W1 : k1 = Gl(1+O(λ−1))

O2 : k2,3,4 = I
1/3
0 λ−n/3(1+O(λ1/3)) W2 : k2,3,4 = G

−1/3
l

λ−n/3(1+O(λ−1/3))

g = n− 1; there are n+ 1 first integrals; the Casimirs are I0,Gl

(ψi,1) ≥ −D + 2O2 +W2 + i(W2 −O2)

(ψi,2) ≥ −D +O2 +W1 +W2 + i(W2 −O2)

(ψi,3) ≥ −D +W1 + 2W2 + i(W2 −O2)

(ψi,4) ≥ −D + 3O2 + i(W2 −O2)

n = 3l

λ = 0 λ = ∞

O1 : k1 = 1/I0 +O(λ) W1 : k1 = Gl(1+O(λ−1))

O2,3,4 : k2,3,4 = c1λ
−l(1+O(λ)), W2,3,4 : k2,3,4 = c2λ

−l(1+O(λ−1)),

where c3
1 − c

2
1G0 + c1J0 − I0 = 0 where c3

2Gl − c
2
2Jl + c2Il − 1 = 0

g = n− 3; there are n+ 3 first integrals; the Casimirs are I0,G0, J0, Il, Jl,Gl

(ψi,1) ≥ −D +O2 +O3 +W4 + i2(W2 −O3)+ i1(W3 −O2)+ i0(W4 −O4)

(ψi,2) ≥ −D +O2 +W1 +W4 + i2(W2 −O2)+ i1(W3 −O4)+ i0(W4 −O3)

(ψi,3) ≥ −D +W1 +W2 +W4 + i2(W3 −O4)+ i1(W4 −O3)+ i0(W2 −O2)

(ψi,4) ≥ −D +O2 +O3 +O4 + i2(W4 −O4)+ i1(W2 −O3)+ i0(W3 −O2)
where i2 = b(i + 2)/3c, i1 = b(i + 1)/3c, i0 = bi/3c
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The genus of spectral curves found above exhibits the dichotomy g = n − 3 or g =
n− 1 according to divisibility of n by 3. ut

Remark 5.10. It is worth noting that the dimensions g = n − 3 or g = n − 1 of the
Jacobians, and hence of the invariant tori, are consistent in the following sense:

• the sum of the genus of the spectral curve (which equals the dimension of its Jacobian)
and the number of first integrals equals 2n, i.e., the dimension of the system;
• the number of first integrals minus the number of Casimirs equals the genus of the

curve. The latter also suggests that Krichever–Phong’s universal formula provides a
symplectic form for this system.

Also note that Lax functions corresponding to the maps T1 and T2 restricted to the sub-
space Pcor

n lead to the same spectral curve in 3D, as one can check directly. This, in turn,
is consistent with Corollary 5.5.

Proposition 5.11. In any dimension the Lax function for the corrugated pentagram
map T1 in CPd for gcd(n, d + 1) = 1 is

Lj,t (λ) =


0 0 · · · 0 (−1)d

D(λ)

aj,1
0
· · ·

0
aj,d



−1

,

with the diagonal d × d matrix D(λ) = diag(1, λ, 1, . . . , 1). It is equivalent to the one
found in [2].

Proof. The above Lax form follows from Remark 5.8 and Theorem 2.6. To show the
equivalence we define the gauge matrix as follows:

gj =


0 0 · · · 0 (−1)d

Cj

0
· · ·

0
aj,d

 ,
where Cj is the d × d diagonal matrix, and its diagonal entries are equal to (Cj )ll =∏d−l
k=0 aj−k,d , 1 ≤ l ≤ d . One can check that

L̃j,t (λ) =
g−1
j L−1

j,t gj+1

aj+1,d
=


0 0 0 · · · xj xj + yj
λ 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·

0 0 0 · · · 1 1

 ,
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where
xj =

aj,1∏d−1
l=0 aj−l,d

, yj =
1∏d−1

l=−1 aj−l,d
,

which agrees with [2, formula (10)]. ut

Note that the corresponding corrugated pentagram map has a cluster interpretation [2] (see
also [3] for the 2D case). On the other hand, it is a restriction of the dented pentagram
map, which brings one to the following

Problem 5.12. Is it possible to realize the dented pentagram map Tm on generic twisted
polygons in Pd as a sequence of cluster transformations?

