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Abstract. We study natural measures on sets of β-expansions and on slices through self-similar
sets. In the setting of β-expansions, these allow us to better understand the measure of maximal
entropy for the random β-transformation and to reinterpret a result of Lindenstrauss, Peres and
Schlag in terms of equidistribution. Each of these applications is relevant to the study of Bernoulli
convolutions. In the fractal setting this allows us to understand how to disintegrate Hausdorff mea-
sure by slicing, leading to conditions under which almost every slice through a self-similar set has
positive Hausdorff measure, generalising long known results about almost everywhere values of the
Hausdorff dimension.
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1. Introduction

Given β ∈ (1, 2), a β-expansion of a real number x is a sequence a ∈ {0, 1}N for which

πβ(a) :=

∞∑
i=1

aiβ
−i
= x.

We let Eβ(x) := π−1
β (x) denote the set of β-expansions of x.

The primary purpose of this article is to seek to understand measures on Eβ(x). In
particular, we study the family of measures mx := m|Eβ (x) obtained by disintegrating the
uniform (1/2, 1/2) Bernoulli measure m on {0, 1}N. These measures appear as disinte-
grations of the measure of maximal entropy for the random β-transformation in [4], and
are used to state an equidistribution result for β-expansions in [16].

We begin by assuming that the Bernoulli convolution νβ (defined later) is absolutely
continuous. In this setting we build a two-dimensional dynamical system which preserves
Lebesgue measure and for which vertical fibres through the state space correspond to the
sets Eβ(x). By lifting one-dimensional Lebesgue measure on these fibres to the sets Eβ(x)
we obtain formulae for mx in terms of the density of νβ .
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We also consider Hausdorff measure on Eβ(x). Results on the cardinality, branching
rate and dimension of Eβ(x) were given in a series of recent papers [2, 8, 14, 26]. We con-
tinue this line of research by showing that for certain β, including almost all β ∈ (1,

√
2),

the set Eβ(x) has positive finite Hausdorff measure, and in that case the normalised Haus-
dorff measure on Eβ(x) coincides withmx . Our necessary and sufficient condition for the
positivity of Hausdorff measure is that the Bernoulli convolution νβ is absolutely contin-
uous with bounded density.

We then use the formulae for the measures mx obtained by our natural extension to
reinterpret the results of [16] as equidistribution results for the sets Eβ(x). In particular,
we show that for almost all β ∈ (1,

√
2) and almost all x ∈ [0, 1/(β − 1)] the sets

On(x) := {πβ(σ
n(a)) : a ∈ Eβ(x)}

equidistribute with respect to Lebesgue measure as n → ∞, where σ denotes the left
shift. Hochman proved in [12] that if νβ has dimension less than 1 then either there are
‘exact overlaps’1, or infx{inf{|y − z| : y, z ∈ On(x)}} tends to zero superexponentially.
We conjecture that the sets On(x) equidistribute if and only if νβ is absolutely continuous.
We are also able to use our results to prove a finer result (Proposition 5.1) about the typical
branching rate of sets of β-expansions, making progress towards Conjecture 1 of [14].

For each statement that we make about sets of β-expansions and Bernoulli convo-
lutions, there is an analogous statement about slices through self-similar sets and pro-
jections of Hausdorff measure. We let E ⊂ Rn be a self-similar set of Hausdorff di-
mension s, where the similarities do not include rotations and satisfy another technical
condition (Definition 6.1). We let Eθ be the orthogonal projection of E onto the line pass-
ing through the origin at angle θ = (θ1, . . . , θn−1). We let Eθ,x be the intersection of E
with the (n− 1)-dimensional plane perpendicular to Eθ and passing through x ∈ Eθ . We
call the sets Eθ,x slices of E.

Our main theorem for fractals, Theorem 6.2, states that Hs−1(Eθ,x) > 0 for almost
every x ∈ Eθ if and only if the orthogonal projection of Hausdorff measure on E to Eθ
is absolutely continuous with bounded density. Theorem 6.2 could be seen as a measure-
theoretic analogue of Furstenberg’s ‘dimension conservation theorem’, Theorem 3.1 of
[10]. The dimension conservation theorem relates the dimension of projections of a fractal
to the dimension of typical slices perpendicular to this projection, whereas our theorem
relates the density properties of projected Hausdorff measure to the Hausdorff measure of
typical slices.

An example application is the following, we recall that the Menger sponge is the self-
similar set defined recursively by subdividing [0, 1]3 into 27 subcubes of side length 1/3,
discarding the subcube at the centre of each face of our original cube and the subcube in
the centre of our original cube, and then repeating the process for each of the 20 remaining
subcubes.

Example 1. Let E be the Menger sponge. Then almost every plane slice through E has
positive finite (log(20)/log(3)− 1)-dimensional Hausdorff measure.

1 In our situation, exact overlaps in the coding IFS correspond to different sequences a, b satis-
fying that πβ (a) = πβ (b) and that πβ (σn(a)) = πβ (σn(b)) for some n ∈ N.
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Corresponding theorems due to Marstrand for the dimension of slices through fractals are
well known, but the extension to the case of Hausdorff measure of slices through fractals
is new.

In the final section we state a number of open questions related to our work.

2. Preliminaries

We define the left shift σ : {0, 1}N→ {0, 1}N by

σ(a1a2a3 · · · ) = (a2a3 · · · ).

Given a word a1 · · · an ∈ {0, 1}n we let the cylinder [a1 · · · an] be given by

[a1 · · · an] := {b ∈ {0, 1}N : b1 · · · bn = a1 · · · an}.

We let m be the (1/2, 1/2) Bernoulli measure on {0, 1}N, which gives measure 2−n to
each cylinder [a1 · · · an].

The Bernoulli convolution νβ is the probability measure on Iβ := [0, 1/(β − 1)]
defined by

νβ := m ◦ π
−1
β .

An alternative definition of νβ is that it is the unique probability measure satisfying the
self-similarity relation

νβ =
1
2 (νβ ◦ T0 + νβ ◦ T1)

where the functions Ti : R→ R are given by Ti(x) := βx − i.
There are a number of fascinating open questions relating to Bernoulli convolutions

including the fundamental question of for which values of β the corresponding Bernoulli
convolution is absolutely continuous. Solomyak [28] showed that νβ is absolutely con-
tinuous for Lebesgue almost all β ∈ (1, 2), and has continuous density for almost all
β ∈ (1,

√
2). Mauldin and Simon [19] showed that νβ is actually equivalent to Lebesgue

measure whenever it is absolutely continuous. Very recently, Shmerkin [25] has shown
that the set of β for which νβ is singular has Hausdorff dimension zero.

