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Abstract. Inspired by the ideas of the minimal model program, Shepherd-Barron, Kollár, and
Alexeev have constructed a geometric compactification for the moduli space of surfaces of log gen-
eral type. In this paper, we discuss one of the simplest examples that fits into this framework: the
case of pairs (X,H) consisting of a degree twoK3 surface X and an ample divisorH . Specifically,
we construct and explicitly describe a geometric compactification P2 for the moduli space of degree
two K3 pairs. This compactification has a natural forgetful map to the Baily–Borel compactifica-
tion of the moduli space F2 of degree two K3 surfaces. Using this map and the modular meaning
of P2, we obtain a better understanding of the geometry of the standard compactifications of F2.
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Introduction

The search for geometric compactifications for moduli spaces is one of the central prob-
lems in algebraic geometry. After the successful constructions of compactifications for
the moduli spaces of curves (Deligne–Mumford), and abelian varieties (Mumford, Nami-
kawa, Alexeev, and others), a case that attracted a great deal of interest was that of polar-
ized K3 surfaces (see e.g. [FM83b]). Similar to the case of abelian varieties, the moduli
space of polarized K3 surfaces is a locally symmetric variety and as such it has several
compactifications, the most commonly studied being the Baily–Borel and toroidal com-
pactifications. Unfortunately, very little is known about the geometric meaning of those.
The best understood situation is that of low degreeK3 surfaces where algebraic construc-
tions for the moduli space are available via GIT. Namely, for degree 2 (and similarly for
degree 4), Shah constructed a compactification M̂ for the moduli of degree 2 K3 sur-
faces which has several good properties (see Thm. 1.6). For instance, M̂ is an Artin stack
with weak modular meaning (in the sense of GIT): M̂ parameterizes degenerations ofK3
surfaces that are Gorenstein and have at worst semi-log-canonical singularities.

The space M̂ was constructed by Shah [Sha80] as a partial Kirwan desingulariza-
tion of the GIT quotient M for sextic curves (see also [KL89]). Alternatively, for any
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degree, the moduli space of polarized K3 surfaces is isomorphic to a locally symmetric
variety D/0d . The space D/0d has a natural compactification, the Baily–Borel com-
pactification (D/0d)∗. For degree 2, as shown by Looijenga [Loo86], Shah’s model M̂
is a small partial resolution of (D/02)

∗, and is in fact a semitoric compactification in
the sense of [Loo03] (see Thm. 1.9). Thus, M̂ has a dual description which gives com-
plementary information: the GIT construction provides some geometric meaning to the
boundary, and, on the other hand, the semitoric construction gives a rich structure, which
can be further exploited in applications. Arguably M̂ is the “best” compactification for
the moduli space F2 of degree 2 K3 surfaces known at this point.

The issue is that M̂ is not modular in the usual sense: it fails to be separated at the
boundary. While one might hope that some toroidal compactification D/02

6
(refining

M̂ and (D/02)
∗) would give a modular compactification for F2, as in the case of abelian

varieties (see [Nam80], [Ale02]), this is not known and seems out of reach (see however
[Ols04] and Rem. 6.5). In this paper, we go in a different direction. Namely, we modify
the moduli problem and construct a modular compactification P2 of the corresponding
moduli space which admits a forgetful map P2 → (D/02)

∗ (generically a P2-fibration).
In other words, we obtain a fibration with modular meaning over some compactification
of F2. We note that P2 sheds further light on the geometric meaning of the standard
compactifications (e.g. GIT, Baily–Borel) of F2 and we expect it to play an important role
in the elusive search for a geometric compactification for the moduli space ofK3 surfaces.

Remark. For clarity, let us comment on the meaning of “modular” or “geometric” used
in this paper. First of all, most of the spaces considered here (e.g. M̂) are constructed
via GIT and consequently have some weak geometric meaning, e.g. over the stable locus
there is (locally) a universal family, and each point corresponds to a unique polystable
(i.e. semistable and closed) orbit. From a stack perspective, these spaces are (separated)
coarse moduli spaces associated to Artin stacks, and they have good properties (see Alper
[Alp13] for a formalization of these properties, and the corresponding notion of “good
moduli”). Here, we would like to obtain something more geometric; ideally, we would like
to obtain a coarse moduli space associated to a proper and separated Deligne–Mumford
stack. Unfortunately, we obtain somewhat less: Namely, as usually in the KSBA frame-
work, there is a Deligne–Mumford stack, but the associated coarse moduli space has mul-
tiple components. Our goal is to describe the objects parameterized by the main compo-
nent P2 of smoothable pairs. When we reduce to P2 (essentially, considering the reduced
closure of the smooth locus), we loose the functorial meaning. Nonetheless, we still say
that P2 is geometric; for K3’s there might be some workarounds (see e.g. Rem. 2.15),
but this is of secondary concern for us.

Concretely, we consider the moduli space P2 of pairs (X,H) consisting of a degree 2
K3 surface and an ample divisor of degree 2. There is a natural forgetful map P2 → F2
given by (X,H) → (X,OX(H)), that makes P2 a P2-bundle over the moduli space of
degree 2 K3 surfaces. We compactify P2 using the framework introduced by Kollár–
Shepherd-Barron [KSB88] and Alexeev [Ale96] (called KSBA in what follows) and the
ε-coefficient approach pioneered by Hacking [Hac04]. The main idea of this approach is
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to view a degree 2 pair as a log general type pair (X, εH) and to compactify by allowing
stable pairs (i.e. require (X, εH) to have slc singularities andH to be ample). Then a geo-
metric compactification for P2 exists by general principles in the minimal model program
(MMP). In fact, the same is true for all degrees, and thus one obtains geometric compact-
ifications Pd for all degrees d ∈ 2Z+ (see Cor. 2.12). The issue is that it is very difficult
to understand Pd directly. The main result of the paper is to construct P2 explicitly and
to describe the boundary pairs. We summarize the main result as follows:

Main Theorem. Let F2 and P2 be the moduli spaces of degree 2 K3 surfaces and of
degree 2 pairs respectively. There exists a geometric compactification P2 of P2 param-
eterizing stable degree 2 pairs (Def. 2.3) and a natural map P2 → (D/02)

∗ to the
Baily–Borel compactification extending the forgetful map P2 → F2. Furthermore, there
exist six irreducible boundary components for P2 of dimensions 3, 4, 10, 12, 13, and 19
respectively. The geometric meaning of these components is described in Table 1 (see
Thms. 6.1 and 7.1 and Table 2 for further details).

Table 1. Boundary components of P2.

Description (generic point) dim Type II case Type III

1 X = V1 ∪E V2, Vi ∼= P2 3 A17 E nodal
2 X = V1 ∪E V2, Vi deg 1 del Pezzo’s 19 E2

8 + A1 (A) E nodal
3 Xν a quadric in P3, E a double curve 4 D16 + A1 E nodal, or

E = C1 ∪ C2
4 Xν a deg 2 del Pezzo, E a double curve 10 E7 +D10 (A) E nodal
5 X rational with an Ẽ8 singularity 12 E2

8 + A1 (B) T2,3,7
6 X rational with an Ẽ7 singularity 13 E7 +D10 (B) T2,4,5

We recall that the Baily–Borel compactification (D/02)
∗ is obtained by adding four

rational curves to F2 (see Thm. 1.1 and Fig. 2). Each of the six boundary components
of P2 will map to one of the four Baily–Borel boundary components, giving them a fi-
bration structure over P1. For instance, the three-dimensional boundary component of P2
corresponding to the first case of Table 1 is a P2-fibration over P1 (the closure of the Type
II Baily–Borel boundary component IIA17 ). For further details see the following remark
and Sections 6 and 7.

Remark. Here we make some comments on the content of Table 1. The boundary com-
ponents are labeled by the cases given by the classification of degree two 0-surfaces (cf.
[SB83b]) of Proposition 3.14. The second column describes the generic stable pair (X,H)
parameterized by a boundary component. The class of the polarizing divisor H is easily
determined in each case, and we omit it from the description. In the table, E refers to an
anticanonical divisor on some (normalized) component of X. The map sending a bound-
ary component in P2 to a Baily–Borel boundary component (which is isomorphic to P1)
is given by taking the j -invariant of E. The division into Type II (i.e. E smooth) cases
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is discussed in Section 6. The column labeled Type III describes the generic degeneracy
condition to get a Type III case (see Section 7). Note that in case 3 there are two (codi-
mension 1) possibilities for the degenerations of E: either a nodal quartic curve in P3 or
a union of two hyperplane sections of a quadric in P3.

Our approach to understanding P2 is to relate this space to a GIT quotient for pairs.
Specifically, we first construct a GIT quotient P̂2 and a natural forgetful map P̂2 → M̂
(see Thm. 4.1) by including the GIT analysis of Shah [Sha80] into a larger VGIT problem
that takes into account the polarization divisor as well. This VGIT set-up is quite similar to
that of [Laz09]. To get an idea of the set-up and of why considering divisors instead of line
bundles is relevant, we recommend the reader to see first the example discussed in §4.1.

The GIT space P̂2 is not the same as P2, but they agree over the stable locus in P̂2. We
show P2 is a flip (at least at a set-theoretic level, but likely in a VGIT sense) of P̂2 along
the semistable locus (see Thm. 5.1). The main point in comparing the GIT and KSBA
compactifications is a good understanding of the GIT boundary pairs and the results
on linear systems on anticanonical pairs of Friedman [Fri83b] and Harbourne [Har97a,
Har97b] (see especially Prop. 3.14).

Our paper builds on the work on K3 surfaces of Shah [Sha80, Sha79], Looijenga
[Loo86, Loo03, Loo81], Friedman and Scattone [Fri84, FS85, Sca87], and on the work on
compactifications of Kollár [Kol10], Shepherd-Barron [SB83a, SB83b], [KSB88], Alex-
eev [Ale96], and Hacking [Hac04]. We also note that some discussion of degenerations
of degree 2 K3 surfaces from the perspective of the minimal model program was given
recently by Thompson [Tho10] (see Thm. 2.16). The main difference from our paper is
that [Tho10] never keeps track of the polarizing divisor H , and consequently it is not
possible to fit the degenerations occurring in [Tho10] into a proper and separated moduli
stack. We believe that one of the main contributions this paper provides for the general
theory of moduli is to show concretely the importance of working with log general type:
by considering polarizing divisors instead of polarizations, the boundary points are nat-
urally separated and fit into a moduli space. The example of §4.1 clearly illustrates this
point in a simple case. Related to this example, we note that the moduli space of weighted
pointed curves considered by Hassett [Has03] is a one-dimensional analogue (especially
for genus 1) of the moduli problem considered here. The geometric compactification for
Ag constructed by Alexeev [Ale02] is closely related to the K3 case studied here, but
the methods of understanding the boundary are different. Finally, Hacking–Keel–Tevelev
[HKT09] is another application of the KSBA approach to compactifying moduli spaces
of special classes of surfaces (del Pezzo in [HKT09]).

We close with some remarks about the general degree d case. First, a very similar
analysis (involving GIT) can be carried out for other low degree cases. On the other hand,
in general, the results of Section 2 establish the existence of a geometric compactifica-
tion Pd for the moduli space of degree d K3 pairs. By Hodge-theoretic considerations
(see [Sha79], [KSS10], and [Usu06]), we also expect that this compactification maps to
the Baily–Borel compactification (i.e. Pd → (D/0d)∗). Then the results of Section 3
give a procedure for identifying the essential components (i.e. the “0-surfaces”) of the
central fiber in a degree d degeneration. In principle, for a given degree d , these tech-
niques would allow one to identify the boundary components in Pd . However, as the de-
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gree increases, the number of cases in the classification of 0-surfaces (analogue to Prop.
3.14) and the number of possible gluings of these 0-surfaces will grow very fast (roughly
proportionally to the number of partitions of d), making an explicit classification unfeasi-
ble for large d . Finally, we note that the GIT approach (for small d) not only helps classify
the boundary cases, but also gives a lot of structure to the fibration Pd → (D/0d)∗.

We are also aware of some partial results and general approaches to the study of Pd by
other researchers (see e.g. [GHK15]). While we are considering only the degree two case
here, our study is the first complete analysis of a geometric compactification forK3 pairs
and one of the first in the KSBA framework for log general type surfaces (see however
[HKT09]). We believe that our study is relevant to the general Pd case and to the original
compactification problem for K3 surfaces.

Organization

In Section 1, we review the standard compactifications for the moduli space of degree 2
K3’s and discuss the space M̂. This material is standard, but rather scattered through-
out the literature. Then, in Section 2, we introduce the KSBA compactification (based on
[SB83b], [KSB88], [Ale96], and [Hac04]) and establish the existence of a modular com-
pactification Pd . Next, in Section 3, we review and adapt some results on linear systems
on anticanonical pairs of Friedman [Fri83b] and Harbourne [Har97a].

The actual construction of P2 starts in Section 4, where we introduce the VGIT prob-
lem (generalizing [Sha80] to K3 pairs) and discuss the space P̂2. Then, in Section 5, we
compare the GIT compactification P̂2 with the KSBA compactification P2 for the moduli
space of degree 2 K3 pairs. Finally, in Sections 6 and 7, we discuss in some detail the
classification of Type II and Type III degenerations respectively. Here, we also discuss the
connection to the standard compactifications (GIT, Baily–Borel, or partial toroidal) of F2.

1. Review of the standard compactifications of F2

In this section we review some facts about the moduli space F2 of degree 2 K3 surfaces
and its compactifications. While all the results here are well known (see especially Shah
[Sha80], Looijenga [Loo86], Friedman [Fri84], and Scattone [Sca87]), the presentation is
somewhat new and adapted to the needs of the paper.

1.1. The Baily–Borel compactification

In general, the moduli space Fd of K3 surfaces of degree d is isomorphic to a locally
symmetric variety D/0d , where D is a 19-dimensional Type IV domain and 0d is an
arithmetic group acting on D. Namely, D ∼= {ω ∈ P(3d ⊗Z C) | ω.ω = 0, ω.ω̄ > 0}0
and 0d is a subgroup of finite index in O(3d), where 3d ∼= 〈−d〉 ⊕ E⊕2

8 ⊕ U
⊕2 is

the primitive middle cohomology of a degree d K3 surface. By Baily–Borel theory, the
space D/0d is a quasi-projective algebraic variety and admits a projective compactifica-
tion (D/0d)∗. For Type IV domains, the Baily–Borel compactification (D/0d)∗ is quite
small: topologically, it is obtained by adding points (Type III components) and curves
(Type II components), which are quotients of the upper half-space H by modular groups.
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The Baily–Borel compactifications for the moduli spaces of K3 surfaces were ana-
lyzed by Scattone [Sca87]. In particular, for degree 2, the following holds:

Theorem 1.1 (Scattone). The boundary of F∗2 = (D/02)
∗ consists of four curves (the

closures of the Type II components) meeting in a single point (the unique Type III com-
ponent). Furthermore, each Type II component is isomorphic to H/SL(2,Z).
Proof. [Sca87, §6.2] and [Sca87, §5.5, esp. Fig. 5.5.7] for the second statement. ut

Remark 1.2. The Type II components are in one-to-one correspondence with the rank 2
isotropic sublattices E of3d modulo 0d . Moreover, E⊥3d /E is a negative definite rank 18
lattice and a basic arithmetic invariant ofE (and of the corresponding Type II component).
The subroot lattice R contained in E⊥3d /E is another (coarser) arithmetic invariant. In
many cases (e.g. degree 2), R uniquely determines the isometry class of E. Consequently,
it is customary to label the Type II components by the root lattice R. For degree 2, the
four Type II components correspond to the root lattices 2E8 +A1, E7 +D10, D16 +A1,
and A17 respectively (see Fig. 2).

1.2. The GIT compactification

For low degreeK3 surfaces (e.g. d ≤ 8), an alternative (purely algebraic) construction for
the moduli space Fd can be given via GIT. Additionally, GIT produces a compactification
with some weak geometric meaning. Here, we review the results of Shah [Sha80] for
degree 2K3 surfaces. The connection to the Baily–Borel compactification is discussed in
§1.4 below.

A generic K3 surface of degree 2 is a double cover of P2 branched along a plane
sextic. Thus, a first approximation of the moduli space F2 of degree 2 K3 surfaces is the
GIT quotient M := PH 0(P2,OP2(6))//SL(3) for plane sextics. This GIT quotient was
described by Shah [Sha80, Thm. 2.4].

Theorem 1.3 (Shah). Let M be the GIT quotient of plane sextics.

(1) A sextic with ADE singularities is GIT stable. Thus, there exists an open subset
M ⊂ M which is a coarse moduli space for sextics with ADE singularities (or
equivalently non-unigonal degree 2 K3 surfaces).

(2) M \M consists of seven strata (irreducible, locally closed, disjoint subsets):

(Type II) Z1, Z2, Z3, Z4 of dimensions 2, 1, 2, and 1 respectively (with Zi corre-
sponding to case II(i) of [Sha80, Thm. 2.4]);
(Type III) τ and ζ of dimensions 1 and 0 (cf. III(1) and III(2) of [Sha80, Thm. 2.4]);
(Type IV) a point ω (cf. IV of [Sha80, Thm. 2.4]).

(3) The following is a complete list of adjacencies among the boundary strata:

(a) ζ ∈ Zi for all i ∈ {1, . . . , 4};
(b) τ = Z1 ∩ Z3;
(c) τ = τ ∪ {ζ } ∪ {ω}

(see Fig. 1).
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Remark 1.4. Each point of a boundary stratum corresponds to a unique minimal orbit.
The singularities of M along the boundary stratum depend on the stabilizers of these
minimal orbits. For our situation, we have the following:

(i) The points parameterized by Z3 and Z4 are stable points. In particular, M has finite
quotient singularities along these strata.

(ii) The stabilizers of closed orbits parameterized by Z1, Z2, and τ are, up to finite in-
dex, C∗.

(iii) The stabilizer of the closed orbit parameterized by ζ (equation (x0x1x2)
2) is the

standard diagonal 2-torus.
(iv) The stabilizer of the closed orbit parameterized by ω (equation (x0x2 − x2

1)
3)

is SL(2).

In particular, note that M has toric singularities everywhere except the point ω.