We will address this problem in a future publication.

6. Applications: integrability of pentagram maps for deeper dented diagonals

In this section we consider in detail more general dented pentagram maps.

Definition 6.1. Fix an integer parameter p ≥ 2 in addition to an integer parameter m ∈
{1, . . . , d − 1} and define the (d − 1)-tuple I = Ipm := (1, . . . , 1, p, 1, . . . , 1), where the
value p is at the mth place. This choice of I corresponds to the diagonal plane Pk which
passes through m consecutive vertices vk, vk+1, . . . , vk+m−1, then skips p − 1 vertices
vk+m, . . . , vk+m+p−2 (i.e., “jumps to the next pth vertex”) and continues passing through
the next d −m consecutive vertices vk+m+p−1, . . . , vk+d+p−2:

Pk := (vk, vk+1, . . . , vk+m−1, vk+m+p−1, vk+m+p, . . . , vk+d+p−2).

We call such a plane Pk a deep-dented diagonal (DDD) plane, as the “dent” now is of
depth p (see Figure 9). Now we intersect d consecutive planes Pk , to define the deep-
dented pentagram map by

T
p
mvk := Pk ∩ · · · ∩ Pk+d−1.

In other words, we keep the same definition of the (d − 1)-tuple J = 1 := (1, . . . , 1) as
before: T pm := TIpm,1.

Fig. 9. The diagonal hyperplane for I = (1, 1, 3, 1) in RP5.
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Theorem 6.2. The deep-dented pentagram map for both twisted and closed polygons
in any dimension is the restriction of an integrable system to an invariant submanifold.
Moreover, it admits a Lax representation with a spectral parameter.

To prove this theorem we introduce spaces of partially corrugated polygons, occupying
intermediate positions between corrugated and generic ones.

Definition 6.3. A twisted polygon (vj ) in RPd is partially corrugated (or (q, r; `)-cor-
rugated) if the diagonal subspaces Pj spanned by two clusters of q and r consecutive
vertices vj with a gap of d − ` vertices between them (i.e.,

Pj = (vj , vj+1, . . . , vj+q−1, vj+q+d−`, vj+q+d−`+1, . . . , vj+q+d−`+r−1),

see Figure 9) are subspaces of a fixed dimension ` ≤ q + r − 2 for all j ∈ Z. The
inequality ` ≤ q + r − 2 shows that indeed these vertices are not in general position,
while ` = q + r − 1 corresponds to a generic twisted polygon. We also assume that
q ≥ 2, r ≥ 2, and ` ≥ max{q, r}, so that the corrugatedness restriction would not be
local, i.e., coming from one cluster of consecutive vertices, but would come from the
interaction of two clusters of those.

Fix n and denote the space of partially corrugated twisted n-gons in RPd (modulo projec-
tive equivalence) by Ppar. Note that “corrugated” of Definition 5.1 means “(2, 2; 2)-cor-
rugated” in this terminology.

Proposition 6.4. The definition of a (q, r; `)-corrugated polygon in RPd is equivalent to
the definition of a (q + 1, r + 1; ` + 1)-corrugated polygon, i.e., one can add one extra
vertex to (respectively, delete one extra vertex from) each of the two clusters of vertices, as
well as to increase (respectively, decrease) by one the dimension of the subspace through
them, as long as q, r ≥ 2, ` ≤ q + r − 2, and ` ≤ d − 2.

Proof. The proof of this fact is completely analogous to the proof of Proposition 5.4 by
adding one vertex in each cluster. ut

Define the partially corrugated pentagram map Tpar on the space Ppar: to a partially
corrugated twisted n-gon we associate a new one obtained by taking the intersections of
`+ 1 consecutive diagonal subspaces Pj of dimension `.