We let mx be the disintegration of m by fibres Eβ(x). This means that (mx) is the νβ -
almost everywhere unique family of measures such that each mx is a probability measure
supported on the fibre Eβ(x) and for every integrable function f : {0, 1}N→ R we have∫

{0,1}N
f (a) dm(a) =

∫
Iβ

∫
Eβ (x)

f (a) dmx(a) dνβ(x). (2.1)

The study of the measures mx is the principal focus of this article.
Expansions of numbers in non-integer bases have been studied since the 1950s with

the work of Rényi [24] and Parry [21] who were interested in the properties of the largest
β-expansions of x with respect to the lexicographical ordering, known as the greedy β-
expansion. The dynamics of the associated greedy β-transformation x → βx (mod 1)
have been extensively studied over the last sixty years and are well understood.
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Given β ∈ (1, 2), the β-expansion of x ∈ Iβ is typically not unique, indeed Lebesgue
almost every x ∈ Iβ has uncountably many β-expansions [26]. There is a substantial
amount of recent research trying to understand the properties of the sets Eβ(x) for typical
x ∈ Iβ (see for example [2, 3, 8, 14] and the references therein). Sets of β-expansions
can be generated dynamically using the random β-transformation Kβ of Dajani and
Kraaikamp [6]. We define the random β-transformationKβ : {0, 1}N×Iβ → {0, 1}N×Iβ
by

Kβ(ω, x) =


(ω, T0(x)), x ∈

[
0, 1

β

)
,

(σ (ω), Tω1(x)), x ∈
[ 1
β
, 1
β(β−1)

]
,

(ω, T1(x)), x ∈
( 1
β(β−1) ,

1
β−1

]
.

0 1
β

1
β(β−1)

1
β−1

1
β−1

Fig. 1. The projection onto the second coordinate of Kβ for β = (1+
√

5)/2.

Given x ∈ Iβ , β-expansions of x are generated by choosing some ω ∈ {0, 1}N and
iterating Kβ(ω, x). If the ith iteration of Kβ(ω, x) applies T0 to the second coordinate
we put ai = 0, if it applies T1 to the second coordinate we put ai = 1. This generates a
sequence (ai) which is a β-expansion of x, and all β-expansions of x can be generated
this way (see [6]).

Invariant measures forKβ were studied in [4, 5, 15]. In particular, the measure of max-
imal entropy ofKβ was studied in [4] and was shown to project to the Bernoulli convolu-
tion on its second coordinate. The mapping which takes a pair (ω, x) to the β-expansion
generated by (ω, x) is a bijection up to sets of measure zero with respect to the measure
of maximal entropy, and thus the system Kβ is a suitable dynamical system for studying
both Bernoulli convolutions and sets of β-expansions.

A full description of the measure of maximal entropy forKβ was not given in [4]. The
authors were able to show that it is not a product measure in general, but the behaviour of
this measure on the first coordinate remains unknown in the general case. The measures
on Eβ(x) introduced in this article allow one to give a full description of the measure of
maximal entropy for Kβ in terms of the density of νβ in the case that νβ is absolutely
continuous.
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The method of coding β-expansions above gives a bijection (up to sets of measure
zero) between {0, 1}N and {0, 1}N × Iβ by associating to a code (ai) ∈ {0, 1}N the cor-
responding pair (ω, x). Then the space {0, 1}N × Iβ can be seen as a representation of
{0, 1}N for which the complicated projection πβ becomes a simple projection onto the
second coordinate, and horizontal fibres can be mapped onto the sets Eβ(x). The dynam-
ical system that we build in the next section uses effectively the same idea, except that
the sets Eβ(x) are represented in a different way which makes invariant measures much
easier to study.

3. A dynamical system

We begin by building a dynamical system (X, φ,µ) which is measurably isomorphic
to the full shift on two symbols (and hence also to the random β-transformation), but
for which the invariant measure µ is Lebesgue measure. The sets Eβ(x) correspond to
vertical slices through the space X.

We assume that νβ is absolutely continuous, and has L1 density function hβ . We
define

X = {(x, y) : x ∈ Iβ , 0 ≤ y ≤ hβ(x)}

and let λ2 denote two-dimensional Lebesgue measure restricted to X.
Now since νβ satisfies the self-similarity relation

νβ =
1
2 (νβ ◦ T0 + νβ ◦ T1),

hβ satisfies the relation

hβ(x) =
β

2
(hβ(T0(x))+ hβ(T1(x))). (3.1)

Here we are considering hβ to be defined on the whole real line, although it takes value 0
outside of Iβ . We partition X into two pieces with non-overlapping interior,

X0 = {(x, y) ∈ X : 0 ≤ y ≤ (β/2)hβ(βx)}

andX1 = X \X0. ThenX1 andX0 intersect in a set of Lebesgue measure zero. Note that
X0 is a scaled-down copy of X, and that X1 is a scaled-down copy of X except that part
of it is skewed to sit on top of X0; this follows from equation (3.1).

We define a map φ : X→ X by

φ(x, y) =

{
(βx, 2y/β) (x, y) ∈ X0,(
βx − 1, 2

β

(
y −

β
2 hβ(βx)

))
(x, y) ∈ X1.

The map φ is well defined except on the intersection of X0 and X1. Because of (3.1),
φ maps each of X0 and X1 bijectively onto the whole space X and thus φ is conjugate
to the full shift on two symbols. Furthermore, since φ stretches the first coordinate by a
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Fig. 2. A picture of X partitioned into X0, X1 for β = 21/3.

factor of β and the second coordinate by a factor of 2/β, and each point has exactly two
preimages under φ, we see that φ preserves Lebesgue measure λ2.

The map φ allows us to assign a unique code a(x, y) to almost every point (x, y) inX
by writing

an(x, y) =

{
0, φn−1(x, y) ∈ X0,

1, φn−1(x, y) ∈ X1.

There are problems only with boundaries of the partitionX0, X1, as is typical for Markov
partition constructions. The sequence a(x, y) satisfies πβ(a(x, y)) = x by the same ar-
guments as given in [6] for codes arising from Kβ .

We can describe this coding by a map P {0, 1}N → X. Given a word a1 · · · an ∈

{0, 1}n we let [a1 · · · an] denote the set of sequences {x ∈ {0, 1}N : x1 · · · xn = a1 · · · an}.
We define

[a1 · · · an]X := Xa1 ∩ φ
−1(Xa2) ∩ · · · ∩ φ

−(n−1)(Xan).

For each a1 · · · an ∈ {0, 1}n we have λ2([a1 · · · an]|X) = 2−n. Then we define P :
{0, 1}N→ X by

P(a) :=

∞⋂
n=1

[a1 · · · an]X.

By construction, the coding map P is a measure isomorphism from ({0, 1}N, σ,m) to
(X, φ, λ2).

3.1. Pulling back Lebesgue measure

This dynamical system gives rise to a natural measure on the sets Eβ(x). Given a code
a1 · · · an ∈ {0, 1}n we define

Ta1···an := Tan ◦ Tan−1 ◦ · · · ◦ Ta1 .
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Then Ta1···an(x) ∈ Iβ if and only if [a1 · · · an] ∩ Eβ(x) is non-empty (see [6] for a more
detailed description of how to construct β-expansions).

Then for x0 ∈ Iβ we define the fibre

Xx0 := {(x, y) ∈ X : x = x0}

and see that P−1(Xx) = Eβ(x). So we can get a measure on the set Eβ(x) by pulling back
normalised one-dimensional Lebesgue measure on Xx .

This measure can easily be described using hβ . We have

φn(Xx ∩ [a1 · · · an]X) = XTa1···an (x)
.

Then since map φ expands vertical distances by 2/β, we see that

λ(Xx ∩ [a1 · · · an]X) = (β/2)nλ(XTa1···an (x)
) = (β/2)nhβ(Ta1···an(x)),

where λ denotes one-dimensional Lebesgue measure. Summing over all words a1 · · · an ∈

{0, 1}n one recovers equation (3.1). Normalising λ to give the fibre total mass 1, and
pulling back to the set Eβ(x), we define the measure

m1
x[a1 · · · an] :=

1
hβ(x)

λ(Xx ∩ [a1 · · · an]X) =

(
β

2

)n hβ(Ta1···an(x))

hβ(x)
.

