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Abstract. We study the boundary behavior of non-negative solutions to a class of degenerate/sin-
gular parabolic equations, whose prototype is the parabolic p-Laplace equation. Assuming that
such solutions continuously vanish on some distinguished part of the lateral part ST of a Lips-
chitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional
assumptions on the equation or the domain. We then prove analogous estimates for non-negative
solutions to a class of degenerate/singular parabolic equations of porous medium type.

Keywords. Degenerate and singular parabolic equations, Harnack estimates, boundary Harnack
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1. Introduction

In this paper we start the study of the boundary behavior of weak solutions to a class of
degenerate/singular equations whose prototype is the parabolic p-Laplace equation

ut − div(|Du|p−2Du) = 0, (1.1)0

where Dw denotes the gradient of w with respect to the space variables. More precisely,
letE be an open set in RN and for T > 0 letET denote the cylindrical domainE×(0, T ].
Moreover let

ST = ∂E × [0, T ], ∂PET = ST ∪ (E × {0})

denote the lateral and the parabolic boundary respectively.
We shall consider quasi-linear parabolic partial differential equations of the form

ut − div A(x, t, u,Du) = 0 weakly in ET (1.1)
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where the function A : ET ×RN+1
→ RN is only assumed to be measurable and subject

to the structure conditions{
A(x, t, u, ξ) · ξ ≥ C0|ξ |

p

|A(x, t, u, ξ)| ≤ C1|ξ |
p−1 a.e. (x, t) ∈ ET , ∀u ∈ R, ∀ξ ∈ RN (1.2)

where C0 and C1 are given positive constants, and p > 1. We refer to the parameters
p, N , C0, C1 as our structural data, and we write γ = γ (N, p,C0, C1) if γ can be
quantitatively determined a priori only in terms of the above quantities. A function

u ∈ C([0, T ];L2(E)) ∩ Lp(0, T ;W 1,p(E)) (1.3)

is a weak sub[super]solution to (1.1)–(1.2) if for every subinterval [t1, t2] ⊂ (0, T ],∫
E

uϕ dx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
E

[−uϕt + A(x, t, u,Du) ·Dϕ] dx dt ≤ [≥] 0 (1.4)

for all non-negative test functions

ϕ ∈ W 1,2(0, T ;L2(E)) ∩ Lp(0, T ;W 1,p
0 (E)).

This guarantees that all the integrals in (1.4) are convergent.
Under the conditions (1.2), equation (1.1) is degenerate when p > 2 and singular

when 1 < p < 2, since the modulus of ellipticity |Du|p−2 respectively tends to 0 or to
+∞ as |Du| → 0. In the latter case, we further distinguish between singular supercritical
range (when 2N/(N + 1) < p < 2), and singular critical and subcritical range (when
1 < p ≤ 2N/(N + 1)). When p = 2, the equation is uniformly parabolic, and the theory
is fairly complete.

For points in RN we use the notation (x′, xN ) or (x1, . . . , xN−1, xN ); D′w stands for
the gradient of w with respect to x′.

For y ∈ RN and ρ > 0, Kρ(y) denotes the cube of edge 2ρ, centered at y with faces
parallel to the coordinate planes. When y is the origin of RN we simply writeKρ ;K ′ρ(y

′)

denotes the (N − 1)-dimensional cube {x′ : |xi − yi | < ρ, i = 1, . . . , N − 1}; we write
for short {|xi − yi | < ρ}.

For θ > 0 we also define

Q−ρ (θ) = Kρ × (−θρ
p, 0], Q+ρ (θ) = Kρ × (0, θρ

p
],

and for (y, s) ∈ RN × R,

(y, s)+Q−ρ (θ) = Kρ(y)× (s − θρ
p, s], (y, s)+Q+ρ (θ) = Kρ(y)× (s, s + θρ

p
].

Now fix (x0, t0) ∈ ET such that u(x0, t0) > 0 and construct the cylinders

(x0, t0)+Q
±
ρ (θ) where θ =

(
c

u(x0, t0)

)p−2

, (1.5)
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and c is a given positive constant. These cylinders are “intrinsic” to the solution, since
their height is determined by the value of u at (x0, t0). Cylindrical domains of the form
Kρ × (0, ρp] reflect the natural, parabolic space-time dilations that leave the homoge-
neous, prototype equation (1.1)0 invariant. The latter however is not homogeneous with
respect to the solution u. The time dilation by a factor u(x0, t0)

2−p is intended to restore
the homogeneity. Most of the results we describe in this paper hold in such geometry.

Our reference domains are Lipschitz (respectively C1,1, C2) domains. We recall that
a bounded domain E ⊂ RN is said to be a Lipschitz domain if for each y ∈ ∂E there
exists a radius r0 such that in an appropriate coordinate system,

E ∩K8r0(y) = {x = (x
′, xN ) ∈ RN : xN > 8(x′)} ∩K8r0(y),

∂E ∩K8r0(y) = {x = (x
′, xN ) ∈ RN : xN = 8(x′)} ∩K8r0(y),

where 8 is a Lipschitz function with ‖D′8‖L∞ ≤ L. The quantities r0 and L are inde-
pendent of y ∈ ∂E. We say that L is the Lipschitz constant of E.

We define C1,1 and C2 domains analogously, requiring 8 to be of class C1,1 or C2

respectively. Correspondingly we set M1,1 = ‖8‖1,1 and M2 = ‖8‖2, and we assume
they are independent of y ∈ ∂E.

Finally, a Lipschitz (respectively C1,1, C2) cylinder is a cylindrical domain ET whose
cross section E is a Lipschitz (respectively C1,1, C2) domain.

We are interested in solutions u to (1.1)–(1.2) continuously vanishing on some distin-
guished part of the lateral part ST of a cylinder. Our main goal is to show that near the
boundary, u is controlled above in a non-tangential fashion. More precisely, this means
that an inequality of the type

u ≤ γ u(Pρ) (1.6)

holds in a box 9ρ of size ρ, based on ST , where Pρ is a non-tangential point and γ
depends only on the structural data. The first results of this kind are due to Carleson [11],
for the Laplace equation in Lipschitz domains, and to Kemper [34] for the heat equation
in domains, which are locally given by a function satisfying a mixed Lipschitz condition,
with exponent 1 in the space variables and 1/2 in the time variable (also called parabolic
Lipschitz domains). Since then, an inequality like (1.6) is known as a Carleson estimate.

There is another inequality naturally associated to (1.6), namely

u/v ≈ u(Pr)/v(Pr). (1.7)

Inequality (1.7) is known as the boundary comparison principle or the boundary Harnack
inequality. For linear equations, it implies the Hölder continuity up to the boundary of the
quotient u/v and that the vanishing speeds of u and v are the same.

Both (1.6) and (1.7) have been generalized to more general contexts and operators
and they have become essential tools in analyzing the boundary behavior of non-negative
solutions.

In the elliptic context we mention [33] for the Laplace operator in non-tangentially
accessible domains, [8] and [3], [4], [23] for elliptic operators in divergence and non-
divergence form, respectively, [40], [41] for the p-Laplace operator, and [12], [13] for the
Kolmogorov operator.
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We emphasize that for the Laplacian a Carleson estimate has been proved in [1] to be
equivalent to the boundary Harnack principle. It would be quite interesting to explore this
connection between the two inequalities also in the non-linear setting.

For parabolic operators, we cite [48], [25], [31], [26] for cylindrical domains, and [24]
for parabolic Lipschitz domains.

A classical application of the two inequalities is to Fatou-type theorems, but even
more remarkable is their role in the regularity theory of two-phase free boundary prob-
lems, as shown in the two seminal papers [6], [7], where a general strategy to attack the
regularity of the free boundary governed by the Laplace operator has been set up.

This technique has been subsequently extended to stationary problems governed by
variable coefficients linear and semilinear operators [10], [29], to fully nonlinear operators
[27], [28], and to the p-Laplace operator [42], [43].

The free boundary regularity theory for two-phase parabolic problems is less devel-
oped. For Stefan type problems we mention [9], [30], [14] and the references therein. In
particular [14] deals with a one-phase Stefan problem for the p-Laplacian when p > 2.

The present paper places itself exactly along this line of research. The Carleson es-
timate for our singular/degenerate equations is the first piece of information, very useful
to analyze the regularity of (e.g.) Lipschitz or flat free boundaries. Thanks to recent de-
velopments in the field of Harnack inequalities for quasi-linear parabolic equations of
p-Laplace type [17, 18, 20, 35], in Theorems 2.1 and 3.1 we extend estimate (1.6) to
non-negative solutions to (1.1)–(1.2) in cylindrical Lipschitz domains. According to the
theory developed in the above papers, a Carleson type estimate makes sense only for
p > 2N/(N + 1).

Indeed, in the critical and subcritical range, explicit counterexamples rule out the
possibility of a Harnack inequality. Only so-called Harnack-type estimates are possible,
where, however, the ratio of infimum to supremum in proper space-time cylinders depends
on the solution itself (for more details, see [21, Chapter 6, §§11–15]).

The approach developed for linear elliptic equations in [8] and essentially at the same
time adapted to linear parabolic equations in [48], to prove the Carleson estimate, is cen-
tered around two basic estimates for solutions: the Harnack inequality and the geometric
decay of the oscillation of u up to the boundary. To see this, let us consider a non-negative
solution in a cylinder, and assume further that the solution vanishes on a part of the lateral
boundary, which we assume to be a part of the hyperplane {xN = 0}. Fix a point P at unit
distance from the lateral boundary; by translation we may assume that P = (eN , 0). To
simplify even more, due to the homogeneity of the equation, without loss of generality we
may assume that u(P ) = 1. A repeated application of the Harnack inequality in a dyadic
fashion gives

u(P ) ≤ H ku(P ) whenever dist(P, ∂ET ) ≥ 2−k, (1.8)

for P in a boundary space-time box 9+ = ET ∩ K1(0) × (−2,−1). To continue, one
defines a sequence of boundary space-time boxes9+k such that9+k ⊂ 9

+

k−1 ⊂ · · · ⊂ 9
+

for all k ∈ N.
Now, suppose that (1.6) does not hold true, i.e. there is no constant γ > 0, which

depends only on the data, such that u(P ) ≤ γ for all P ∈ 9+1 . Consequently, there
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must exist P1 ∈ 9
+

1 such that u(P1) > H h, where h ∈ N. Inequality (1.8) implies
that dist(P1, ∂ET ) < 2−h. If h is chosen large enough, by the geometric decay of the
oscillation of u up to the boundary, one deduces the existence of P2 ∈ 9

+

2 such that
u(P2) > H h+1 and dist(P2, ∂ET ) < 2−(h+1). Repeating this yields a sequence {Pj }∞j=1
of points approaching the boundary, whereas the sequence {u(Pj )}∞j=1 blows up: this con-
tradicts the assumption that u vanishes continuously on the boundary, and we conclude

sup
9+1

u ≤ H h,

which is just (1.6) in our setting.
Although the overall strategy in the non-linear setting follows the same kind of ar-

gument, its implementation presents a difficulty due to the lack of homogeneity of the
equations, and there is also a striking difference between the singular and the degenerate
case; this is already reflected in the intrinsic character of the interior Harnack inequality,
and it is amplified when approaching the boundary through dyadically shrinking intrin-
sic cylinders. Concerning the Carleson estimate, its statement in the degenerate case can
be considered as the intrinsic version of the analogous statement in the linear uniformly
parabolic case. Things are different in the singular supercritical case, where, in general,
one can only prove a somewhat weaker estimate (see Theorem 3.1), due to the possibility
for a solution to extinguish in finite time. Indeed, the counterexamples in §3.2 show that
one cannot do any better, unless some control of the interior oscillation of the solution is
available (Corollary 3.1).

The difference between the two cases, degenerate and singular supercritical, becomes
more evident when one considers the validity of a boundary Harnack principle, even in
smooth cylinders. Solutions to the parabolicp-Laplace equations can vanish arbitrarily fast
in the degenerate case p > 2 (see §2.1), so that no possibility exists to prove the boundary
Harnack principle in its generality. On the other hand, in the singular case, the existence
of suitable barriers provides linear behavior. Together with Carleson’s estimate, this fact
implies almost immediately a Hopf principle and the boundary Harnack inequality.

The last section of this note is devoted to extending all the previous results to non-
negative solutions to a large class of degenerate/singular parabolic equations, whose pro-
totype is the porous medium equation (see §4 for all the details).

In a forthcoming paper we plan to extend the boundary Harnack principle to Lipschitz
cylinders.

Remark. After completing the paper, we learnt that Kuusi, Mingione and Nyström [39]
independently proved a boundary Harnack inequality, which is similar to the one we give
here in Theorem 3.8.

2. The degenerate case p > 2

2.1. Main results

To describe our main results we need to introduce some further notation. Let ET be a
Lipschitz cylinder and fix (x0, t0) ∈ ST ; in a neighborhood of such a point, the cross sec-
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tion is represented by the graph {(x′, xN ) : xN = 8(x′)}, where8 is a Lipschitz function
and ‖D′8‖∞ ≤ L. Without loss of generality, from here on we assume 8(x′0) = 0 and
L ≥ 1.