As noted above, the space M is a moduli space of curves with ADE singularities. The
boundary M \M is not strictly speaking a GIT boundary, but a boundary of non-ADE
singularities. Shah has noted that except for the curves corresponding to the point ω
the singularities that occur are “cohomologically insignificant” (see [Sha79]). In mod-
ern language, the cohomologically insignificant singularities are du Bois singularities (cf.
[Ste81]). In the situation considered here, of two-dimensional hypersurfaces, these sin-
gularities are the same as the semi-log-canonical (slc) singularities of Kollár–Shepherd-
Barron [KSB88] (see also [KK10] and [KSS10] for a more general discussion). Rephras-
ing the analysis of Shah (especially [Sha80, Thm. 3.2]) in modern language, we get the
following key result:

Proposition 1.5. LetC be a plane sextic, andX the double cover of P2 branched alongC
(not necessarily normal). ThenX is slc iff C is GIT semistable and the closure of the orbit
of C does not contain the orbit of the triple conic.

Proof. Assume first that X is slc. This is equivalent to
(
P2, 1

2C
)

being a log canonical
pair. Then C is GIT semistable by [KL04] and [Hac04, §10].

Conversely, assume C is GIT semistable and that its orbit closure does not contain the
triple conic. By the semicontinuity of the log canonical threshold, we can assume without
loss of generality that the orbit of C is closed. An inspection of the list of Shah [Sha80,
Thm. 2.1] shows that the non-ADE singularities of C are either isolated singularities of
type Ẽr (for r = 7, 8) or T2,q,r , or non-isolated singularities that lead to normal crossings,
pinch points, or degenerate cusp singularities for the double cover X. The conclusion
follows (see e.g. [KSB88, Thm. 4.21]).

Finally, the triple conic gives a surface X which does not have slc singularities. It
remains to see that the same is true for semistable curves C that degenerate to the triple
conic. Such a curve C is of type V ((x0x2+ x

2
1)

3
+ f6(x0, x1, x2)), where f6 is a degree 6

polynomial which has negative degree with respect to the weights (1, 0,−1). Passing to
affine coordinates x, y around (1, 0, 0) and after the change of coordinates y′ = y + x2,
we find that C is given by

(y′)3 + f6(1, x, y′ − x2) = (y′)3 + αx7
+ h.o.t.,



232 Radu Laza

where the higher order terms are with respect to the weights 1/3 and 1/7 for y′ and x
respectively. If α 6= 0, (y′)3 + αx7 defines a singularity of type E12 in Arnold’s classifi-
cation (cf. [AGZV85, §16.2.72]). Since this is a quasi-homogeneous singularity, the log
canonical threshold does not depend on the higher order terms. We conclude that X is not
log canonical. By semicontinuity, the same is true if α = 0. ut

1.3. The blow-up of the point ω ∈M
By Mayer’s Theorem, a degree 2 linear system |H | on a K3 surface X is of one of the
following types:

(NU) (Hyperelliptic case) |H | is base point free, in which case X is a double cover of
P2 branched along a plane sextic C with at worst ADE singularities.

(U) (Unigonal case) |H | has a base-curve R, then H = 2E + R, where E is elliptic
and R smooth rational. The free part of |H | (i.e. 2E) maps X to a plane conic, and
gives an elliptic fibration onX. On the other hand, |2H | is base point free and maps
X two-to-one onto 60

4 ⊂ P5, where 60
4 is the cone over the rational normal curve

in P4. The mapX→ 60
4 is ramified at the vertex and in a degree 12 curve B, which

does not pass through the vertex. The curve B has at worst ADE singularities.

As discussed above, all degree 2 K3 surfaces of type (NU) correspond to stable points of
M. On the other hand, all the surfaces of type (U) are mapped to the point ω ∈M. The
blow-up M̂ of ω will introduce all the unigonal surfaces and will give a compactification
for F2. More precisely, we restate the main result of Shah [Sha80] as follows:

Theorem 1.6 (Shah). The Kirwan blow-up M̂ of the point ω ∈ M gives a projective
compactification of the moduli space F2 of degree 2 K3 surfaces. The boundary strata
of F2 ⊂ M̂ are the strict transforms of the boundary strata of M (cf. Thm. 1.3 and see
Figs. 1 and 2). Furthermore, the boundary points of M̂ correspond (in the sense of GIT)
to degenerations of K3 surfaces of degree 2 that are double covers of P2 or 60

4 and have
at worst slc singularities.

Remark 1.7. M̂ is the blow-up of the most singular point of M in the sense that ω ∈M
is the only point whose stabilizer is not almost abelian. It follows that M̂ has only toric
singularities. Kirwan–Lee [KL89] have constructed a full partial desingularization of M
(i.e. M̂ blown-up along the strata with toric stabilizers). While this full desingularization
is essential for cohomological computations on the moduli space, these extra blow-ups do
not seem relevant here.

Remark 1.8. We note that the locus of unigonal K3 surfaces gives a divisor in F2. In
fact, at the level of period domains D/02, the unigonal K3 surfaces correspond to an ir-
reducible Heegner divisor H∞/02, where H∞ is the hyperplane arrangement associated
to the rank 2 lattice

( 0 1
1 −2

)
. Theorem 1.3 (combined with Mayer’s result) gives the iso-

morphism M ∼= (D \H∞)/02. Then, Theorem 1.6 identifies the unigonal divisor with
(an open subset of) the exceptional divisor of M̂→M.
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Plane sextics Curves on 60
4

Z2 Z4 Z1 Z3

Type II

Type III

U1 U3

ζ

τ

ξ

Fig. 1. The minimal orbits parameterized by ∂M̂.

As stated above, the boundary components of F2 ⊂ M̂ are the strict transforms Ẑi of
the strata Zi ⊂M (i.e. closures of Zi). Clearly, Z2 and Z4 are unaffected by the blow-
up of ω. On the other hand, Ẑi → Zi for i = 1, 3 are blow-ups of the point ω on the
surfaces Zi . This introduces the exceptional divisors Ûi ⊂ Ẑi (with open stratum Ui).
The two exceptional divisors intersect the strict transform τ̂ of τ in a point ξ . We have the
following correspondence with the strata of Shah (see also Thm. 4.12):

(i) U1 corresponds to [Sha80, Thm. 4.3 Case 1(ii)], the minimal orbits parameterize
three rational normal curves of degree 4 (hyperplane sections of 60

4 ) tangent in two
points, giving two Ẽ8 singularities.

(ii) U3 corresponds to [Sha80, Thm. 4.3 Case 2(i)], the minimal orbits parameterize two
rational normal curves of degree 4 meeting transversely, one of them counted with
multiplicity 2. This case is in fact stable.

(iii) ξ corresponds to [Sha80, Thm. 4.3 Case 2(ii)], the minimal orbit parameterizes two
rational normal curves tangent in two points, and one of them counted with multi-
plicity 2.

The geometry of the minimal orbits corresponding to the boundary of M̂ is schematically
summarized in Figure 1 (taken from [Loo86]).

1.4. Comparison of the GIT and Baily–Borel compactifications

As discussed above, there are two natural compactifications for the moduli space of de-
gree 2 K3 surfaces: F2 ⊂ M̂ (the Shah/Kirwan GIT construction) and F2 ⊂ (D/02)

∗

(the Baily–Borel compactification). Since the singularities of the surfaces corresponding
to the boundary of M̂ are slc (or “cohomologically insignificant”), Shah [Sha79, Sha80]
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noted that there is a well-defined extended period map M̂ → (D/02)
∗. A little later,

Looijenga [Loo86, Loo03] gave a precise relationship between the two compactifications
as summarized below.

Ẑ1 u1

M̂ τ̂

Z2

Z4

u3
ζ

Ẑ3

II2E8+A1 IIE7+D10

(D/02)
∗

III
IID16+A1 IIA17

Z1

M

Z3

Z2
τ

ζ

Z4

Fig. 2. The boundary strata of M̂.

Theorem 1.9 (Looijenga). The open embeddings F2 ⊂ M̂ and F2 ⊂ (D/02)
∗ extend

to a diagram (with regular maps)

M̂

~~ $$
M // (D/02)

∗

such that

(i) M̂→M is the partial Kirwan blow-up of ω ∈M;
(ii) M̂ → (D/02)

∗ is the Looijenga modification of the Baily–Borel compactification
associated to the hyperplane arrangement H∞ (see [Loo03]); more intrinsically,
it is a small modification of (D/02)

∗ such that the closure of the Heegner divisor
H∞/02 becomes Q-Cartier;

(iii) the exceptional divisor of M̂→M maps to the unigonal divisor;
(iv) the boundary components are mapped as in Figure 2.

Remark 1.10. Shah’s results [Sha80] give a set-theoretic extension of the period map
from M̂ to (D/02)

∗ without matching the strata. Scattone [Sca87] has computed the
Baily–Borel boundary strata. The first matching of the strata (without any extension claim
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for the period map) is due to Friedman [Fri84, Rem. 5.6]. Finally, Looijenga’s results
[Loo86, Loo03] imply that the map M̂ → (D/02)

∗ is analytic (and thus algebraic).
Additionally, it follows that:

(i) For i = 2, 4: Zi ∼= H/SL(2,Z) ∼= A1, the map being given by the j -invariant
associated to the minimal orbits x2

0f4(x1, x2) for Z2 and f3(x0, x1, x2)
2 for Z4. The

Z4 case is stable, thus the orbits are in one-to-one correspondence with the points
of Z4, but for Z2 many orbits degenerate to the same minimal orbit. Even in this
case, the j -invariant is well defined. Namely, Z2 parameterizes two different cases: a
sextic containing a double line meeting the residual quartic in four distinct points, or
a curve with Ẽ7 singularities; there is an obvious j -invariant in both cases.

(ii) For i = 1, 3, there are rational maps Zi 99K P1, which are given by j -invariants;
they are undefined at ω. After the blow-up of ω, we get regular maps Ẑi → P1

(essentially P1-fibrations). The fibers correspond to configurations of conics such
that the j -invariant is unchanged. For example, for Z3, fix the double conic and four
points on it (this fixes the j -invariant), then the corresponding fiber of Ẑ3 → P1 is
the pencil of conics passing through these four points.

2. The KSBA compactification for log K3 surfaces

The Shah–Looijenga compactification M̂ for F2 has several good properties including
that the boundary points correspond (in the sense of GIT) to Gorenstein surfaces with
slc singularities (higher dimensional analogues of the nodal curves). However, M̂ is not
geometric in the sense of moduli theory. In order to obtain a geometric moduli space, we
need to rigidify the moduli problem and change the perspective to the so called KSBA
approach (cf. Kollár–Shepherd-Barron [KSB88] and Alexeev [Ale96]) to compactifying
moduli spaces of varieties of (log) general type. Related ideas appear frequently in the
recent literature on moduli spaces of K3 surfaces (especially work of Gross, Hacking,
Keel, and Alexeev) and abelian varieties [Ale02]. The main new content of our paper is
to explicitly study this KSBA approach in the degree 2 case and to relate it to the GIT and
Hodge-theoretic approaches.

The basic set-up of the KSBA approach was outlined in [KSB88] and [Ale96]. Subse-
quently several subtle technical difficulties were settled (see e.g. [Kol08]), giving a rather
complete theoretical understanding of the dimension 2 case (a subcase of which we are
studying here) (see [Kol]). Roughly speaking, any time there is a moduli space of vari-
eties (pairs) of (log) general type, there is a natural geometric compactification given by
KSBA (generalizing the Deligne–Mumford compactification of Mg). The case of pairs
is more subtle, but nonetheless the situation considered here (floating coefficients for
two-dimensional pairs) is well understood (see [Ale13, Ch. 1] for a recent survey).

The purpose of this section is to specialize these general results to the case ofK3 sur-
faces. Specifically, we will obtain better behavior (than predicted by the general theory)
for the boundary points, and an explicit control of these boundary points.
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2.1. Moduli of K3 pairs

In order to apply the KSBA compactifying approach, we need to change the moduli prob-
lem from K3 surfaces to varieties of log general type. A natural solution is to consider
instead of Fd the moduli stack Pd of pairs (X,H) consisting of K3 surfaces (possibly
with ADE singularities) together with an ample divisor H of degree d; we call such pairs
degree d K3 pairs. The two moduli functors are related by the natural forgetful map

Pd → Fd , (X,H) 7→ (X,OX(H)),

which realizes Pd as a Pg-fibration (with d = 2g − 2) over Fd .

Proposition 2.1. With notation as above, both Fd and Pd are smooth Deligne–Mumford
stacks. Furthermore, the forgetful map Pd → Fd is smooth and proper with fibers iso-
morphic to Pg .

Proof. The smoothness of the moduli functor Fd is well known. For a big and nef divi-
sor H on a K3 surface, hi(OX(H)) = 0 for i > 0, and

h0(OX(H)) = 2+H 2/2 = pa(H)+ 1 = g + 1.

The smoothness of the forgetful map Pd → Fd follows from the fact that
H 1(OX(H)) = 0, which implies that every section of L := OX(H) extends to a first-
order deformation (X,L) of (X,L) (see [Ser06, Prop. 3.3.14]; see also [Bea04, §5]).
Finally, since the automorphism group (as a polarized variety) of a K3 surface is finite
(and the characteristic is 0), it follows that Fd and Pd are Deligne–Mumford stacks. ut

Remark 2.2. We note that H 1(X,L) = 0 for all degenerations of K3 surfaces consid-
ered in this paper (see Def. 2.3 below). Thus, the forgetful map Def(X,H)→ Def(X,L)
is always smooth in our situation (here H is an ample Cartier divisor and L = OX(H) is
the associated invertible sheaf). Specifically, Kodaira vanishing (H i(X,L−1) = 0 for L
ample and i = 0, 1) holds ifX is a demi-normal (i.e.X satisfies S2 and is normal crossing
in codimension 1) projective surface (see [AJ89, Thm. 3.1], and also [KSS10]). By defini-
tion, an slc variety is demi-normal. In our situation, we are also assumingX is Gorenstein
with ωX ∼= OX. Thus, by duality, we get H i(X,L) = 0 for i = 1, 2. By flatness, we also
get h0(X,L) = g + 1.

2.2. Stable K3 pairs

Since the pairs (X,H) are of log general type, the KSBA theory gives a natural compact-
ification for Pd by allowing degenerations that satisfy a condition on the singularities of
the pair (i.e. slc singularities) and a stability condition (i.e. ampleness for the polariza-
tion). More precisely, one has some flexibility in the definition of the moduli points by
allowing a coefficient for the polarizing divisor H (see [Has03] for a similar situation in
dimension 1); only some choices for the coefficients give compactifications for Pd (see
Rem. 2.6). In our situation, we want the KSBA compactification of Pd to be closely re-
lated to some compactifications of Fd . Thus, we would like the choice of a divisor in a
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linear system to be mostly irrelevant. This is achieved by working with the moduli space
of pairs with 0 < ε � 1 coefficients as in Hacking [Hac04]. By adapting the general
KSBA framework to our situation (see Rem. 2.5 and [Ale13, §1.5]), we define the limit
objects in a compactified moduli stack Pd to be stable pairs as follows:

Definition 2.3. Let X be a surface, H an effective divisor on X and d = 2g − 2 an
even positive integer. We say that the pair (X,H) is a stable K3 pair of degree d if the
following conditions are satisfied:

(1) X is Gorenstein with ωX ∼= OX.
(2) H is an ample Cartier divisor.
(3) The pair (X, εH) is semi-log-canonical (slc) for all small ε > 0.
(4) There exists a flat deformation (X,H)/T of (X,H) over the germ of a smooth curve

such that the general fiber (Xt , Ht ) is a degree d K3 pair. Additionally, it is assumed
that H is a relative effective Cartier divisor.

Remark 2.4. Clearly, (X, εH) slc implies that X is slc. Conversely, if X is slc, then
(X, εH) being slc for small ε is equivalent to saying that H does not pass through a
log canonical center. In our situation (X slc and Gorenstein), this means that H does not
contain a component of the double locus of X and does not pass through a simple elliptic
or cusp (possibly degenerate) singularity (see [KSB88, Thm. 4.21]). By working with ε
coefficients, the singularities of the divisor H are irrelevant.

Remark 2.5. The previous definition is standard in a log general type situation with the
exception of the requirements that X is Gorenstein and H Cartier. In fact, the standard
requirement in the KSBA approach is that KX + εH is Q-Cartier (see e.g. [Hac12, Def.
6.1]). If this condition holds for ε in an interval (or equivalently we have generic coeffi-
cients), then both KX and H have to be Q-Cartier and thus X is Q-Gorenstein (see also
[Ale13, §1.5.3]). Moreover, for degenerations ofK3 surfaces, it follows easily that X has
to be Gorenstein with KX trivial (see e.g. [Hac04, Lem. 2.7] or Shepherd-Barron’s Theo-
rem 2.8). Finally, the Cartier condition is justified by the observation that in the set-up of
Theorem 2.8 it follows that L = ρ∗L is a relatively ample Cartier divisor on X (see the
arguments for Theorem 2.9). In other words, for K3 surfaces we can assume the stronger
conditions of Gorenstein (vs. Q-Gorenstein) in (1) and Cartier (vs. Q-Cartier) in (2) and
still get a proper moduli space.

Remark 2.6. Theorem 2.8 (Shepherd-Barron) bounds the type for the polarized surface
(X,L) that underlies a stable pair in the sense of Definition 2.3 (see also Thm. 2.16 for
degree 2). SinceH varies in a linear system (L = OX(H)), we also get a bounded type for
(X,H). We conclude that there exists an ε0 > 0 (depending on d) such that for any ε ∈
(0, ε0) the stability condition (1) does not change. On the other hand, one can use other
coefficients to compactify the moduli of pairs, say require (X, αH) to be slc for some
fixed α ∈ (0, 1). If α < ε0, we get the stable pairs of Definition 2.3. For larger α, typically
the KSBA approach would modify even the interior of Pd . For instance, Example 2.7
below shows that for d = 2 there exists a K3 surface X (with ADE singularities) and an
ample Cartier divisorH such that (X, αH) is log canonical for no α > 1/8 (in particular,
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ε0 ≤ 1/8 for d = 2). It would be interesting to determine the critical values of α (or even
ε0) for which the moduli problem changes. For d = 2, the GIT approach used in this
paper can identify some of the critical values for α (see also [Laz09]). For some related
discussion (for del Pezzo surfaces) from the perspective of MMP see [Che08] (N.B. even
for del Pezzo’s this is a delicate question, related to Tian’s α-invariant).

Example 2.7. Consider the following special plane sextic: C = L + Q, where L is
a line, Q is a quintic with an ordinary node at p, and L meets Q with multiplicity 5
at p. Then the associated double cover X → P2 will have a D10 singularity over p. Let
X → X be the minimal resolution, and π : X → P2 the composite map. Let Ei be the
exceptional (−2)-curves (giving a D10 graph), L′ be the strict transform of L on X, and
H = π∗L. Note that L′ is also a (−2)-curve and meets only E10 (giving a T2,3,8 graph;
N.B. D10 = T2,2,8). A simple computation shows that

H = π∗L =

8∑
k=1

kEk + 4E9 + 5E10 + 2L′.