The measure m1
x is a probability measure on Eβ(x) defined whenever νβ is absolutely

continuous. We prove that it coincides with the measures mx defined earlier.

Proposition 3.1. The measure m1
x is equal to the measure mx whenever m1

x is defined.

Proof. We recall the measures (mx)x∈Iβ were defined as the νβ -almost everywhere
unique collection of probability measures supported on the sets Eβ(x) satisfying (2.1).
The measures m1

x are also probability measures supported on Eβ(x), and so we need only
show that they satisfy (2.1) in order to verify that mx = m1

x . But then, since the map P
taking 6 to X is a bijection which maps m to two-dimensional Lebesgue measure on X
and m1

x to one dimensional Lebesgue measure on Xx , it is enough to show that

∫
X

f (x, y) dλ2
=

∫
Iβ

∫
Xx

f (x, y) dλ(y) dλ(x)

for each integrable f . But this is just the classical Fubini theorem, and so we are done.
ut
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3.2. Comments on the map φ

We briefly comment on the relationship between our map φ, the random β-transformation
and the fat baker’s transformation of [1]. Since these statements are rather outside of the
main thrust of our arguments we make them without proof, but they can easily be deduced
by looking at our construction.

Firstly we remark that the system (X, φ) is in fact rather similar to the random β-trans-
formation Kβ . In fact, if one studies the system ({0, 1}N × Iβ ,Kβ , ν̂β) where ν̂β is the
measure of maximal entropy for Kβ , then one sees that (X, φ, λ2) and (�× Iβ ,Kβ , ν̂β)
are measurably isomorphic. One can prove this rather cheaply by observing that both
systems are measurably isomorphic to the full shift on two symbols coupled with the
(1/2, 1/2) Bernoulli measure, but it is quite instructive to build the isomorphism directly.
It was an open question stated in [4] to determine the behaviour of ν̂β on fibres; the
above formula for the measure m1

x answers this question in the case that νβ is absolutely
continuous.

There is a simple invertible extension of (X, φ,µ) given by defining X̂ = X× [0, 1],
µ̂ = λ3

|
X̂

where λ3 denotes three-dimensional Lebesgue measure, and φ̂((x, y), z) =
(φ(x, y), z/2 + i) whenever (x, y) ∈ Xi . The system (X̂, φ̂, µ̂) is measurably isomor-
phic to (6̂, σ̂ , m) where 6̂ denotes the two-sided full shift on 2-symbols. φ̂ is invertible,
and if one projects φ̂−1 onto the first and third coordinates one recovers the fat baker’s
transformation. It was already known that the fat baker’s transformation has the two-sided
shift on two symbols as an invertible extension, but our map φ̂−1 is perhaps a more in-
teresting natural extension, since it preserves Lebesgue measure and maps down onto the
factor system by orthogonal projection.

4. Hausdorff measure for sets of β-expansions

In this section we prove results about the Hausdorff measure of sets of β-expansions. For
definitions of Hausdorff measure and Hausdorff dimension see [7]. We endow the space
{0, 1}N with the metric d defined by

d(a, b) = 2− sup{n : a1···an=b1···bn}

if a1 = b1 and d(a, b) = 1 otherwise. We denote by |A| the diameter of the set A, i.e. the
supremum of the set of distances between pairs of points in A. The diameter of a cylinder
set [a1 · · · an] is 2−n.

We recall that the density hβ of νβ is an L1 function defined almost everywhere which
satisfies (3.1). We have hβ ≥ 0 and that hβ(x) → 0 as x tends to 0 or 1/(β − 1). Since
hβ is defined only almost everywhere, many of our statements about hβ will hold almost
everywhere. In particular, we say that hβ is bounded if it is essentially bounded above,
i.e. there exists a constant c such that λ{x ∈ Iβ : hβ(x) > c} = 0. We have the following
theorem.

Theorem 4.1. The set Eβ(x) of β-expansions of x has positive log(2/β)
log(2) -dimensional

Hausdorff measure for Lebesgue almost every x ∈ Iβ if and only if the corresponding
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Bernoulli convolution νβ is absolutely continuous with bounded density. In this case, nor-
malised Hausdorff measure on the sets Eβ(x) coincides with the measures mx .

This theorem is proved using equation (3.1), which allows a rather simple method of
studying the sets Eβ(x). We split the theorem into three lemmas.

Lemma 4.2. If the Bernoulli convolution νβ is absolutely continuous with bounded den-
sity then the set Eβ(x) of β-expansions of x has positive log(2/β)

log(2) -dimensional Hausdorff
measure for Lebesgue almost every x ∈ Iβ .

Proof. Let Ũ be a countable partition of {0, 1}N by cylinder sets [ai1 · · · a
i
ni
] for i ∈ N.

We can iterate (3.1) to write

hβ(x) =
∑

ai1···a
i
ni
∈Ũ

(β/2)nihβ(Tai1···aini
(x)).

Since hβ(Tai1···aini
(x)) = 0 whenever Tai1···aini

/∈ Iβ , we can remove those terms for which

Tai1···a
i
ni

/∈ Iβ , or equivalently [ai1 · · · a
i
ni
] ∩ Eβ(x) = ∅. Then on letting

U = {[ai1 · · · a
i
ni
] ∈ Ũ : [ai1 · · · a

i
ni
] ∩ Eβ(x) 6= ∅},

the previous equation becomes

hβ(x) =
∑

ai1···a
i
ni
∈U
(β/2)nihβ(Tai1···aini

(x)). (4.1)

We stress that, since any open cover of Eβ(x) can be obtained by taking a cover of {0, 1}N

by cylinder sets and discarding those sets which do not intersect Eβ(x), the above equation
holds for all covers U of Eβ(x) by cylinder sets.

Then for any disjoint cover U of Eβ(x) by cylinder sets we have∑
ai1···a

i
ni
∈U
|[ai1 · · · a

i
ni
]|

log(2/β)
log(2) =

∑
ai1···a

i
ni
∈U

2−
log(2/β)

log(2) ni =

∑
ai1···a

i
ni
∈U
(β/2)ni

= C(U)
∑

ai1···a
i
ni
∈U
(β/2)nihβ(Tai1···aini

(x)) = C(U)hβ(x),

where

C(U) :=

∑
ai1···a

i
ni
∈U (β/2)

ni∑
ai1···a

i
ni
∈U (β/2)

nihβ(Tai1···a
i
ni

(x))
.

The final equality above followed from equation (4.1).
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If hβ is bounded then 1/hβ(Tai1···aini
(x))≥C>0 where C :=1/ess sup{h(x) : x∈Iβ}

is independent of ai1 · · · a
i
ni

and x. Then C(U) ≥ C and thus∑
ai1···a

i
ni
∈U
|[ai1 · · · a

i
ni
]|

log(2/β)
log(2) ≥ Ch(x)

for any cover U of Eβ(x). We conclude that

H
log(2/β)

log(2) (Eβ(x)) ≥ Chβ(x) > 0

for all x ∈ Iβ such that h(x) > 0, and in particular for almost all x ∈ Iβ . ut

We define the measure m2
x on Eβ(x) by

m2
x(A) =

H
log(2/β)

log(2) (A)

H
log(2/β)

log(2) (Eβ(x))
.

