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Abstract. For a real number q > 1 and a positive integer m, let

Ym(q) :=
{ n∑
i=0

εiq
i
: εi ∈ {0,±1, . . . ,±m}, n = 0, 1, . . .

}
.

In this paper, we show that Ym(q) is dense in R if and only if q < m + 1 and q is not a Pisot
number. This completes several previous results and answers an open question raised by Erdős, Joó
and Komornik [8].
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1. Introduction

For a real number q > 1 and a positive integer m, let

Ym(q) :=
{ n∑
i=0

εiq
i
: εi ∈ {0,±1, . . . ,±m}, n = 0, 1, . . .

}
.

In this paper, we consider the following old question regarding the topological structure
of Ym(q):

Question 1.1. For which pairs (q,m) is the set Ym(q) dense in R?

It is well known that Ym(q) is not dense in R in the following two cases: when q is a Pisot
number (Garsia [12]) or q ≥ m+1 (Erdős and Komornik [9]). Recall that a Pisot number
is an algebraic integer > 1 all of whose conjugates have modulus < 1 (cf. [22]). For
the reader’s convenience, we include a brief proof. First assume that q is a Pisot number.
Denote by q1, . . . , qd the algebraic conjugates of q. Then ρ := max1≤j≤d |qj | < 1. Let
P(x) =

∑n
i=0 εix

i be a polynomial with coefficients in {0,±1, . . . ,±m}. Suppose that
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P(q) 6= 0. Then P(qj ) 6= 0 for 1 ≤ j ≤ d. Hence P(q)
∏d
j=1 P(qj ) is a non-zero

integer. Therefore

|P(q)| ≥

d∏
j=1

1
|P(qj )|

≥

(
1∑n

i=0mρ
i

)d
> m−d(1− ρ)d .

It follows that Ym(q) is not dense in R since 0 is an isolated point of Ym(q). The same
argument also shows that 0 is an isolated point of Y2m(q) = Ym(q) − Ym(q), therefore
Ym(q) is uniformly discrete in R. Next assume that q ≥ m+ 1. Then for any n ∈ N,

qn −

n−1∑
i=0

mqi =
qn(q − 1−m)+m

q − 1
≥
(q − 1−m)+m

q − 1
= 1.

It follows that |P(q)| ≥ 1 for any polynomial P with degree ≥ 1 and coefficients in
{0,±1, . . . ,±m}. Hence Ym(q) ∩ (−1, 1) = {0}, so Ym(q) is not dense in R.

In this paper, by proving the reverse direction we obtain the following theorem, which
provides a complete answer to Question 1.1.

Theorem 1.2. Ym(q) is dense in R if and only if q < m+ 1 and q is not a Pisot number.

We remark that Question 1.1 is closely related to a project proposed by Erdős, Joó and
Komornik in the late 90’s. For q > 1 and m ∈ N, let

Xm(q) =
{ n∑
i=0

εiq
i
: εi ∈ {0, 1, . . . , m}, n = 0, 1, . . .

}
.

SinceXm(q) is discrete, we may arrange the points ofXm(q) into an increasing sequence:

0 = x0(q,m) < x1(q,m) < x2(q,m) < · · · .

Denote

`m(q) = lim inf
n→∞

(xn+1(q,m)− xn(q,m)), Lm(q) = lim sup
n→∞

(xn+1(q,m)− xn(q,m)).

Motivated by the study of expansions in non-integer bases, Erdős, Joó and Komornik [7,
8, 9] proposed to characterize all the pairs (q,m) so that `m(q) and Lm(q) vanish. By
definition, `m(q) = 0 is equivalent to 0 being an accumulation point of Ym(q). However,
it was proved by Drobot [5] (see also [6]) that Ym(q) is dense in R if and only if 0 is an
accumulation point of Ym(q). Hence `m(q) = 0 if and only if Ym(q) is dense in R. In [8],
Erdős, Joó and Komornik asked whether `1(q) = 0 for any non-Pisot number q ∈ (1, 2).
This question was also formulated in [23, 1]. As a direct corollary of Theorem 1.2 and
Drobot’s result, we can provide an affirmative answer to this question.