Proposition 6.5. (i) The partially corrugated pentagram map is well defined: by inter-
secting ` + 1 consecutive diagonal subspaces one generically gets a point in the
intersection.

(ii) This map takes a partially corrugated polygon to a partially corrugated one.

Proof. Note that the gap of d − ` vertices between clusters is narrowing by one vertex
at each step as the dimension ` increases by 1. Add the maximal number of vertices, so
as to obtain a hyperplane (of dimension d − 1) passing through the clusters of q and r
vertices with a gap of one vertex between them. This is a dented hyperplane. One can see
that intersections of 2, 3, . . . consecutive dented hyperplanes gives exactly the planes of
dimensions d− 2, d− 3, . . . obtained on the way while enlarging the clusters of vertices.
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Then the intersection of d consecutive dented hyperplanes is equivalent to the intersection
of `+1 consecutive diagonal subspaces of dimension ` for partially corrugated polygons,
and is generically a point.

The fact that the image of a partially corrugated polygon is also partially corrugated
can be proved similarly to the standard corrugated case (cf. Proposition 5.2). We demon-
strate the necessary changes in the following example. Consider the (3, 2; 3)-corrugated
polygon in RPd (here q = 3, r = 2, ` = 3), i.e., its vertices (vj , vj+1, vj+2, vj+d , vj+d+1)

form a 3D subspace Pj in RPd for all j ∈ Z. One can see that for the image poly-
gon: (a) three new vertices will lie in the 2D plane obtained as the intersection Bj+1 :=

Pj ∩ Pj+1 = (vj+1, vj+2, vj+d+1) (since to get each of these three new vertices one
needs to intersect these two planes with two more, and the corresponding intersections
will always lie in this plane); (b) similarly, two new vertices will lie on a certain line
passing through the vertex vj+d+1 (this line is the intersection of 2-planes: lj+d :=
Bj+d ∩ Bj+d+1). Hence the resulting five new vertices belong to one 3D plane spanned
by Bj+1 and lj+d , and hence satisfy the (3, 2; 3)-corrugatedness condition for all j ∈ Z.
The general case of partial corrugatedness is proved similarly. ut

Theorem 6.6 (= 6.2′). The pentagram map on partially corrugated polygons in any di-
mension is an integrable system: it admits a Lax representation with a spectral parameter.

Proof of Theorems 6.2 and 6.6. Now suppose that we are given a generic polygon in
RPc and the pentagram map constructed with the help of a deep-dented diagonal (of
dimension c − 1) with the (c − 1)-tuple of jumps I = (1, . . . , 1, p, 1, . . . , 1), which
includes m and c − m consecutive vertices before and after the gap respectively. Note
that the corresponding gap between two clusters of points for such diagonals consists
of p − 1 vertices. Associate to this polygon a partially (q, r; `)-corrugated polygon in
the higher-dimensional space RPd with clusters of q = m + 1 and r = (c − m) + 1
vertices, the diagonal dimension ` = c, and the space dimension d = c+p− 2. Namely,
in the partially corrugated polygon we add one extra vertex to each cluster, increase the
dimension of the diagonal plane by one as well (without corrugatedness the diagonal
dimension would increase by two after the addition of two extra vertices), while the gap
between the two new clusters decreases by one: (p−1)−1 = p−2. Then the dimension
d is chosen so that the gap between the two new clusters is p− 2 = d − `, which implies
that d = ` + p − 2 = c + p − 2. (Example: for deeper p-diagonals in RP2 one has
c = 2, m = 1, q = r = ` = 2, and this way one obtains the space of corrugated polygons
in RPd for d = p.)