This is well defined for almost every x ∈ Iβ whenever hβ(x) is bounded. The second step
of the proof of Theorem 4.1 is the following.

Lemma 4.3. The measures m2
x and m1

x are equal whenever they are both defined, i.e.
whenever the Bernoulli convolution νβ is absolutely continuous with bounded density.

Proof. We first observe that one has the bound

H
log(2/β)

log(2) (Eβ(x)) ≤ 2hβ(x)

for x ∈ Iβ . To prove this one takes the cover of Eβ(x) by all cylinders of depth n which
intersect Eβ(x). It was proved in [14, Lemma 3.4], following a similar argument in [23,
Appendix C], that

lim sup
n→∞

(β/2)n|{a1 · · · an ∈ {0, 1}n : [a1 · · · an] ∩ Eβ(x) 6= ∅}| ≤ 2hβ(x).

Then for all ε > 0 we can, by taking n large enough, find a cover U of Eβ(x) by cylinder
sets of depth n for which∑

a1···an∈U
|[ai1 · · · a

i
ni
]|

log(2/β)
log(2) = |U |(β/2)n ≤ 2hβ(x)+ ε.

In particular, we see that

0 <
∫
Iβ

H
log(2/β)

log(2) (Eβ(x))dx ≤ 2.

We define
g(x) := H

log(2/β)
log(2) (Eβ(x)).
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Now given a cylinder [a1 · · · an] we have

|[a1 · · · an]| = 2−1
|[a2 · · · an]| = 2−1

|σ [a1 · · · an]|.

Then given any set A which is contained in either [0] or [1] we have

H
log(2/β)

log(2) (A) = 2−
log(2/β)

log(2) H
log(2/β)

log(2) (σ (A)) = (β/2)H
log(2/β)

log(2) (σ (A)).

The tree structure of the set of β-expansions means that

g(x) = H
log(2/β)

log(2) (Eβ(x)) = H
log(2/β)

log(2) (Eβ(x) ∩ [0])+H
log(2/β)

log(2) (Eβ(x) ∩ [1])

= (β/2)H
log(2/β)

log(2) (σ (Eβ(x) ∩ [0]))+ (β/2)H
log(2/β)

log(2) (σ (Eβ(x) ∩ [1]))
= (β/2)(g(T0(x))+ g(T1(x))).

Thus g is an L1 function with positive integral satisfying equation (3.1), and since L1

solutions to (3.1) are unique up to multiplication by constants, we see that g(x) = Khβ(x)
for some constant K . In particular, m2

x on Eβ(x) assigns mass

(β/2)ng(Ta1···an(x))

g(x)
=

(
β

2

)n hβ(Ta1···an(x))

hβ(x)

to the cylinder [a1 · · · an] for any choice of a1 · · · an, and thus the measures m2
x and m1

x

coincide. By Proposition 3.1 we conclude that all three measuresmx, m1
x andm2

x coincide
when they are defined. ut

The following lemma deals with the case of hβ unbounded.

Lemma 4.4. If hβ is unbounded then H
log(2/β)

log(2) (Eβ(x)) = 0 for almost every x ∈ Iβ .

Proof. We stress that, since hβ is defined only almost everywhere, we take the statement
‘hβ is unbounded’ to mean that for each C ∈ R the set AC := {x ∈ Iβ : hβ(x) > C} has
positive Lebesgue measure.

We begin by supposing that

g(x) := H
log(2/β)

log(2) (Eβ(x))

is positive for a positive Lebesgue measure set of x ∈ Iβ . Then g is an L1 function of
positive integral and the conclusion of Lemma 4.3 holds.

Now we define
BC := {a ∈ 6 : πβ(a) ∈ AC}

and see that m(BC) > 0. We let B ⊂ 6 be the set of sequences a ∈ 6 such that
σ n(a) ∈ BC infinitely often. Since the system (6, σ,m) is ergodic, we see thatm(B) = 1.
In particular, mx(Bc) = 0 for almost every x, giving

H
log(2/β)

log(2) (Eβ(x) ∩ Bc) = 0
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for almost every x. Here we have used the assumption that the conclusion of Lemma 4.3
holds, allowing us to replace mx with normalised Hausdorff measure. We now find effi-
cient covers for Eβ,x ∩ B.

Let δ > 0 and let N ∈ N satisfy 2−N < δ. For n ≥ N we define

An,x := {a ∈ Eβ(x) : σ n(a) ∈ BC, a 6∈ AN,x, . . . , An−1,x}.

Each An,x consists of a finite number of cylinder sets, and the union of these collections
of cylinder sets over n ≥ N forms a δ-cover of Eβ(x) ∩ B. Furthermore, on each of these
cylinder sets forming An,x one has hβ(πβ(σ n(a)) > C. Then letting U be the δ-cover of
Eβ(x) ∩ B using the cylinder sets in An,x for n ≥ N , we have

C(U) < 1/C.

Using the final lines of the proof of Lemma 4.2, we see that this gives

H
log(2/β)

log(2) (Eβ(x)) = H
log(2/β)

log(2) (Eβ(x) ∩ Bc)+H
log(2/β)

log(2) (Eβ(x) ∩ B) ≤ 0+ hβ(x)/C,

and since C was arbitrary we are done. ut

All that is left to complete the proof of Theorem 4.1 is to prove that if νβ is singular then
slices have zero Hausdorff measure.

Lemma 4.5. If νβ is singular then H
log(2/β)

log(2) (Eβ(x)) = 0 for Lebesgue a.e. x.

Proof. This follows directly from [27]. We cover Eβ(x) by cylinders of length n, and let

Nn(x;β) := |{a1 · · · an ∈ {0, 1}n : [a1 · · · an] ∩ Eβ(x) 6= ∅}|,

be the number of sets in this covering. Each of the sets in this cover is of diameter 2−n,
and so letting n tend to infinity we have

H
log(2/β)

log(2) (Eβ(x)) ≤ lim
n→∞

Nn(x;β)2
−n

log(2/β)
log(2) = lim

n→∞
(β/2)nNn(x;β) = 0

for Lebesgue almost every x. The final equality was proved in [27], answering the first
part of Conjecture 1 of [14]. This completes the proof of the lemma and of Theorem 4.1.

ut

5. Equidistribution results

In this section we use our understanding gained in the last section of the disintegration
of m by the sets Eβ(x) to turn some results of [16] into equidistribution results for sets
of β-expansions. It is likely that, by suitably adapting the results of [16] to the case of
projecting and slicing self-similar sets, one could prove similar results for equidistribution
of slices of fractals. Our main question is the following.
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Question. What can one say about the distribution of the multisets

On(x) := {Ta1···an(x) : [a1 · · · an] ∩ Eβ(x) 6= ∅} = πβ(σ n(Eβ(x))),

where the multiplicity of y ∈ On(x) is defined as being equal to the number of words
a1 · · · an for which Ta1···an(x) = y? In particular, what is the relationship between the
limiting distribution of On(x) for typical x and the absolute continuity of νβ?

If β is non-algebraic then there do not exist words a1 · · · an 6= b1 · · · bn ∈ {0, 1}n such
that Ta1···an(x) = Tb1···bn(x), and thus the multiplicity of elements of On(x) is always
equal to 1.