We conclude that the degree 2 K3 pair (X, αH) (or equivalently (X, αH)) is log canoni-
cal iff α ≤ 1/8.

2.3. The limits of K3 pairs are stable pairs

As already mentioned, a key result that allows us to conclude that the stable pairs give a
compactification for Pd is the following theorem of Shepherd-Barron [SB83b] (see also
[KSB88] and [Kaw88]).

Theorem 2.8 (Shepherd-Barron [SB83b, Thm. 2]). Let π : X → 1 be a semistable
degeneration of K3 surfaces with KX ≡ 0 (i.e. a Kulikov degeneration). Assume L ∈
Pic(X) is nef and L|Xt is a polarization for all t ∈ 1∗. Then, for all n ≥ 4, Ln is
generated by π∗Ln and defines a birational morphism

ρ : X→ X = Proj1
(⊕

n

π∗Ln
)

defined over 1 such that

(a) X is Gorenstein with KX ≡ 0;
(b) X has canonical singularities;
(c) X0 is Gorenstein with slc singularities.

As a direct application of the previous result (and [SB83b, Thm. 1]) we find that the limit
of a one-parameter degeneration ofK3 pairs can always be arranged to be a stable pair in
the sense of Definition 2.3.

Theorem 2.9. Let (X ∗,H∗)/1∗ be a flat family of degree d K3 pairs over the punctured
disk. Then there exists a finite surjective base change 1′ → 1 and a family (X ,H)/1′
of stable pairs extending the pull-back to 1′ of the original family (X ∗,H∗) such that X
is Gorenstein with trivial KX and H is an effective relative Cartier divisor. Furthermore,
the family (X ,H) is unique up to a further base change.
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Proof. Start with a one-parameter family (X∗,L∗)/1∗ of polarized K3 surfaces, with
L∗ = O(H∗) with H∗ a flat divisor. After a finite base change, one can assume a filling to
a semistable family X/1withKX ≡ OX (cf. Kulikov–Persson–Pinkham Theorem; alter-
natively this is a relative minimal model). By Shepherd-Barron [SB83b, Thm. 1], we can
assume that the polarizing divisor extends to an effective relative Cartier divisor H, which
can then be assumed to be also nef. Let L = OX(H). As before, we denote by Xt , Lt ,
and Ht the fiber over t (with t = 0 corresponding to the central fiber), the polarization
of Xt , and the corresponding divisor respectively.

We consider the associated relative log canonical model X = Proj1(
⊕

n π∗Ln) with
associated L and H. We note the following properties:

(1) X is a family of slc surfaces with KX ≡ 0. This is the second part of Theorem 2.8
(items a–c). In fact, this follows from the general KSBA framework, except for the
Gorenstein property (a priori only Q-Gorenstein) which is specific to K3’s.

(2) L is a relatively ample line bundle on X/1. This follows from Shepherd-Barron’s
Theorem 2.8: for n ≥ 4, Ln defines a birational morphism X → X and thus, by
definition, Ln is a relatively very ample line bundle for X/1. Since this holds for all
n ≥ 4, it follows that L is a relatively ample line bundle (and not only an orbifold-line
bundle). Thus, we also get:

(2′) H is an effective relative Cartier divisor on X/1. As noted elsewhere, this property
is specific for K3’s (due to Thm. 2.8); a priori H is only Q-Cartier.

Note that X depends only on the choice of the line bundle L, and not on the choice of the
divisor H. The choice of divisor is essential in order to obtain a separated moduli space
(see e.g. Rem. 2.11). When taking into account the divisor H we distinguish two cases
based on the following condition being satisfied or not:

(?) H0 does not contain any double curve or triple point of X0,

or equivalently, (X0, εH0) is slc. If the condition (?) holds, we find that

(3) (X0, εH 0) is an slc pair. From Theorem 2.8 above (or more generally from standard
KSBA considerations), X0 is slc. Thus, we only need to see that H0 does not pass
through a log canonical center of X0, which in turn is guaranteed by (?). Namely,
by construction X0 is obtained from the normal crossing variety X0 by contracting
curves (and components) orthogonal to the polarization (cf. [SB83b]). It is clear that
it suffices to consider the so-called 0-components (Vi,Di) of X0 in the terminology
of [SB83b] (i.e. components that are not contracted, or equivalently those on which
the polarization is big, and thus semiample). Denote byHi the restriction ofH0 to Vi .
The condition (?) says that (Vi,Di + εHi) is dlt, and then KVi + (Di + εHi) = εHi
is big (since Vi is a 0-component). We conclude (V i,Di + εH i) is log canonical (see
e.g. [KM98, Thm. 7.10]), which in turn implies that (X0, εH 0) is slc.

In conclusion, if (?) holds, conditions (1–4) of Definition 2.3 hold, and thus (X0, εH 0) is
the KSBA limit for the family (X ∗,H∗)/1∗.

If the condition (?) fails, we replace the semistable model (X,H)/1 by a model
(X′,H′′)/1 which satisfies (?) and then proceed as before. The basic idea is to blow up
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the double curves and triple points ofX0 which are contained inH0 (and thus reduce their
multiplicity inH0). The process to achieve this is as follows: After a base change the new
semistable (Kulikov) model X′/1′ will replace each double curve and triple point by a
configuration of surfaces (e.g. a double curve in a Type II degeneration will be replaced
by a chain of surfaces). On the components of X′0 corresponding to double loci for which
(?) holds, the pull-back polarization will be either trivial or give a fibration, and thus they
will be 1- or 2-surfaces, and will be contracted back. Thus, the only relevant components
V ′i are those coming from double curves (and triple points) contained in H0. On such V ′i ,
the pull-back polarization H ′0 vanishes identically (and thus H′ will not be flat). By ap-
plying twists H′′ := H′ ⊗ O(V ′i ) we achieve flatness. Note that the effect of twists is
to decrease the multiplicity of a double curve (and similarly for a triple point; N.B. a
triple point is effectively replaced by double curves after a base change) in H ′′0 . Thus,
after possibly further (finitely many) base changes, we can assume that H′′ satisfies (?).
At this point, after elementary modifications, we can assume H′′ is a polarization. These
two conditions (nef and flat) can always be achieved (by the process described above),
as proved by Shepherd-Barron [SB83b, Thm. 1]. Finally, it is easily checked that the el-
ementary modifications preserve the condition (?), i.e. if (?) holds, it will hold after the
elementary modifications necessary to make H′′ nef. This is clear for Type 0 and 1 modi-
fications (those do not modify the incidence between the polarization and double curves).
On the other hand, Type 2 modifications are not allowed, as the only curves that we need
to flip are the components of H ′′0 (but those by the assumption (?) are not components of
the double locus). ut

Remark 2.10. The case of Type II degenerations is very similar to that of curves.
Namely, let C/1 be a semistable family of curves, and H ⊂ C be a flat divisor. The con-
dition (?) is asking that H does not pass through any of the nodes of the central fiber C0.
The process described in the proof above is the usual way of achieving this via a base
change (see [HM98, Prop. 3.49 (and related)] for further discussion).

Remark 2.11. The results of Shepherd-Barron cited above established the existence of
reasonable limits for degenerations of polarized K3 surfaces. In some sense, the Shah–
Looijenga compactification M̂ is a reflection of this fact. However, in the absence of a
polarizing divisor, the limiting surfaces will not be separated in moduli. For example, the
limiting surfaces might not have finite stabilizer, e.g. the standard tetrahedron in P3 is
stabilized by a torus, leading to collapsing of orbits. The presence of a divisor giving a slc
log general type pair eliminates such pathologies. In other words, the choice of a divisor
(vs. line bundle) is essential in separating the boundary points and fitting everything to-
gether in a compact moduli space. The example discussed in §4.1 is a clear illustration of
this point.

2.4. The moduli of stable pairs

It is well established now that there exists a good moduli functor (giving a proper Deligne–
Mumford stack) for surface pairs with floating coefficients (see [Ale13, §1.5.3] and the
references within). There are several differences from the standard KSBA moduli space
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for pairs: we restrict to smoothable pairs, and then we assume Gorenstein and Cartier.
The smoothability condition means that we restrict to the main component of the (coarse)
moduli space. It is known that there are several issues in trying to define a functorial mean-
ing for this main component (especially regarding the scheme structure at the boundary).
We have nothing to add to this (see however Rem. 2.15)—for us Pd will be a coarse
moduli space with the reduced scheme structure. On the other hand, the restriction to
Gorenstein and Cartier would give (a priori) an open subset of this main component, but
for K3’s, Theorem 2.9 says that this subset is everything. In other words, we obtain:

Corollary 2.12. The coarse moduli space Pd of stable pairs in the sense of Definition 2.3
is a geometric1 compactification (proper algebraic space) of the moduli space of degree d
K3 pairs.

Proof. First, we note that the moduli functor for stableK3 pairs is bounded. This follows
from Theorem 2.8 (see also Rem. 2.6), which in turn is based on very effective results on
linear systems on anticanonical pairs (see Section 3). More generally, strong boundedness
results for surfaces are known, due to Alexeev [Ale94].

Thus, one obtains a parameter space U for stable pairs (X,H) as a subset of the prod-
uct of two Hilbert schemes HilbX × HilbH (where HilbY denotes the appropriate Hilbert
scheme parameterizing flat deformations of Y ↪→ PN , for fixed N � 0). As a conse-
quence of Kollár’s results [Kol08], at least for KSBA stable surfaces or stable surface
pairs (see e.g. [HK04] for a recent discussion), it follows that U is a locally closed subset
(see Appendix to [HKT09] for details). Note that requiring X Gorenstein and H Cartier
are locally closed conditions. We deduce that the quotient stack Pd := [U/PGL(N + 1)]
(with N fixed as before) is an algebraic stack of finite type.

Theorem 2.9 establishes that the main component Pd of the moduli of stable pairs is
separated and complete (via the usual valuative criterion arguments).

Finally, the fact that Pd is a Deligne–Mumford stack follows from the standard state-
ment that pairs of log general type have finite automorphisms (see e.g. [KSB88, p. 328]).
Similarly, the existence of a coarse moduli space follows from [KM97]. ut

As mentioned in the remarks below, it is quite likely that further structural results on Pd
can be established (see also the series of papers of Gross–Hacking–Keel, e.g. [GHK15]),
but this goes beyond the scope of our paper. Namely, our goal here is to explicitly con-
struct (the coarse moduli space associated to) P2 and to relate this to the GIT, Hodge
theory, and KSBA points of view.

Remark 2.13. In general, we do not expect that Pd is a smooth stack: as noted in Remark
2.2 the local structure of Pd near (X,H) is controlled by the deformations of X as a
polarized variety. Hacking and Keel informed us of some examples of degenerate K3
surfaces X (satisfying the assumptions of Definition 2.3) for which the local deformation
space is singular. Such an example would show that Pd is not smooth in general (for
large d).

1 See the discussion preceding the corollary and the first Remark of the introduction. Namely,
every point of Pd corresponds to a unique stable pair, but we do not know of a functor that picks
up only the smoothable component of the moduli space of KSBA pairs.
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Remark 2.14. On the other hand, it is likely that projectivity results for Pd follow from
the techniques of Kollár [Kol90] and the improvements of Fujino [Fuj12]. More pre-
cisely, Fujino has proved appropriate semipositivity results (e.g. [Fuj12, Theorems 1.12
and 1.13]) for moduli spaces of pairs. However, to our knowledge, Kollár’s Ampleness
Lemma [Kol90, 3.9] is not yet established in the case of pairs. It is possible that special
arguments might give a version of the ampleness lemma in our situation and thus establish
the projectivity of the coarse moduli space associated to Pd . Alternatively, more in the
spirit of this paper, the quasi-projectivity of Pd might follow from GIT and the techniques
of Viehweg [Vie95, Vie10].

Remark 2.15. We make some further comments on the deformation space of degenerate
K3 surfaces X as considered in this paper. If X is a semistable Type III K3 (say with
an ample polarization to fit the framework considered here), then Def(X) is very well
behaved (cf. Friedman [Fri83a]): it is the union of two 19-dimensional strata2 meeting
transversely; one is the smoothing component (thus relevant for compactifying the moduli
of K3’s), the other one is parameterizing non-smoothable Type III K3’s of the same
combinatorial type as X. Furthermore, using the results of [KN94] (i.e. the smoothing
direction corresponds to deformations of log structures), it might be possible to define a
moduli functor that picks up only the smoothing component. On the other hand, ifX is not
semistable (it is obtained from a semistable model by contracting the curves orthogonal to
the polarization), Def(X) is much less understood, and the known cases are fairly subtle.
One case that was studied quite intensively (e.g. in the context of Looijenga’s conjecture)
is that of pillow surfaces: X is a union of P2’s (polarized by O(1)) glued along triangles
(i.e. triples of non-concurrent lines) as in a triangulation of S2. Such surfaces naturally
occur in the degeneration context, e.g. the “tetrahedron” in P3 (a degree 4 pillow) is
a degeneration of quartic K3’s. The work of Gross–Hacking–Keel (e.g. [GHK15] and
subsequent work) has deep and highly structural results on the deformations of pillow
surfaces, but this is quite involved and not explicit. Our analysis covers the case of degree
2 pillows (see Remark 7.5) and gives a taste of the complexity of the situation.

2.5. Stable pairs in degree two

For degree 2 K3 surfaces, the possible central fibers X0 of relative log canonical models
were identified by Thompson [Tho10]. Some discussion of (the components of) X0 for
any d is given in the next section.

Theorem 2.16 ([Tho10, Thm. 1.1]). Let X/1 be a Kulikov degeneration ofK3 surfaces.
Let H be a divisor on X that is effective, nef and flat over 1. Suppose that H induces a
polarization of degree two on the generic fiber Xt . Then the morphism φ : X → X

taking X to the relative log canonical model of the pair (X, εH)maps the central fiberX0
to a complete intersection of the following type:

X0 = {z
2
− f6(xi, y) = f2(xi, y) = 0} ⊂ P(1, 1, 1, 2, 3).

2 In the polarized case (the unpolarized case is similar).
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Remark 2.17. Thompson [Tho10] does not consider the polarizing divisor as part of the
data so that it is not possible to fit the degenerations in a moduli space. In fact, no attempt
of constructing a moduli space is made in [Tho10]. As explained, keeping track of the
polarizing divisor allows us to construct a modular compactification for pairs. Also, even
if one is only interested in K3 surfaces, by considering pairs one has a better understand-
ing of how the various points of view—GIT [Sha80], Hodge-theoretic [Fri84], [FS85], or
abstract MMP [Tho10]—interact (see Sections 6 and 7 for some concrete examples).

3. Classification of polarized anticanonical pairs in degree two

In order to understand the possible boundary points of Pd , we need to understand the
possible central fibers X0 of relative log canonical models as in the previous section. We
recall thatX0 is a contraction of the central fiberX0 of a Kulikov model. Then, depending
on the index of nilpotency of the monodromy, the normal crossing variety X0 =

⋃
Vi is

(see [FM83b, p. 11]) either

• of Type II, i.e. a chain of surfaces glued along elliptic curves with rational ends and
elliptic ruled surfaces in the middle; or
• of Type III, rational surfaces such that the dual graph gives a triangulation of S2, the

double curves on each Vi form a cycle of rational curves, which is an anticanonical
divisor on Vi .

Note also that X0 depends only on the polarized semistable model (X0, L0) and not on
the degenerating family (X,L) (see [SB83b, Lem. 2.17], [Tho10, Lem. 4.1]). In fact, the
analysis of Shepherd-Barron [SB83b] says that X0 can be essentially recovered from the
0-surfaces (Vi, Li) in X0 (with Li = L0|Vi ), i.e. the components of X0 that are mapped
birationally onto the image (see [SB83b, Def. on p. 145]).

Thus, to understand the boundary points in Pd , it is essential to classify the possible
0-surfaces that can occur in degree d . Note that on a 0-surface Vi the polarization Li is big
and nef. Also, the degrees of the polarizations on all 0-surfaces of a polarized semistable
X0 satisfy

∑
(Li)

2
= d. Thus, we need to classify triples (V ,D;L), where (V ,D) is

an anticanonical pair and L is a big and nef divisor class with 1 ≤ L2
≤ d. To fix the

notation and terminology, we define the following:

Definition 3.1. A polarized anticanonical surface is a triple (V ,D;L) where

(i) V is a rational surface;
(ii) D ∈ |−KX| is a reduced anticanonical divisor;

(iii) L ∈ Pic(V ) is a big and nef divisor class.

We say (V ,D;L) is relatively minimal if any (−1)-curve E on V satisfies L.E > 0.
Additionally, we will be mostly concerned with the case where D is at worst nodal, in
which case we say (V ,D) is of Type II or Type III if D is a smooth (elliptic) curve or D
is a cycle of rational curves respectively.
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Remark 3.2. Any anticanonical pair (V ,D) can be obtained by a series of blow-ups of
a minimal anticanonical pair (a classification of such is [FM83a, Lem. 3.2]). Specifically,
given an anticanonical pair (V ′,D′), the blow-up of a point p ∈ D′ gives another an-
ticanonical pair (V ,D) → (V ′,D′), where D = π∗D − E. If p is a node of D′ we
say that such a blow-up is toric; if p is smooth on D′, we call it non-toric. Consider a
blow-up π : (V ,D)→ (V ′,D′) of anticanonical pairs. Let L′ be a big and nef divisor on
(V ′,D′) and L = π∗L′. Clearly, L is still big and nef and the following hold: L2

= (L′)2,
L.D = L′.D′, and D2

= (D′)2 − 1.

The previous remark makes it clear that for a meaningful classification of the polarized
anticanonical surfaces (V ,D;L) it is necessary to assume that they are relatively mini-
mal. We note that the relative minimality is a purely numerical condition. Thus, if needed,
we can assume that (V ,D;L) is relatively minimal (see also [Har97b, Lem. 2.12(a)]).
More precisely, a standard application of Riemann–Roch and Hodge index shows that a
class E with E2

= −1, E.D = 1, and E.L = 0 is effective and contains a (−1)-curve
(orthogonal to L) as component. After successive contractions of (−1)-curves orthog-
onal to the polarization, we obtain a relatively minimal surface (V ′,D′;L′) such that
π : (V ,D) → (V ′,D′) is a composition of blow-ups as in the previous remark and
L = π∗L′.

3.1. Basic remarks on polarized anticanonical surfaces

A nef divisor on an anticanonical pair is always effective (see e.g. [Har97b, Cor. 2.3]),
and in many situations it is easy to compute the dimension of the corresponding linear
system.