For ρ ∈ (0, r0), let xρ = (x′0, 2Lρ), and let Pρ = Pρ(x0, t0) = (x
′

0, 2Lρ, t0) ∈ ET be
such that u(Pρ) > 0. Note that dist(xρ, ∂E) is of order ρ. Set

9−ρ (x0, t0)

= ET ∩

{
(x, t) : |xi − x0,i | <

ρ

4
, |xN | < 2Lρ, t ∈

(
t0 −

α + β

2
θρp, t0 − βθρ

p

]}
where θ = [c/u(Pρ)]p−2 with c given in Theorem 2.6 below, and α > β are positive
parameters. We are now ready to state our main result in the degenerate case p > 2.

Theorem 2.1 (Carleson estimate, p > 2). Let u be a non-negative weak solution to
(1.1)–(1.2) in ET . Assume that

(t0 − θ(4ρ)p, t0 + θ(4ρ)p] ⊂ (0, T ]

and that u vanishes continuously on

∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} × (t0 − θ(4ρ)p, t0 + θ(4ρ)p).

Then there exist positive parameters α > β and a constant γ̃ > 0, depending only on p,
N , C0, C1, L, such that

u(x, t) ≤ γ̃ u(Pρ) for every (x, t) ∈ 9−ρ (x0, t0). (2.1)

Remark 2.2. Without going too much into details here, let us point out that for the pro-
totype equation (1.1)0, estimate (2.1) could be extended from Lipschitz cylinders to a
wider class of cylinders ET , whose cross section E is a so-called N.T.A. domain (non-
tangentially accessible domain). For more details, we refer the reader to [9, §12.3].

Weak solutions to (1.1) with zero Dirichlet boundary conditions on a Lipschitz domain are
Hölder continuous up to the boundary (see, for example, [16, Chapter III, Theorem 1.2]).
Combining this result with the previous Carleson estimate yields a quantitative estimate
on the decay of u at the boundary, invariant by the intrinsic rescaling

x = x0 + ρy, t = t0 +
ρp

u(Pρ)p−2 τ.

Corollary 2.3. Under the same assumption of Theorem 2.1, we have

0 ≤ u(x, t) ≤ γ
(

dist(x, ∂E)
ρ

)µ
u(Pρ)

for every (x, t) ∈ 9−ρ/2(x0, t0), where µ ∈ (0, 1) depends only on p, N , C0, C1, L.
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If we restrict our attention to solutions to the model equation (1.1)0 and to C2 cylinders,
the result of Corollary 2.3 can be strengthened.

Theorem 2.4 (Lipschitz decay). Let ET be a C2 cylinder and u a non-negative weak
solution to (1.1)0 in ET . Assume the other assumptions of Theorem 2.1 hold. Then there
exist positive parameters α > β and a constant γ > 0, depending only on p, N and the
C2-constant M2 of E, such that

0 ≤ u(x, t) ≤ γ
dist(x, ∂E)

ρ
u(Pρ) (2.2)

for every (x, t) in

ET ∩

{
|xi − x0,i | <

ρ

4
, 0 < xN < 2M2ρ

}
×

(
t0 −

α + 3β
4

θρp, t0 − βθρ
p

]
.

Remark 2.5. Estimate (2.2) is not surprising, as it is well-known that under the assump-
tions of Theorem 2.4, solutions are Lipschitz continuous up to the boundary (see [16]).
As a matter of fact, in [44, 45] Lieberman has proved C1+α regularity up to the boundary
for solutions of a proper p-Laplace type equation, with conormal and Dirichlet boundary
conditions. Relying on the recent papers [5, 36, 37, 38], these results can be extended
both to a wider class of degenerate equations with differentiable principal part, which
have the same structure of the p-Laplacian, and to less regular C1,α domains. We limited
ourselves to (1.1)0 and C2 domains, mainly to avoid the introduction of further structural
assumptions and technical details.

Notice that, in general, the bound below by zero in (2.2) cannot be improved. Indeed,
when p > 2, two explicit solutions to the parabolic p–Laplacian in the half-space
{xN ≥ 0} that vanish at xN = 0 are given by

u1(x, t) = xN , u2(x, t) =
p − 2

p(p−1)/(p−2) (T − t)
−1/(p−2)x

p/(p−2)
N . (2.3)

The power-like behavior, as exhibited in u2, is not the “worst” possible case. Indeed, let
E = {−1 ≤ xi ≤ 1, 0 ≤ xN ≤ 1/4}, and consider the following Cauchy–Dirichlet
problem in E × [0, T ):

ut − div(|Du|p−2Du) = 0,

u(x, 0) = CT −1/(p−2) exp(−1/xN ),
u(x′, 0, t) = 0,

u(x′, 1/4, t) = C(T − t)−1/(p−2)e−4,

u(x, t) = C(T − t)−1/(p−2) exp(−1/xN ), x ∈ ∂E ∩ {0 < xN < 1/4},

(2.4)

where

C =
1

2(p − 1)(p − 2)

(
e(p − 2)

2p

) 2p
p−2
.
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It is easy to check that the function

u3 = C(T − t)
−1/(p−2) exp(−1/xN ), xN > 0, (2.5)

is a supersolution to the above problem. Therefore, the solution to the same problem
(which is obviously positive) lies below u3 and approaches the zero boundary value at
xN = 0 at least with exponential speed.

Example (2.4)–(2.5) can be further generalized. Let γ ∈ (0, 1), E = {xN > 0},
T = 2/γ − 1. Then

u(x, t) =

[
p − 2
p − 1

γ 1/(p−1)(t + 1)
(
γ +

xN − 2
t + 1

)
+

] p−1
p−2

(2.6)

is a solution to (1.1)0 in ET , and it vanishes not only on the boundary {xN = 0}, but also
in the set {0 < xN < 2− γ (t + 1), 0 < t < T }, which has positive measure.

2.2. The interior Harnack inequality

As mentioned in the Introduction, our results are strongly based on the interior Harnack
inequalities proved in [17, 18, 19, 35], which we recall here.

Theorem 2.6. Let u be a non-negative weak solution to (1.1)–(1.2) in ET for p > 2,
and let (x0, t0) ∈ ET be such that u(x0, t0) > 0. There exist positive constants c and γ ,
depending only on p, N , C0, C1, such that for all intrinsic cylinders (x0, t0)+Q

±

2ρ(θ) as
in (1.5), contained in ET ,

γ−1 sup
Kρ (x0)

u(·, t0 − θρ
p) ≤ u(x0, t0) ≤ γ inf

Kρ (x0)
u(·, t0 + θρ

p). (2.7)

The constants γ and c deteriorate as p → ∞ in the sense that γ (p), c(p) → ∞ as
p→∞; however, they are stable as p→ 2.

Remark 2.7. In all the previously mentioned works, the requirement on the cylinder is
that (x0, t0) +Q

±

4ρ(θ) ⊂ ET ; by a proper adjustment of the parameters c and γ we can
work under the more restrictive condition we are now assuming.

As already pointed out in the Introduction, in [48], the Carleson estimate is a consequence
of the Harnack inequality of [47] and a geometric argument, based on the control of the
oscillation. In particular, a key tool is the so-called Harnack chain, namely the control on
the value of u(x, t) by the value of u(x0, t0)with t < t0, thanks to the repeated application
of the Harnack inequality.

In [18], an equivalent statement for solutions to (1.1)–(1.2) is given, but a careful
examination of the proof shows that the result there actually holds only for solutions
defined in RN × (0, T ), and not in a smaller domain ET . Although the correct form of
the Harnack chain for solutions defined in ET , when E ( RN , can be given, such a result
is of no use in the proof of Carleson’s estimates, as there are two different, but equally
important obstructions.
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First of all, as (2.6) shows too, u can vanish and hence prevent any further application
of the Harnack inequality. Indeed, let us consider the following two examples.

Let γ ∈ (0, 1); the function

u(x, t) =

[
p − 2
p − 1

γ 1/(p−1)(t + 1)
(
γ +

xN − 2
t + 1

)
+

] p−1
p−2

+

[
p − 2
p − 1

γ 1/(p−1)(t + 1)
(
γ −

xN + 2
t + 1

)
+

] p−1
p−2

is a solution to the parabolic p-Laplace equation in RN × (0, 2/γ − 1) and vanishes in
the cone {

0 < t < 2/γ − 1,
−(2− γ (t + 1)) < xN < 2− γ (t + 1).

If we take (x, t) and (x0, t0) with t < t0 on opposite sides of the cone, there is no way to
build a Harnack chain that connects the two points.

Let γp = (1/λ)1/(p−1)(p − 2)/p, with λ = N(p − 2) + p, consider the cylinder
{xN > 0} × (0, (2γp)λ) and let x1 = (0, . . . , 0, 2), x2 = (0, . . . , 0, 6). The function

u(x, t) = t−N/λ
[

1− γp

(
|x − x1|

t1/λ

) p
p−1
] p−1
p−2

+

+ t−N/λ
[

1− γp

(
|x − x2|

t1/λ

) p
p−1
] p−1
p−2

+

is a solution to the parabolic p-Laplace equation in the indicated cylinder and vanishes on
its parabolic boundary. Notice that such a solution is the sum of two Barenblatt functions
with poles respectively at x1 and x2 and masses M1 = M2 = 1: in the interval 0 <

t < (2γp)λ the support of u is given by two disjoint regions R1 and R2, and only at time
T = (2γp)λ does the support of u finally become a simply connected set. Once more,
taking (x, t) and (x0, t0) respectively in R1 and R2, there is no way to connect them
with a Harnack chain. As a matter of fact, before the two supports touch, each Barenblatt
function does not feel in any way the presence of the other one. In particular, we can
change the mass of the two Barenblatt functions; this will modify the time T at which the
two supports touch, but up to T , there is no way one Barenblatt component can detect the
change performed on the other one.

On the other hand, one could think that if we have a solution vanishing on a flat piece
of the boundary and strictly positive everywhere in the interior, then one could build a
Harnack chain extending arbitrarily close to the boundary. However, this is not the case,
as clearly shown by the following example.

Let us consider a domain E ⊂ RN with a part of its boundary coinciding with the
hyperplane {xN = 0}, and let 0 = ∂E ∩ {xN = 0}. Let T̄ > 0 be given and consider a
non-negative solution u to

ut − div(|Du|p−2Du) = 0 in ET̄ ,
u > 0 in ET̄ ,

u = 0 on 0 × (0, T̄ ].
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Let u be such that its value is bounded above by the distance to the flat boundary piece
raised to some given power a > 0, i.e.

u(x, t) ≤ γ dist(x, 0)a, a > 0, (x, t) ∈ ET̄ , (2.8)

where γ > 0 is a suitable parameter. Indeed, this is the case of solutions given in (2.3)
and (2.5) with T̄ = T/2 for example, and therefore such a situation does take place.

Let (x0, t0) = (x
′

0, x0,N , t0) ∈ ET be such that dist(x0, 0) = 1. The goal is to form
a Harnack chain of dyadic non-tangential cylinders approaching the boundary, while the
chain stays inside ET̄ ; we want to control the size of the time interval we need to span in
order to complete the chain. Let

u0 = u(x0, t0),

rk = 2−k,
xk = (x̂

′

0, 2−k),

tk = t0 − c
p−2

k−1∑
i=0

u
2−p
i r

p
i ,

uk = u(xk, tk) ≈ (2−k)a

for k = 1, 2, . . . . Assuming that at each step one can use Harnack’s inequality, we get an
estimate on the size of tk from above,

tk ≤ t0 − c
p−2

k−1∑
i=0

(2−ai)2−p2−ip ≤ t0 − cp−2
k−1∑
i=0

2ai(p−2)−ip,

which diverges to −∞ as k → ∞ and xk → 0 if a ≥ p/(p − 2). Considering the
solution u2 from (2.3), we see that the above dyadic Harnack chain would diverge for
such a solution as a = p/(p − 2).

Notice that this is a counterexample to the use of the Harnack chain in the proof of
the Carleson estimate, but not a counterexample to the Carleson estimate itself.

Remark 2.8. The infinite length of the time interval needed to reach the boundary is just
one face (i.e. consequence) of the finite speed of propagation when p > 2. Points (x, t)
that lie inside a proper p-paraboloid centered at (x0, t0) can be reached, starting from
(x0, t0); if u0 is very small, and therefore the p-paraboloid is very narrow, with small
values of r one ends up with very large values of t . On the other hand, points (x, t) that
lie outside the same p-paraboloid centered at (x0, t0) cannot be reached.

Remark 2.9. We conjecture that p/(p − 2) is a sort of threshold exponent: when a <
p/(p − 2) in (2.8), the regularizing effects of the diffusion kick in, and eventually the
solution becomes linear, allowing for more precise bounds from below in (2.2); when a is
larger, the time evolution part wins, and we have much less regularity. We probably need
further information on the behavior of u on the lower base of the cylinder in order to make
all the previous heuristics more rigorous. This will be the object of future investigation.
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Eventually, as stated in Theorem 2.1, the Carleson estimate does hold true. However,
as we could not make use of any form of Harnack chain in its proof, we resort to a
contradiction argument, detailed in §2.4.2.