We have

Nn(x;β) = |On(x)| = |{a1 · · · an ∈ {0, 1}n : Ta1···an(x) ∈ Iβ}|.

In [14] we were able to link the growth rate of Nn(x;β) for typical x ∈ Iβ with the
question of the absolute continuity of νβ . In particular we defined

f (x) := lim sup
n→∞

(β/2)nNn(x;β),

and f (x) as above but with the lim sup replaced by a lim inf. We proved that if either f or
f are L1 functions with positive integral then νβ is absolutely continuous. We conjectured
that for absolutely continuous νβ one has f = f .

We are interested in the extent to which equidistribution of On(x) is implied by the
absolute continuity of νβ . We are not able to answer this question, but we can at least show
that equidistribution is typical for β ∈ (1,

√
2). This in turn leads to some results on the

typical growth of |On(x)| (see Proposition 5.1). The following theorem is a restatement
in our language of [16, Theorem 1.2].

Theorem 5.1 (Lindenstrauss, Peres and Schlag). For almost every β ∈ (1, 2), for each
a1 · · · am ∈ {0, 1}m and for almost every x ∈ Iβ we have

mx{w ∈ Eβ(x) : σ n(w) ∈ [a1 · · · am]} −−−→
n→∞

2−m.

Given ε > 0 and an interval A ⊂ Iβ , we can approximate A from below by a finite
collection U1 of disjoint cylinder sets such that∑

[a1···am]∈U1

m[a1 · · · am] > νβ(A)− ε

and πβ [a1 · · · am] ⊂ A for each [a1 · · · am] ∈ U1. Similarly we can approximate A from
above with a collection U2 of cylinder sets such that∑

[a1···am]∈U2

m[a1 · · · an] < νβ(A)+ ε
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and
πβ(a) ∈ A ⇒ a ∈

⋃
[a1···am]∈U2

[a1 · · · am].

Then an immediate corollary to Theorem 5.1 is that for almost every β ∈ (1, 2), almost
every x ∈ Iβ and each interval A ⊂ Iβ we have

mx{w ∈ Eβ(x) : πβ(σ n(w)) ∈ A} −−−→
n→∞

νβ(A).

Equivalently,

Corollary 5.2. For almost every β ∈ (1, 2) and for almost every x ∈ Iβ the probability
measures

νn,x :=
∑

a1···an∈{0,1}n
δTa1···an (x)

mx[a1 · · · an]

converge weak∗ to νβ as n→∞.

Note that we could restrict the sum to those a1 · · · an ∈ {0, 1}n such that [a1 · · · an] ∩

Eβ(x) 6= ∅, since mx gives zero measure to words a1 · · · an for which Ta1···an(x) 6∈ Iβ .
This corollary is an equidistribution result stated in terms of conditional measures, and
was well suited to the purposes of [16] as it allowed answering an old question of Sinai
and Rokhlin about conditional entropy. However, if one is interested in the distribution
of the sets On(x) it would be more natural to seek equidistribution results that did not
depend on the conditional measures mx . We define probability measures

µn,x :=
1

Nn(x;β)

∑
y∈On(x)

δy

and have the following theorem.

Theorem 5.3. For almost every β ∈ (1,
√

2), we have

µn,x → λ|Iβ

weakly as n→∞ for almost every x ∈ Iβ .

Here λ|Iβ is Lebesgue measure on the interval Iβ , normalised by multiplying by β − 1 to
give λ|Iβ = 1. We conjecture that the conclusion of this theorem holds whenever νβ is
absolutely continuous.2

Given the description of the measures mx in the earlier sections, it seems natural that
Theorem 5.3 follows from Corollary 5.2. In some sense, all we are doing is dividing by
the density hβ(x) to turn νβ into λ|Iβ on the right hand side and νn,x into µn,x on the
left. However, we have to do this formally, and also to be careful to ensure that too much
of µn,x is not concentrated at the edges of Iβ (where hβ → 0 and so dividing by hβ is
problematic).

2 Some progress in this direction was announced by C. Bandt at a recent conference in Hong
Kong; at the time of writing no preprint was available.
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Proof of Theorem 5.3. We assume that β is such that νβ is absolutely continuous with
continuous density hβ which is strictly positive on (0, 1/(β − 1)) and that β satisfies the
conclusion of Corollary 5.2. This holds for almost every β ∈ (1,

√
2); the fact that hβ is

strictly positive on (0, 1/(β − 1)) for almost every β ∈ (1,
√

2) was proved in [13].
Now let A ⊂ Iβ be such that there exists a constant hβ(A) for which

hβ(A)(1− ε) < hβ(x) < hβ(A)(1+ ε) (5.1)

for each x ∈ A. Then∑
a1···an∈{0,1}n

mx[a1 · · · an]χA(Ta1···an(x))

=

∑
a1···an∈{0,1}n

(
β

2

)n hβ(Ta1···an(x))

hβ(x)
χA(Ta1···an(x)) ≤

(
β

2

)n hβ(A)(1+ ε)
hβ(x)

|On(x)∩A|.

Now Corollary 5.2 says that∑
a1···an∈{0,1}n

mx[a1 · · · an]χA(Ta1···an(x)) −−−→n→∞
νβ(A) ≥ λ(A)hβ(A)(1− ε).

Then using the fact that mx = m1
x , and approximating hβ(Ta1···an(x)) by hβ(A), we find

for sufficiently large n that

λ(A)hβ(A)(1− ε)2 ≤
(
β

2

)n hβ(A)(1+ ε)
hβ(x)

|On(x) ∩ A|,

giving

|On(x) ∩ A| ≥ λ(A)hβ(x)

(
2
β

)n
(1− ε)2

1+ ε
.

Similarly,

|On(x) ∩ A| ≤ λ(A)hβ(x)

(
2
β

)n
(1+ ε)2

1− ε
. (5.2)

The following proposition will end the proof of the theorem.

Proposition 5.1. For almost all β ∈ (1,
√

2) and almost all x ∈ Iβ we have

lim
n→∞

(β − 1)
(
β

2

)n
|On(x)| = hβ(x).

Then we see that, since ε was arbitrary in (5.2),

µn,x(A) =
(β/2)n|On(x) ∩ A|

(β/2)n|On(x)|
→ λ(A)(β − 1)

hβ(x)

hβ(x)
= λ|Iβ (A)

as n → ∞. Now any interval B ⊂ (δ, 1/(β − 1) − δ) can be written as a union of in-
tervals Ai for which there is a constant hβ(A) such that (5.1) holds, and so the proof of
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Theorem 5.3 will be complete once we have proved that not too much mass is concen-
trated in sets [0, δ). This is included in the proof of Proposition 5.1. ut

Proposition 5.1 is interesting in its own right, showing that Conjecture 1 of [14] holds
at least for almost every β ∈ (1,

√
2). It was conjectured in [14] that this proposition

holds for almost all x ∈ Iβ for all β such that νβ is absolutely continuous; this conjecture
remains open. A similar question was asked in [11] relating to solutions of the Schilling
equation, which share many similarities with Bernoulli convolutions.

Proof of Proposition 5.1. We assume that β is non-algebraic and that the conditions of the
previous theorem hold, i.e. νβ is absolutely continuous with continuous density hβ which
is strictly positive on (0, 1/(β − 1)) and β satisfies the conclusion of Corollary 5.2. This
holds for almost every β ∈ (1,

√
2). Since hβ(x) > 0 on the interior of Iβ and hβ is

uniformly continuous, for any δ > 0 we can cover (δ, 1/(β − 1) − δ) with intervals
A1, . . . , Ak such that there exist constants hβ(Ai) satisfying (5.1).