Proposition 3.3 ([Fri83b, Lem. 5], [Har97a, Thm. I.1]). Let (V ,D) be an anticanonical
pair and L be a nef divisor.

(a) If D.L > 0, then h1(L) = 0. Thus,

h0(L) = (L2
+ L.D)/2+ 1.

(b) If D.L = 0 and |L| contains a reduced connected member, then h1(L) = 1. Thus,

h0(L) = (L2
+ L.D)/2+ 2.

As will see, in many cases it is possible to classify the polarized anticanonical surfaces
(V ,D;L) based on the basic numerical invariants L2, L.D, and D2. As discussed, for
degenerations of K3 surfaces occurring in degree d , we have 1 < L2

≤ d . The following
lemmas establish some bounds for L.D and D2 in terms of L2.

Lemma 3.4. Let (V ,D;L) be a polarized anticanonical surface. Then

(i) L.D ≡ L2 mod 2;
(ii) 0 ≤ L.D ≤ L2

+ 2.

Proof. The first part follows from the fact that the orthogonal complement in Pic(V ) of
the canonical class KV (= −D) is an even lattice.
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For L.D ≥ 3 the linear system L is base point free and defines a birational map (see
e.g. [Har97b, Prop. 3.2]). Thus, to prove (ii), without loss of generality we can assume the
general member ofL is reduced and irreducible. Then 2pa(L)−2 = L2

−L.D ≥ −2. ut

To control D2, we distinguish two cases: either L.D ≤ L2 or L.D = L2
+ 2. To handle

the first case the key observation is that it is possible to twist the polarization, i.e. replace
L by L − D (corresponding to replacing L by L ⊗ OX (V ) for a family (X ,L)/1 of
polarized K3’s, with V a component of the central fiber X0).

Lemma 3.5. Let (V ,D;L) be a polarized anticanonical surface. Then L−D is effective
iff L.D ≤ L2.

Proof. Note that L0 := L − D = L + KV is an adjoint linear system with L big and
nef. Thus, by Kodaira–Mumford vanishing, hi(L0) = 0. We conclude that h0(L0) =

1+ 1
2 (L−D)L; the claim follows. ut

Lemma 3.6. Let (V ,D;L) be a polarized anticanonical surface. Assume additionally
that (V ,D;L) is relatively minimal and L.D ≤ L2. Then

(i) L−D is nef;
(ii) 2L.D − L2

≤ D2
≤ L.D, and the right inequality is strict unless L ∼ D.

Proof. The first part is precisely [Har97a, Lem. III.9(c)] (use the fact that L − D is ef-
fective by Lemma 3.5). Since L − D is nef, we get (L − D)2 ≥ 0, which gives the first
inequality above. The second follows from Hodge index:D2

≤ (L.D)2/L2 (≤ L.D). ut

In particular, we note the following classification result:

Corollary 3.7. Let (V ,D;L) be a relatively minimal polarized anticanonical surface.
Assume that L.D = L2. Then V is a del Pezzo surface and L ∼ D.

Proof. From Lemma 3.6, we get

L2
= 2L.D − L2

≤ D2
≤ L.D = L2.

Thus, D2
= L.D = L2. From Hodge index applied to the classes L and D, we conclude

L ∼ D. It follows that V is a rational surface with a big and nef anticanonical divisor,
thus a del Pezzo (possibly with ADE singularities). ut

It remains to consider the case L.D = L2
+ 2. Again, a classification is readily available.

Proposition 3.8. Let (V ,D;L) be a polarized anticanonical surface. Assume addition-
ally that (V ,D;L) is relatively minimal and L.D = L2

+ 2. Then either

(i) V ∼= P2 with polarization L = ` or 2` (where ` is the class of a line); or
(ii) (V , L) is the rational normal scroll, i.e. V ∼= Fn and L = σ + (n + k)f for some

k ≥ 0 (where σ is the class of the negative section, and f is the class of a fiber).

Moreover, the pairs (V ,D) with V ∼= P2 or Fn are classified by [FM83a, Lem. 3.2].
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Proof. Let L2
= n ≥ 1. Since L.D = n + 2 ≥ 3, from [Har97b, Prop. 3.2] it follows

that L is base point free defining a birational morphism from V to a normal surface
V ′ ⊂ Pn+1 (cf. Prop. 3.3(i)) of degree n. It follows that V ′ is a surface of minimal degree
(see [GH94, p. 525]) and thus it is either the Veronese surface or the rational normal scroll
(i.e. Fn embedded by σ + (n + k)f ; the case n = 1, k = 0 gives (P2, `)). Finally, note
that the morphism V → V ′ contracts the curves orthogonal to L and those curves are not
(−1)-curves. The proposition follows. ut

Remark 3.9. Note D2
= K2

V ≤ 9 for all rational surfaces V . In fact, b2(V ) = 10−D2,
and then D2 is 9 or 8 only for P2 or Fn respectively. For Type III anticanonical pairs,
one also considers the length r(D) of the anticanonical cycle, and the charge q(V,D) :=
12 − D2

− r(D) (see e.g. [FM83a, §3]). Roughly, 9 − D2, r(D) − 3, and q(D) count
the total number of blow-ups, the number of toric blow-ups, and the number of non-
toric blow-ups respectively. If (V ,D) is a component of a Type III degeneration of K3
surfaces, then 0 ≤ q(V,D) ≤ 24 (see e.g. [FM83a, §3]).

3.2. Linear systems on anticanonical surfaces

We now recall some results on the behavior of linear systems on anticanonical pairs anal-
ogous to Mayer’s Theorem for K3 surfaces. Results on this topic were first obtained by
Friedman [Fri83b], and then strengthened by Harbourne [Har97a, Har97b]. The following
holds:

Theorem 3.10 (Harbourne [Har97b, Cor. 1.1]). Let (V ,D;L) be a polarized anticanon-
ical surface. Then |3L| always defines a birational morphism from V onto the normal
surface obtained by contracting all curves C on V orthogonal to L.

Similar to K3’s, we have the following results on base loci of linear systems on anti-
canonical surfaces. For clarity, we separate the cases L.D > 0 and L.D = 0.

Theorem 3.11 (Friedman, Harbourne). Let (V ,D;L) be a polarized anticanonical sur-
face. Assume that (V ,D;L) is relatively minimal and L.D > 0.

(i) If L.D ≥ 2, then |L| is base point free. Furthermore, if L.D ≥ 3, then |L| defines a
birational morphism onto a normal surface.

(ii) If L.D = 1 and L has no fixed component, then |L| has a unique base point, which
is on D.

(iii) If L.D = 1, then |L| has a fixed component iff

L = kE + R for some k ≥ 2,

where E2
= 0, E.D = 0, E.R = 1, and R is a (−1)-curve.

Proof. The first two items follow directly from [Har97a, Thm. III.1(a, b)] and [Har97b,
Prop. 3.2] (see also [Fri83b, Thm. 10]). The last statement follows also from [Har97a,
Thm. III.1] after contracting the (−1)-curves orthogonal to L. ut
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Theorem 3.12 (Friedman, Harbourne). Let (V ,D;L) be a polarized anticanonical sur-
face. Assume L.D = 0. Then either

(i) L has no fixed component, then L is base point free, L⊗OD is trivial, and h1(V , L)

= 1; or
(ii) the fixed part of L is a (−2)-curve R, and then

L = kE + R for some k ≥ 2

with E2
= E.D = 0, E.R = 1, and R ⊗OD trivial; or

(iii) L ⊗ D is non-trivial, which is equivalent to F + KV being an effective divisor,
where F is the fixed part of L. In this situation, there exists a birational mor-
phism π : (V ,D) → (V ′,D′) of anticanonical pairs with (D′)2 < 0 and such
that L = π∗(L′ +D′) for some nef divisor L′ on V ′.

Proof. This is precisely [Har97a, Thm. III.1(c, d)] assuming L big. ut

The items Thm. 3.11(iii) and Thm. 3.12(ii) correspond precisely to the unigonal case
of Mayer’s Theorem. Also, since we are considering only slc pairs, we can assume (if
necessary) that L does not contain D as a fixed component.

Remark 3.13. The key fact that allows Harbourne [Har97a, Har97b] to strengthen the
results of Friedman [Fri83b] is a precise control of Friedman’s condition: L has no fixed
component which is also a component of the anticanonical cycle. Namely, [Har97a, Cor.
III.3] says: If L is a nef divisor on an anticanonical pair (V ,D), then either no fixed
component of L is a component of any section of −KV , or the fixed part of L contains an
anticanonical divisor. The latter situation can only occur if L.D = 0, but L|D 6∼= OD (see
Thm. 3.12(iii) above).

3.3. The degree 2 case

We now restrict to the case where (V ,D;L) is a 0-surface in a degeneration of degree 2
K3 surfaces. The above discussion leads to the following simple classification of the
possibilities.

Proposition 3.14. Let (V ,D;L) be a relatively minimal polarized anticanonical surface
with L2

≤ 2. Then one of the following six cases holds:

(A) If L2
= 1

(1) and L.D = 3, then V ∼= P2, L ∼ ` (where ` is the class of a line);
(2) and L.D = 1, then V is a degree 1 del Pezzo and L ∼ D ∼ −KV .

(B) If L2
= 2

(3) and L.D = 4, then V is an irreducible reduced quadric in P3 and L the class of
a hyperplane section;

(4) and L.D = 2, then V is a degree 2 del Pezzo with L ∼ D ∼ −KV ;
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(5) and L.D = 0 and D2
= −1, then (V ,D) is the resolution of a rational sur-

face which has a unique non-ADE singularity, which is either a simple elliptic
singularity of type Ẽ8, or a cusp singularity of type T2,3,r (with 7 ≤ r ≤ 16);

(6) and L.D = 0 and D2
= −2, then (V ,D) is the resolution of a rational sur-

face which has a unique non-ADE singularity, which is either a simple elliptic
singularity of type Ẽ7, or a cusp singularity of type T2,q,r (with q ≥ 4, r ≥ 5,
q + r ≤ 19).

Proof. The possible values for L.D and D2 are determined by Lemmas 3.4 and 3.6. The
first four items follow from Corollary 3.7 and Proposition 3.8. The statement about the
type of singularities for cases (5) and (6) is standard. Finally, for the bounds on q and r ,
we note that the charge associated to a cusp lying on a rational surface is at most 21 (cf.
[FM83a, Lem. 4.6]). For Tp,q,r singularities the associated charge is q(V,D) = p+q+r .
Thus, q + r ≤ 19 (or r ≤ 16). ut

Remark 3.15. A precise analysis of the cusp singularities T2,q,r occurring in degree 2
can be made using [Wal99, §5] and [Wal99, §6] for T2,3,r and T2,q,r respectively.

For Type II degenerations, one might have to consider elliptic ruled components as
0-surfaces. Here, we note that, at least for degree 2, the elliptic ruled components can
be viewed as degenerations of rational anticanonical surfaces.

Lemma 3.16. Let (V ,D′,D′′;L) be a polarized anticanonical triple (i.e. V is elliptic
ruled and D′, D′′ are sections with D′ +D′′ ∈ |−KV |). Assume V is relatively minimal
and L2

∈ {1, 2}. Furthermore, assume L has no fixed common component with D′ ∪D′′.
Then one of the components, sayD′′, satisfies−L2

≤ (D′′)2 < 0 andD′′.L = 0 and thus
it can be contracted to an Ẽr (r ∈ {7, 8}) singularity at some point p on a normal sur-
face V . Moreover, there is a partial smoothing (V,D,L) of p such that the central fiber
is (V ,D′, L), while the general fiber (Vt ,Dt ;Lt ) is a polarized rational anticanonical
surface.

Proof. By [Tho10, Lem. 4.6 and pp. 23–24], we have a precise control of the sur-
faces (V ,D′,D′′;L) that can occur. The claim can be checked explicitly. For example,
in the case of Ẽ7 non-unigonal, V is a double cover of P2 branched along the sextic
x2

0f4(x1, x2), and a partial smoothing is given by V (z2
− x2

0F4(x0, x1, t · x2))→ A1
t for

some homogeneous degree 4 polynomial F4 with F4(x0, x1, 0) = f4(x0, x1). ut

4. A GIT construction for the moduli for pairs

In Section 2 we have shown that the moduli space of degree 2 K3 pairs has a geometric
compactification P2. While a rough classification of the degenerate degree 2 pairs is given
by Proposition 3.14, a full classification of the geometric objects parameterized by the
boundary of P2 seems difficult to obtain by direct considerations. Instead, we study P2
by using a related GIT space P̂2.

Namely, P̂2 is constructed by enhancing the GIT analysis of Shah (giving M̂) to take
into account a hyperplane section. This construction is closely related to that of [Laz09].



KSBA for degree 2 K3 pairs 249

The main point here is that there is a choice of linearization involved in the construction
of a GIT quotient for pairs, giving in fact a family of quotients P̂2(α) for α ∈ Q+.
As a limiting case, P̂2(0) is still defined and P̂2(0) ∼= M̂. By general considerations
from VGIT, one gets a natural forgetful map P̂2(ε) → P̂2(0) ∼= M̂ (for 0 < ε � 1),
which is generically a P2-bundle. We define P̂2 := P̂2(ε) and note that (since ε � 1)
the stability conditions for P̂2 are essentially determined by Shah’s stability conditions
for M̂. However, in P̂2 more orbits are separated than in M̂. Finally, using Theorem 1.6,
we conclude that P̂2 is closely related to the KSBA compactification P2. We summarize
the results of the section as follows:

Theorem 4.1. The GIT quotient P̂2 (constructed in this section) compactifies the moduli
space P2 of degree 2 pairs and has the following properties:

(i) P̂2 has a natural forgetful map P̂2 → M̂ (with generic fiber P2);
(ii) the (GIT) stable locus Ps

2 ⊂ P̂2 is a moduli space of KSBA stable degree 2 pairs
(X,H) such that X is double cover of P2 or 60

4 (and thus Ps
2 is a common open

subset of both P̂2 and P2);
(iii) the strictly semistable locus P̂2 \ Ps

2 is a surface Z̃1 that maps one-to-one to the
closure of the stratum Ẑ1 ⊂ M̂.

The actual construction of P̂2 and the analysis of the stability conditions is the content of
this section (see especially (4.3) and (4.11) for the construction, and 4.7 and 4.13 for the
analysis of stability) after the introductory example discussed in §4.1.

4.1. A motivating example

We start by discussing a simple example that illustrates how the compactification pro-
cedure described in Section 2 works and also hints at the relevance of GIT/VGIT to the
construction of P2. Specifically, we consider the analogous one-dimensional compactifi-
cation problem: the moduli space of pairs consisting of an elliptic curve E and a divisor
D of degree d. Definition 2.3 can be easily adapted to this situation. The resulting ana-
logue of Pd is precisely the moduli space of weighted stable curves M1,A of Hassett
[Has03] (or more precisely M1,A/6d in the notation of loc. cit.) for the weight system
A = (ε, . . . , ε). Furthermore, for small ε, there is a natural forgetful map M1,A→M1,
where M1 ∼= P1 is the compactified j -line. The boundary points in M1,A (correspond-
ing to the fiber over∞ ∈M1) are easily described: they are cycles C of rational curves
such that each component contains at least one point ofD (this is the ampleness condition
of Def. 2.3); the points of D are allowed to coincide, but they should be distinct from the
nodes of C (this is the slc condition of Def. 2.3).

When d = 3, the moduli of pairs as above can be constructed via GIT. Namely, an
elliptic curve with a degree 3 polarization is a plane cubic C. If one considers instead an
elliptic curve with a polarizing divisor, one gets a pair (C,L) consisting of a plane cubic
and a line. A GIT quotient for such pairs (i.e. plane curves plus a line) was studied in
[Laz09]. Namely, we have a one-parameter VGIT situation: the GIT quotient for pairs is
P(α) = PH 0(P2,O(3)) × P̌2//O(1,α)SL(3) for α ∈ Q≥0. Then P(ε) ∼= M1,(ε,ε,ε) (for
0 < ε � 1) and P(0) ∼= M1 ∼= P1 (the GIT quotient for plane cubics). Furthermore,
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by VGIT there is a natural forgetful morphism P(ε) → P(0), which coincides with
M1,(ε,ε,ε)→M1 from the previous paragraph.

There are two advantages of using the GIT construction. First, the spaces P(ε) ∼=
M1,(ε,ε,ε) and P(0) ∼= M1, and the forgetful morphism P(ε) → P(0), are automati-
cally projective (the same can be shown without GIT, but with more involved arguments).
Also, the GIT description makes clear the difference between polarization and polarizing
divisor. Namely, the GIT quotient P(0) ∼= P1 has a weak modular meaning: over A1 the
quotient is modular (each point corresponding to a unique smooth cubic), but over ∞
three different orbits (the nodal cubic, the conic plus a line, and the triangle) are collapsed
to the minimal orbit corresponding to the triangle in P2 (with (C∗)2 stabilizer). When
one considers P(ε), i.e. pairs (C,L) with the line given weight ε, essentially nothing
changes over the stable locus A1

⊂ P(0) (resulting in a P2-fibration), but over ∞ the
three collapsing orbits are separated. The point is that a nodal cubic is strictly semistable,
but when considered together with a line it becomes either stable (if the line does not pass
through the node) or unstable (if the line passes through the node). Consequently, P(ε) is
modular, in contrast to the weakly modular space P(0). Also, it is easy to see that (up to
finite stabilizer) P(ε)→ P(0) becomes a P2-fibration everywhere.

Remark 4.2. Note that P(0) ∼= P1 parameterizes smooth and nodal cubics (analogue to
the slc condition from Thm. 1.6), and thus the only failure of the modularity is the non-
separatedness at the boundary. Also, note that the limit procedure for a nodal cubic plus
a line as the line approaches the node is to replace the nodal cubic by a conic plus a line
(and then by a triangle); this illustrates one of the essential points of the proof of Thm. 2.9.
Finally, some general connections between GIT stability and KSBA stability were noticed
by Kim–Lee [KL04] and Hacking [Hac04, §10] (essentially appropriate KSBA stability
implies GIT stability). This connection is the strongest for Calabi–Yau hypersurfaces. In
some sense, this is what makes the example discussed in this section and the degree 2K3
case work.