2.3. Hölder continuity and oscillation control

In this subsection we consider p > 1, since the statements are the same in both cases
p > 2 and 1 < p < 2. It is well known that locally bounded weak solutions to (1.1)–
(1.2) are locally Hölder continuous. For the full statement and proof, see [16, Chapters III
and IV], or [32] (when p > 2) for a simpler approach, based on the same ideas used
in [17]. The local Hölder continuity is a consequence of the following lemma. Note the
slight difference between the cases p > 2 and 1 < p < 2.

In the following let u be a weak solution to (1.1)–(1.2) in ET for 1 < p < ∞. Fix a
point in ET , which, up to translation, we may take to be the origin of RN+1. For ρ > 0
consider the cylinder

Q∗ =

{
Kρ × (−ρ

2, 0] if p > 2,
Kρ × (−ρ

p, 0] if 1 < p < 2,

with vertex at (0, 0), and set

µ+0 = sup
Q∗

u, µ−0 = inf
Q∗
u, ω0 = osc

Q∗
u = µ+0 − µ

−

0 .

Depending on ω0, construct the cylinder

Q0 = Kρ × (−θ0ρ
p, 0], where θ0 = (c/ω0)

p−2.

If p > 2, c being the constant in (1.5), we assume that

ω0 > cρ. (2.9)

If 1 < p < 2, we assume that ω0 ≤ 1. The previous two conditions ensure thatQ0 ⊂ Q∗,
and the following lemma holds.

Lemma 2.10 (Hölder continuity, [17]). There exist constants ε, δ ∈ (0, 1) and c ≥ 1,
depending only on p, N , C0, C1, such that, setting

ωn = δωn−1, θn = (c/ωn)
p−2, ρn = ερn−1 and Qn = Q

−
ρn
(θn),

for all non-negative integers n we have Qn+1 ⊂ Qn and

osc
Qn
u ≤ ωn. (2.10)

Remark 2.11. Given u and p > 2, we can directly assume (2.9), since otherwise there is
nothing to prove; moreover, in this case, we have c = 1. If 1 < p < 2, then c is a suitable
constant greater than 1. Also, note that (2.10) yields

osc
Qn
u ≤ δn osc

Q∗
u.
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Therefore, the lemma builds a sequence of intrinsic cylinders, where the oscillation is
controlled by a proper power of an absolute constant; the starting cylinder is the only one
that does not have an intrinsic size.

In the proof of Theorems 2.1–2.4 we need the following two lemmas. The former is the
well-known reflection principle, whose proof is standard. The interested reader can refer
to [46, Lemma 2.7] or [5, Lemma 2.8]. The latter is an alternative De Giorgi-type lemma
with initial data, taken from [21], to which we refer for the proof.

Lemma 2.12. Let

Qp = {x : |xi | < 1, 0 < xN < 2, t1 < t < t2},

Qn = {x : |xi | < 1, −2 < xN < 0, t1 < t < t2},

and u be a non-negative weak solution to (1.1)–(1.2) in Qp with u = 0 on ∂Qp ∩ {x :
xN = 0}. Let

Q′ = {x : |xi | < 1, |xN | < 2, t1 < t < t2},

and define ũ, Ã as

ũ(x′, xN , t) =

{
u(x′, xN , t) if xN ≥ 0,
−u(x′,−xN , t) if xN < 0,

Ãi(x
′, xN , t) =

{
Ai(x

′, xN , t) if xN ≥ 0,
−Ai(x

′,−xN , t) if xN < 0,
i = 1, . . . , N − 1,

ÃN (x
′, xN , t) =

{
AN (x

′, xN , t) if xN ≥ 0,
AN (x

′,−xN , t) if xN < 0,

where Ã(x′, xN , t) = Ã(x′, xN , t, ũ(x′, xN , t),Dũ(x′, xN , t)). Then ũ is a weak solution
in Q′ to (1.1)–(1.2) with A replaced by Ã.

Lemma 2.13. Let u be a non-negative weak supersolution to (1.1)–(1.2) in ET , and let
a ∈ (0, 1). Let Q+ = K2ρ(y)× (s, s + θ(2ρ)p], and ξ be a positive number such that

u(x, s) ≥ ξ for a.e. x ∈ K2ρ(y)

and
|[u < ξ ] ∩Q+|

|Q+|
≤ δ

ξ2−p

θ
(2.11)

for a constant δ ∈ (0, 1) depending only on the data and a, and independent of ξ , ρ,
and θ . Then

u ≥ aξ a.e. in Kρ(y)× (s, s + θ(2ρ)p].

Notice that (2.11) is automatically satisfied for θ = δ/ξp−2.
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2.4. Proofs of Theorems 2.1–2.4

2.4.1. Flattening the boundary. If we introduce the new variables

yi = xi, i = 1, . . . , N − 1, yN = xN −8(x
′),

the portion ∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} coincides with a portion of the hyper-
plane yN = 0. Let K̃2ρ(x0) = {|xi − x0,i | < 2ρ, |xN | < 4Lρ}. We orient yN so that
E ∩ K̃2ρ(x0) ⊂ {yN > 0}. It is easy to see that, in the new variables, (1.1) becomes

ut − divy Ã(y, t, u,Dyu) = 0,

and Ã(y, t, u,Dyu) satisfies the same kind of structural conditions as given in (1.2). We
refer for more details to [16, Chapter X, §2].

Denoting again by x the transformed variables y, under the previously described
change of variables, u is still a solution to an equation of type (1.1)–(1.2), and satis-
fies a homogeneous Dirichlet condition on a flat boundary. This is a notion which might
not be standard in the literature, and we introduce it mainly to simplify the notation in the
following. Consider the sets K̃2ρ(x0) and

K∗2ρ(x0) = {|xi − x0,i | < 2ρ, 0 < xN < 4Lρ}. (2.12)

Definition 2.14. We say that the boundary of E is flat with respect to xN if the portion
∂E ∩ K̃2ρ(x0) coincides with the portion of the hyperplane {xN = 0} ∩ K̃2ρ(x0), and
K∗2ρ(x0) ⊂ E. We orient xN so that E ∩ K̃2ρ(x0) ≡ K

∗

2ρ(x0) ⊂ {xN > 0}.

Therefore, proving Theorem 2.1 reduces to the proof of the following lemma.

Lemma 2.15. Let u be a non-negative weak solution to (1.1)–(1.2) in ET for p > 2.
Take (x0, t0) ∈ ST , ρ ∈ (0, r0), let Pρ = (x′0, 2Lρ, t0), and assume that u(Pρ) > 0,
∂E is flat with respect to xN , and (t0 − θ(4ρ)p, t0 + θ(4ρ)p] ⊂ (0, T ], where θ =
[c/u(Pρ)]

p−2 with c given by Theorem 2.6. Suppose that u vanishes continuously on
(∂E∩K2ρ(x0))× (t0−θ(4ρ)p, t0+θ(4ρ)p]. Then there exist positive parameters α > β

and a constant γ̃ > 0, depending only on p, N , C0, C1, such that

u(x, t) ≤ γ̃ u(Pρ) (2.13)

for all (x, t) ∈ {|xi − x0,i | < ρ/4, 0 < xN < 2Lρ} ×
(
t0 −

α+β
2 θρp, t0 − βθρ

p
]
.

2.4.2. Intrinsic rescaling and Harnack-based upper bounds. The change of variable

x →
x − x0

2Lρ
, t → u(Pρ)

p−2 t − t0

ρp

maps Q∗ρ(4
pθ) = K∗2ρ(x0)× (t0 − θ(4ρ)p, t0 + θ(4ρ)p] into

Q̂ = {|yi | < 1/L, 0 < yN < 2} × (−4pcp−2, 4pcp−2
],
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xρ into y0 = (0, . . . , 0, 1), K̃ρ(x0) into K̃1 = {|yi | < 1/(2L), |yN | < 1}, K∗2ρ(x0) into
K∗2 (y0) = {|yi | < 1/L, 0 < yN < 2} and the portion ST ∩ Q∗ρ(4

pθ) of the lateral
boundary into

4 = {(y′, 0) : |yi | < 1/L} × (−4pcp−2, 4pcp−2
].

Denote again by (x, t) the transformed variables and let y0 = (0, . . . , 0, 1). Then the
rescaled function

vρ(x, t) =
1

u(Pρ)
u

(
2Lρ x + x0, t0 +

tρp

u(Pρ)p−2

)
is a non-negative weak solution to

∂tvρ − div Aρ(x, t, v,Dv) = 0

in Q̂, where vρ(y0, 0) = 1, and it is easy to see that Aρ satisfies structure conditions
analogous to (1.2). Both here, and later on when dealing with a similar change of variable
in the singular case, we drop the subscript ρ in vρ and Aρ for the sake of simplicity.

To avoid further technical complications, without loss of generality, we assumeL = 1.
The proof reduces to showing that there exists a constant γ̃ , depending only on p, N ,
C0, C1, such that

v(x, t) ≤ γ̃ (2.14)

for all (x, t) ∈ {|xi | < 1/2, 0 < xN < 1} ×
(
−
α+β

2 cp−2,−βcp−2]. In the following we
denote again the rescaled function v by u.

Set

K = {|xi | < 1/2, 0 < xN < 1}, Q = K × [−αcp−2,−βcp−2
].

Suppose there exists P1 ∈ Q such that

u(P1) ≥ γ
bk0/log2(3/2)c+m,

where bac stands for the integer part of the real number a, k0 ∈ N is sufficiently large,
m will be fixed later on, and γ is the constant that appears in the Harnack inequality (2.7).
We claim that

0 < x1,N < (1/2)k0 .

Indeed, if not, then x1,N ≥ (1/2)k0 , and by repeated application of the Harnack inequality
we will show that this yields a contradiction. This procedure will also determine the values
of α and β.

With respect to space variables, the worst possible case for P1 is when x1,N =

(1/2)k0 , and x1,1 = · · · = x1,N−1 = ±1/2. For simplicity let us assume x1,1 = · · · =

x1,N−1 = 1/2.
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If we want to repeatedly apply the Harnack inequality, in this way getting closer and
closer to y0 = (0, . . . , 0, 1), we need to evaluate the largest possible size of ρ in (2.7) at
each step. The situation will then be the following:

x1,N =

(
1
2

)k0

, dist(x1, ∂E) =

(
1
2

)k0

, ρ1 =
1
2

(
1
2

)k0

,

x2,N =
3
2

(
1
2

)k0

, dist(x2, ∂E) =
3
2

(
1
2

)k0

, ρ2 =
1
2

3
2

(
1
2

)k0

,

...

xj,N =

(
1
2

)k0
(

3
2

)j
, dist(xj , ∂E) =

(
1
2

)k0
(

3
2

)j
, ρj =

1
2

(
1
2

)k0
(

3
2

)j
.

We need to determine the value of j at which we stop. We obviously need(
1
2

)k0
(

3
2

)j
= 1, j ≈

k0

log2(3/2)
.

Besides getting to y0, we need to have a full cube about it, where u is bounded below, and
we also need to take into account the other coordinates, and not just xN . Therefore, as j
has to belong to N, we eventually let

j = k̃0 + 3,

where we have set k̃0 = bk0/log2(3/2)c. Correspondingly, by repeated application of the
Harnack inequality, we conclude that

∀x ∈ K1/2(y0) u(x, tf ) ≥ γ
k̃0+m−j = γm−3, (2.15)

and now the main point becomes the evaluation of the interval where tf can range. When
dealing with the time variable, it is easy to see that we have two extreme situations.

The first extreme case is when t1 ≈ −βcp−2 and

u(P1) = γ
k̃0+m, u(P2) = γ

k̃0+m−1, . . . , u(Pj ) = γ
k̃0+m−j ,

that is, when the Harnack inequality gives the exact growth of u.
The second extreme case is when t1 ≈ −αcp−2 and

u(P1)� γ k̃0+m, u(P2)� γ k̃0+m, . . . , u(Pj )� γ k̃0+m,

that is, the function u is very large and its actual decrease (if any) cannot be evaluated.
In the latter situation, we can directly assume that tf = −αcp−2. Let us evaluate what

happens in the former case. By the repeated application of the Harnack inequality, we
have
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tf = −βc
p−2
+

(
c

γ k̃0+m

)p−2[1
2

(
1
2

)k0
]p

+ · · · +

(
c

γ k̃0+m−j

)p−2[1
2

(
1
2

)k0
(

3
2

)j]p
= −βcp−2

+

(
c

γ k̃0+m

)p−2(1
2

)(k0+1)p(
1+ γ p−2

(
3
2

)p
+ · · · + γ (p−2)j

(
3
2

)jp)
= −βcp−2

+

(
c

γ k̃0+m

)p−2(1
2

)(k0+1)p j∑
i=0

[
γ p−2

(
3
2

)p]i
= −βcp−2

+

(
c

γ k̃0+m

)p−2(1
2

)(k0+1)p
(3/2)p(j+1)γ (p−2)(j+1)

− 1
(3/2)pγ p−2 − 1

,

and we deduce that

tf < −βc
p−2
+ 2

(
c

γ k̃0+m

)p−2(1
2

)(k0+1)p
(3/2)p(j+1)γ (p−2)(j+1)

(3/2)pγ p−2

< −βcp−2
+ 2

(
c

γ k̃0+m

)p−2(1
2

)(k0+1)p(3
2

)jp
γ j (p−2)

< −βcp−2
+

(
c

γ k̃0+m−j

)p−2(9
4

)p
= −βcp−2

+

(
c

γm−3

)p−2(9
4

)p
,

where we have taken into account the value of j . Therefore, we conclude that

tf ∈

[
−αcp−2,

(
−β +

(9/4)p

γ (m−3)(p−2)

)
cp−2

]
.