We first suppose that for some nk → ∞, too much of |Onk (x)| is concentrated in
[0, δ) for some δ > 0. To be concrete, we suppose that there exists some K > 2/(2− β)
for which

|Onk (x) ∩ [0, δ)| > hβ(x)

(
2
β

)nk
Kδ.

But

|Onk (x) ∩ [0, δ)| =
∣∣∣∣Onk−1(x) ∩

[
0,
δ

β

)∣∣∣∣+ ∣∣∣∣Onk−1(x) ∩

[
1
β
,

1+ δ
β

)∣∣∣∣,
where the first and second summand correspond to applying T −1

0 and T −1
1 respectively

to the sets Onk (x) ∩ [0, δ). For any ε > 0 there exists N ∈ N such that∣∣∣∣On(x) ∩

[
1
β
,

1+ δ
β

)∣∣∣∣ < (1+ ε)hβ(x)
(

2
β

)n
δ

β
(5.3)

for all n > N by (5.2). Combining the last two inequalities, we must have∣∣∣∣Onk−1(x) ∩

[
0,
δ

β

)∣∣∣∣ > h(x)

(
2
β

)nk
Kδ − (1+ ε)hβ(x)

(
2
β

)nk−1
δ

β

= hβ(x)

(
2
β

)nk−1

Kδ

(
2
β
−

1+ ε
βK

)
> hβ(x)

(
2
β

)nk−1

Kδ,

since 2
β
−

1+ε
βK

> 1 for sufficiently small ε by our choice of K . We iterate this inequality
to get∣∣∣∣Onk−m(x) ∩

[
0,

δ

βm

)∣∣∣∣ ≤ ∣∣∣∣Onk−m−1(x) ∩

[
0,

δ

βm+1

)∣∣∣∣+ ∣∣∣∣Onk−1(x) ∩

[
1
β
,

1+ δ
β

)∣∣∣∣,
where we are using the interval [1/β, (1+ δ)/β) rather than [1/β, (1+ δ)/βm) on the
right because it allows us to use (5.3). Iterating this equation to stage nk −N gives

|ON (x) ∩ [0, δ/βnk−N )| > hβ(x)(2/β)NKδ.
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Taking nk → ∞ we see that the multiset ON (x) must contain the value 0 multiple
times. Since we have assumed that β is non-algebraic, this is a contradiction. By sym-
metry, the same arguments show that not too much of On(x) can be concentrated in
[1/(β − 1)− δ, 1/(β − 1)].

Then building on the proof of the previous theorem, we can cover (δ, 1/(β − 1)− δ)
with intervals Ai upon which hβ(x) is constant up to multiplicative error ε. Summing
over Ai and using the bounds in the proof of the previous theorem gives∣∣∣∣On(x) ∩

(
δ,

1
β − 1

− δ

)∣∣∣∣ = k∑
i=1

|On(x) ∩ Ai |

≥ (hβ(x)

(
2
β

)n 1
β − 1

(1− ε)2

1+ ε

k∑
i=1

λ(Ai)

≥ hβ(x)

(
2
β

)n 1
β − 1

(1− ε)2

1+ ε
(1− 2δ).

Then

|On(x)| = |On(x) ∩ [0, δ)| +
∣∣∣∣On(x) ∩

(
1

β − 1
− δ,

1
β − 1

]∣∣∣∣+ k∑
i=1

|On(x) ∩ Ai |

≤ hβ(x)

(
2
β

)n(
2δ

2
2− β

+
(1− ε)2

1+ ε
1− 2δ
β − 1

)
.

Since δ and ε were arbitrary, we see that

lim
n→∞

(β − 1)(β/2)n|On(x)| = hβ(x)

as required. ut

5.1. Absolute continuity from strong equidistribution

For a partial converse, we show that if the sets On(x) equidistribute in a strong sense for
almost every x then νβ is absolutely continuous. We note that the normalised Lebesgue
measure λ|Iβ of the switch region S := [1/β, 1/(β(β − 1))] is(

1
β(β − 1)

−
1
β

)
(β − 1) =

2
β
− 1.

Thus if the measures µn,x converge weak∗ to λIβ we would expect

kn(x) :=
β

2
(µn,x(S)+ 1)

to converge to 1. The following proposition shows that fast equidistribution of On(x)

implies the absolute continuity of νβ .
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Proposition 5.2. Suppose that
∏
∞

n=1(kn(x)) is an L1 function of x. Then νβ is absolutely
continuous.

In particular, if the sets On(x) equidistribute fast enough and uniformly across x then
kn(x) will tend to 1 quickly and so the condition of the proposition will be satisfied and
νβ will be absolutely continuous.

Proof of Proposition 5.2. We see that we have a choice of the value of an+1 if and only
if Ta1···an(x) ∈ S, otherwise there is a unique an+1 such that Ta1···an+1(x) ∈ Iβ . Then

(β/2)n+1Nn+1(x) = (β/2)n+1
|On+1(x)| = (β/2)n+1(|On(x)| + |On(x) ∩ S|)

= (β/2)n+1
|On(x)|(1+ µn,x(S)) = (β/2)n+1

n∏
i=1

(1+ µi,x(S))

= (β/2)n+1(2/β)n
n∏
i=1

ki(x) = (β/2)
n∏
i=1

ki(x),

which converges to an L1 function by assumption. But the main theorem of [14] states that
if fn(x) := (β/2)nNn(x) converges to an L1 function then νβ is absolutely continuous.

ut

6. Slicing fractal sets

We now turn to the question of disintegrating Hausdorff measure for self-similar sets.
The techniques that we used in the symbolic case can be combined with a few technical
lemmas to show that slices through certain fractals have positive Hausdorff measure if
and only if the corresponding projected measures are absolutely continuous with bounded
density. We begin with some background on fractals.

Let E ⊂ Rn be a self-similar set without rotations, that is, a set satisfying

E =

l⋃
i=1

Si(E)

where the maps Si : Rn → Rn are of the form Si(x) = λix + di for some λi ∈ (0, 1)
and di ∈ Rn. We further suppose that our iterated function system satisfies the open set
condition, i.e. there is a non-empty open set V ⊂ Rn such that V ⊃

⋃l
i=1 Si(V ) where

the union is disjoint. Then E has Hausdorff dimension s satisfying

l∑
i=1

λsi = 1.

Furthermore, the s-dimensional Hausdorff measure ν on E is positive and finite and sat-
isfies the self-similarity relation

ν(A) =

l∑
i=1

λsi ν(T̃i(A)),
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where T̃i(x) := S−1
i (x). The open set condition implies that for almost every x ∈ E there

is a unique code a ∈ 6 := {0, . . . , l}N such that

x ∈ [a1 · · · an]E := San ◦ San−1 ◦ · · · ◦ Sa1(E)

for each n ∈ N. We call a the address of x.
We let πθ denote orthogonal projection of Rn down a line lθ through the origin at

angle θ = (θ1, . . . , θn−1). We let νθ = ν ◦ π−1
θ . Then νθ satisfies the relation

νθ (A) =

l∑
i=1

λsi νθ (Ti(A))

where Ti(x) = λ−1
i x − πθ (ai) is the projection of the map T̃i under πθ .