4.2. GIT for sextic pairs

The goal of the section is to construct a GIT moduli space P̂2 for degree 2 pairs together
with a forgetful map P̂2 → M̂. Following Shah [Sha80], we carry out this construction
in two steps. First in this subsection, we handle the non-unigonal case: we obtain an open
subset Pnu

2 ⊂ P̂2 and a forgetful map Pnu
2 → M \ {ω}. Then, working near ω and

invoking Luna type slice results, we obtain a neighborhood U of the unigonal divisor.
The gluing of Pnu

2 and U gives P̂2 together with a forgetful morphism P̂2 → M̂.
The construction of Pnu

2 follows the example discussed in §4.1 (and [Laz09]). Simply,
we consider the family of GIT quotients associated to pairs (C,L), where C is a plane
sextic and L is a line:

P(α) := (PH 0(P2,O(6))× P̌2)//α SL(3).

As before, we have P(0) ∼=M (the GIT quotient for plane sextics described in Thm. 1.3)
and a forgetful map π : P(ε)→M ∼= P(0) (generically, a P2-fibration) for small ε. We
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define

Pnu
2 = π

−1(M \ {ω}) ⊂ P(ε), (4.3)

i.e. we remove from P(ε) the pairs (C,L) with C degenerating to the triple conic.

Notation 4.4. In what follows, we will denote by (C,L) a pair of a plane sextic and a
line and by (X,H) the double cover associated to it (not necessarily normal). We will use
(C,L) and (X,H) interchangeably to refer to points of Pnu

2 (and P̂2).

From the general VGIT theory, it follows that if C is a stable/unstable sextic, then (C,L)
is ε-stable/ε-unstable. We conclude that the pairs (X,H) consisting of a K3 surface X
(possibly with ADE singularities) and an arbitrary degree 2 ample (Cartier) divisor H
are stable in P̂2 (N.B. strictly speaking this applies to Pnu

2 here, but the unigonal case
is similar). Thus, P̂2 is a compactification of the moduli space P2 of degree 2 K3 pairs.
Also from Proposition 1.5 (and Theorem 1.6) the semistable pairs (X,H) corresponding
to points of Pnu

2 (and then similarly for P̂2) have the property that X is a double cover
of P2 (and later also 60

4 ) with at worst slc singularities. What remains to be understood is
how the strictly semistable orbits of sextics become separated when considered as pairs,
and the connection between ε-GIT stability and ε-KSBA stability (i.e. stability in the
sense of Definition 2.3). In fact, as already mentioned in a previous remark, ε-KSBA
stability always implies ε-GIT stability.

We discuss the stability of pairs based on the stratification of M given by Theo-
rem 1.3. First note that the strata Z4 (double cubic) and Z3 (double conic plus another
transversal conic) parameterize stable sextics. Thus the corresponding pairs in these cases
are stable, and the forgetful map π : Pnu

→M \ {ω} is a P2-fibration (up to finite sta-
bilizers) in a neighborhood of Z3 ∪ Z4. Furthermore, the pairs (X,H) parameterized by
π−1(Z3 ∪Z4) are easily seen to be ε-KSBA stable (see §6.1 and §6.3 for a discussion of
the geometry of (X,H) in these cases).

To handle the strictly semistable locus (Z1 ∪ Z2) we note the following: if C is
semistable, there exists a 1-PS (one-parameter subgroup) λ adapted to C (i.e. µ(C, λ)
= 0), which then singles out a (possibly partial) flag pλ ∈ Lλ ⊂ P2. This flag is always
in a special position with respect to C; typically pλ is a singular point of C, and Lλ is a
line of highest multiplicity in the tangent cone at pλ. The stability of the pair (C,L) (for
C strictly semistable) is typically determined by the position of L with respect to the flag
pλ ∈ Lλ. In particular,

(a) if pλ 6∈ L for all λ with µ(C, λ) = 0 (i.e. L is generic), then (C,L) is ε-stable;
(b) if L = Lλ (i.e. L is very special), then (C,L) is ε-unstable.

While these two rules allow us to determine the stability/unstability of most pairs (C,L),
there are additional possibilities that might lead to pairs (C,L) that are α-strictly semi-
stable for α varying in an interval.

The behavior of stability conditions for pairs over the strictly semistable locusZ1∪Z2
is analyzed by the following two propositions:
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Proposition 4.5. Assume that C corresponds to a semistable orbit mapping to Z2 ⊂M.
Then either
(i) C has a singularity at a point p of multiplicity 4, in which case if p ∈ L, then (C,L)

is ε-unstable; or
(ii) C contains a double line L0, in which case if L = L0 then (C,L) is ε-unstable. If C

contains a double line L0 which is also tangent to the residual quartic at a point p
and p ∈ L, but L 6= L0, then (C,L) is ε-semistable with associated minimal orbit

(V (x2
0x

2
2(x0x2 − x

2
1)), V (x1)).

If (C,L) is not one of the three degenerate cases above, then (C,L) is ε-stable. Further-
more, in this case, the associated double cover is ε-KSBA stable.
Proof. The Mumford numerical function for pairs isµε((C,L), λ) = µ(C, λ)+εµ(L, λ)
(see also [Laz09, Sect. 2]). In the first case, by considering the 1-PS λ with weights
(2,−1,−1), we get µ(C, λ) = 0 and then µ(L, λ) = −1 if p ∈ L; thus, an unstable pair
by the numerical criterion. Similarly, the second case follows by considering the 1-PS of
weights (1, 1,−2). The case of a double line tangent to a quartic is similar to Proposition
4.6 below. Finally, if none of these three degeneracy conditions is satisfied, we are in the
situation (a) discussed above (i.e. generic line from the GIT point of view) and (C,L)
will be stable. For the geometric analysis of these cases see §6.2. ut

Proposition 4.6. Assume that C is strictly semistable (not necessarily with closed orbit)
and such that it corresponds (in the GIT sense) to a point of Z1 \ {ζ, ω}. Then C has
one or two singular points p of the following type: p is a triple point with tangent cone
consisting of a triple line L0, and the singularity at p is either Ẽ8 or T2,3,r (r ≥ 7) or a
degenerate cusp of type x2(x + y2) (i.e. double conic tangent to the residual conic). The
following hold for the GIT stability of the pair (C,L):

(i) if p 6∈ L (for both p if two special singularities), then (C,L) is ε-stable;
(ii) L = L0 (i.e. L is the special direction through p), then (C,L) is ε-unstable;

(iii) otherwise (i.e. L passes through p, but it is not special), (C,L) is ε-semistable. The
minimal orbits in this case are given by:

(Case Z1)
(
V ((x0x2 − a1x

2
1)(x0x2 − a2x

2
1)(x0x2 − a3x

2
1)), V (x1)

)
, for ai distinct;

(Case τ )
(
V ((x0x2 − x

2
1)

2(x0x2 − ax
2
1)), V (x1)

)
, for a 6= 1.

Furthermore, the double cover (X,H) is ε-KSBA stable iff (C,L) is ε-GIT stable.
Proof. In this situation, the adapted 1-PS λ has weights (1, 0,−1). If L passes through p,
but not in a special direction, then µ(L, λ) = 0, and the configuration remains semistable
for all 0 < ε � 1. Finally, to prove the equivalence of the two stability conditions it
suffices to note that if L passes through p (regardless of whether L = L0 or not), the
associated pair (X, εH) is not slc (see also §6.4). ut

The above discussion gives the non-unigonal case of Theorem 4.1:

Corollary 4.7. Let (C,L) be a pair consisting of a plane sextic and a line. Let (X,H)
be the associated double cover. Assume that
(i) (C,L) is ε-GIT stable;

(ii) the orbit closure of C does not contain the triple conic.
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Then (X,H) is ε-KSBA stable. Conversely, assume that (X,H) is ε-KSBA stable and
that H is base point free. Then (X,H) is the double cover associated to a pair (C,L)
satisfying the two conditions above.

4.3. Blow-up of the triple conic locus

Shah’s construction of M̂ replaces the degenerations to the triple conic (ω ∈ M) by
double covers of 60

4 ⊂ P5, the cone over the rational normal curve of degree 4. Addition-
ally, as noted in Theorem 1.6, all the semistable points in the GIT quotient M̂ correspond
to degenerations of K3 surfaces with slc singularities. We now consider pairs consisting
of such a surface (semistable double cover of P2 or 60

4 ) together with a hyperplane sec-
tion. As explained, the goal here is to construct a neighborhood U of the unigonal divisor
which can be glued to Pnu

2 to give P̂2.
To start, we note the following uniform description of the double covers of P2 and60

4 :
they are complete intersections of the form

{z2
− f6(xi, y) = f2(xi, y) = 0} ⊂ P(1, 1, 1, 2, 3). (4.8)

The non-unigonal case corresponds to the situation f2(0, 0, 0, 1) 6= 0. After a change of
coordinates, one can normalize the equation in this case to

{z2
− f6(xi, y) = y = 0} ⊂ P(1, 1, 1, 2, 3),

which leads to the usual case of double covers of P2 branched along a sextic. Similarly, the
double covers of 60

4 correspond to the case when f2(0, 0, 0, 1) = 0 and f2(x1, x2, x3, 0)
has maximal rank. Thus, one can choose the normal form

{z2
− f6(xi, y) = x0x2 − x

2
1 = 0} ⊂ P(1, 1, 1, 2, 3).

Moreover, as f6(0, 0, 0, 1) 6= 0 (i.e. the ramification curve does not pass through the
vertex of 60

4 ), we can further assume that f6(xi, y) = y
3
+ yg4(xi)+ g6(xi).

Since the automorphism group of the weighted projective space P(1, 1, 1, 2, 3) is not
reductive, a uniform GIT description would be difficult (see [Sha80, Sect. 4]). Instead,
Shah [Sha80, Sect. 5] uses a local description of the GIT quotient M near the orbit ω of
the triple conic and a gluing construction to obtain the space M̂ of Section 1. In more
modern language, M̂ is just the partial Kirwan blow-up of M at the point ω (correspond-
ing to the worst stabilizer for semistable plane sextics).

Remark 4.9. Here and elsewhere in this paper, locally means locally étale. Thus, the
spaces we consider are at least algebraic spaces, and typically algebraic varieties (e.g. us-
ing the Kirwan point of view, we can see that M is so). It might be even possible to prove
that they are projective varieties, but this is of secondary concern for us (see Rem. 2.14).
Furthermore, by the GIT construction, over the stable locus there exist (locally) flat proper
families of surfaces or pairs. Thus, the spaces considered in this paper are coarse moduli
spaces associated to certain algebraic stacks.

The following is a rephrasing of the main point of Shah’s construction of M̂.
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Lemma 4.10. Locally near ω, M is identified with the (affine) quotient

(Sym12 V × Sym8 V )/SL(2),

where V is the standard SL(2)-representation. The Kirwan blow-up M̂ → M is mod-
eled on the weighted blow-up of the origin in the vector space Sym12 V × Sym8 V . In
particular, the exceptional (unigonal) divisor is identified with the GIT quotient

(PSym12 V × PSym8 V )//O(3,2)SL(2).

Proof. By definition, M ∼= PSym6W//SL(3) where W is a standard representation of
SL(3). Luna’s slice theorem describes M locally at ω as the quotient of a normal slice
to the orbit of a triple conic by the stabilizer SL(2). Since the conic is P1 embedded by
Veronese in P2, we get an identification of W = Sym2 V as an SL(2)-representation.
Then the normal slice (as a SL(2)-representation) is the summand Sym12 V × Sym8 V in
Sym6W ∼= Sym6(Sym2 V ). The lemma follows.

Alternatively, note that in the normal form described above, the group preserving it is
SL(2). Then, by viewing xi as sections of OP1(2) we can identify g4(xi) and g6(xi) with
binary forms p8(u, v) and p12(u, v) respectively. ut

From the perspective of the lemma, we can view a line in P2 (i.e. a section of the polariza-
tion) as an element of PSym2 V . We model the neighborhood U of the unigonal divisor
as the quotient (

Bl0(Sym12 V × Sym8 V )× PSym2 V
)
//SL(2), (4.11)

where Bl0(Sym12 V ×Sym8 V ) denotes the weighted blow-up of the origin from Lemma
4.10 (or equivalently a local model of the Kirwan blow-up). The map P̂2 → M̂ (locally
near the unigonal divisor) is the induced map (at the level of quotients) by the first projec-
tion. By construction, U glues to the non-unigonal quotient Pns

2 to give P̂2 together with
a forgetful map P̂2 → M̂.

To complete the proof of Theorem 4.1, it remains to describe the stability conditions in
the unigonal case. Obviously, it suffices to describe the stability condition for the points of
the exceptional divisor of P̂2 → P(ε) (away from this locus, the stability was described in
§4.2). Since the exceptional divisor of M̂→M is (PSym12 V×PSym8 V )//O(3,2)SL(2)
(see Lem. 4.10) and the weight is small in the direction of the hyperplane section, we see
that the exceptional divisor of P̂2 → P(ε) is modeled by(

(PSym12 V × PSym8 V )× PSym2 V
)
//O(3,2,ε) SL(2).

Of course, the stability condition here is essentially determined by the stability on the
first factor; this was analyzed by Shah. Specifically, we rephrase a result of Shah [Sha80,
Thm. 4.3] as follows:

Theorem 4.12 (Shah). With notation as above, letB be a curve of 60
4 given by f6(xi, y)

= y3
+ yg4(xi)+ g6(xi), and X be the associated double cover of 60

4 .

(1) If B is stable and reduced, then X has at most simple singularities.
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(2) The minimal orbits of B which are strictly semistable and reduced give surfaces X
with two Ẽ8 singularities. These minimal orbits are parameterized by an (affine)
rational curve U1 ⊂ Ẑ1 \ τ̂ (see Fig. 2).

(3) If B is stable and non-reduced then B = 2C1 + C2 with Ci rational normal curves
that intersect transversely. These orbits are parameterized by a rational curve U2 ⊂

Ẑ3 \ τ̂ .
(4) In addition to the cases given by (1)–(3), there is a single additional minimal orbit

corresponding to the caseB = 2C1+C2 withCi rational normal curves that intersect
tangentially at two points. This orbit maps to the point ξ ∈ τ̂ .

Furthermore, the surfaces X degenerating to case (2), but not corresponding to minimal
orbits, are rational with a unique Ẽ8 singularity. Similarly, the surfaces degenerating
to case (4) have a singularity of type T2,3,r (for r ≥ 7) or a degenerate cusp of type
z2
+ x2(x + y2).

Proof. As mentioned, this is precisely [Sha80, Thm. 4.3]. We only comment here on
the singularities of the semistable objects. In case (2), the minimal orbits are given by
f6(xi, y) = y

3
+ a1yu

4v4
+ a2u

6v6 (via the identification of xi with binary quadrics as
above). In affine coordinates X is given by z2

= y3
+ a1yu

4
+ a2u

6, which is an Ẽ8

singularity. Note that the discriminant condition to get an Ẽ8 singularity and not worse
coincides with the non-degeneracy condition from [Sha80, Thm. 4.3]. By semicontinuity,
one gets the same type of singularities for non-minimal orbits degenerating to case (2)
(N.B. there has to be at least one non-ADE singularity, otherwise B would stable by (1);
Ẽ8 deforms only to ADE singularities).

In cases (3) and (4), B has the form f = (y + θ)2(y − 2θ) = y3
− 3yθ2

− 2θ3,
where θ = p4(u, v). B is stable iff the two divisors defined by y+ θ = 0 and y− 2θ = 0
intersect transversely in four distinct points. Similarly, the minimal orbit for the strictly
semistable case corresponds to two double points. The singularity claim follows (see
especially [AGZV85, §16.2.9]). ut

We now conclude the analysis of stability in the unigonal case:

Corollary 4.13. Let (B,L) be a pair defined as above and (X,H) be the associated
double cover.

(1) (B,L) is ε-GIT stable iff L does not pass through the Ẽ8, T2,3,r , or degenerate cusps
singularities. If (B,L) is ε-GIT stable then (X,H) is ε-KSBA stable. Conversely, if
(X,H) is ε-KSBA stable and X is a double cover of 60

4 , then (X,H) is induced by
an ε-GIT stable (B,L) pair.

(2) The minimal orbits of ε-strictly semistable pairs (B,L) are given by B with minimal
orbit (as in Thm. 4.12) and L such that it passes through the two Ẽ8 singularities if
B is reduced or through the two tangent points otherwise.

Proof. The stability analysis is similar to that of Proposition 4.6. For the converse, that
ε-KSBA stable implies GIT stability, a closer look at the GIT stability conditions shows
that unstable curves B have singularities worse than simple elliptic, cusp, or degenerate
cusp (cf. Prop. 1.5). ut
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5. Classification of slc stable pairs via GIT

In Section 1 we have discussed Shah’s compactification M̂ which gives a compactifica-
tion with a weak geometric meaning for the moduli space F2 of degree 2 K3 surfaces. In
Section 2, we have shown that considering pairs (X,H) instead of polarized K3 surfaces
(X,OX(H)) gives a proper and separated moduli stack P2. Then, in Section 4, via GIT,
we have constructed an approximation P̂2 of the space P2. Namely, there is a birational
map P̂2 99K P2 which is an isomorphism over the stable locus Ps

2 ⊂ P̂2 (cf. Thm. 4.1).
We also recall that the strictly semistable locus P̂2 \ Ps

2 is a surface Z̃1 mapping one-to-
one to the stratum Ẑ1 ⊂ M̂, and that the pairs parameterized (in the sense of GIT) by Z̃1
are not KSBA stable.

To complete the description of P2, it remains to understand the KSBA replacement
of the strictly semistable locus Z̃1 ⊂ P̂2. This is dealt with in the following theorem.

Theorem 5.1. The birational map P2 99K P̂2 replaces the strictly semistable locus Z̃1
in P̂2 by the locus of stable KSBA pairs (X,H) of type X = V1 ∪E V2, where the Vi
are degree 1 del Pezzo surfaces or allowable degenerations of them (in P(1, 1, 2, 3))
glued along an anticanonical section E of Vi . At least set-theoretically, the birational
transformation P2 99K P̂2 is dominated by the Kirwan blow-up P̃2 → P̂2 (of the GIT
model P̂2 along the strictly semistable locus Z̃1) as in diagram (5.3).

Remark 5.2. We expect that the maps of diagram (5.3) are morphisms of algebraic va-
rieties, and that the transformation P2 99K P̂2 is a flip in the sense of VGIT. More pre-
cisely, we suspect that there is a common contraction P∨ (with P∨ → (D/02)

∗) of P2
and P̂2 completing diagram (5.3), and that P2, P∨, and P̂2 are “+”, “0”, and “−” in-
stances respectively in a VGIT set-up. This is plausible since the surfaces parameterized
by P2 and P̂2 are (2, 6) complete intersections in the same space WP(1, 1, 1, 2, 3) (see
Thm. 2.16). However, to make this work, there are two main issues: one needs to deal
with GIT for weighted projective spaces and find a way around non-reductive stabiliz-
ers (see however [RT11]), and secondly the GIT analysis for complete intersections is
already quite involved for (2, 3) curves in P3 (see e.g. [CMJL14]). The analysis in this
paper bypasses these issues, but the results are somewhat weaker.