Correspondingly, for such a tf , we have not only (2.15), but also

∀x ∈ K1/4(y0) u(x, tf ) ≥ γ
m−3−l,

where l ∈ N is to be found. The next calculations will determine l, and consequently
m, α, β, in order to have a contradiction and prove the claim.

We apply Lemma 2.13, setting ξ = γm−3−l , a = γ−1; the only role played by l is to
provide a smaller initial lower bound on u, and therefore generate a longer cylinder Q+,
where the information propagates, and such that (y0, 0) ∈ Q+. Since u(y0, 0) = 1, we
have a contradiction if we end up with u(y0, 0) > 1. Hence, we need to have

(i) −α < −β: we do not want the lower and upper bases of the cylinder Q to coincide;
(ii) −β+ (9/4)p/γ (m−3)(p−2)

≤ 0: we need to be below the reference point (y0, 0) with
respect to the time variable;
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(iii) −αcp−2
+(δ/γm−3−l)p−2(1/4)p ≥ 0: the cylinderQ+ should include the reference

point (y0, 0);
(iv) γm−4−l > 1: this yields u(y0, 0) > 1.

First of all, choose l such that γ (p−2)l
= 10pcp−2/δp−2, and then m = l + 5; then

condition (iv) is satisfied. Notice that both l andm depend only on the data, but not on k0.
Finally let

β =
(9/4)p

γ (m−3)(p−2) , α =
(10/4)p

γ (m−3)(p−2) .

In this way, conditions (i)–(iv) are all satisfied, and we have obtained the desired con-
tradiction. Therefore, we conclude that if u(P1) > γ k̃0+m, then x1,N < 1/2k0 . This
obviously implies that

x1,N < 1/2k0 whenever u(P1) > γm(k0+1). (2.16)

From here on, we set γm = H .

Remark 2.16. Instead of using Lemma 2.13, the propagation of the bound below, which
generates the contradiction, can be proved by a further application of the Harnack in-
equality.

2.4.3. End of the proof of Theorem 2.1. Let

Q∗ =

{
|xi | <

1
4
, 0 < xN < 1, −

α + β

2
cp−2 < t ≤ −βcp−2

}
,

Q∗ =

{
|xi | <

1
4
, −1 < xN < 1, −

α + β

2
cp−2 < t ≤ −βcp−2

}
.

Starting from Q∗, Q∗ is built by reflection; after extending u to Q∗ as in Lemma 2.12,
u is still a (signed) solution to (1.1)–(1.2).

Now let P1 = (x1, t1) = (x1,1, . . . , x1,N , t1) ∈ Q∗ be such that

u(P1) ≥ H
k0+1
; (2.17)

by (2.16), we must have 0 < x1,N < 1/2k0 . Set

Q(P1) = {|x − x1| < 2−k0ε−s, t1 − (2−k0ε−s)p < t < t1},

where ε is the quantity claimed by Lemma 2.10 and s ∈ N is to be fixed. Let

ω
(1)
0 = osc

Q(P1)
u.

Without loss of generality, we may assume ε < 1/2. Thanks to (2.17) and the construction
of u by odd reflection, we have

ω
(1)
0 ≥ 2H k0+1. (2.18)
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Moreover, if k0 is large enough, we have Q(P1) ⊂ Q
∗. Set σ (1)0 = 2−k0ε−s and consider

Q
(1)
0 = Kσ (1)0

(x1)× (t1 − θ
(1)
0 (σ

(1)
0 )p, t1), where θ

(1)
0 = (c/ω

(1)
0 )p−2.

It is apparent that Q(1)
0 ⊂ Q(P1) ⊂ Q∗. Notice that we do not need to assume (2.9)

here, since, by construction, the cylinders are all correctly nested in one another. By
Lemma 2.10, we can build a sequence

ω(1)n = δω
(1)
n−1, θ (1)n = (c/ω

(1)
n )p−2, σ (1)n = εσ

(1)
n−1, Q(1)

n = Qσ
(1)
n
(θ (1)n ),

for all non-negative integers n. Such a sequence satisfies

Q
(1)
n+1 ⊂ Q

(1)
n , osc

Q
(1)
n

u ≤ ω(1)n .

By iteration

osc
Q
(1)
n

u ≤ δnω
(1)
0 = δ

n osc
Q(P1)

u, so osc
Q(P1)

u ≥
1
δn

osc
Q
(1)
n

u.

If we now choose n = s, and s such that δ−s > H 10, by the choice of σ (1)0 we obtain

ω
(1)
0 ≥ 2H k0+11,

and this obviously improves the previous lower bound given by (2.18). As u has been built
by odd reflection, we conclude there must exist P(x2, t2) = (x2,1, . . . , x2,N , t2) ∈ Q(P1)

such that
u(P2) ≥ H

k0+11.

As before, by (2.16), 0 < x2,N < 1/2k0+10, and also t1 − (2−k0ε−s)p < t2 < t1. Set

Q(P2) = {|x − x2| < 2−k0−10ε−s, t2 − (2−k0−10ε−s)p < t < t2}.

Once more, provided k0 is large enough, we can assume that Q(P2) ⊂ Q∗. Arguing as
before, we conclude there exists P3(x3, t3) ∈ Q(P2) such that

u(P3) ≥ H
k0+21.

Consequently, 0 < x3,N < 2−k0−20. By induction, we get {Pq(xq , tq)} such that

u(Pq) ≥ H
k0+1+10(q−1) (2.19)

and
0 < xq,N < 2−k0−10(q−1).

Notice that k0 depends on α, β, c, and s, and therefore, due the definition of these quan-
tities, on the data p, N , C0, C1. Now choose k0 so large that

t1 −

∞∑
q=1

(2−k0−10(q−1)ε−s)p > −αcp−2,
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and for all i = 1, . . . , N − 1,

x1,i −

∞∑
q=1

(2−k0−10(q−1)ε−s) > −
1
2
, x1,i +

∞∑
q=1

(2−k0−10(q−1)ε−s) <
1
2
.

It is the need to satisfy these requirements that forces |xi | < 1/4 in the definition of Q∗
andQ∗. Indeed, the value of k0 determines the value of γ̃ in (2.14), and therefore we must
be able to choose k0 independently of the solution or any other geometrical conditions. If
|xi | were larger than 1/4, then k0 would also depend on the distance in space of P1 to the
boundary of the cube of edge 1/2.

Once the previous conditions are satisfied, the sequence {Pq} is contained in a fixed
cylinder of Q∗. Together with (2.19), this leads to a contradiction, since the sequence ap-
proaches the boundary, and the corresponding values of u grow arbitrarily large, whereas
u is assumed to vanish continuously at the boundary. ut

2.4.4. Proof of Corollary 2.3. Let

K = 9−ρ/2(x0, t0) ∩ (∂E × (0, T )), M = sup
9−
ρ/2(x0,t0)

u.

By [16, Chapter III, Theorem 1.2], for all (x, t) ∈ 9−ρ/2(x0, t0) we have

u(x, t) ≤ γM

(
inf(y,s)∈K(|x − y| +M(p−2)/p

|t − s|1/p)

ρ

)µ
.

Since we are dealing with a Lipschitz cylinder, in the infimum above we can take t ≡ s,
which reduces the above to

u(x, t) ≤ γM

(
dist(x, ∂E)

ρ

)µ
.

By (2.1) and possibly a further application of the Harnack inequality, we conclude the
proof. ut

2.4.5. Proof of Theorem 2.4. Since the boundary is of class C2, its portion ∂E∩K2ρ(x0)

can now be represented by xN = 8(x′), where 8 is a function of class C2 satisfying

8(x′0) = 0, D8(x′0) = 0, ‖D′8‖∞ ≤ M2, ‖(D′)28‖∞ ≤ M2,

and M2 ∈ (0, 1) is a suitable parameter, provided ρ is small enough.
If we now introduce the new variables

yi = xi, i = 1, . . . , N − 1, yN = xN −8(x
′),

the portion ∂E ∩ K2ρ(x0) of the boundary coincides with the portion of the hyperplane
yN = 0 within K2ρ(y0). We orient yN so that E ∩K2ρ(y0) ⊂ {yN > 0}. Denoting again
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by x the transformed variable y, we proceed as in the proof of Theorem 2.1. Consequently,
(1.1)0 is rewritten as

ut − div A(x,Du) = 0, (2.20)

where, just as in the proof of Theorem 2.1,{
A(x, η) · η ≥ C0|η|

p

|A(x, η)| ≤ C1|η|
p−1 a.e. (x, t) ∈ ET , (2.21)

C0, C1 are positive constants depending only on N , p, M2, and

η′ = (η1, . . . , ηN−1), |η|2 =

N∑
k=1

|ηk|
2.

Our solution to (2.20) vanishes continuously on K2ρ(x0) ∩ {xN = 0}. Moreover, by
lengthy but quite straightforward calculations,

∂Ai

∂ηk
ξiξk ≥ C2|η|

p−2
|ξ |2, (2.22)∣∣∣∣∂Ai∂ηk

∣∣∣∣ ≤ C3|η|
p−2,

∣∣∣∣∂Ai∂xk

∣∣∣∣ ≤ C4|η|
p−1, (2.23)

where C2, C3, C4 depend only on N , p, and M2. Finally, due to its definition, A satisfies
the homogeneity condition

A(x, η) = |η|p−1A(x, η/|η|). (2.24)

Therefore, proving Theorem 2.4 reduces to proving

Lemma 2.17. Let u be a non-negative weak solution to

ut − div A(x,Du) = 0 in ET

for p > 2, where A satisfies the structure conditions (2.21)–(2.24). Take (x0, t0) ∈ ST ,
ρ ∈ (0, r0), let Pρ = (x′0, 2M2ρ, t0), and assume that u(Pρ) > 0, ∂E is flat with respect
to xN , and (t0−θ(4ρ)p, t0+θ(4ρ)p] ⊂ (0, T ], where θ = [c/u(Pρ)]p−2. Suppose that u
vanishes continuously on (∂E∩K2ρ(x0))× (t0− θ(4ρ)p, t0+ θ(4ρ)p]. Then there exists
a constant γ > 0, depending only on N , p, Ci , i = 0, . . . , 4, such that

0 ≤ u(x′, xN , t) ≤ γ (xN/ρ)u(Pρ)

for all (x, t) ∈ {|xi − x0,i | < ρ/2, 0 < xN < 2M2ρ} ×
(
t0 −

α+3β
4 θρp, t0 − βθρ

p
]
.
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Proof. We use the same argument of [22, Theorem 4.1]. By suitable rescaling and trans-
lation, assume x0 = 0, ρ = 1, and let M = sup9−1 u. By (2.13), M ≤ γ̃ u(P1). Let
y = (0, . . . , 0,−1), t1 = t0 − βθ , and consider the function

ηk(x, t) = exp[−k(|x − y| − 1)] exp[u(P1)
p−2(t − t1)],

and the set

Nk = {(x, t) : xN > 0, 1 < |x − y| < 1+ 1/k, t1 − (1+ δ)βθ < t < t1},

for some small enough, positive parameter δ. We assume k is so large that Nk ⊂ 9
−

1 . If
we choose C = γ̃ max{(1 − e−1)−1

; (1 − e−(1+δ)βc
p−2
)−1
}, where γ̃ is the constant of

(2.1), it is easy to verify that 2k(x, t) = Cu(P1)(1 − ηk(x, t)) satisfies u ≤ 2k on the
parabolic boundary of Nk . Provided we choose k as the largest positive root of

C0(p − 1)kp − bkp−1
− C2−p

= 0,

where b is a positive quantity that depends only on M2, and C0 is the constant of (2.21),
relying on (2.21)–(2.24), it is a matter of straightforward calculations to verify that 2k is
a supersolution to (2.20) in Nk .

By the comparison principle, u ≤ 2k in Nk . In particular, for all 0 < xN < 1/k,

u(0, . . . , 0, xN , t1) ≤ 2k(0, . . . , 0, xN , t1) = Cu(P1)(1− e−kxN )
≤ γ̃ xN u(P1).

On the other hand, if xN ≥ 1/k, then

u(0, . . . , 0, xN , t1) ≤M ≤ γ̃ kxNu(P1).

The same argument can be repeated using any t1 ∈
(
t0 −

α+3β
4 θ, t0 − βθ

]
, and switching

back to the original coordinates, we conclude. ut

Remark 2.18. Instead of relying on the comparison principle, Theorem 2.4 could be
proved using the L∞-estimates for the gradientDu, as shown, for example, in [16, Chap-
ter VIII] (see also [37, 38]). However, similar estimates are not known for solutions to
equation (4.1)0, and one does not expect them to hold true for solutions to (4.1)–(4.2);
therefore, we opted for an approach that works in both cases.