Corollary 1.3. `m(q) = 0 if and only if q < m+ 1 and q is not a Pisot number.



Polynomials with bounded integer coefficients 183

In the literature there are some partial results on Question 1.1 and the project of Erdős et
al. It was shown in [5, 6] that if q ∈ (1, m + 1) does not satisfy an algebraic equation
with coefficients 0,±1, . . . ,±m, then `m(q) = 0. In [3] Bugeaud showed that if q is
not a Pisot number, then there exists an integer m such that `m(q) = 0. The approach
of Bugeaud did not provide any estimate of m. A substantial progress was made later
by Erdős and Komornik [9], who proved that `m(q) = 0 if q is not a Pisot number and
m ≥ dq−q−1

e+dq−1e, where dxe denotes the smallest integer≥ x. Recently Akiyama
and Komornik [1] showed that `1(q) = 0 if q ∈ (1,

√
2] is not a Pisot number smaller

than the golden ratio (1+
√

5)/2. Sidorov and Solomyak [23] proved that if q ∈ (1, m+1)
and q is not a Perron number, then `m(q) = 0. Recall that an algebraic integer q > 1 is
called a Perron number if each of its conjugates is less than q in modulus.

As for the value of Lm(q), Erdős and Komornik [9] proved that Lm(q) > 0 if q is a
Pisot number or q ≥ (m+

√
m2 + 4)/2. It remains an open problem whether Lm(q) = 0

for all other pairs (q,m) with q > 1 and m ∈ N. Komornik [14] conjectured that this
is true in the case when m = 1, i.e., L1(q) = 0 for any non-Pisot number smaller than
the golden ratio. Some partial results were obtained by Erdős–Komornik and Akiyama–
Komornik: Lm(q) = 0 if q is non-Pisot and m ≥ dq − q−1

e + 2dq − 1e (see [9]);
furthermore, L1(q) = 0 if 1 < q ≤

3√2 ≈ 1.2599 (see [9, 1]). Here the second part was
only proved in [9] for all 1 < q ≤

4√2 ≈ 1.1892 with the possible exception of the square
root of the second Pisot number.

By directly applying Corollary 1.3 and [1, Lemma 2.5] (which says that `m(q2) = 0
implies1 Lm(q) = 0), we have the following theorem which improves the results in [9, 1].

Theorem 1.4. If 1 < q <
√
m+ 1 and q2 is not a Pisot number, then Lm(q) = 0. In

particular, if q ∈ (1,
√

2) and q2 is not a Pisot number, then L1(q) = 0.

Let us mention some other important results related to Question 1.1. In [9], Erdős and
Komornik showed that if q > 1 is not a Pisot number and m ≥ q − q−1, then Ym(q)
has a finite accumulation point. Very recently, Akiyama and Komornik [1] characterized
all pairs (q,m) such that Ym(q) has a finite accumulation point, completing the previous
results of Erdős and Komornik [9] and Zaimi [25] on this topic.

Theorem 1.5 (Akiyama and Komornik [1]). Ym(q) has a finite accumulation point in R
if and only if q < m+ 1 and q is not a Pisot number.

In this paper, we shall prove the following result.

Theorem 1.6. Assume that 1 < q ≤ m + 1. Then Ym(q) has no finite accumulation
points in R if and only if 0 is not an accumulation point of Ym(q).

Theorem 1.6 was conjectured at the end of [1], where the authors observed that, combined
with Theorem 1.5, this would imply that 0 is an accumulation point of Ym(q) (equiva-
lently, Ym(q) is dense in R) if and only if q < m+ 1 and q is not a Pisot number. Hence
Theorem 1.2 follows from Theorems 1.6 and 1.5.

1 This implication was first proved in [8, Theorem 5] in the case m = 1. It extends to m > 1
directly.
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We remark that the separation property of Ym(q) was also considered by Lau [15] in
his study of Bernoulli convolutions (see [19] for a survey about Bernoulli convolutions).
Following Lau [15], we call q ∈ (1, 2) an F-number if

Y1(q) ∩

[
−

1
q − 1

,
1

q − 1

]
is a finite set.