Proof of Theorem 5.1. By Thompson’s Theorem 2.16 (see also Sect. 3, especially Prop.
3.14) and the GIT analysis (see in particular Cor. 4.7 and Cor. 4.13), we see that the only
KSBA stable pairs (X,H) that do not occur in the GIT quotient P̂2 are those for which
X is a union of two del Pezzo surfaces of degree 1 glued along an anticanonical section
E. More precisely, such an X is given as

X = V (z2
− f6(xi, y), x0x2) ⊂ P(1, 1, 1, 2, 3)

and H is induced by a linear form in xi . We denote by 12E8 ⊂ P2 the closure of this
locus. We have dim12E8 = 19 corresponding to one modulus for E, eight moduli for
each of the del Pezzo surfaces Vi , and one modulus for each of the polarizing divisors
Hi ∈ |−KVi | on Vi . Note also that since X has at worst slc singularities, which is the
same as cohomologically insignificant singularities, there is (at least set-theoretically) a
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map P2 → (D/02)
∗ to the Baily–Borel compactification of F2 (see [Sha79]). From

[Fri84, Thm. 5.4, §(5.2.2)] (see also Section 6 below), we find that 12E8 ⊂ P2 maps to
the closure II2E8+A1

∼= P1 of the Type II component labeled by 2E8 + A1 (see Rem. 1.2
and Fig. 2). In other words, there is a fibration12E8 → P1 given by the j -invariant of the
gluing curve E with 18-dimensional fibers.

On the other hand, for the strictly semistable locus Z̃1 ⊂ P̂2, we have the morphism

P̂2 → M̂→ (D/02)
∗, Z̃1 7→ Ẑ1 → II2E8+A1 ,

which realizes Z̃1 as a P1-fibration (up to finite stabilizer issues) over II2E8+A1
∼= P1;

the fibration is given again by a j -invariant (see Rem. 1.10). Geometrically, the points
of Z̃1 are in one-to-one correspondence with the pairs (X,H) where X is the double
cover of P2 (or similarly for 60

4 ) branched in the union of three conics pairwise tangent
at two fixed points, and H is induced from the line passing through these two points.
The surface X will have two Ẽ8 singularities. Since H passes through them, (X,H) is
KSBA unstable. The KSBA replacement (obtained by applying Thm. 2.9) is analyzed in
§5.1 below (see Figure 3 for a quick pictorial description). Essentially, the resolution V
ofX is a non-minimal elliptic ruled surface (over some elliptic curve E) with two disjoint
(−1)-sections. Then the Kulikov semistable model associated to such a surface is X0 =

V1 ∪E V ∪E V2 with Vi degree 1 del Pezzo with a fixed anticanonical section E. The
KSBA model contracts V resulting in V1 ∪E V2 which corresponds to a point in 12E8 .
On the other hand, the GIT model contracts the surfaces Vi giving the surface X which
corresponds to a point in Z̃1. Thus, the birational map P2 99K P̂2 (defined over (D/0)∗)
replaces12E8 ⊂ P2 by Z̃1 ⊂ P̂2 by forgetting the modulus of V and V1∪V2 respectively.

In other words, we obtain the following diagram:

P̃

����

1E2
8+A1

?�

OO

����

P2

##

P̂2

||
1E2

8

?�

OO

##

(D/02)
∗ Z̃1

?�

OO

||
II2E8+A1

?�

OO

(5.3)

where P̃ is a blow-up of P̂2 along Z̃1 with exceptional divisor 12E8+A1 which parame-
terizes the pairs (X0, H) with X0 = V1 ∪ V0 ∪ V2 and H = H1 + F0 +H2 as discussed
in §5.1. More precisely, we define P̃ as the Kirwan desingularization of P̂ along the
strictly semistable locus Z̃1 (N.B. there are only C∗-stabilizers). It is clear that generi-
cally the points of the exceptional divisor of P̃ → P̂ parameterize Kulikov models of
type X0 = V1 ∪V0 ∪V2 as above. To see that the analysis extends also to the non-generic
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case (N.B. the resulting surfaces might not be Kulikov, see the following remark for a
discussion of what is allowed) we use (1) the analysis of the GIT quotient P̂ along Z̃1 as
discussed in §5.2, and (2) the explicit description of moduli of surfaces of type V1 ∪E V2
or V1 ∪E V ∪ V2 based on some earlier work of Pinkham and Looijenga (see Lem. 5.13
and Cor. 5.15).

Note that P̃ → P̂2 is a morphism by construction, while P̃ → P2 is a priori only set-
theoretic (it maps V1 ∪V ∪V2 to V1 ∪V2, forgetting the modulus of the ruled surface V ).

ut

Remark 5.4. The following degenerations of V1 ∪E V2 are allowed. First, E is either
smooth elliptic (Type II case) or nodal irreducible with pa(E) = 1 (Type III case). The
del Pezzo surfaces Vi are allowed to have ADE singularities. As degenerate cases, we
allow also cones, i.e. singularities of type Ẽ8 (the cone over a degree 1 elliptic curve)
in the Type II case or the degenerate cusp which is obtained as the cone over a nodal
curve. The normalization in this latter case is in fact P2 (see Rem. 7.5). A more detailed
discussion of the possibilities for V1 ∪E V2 (and how they fit together) is given in §6.4
(see especially Fig. 5) and §7.4.

Remark 5.5. The locus in P̃ of Kulikov models can be obtained by constructing a
neighborhood of the Kulikov locus in 12E8+A1 by deformation theory as in [Fri84] (see
Rem. 6.5) and then gluing it to the common open subset Ps

2 of P̂2 and P2.

5.1. The KSBA replacement of the strictly semistable locus

We are now interested in identifying the KSBA stable replacement for the strictly semi-
stable locus Z̃1 ⊂ P̂2. As usual, we consider a family (X,H)/1 of semistable GIT pairs
such that the central fiber (X,H) is strictly semistable (and thus 0 ∈ 1maps to Z̃1 ⊂ P̂2).
In fact, without loss of generality we can assume that (X,H) corresponds to a minimal
orbit. As usual, to understand the KSBA limit for X∗/1∗ one has to arrange (X,H)/1
in a semistable (or even Kulikov) form and then follow the arguments of Theorem 2.9
to obtain the KSBA limit. We sketch the computation below. Note that the semistable
computations here are “generic” and their role is to give a geometric interpretation for
Theorem 5.1.

5.1.1. The geometry of the minimal orbits of P̂2. Consider the pairs (X,H) associated
to a minimal orbit of a strictly semistable point (i.e. corresponding to a point in Z̃1). As
discussed, X is the double cover of P2 branched along the sextic (the unigonal case is
similar and left to the reader)

C = V ((x0x2 − α1x
2
1)(x0x2 − α2x

2
1)(x0x2 − α3x

2
1)) ⊂ P2 for some α1, α2, α3 ∈ C.

The polarization H is the pull-back of the line L = V (x1). The surface X has two Ẽ8
singularities corresponding to the points p1 = (1 : 0 : 0) and p2 = (0 : 0 : 1). Con-
sider the minimal resolution V → X (obtained via a single weighted blow-up of pi).
It is well known that the two exceptional divisors E1 and E2 are elliptic curves with
E2

1 = E
2
2 = −1.
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We are interested here in understanding the geometry of the pair (V ,H), where H is
the polarizing divisor (i.e. |H | defines the map V → X → P2, and H maps to L ⊂ P2).
Using the standard procedure of resolving double covers, we obtain the following com-
mutative diagram:

V //

��

��

P̃

��

$$
E // 5 ∼= P1

X //

@@

P2

::

where

• 5 ∼= P1 is the pencil of conics passing through the points p1, p2 ∈ P2 and tangent to
the lines V (x0) and V (x2);
• E → 5 is the double cover branched at the points corresponding to the three special

conics V (x0x2 − αix
2
1) and to the double line V (x2

1) (in coordinates, E is the double
cover of P1 branched at α1, α2, α3,∞);
• P̃ is the blow-up of P2 twice at each of the points p1 and p2, followed by the contrac-

tion of the resulting two (−2)-curves (alternatively, P̃ is a weighted blow-up of P2 at
the two special points; P̃ has two A1 singularities);
• the horizontal arrows are double covers;
• P2 99K 5 is the conic bundle fibration given by mapping a point x (6= pi) ∈ P2 to the

unique member of the pencil 5 that passes through x.

Lemma 5.6. With notation as above, V → E is an elliptic ruled surface, and the two
exceptional divisors E1 and E2 are two disjoint sections of self-intersection −1. Further-
more:

(i) The strict transform of the line L = V (x1) ⊂ P2 gives a special fiber F0, which can
be taken as the origin of E (and of the sections Ei).

(ii) There are two reducible fibers for V → E corresponding to the reducible conic
V (x0x2) in the pencil5. In particular, V is the blow-up at two points of a geometri-
cally ruled surface.

(iii) The pull-back of the line L ⊂ P2 to V is

H = F0 + E1 + E2,

and thus the linear system |F0 + E1 + E2| gives the map V → X
2:1
−→ P2.

Proof. The claims follow easily from the above discussion. ut

Remark 5.7 (cf. Rem. 1.10). The cross-ratio associated to the elliptic curve E is λ =
α1−α3
α2−α3

and then the j -invariant is j (E) = 28
·
(λ2
−λ+1)3

λ2(λ−1)2 . Alternatively, the affine equation

of X near a singular point, z2
= (x − α1y

2)(x − α2y
2)(x − α3y

2), can be put into the
Weierstrass form z2

= x3
+ Axy4

+ By6, where

A = σ2 − (σ1)
2/3, B = σ3 + σ1σ2/3− 2(σ1)

3/27,
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and σi are the elementary symmetric functions in αi . In this form, the discriminant and
the j -invariant have the following expressions:

1 = 4A3
+ 27B2, j = 1728 ·

4A3

27B2 .

Note that1 = −(α1−α2)
2(α2−α3)

2(α3−α1)
2, and thus the elliptic curve E is singular

iff two of the αi coincide, which corresponds to the case τ (i.e. a double conic together
with another conic bitangent to it). The analysis of the lemma can be extended to the
case of E singular. In that situation, V is a non-normal surface whose normalization is a
(non-minimal) rational ruled surface (see Rem. 5.8 for further discussion).

5.1.2. The semistable reduction. We are now interested in understanding the Kulikov
model associated to a one-parameter family with central fiber (X,H) as above. In the
generic case, the weighted blow-up of the two Ẽ8 singularities of X (as above, but this
time keeping track of the ambient threefold X) gives a semistable model with central fiber
X0 = V1 ∪ V ∪ V2, where

• V is the resolution of X as in §5.1.1, and V1 and V2 are degree 1 del Pezzo surfaces
with a marked anticanonical section Di ∼= E;
• V1 is glued to V along the elliptic curve D0 ∼= E ∼= E1 (and similarly for V2); the

gluing is such that the unique base point of |−KV1 | matches with the point E1 ∩ F0.Kulikov Model: X0 = V1 ∪ V ∪ V2 (V resolves X)

%%JJJJJJJJJJJJJJJJJJ

zzuuuuuuuuuuuuuuuu

oo //_____________________________

GIT Model: X (V1, V2 contracted) KSBA Model: V1 ∪ V2 (V contracted)

Kulikov model: X0 = V1 ∪ V ∪ V2 (V resolves X)

GIT model: X (V1, V2 contracted)
KSBA model: V1 ∪ V2 (V contracted)

Fig. 3. Semistable replacement of the two Ẽ8 surfaces.

Note that the triple point formulas (e.g. D2
1 + E

2
1 = 1+ (−1) = 0) are satisfied, and we

have indeed a Kulikov model.
Keeping track of the polarization, we obtain for the GIT model the polarized compo-

nents
(V1,D1; 0), (V ,E1 + E2;F0 + E1 + E2), (V2,D2, 0).

This leads to a KSBA unstable limit since (V ,E1 + E2; ε(F0 + E1 + E2)) is not slc
(the polarizing divisor contains a double curve). Then the KSBA replacement is obtained
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by twisting the polarization by O(−V ) (on the total threefold space), resulting in the
polarized components

(V1,D1;H1), (V ,E1 + E2;F0), (V2,D2;H2),

with Hi ∈ |−KVi |. In this model, V becomes a 1-surface and thus will be contracted to
the elliptic curve E. We conclude that the KSBA limit in this situation is X0 = V1 ∪E V2,
two degree 1 del Pezzo’s glued along an anticanonical section (see Fig. 3).

Remark 5.8. Note that the same analysis can be easily extended to cover the Type III
case (i.e. E nodal) as well. For example in this case, the central fiberX0 = V1∪V ∪V2 of
the corresponding semistable degeneration will contain again two del Pezzo surfaces Vi ,
but the double curves will be nodal anticanonical sections. Additionally, V is a rational
surface which is a degeneration of an elliptic ruled surface. Namely, V is a non-normal
surface whose normalization Ṽ is a rational ruled surface blown up at two points. For
instance, V can be obtained by blowing up two points on a section of self-intersection 1 on
the Hirzebruch surface F1, and then gluing two irreducible fibers of the resulting surface
to get V .

5.2. The structure of the Kirwan blow-up P̃ of P̂2 along the strictly semistable locus

We now analyze the structure of the Kirwan blow-up P̃ of P̂2 along the strictly semistable
locus Z̃1. Namely, we show that P̃ → P̂2 is a fibration over Z̃1 with fiber isomorphic to
WP9

×WP9, which can be identified with the moduli space of polarized surfaces of type
V1∪E V2 with Vi degree 1 del Pezzo (and E fixed). On the other hand Z̃1 is a P1-fibration
over II2E8+A1 . Combining this with the geometric analysis of §5.1, we get diagram (5.3),
completing the proof of Theorem 5.1.

5.2.1. Preliminaries on degree 1 del Pezzo surfaces. We recall that a degree 1 del Pezzo
surface has the following anticanonical model:

{z2
= y3

+ yg4(x0, x1)+ g6(x0, x1)} ⊂ P(1, 1, 2, 3), (5.9)

and the point (0 : 0 : 1 : 1) is the base locus of the anticanonical linear system. We are
interested in surfaces of type V1 ∪E V2, where both Vi are degree 1 del Pezzo surfaces, E
is an anticanonical section, and the gluing is such that the base points of the anticanonical
systems on Vi match (a necessary condition for V1 ∪E V2 to occur as a central fiber in a
degree 2 K3 degeneration). As already noted, V1 ∪E V2 has the following description:

V1 ∪E V2 = {z
2
= y3

+ yg4(x0, x1, x2)+ g6(x0, x1, x2), x0x2 = 0} ⊂ P(1, 1, 1, 2, 3),

which is compatible with (4.8) and Theorem 2.16. Note that the gluing curve is given by
intersecting with V (x0, x2):

E = {z2
= y3

+ Byx4
1 + Cx

6
1} ⊂ P(1, 2, 3),
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an elliptic curve in Weierstrass form. The polarizing divisor in this situation is given by a
linear form l(x0, x1, x2). Finally, the cone over E is given by

{z2
= y3

+ Byx4
1 + Cx

6
1} ⊂ P(1, 1, 2, 3),

with vertex at (1 : 0 : 0 : 0) ∈ P(1, 1, 2, 3); it appears when x0 (or x2) does not occur in
g4 and g6.

5.2.2. The moduli of degree 1 del Pezzo’s with a marked anticanonical section. A the-
orem of Pinkham and Looijenga (see e.g. [Pin77] and [Loo77, Loo78]) identifies the
moduli space of pairs (V ,D) consisting of a degree 1 del Pezzo surface V with a marked
hyperplane section D to the weighted projective space P(1, 2, 2, 3, 3, 4, 4, 5, 6) (N.B.
2, 2, . . . , 5, 6 are the coefficients of the simple roots αi of E8 in the highest root α̃).
One way of seeing this is to consider the versal deformation of an Ẽ8 singularity {z2

=

y3
+ Byx4

+ Cx6
} ⊂ (C3, 0), which is given by

{z2
= y3
+Byx4

+Cx6
+ t1yx

3
+· · ·+ t5x

5
+· · ·+ t10} ⊂ (C3, 0)× (C10, 0). (5.10)

Since this is a singularity with Gm-action in the sense of Pinkham, one gets a C∗-action
on the germ (ti) ∈ (C10, 0) with weights 0, −1, −2, −2, −3, −3, −4, −4, −5,
−6. The deformations in the 0-direction correspond to equisingular deformations (i.e.
keep the Ẽ8 singularity, but modify the j -invariant). The deformations in the negative
weight correspond to smoothing deformations, and modulo C∗ the resulting quotient
P(1, 2, 2, 3, 3, 4, 4, 5, 6) is the moduli space of del Pezzo pairs (V ,D) with D isomor-
phic to the fixed elliptic curve E = V (z2

− y3
+Byx4

+Cx6). Simply, this corresponds
to homogenizing the equation of the versal deformation of Ẽ8; the result is the del Pezzo
equation (5.9) (here x = x1/x0 and the sectionD corresponds to the hyperplane at infinity
V (x0)).

Remark 5.11. The homogenized version of (5.10) can be understood as a normal form
for pairs (V ,D) (where, as above, D is the hyperplane at infinity). For fixed D, such a
normal form is unique up to the C∗ scaling of the parameters ti , and possibly some finite
group action. Furthermore, we note that this normal form is still valid in case the curveD
becomes nodal.

Remark 5.12. Alternatively, the moduli space of pairs (V ,D) with D ∼= E (a fixed
elliptic curve) can be obtained by considering the mixed Hodge structure (MHS) on V \D.
Since V is the blow-up of P2 at eight points lying on E, the classifying space for these
MHS is E ⊗Z E8. Thus, the moduli space of pairs (V ,D) is

(E ⊗Z E8)/W(E8) ∼= P(1, 2, 2, 3, 3, 4, 4, 5, 6),

the isomorphism to the weighted projective space being the content (in more general
circumstances) of the above mentioned theorem of Looijenga [Loo77]. This description
allows us to see the moduli space of semistable modelsX0 = V1∪EV ∪EV2 (forE fixed)
as the product P(1, 2, 2, 3, 3, 4, 4, 5, 6) × P1

× P(1, 2, 2, 3, 3, 4, 4, 5, 6) (by applying
Looijenga’s theorem to the root lattice R = 2E8 + A1; see also Rem. 6.5).
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Here, we are interested in the moduli space of triples (V ,D;H)where V is a degree 1 del
Pezzo, D ∼= E is a fixed anticanonical section, and H is another anticanonical section.
By a simple modification of the arguments above for (V ,D), we get:

Lemma 5.13. The moduli space of triples (V ,D;H), where V is a degree 1 del Pezzo,
D,H ∈ |−KV |, D 6= H , and D ∼= E is fixed, is the quasi-projective variety

P(1, 1, 2, 2, 3, 3, 4, 4, 5, 6) \ {(1 : 0 : · · · : 0)}.