3. The singular supercritical case 2N/(N + 1) < p < 2

3.1. A weak Carleson estimate

We consider our first result in the singular supercritical case 2N/(N + 1) < p < 2. Let
ET , u, (x0, t0), ρ, xρ , Pρ be as in Theorem 2.1 and set

I (t0, ρ, h) = (t0 − hρ
p, t0 + hρ

p).
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Moreover, let u be a weak solution to (1.1)–(1.2) such that

0 < u ≤ M in ET , (3.1)

and assume that
I (t0, 9ρ,M2−p) ⊂ (0, T ]. (3.2)

Then we define

9̃ρ(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < 2ρ, |xN | < 4Lρ, t ∈ I (t0, 9ρ, η2−p
ρ )},

9̄ρ(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < ρ/4, |xN | < 2Lρ, t ∈ I (t0, ρ, η2−p
ρ )},

where ηρ is the first root of the equation

max
9̃ρ (x0,t0)

u = ηρ . (3.3)

Notice that both the functions y1(ηρ) = max9̃ρ (x0,t0)
u and y2(ηρ) = ηρ are increasing.

Moreover {
y1(0) ≥ u(Pρ) > 0,
y2(0) = 0,

and

{
y1(M) ≤ M,

y2(M) = M.

Therefore, it is immediate that at least one root of (3.3) actually exists. Moreover, by (3.2),
9̃ρ(x0, t0) ⊂ ET .

As already mentioned in the Introduction, we can only provide a weak form of the
Carleson estimate, expressed by the following theorem.

Theorem 3.1 (Carleson-type estimate, weak form, 2N/(N + 1) < p < 2). Let u be
a weak solution to (1.1)–(1.2) that satisfies (3.1). Assume that (3.2) holds true and u
vanishes continuously on

∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} × I (t0, 9ρ,M2−p).

Then there exist constants γ > 0 and α ∈ (0, 1), depending only on p, N , C0, C1, L,
such that

u(x, t) ≤ γ

(
dist(x, ∂E)

ρ

)α
sup

τ∈I (t0,ρ,2η
2−p
ρ )

u(xρ, τ )

for every (x, t) ∈ 9̄ρ(x0, t0).

If we let

9ρ,M(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < ρ/4, |xN | < 2Lρ, t ∈ I (t0, ρ,M2−p)},

we have a second statement.
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Corollary 3.2. Under the same assumptions of Theorem 3.1, we have

u(x, t) ≤ γ

(
dist(x, ∂E)

ρ

)α
sup

τ∈I (t0,ρ,2M2−p)

u(xρ, τ )

for every (x, t) ∈ 9ρ,M(x0, t0).

The quantity ηρ is known only qualitatively through (3.3), whereas M is a datum. There-
fore, Corollary 3.2 can be viewed as a quantitative version of a purely qualitative state-
ment. On the other hand, since ηρ could be attained in Pρ , Theorem 3.1 gives the sharpest
possible statement, and is genuinely intrinsic.

Moreover, compared to Theorem 2.1 and Corollary 2.3, Theorem 3.1 combines two
distinct statements in a single one (mainly for simplicity), and presents two fundamental
differences: when p > 2, the value of u at a point above controls the values of u below,
whereas when 2N/(N + 1) < p < 2, the maximum of u over a proper time interval
centered at t0 controls the values of u both above and below the time level t0. These are
consequences of the different statements of the Harnack inequality in the two cases. In
fact, the following theorem is proved in [20] (see also [21] for a thorough presentation).

For fixed (x0, t0) ∈ ET and ρ > 0, we set M = supKρ (x0)
u(x, t0), and require that

K8ρ(x0)× I (t0, 8ρ,M2−p) ⊂ ET . (3.4)

Theorem 3.3 (Harnack inequality). Let u be a non-negative weak solution to (1.1)–(1.2)
in ET for p ∈ (2N/(N + 1), 2). Then there exist constants ε ∈ (0, 1) and γ > 1,
depending only on p, N , C0, C1, such that for all intrinsic cylinders (x0, t0)+Q

±

8ρ(θ) for
which (3.4) holds,

γ−1 sup
Kρ (x0)

u(·, σ ) ≤ u(x0, t0) ≤ γ inf
Kρ (x0)

u(·, τ ) (3.5)

for any pair of time levels σ, τ in the range

t0 − ε u(x0, t0)
2−pρp ≤ σ, τ ≤ t0 + ε u(x0, t0)

2−pρp. (3.6)

The constants ε and γ−1 tend to zero both as p→ 2 and as p→ 2N/(N + 1).

Remark 3.4. Compared to the degenerate case, we now have c = 1 for the size of
the intrinsic cylinders. The upper bound M has only the qualitative role to ensure that
(x0, t0)+Q

±

8ρ(M) are contained within the domain of definition of u.

3.2. A counterexample

Can we improve the result of Theorem 3.1, namely can we replace the supremum of u on
I (t0, ρ, 2η2−p

ρ ) with the pointwise value u(Pρ)? This would certainly be possible if there
existed a constant γ , depending only on the data p, N , C0, C1, such that

∀t ∈ I (t0, ρ, 2η2−p
ρ ) u(xρ, t) ≤ γ u(Pρ).
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From a geometrical point of view, this amounts to building a Harnack chain connecting
(xρ, t) and Pρ , for all t ∈ I (t0, ρ, 2η2−p

ρ ). In general, without further assumptions on u,
this is not possible, as the following counterexample shows.

Let u be the unique non-negative solution to
u ∈ C(R+;L2(E)) ∩ Lp(R+;W

1,p
0 (E)),

ut − div(|Du|p−2Du) = 0 in ET ,

u(·, 0) = u0 ∈ C(E),

with u0 > 0 in E, and u0|∂E = 0. By [16, Chapter VII, Proposition 2.1], there exists a
finite time T∗, depending only on N , p, u0, such that u(·, t) ≡ 0 for all t ≥ T∗. By the
results of [16, Chapter IV], u ∈ C(E × (0, T∗)). Suppose now that at time t = T∗+1, we
modify the boundary value and for any t > T∗ + 1 we let u(·, t)|∂E = g(·, t), where g is
continuous and strictly positive. It is immediate to verify that u becomes strictly positive
for any t > T∗ + 1. Therefore, the positivity set for u is disconnected, u(x, t) ≡ 0 for
all (x, t) ∈ E × (T∗, T∗ + 1), and if (xρ, t) and Pρ lie on opposite sides of the vanishing
layer for u, by the intrinsic nature of Theorem 3.3, there is no way to connect them with
a Harnack chain.

This counterexample allows u to vanish identically for t in a proper interval, but by
suitably modifying the boundary values, it is clear that we can have u strictly positive,
and as close to zero as we want. Therefore, the impossibility of connecting two arbitrary
points by a Harnack chain does not depend on the vanishing of u, but it is a general
property of solutions to (1.1)–(1.2) whenever E 6≡ RN . Moreover, by properly adjusting
the boundary value, one can even create an arbitrary number of oscillations for u between
positivity and null regions.

We have considered solutions to the p-Laplace equation just for simplicity; everything
continues to hold if we consider the same boundary value problem for (1.1)–(1.2).

Notice that if we deal with weak solutions to (1.1)–(1.2) in RN × (0, T ], then we do
not have boundary values any more, the situation previously discussed cannot occur, and
therefore any two points (x, t) and (x0, t0) can always be connected by a Harnack chain
provided both u(x, t) and u(x0, t0) are strictly positive, and 0 < t − t0 < (ε/8p)t0, as
discussed in [21, Chapter 7, Proposition 4.1]. The sub potential lower bound discussed
there is then a property of weak solutions given in the whole RN × (0, T ).

The Harnack inequality given in Theorem 3.3 is time-insensitive, and its constants are
not stable as p → 2. A different statement, analogous to the one given in Theorem 2.6,
could be given, and in such a case the constants would be stable (see [21, Chapter 6] for a
thorough discussion of the two possible forms). However, the eventual result is the same,
and independently of the kind of Harnack inequality one considers, two points (x, t) and
(x0, t0) of positivity for u cannot be connected by a Harnack chain.

Notice that we have a sort of dual situation: when 1 < p < 2 the support of u
can be disconnected in time; when p > 2, as we discussed in §2.2, the support can be
disconnected in space.

Strictly speaking, the previous counterexample only shows that we cannot replace the
line with a point, but per se it does not rule out that a strong form of Carleson’s estimate
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holds true all the same. However, if one tries to adapt to the singular supercritical context
the standard proof based on the Harnack inequality and the boundary Hölder continuity
(as we did, for example, in the degenerate context), then one quickly realizes that, in order
to have the cylinders of Lemma 2.10 inside the reference cylinder, one needs to know in
advance the oscillation of u; this suggests that only a control in terms of the supremum
taken in a proper set can be feasible.

3.3. A strong Carleson estimate

Compared to the statement of Theorem 3.1, a stronger form is indeed possible, provided
we allow the parameter γ to depend not only on the data, but also on the oscillation of u.
Let ET , u, (x0, t0), ρ, Pρ be as in Theorem 2.1, and for k = 0, 1, . . . set

ρk = (7/8)kρ, σk = ρk/γ
k(2−p)/p,

xρk = (x
′

0, 2Lρk), Pρk = (x
′

0, 2Lρk, t0),

9ρk,M(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < ρk/4, |xN | < 2Lρk, t ∈ I (t0, σk,M2−p)},

m0 = inf
τ∈I (t0,ρ,2M2−p)

u(xρ, τ ), M0 = sup
τ∈I (t0,ρ,2M2−p)

u(xρ, τ ).

Corollary 3.5 (Carleson-type estimate, strong form, 2N/(N + 1) < p < 2). Let u be a
weak solution to (1.1)–(1.2) such that 0 < u ≤ M in ET . Assume that I (t0, 9ρ,M2−p) ⊂

(0, T ] and that u vanishes continuously on

∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} × I (t0, 9ρ,M2−p).

Then there exists a constant γ , depending only on p, N , C0, C1, L, M/m0, such that

u(x, t) ≤ γ u(Pρk ) (3.7)

for every (x, t) ∈ 9ρk,M(x0, t0) and all k = 0, 1, . . . .

Remark 3.6. The strong form of the Carleson-type estimate is derived from Corol-
lary 3.2. An analogous statement can be derived from Theorem 3.1.

Remark 3.7. Estimate (3.7) has the same structure as the backward Harnack inequality
for caloric functions that vanish just on a disk at the boundary (see [9, Theorem 13.7,
p. 234]). This is not surprising, because (3.7) is indeed a backward Harnack inequality,
due to the specific nature of the Harnack inequality for the singular case. However, it
is worth mentioning that things are not completely equivalent; indeed, the constants we
have in the time-insensitive Harnack inequality (3.5)–(3.6) are not stable (and cannot be
stabilized), and therefore the result for caloric functions cannot be recovered from the
singular case by simply letting p→ 2 (as is the case for many other results).

Another striking difference compared to the degenerate case appears when we consider
C1,1 cylinders and (mainly for simplicity) the prototype equation (1.1)0. In this case,
indeed, weak solutions vanishing on the lateral part enjoy linear behavior at the boundary
with implications expressed in the following result. Note that the role ofL in the definition
of 9ρ,M is now played by M1,1.
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Theorem 3.8. Let 2N/(N + 1) < p < 2. Assume ET is a C1,1 cylinder, and (x0, t0),
ρ, Pρ are as in Theorem 2.1. Let u, v be two weak solutions to (1.1)0 in ET satisfying
the hypotheses of Theorem 3.1, that is, 0 < u, v ≤ M in ET . Then there exist positive
constants s̄, γ , β, 0 < β ≤ 1, depending only on N , p, M1,1, and ρ0, c0 > 0, depending
also on the oscillation of u, such that the following properties hold.

(a) Hopf principle:
|Du| ≥ c0 in 9ρ0,M(x0, t0). (3.8)

(b) Boundary Harnack inequality:

γ−1 infτ∈I (t0,ρ,2M2−p) u(xρ, τ )

supτ∈I (t0,ρ,2M2−p) v(xρ, τ )
≤
u(x, t)

v(x, t)
≤ γ

supτ∈I (t0,ρ,2M2−p) u(xρ, τ )

infτ∈I (t0,ρ,2M2−p) v(xρ, τ )
(3.9)

for all (x, t) ∈ {x ∈ Ks̄ρ/4(x0) ∩ E : dist(x, ∂E) < s̄ρ/8} × I (t0, ρ, 1
2M

2−p) with
ρ < ρ0.

(c) The quotient u/v is Hölder continuous with exponent β in 9ρ0/2,M(x0, t0).

Remark 3.9. Since

supτ∈I (t0,ρ,2M2−p) u(xρ, τ )

infτ∈I (t0,ρ,2M2−p) v(xρ, τ )
≤
M0,uu(Pρ)

m0,u

M0,v

m0,vv(Pρ)
,

infτ∈I (t0,ρ,2M2−p) u(xρ, τ )

supτ∈I (t0,ρ,2M2−p) v(xρ, τ )
≤
m0,uu(Pρ)

M0,u

m0,v

M0,vv(Pρ)
,

the boundary Harnack inequality (3.9) can be rewritten as

γ̃−1 u(Pρ)

v(Pρ)
≤
u(x, t)

v(x, t)
≤ γ̃

u(Pρ)

v(Pρ)

where now γ̃ depends not only on N , p, M1,1, but also on M0,u/m0,u and M0,v/m0,v .