Now if s > 1 then the Marstrand projection theorem says that for almost every value
of θ the projection νθ is absolutely continuous. The Marstrand slicing theorem says that
for almost every θ and almost every x ∈ Eθ the slice Eθ,x has Hausdorff dimension s− 1
and has finite (s − 1)-dimensional Hausdorff measure. We refer the reader to [7, 22] for
proofs and discussions of the Marstrand slicing and projection theorems. The Marstrand
slicing theorem does not say anything about the Hausdorff measure of slices; indeed, an
example was given in [18] of a set whose slices are (s − 1)-dimensional but for which
almost every slice has zero (s − 1)-dimensional Hausdorff measure.

We let hθ : R→ R+ be the density of νθ if it exists; hθ takes value 0 outside of Eθ .
Differentiating the self-similarity equation for νθ we see that

hθ (x) =

l∑
i=1

λs−1
i hθ (Ti(x)), (6.1)

where we have used the fact that the derivative of each Ti is λi . For a1 · · · an ∈ {0, . . . l}n

we define
[a1 · · · an]Eθ,x := Eθ,x ∩ (San ◦ San−1 ◦ · · · ◦ Sa1(E)).

Equation (6.1) is our main tool in the proof of our theorem about the positivity of Haus-
dorff measure of slices through self-similar sets. The proof of Theorem 6.2 is similar to
that of Theorem 4.1, but we require some extra lemmas to estimate the diameter of sets
[a1 · · · an]Eθ,x , because, unlike in the symbolic case, this diameter is not purely deter-
mined by the length of the word a1 · · · an. We let |A| denote the Euclidean diameter of a
set A. This issue with diameters also means that we need the following condition:

Definition 6.1. We say that a self-similar set E satisfies the slice coding condition if for
all θ there exists a constant δ such that for all x ∈ πθ (E), either |Eθ,x | > δ orEθ,x ⊂ [a]E
for some a ∈ {1, . . . , l}.

We suspect that all self-similar sets where the self-similarities do not contain rotations
satisfy this condition, but we are unable to prove this. We assume for the rest of the article
that the slice coding condition is satisfied.
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Lemma 6.1. Suppose that hθ is bounded. Then there exists a constant C such that
hθ (x)/|Eθ,x |

s−1 < C for all x ∈ πθ (E).

Proof. First let C := sup{hθ (x)/|Eθ,x |s−1
: |Eθ,x | ≥ δ} where δ was defined in the

Definition 6.1. The fact that hθ is bounded implies that C is finite.
Now suppose that 0 < |Eθ,x | < δ. Then sinceEθ,x satisfies the slice coding condition,

there exists a unique n ∈ N and word a1 · · · an such that Eθ,x ⊂ [a1 · · · an]Eθ,x but
Eθ,x 6⊂ [a1 · · · an+1]Eθ,x for any choice of an+1 ∈ {1, . . . , n}. In particular, we have that
Eθ,Ta1···an (x)

6⊂ [an+1]Eθ,Ta1···an (x)
for any choice of an+1, and so |Eθ,Ta1···an (x)

| > δ.
Then using equation (6.1) we have

hθ (x) = (λanλan−1 · · · λa1)
s−1hθ (Ta1···an(x)).

By the self-similarity of E we have

|Eθ,x | = λanλan−1 · · · λa1 |Eθ,Ta1···an (x)
|.

Then
hθ (x)

|Eθ,x |s−1 =
hθ (Ta1···an(x))

|Eθ,Ta1···an (x)
|s−1 ≤ C

where the final inequality follows from the definition of C because |Eθ,Ta1···an (x)
| ≥ δ. ut

Then following the proof of Theorem 4.1, we have the following theorem.

Theorem 6.2. Suppose that E is the attractor of an IFS without rotations satisfying the
open set condition and Definition 6.1. Further assume that the projection of Hausdorff
measure on E onto the line at angle θ through the origin is absolutely continuous with
bounded density. Then Hs−1(Eθ,x) > 0 for Lebesgue almost every x ∈ πθ (E).

Proof. We prove the statement for νθ -a.e. x, and use the fact that Lebesgue measure on
πθ (E) and νθ are equivalent whenever νθ is absolutely continuous This was proved for
Bernoulli convolutions in [19] but an identical proof works for the present case.

We recall that Hausdorff measure is defined as the limit as δ→ 0 of the infimum over
all δ-coverings U = {Ui} of the quantity

∑
∞

i=1 |Ui |s . It is enough to consider coverings
which are unions of cylinder sets [a1 · · · an]Eθ,x . Then we have

|[a1 · · · an]Eθ,x | = λa1 · · · λan |Eθ,Ta1···an (x)
|.

Following our proof of Theorem 4.1, we have

hθ (x) =
∑

[a1···an]Eθ,x∈U
(λa1 · · · λan)

s−1hθ (Ta1···an(x))

=

∑
[a1···an]Eθ,x∈U

|[a1 · · · an]Eθ,x |
s−1
(

λa1 · · · λan

|[a1 · · · an]Eθ,x |

)s−1

hθ (Ta1···an(x))

=

∑
[a1···an]Eθ,x∈U

|[a1 · · · an]Eθ,x |
s−1 hθ (Ta1···an(x))

|Eθ,Ta1···an (x)
|s−1

= C(U)
∑

[a1···an]Eθ,x∈U
|[a1 · · · an]Eθ,x |

s−1,
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where C(U) is a weighted average of the values of hθ (Ta1···an(x))/|Eθ,Ta1···an (x)
|
s−1 over

different a1 · · · an ∈ U . In particular, since C(U) < C for all covers U , where C is the
constant defined in Lemma 6.1, we see that∑

[a1···an]Eθ,x∈U
|[a1 · · · an]Eθ,x |

s−1 > hθ (x)/C

for each cover U of Eθ,x , finally yielding Hs−1(Eθ,x) > hθ (x)/C, which is positive for
νθ -a.e. x. ut

Subsequent work has shown that the packing measure of almost every sliceEθ,x is infinite
under the conditions of Theorem 6.2 (see [20]).

6.1. Further fractal results

In this section we outline how the remaining results of sections 3 and 4 transfer over to
the fractal case. We have done the difficult part (turning Lemma 4.2 into Theorem 6.2);
the remaining results are extremely straightforward and we do not cover them in detail.

First we remark that one can build a dynamical system analogous to that of Section 3
related to the set E. We define

Xθ := {(x, y) ∈ R2
: x ∈ Eθ , 0 ≤ y ≤ hθ (x)}.

The self-similarity equation (3.1) for hβ is directly analogous to the self-similarity
equation (6.1) for hθ , and using the transformations T1, . . . , Tl one can partition Xθ into
subsets X1

θ , . . . , X
l
θ in the same way that X was partitioned into X1, X2. We define a

dynamical system on Xθ using the transformations T1, . . . , Tl in the same way as was
done in the construction of φ in Section 3, and this induces a coding of elements of Xθ .
By mapping elements of E to the elements of Xθ which have the same code, one has an
isomorphism (up to sets of measure zero) between (E,Hs

|E) and (Xθ , λ2
|Xθ ) where λ2

is two-dimensional Lebesgue measure.
Now one can define a measure µ1

x on the slice Eθ,x by pulling back normalised
Lebesgue measure from the fibres {(x, y) : 0 ≤ y ≤ hθ (x)}. This gives

µ1
x([a1 · · · an]Eθ,x ) :=

(λa1 · · · λan)
s−1hθ (Ta1···an(x))

hθ (x)

for a1 · · · an ∈ {0, . . . , l}n.
By the same Fubini argument given in the proof of Proposition 3.1 we see that the

probability measures µ1
x disintegrate Hausdorff measure Hs on E.