Furthermore, it has a 1-point compactification to the weighted projective space
P9(1, . . . , 6). The extra point naturally corresponds to the cone over E (with an Ẽ8 sin-
gularity at the vertex v) together with a hyperplane section away from v.

Proof. We obtain this by considering as before the negative weight deformations of Ẽ8.
We defineH to be the hyperplane {x = a} in affine coordinates for a ∈ C (or equivalently
{x1 = ax0} after homogenization). As before we obtain the affine quotient (C×C9)/C∗,
which gives the weighted projective space from the theorem. Note that if the C9 compo-
nent is non-zero we obtain a unique pair (V ,D) with V a degree 1 del Pezzo (with at
worst ADE singularities) and D ∼= E. From the C component of the parameter space, we
also get a hyperplane section H ∈ |−KV | \ {D} (N.B. H = D corresponds to a = ∞).
Finally, if the C9 component vanishes, we must have a 6= 0 and then we get the cone over
E together with a hyperplane section not passing through the vertex v = (1 : 0 : 0 : 0) of
the cone. ut

Remark 5.14. The weighted blow-up of (1 : 0 : · · · : 0) ∈ P9(1, 1, 2, . . . , 6) will
give a P1-fibration over P8(1, 2, . . . , 6). This corresponds geometrically to the triples
(V ,D;H) with D ∼= E fixed and H moving in the linear system H ∈ |−KV | ∼= P1 with
no restriction on H . Thus, the difference from the moduli space of the lemma is that all
triples (V ,D;H) with D = H are replaced in Lemma 5.13 by the cone over E (plus a
general hyperplane section). This is the correct moduli space from the KSBA perspective
(see also §6.4, especially case 2E8 + A1 (C) and Fig. 5).

We conclude

Corollary 5.15. The moduli space of pairs (X,H) with X = V1 ∪E V2, where the Vi are
degree 1 del Pezzo or degenerations (in P(1, 1, 2, 3)), H|Vi ∈ |−KVi |, and such that E is
fixed and (X, εH) is slc, is

P(1, 1, 2, 2, 3, 3, 4, 4, 5, 6)× P(1, 1, 2, 2, 3, 3, 4, 4, 5, 6).

Proof. This follows from the previous lemma by noting that (X,H) is uniquely deter-
mined by (Vi,Di;Hi) (where Hi = H|Vi and Di ∼= E). ut

5.2.3. The structure of P̂2 near Z̃1. Let x = (c, l) ∈ PN × P2 (where PN is the Hilbert
scheme of sextics) be a point corresponding to the minimal orbit (C,L) given by C =
V ((x0x2 − α1x

2
1)(x0x2 − α2x

2
1)(x0x2 − α3x

2
1)), and L = V (x1). We are interested in the

structure of the quotient P̂2 near the projection x̄ ∈ Z̃1 of x.
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As before, by Luna’s slice theorem a local model is given by the normal slice Nx to
the orbit G · x. It is immediate to see that the stabilizer group Gx acts on the space of
sextics TxPN with weights

Weight ±6 ±5 ±4 ±3 ±2 ±1 0
Multiplicity 1 1 2 2 3 3 3

and on the space of linear forms TlP2 by weights±1. SinceG · x = G/Gx , the groupGx
acts on the tangent space Tx(G·x) to the orbit by weights±2,±1, and 0 with multiplicities
1, 2, and 1 respectively. We conclude that Gx ∼= C∗ acts on Nx ∼= C22 by

Weight ±6 ±5 ±4 ±3 ±2 ±1 0
Multiplicity 1 1 2 2 2 2 2

Thus locally (in etale topology) near x̄, P̂2 is the quotient of C22 by C∗ with weights given
as above. The two-dimensional 0-weight direction corresponds to deformations preserv-
ing the strictly minimal orbit. We conclude:

Lemma 5.16. The fiber of the Kirwan blow-up P̃ → P̂2 over x̄ ∈ Z̃1 is

P(1, 1, 2, 2, 3, 3, 4, 4, 5, 6)× P(1, 1, 2, 2, 3, 3, 4, 4, 5, 6). ut

Using this lemma and the P1-fibration of Z̃1 given by the j -invariant (see Rem. 1.10), we
find that the exceptional divisor 12E8+A1 of P̃ has a fibration over P1 (the compactified
j -line) with fiber WP9

×WP9
× P1 (cf. Rem. 5.12). Geometrically, these fibers param-

eterize surfaces of type V1 ∪E V ∪E V2 as described in §5.1. The projection P̃ → P2 is
then given by the contraction of the P1 direction. For a further discussion of the geometry
in this case see §6.4 (especially Fig. 5).

6. Classification of type II degenerations

As established above, the moduli space P2 of stable pairs maps to the Baily–Borel
(D/02)

∗, which is generically a P2-bundle. In this section we discuss the structure of
the boundary of P2 over the Type II boundary in (D/02)

∗.
We recall that the semistable model in a Type II degeneration is a chain of surfaces

X0 = V0 ∪ · · · ∪ Vr (with Vi meeting Vi+1) such that

• V0 and Vr are rational surfaces;
• the Vi are elliptic ruled surfaces;
• the double curves are smooth elliptic and isomorphic to a fixed curve E;
• the double curves are anticanonical sections for V0 and Vr and sections for Vi for
i 6= 0, r .
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The normalization Xν of the central fiber X = X0 of a relative log canonical model
will have at most two simple elliptic singularities (besides ADE singularities), and the
double curve of the normalization will be either empty (ifX is normal with simple elliptic
singularities) or give disjoint elliptic curves, all isomorphic to E.

Associated to every Type II degeneration of K3 surfaces there are two basic invari-
ants: a continuous invariant, the modulus of E (possibly with a level structure), and a
discrete invariant, the isometry class of the lattice GrW2 H

2(X0)prim. (N.B. it is defined
over Z, see [Fri84, §3] for details). The discrete invariant determines the Type II bound-
ary component to which a one-parameter semistable degeneration with central fiber X0
would map. The continuous invariant determines the actual point in the Type II compo-
nent where the degeneration maps (recall that the Type II components are quotients of H
by modular groups).

For degree two, there are four Type II Baily–Borel boundary components, labeled
by the root lattices A17, E7 + D10, D16 + A1, and 2E8 + A1. The geometric meaning
of these components (via GIT) was explained in Section 1 (see Figure 2). Furthermore,
Friedman [Fri84, Thm. 5.4] has classified the semistable models corresponding to these
four cases, subject to the following normalization assumptions: there are only two compo-
nents for X0 (i.e. a union of two rational surfaces), and the polarization meets the double
curve (i.e. Li .Di > 0) (N.B. any Type II degeneration can be arranged to satisfy these
conditions, cf. [Fri84, Thm. 2.2]).

As we will see below, the Friedman semistable models can be used to understand
all the Type II boundary pairs in P2. However, as the proof of Theorem 2.9 shows, one
needs to allow two operations on Friedman’s models: base changes (introducing elliptic
ruled surfaces in the middle) and twists by components Vi of X0 (these have the effect
of modifying the polarization on (Vi,Di) from Li to Li − Di). Combining the list of
polarized semistable models of Friedman with the GIT analysis of Section 4, one gets a
clear picture of P2 → (D/02)

∗ over Type II strata. We discuss this below. The discussion
can be summarized as follows:

Theorem 6.1. The preimage in P2 of the Type II boundary in (D/02)
∗ consists of six

irreducible components IIi as summarized in Table 1 (the index i corresponds to the case
in the table). Furthermore, via P2 → (D/02)

∗,

(i) II1 maps to IIA17 (see Prop. 6.3);
(ii) II2 and II5 map to II2E8+A1 (see Prop. 6.8);

(iii) II3 maps to IID16+A1 (see Prop. 6.7);
(iv) II4 and II6 map to IIE7+D10 (see Prop. 6.4).

Proof. As discussed, the stable limits of degenerations of K3 surfaces are essentially de-
termined by the components that are 0-surfaces. The polarized 0-surfaces in degree 2 are
classified by Proposition 3.14; this gives the six cases of Table 1. The fact that these cases
occur and that there is exactly one boundary component associated to each case follows
from the GIT analysis. A detailed discussion of the GIT models and of the connection to
the abstract point of view is done in Propositions 6.3, 6.4, 6.7, and 6.8 below. ut
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Remark 6.2. The analysis of the Type II boundary of P2 does not depend (after ignoring
finite quotient issues) on the j -invariant associated to the corresponding geometric object
(cf. Rem. 1.10). Thus, the preimages of Type II components in P2 will be certain fibra-
tions over the affine j -line. The limits as j →∞ give Type III pairs; the classification of
those will be discussed in Section 7.

6.1. Case A17 ([Fri84, (5.2.1)], [Sha80, Thm. 2.4 (II.4)], [Tho10, Table 1 (II.3)])

The Type II Baily–Borel boundary component IIA17 corresponds to the stratum Z4 in the
GIT quotient M̂, and in fact M̂→ (D/02)

∗ is an isomorphism along this stratum. Since
the stratum Z4 corresponds to stable GIT points, it follows that P̂2 → M̂ is a P2-fibration
(up to finite stabilizers) over Z4 ∼= A1. Finally, P2 and P̂2 agree over this stratum. Thus,
we conclude (see §4.1 for the last statement):

Proposition 6.3. The moduli space P of pairs is (up to finite stabilizers) a P2-fibration
over the Type II boundary component IIA17 . In fact, the closure of this locus remains a
P2-bundle over IIA17

∼= P1.

6.1.1. GIT model. The underlying surface X0 is

z2
= f3(xi)

2

for a smooth plane cubic f3. The normalization of X0 is two copies of P2 with the double
curve being the elliptic curve E = V (f3). Since the plane sextic f 2

3 is stable and we are
working with 0 < ε � 1 linearization, the choice of polarizing divisor is irrelevant here.
The same is true from the KSBA perspective, as the polarizing divisor (a line in each copy
of P2) cannot have a common component with the double curve.

6.1.2. Friedman’s model. The semistable surfaceX0 = V1∪V2 is obtained by gluing two
copies of P2 along an elliptic curve, and then blowing up 18 times along the elliptic curve.
The polarization is the pull-back to Vi of a line in P2. Thus, the relative log canonical
model X0 is obtained by contracting all these (−1)-curves, and coincides with the GIT
model. Note also that in this situation the polarizations Li on the components (Vi,Di)
satisfy L2

i = 1 and Li .Di = 3. Thus, no twist is possible (cf. Lem. 3.5).

6.2. Case E7 +D10 ([Fri84, (5.2.3)], [Sha80, Thm. 2.4 (II.2)], [Tho10, Table 1 (II.0h),
(II.1)])

In this case, the corresponding GIT stratum is Z2. Again M̂ and (D/02)
∗ agree over this

stratum. Also, P̂2 and P2 agree over the preimage of this stratum. However, in contrast to
the previous case, P̂2 → M̂ is not a P2-bundle over Z2. Here the choice of polarizing di-
visor instead of line bundle is essential: without a divisor one only gets strictly semistable
points; in contrast when the divisor is considered, all the pairs are either stable or unstable
(in the GIT sense, but this coincides with the KSBA stability here). The analysis of the
models associated to this stratum gives the following result:
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Proposition 6.4. The fiber over a point of the boundary component IIE7+D10 consists of
the closure of the following two strata:

(A) a 9-dimensional stratum parameterizing the triples (V ,D;H) where V is a degree 2
del Pezzo surface, D,H ∈ |−KV |, D ∼= E is a fixed elliptic curve, and H 6= D;

(B) a 12-dimensional component parameterizing the surfaces that are double covers of
P2 branched in a reduced sextic with an Ẽ7 singularity and a hyperplane section not
passing through the singularity.

The closure of each of these components is obtained by adding a rational curve, which
is common to both. The gluing curve parameterizes the pairs (X,H) with X a minimal
elliptic ruled surface with a section of self-intersection 2 and another section collapsed to
an Ẽ7 singularity, and a divisor H ∈ |σ + 2f | (where σ is the class of the (−2)-section,
and f the class of a fiber).

6.2.1. GIT model. The minimal orbits corresponding to points of Z2 are given by
x2

0f4(x1, x2) for a binary quartic with distinct roots. One distinguishes three distinct geo-
metric possibilities:

(A) a sextic containing a double line: the normalized double cover will be a degree 2 del
Pezzo, and the line will give (as the double curve of the normalization) the anticanon-
ical section D;

(B) a reduced sextic with a unique Ẽ7 singularity;
(C) a sextic with both an Ẽ7 and a double line.

When considering additionally a hyperplane section (i.e. passing from M̂ to P̂), the or-
bits become separated as in the toy example of §4.1. As discussed in Proposition 4.5, the
restrictions for the hyperplane section are not to pass through the Ẽ7 singularity or to co-
incide with the double line. A simple dimension count (for a fixed j -invariant) gives the
dimensions of the proposition. For example, the moduli space of degree 2 del Pezzo sur-
faces containing a fixed elliptic curve E is 7-dimensional and isomorphic to the weighted
projective space (E ⊗Z E7) /W(E7) ∼= P7(1, 1, 2, 2, 2, 3, 3, 4). The choice of polarizing
divisor gives two additional dimensions.

Finally, case (C) is a specialization of both (A) and (B). The double cover associated
to the sextic of case (C) is, after normalization and resolution of the Ẽ7 singularity, a
minimal elliptic ruled surface with marked sections of self-intersection 2 and−2. Because
of the C∗ stabilizer in case (C), there is (up to isomorphism) only a one-dimensional
choice for the hyperplane section H . Explicitly, X is the normalization of the double
cover z2

= x2
0f4(x1, x2) and H is the pull-back of the line L = V (x0 + bx1 + cx2) in P2

and the modulus is given by (b : c) ∈ P1.

6.2.2. Friedman’s model. The semistable model in this case, X0 = V1 ∪ V2, gives, after
the contraction of the (−1)-curves orthogonal to the polarization, the following two rela-
tively minimal polarized anticanonical surfaces: a degree 2 del Pezzo (V 1,D1;L1) with
D1, L1 ∈ |−KV 1

|, and (V 2,D2;L2) ∼= (F1, 2σ +4f ; f ). Note that to get the semistable
model X0 starting from V 1 ∪ V 2 one needs ten additional blow-ups, but these are irrele-
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vant from the perspective of the relative log canonical model. Also note that in this model
V1 is 0-surface, and V2 is a 1-surface. Thus, the central fiber of the relative log canonical
model will be just V 1 with D1 marked. This is precisely case (A) above.

Case (A): deg 2 del Pezzo Unstable Case (B): Ẽ7

Case A: deg 2 del Pezzo Unstable Case B: Ẽ7
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Fig. 4. The degenerations in the E7 +D10 case.

It is easy to understand how the other models occur: when trying to compactify the
moduli space of pairs, one has to replace the case H 1 = D1 (the polarizing divisor coin-
cides with the double curve) by a slc model. This is achieved by replacing the semistable
model V1 ∪ V2 by a model V1 ∪ V ∪ V2 where V is a minimal elliptic ruled surface
glued along two sections: D1 of self-intersection −2 and D2 of self-intersection 2. When
H1 = D1 occurs, one applies the twist, and moves the polarization from V1 to V (see
Figure 4).

Finally, note that the semistable model X0 = V1 ∪ V ∪ V2 dominates all the GIT
models (A), (B), and (C). The difference between the three cases is given by the lift of
the polarization L∗ in a one-parameter degeneration X/1 from the generic fiber to the
family. Explicitly, encoding the lift L by the degrees on the components of X0, we get:

• (2, 0, 0) corresponds to (A) (degree 2 del Pezzo);
• (0, 2, 0) corresponds to (C) (elliptic ruled with a section collapsed to an Ẽ7 singularity);
• (0, 0, 2) corresponds to (B) (rational with an Ẽ7 singularity).

Note that the lifts of L are related by the twist operation.

Remark 6.5 (Pd vs. partial toroidal compactifications). The deformation theory of a
semistable model X0 is well understood: one can obtain a partial compactification of the
moduli space of K3 surfaces by adding a divisor parameterizing semistable models of
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a fixed combinatorial type and satisfying the d-semistability condition of Friedman (see
[Fri84, §4], [Fri83a], [KN94], and [Ols04]). On the other hand, for Type II boundary
components (for Type III see [FS85]), it is known that there exists a unique toroidal
compactification over a Type II boundary stratum in (D/0d)∗. One can show that the
geometric divisor obtained by local trivial deformations of semistable models and the
toroidal divisor can be identified via the theory of degenerations of Hodge structures (this
is essentially the content of [Fri84]). However, the issue is that, in the polarized case,
there are several possible liftings of the polarization. Thus one obtains several boundary
divisors (three in the example above) which are not distinguishable at the level of Hodge
theory. The choice of polarizing divisor (giving Pg-bundles over these boundary divisors)
allows one to glue the various boundary divisors. In the Pg-bundle Pd over Fd these
divisors are contracted to smaller-dimensional components.

For instance, in the E7 +D10 case discussed above, the deformation theory for X0 =

V1 ∪ V ∪ V2 will give a boundary divisor which is essentially a WP7
×WP10-fibration

(coming from (E7⊗E)/W(E7) and (D10⊗E)/W(D10) respectively) over the j -line. The
choice of the lifting polarization gives three copies of this divisor, say 1(2,0,0), 1(0,2,0),
and 1(0,0,2) (N.B. these can be viewed as divisors in a partial non-separated compacti-
fication of F2, cf. [Ols04]). The choice of a polarizing divisor H gives P2-bundles, say
1̃(2,0,0) → 1(2,0,0), over each of these copies (N.B. 1̃(2,0,0) can be viewed as divisors
in a partial compactification of P2). Then the case H1 = D1 can be viewed as giving a
gluing of the copy 1̃(2,0,0) with the 1̃(0,2,0) copy; and similar gluing for the divisor corre-
sponding to (0, 2, 0) and (0, 0, 2). Thus at the level of pairs, it is possible to give a partial
toroidal-like compactification for P2 by adding the divisors 1̃(∗,∗,∗). Finally, in Pd these
divisors will be collapsed to three smaller-dimensional strata (e.g. in the (2, 0, 0) case the
P2-bundle 1̃(0,2,0) over WP7

×WP10 will be collapsed to a P2-bundle over WP7, giving
the 9-dimensional stratum (A)).