Clearly, each Pisot number in (1, 2) is an F-number. Lau [15] raised the question of
whether or not there exists an F-number which is non-Pisot. As a corollary of Theo-
rem 1.2 (it also follows from Theorem 1.5 together with Remark 1.10 and Lemma 2.1),
we have the following answer to Lau’s question.

Corollary 1.7. Every F-number is a Pisot number.

As a closely related topic, for q ∈ (1, 2), the topological structure of the set

A(q) =
{ n∑
i=0

εiq
i
: εi ∈ {−1, 1}, n = 0, 1, . . .

}
has been studied [20, 2, 24, 1]. It was proved that if 1 < q ≤

√
2 is not a Pisot number,

thenA(q) is dense in R [1]; moreover, for almost all q ∈ (
√

2, 2),A(q) is dense in R [20].
Meanwhile, there exist non-Pisot numbers q ∈ (

√
2, 2) such that A(q) is discrete [2]. It

is an interesting question to characterize all q ∈ (
√

2, 2) such that A(q) is dense in R.
The proof of Theorem 1.6 is based on our study of separation properties of homoge-

neous iterated function systems (IFS) on R. Let m be a positive integer and 8 = {φi}mi=0
a family of contractive maps on R of the form

φi(x) = ρx + bi, i = 0, 1, . . . , m,

where
0 < ρ < 1 and 0 = b0 < · · · < bm = 1− ρ. (1.1)

Then8 is called a homogeneous iterated function system on R. According to Hutchinson
[13], there is a unique compact set K := K8 ⊂ R such that

K =

m⋃
i=0

φi(K).

We call K the attractor of 8. It is easy to check that

K =
{ ∞∑
n=0

binρ
n
: in ∈ {0, 1, . . . , m} for n ≥ 0

}
.

The condition (1.1) implies that the convex hull of K is the unit interval [0, 1].
For any finite word I = i1 . . . in ∈ {0, 1, . . . , m}n, write φI = φi1 ◦ · · · ◦ φin . Clearly,

φI (0) = bi1 + ρbi2 + · · · + ρ
n−1bin .



Polynomials with bounded integer coefficients 185

Definition 1.8. Say that 8 satisfies the weak separation condition if there exists a con-
stant c > 0 such that for any n ∈ N and any I, J ∈ {0, 1, . . . , m}n,

either ρ−n|φI (0)− φJ (0)| = 0 or ρ−n|φI (0)− φJ (0)| ≥ c.

Definition 1.9. Say that 8 satisfies the finite type condition if there exists a finite set
0 ⊂ [0, 1) such that for any n ∈ N and any I, J ∈ {0, 1, . . . , m}n,

either ρ−n|φI (0)− φJ (0)| ≥ 1 or ρ−n|φI (0)− φJ (0)| ∈ 0.

Remark 1.10. By definition, for 1 < q < 2, q is an F-number if and only if the IFS
{q−1x, q−1x + (1− q−1)} satisfies the finite type condition.

The concept of weak separation condition was first introduced by Lau and Ngai [16] for
more general IFSs. One is referred to [26, 4] for some equivalent definitions. The above
definition of finite type condition was adopted from [10], and is slightly stronger than
the one introduced by Ngai and Wang [17]. For a homogeneous IFS on R, it is unkown
whether the open set condition (cf. [13]) always implies the finite type condition.

It is easy to see that in our setting, the finite type condition implies the weak separa-
tion condition (this is also true in the general settings of [16, 17]; see [18] for a proof).
However, it is not clear whether the weak separation condition also implies the finite type
condition in our setting. The following theorem gives this implication under an additional
assumption on 8.

Theorem 1.11. Let 8 = {φi(x) = ρx + bi}
m
i=0 be an IFS satisfying (1.1). Assume in

addition that
bi+1 − bi ≤ ρ for all 0 ≤ i ≤ m− 1. (1.2)

Suppose 8 satisfies the weak separation condition. Then 8 also satisfies the finite type
condition.