Consider the map ψ associating to a generic polygon in RPc a partially corrugated
twisted polygon in RPd , where d = c + p − 2. (The map ψ is defined similarly to the
one for corrugated polygons in Remark 5.8.) This map ψ is a local diffeomorphism and
commutes with the pentagram map: the deep-dented pentagram map in RPc is taken to
the pentagram map Tpar on partially corrugated twisted polygons in RPd . In turn, Tpar

is the restriction of the integrable dented pentagram map in RPd . Thus the deep-dented
pentagram map on polygons in RPc is the restriction to an invariant submanifold of an
integrable map on partially corrugated twisted polygons in RPd , and hence it is a subsys-
tem of an integrable system. The Lax form of Tpar can be obtained by restricting the Lax
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form for dented maps from generic to partially corrugated polygons in RPd . We present
this Lax form below. ut

Remark 6.7. Now we describe coordinates on the subspace of partially corrugated poly-
gons and a Lax form of the corresponding pentagram map Tpar on them. Recall that on the
space of generic twisted n-gons (vj ) in RPd for gcd(n, d + 1) = 1 there are coordinates
aj,k for 0 ≤ j ≤ n− 1, 0 ≤ k ≤ d − 1 defined by equation (1):

Vj+d+1 = aj,dVj+d + · · · + aj,1Vj+1 + (−1)dVj ,

where the Vj ∈ Rd+1 are lifts of the vertices vj ∈ RPd . One can see that the submanifold
of (q, r; `)-corrugated polygons in RPd without loss of generality can be assumed to have
the minimal number of vertices in clusters (see Proposition 6.4). In other words, in this
case there is a positive integer m such that q = m + 1, r = (` − m) + 1, while the gap
between the clusters consists of d−` vertices. Hence the corresponding twisted polygons
are described by linear dependence of q = m + 1 vertices Vj , . . . , Vj+m and r vertices
Vj+d+m−`+1, . . . , Vj+d+1. (Example: for m = 1, ` = 2 implies a linear relation between
Vj , Vj+1 and Vj+d , Vj+d+1, which is the standard corrugatedness condition.) This relation
can be written as

Vj+d+1 = aj,dVj+d+· · ·+aj,d+m−`+1Vj+d+m−`+1+aj,mVj+m+· · ·+aj,1Vj+1+(−1)dVj

for all j ∈ Z by choosing an appropriate normalization of the lifts Vj ∈ Rd+1. Thus the
set of partially corrugated polygons is obtained by imposing the condition aj,k = 0 for
m + 1 ≤ k ≤ d + m − ` and 0 ≤ j ≤ n − 1 in the space of generic twisted polygons
given by equation (1). Note that the space of (m+ 1, `−m+ 1; `)-corrugated n-gons in
RPd has dimension n`, while the space of generic twisted n-gons has dimension nd.

In the complex setting, the Lax representation on such partially corrugated n-gons in CPd
or on generic n-gons in CPc with deeper dented diagonals is described as follows.

Theorem 6.8. The deep-dented pentagram map T pm on generic twisted and closed poly-
gons in CPc and the pentagram map Tpar on the corresponding partially corrugated poly-
gons in CPd with d = c + p − 2 admits the following Lax representation with a spectral
parameter: for gcd(n, d + 1) = 1 its Lax matrix is

Lj,t (λ) =



0 0 · · · · · · 0 0 (−1)d

D(λ)

aj,1
· · ·

aj,m
0
· · ·

0
aj,d+m−`+1
· · ·

aj,d



−1

, (5)
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with the diagonal d × d matrix D(λ) = diag(1, . . . , 1, λ, 1, . . . 1), where λ is at the
(m+ 1)th place, and an appropriate matrix Pj,t (λ).

Proof. This follows from the fact that the partially corrugated pentagram map is the re-
striction of the dented map to the invariant subset of partially corrugated polygons, so the
Lax form is obtained by the corresponding restriction as well (cf. Theorem 2.6). ut

Note that the jump tuple I = (2, 3) in P3 corresponds to the first case which is neither
a deep-dented pentagram map, nor a short-diagonal one, and whose integrability is un-
known. It would be very interesting if the corresponding pentagram map turned out to
be nonintegrable. Some numerical evidence for nonintegrability in that case is presented
in [5].

Acknowledgments. We are grateful to S. Tabachnikov for useful discussions. B.K. and F.S. were
partially supported by NSERC research grants. B.K. is grateful to the Simons Center for Geometry
and Physics in Stony Brook for support and hospitality; F.S. acknowledges the support of the Fields
Institute in Toronto and the CRM in Montreal.