Remark 3.10. Note that (a) implies that near a part of the lateral boundary where a non-
negative solution vanishes, the parabolic p-Laplace operator is uniformly elliptic. Since
we do not have an estimate at the boundary of the type |Du(x, t)| ≥ u(x, t)/dist(x, ∂E),
(a) and (c) hold only in a small neighborhood of ST , whose size depends on the solution,
as both c0 and the oscillation of the gradient Du depend on the oscillation of u; this is
precisely the meaning of ρ0. Moreover, as will be clear from the proof, we give only a
qualitative dependence of β on the various quantities.

The proof relies on suitable estimates from above and below, which were originally
proved in [22, §4] for solutions to singular porous medium equations in C2 domains
by building explicit barriers; they were later extended in [49] to solutions to doubly non-
linear singular equations in C1,α domains. Unfortunately, it recently turned out that there
is a flaw in the argument, and, as pointed out in [39] in the context of p-Laplacian type
equations, C1,1 domains is the most general assumption one can have in order to build
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barriers; that this is the threshold below which one cannot go had already been shown in
the elliptic context in [2].

We recast these estimates in the lemma below, in a form tailored to our purposes. In-
deed, the Hopf principle and a weak version of the boundary Harnack inequality follow
easily from these estimates. Our improvement lies in the use of the Carleson estimates,
which allow a more precise bound for u(x, t)/v(x, t) in terms of u(Pρ)/v(Pρ). The re-
striction to 2N/(N + 1) < p < 2 comes into play only in this last step.

Thus, let ∂E be of class C1,1 and u be a non-negative weak solution to (1.1)0 in ET
for 1 < p < 2. Assume that u ≤ M in ET . For x ∈ RN , set d(x) = dist(x, ∂E), and for
s > 0, let

Es = {x ∈ E : s/2 ≤ d(x) ≤ 2s}.

Lemma 3.11. Let τ ∈ (0, T ) and fix x0 ∈ ∂E. Assume that u vanishes on

∂E ∩K2ρ(x0)× (τ, T ).

For every ν > 0, there exist positive constants γ1, γ2, and 0 < s̄ < 1/2, depending only
on N , p, ν,M1,1, such that for all τ + νM2−pρp < t < T , and for all x ∈ E ∩K2s̄ρ(x0)

with d(x) < s̄ρ,

γ2
d(x)

ρ
inf

K2ρ (x0)∩E s̄ρ×(τ,T )
u ≤ u(x, t) ≤ γ1

d(x)

ρ
sup

E∩K2ρ (x0)×(τ,T )

u.

From the above lemma, Theorem 3.8 follows rather easily.

3.3.1. Proof of Theorem 3.8. In order to simplify the proof, we assumeM1,1 ≈ 1. Other-
wise, the anisotropies of the domains we have to take into account would make the reading
particularly burdensome.

(a) The Hopf principle (3.8) is an easy consequence of the linear growth estimate, the
interior Harnack inequality, and the regularity up to the boundary ofDu [16, Chapters IX
and X].

(b) To prove the boundary Harnack inequality, let (x0, t0) ∈ ST , ρ ∈ (0, r0), xρ =
(x′0, 2M1,1ρ), Pρ = (xρ, t0). In Lemma 3.11, let

τ = t0 −M
2−pρp, T = t0 +M

2−pρp, ν = 1/2,

and define

V1/2,ρ(x0, t0) = {x ∈ Ks̄ρ/4(x0) ∩ E : d(x) < s̄ρ/8} × I
(
t0, ρ,

1
2M

2−p),
where s̄ is the quantity claimed by Lemma 3.11 when ν = 1/2. Since both u and v satisfy
the assumptions of Lemma 3.11, for every (x, t) ∈ V1/2,ρ(x0, t0) we can write

γ2 d(x)µu(s̄ρ) ≤ ρu(x, t) ≤ γ1d(x)Mu(ρ),

γ2 d(x)µv(s̄ρ) ≤ ρv(x, t) ≤ γ1d(x)Mv(ρ),
(3.10)
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where

Mu(ρ) = sup
(E∩Kρ/4(x0))×I (t0,ρ,M2−p)

u, µu(s̄ρ) = inf
(E s̄ρ/8∩Kρ/4(x0))×I (t0,ρ,M2−p)

u,

and analogously for v; (3.10) yields

γ2

γ1

µu(s̄ρ)

Mv(ρ)
≤
u(x, t)

v(x, t)
≤
γ1

γ2

Mu(ρ)

µv(s̄ρ)
, ∀(x, t) ∈ V1/2,ρ(x0, t0). (3.11)

Notice that (3.11) holds for every 1 < p < 2. Restricting p to the range (2N/(N + 1), 2)
allows us to apply Corollary 3.2 and Theorem 3.3.

Concerning Mu(ρ), by Corollary 3.2 we have

Mu(ρ) ≤ γ sup
τ∈I (t0,ρ,2M2−p)

u(xρ, τ ).

On the other hand, µu(s̄ρ) is attained at some point (x∗, t∗) ∈ Kρ/4(x0) ∩ E
s̄ρ/8
×

I (t0, ρ,M). By the elliptic Harnack inequality of Theorem 3.3,

γ3u(xρ, t∗) ≤ u(x∗, t∗) ≤ γ4u(xρ, t∗),

where γ3, γ4 depend on N , p, M1,1 (as a matter of fact, they depend on s̄ too, but once ν
is fixed, s̄ depends only on these quantities), and therefore

µu(s̄ρ) ≥ γ5 inf
τ∈I (t0,ρ,2M2−p)

u(xρ, τ ),

where, once more, γ5 depends only on N , p, M1,1. Combining the previous estimates
for u and the analogous ones for v yields

γ−1 infτ∈I (t0,ρ,2M2−p) u(xρ, τ )

supτ∈I (t0,ρ,2M2−p) v(xρ, τ )
≤
u(x, t)

v(x, t)
≤ γ

supτ∈I (t0,ρ,2M2−p) u(xρ, τ )

infτ∈I (t0,ρ,2M2−p) v(xρ, τ )

for all (x, t) ∈ V1/2,ρ(x0, t0).
(c) We prove the Hölder continuity of the quotient u/v up to the boundary. First notice

that, given (x, t) ∈ ST ∩9ρ0/2,M(x0, t0) and denoting by zx = x + rνx a point along the
normal to ∂E at x, we can write

u(zx, t)

v(zx, t)
=
u(zx, t)− u(x, t)

v(zx, t)− v(x, t)
=

∂u
∂νx
(cx, t)

∂v
∂νx
(cx, t)

with a suitable cx . Since u vanishes on the C1,1 boundary, the tangential component of
the gradient vanishes, and ∂u

∂νx
≡ |Du|. Letting r → 0, by the Hopf principle and the Cα

regularity of Du and Dv (see [16, Chapters IX and X]), we infer that u/v has a Hölder
continuous trace on ST ∩9ρ0/2,M(x0, t0). Moreover, if (y, s) ∈ ST ∩9ρ0/2,M(x0, t0) and
(x, t) ∈ 9ρ0/2,M(x0, t0), we have, once more by Hopf’s principle and the Cα regularity
of Du and Dv, ∣∣∣∣u(x, t)v(x, t)

−
u(y, s)

v(y, s)

∣∣∣∣ ≤ Cd((x, t), (y, s))α, (3.12)

where d denotes the parabolic distance. When both (x, t) and (y, s) belong to
9ρ0/2,M(x0, t0), strictly speaking we should distinguish three cases:
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• d((x, t), (y, s)) ' d((x, t), ST ) ' d((y, s), ST ); in that case, the interior Hölder con-
tinuity suffices to conclude;
• d((x, t), (y, s))� d((x, t), ST ), d((x, t), (y, s))� d((y, s), ST ); in that case, on the

left-hand side of (3.12) we can add and subtract u/v evaluated at the boundary;
• d((x, t), (y, s)) ' d((x, t), ST ), d((x, t), (y, s)) � d((y, s), ST ); in that case, the

desired result is a straightforward consequence of the triangle inequality.

In all three instances, the proof is quite standard and basically relies on (3.12) and on
interior Hölder continuity of u/v. Notice that here we can use the classical parabolic
distance, as the p-Laplacian is now uniformly elliptic, thanks to the Hopf principle. ut

3.4. Proof of Theorem 3.1

Although the overall strategy of the proof of Theorem 3.1 is the same as of the proof of
Theorem 2.1, the singular case requires an adapted renormalization argument to control
the vertical size of suitable dyadic cylinders. We mainly concentrate on the differences
between the two proofs. The Hölder continuity up to the boundary employed in Corol-
lary 2.3 also holds in the supercritical singular case, and the change of variables intro-
duced in §2.4.1 works for any p > 1. Therefore, proving Theorem 3.1 reduces to proving
the following lemma.

Lemma 3.12. Let u be a weak solution to (1.1)–(1.2) such that 0 < u ≤ M in ET .
Assume that ∂E is flat with respect to xN and that

I (t0, 9ρ,M2−p) ⊂ (0, T ]. (3.13)

Suppose that u vanishes on

∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} × I (t0, 9ρ,M2−p).

Then there exists a constant γ > 0, depending only on p, N , C0, C1, such that

u(x, t) ≤ γ sup
τ∈I (t0,ρ,2η

2−p
ρ )

u(xρ, τ )

for all (x, t) ∈ {|xi − x0,i | < ρ/4, 0 < xN < 2Lρ} × I (t0, ρ, η
2−p
ρ ).

Proof. Since the previous flattening of the boundary does not affect the value of M , we
still have 0 < u ≤ M in ET for some M > 0. By (3.13) we can define

9∗ρ = K
∗

2ρ(x0)× I (t0, 9ρ, η2−p
ρ ) ⊂ ET ,

where K∗2ρ(x0) has been defined in (2.12), and ηρ is the first root of the equation

max
9∗ρ

u = ηρ .
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We have already shown that at least one solution of this equation exists. Moreover, we
have 9∗ρ ⊂ ET . The change of variable

x →
x − x0

2Lρ
, t →

1

η
2−p
ρ

t − t0

ρp

maps K∗2ρ(x0) × I (t0, 9ρ, η2−p
ρ ) into Q̃ = {|yi | < 1/L, 0 < yN < 2} × (−9p, 9p],

xρ into y0 = (0, . . . , 0, 1), K̃ρ(x0) into K̃1 = {|yi | < 1/(2L), |yN | < 1}, K∗2ρ(x0) into
K∗2 (y0) = {|yi | < 1/L, 0 < yN < 2}, and the portion ST ∩ 9∗ρ of the lateral boundary
into

4 = {(y′, 0) : |yi | < 1/L} × (−9p, 9p].

After denoting again by (x, t) the transformed variables, and letting y0 = (0, . . . , 0, 1) in
the remainder of the proof, the rescaled function

v(x, t) =
1
ηρ
u(2Lρ x + x0, t0 + η

2−p
ρ ρpt)

is a non-negative weak solution to

∂tv − div Ã(x, t, v,Dv) = 0,

in Q̃, where it is easy to see that Ã satisfies structure conditions analogous to (1.2), and

∀(x, t) ∈ Q̃ 0 ≤ v ≤ 1.

As in the proof of Theorem 2.1, in order to simplify the notation and without loss of
generality, from here on we assume L = 1.

Since the structure conditions have changed, we will denote by ε∗ and γ∗ the corre-
sponding constants of the Harnack inequality, claimed by Theorem 3.3. We will repeat-
edly apply (3.5)–(3.6); due to all our assumptions, the only condition we need to take into
account each time is that K8R(x∗) ⊆ E, where x∗ ∈ {|xi | < 1/2, 0 < xN < 1}, and R
depends on the context.

The following argument closely resembles the proof given in the elliptic context, the
main difference being the need to control the size of the time interval. On the other hand,
we cannot simply repeat the argument used in the degenerate case, as it heavily relies on
the fact that p > 2.

Consider the set F0 = {(x
′, xN ) : |xi | < 1/2, xN = 1}, the points Ph′ , whose

coordinates are given by

xi = hi/8, hi = −3,−2, . . . , 3, i = 1, . . . , N − 1,
xN = 1,

and the (N − 1)-dimensional cubes K1/4(Ph′) ∩ {xN = 1}. Notice that

• the (N − 1)-dimensional cubes give an equal-size decomposition of F0;
• due to their size and their distance from the boundary, K2(Ph′) ⊆ E and therefore we

can apply (3.5)–(3.6).
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Consequently, for any

t∗ ∈ [−ε∗v
2−p(y0, 0), ε∗v2−p(y0, 0)], (3.14)

by (3.5) we have
v(x, t∗) ≤ γ∗v(Ph′ , t∗)

for all x ∈ K1/4(Ph′) ∩ {xN = 1}. On the other hand, it is easy to see that

v(Ph′ , t∗) ≤ γ∗v(y0, t∗).

Therefore, for any x ∈ F0,
v(x, t∗) ≤ γ

4
∗ v(y0, t∗).

Consider the slab

S0 = {(x
′, xN ) : |xi | < 1/2, 7/8 < xN < 1}.