We remark that (1.2) is equivalent to [0, 1] =
⋃m
i=0 φi([0, 1]), i.e., K8 = [0, 1].

Now for a given pair (q,m) with 1 < q ≤ m + 1, consider a special IFS 8 =
{ρx + bi}

m
i=0 with ρ = q−1 and bi = i(1− q−1)/m for 0 ≤ i ≤ m. Then 8 satisfies the

assumptions in Theorem 1.11. However 8 satisfies the weak separation condition if and
only if 0 is not an accumulation point of Ym(q); whilst 8 satisfies the finite type condi-
tion if and only if Ym(q) has no finite accumulation points in R (see Lemma 2.1). Hence
according to Theorem 1.11, the condition that 0 is not an accumulation point of Ym(q) im-
plies that Ym(q) has no finite accumulation points in R; from which Theorem 1.6 follows.
As a corollary of this and Theorem 1.2, we have

Corollary 1.12. For a given pair (q,m) with 1 < q < m + 1, let 8 denote the IFS
{φi(x) = q

−1x+ i(1−q−1)/m}mi=0 on R. Then8 satisfies the weak separation condition
(resp. the finite type condition) if and only if q is a Pisot number.

The paper is organized as follows. In Section 2, we prove Theorem 1.11. In Section 3, we
give some final remarks and questions.
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2. Separation properties of IFSs and the proof of Theorem 1.11

Before giving the proof of Theorem 1.11, we present two lemmas.

Lemma 2.1. Let 8 = {φi(x) = ρx + bi}mi=0 be an IFS on R with

0 < ρ < 1, 0 = b0 < · · · < bm = 1− ρ.

Denote

Y =
{ n∑
i=1

εiρ
−i
: εi ∈ {bs − bt : 0 ≤ s, t ≤ m}, n = 1, 2, . . .

}
.

Then 8 satisfies the weak separation condition if and only if 0 is not an accumulation
point of Y ; whilst 8 satisfies the finite type condition if and only if Y has no finite accu-
mulation points in R.

Proof. For n ≥ 1, I = i1 . . . in, J = j1 . . . jn ∈ {0, 1, . . . , m}n, we have

ρ−n(φI (0)− φJ (0)) =
n∑
s=1

(bis − bjs )ρ
−(n+1−s)

=

n∑
s=1

(bin+1−s − bjn+1−s )ρ
−s . (2.1)

Hence by Definition 1.8, 8 satisfies the weak separation condition if and only if 0 is not
an accumulation point of Y . In the following we show that Y has no finite accumulation
points if and only if 8 satisfies the finite type condition.

By (2.1) and Definition 1.9, we see that 8 satisfies the finite type condition if and
only if Y ∩ [−1, 1] contains only finitely many points. It is straightforward to see that
Y having no finite accumulation points implies Y ∩ [−1, 1] contains only finitely many
points. Hence to finish the proof, we only need to show that the finiteness of Y ∩ [−1, 1]
implies that Y has no finite accumulation points.

From now on, we assume that Y ∩ [−1, 1] contains only finitely many points. Set
A = Y ∩ [−1, 1] and B = {bi − bj : 0 ≤ i, j ≤ m}. Since A and B are finite sets, we
can pick u > 1 such that (1, u) ∩ ρ−1(A+ B) = ∅, where

ρ−1(A+ B) := {ρ−1(x + ε) : x ∈ A, ε ∈ B}.

Since 0 ∈ A, we have (1, u)∩ ρ−1B = ∅. We first claim that Y ∩ (1, u) = ∅. To see this,
for any y ∈ Y , let deg(y) denote the smallest n ∈ N such that y =

∑n
i=1 εiρ

−i for some
ε1, . . . , εn ∈ B. Assume on the contrary that Y ∩ (1, u) 6= ∅. Define

N = min{deg(y) : y ∈ Y ∩ (1, u)}.