References

[1] Adler, M.: On a trace functional for formal pseudo-differential operators and the symplec-
tic structure of the Korteweg–de Vries type equations. Invent. Math. 50, 219–248 (1979)
Zbl 0393.35058 MR 0520927

[2] Gekhtman, M., Shapiro, M., Tabachnikov, S., Vainshtein, A.: Higher pentagram maps,
weighted directed networks, and cluster dynamics. Electron. Res. Announc. Math. Sci. 19,
1–17 (2012) Zbl 1278.37047 MR 2891118

[3] Glick, M.: The pentagram map and Y-patterns. Adv. Math. 227, 1019–1045 (2011)
Zbl 1229.05021 MR 2793031

[4] Khesin, B., Soloviev, F.: Integrability of higher pentagram maps. Math. Ann. 357, 1005–1047
(2013) Zbl 1280.37056 MR 3118623

[5] Khesin, B., Soloviev, F.: Non-integrability vs. integrability of pentagram maps. J. Geom. Phys.
87, 275–285 (2015) Zbl 1318.37025 MR 3282373

[6] Krichever, I. M.: General rational reductions of the KP hierarchy and their symmetries. Funct.
Anal. Appl. 29, 75–80 (1995) Zbl 0868.35103 MR 1340299

[7] Marı́ Beffa, G.: On generalizations of the pentagram map: discretizations of AGD flows.
J. Nonlinear Sci. 23, 303–334 (2013) Zbl 06175210 MR 3041627

[8] Marı́ Beffa, G.: On integrable generalizations of the pentagram map. Int. Math. Res. Notices
2015, no. 12, 3669–3693 (2015) Zbl 1321.37066 MR 3356734

[9] Ovsienko, V., Schwartz, R., Tabachnikov, S.: The pentagram map: a discrete integrable sys-
tem. Comm. Math. Phys. 299, 409–446 (2010) Zbl 1209.37063 MR 2679816

[10] Schwartz, R.: The pentagram map. Experiment. Math. 1, 71–81 (1992) Zbl 0765.52004
MR 1181089

[11] Schwartz, R.: Discrete monodromy, pentagrams, and the method of condensation. J. Fixed
Point Theory Appl. 3, 379–409 (2008) Zbl 1148.51001 MR 2434454

[12] Soloviev, F.: Integrability of the pentagram map. Duke Math. J. 162, 2815–2853 (2013)
Zbl 1282.14061 MR 3161305

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0393.35058&format=complete
http://www.ams.org/mathscinet-getitem?mr=0520927
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1278.37047&format=complete
http://www.ams.org/mathscinet-getitem?mr=2891118
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.05021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2793031
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1280.37056&format=complete
http://www.ams.org/mathscinet-getitem?mr=3118623
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1318.37025&format=complete
http://www.ams.org/mathscinet-getitem?mr=3282373
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0868.35103&format=complete
http://www.ams.org/mathscinet-getitem?mr=1340299
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06175210&format=complete
http://www.ams.org/mathscinet-getitem?mr=3041627
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1321.37066&format=complete
http://www.ams.org/mathscinet-getitem?mr=3356734
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1209.37063&format=complete
http://www.ams.org/mathscinet-getitem?mr=2679816
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0765.52004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1181089
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1148.51001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2434454
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1282.14061&format=complete
http://www.ams.org/mathscinet-getitem?mr=3161305

	Duality of pentagram maps in higher dimensions
	Dented pentagram maps
	Integrability of dented pentagram maps
	Coordinates in the general case
	Algebraic-geometric integrability of pentagram maps in 3D

	Dual dented maps
	Properties of dual dented pentagram maps
	Proof of scale invariance

	Continuous limit of general pentagram maps
	Corrugated polygons and dented diagonals
	Pentagram maps for corrugated polygons
	Integrability for corrugated polygons

	Applications: integrability of pentagram maps for deeper dented diagonals
	References