As noticed above, K2(x̄) ⊆ E for any x̄ ∈ F0; therefore we can apply (3.5) at time
level t∗, and conclude that

∀x̄ ∈ F0, ∀x ∈ K1/4(x̄) v(x, t∗) ≤ γ∗v(x̄, t∗).

Consequently, for all x ∈ S0,

v(x, t∗) ≤ γ
5
∗ v(y0, t∗). (3.15)

Estimate (3.15) holds in particular for any x ∈ F1, where

F1 = {(x
′, xN ) : |xi | < 1/2, xN = 7/8}.

We can then iterate and conclude that

∀x ∈ Sk = {(x
′, xN ) : |xi | < 1/2, (7/8)k+1 < xN < (7/8)k}

v(x, t∗) ≤ γ
k+5
∗ v(y0, t∗). (3.16)

On the other hand, by (3.5)–(3.6), for any t∗ as in (3.14),

v(y0, t∗) ≤ γ∗v(y0, 0). (3.17)

Combining (3.4)–(3.17) finally yields

v(x, t) ≤ γ k+6
∗ v(y0, 0)

for all (x, t) ∈ Sk × [−ε∗v2−p(y0, 0), ε∗v2−p(y0, 0)].
For any τ ∈ [−2, 2] (and not just for τ = 0) we can repeat the same argument and

obtain
v(x, t) ≤ γ k+6

∗ v(y0, τ )



412 Benny Avelin et al.

for all (x, t) ∈ Sk×[τ−ε∗v2−p(y0, τ ), τ+ε∗v
2−p(y0, τ )] and any τ ∈ [−2, 2], provided

that v(y0, τ ) > 0. Therefore, setting M2 = supτ∈[−2,2] v(y0, τ ) yields

v(x, t) ≤ γ k+6
∗ M2 (3.18)

for all (x, t) ∈ Sk ×[−2, 2]. This plays the role of (2.16) in the singular framework. Now
let

Q∗ = {|xi | < 1/4, 0 < xN < 1, t ∈ [−1, 1]},
Q∗ = {|xi | < 1/4, −1 < xN < 1, t ∈ [−1, 1]},

Q̃∗ = {|xi | < 1/2, 0 < xN < 1, t ∈ [−2, 2]},

Q̃∗ = {|xi | < 1/2, −1 < xN < 1, t ∈ [−2, 2]}.

Notice that we need to assume |xi | < 1/4 in the definition of Q∗ and Q∗ for two closely
connected reasons:

• the first point P1 we are going to choose must lie in a suitably small cylinder, so that
the sequence {Pm} is all contained in Q̃∗;
• as in the degenerate case, we need to choose k0 that depends only on the data.

We extend u from Q̃∗ to Q̃∗ by odd reflection; by Lemma 2.12, u is still a (signed)
solution to (1.1)–(1.2).

Suppose there exists P1 = (x1, t1) = (x1,1, . . . , x1,N , t1) ∈ Q∗ such that

u(P1) ≥ γ
k0+6
∗ M2; (3.19)

by (3.18), we must have 0 < x1,N < (7/8)k0 , |xi | < 1/4, t1 ∈ [−1, 1]. Consider the
cylinder

Q(P1) = {|x − x1| < 2(7/8)k0+1ε−l, t1 − (2(7/8)k0+1ε−l)p < t ≤ t1},

where ε is as in Lemma 2.10, and l ∈ N is to be determined. Without loss of generality,
we may assume ε < 7/8. Now let

ω
(1)
0 = osc

Q(P1)
v.

We do not know the precise value of ω(1)0 , but thanks to (3.19), the construction of u by
odd reflection, and the normalization of v, we surely have

2M2γ
k0+6
∗ ≤ ω

(1)
0 ≤ 2. (3.20)

Provided k0 is large enough, we have Q(P1) ⊂ Q̃∗. Set σ (1)0 = 2(7/8)k0+1ε−l and
consider

Q
(1)
0 = Kσ (1)0

(x1)× (t1 − θ
(1)
0 (σ

(1)
0 )p, t1), where θ

(1)
0 = (ω

(1)
0 /A)2−p,
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and A is the quantity denoted by c in Lemma 2.10, which we assume to be larger than 2
without loss of generality. It is apparent that Q(1)

0 ⊂ Q(P1) ⊂ Q̃
∗. By Lemma 2.10, we

can build a sequence

ω(1)n = δω
(1)
n−1, θ (1)n = (ω

(1)
n /A)2−p, σ (1)n = εσ

(1)
n−1, Q(1)

n = Qσ
(1)
n
(θ (1)n ),

for all non-negative integers n. Such a sequence satisfies

Q
(1)
n+1 ⊂ Q

(1)
n , osc

Q
(1)
n

v ≤ ω(1)n .

By iteration

osc
Q
(1)
n

v ≤ δnω
(1)
0 = δ

n osc
Q(P1)

v ⇒ osc
Q(P1)

v ≥
1
δn

osc
Q
(1)
n

v.

If we now choose n = l, and l such that δ−l > γ 5
∗ , by the choice of σ (1)0 we conclude that

ω
(1)
0 ≥ 2γ k0+11

∗ M2,

and this obviously improves the previous lower bound given by (3.20). As v has been built
by odd reflection, we conclude there must exist P(x2, t2) = (x2,1, . . . , x2,N , t2) ∈ Q(P1)

such that
v(P2) ≥ γ

k0+11
∗ M2.

As before, by (3.18), we have 0 < x2,N < (7/8)k0+10, |xi | < 1/4, and also t1 −
(2(7/8)k0+1ε−l)p < t2 < t1. Set

Q(P2) = {|x − x2| < 2(7/8)k0+10ε−l, t2 − (2(7/8)k0+10ε−l)p < t < t2}.

Once more, provided k0 is large enough, we can assume thatQ(P2) ⊂ Q̃
∗. From now on,

we proceed as in § 2.4.3. By induction, we obtain a sequence {Pm = (xm, tm)} such that

v(Pm) ≥ γ
k0+6+5(m−1)
∗ M2 (3.21)

and
0 < xm,N < (7/8)k0+1+5(m−1).

Provided we choose k0 large enough, the sequence {Pm} is all contained in the fixed
cylinder Q̃∗; since 0 < v < 1 and M2 ∈ (0, 1] is a fixed quantity, (3.21) eventually leads
to a contradiction. Therefore, there exists γ̃ , which depends only on the data, such that

∀(x, t) ∈ Q∗ v(x, t) ≤ γ̃M2. (3.22)

We now switch back to the original variables. We conclude that there exists a constant γ̃ ,
depending only on the data, such that

∀(x, t) ∈ {|xi − x0,i | < ρ/4, 0 < xN < 2Lρ} × I (t0, ρ, η2−p
ρ )

u(x, t) ≤ γ̃ sup
τ∈I (t0,ρ,2η

2−p
ρ )

u(xρ, τ ). ut
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3.4.1. Proof of Corollary 3.2. A close inspection of the previous proof shows that all
the arguments continue to hold true if we replace the qualitative parameter ηρ directly
with M . ut

3.5. Proof of Corollary 3.5

Taking into account the notation of §3.4, it is enough to prove the following result.

Lemma 3.13. Let u be a weak solution to (1.1)–(1.2) such that 0 < u ≤ M in ET .
Assume that ∂E is flat with respect to xN and that I (t0, 9ρ,M2−p) ⊂ (0, T ]. Suppose
that u vanishes on

∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} × I (t0, 9ρ,M2−p).

Then there exists a constant γ > 0, depending on p, N , C0, C1, M/m0, such that

u(x, t) ≤ γ u(Pρk )

for all (x, t) ∈ 9ρk,M(x0, t0) and k = 0, 1, . . . .

Proof. We go back to the proof of Lemma 3.12, at (3.22) with ηρ replaced by M . Let
(x0, t0) ∈ ST and assume dist(x, ∂E) = ρ (we now take L = 1/2, without loss of
generality, in order to simplify the notation), and I (t0, 9ρ,M2−p) ⊂ (0, T ]. We let

Ik = (t0, σk, 2M2−p), Mk = sup
τ∈Ik

u(xρk , τ ),

mk = inf
τ∈Ik

u(xk, τ ), uk = u(xρk , t0).

By the weak form of the Carleson estimate given in Corollary 3.2, for all (x, t) in
9ρ,M(x0, t0) we have

u(x, t) ≤ γ sup
τ∈I0

u(xρ, τ ),

which implies

u(x, t) ≤ γ
M0

m0
u(Pρ) ≤ γ

M

m0
u(Pρ).

Analogously, working in a smaller box, for all (x, t) ∈ 9ρk,M(x0, t0),

u(x, t) ≤ γ sup
τ∈Ik

u(xρk , τ ) ≤ γ
Mk

mk
u(Pρk ).

To prove the lemma, we will show by induction that

Mk/mk ≤ γ
2(N0+1) and Nk ≤ N0 (3.23)

where

N0 = 2
(
M

m0

)2−p 8p

ε̄
, Nk = 2

(
M

γ kmk

)2−p 8p

ε̄
for k = 1, 2, . . . .
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Let us now consider k = 1. In order to cover the segment {xρ} × [t0, t0 + 2M2−pρp]

(and the same can be said for {xρ} × [t0 − 2M2−pρp, t0]), we need at most N0 steps,
where N0 is given by

t0 + ε̄N0m
2−p
0 (ρ/8)p = t0 + 2M2−pρp,

which yields the above formula for N0. Without loss of generality, we can assume that
N0 ∈ N, possibly by a slight modification of ε̄.

Now consider xρ1 ; by the elliptic Harnack inequality, for all t ∈ I1 we have

u(xρ1 , t) ≥ γ
−1u(xρ, t) ⇒ m1 ≥ γ

−1m0 ⇒
1
γm1

≤
1
m0
,

u(Pρ1) ≥ γ
−1u(Pρ) ⇒ u(Pρ1) ≥ γ

−1m0.

Taking once more into account the Harnack inequality, we obtain

M1 ≤ sup
t∈I0

u(xρ1 , t) ≤ γ
N0+1u(Pρ),

m1 ≥ inf
t∈I0

u(xρ1 , t) ≥ γ
−(N0+1)u(Pρ),

which yields
M1/m1 ≤ γ

2(N0+1).

Moreover, to cover {xρ1} × [t0, t0 + 2M2−pσ
p

1 ], we need to take at most N1 steps, where
N1 is given by

t0 + ε̄N1m
2−p
1

(
7
82 ρ

)p
= t0 + 2M2−p

(
7

8γ (2−p)/p
ρ

)p
,

which yields

N1 = 2
(
M

γm1

)2−p 8p

ε̄
≤ 2

(
M

m0

)2−p 8p

ε̄
,

and therefore N1 ≤ N0.
Let us now assume that Mk/mk ≤ γ

2(N0+1) and Nk ≤ N0 for some k = 1, 2, . . . .
Now consider xρk+1 ∈ E; by the elliptic Harnack inequality, for all t ∈ Ik+1 we have

u(xρk+1 , t) ≥ γ
−1u(xρk , t) ⇒ mk+1 ≥ γ

−1mk,

u(Pρk+1) ≥ γ
−1u(Pρk ) ⇒ u(Pρk+1) ≥ γ

−1mk.

Taking once more into account the Harnack inequality, we obtain

Mk+1 ≤ sup
t∈Ik

u(xρk+1 , t) ≤ γ
Nk+1u(Pρk ),

mk+1 ≥ inf
t∈Ik

u(xρk+1 , t) ≥ γ
−(Nk+1)u(Pρk ),
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which yields
Mk+1/mk+1 ≤ γ

2(Nk+1)
≤ γ 2(N0+1),

and the ratio has not grown.
Moreover, to cover {xρk+1} × [t0, t0 + 2M2−pσ

p

k+1], we need to take at most Nk+1
steps, where Nk+1 is given by

t0 + ε̄Nk+1m
2−p
k+1

(
ρk

8
ρ

)p
= t0 + 2M2−p(σk)

p,

which yields

Nk+1 = 2
(

M

γ k+1mk+1

)2−p 8p

ε̄
≤ Nk.

By the induction principle we now have (3.23). Hence

Mk/mk ≤ γ
2(N0+1)

∀k = 1, 2, . . . ,

where N0 depends only on p, N , C0, C1, M/m0. ut

4. The porous medium equation

Consider quasi-linear parabolic partial differential equations of the form

ut − div A(x, t, u,Du) = 0 weakly in ET , (4.1)

where the function A : ET ×RN+1
→ RN is only assumed to be measurable and subject

to the structure conditions{
A(x, t, u, ξ) · ξ ≥ mC0|u|

m−1
|ξ |2

|A(x, t, u, ξ)| ≤ mC1|u|
m−1
|ξ |

a.e. (x, t) ∈ ET , ∀u ∈ R, ∀ξ ∈ RN , (4.2)

where C0 and C1 are given positive constants, and m > 0. The prototype of this class of
parabolic equations is

ut −1(|u|
m−1u) = 0 weakly in ET . (4.1)0

For simplicity, we limit ourselves to the definition of non-negative solutions: a non-
negative function

u ∈ C([0, T ];L2(E)) with

{
u(m+1)/2

∈ L2(0, T ;W 1,2(E)) if m > 1,
um ∈ L2(0, T ;W 1,2(E)) if 0 < m < 1

is a weak sub[super]solution to (4.1)–(4.2) if for every subinterval [t1, t2] ⊂ (0, T ],∫
E

uϕ dx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
E

[−uϕt + A(x, t, u,Du) ·Dϕ] dx dt ≤ [≥] 0 (4.3)

for all non-negative test functions

ϕ ∈ W 1,2(0, T ;L2(E)) ∩ L2(0, T ;W 1,2
0 (E)).