Then N ∈ N. Pick z ∈ Y ∩ (1, u) so that deg(z) = N . Since (1, u)∩ ρ−1B = ∅, we have
z 6∈ ρ−1B and thus N = deg(z) ≥ 2. Then there exist ε1, . . . , εN ∈ B such that

z =

N∑
i=1

εiρ
−i .
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Denote w =
∑N−1
i=1 εi+1ρ

−i . Then w ∈ Y and z = ρ−1w + ρ−1ε1. Notice that w 6∈ A
(and hence |w| > 1); for otherwise we have z ∈ ρ−1(A + B), contradicting (1, u) ∩
ρ−1(A+ B) = ∅ and z ∈ (1, u). On the other hand, we must have |w| < z; if not,

|ρ−1ε1| = |ρ
−1w − z| ≥ ρ−1

|w| − z ≥ (ρ−1
− 1)z > ρ−1

− 1 = ρ−1 maxB,

leading to a contradiction. Therefore, we have 1 < |w| < z < u, and thus |w| ∈ Y∩(1, u).
However, deg(|w|) ≤ N−1 < deg(z), contradicting the minimality of deg(z). Therefore,
we must have Y ∩ (1, u) = ∅.

Since Y = −Y , we also have Y ∩ (−u,−1) = ∅. Thus Y ∩ (−u, u) contains only
finitely many points. Finally, we show that Y has no finite accumulation points. Assume
on the contrary that Y has a finite accumulation point, say v. Since Y ∩ (−u, u) contains
only finitely many points, we must have |v| ≥ u. Note that for any n ∈ N,

Y = ρ−nY +Dn, (2.2)

where Dn := {
∑n
i=1 εiρ

−i
: εi ∈ B for all i}. Take a large n such that ρn|v| + 1 < u. By

(2.2), Y has a finite accumulation point w (it is possible that w /∈ Y ), and z ∈ Dn such
that v = ρ−nw + z. Then

|w| = |ρn(v − z)| ≤ ρn|v| + ρn
n∑
i=1

(1− ρ)ρ−i < ρn|v| + 1 < u.

This contradicts the fact that Y has no accumulation points in (−u, u). ut

Lemma 2.2. Let 8 = {φi(x) = ρx + bi}mi=0 be an IFS satisfying

0 < ρ < 1, 0 = b0 < · · · < bm = 1− ρ,
bi+1 − bi ≤ ρ for all 0 ≤ i ≤ m− 1.

Then:

(1) For any n ∈ N, we have [0, 1] =
⋃
I∈{0,1,...,m}n φI ([0, 1]).

(2) For n, k ∈ N and J ∈ {0, 1, . . . , m}n, if [c, d] is a subinterval of φJ ([0, 1]) of length
≥ ρn+k , then there exists J ′ ∈ {0, 1, . . . , m}k such that φJJ ′(0) ∈ [c, d].

Proof. It is direct to check that [0, 1] =
⋃m
i=0 φi([0, 1]). Iterating this relation n times

yields (1).
To see (2), note that φ−1

J ([c, d]) is a subinterval of [0, 1] of length ≥ ρk . By (1), there
exists J ′ ∈ {0, 1, . . . , m}k such that φJ ′(0) ∈ φ

−1
J ([c, d]). Hence φJJ ′(0) ∈ [c, d]. ut

Proof of Theorem 1.11. We divide the proof into smaller steps.

Step 1. Let 0 < δ < 1. We claim that there is a finite set 0δ ⊂ [0, 1 − δ] such that for
each n ∈ N and I, J ∈ {0, 1, . . . , m}n,

either ρ−n|φI (0)− φJ (0)| > 1− δ or ρ−n|φI (0)− φJ (0)| ∈ 0δ. (2.3)
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To prove the above claim, we use an idea in [11]. Since8 satisfies the weak separation
condition, according to the pigeon-hole principle we have

sup
x∈[0,1], k∈N

#
{
φI (0) : φI (0) ∈ [x, x + ρk], I ∈ {0, 1, . . . , m}k

}
=: ` <∞, (2.4)

where #X denotes the cardinality of X. Indeed, we have ` ≤ 1/c + 1, where c is the
constant in Definition 1.8.