6.3. Case D16 + A1 ([Fri84, (5.2.4)], [Sha80, Thm. 2.4 (II.2)], [Tho10, Table 1 (II.2)])

This case is quite similar to the A17 case: both Z3 (this case) and Z4 correspond to
stable GIT loci. We note first that M̂ → (D/0)∗ is a P1-bundle over the component
IID16+A1 . Specifically, Ẑ3 \ τ̂ → IID16+A1

∼= A1 is a P1-bundle, the map being given by
the j -invariant (cf. Rem. 1.10). This corresponds to the following geometric fact:

Lemma 6.6. The choice of a point in Ẑ3 \ τ̂ corresponds to the choice of an elliptic
normal curve of degree 4 in P3 together with a quadric containing it.

The points of Ẑ3 \ τ̂ are stable GIT points, and by construction it follows that P̂2 → M̂
is a P2-bundle over this locus. Finally, P2 and P̂2 agree here (the preimage of Ẑ3 \ τ̂ is
away from the flip locus). We conclude:

Proposition 6.7. Over the component IID16+A1 , P2 → (D/0)∗ is a P2
× P1-bundle.

6.3.1. The GIT model. The equation of the sextic corresponding to this case is q2
0q, with

the conditions that q0 is smooth, q is reduced, and q0 and q intersect transversely. The
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normalization V1 of the double cover z2
= q2

0q is the quadric surface z2
= q in P3. The

double curve of the normalization will be an elliptic curve D1 which is the double cover
of the conic V (q0) branched at the four intersection points. A similar picture holds also
in the unigonal case (i.e. U3 ⊂ Ẑ3). This concludes the proof of Lemma 6.6. Note that in
this case all the points are stable, thus this stratum is modular even without the choice of
a divisor.

Finally, the hyperplane section is the pull-back of a line in P2. It is a hyperplane sec-
tion of the quadric V1 but it is not an arbitrary section: in fact, it lies in a two-dimensional
linear subsystem characterized by the property that it cuts the elliptic curveD1 in two con-
jugate points. This somewhat surprising fact is explained by the analysis of the semistable
model below.

6.3.2. Friedman’s model. The relatively minimal models of the two components in this
case are (V 1,D1;H 1) = (F0, 2f1+ 2f2; f1+ f2), (V 2,D2;H 2) = (F1, 2σ + 4f ; 2f ).
Note that H 2

1 = 2, H 2
2 = 0, H1.D1 = H2.D2 = 4. Since H1.D1 > H 2

1 , it follows
that no twisting is possible. This means that in contrast to the E7 + D10 case there is
only one model. Note that the condition on the hyperplane section noted in the previous
paragraph (i.e. H1 cuts the elliptic double curve D1 in two conjugate points) is imposed
by the requirement of extending the polarization to the second component (even though
this component is a 1-surface, which is contracted to the double curve in the log canonical
model).

Abstractly, this case corresponds to the case of polarized anticanonical pairs
(V ,D;L) with L2

= 2 and L.D = 4. From Proposition 3.8, we know that V has to
be a scroll and in fact a quadric surface in P3. The results of Harbourne (e.g. Thm. 3.11)
say that the linear system |L| is base point free. Thus, the occurrence of the unigonal case
might seem contradictory. The resolution of this apparent contradiction was given above:
the allowed polarizing divisors are members of a linear subsystem of |L|.

6.4. Case 2E8 + A1 ([Fri84, (5.2.2)], [Sha80, Thm. 2.4 (II.1)], [Tho10, Table 1 (II.0h)],
[Tho10, Table 2 (II.0u)], [Tho10, Table 2 (II.4)])

This case is the most involved one. Specifically, on the GIT side this corresponds to
the stratum Ẑ1, parameterizing curves with Ẽ8 singularities; these are strictly semistable
points. When we consider the polarizing divisor, the orbits become stable if the divisor
does not pass through the Ẽ8 singularity. If it passes through the singularity, we obtain a
strictly semistable object, which will be replaced via the flip discussed in Section 5 by the
case of two components (which both have to be del Pezzo’s of degree 1). We conclude:

Proposition 6.8. The fiber in P2 over a point in II2E8+A1 ⊂ (D/0)∗ consists of two
components:
(A) A component of dimension 18 parameterizing (X,H) with X = V1 ∪E V2, with both

Vi being degree 1 del Pezzo surfaces glued along an elliptic curve E (such that the
base points pi ∈ E of the anticanonical systems are matched). This case can further
degenerate to cases (C) and (D) (where one or both Vi degenerate to elliptic ruled
surfaces with Ẽ8 singularities).
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(B) A component of dimension 11 parameterizing rational surfaces with Ẽ8 singularities
together with hyperplane sections not passing through the singularities. This can
further degenerate to case (E) (i.e. elliptic ruled surfaces with two Ẽ8 singularities).

The two components are glued along the 9-dimensional (closure of the) stratum (C) (see
Fig. 5).

B.

��

// C.

��

A.oo

E. // D. KSBA Models w. 2 components

GIT/KSBA Stable (Ẽ8 case)

GIT degenerations

��
GIT Semi-stable/KSBA unstable oo

KSBA replacement

KSKSBA models, 2 components

KSBA replacement

A.C.

D.

B.

E.

GIT/KSBA stable
(Ẽ8 case)

GIT degenerations

GIT semistable/KSBA unstable

Fig. 5. The degenerations in the 2E8 + A1 case.

Remark 6.9. As already discussed in Section 5, one can be very precise about the struc-
ture of the various strata occurring in the proposition. For instance, the closure of the stra-
tum (A) is the product of two weighted projective spaces P9(1, 1, . . . , 5)×P9(1, 1, . . . , 5)
(see Cor. 5.15).

6.4.1. GIT model. Here we have several models. First, we have plane sextic curves with
a unique Ẽ8 (depending on ten moduli, one of which is the j -invariant) and sextics with
two Ẽ8 (depending on two moduli) which are obtained from q1q2q3 with a common axis.
In the classification above, these cases correspond to (B) and (E). In case (E), via a partial
smoothing one obtains case (B) (see Lem. 3.16).

Next, we consider additionally the hyperplane section. If the hyperplane does not
pass through the Ẽ8 singularity, then the resulting pair is both GIT and KSBA stable. If
the hyperplane passes through the singularity, the pair is GIT semistable and slc unstable.
By applying a semistable reduction as discussed in Section 5, one obtains the case of two
components which (unless they are cones) have to be degree 1 del Pezzo surfaces.
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6.4.2. Friedman’s model. Each of the two relatively minimal models (V i,Di;H i) of the
components of [Fri84, (5.2.2)] is a degree 1 del Pezzo surface with Di, H i ∈ |−KV i |.
This gives case (A) discussed above. As in the E7 +D10 case, additional models can be
obtained by base change and twisting. For instance, starting with case (A), one needs to
blow up two more times to get a semistable model. Then applying a twist gives case (B):
a single rational component V1, which is the blow-up of ten points on a cubic in P2. Here,
H 2

1 = 2 (and H 2
2 = 0), H1.D1 = 0, D2

1 = −1. By the results discussed in Section 3,
such a case either leads to a double cover of P2 branched along a sextic with an Ẽ8
singularity if there is no fixed component, or to a unigonal type case (which corresponds
to the U1 ⊂ Ẑ1 stratum in the GIT model). Finally, applying base changes to Friedman’s
model followed by twists leads to cases (C), (D), and (E). It is interesting to note that all
cases discussed in [Tho10, p. 21] occur in the 2E8 + A1 situation.

7. Classification of Type III degenerations

We now discuss the case of Type III degenerations. According to the classification given
by Proposition 3.14, every 0-surface (V ,D;L) that occurs in a Type III degeneration has
a partial smoothing to a Type II case (V ′,D′;L′), i.e. as polarized surfaces (V , L) and
(V ′, L′) are deformation equivalent, D′ is a smoothing of the cycle of rational curves D.
Thus, we obtain

Theorem 7.1. The Type III locus in P2 is the closure of the Type II locus, in the sense of
taking the closure (as j → ∞) of the fibrations over the Type II Baily–Borel boundary
components in (D/02)

∗. In particular, there are six Type III boundary components IIIi
in P2 of dimensions 2, 18, 3, 9, 11, and 12 as described in Table 1. Each of these compo-
nents is irreducible except III3 which splits into two irreducible components IIIγ and IIIδ .
The incidence relations of Type III components are summarized in Table 2.

Remark 7.2. We note that the statement that all 0-surfaces of Type III have a deformation
to a Type II polarized anticanonical pair is only true for low degrees. For instance, the
surfaces Fn (for n ≥ 3) carry an effective anticanonical divisor of Type III, but none of
Type II. Thus, for large degrees, at least a priori, there might be degenerations of Type III
that are not limits of Type II degenerations.

We will denote the six Type III boundary components by IIIi for i ∈ {1, . . . , 6} according
to Table 1 and Proposition 3.14. The generic point of each of these components was al-
ready described. Also, their basic structure is similar to that of their Type II counterparts
(see Props. 6.3, 6.4, 6.7, and 6.8). The only significant difference is that the gluing of the
Type III strata is more involved, reflecting the fact that it is easier for the polarizing divisor
to pass through a log canonical center (i.e.H might pass through a triple point, or contain
a component of the anticanonical cycle vs. H has to contain the anticanonical curve in
the Type II case). A summary of the strata resulting from incidence of several Type III
boundary components IIIi is given in Table 2 below. Note that the components IIIi for
i 6= 3 are irreducible, but for i = 3 we have a decomposition into irreducible compo-
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Table 2. The incidence of Type III boundary components in P2.

Description (generic point) dim Contained in

α X = V0 ∪D V1, Vi ∼= P2, D a nodal cubic 1 III1, IIIβ , IIIδ
β Xν a deg 2 del Pezzo with an A1 at p ∈ D 8 III4, III6
γ Xν a quadric in P3, D a union of two conics 3 comp. of III3, IIIβ
δ Xν a quadric in P3, D a nodal quartic 3 comp. of III3, III5
ε Xν a quadric, D = C ∪ L1 ∪ L2, C a conic, Li a line 2 IIIγ , IIIδ
φ X = V0 ∪D V1, V0 a deg 1 del Pezzo, V ν1

∼= P2, D nodal 9 III2, III5
ζ ′ X = V0 ∪D V1, V ν

i
∼= P2, D nodal 0 IIIφ

ζ X = V0 ∪D V1, Vi ∼= P2, D a triangle 0 IIIα , IIIε

nents III3 = IIIγ ∪ IIIδ . We include IIIγ and IIIδ in the table as they are included in some
other components IIIi .

Remark 7.3. As for Table 1, when describing the stable (X,H) corresponding to the
generic point of a boundary stratum we ignore the polarizing divisor H . The dimension
is the dimension of the stratum in P2 and thus takes H into account. Note that some-
times X has positive-dimensional stabilizer, leading to strata of dimension less than 2 (cf.
Rem. 2.2). Finally,D refers to a cycle of rational curves which is an anticanonical divisor
on the normalized components of X. In some cases D passes through a canonical singu-
larity of (the normalization of) X; a resolution of the singularity will bring X and D in a
standard form.

To begin, we note that the gluing of Type III strata will reflect the structure of the boundary
in the GIT quotient M̂ (see Figure 2) and the gluing of the type II components in P2.
Namely, we recall that in the GIT quotient M̂, the Type III stratum is mapped to the
rational curve τ̂ ∪ ζ . The point ζ corresponds to the gluing of all strata. Similarly, the
affine curve τ̂ corresponds to the gluing of the strata corresponding to E2

8 + A1 and
D16+A1. At the level of Type II pairs, the only gluing occurs for E7+D10 cases (A) and
(B) (corresponding to III4 and III6) and for E2

8 +A1 cases (A) and (B) (corresponding to
III2 and III5). Using this information, we now identify for each Type III component IIIi
some substrata along which the given component glues to other Type III components.

Remark 7.4. In general, given a boundary pair (X,H) in Pd , further degenerations of
it will have no fewer components. It follows that the two boundary components III1 and
III2 that parameterize the degenerations X = V1∪E V2 with two components are disjoint.
These two boundary components will meet the other boundary components along IIIα
and IIIζ ∈ IIIα for III1 and along IIIφ and IIIζ ′ ∈ IIIφ for III2. The points IIIζ and IIIζ ′
are in a certain sense the deepest degenerations for degree 2 K3 pairs. They correspond
to the so called pillow degenerations of K3 surfaces (see e.g. [CMT01]), i.e. unions of
P2’s (polarized by O(1)) glued according to the combinatorics of a triangulation of S2

with d triangles (see also Rem. 7.5). An ongoing project of Gross–Hacking–Keel (see
e.g. [GHK15]) investigates the deformations of such pillow surfaces (in all degrees) and
thus (in particular) describes neighborhoods of IIIζ and IIIζ ′ in P2.
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7.1. A17 case

As already mentioned in Proposition 6.3, the closure of the Type II locus in this case is
still a P2-bundle over IIA17

∼= P1. The corresponding Type III stratum is III1 and is two-
dimensional. It parameterizes the stable pairs (X,H)whereX is a union of two P2’s glued
along a nodal cubic C, and H corresponds to the choice of a line not passing through the
nodes of C (cf. §4.1). The generic case is when C is irreducible nodal; the stable pairs in
this case belong only to the component III1. The component III1 will be glued to other
components along the locus where C becomes reducible. We denote by IIIα ⊂ III1 the
rational curve corresponding to C reducible and by IIIζ ∈ IIIα the point corresponding to
C becoming a triangle.

Note that the entire component III1 ⊂ P2 maps to the point ζ in M̂ (via P2 99K
P̂2 → M̂; N.B. the III1 locus is not affected by the flip of Section 5). Note also that the
point IIIζ ∈ P2 corresponds to the minimal orbit associated to ζ ∈ M̂. We reiterate here
that the main point is that at the level of pairs the moduli functor is separated and thus IIIζ
corresponds to a single geometric object, in contrast to the point ζ which hides several
orbits.

7.2. E7 +D10 case

As already discussed, in this case there are two geometric possibilities:

(III4) Degenerations of E7 + D10 (A): the elliptic section of the degree 2 del Pezzo
becomes nodal, or, in terms of sextics, a quartic plus a line tangent to it (the line
being counted with multiplicity 2).

(III6) Degenerations ofE7+D10 (B): the Ẽ7 singularity degenerates to a cusp singularity
T2,4,5 and then further to other cusps of type T2,q,r with q ≥ 4, r ≥ 5.

For a fixed invariant j , the Type II components E7 + D10 (A) and (B) are glued along a
curve (see Prop. 6.4). The Type III limit (i.e. j →∞) of this curve in P2 is the point IIIζ .
Thus, we have IIIζ ⊆ III4 ∩ III6. However, it is immediate to see that the intersection of
these two Type III components is larger. Namely, the maximal stratum which is a common
degeneration of both the degree 2 del Pezzo and T2,4,5 cases corresponds to the double
cover of P2 branched in a nodal quartic with a double line passing through it. From the
del Pezzo perspective, this would be a nodal degree 2 del Pezzo with a hyperplane section
through it (as an anticanonical section). From the perspective of cusp singularities, this
is a degenerate cusp singularity, which has a partial smoothing to cusp singularities of
type T2,4,r . We call this stratum IIIβ . Note that IIIα ⊂ IIIβ (and then IIIζ ⊂ IIIα ⊂ IIIβ ).

We note that there is another special stratum (which is contained in IIIβ ) in this case:
the case of the double cover X of P2 branched along two double lines plus a generic
quadric. The intersection of the two double lines leads to a degenerate cusp singular-
ity, which has a partial smoothing to T2,q,r with q, r ≥ 5. The normalization of X will
be a quadric in P3 and the double curves of the normalization will be the union of two
hyperplane sections (i.e. (1, 1) curves in the case Xν ∼= P1

× P1). We call this stra-
tum IIIγ .
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7.3. D16 + A1 case

We recall that the type II degenerations corresponding to this case are surfacesX such that
their normalizations are quadrics in P3, and the double curve E is an elliptic quartic curve
in P3. These are obtained by considering double covers of type z2

= q2
0q of P2 (where q0

and q are two conics). There are two distinct Type III degenerations (in codimension 1)
in this situation: either V (q0) becomes singular (i.e. union of two lines) or the two conics
become tangent. The first case was labeled as IIIγ above. We call the second case IIIδ . In
other words, the Type III component in this case is reducible:

III3 = IIIγ ∪ IIIδ.

The two components intersect in the stratum corresponding to the double cover of P2

branched in two double lines together with a conic which is tangent to one of the lines.
Equivalently, at the level of quadrics in P3, this corresponds to the case where the anti-
canonical divisor D splits as L1 ∪L2 ∪C with L1 of type (1, 0), L2 of type (0, 1) and C
of type (1, 1). We call this case IIIε .

7.4. 2E8 + A1 case

Here again we have two possibilities:

(III2) Degenerations of 2E8 + A1 (A): the two degree 1 del Pezzo surfaces are glued
along a nodal section. This can degenerate to the case when one or both of the del
Pezzo surfaces become cones over this nodal curve. We denote this case by IIIφ (a
degeneration of the Type II case 2E8 + A1 (C)).

(III5) Degenerations of 2E8+A1 (B): the Ẽ8 becomes a T2,3,7 or worse singularity. In the
closure, we can obtain case IIIφ as a replacement of the case when the polarizing
divisor passes through the T2,3,7 singularity (cf. Prop. 6.8), or case IIIδ (a double
conic plus another conic tangent to it), which is a degenerate cusp singularity that
has a partial smoothing to T2,3,7.

Remark 7.5. As already noted, a degree 1 del Pezzo can degenerate to the cone over an
elliptic curve of degree 1 giving an Ẽ8 singularity (the Type II case 2E8+A1 (C)). This can
further degenerate to the cone V over an irreducible nodal curve C of arithmetic genus 1
(case IIIφ above). We note that the normalization V of V is P2. In fact, V is obtained
from V ∼= P2 by gluing together two lines. The nodal curve C is the image of a third
line (forming a triangle D) in P2. In other words, (V , C) (or the normalized pair (V ,D))
regarded as a 0-component of a degree 2 degeneration fits into the classification given by
Proposition 3.14. However, the gluing in the limit surface X is somewhat surprising and
hints at the difficulty of an analogous classification for larger degrees. Finally, we note
that the two surfaces corresponding to IIIζ and IIIζ ′ are obtained by gluing two copies of
P2 with a marked triangle in each according to the two possible triangulations of S2 with
two triangles (see also [Thu98], [Laz08]).
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