This guarantees that all the integrals in (4.3) are convergent.
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In (4.3), the symbol Du has to be understood in the sense of the following definition:

Du =

{
2

m+1 1{u>0}u
(1−m)/2Du(m+1)/2 if m > 1,

1
m

1{u>0}u
1−mDum if 0 < m < 1.

The parameters m, N , C0, C1 are the data; the partial differential equation (4.1)–(4.2)
is degenerate when m > 1, and singular when 0 < m < 1, since its modulus of ellipticity
|u|m−1 tends to 0 or to +∞, respectively, as |u| → 0. In the latter case, we further
distinguish between the singular supercritical range (when (N − 2)+/N < m < 1), and
singular critical and subcritical range (when 0 < m ≤ (N − 2)+/N ).

We are interested in solutions to (4.1)–(4.2) continuously vanishing on some distin-
guished part of the lateral boundary ST of a space-time cylinder, and we aim at extending
to such solutions the results proved in the previous sections for solutions to (1.1)–(1.2).
We will not give the full proofs, as most of the arguments can be reproduced almost
verbatim. We will limit ourselves to discuss the changes that need to be done.

When dealing with this kind of problems, the cylinders to be considered are the ones
already defined in §1, provided the height scales as θρ2 with θ = (c/u(x0, t0))

m−1 and c
a suitable positive parameter.

Intrinsic Harnack inequalities, of the same kind as considered in Theorems 2.6 and
3.3, can be proved respectively for m > 1 and (N − 2)+/N < m < 1. For the exact
statements we refer to [17, 20, 21]. For a general introduction to the porous medium
equation, see [15, 50].

4.1. The degenerate case m > 1

For a Lipschitz cylinder ET with Lipschitz constant L, let (x0, t0), ρ, Pρ be as in §2.1,
assume u(Pρ) > 0, and set

9−ρ (x0, t0)

= ET ∩
{
(x, t) : |xi − x0,i | < ρ/4, |xN | < 2Lρ, t ∈

(
t0 −

α+β
2 θρ2, t0 − βθρ

2]},
where θ = [c/u(Pρ)]m−1 with c given by the Harnack inequality for m > 1 (see [21,
Chapter 5]), and α > β are positive parameters.

Theorem 4.1 (Carleson estimate, m > 1). Let u be a non-negative weak solution to
(4.1)–(4.2) in ET . Assume that

(t0 − θ(4ρ)2, t0 + θ(4ρ)2] ⊂ (0, T ]

and that u vanishes continuously on

∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} × (t0 − θ(4ρ)2, t0 + θ(4ρ)2).

Then there exist positive parameters α > β and a constant γ > 0, depending only on m,
N , C0, C1, L, such that

u(x, t) ≤ γ u(Pρ) for every (x, t) ∈ 9−ρ (x0, t0). (4.4)
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Proof. As in the proof of Theorem 2.1, the flattening of the boundary leaves the structure
of the equation unchanged; relabeling the variables as before, we end up with{

A(x, t, u, ξ) · ξ ≥ mC∗0 |u|
m−1
|ξ |2

|A(x, t, u, ξ)| ≤ mC∗1 |u|
m−1
|ξ |

a.e. (x, t) ∈ ET , ∀u ∈ R, ∀ξ ∈ RN ,

where C∗0 and C∗1 are positive constants that depend only on C0, C1, and the Lipschitz
constant L. The remaining part of the proof proceeds as in Theorem 2.1. ut

Remark 4.2. As for the p-Laplacian, let us point out that also for the prototype equa-
tion (4.1)0, estimate (4.4) could be extended from Lipschitz cylinders to a wider class of
cylinders ET whose cross section E is an N.T.A. domain.

Weak solutions to (4.1) with zero Dirichlet boundary conditions on a Lipschitz domain
are Hölder continuous up to the boundary (see, for example, [16, Chapter III, Appendix]).
Combining this result with the previous Carleson estimate yields a quantitative estimate
on the decay of u at the boundary, invariant by the intrinsic rescaling

x = x0 + ρy, t = t0 +
ρ2

u(Pρ)m−1 τ.

Corollary 4.3. Under the same assumptions of Theorem 4.1 we have

u(x, t) ≤ γ

(
dist(x, ∂E)

ρ

)µ
u(Pρ)

for every (x, t) ∈ 9−ρ/2(x0, t0), where γ > 0 and µ ∈ (0, 1) depend only on m, N , C0,
C1, L.

If we restrict our attention to solutions to the model equation (4.1)0 and to C2 cylinders,
the result of Corollary 4.3 can be strengthened.

Theorem 4.4 (A sharper decay). Let ET be a C2 cylinder, and u a non-negative weak
solution to (4.1)0 in ET . Assume the other assumptions of Theorem 4.1 hold. Then there
exist positive parameters α > β and a constant γ > 0, depending only on m, N , and the
C2-constant M2 of E, such that for every (x, t) in

ET ∩ {|xi − x0,i | < ρ/4, 0 < xN < 2M2ρ} ×

(
t0 −

α + 3β
4

θρ2, t0 − βθρ
2
]

we have

0 ≤ u(x, t) ≤ γ

(
dist(x, ∂E)

ρ

)1/m

u(Pρ), (4.5)

Proof. In this context the barrier is

2k(x, t) = Cu(Pρ)(1− ηk(x, t))1/m,

where
ηk(x, t) = exp(−k(|x − y| − 1)) exp(u(Pρ)m−1(t − t1)),

and the constant C is chosen so that u ≤ 2k on the parabolic boundary of Nk . The
remainder of the proof is as in Theorem 2.4; see also [22, Theorem 4.1]. ut
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Notice that, in general, the bound below by zero in (4.5) cannot be improved. Indeed,
when m > 1, two explicit solutions to (4.1)0 in the half-space {xN ≥ 0} that vanish at
xN = 0 are given by

u1(x, t) = x
1/m
N , u2(x, t) =

(
m− 1
m+ 1

)1/(m−1)

(T − t)−1/(m−1)x
2/(m−1)
N .

As in (2.6), we can even have solutions that vanish on a set of positive measure. For
γ ∈ (0, 1), consider, for example,

u(x, t) =

[
m− 1
m

γ (t + 1)
(
γ +

xN − 2
t + 1

)
+

]1/(m−1)

,

which solves (4.1)0 in {xN > 0} × (0, 2/γ − 1].
Finally, all the remarks in §2.2 about the obstruction to the definition of a useful Har-

nack chain hold for the porous medium equation as well, without any significant change.

4.2. The singular supercritical case (N − 2)+/N < m < 1

Let ET , u, (x0, t0), ρ, Pρ be as in Theorem 4.1, and set

Ĩ (t0, ρ, h) = (t0 − hρ
2, t0 + hρ

2).

Moreover, let u be a weak solution to (4.1)–(4.2) such that

0 < u ≤ M in ET , (4.6)

and assume that
Ĩ (t0, 9ρ,M1−m) ⊂ (0, T ]. (4.7)

Then we define

9̃ρ(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < 2ρ, |xN | < 4Lρ, t ∈ Ĩ (t0, 9ρ, η1−m
ρ )},

9̄ρ(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < ρ/4, |xN | < 2Lρ, t ∈ Ĩ (t0, ρ, η1−m
ρ )},

where ηρ is the first root of the equation

max
9̃ρ (x0,t0)

u = ηρ . (4.8)

As in §3, it is immediate that at least one root of (4.8) exists. Moreover, by (4.7),
9̃ρ(x0, t0) ⊂ ET . Finally, for k = 0, 1, . . . let

ρk = (7/8)kρ, σk = ρk/γ
k(1−m)/2,

xρk = (x
′

0, 2Lρk), Pρk = (x
′

0, 2Lρk, t0),

9ρ,M(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < ρ/4, |xN | < 2Lρ, t ∈ Ĩ (t0, ρ,M1−m)},

9ρk,M(x0, t0) = ET ∩ {(x, t) : |xi − x0,i | < ρk/4, |xN | < 2Lρk, t ∈ Ĩ (t0, σk,M1−m)},

m0 = inf
τ∈Ĩ (t0,ρ,2M1−m)

u(xρ, τ ), M0 = sup
τ∈Ĩ (t0,ρ,2M1−m)

u(xρ, τ ).
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In the following statement, we give both the weak and the strong form of the Carleson
estimates for solutions to a singular, supercritical porous medium equation.

Theorem 4.5 (Carleson estimate, (N − 2)+/N < m < 1). Let u be a weak solution to
(4.1)–(4.2) that satisfies (4.6). Assume that (4.7) holds true and u vanishes continuously
on

∂E ∩ {|xi − x0,i | < 2ρ, |xN | < 8Lρ} × Ĩ (t0, 9ρ,M1−m).

Then there exist constants γ > 0 and α ∈ (0, 1), depending only on m, N , C0, C1, L,
such that

u(x, t) ≤ γ

(
dist(x, ∂E)

ρ

)α
sup

τ∈I (t0,ρ,2η
1−m
ρ )

u(xρ, τ )

for every (x, t) ∈ 9̄ρ(x0, t0). Moreover, for every (x, t) ∈ 9ρ,M(x0, t0),

u(x, t) ≤ γ

(
dist(x, ∂E)

ρ

)α
sup

τ∈I (t0,ρ,2M1−m)

u(xρ, τ ).

Finally, there exists a constant γ̂ , depending on m, N , C0, C1, L, M/m0, such that

u(x, t) ≤ γ̂ u(Pρk )

for every (x, t) ∈ 9ρk (x0, t0) and all k = 0, 1, . . . .

Another difference from the degenerate case appears when we consider C1,1 cylinders
and (mainly for simplicity) the prototype equation (4.1)0. In this case, indeed, weak so-
lutions vanishing on the lateral part enjoy a proper power-like behavior at the boundary.
As pointed out in §3.3, the following lemma was originally proved in [22, §4] for solu-
tions in C2 domains; it can be extended to solutions in C1,1 domains, working as in [39,
Lemma 3.1] for the parabolic p-Laplacian. The notation is as in Lemma 3.11.

Lemma 4.6. Let τ ∈ (0, T ) and fix x0 ∈ ∂E. Assume that u vanishes on ∂E∩K2ρ(x0)×

(τ, T ). For every ν > 0, there exist positive constants γ1, γ2 and 0 < s̄ < 1/2, depending
only onN ,m, ν,M1,1, such that for all τ+νM1−mρ2 < t < T , and all x ∈ E∩K2s̄ρ(x0)

with d(x) < s̄ρ,

γ2
d(x)

ρ
inf

(E s̄ρ∩K2ρ (x0))×(τ,T )
u ≤ u(x, t)m ≤ γ1

d(x)

ρ
sup

(E∩K2ρ (x0))×(τ,T )

u.

The implications of Lemma 4.6 are stated in the following result.

Theorem 4.7. Let (N − 2)+/N < m < 1. Assume ET is a C1,1 cylinder, and (x0, t0),
ρ, Pρ are as in Theorem 4.1. Let u, v be weak solutions to (4.1)0 in ET satisfying the
hypotheses of Theorem 4.5, that is, 0 < u, v ≤ M in ET . Then there exist positive
constants s̄, γ , β, 0 < β ≤ 1, depending only on N , m, M1,1, and ρ0, c0 > 0, depending
also on the oscillation of u, such that the following properties hold.

(a) Hopf principle:
|Dum| ≥ c0 in 9ρ0,M(x0, t0).
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(b) Boundary Harnack inequality:

γ−1
inf

τ∈Ĩ (t0,ρ,2M1−m)
u(xρ, τ )

sup
τ∈Ĩ (t0,ρ,2M1−m)

v(xρ, τ )
≤
u(x, t)

v(x, t)
≤ γ

sup
τ∈Ĩ (t0,ρ,2M1−m)

u(xρ, τ )

inf
τ∈Ĩ (t0,ρ,2M1−m)

v(xρ, τ )
(4.9)

for all (x, t) ∈ {x ∈ Ks̄ρ/4 ∩ E : d(x) < s̄ρ/8} × Ĩ (t0, ρ, 1
2M

1−m) with ρ < ρ0.

Remark 4.8. Proceeding as in Remark 3.9, the boundary Harnack inequality (4.9) can
be rewritten as

γ−1
∗

u(Pρ)

v(Pρ)
≤
u(x, t)

v(x, t)
≤ γ∗

u(Pρ)

v(Pρ)
,

where γ∗ depends not only on N , p, M1,1, but also on M0,u/m0,u and M0,v/m0,v .

Remark 4.9. As in Theorem 3.8, the Hopf principle holds true only in a small neighbor-
hood of the boundary.

Remark 4.10. Since we do not have Hölder regularity estimates for the gradient of u, we
cannot proceed as in Theorem 3.8 to prove the Hölder continuity of the ratio.
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