Pick x ∈ [0, 1] and k ∈ N so that the supremum in (2.4) is attained at (x, k). Clearly,
the supremum is then also attained at (φI (x), n+k) for any n ∈ N and I ∈ {0, 1, . . . , m}n.
Pick a large integer k′ so that ρk

′

+ ρk
′
+k < 1 and let

x0 = φ0k′ (x), k0 = k
′
+ k.

Then [x0, x0 + ρ
k0 ] ⊂ [0, 1] and the supremum in (2.4) is attained at (x0, k0). Choose

W1, . . . ,W` ∈ {0, 1, . . . , m}k0 such that φW1(0), . . . , φW`(0) are different points in
[x0, x0 + ρ

k0 ].
Fix 0 < δ < 1. Pick k1 ∈ N so that

ρδ ≤ ρk1 < δ. (2.5)

Now suppose that I, J ∈ {0, 1, . . . , m}n for some n ∈ N are such that

|φI (0)− φJ (0)| ≤ (1− δ)ρn.

Without loss of generality, assume that φI (0) ≤ φJ (0). Denote1 = [φJ (0), φI (0)+ρn].
Clearly 1 ⊂ φI ([0, 1]) ∩ φJ ([0, 1]), and |1| ≥ δρn, where |1| denotes the length of 1.
Since φI (0) + ρn = φI (1), we see that φ−1

I (1) = [u, 1] for some u ∈ (0, 1) with
1 − u ≥ δ > ρk1 . Set I ′ = m . . .m (k1 letters). Since φm(1) = 1, we have φI ′(1) = 1.
Observe that φI ′([0, 1]) has length ρk1 , therefore φI ′([0, 1]) = [1− ρk1 , 1] ⊂ [u, 1], and
thus φII ′([0, 1]) ⊂ φI ([u, 1]) = 1; in particular,

φII ′([x0, x0 + ρ
k0 ]) ⊂ 1 ⊂ φJ ([0, 1]).

Note that φII ′([x0, x0 + ρk0 ]) is a subinterval of φJ ([0, 1]) with length ρn+k0+k1 .
By Lemma 2.2(2), there exists J ′ ∈ {0, 1, . . . , m}k0+k1 such that φJJ ′(0) ∈
φII ′([x0, x0 + ρk0 ]). Let x1 = φII ′(x0). Then φII ′([x0, x0 + ρk0 ]) = [x1, x1 +

ρn+k0+k1 ]. Recall that φW1(0), . . . , φW`(0) are different points in [x0, x0 + ρ
k0 ], hence

φII ′W1(0), . . . , φII ′W`(0) are ` distinct points in [x1, x1 + ρ
n+k0+k1 ]. Since φJJ ′(0) ∈

[x1, x1 + ρ
n+k0+k1 ], by the maximality of ` (cf. (2.4)) we must have

φJJ ′(0) ∈ {φII ′Wj (0) : 1 ≤ j ≤ `}.

That is,
φJ (0)+ ρnφJ ′(0) ∈ {φI (0)+ ρnφI ′Wj (0) : 1 ≤ j ≤ `}.

It follows that

ρ−n(φJ (0)− φI (0)) ∈ {φI ′Wj (0)− φJ ′(0) : 1 ≤ j ≤ `}

⊂
{
φ
Ĩ
(0)− φ

J̃
(0) : Ĩ , J̃ ∈ {0, 1, . . . , m}k0+k1

}
.
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Hence we can finish the proof of the claim in Step 1 by setting

0δ =
{
φ
Ĩ
(0)− φ

J̃
(0) : Ĩ , J̃ ∈ {0, 1, . . . , m}k0+k1

}
∩ [0, 1− δ]. (2.6)

Step 2. Denote γ = min{b1, bm − bm−1} and B = {bi − bj : 0 ≤ i, j ≤ m}. By (1.1) and
(1.2), 0 < γ ≤ ρ < 1. Let 0γ be as in Step 1 (with δ = γ ). Set

η := max
(
ρ−1(±0γ + B) ∩ [0, 1)

)
.

Clearly 0 ≤ η < 1. We claim that for any n ∈ N and I, J ∈ {0, 1, . . . , m}n,

either ρ−n|φI (0)− φJ (0)| ≥ 1 or ρ−n|φI (0)− φJ (0)| ≤ η. (2.7)

Assume the claim is not true. Then we can find n ∈ N and I, J ∈ {0, 1, . . . , m}n such
that

η < ρ−n(φJ (0)− φI (0)) < 1. (2.8)

Assume further that the above n is the smallest possible.
First we show that n ≥ 2. Indeed, otherwise n = 1 and by (2.8), 0 < ρ−1(φJ (0) −

φI (0)) < 1, and hence ρ−1(φJ (0) − φI (0)) ∈ ρ−1B ∩ [0, 1); by the definition of η and
the fact 0 ∈ 0γ , we have ρ−1(φJ (0)− φI (0)) ≤ η, contrary to (2.8).

Since n ≥ 2, we can write

I = I ′i, J = J ′j,

where I ′, J ′ ∈ {0, 1, . . . , m}n−1 and i, j ∈ {0, 1, . . . , m}. Then we have

φI (0) = φI ′(0)+ ρn−1bi, φJ (0) = φJ ′(0)+ ρn−1bj .

Therefore,
φJ ′(0)− φI ′(0) = φJ (0)− φI (0)+ ρn−1(bi − bj ). (2.9)

By (2.9) and (2.8), we have

|φJ ′(0)− φI ′(0)| < ρn + ρn−1(1− ρ) = ρn−1. (2.10)

In the following we show further that

|φJ ′(0)− φI ′(0)| ≤ (1− γ )ρn−1. (2.11)

By (2.9) and the fact that φJ (0) > φI (0), we have

φJ ′(0)− φI ′(0) > ρn−1(bi − bj ) ≥ −ρ
n−1(1− ρ) ≥ −ρn−1(1− γ ). (2.12)

To get an upper bound for φJ ′(0) − φI ′(0), we consider the following two scenarios
separately:

(i) (i, j) = (m, 0);
(ii) (i, j) 6= (m, 0).
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First assume that (i) occurs. Then by (2.9),

φJ ′(0)− φI ′(0) = φJ (0)− φI (0)+ ρn−1(1− ρ),

from which and (2.8) we obtain

φJ ′(0)− φI ′(0)
ρn−1 =

φJ (0)− φI (0)
ρn−1 + (1− ρ)

=
φJ (0)− φI (0)

ρn
+ (1− ρ)

(
1−

φJ (0)− φI (0)
ρn

)
>
φJ (0)− φI (0)

ρn
> η.

This together with (2.10) yields 1 > ρ−(n−1)(φJ ′(0) − φI ′(0)) > η, contradicting the
minimality of n. Hence (i) cannot happen, and (ii) must occur. Since (i, j) 6= (m, 0), we
have

bj − bi ≥ min{b1 − bm, b0 − bm−1} = min{b1 − (1− ρ), −bm−1}.

This together with (2.9) yields

φJ ′(0)− φI ′(0) ≤ ρn − ρn−1
·min{b1 − (1− ρ), −bm−1}

= ρn−1
·max{1− b1, 1− (bm − bm−1)}

= ρn−1(1− γ ). (2.13)

Now (2.11) follows from (2.12) and (2.13).
According to (2.11) and the claim in Step 1, we have ρ−(n−1)

|φJ ′(0)− φI ′(0)| ∈ 0γ .
Then by (2.9),

ρ−n(φJ (0)− φI (0)) = ρ−n(φJ ′(0)− φI ′(0))+ ρ−1(bj − bi)

∈ ρ−1(±0γ + B).

This together with (2.8) yields ρ−n(φJ (0)−φI (0)) ∈ ρ−1(±0γ +B)∩[0, 1). By the def-
inition of η, we have ρ−n(φJ (0)−φI (0)) ≤ η, which contradicts (2.8). This proves (2.7).

Step 3. Let η ∈ [0, 1) be as in Step 2. Combining (2.7) with the claim in Step 1, for any
n ∈ N and I, J ∈ {0, 1, . . . , m}n we have

either ρ−n|φI (0)− φJ (0)| ≥ 1 or ρ−n|φI (0)− φJ (0)| ∈ 01−η,

where 01 := {0}. Hence 8 satisfies the finite type condition. This finishes the proof of
Theorem 1.11. ut
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3. Final remarks and open questions

3.1

It is worth mentioning a connection between the topological property of Ym(q) and the
following famous unsolved question. Suppose q > 1 is such that ‖λqn‖ → 0 as n→∞
for some real number λ > 0; can we assert that q is a Pisot number? Here ‖x‖ denotes
the absolute value of the difference between x and the nearest integer. This was answered
positively by Pisot [21] (see also [22]) if in addition one of the following conditions is
satisfied: (i) ‖λqn‖ tends to 0 rapidly enough so that

∑
∞

n=1 ‖λq
n
‖

2 < ∞, or (ii) q is an
algebraic number.

We remark that Theorem 1.2 (also Bugeaud’s result in [3]) implies the following
weaker result:

∞∑
n=1

‖λqn‖ <∞ ⇒ q is a Pisot number. (3.1)

To see this, assume that
∑
∞

n=1 ‖λq
n
‖ < ∞. Pick a positive integer m > q − 1. Take a

large integer N so that
∑
n≥N ‖λq

n
‖ < 1/(3m). Then ‖y‖ < 1/3 for any real number

y in the set F = {
∑n+N
i=N εiλq

i
: εi ∈ {0,±1, . . . ,±m}, n = 0, 1, . . . }. Hence F is

not dense in R. Note that Ym(q) = F/(λqN ). So Ym(q) is not dense in R. Therefore by
Theorem 1.2, q is a Pisot number.

As pointed out by an anonymous referee, using Theorem 1.2, the implication (3.1)
also follows from the following inequality:

`1(q) ≥ (λq
N )−1

(
1−

∞∑
n=N

‖λqn‖
)

if
∞∑
n=N

‖λqn‖ <
1

q + 1
.

This inequality is only formulated in [8, Theorem 1] in the case when λ = 1, but it extends
to λ > 0 with the identical proof.

3.2

We remark that the proof of Theorem 1.11 implies the following result, which is of interest
in its own right.

Proposition 3.1. Under the assumptions of Theorem 1.11, there exists k ∈ N such that
for any n ∈ N and I, J ∈ {0, 1, . . . , m}n, if ρ−n|φI (0) − φJ (0)| < 1, then there exist
I ′, J ′ ∈ {0, 1, . . . , m}k such that φII ′(0) = φJJ ′(0).

As a corollary, we have

Corollary 3.2. Assume that m ∈ N and q is a Pisot number in (1, m + 1]. Then there
exists k ∈ N such that if |

∑n−1
i=0 εiq

i
| < m/(q − 1) for some n ∈ N and ε0, . . . , εn−1 ∈

{0,±1, . . . ,±m}, then there exist εn, . . . , εn+k−1 ∈ {0,±1, . . . ,±m} such that

n+k−1∑
i=0

εiq
i
= 0.
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Similar to Pisot numbers, there is a certain separation property for Salem numbers. Recall
that q > 1 is called a Salem number if it is an algebraic integer whose algebraic conjugates
all have modulus no greater than 1, and at least one of them is on the unit circle. It follows
from Lemma 1.51 in Garsia [12] that if q is a Salem number and m ∈ N, then there exist
c > 0 and k ∈ N (c, k depend on q and m) such that

Y nm(q) ∩ (−cn
−k, cn−k) = {0}, ∀n ∈ N, (3.2)

where Y nm(q) := {
∑n−1
i=0 εiq

i
: εi ∈ {0,±1, . . . ,±m}}. We end the paper by posing the

following questions.

• For m ∈ N and a non-Pisot number q ∈ (1, m+ 1), does the property (3.2) imply that
q is a Salem number?
• Does Theorem 1.11 still hold without the assumption (1.2)?
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