We now wish to show that this disintegration coincides with normalised Hausdorff
measure on slices. We define µ2

x on the sets Eθ,x by

µ2(A) = Hs−1(A)/Hs−1(Eθ,x)
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for A ⊂ Eθ,x , which is well defined νθ -almost everywhere by Theorem 6.2. In [17],
Marstrand proved that

Hs(E) ≥

∫
πθ (E)

Hs−1(Eθ,x) dx.

Combined with our previous theorem this shows that, under the conditions of Theo-
rem 6.2,

g(x) := Hs−1(Eθ,x)

is an L1 function with positive integral. But then following the proof of Corollary 4.3, we
see that g satisfies equation (6.1), and therefore there is a constant K(θ) such that

g(x) = K(θ)hθ (x).

Finally, we note that [a1 · · · an]Eθ,x is a copy of Eθ,Ta1···an (x)
scaled down by a factor of

λa1 · · · λan , and so

Hs−1([a1 · · · an]Eθ,x ) = (λa1 · · · λan)
s−1Hs−1(Eθ,Ta1···an (x)

).

Plugging this into our definition of µ2
x we see that the measures µ2 and µ1 coincide

whenever they are both defined. Since µ1 was a disintegration of Hausdorff measure on
E, we have the following theorem.

Theorem 6.3. Suppose that the conditions of Theorem 6.2 are satsified. Then the proba-
bility measures µ2

x , which are the normalised (s − 1)-dimensional Hausdorff measure on
slices through E, disintegrate the measure Hs on E.

The fact that the typical Hausdorff measure of slices Eθ,x is 0 whenever the projected
measure νθ is singular or absolutely continuous with unbounded density also follows
directly using the methods of the proofs of Lemmas 4.4 and 4.5.

7. Further comments, examples and questions

We begin by demonstrating that the example given in the introduction is really a special
case of Theorem 6.2. First we need a strengthening of Marstrand’s projection theorem for
self-similar sets with uniform contraction.

Proposition 7.1. Let E be a self-similar set Hausdorff dimension s > 2 for which the
generating IFS does not contain rotations and for which each contraction has the same
contraction ratio. Then for almost every θ = (θ1, θ2) ∈ [0, π)2 the orthogonal projection
of s-dimensional Hausdorff measure on E down to the line lθ is an absolutely continuous
measure with continuous density.
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Proof. This proposition, which is probably classical, is proved by a simple convolution
argument analogous to one given by Solomyak [28] to prove that Bernoulli convolutions
associated to a.e. parameter β ∈ (1,

√
2) are absolutely continuous with continuous den-

sity. If the set E is generated by contractions S1, . . . , Sl where Si(x) = λi(x) + ai then
we can write the measure νθ as the distribution of the sums

∞∑
n=1

λi(πθain),

where the in are picked uniformly at random from the set {1, . . . , l}. But these sums can
be decomposed into odd and even terms, so we see that νθ = νodd

θ ∗ νeven
θ where these

are the measures which give the distribution of the above sums restricted to odd and even
terms respectively. Now the Hausdorff dimension s > 2 is the unique solution of

l∑
i=1

λs = 1,

and so if λ were to be replaced with λ2 then the Hausdorff dimension of the correspond-
ing set would be s/2 > 1. In particular, νodd

θ and νeven
θ are both absolutely continuous

for almost all θ , since they correspond to projections of Hausdorff measure on sets of
dimension s/2 > 1. Hence the convolution νθ = νodd

θ ∗ ν
even
θ is almost surely absolutely

continuous with continuous density, since the convolution of two absolutely continuous
measures is absolutely continuous with continuous density. ut

The Menger sponge has Hausdorff dimension log(20)/log(3) > 2; it is a self-similar
set without rotations and satisfies the condition of Definition 6.1, thus projections onto
lines in R3 are almost surely absolutely continuous with bounded density. Hence by The-
orem 6.2, almost every plane slice through them has positive finite (s − 1)-dimensional
Hausdorff measure.

Question 1. In loose terms, the above proposition show that for self-similar sets E with
uniform contraction ratios and without rotations one can expect more regularity of the
measures νθ (E) (in terms of n-fold differentiability of the density) when the Hausdorff
dimension of E is larger. Does one have such a principle if the condition that the contrac-
tion ratios are uniform is removed? What about general sets without any self-similarity?

Question 2. Does a self-similar set E for which the generating contractions do not con-
tain rotations automatically satisfy the conditions of Definition 6.1?

Question 3. Is the statement ‘µn,x → λ|Iβ in the weak* topology for Lebesgue almost
every x ∈ Iβ ’ equivalent to ‘νβ is absolutely continuous’? What about the measures νβ,x?
Or about the analogous questions on slices and projections of fractals?

Question 4. Suppose that νβ is singular. Can one describe the measures mx? Do the
quantities mx[0]/mx[1] mean anything? When hβ is well defined they relate in a natural
way to hβ through the formulation of m1

x .
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Question 5. Do there exist values of β for which νβ is absolutely continuous with un-
bounded density? We note that Feng and Wang [9] found some non-Pisot values of β for
which νβ is either singular, or absolutely continuous with unbounded density. One might
hope that geometric analytic methods may forbid the possibility that Eβ(x) has zero Haus-
dorff measure for each value of x, and hence rule out the possibility that νβ is absolutely
continuous with unbounded density, this would be very interesting as it would provide
non-Pisot examples of singular Bernoulli convolutions.
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613.001.022.

References

[1] Alexander, J. C., Yorke, J. A.: Fat baker’s transformations. Ergodic Theory Dynam. Systems
4, 1–23 (1984) Zbl 0553.58020 MR 0758890

[2] Baker, S.: The growth rate and dimension theory of beta-expansions. Fund. Math. 219, 271–
285 (2012) Zbl 1266.37005 MR 3001244

[3] Baker, S.: On small bases which admit countably many expansions. J. Number Theory 147,
515–532 (2015) Zbl 06371491 MR 3276338

[4] Dajani, K., de Vries, M.: Measures of maximal entropy for random β-expansions. J. Eur.
Math. Soc. 7, 51–68 (2005) Zbl 1074.28008 MR 2120990

[5] Dajani, K., de Vries, M.: Invariant densities for random β-expansions. J. Eur. Math. Soc. 9,
157–176 (2007) Zbl 1117.28012 MR 2283107

[6] Dajani, K., Kraaikamp, C.: Random β-expansions. Ergodic Theory Dynam. Systems 23, 461–
479 (2003) Zbl 1035.37006 MR 1972232

[7] Falconer, K.: Fractal Geometry. 2nd ed., Wiley, Hoboken, NJ (2003) Zbl 1060.28005
MR 2118797

[8] Feng, D.-J., Sidorov, N.: Growth rate for beta-expansions. Monatsh. Math. 162, 41–60 (2011)
Zbl 1273.11018 MR 2747343

[9] Feng, D.-J., Wang, Y.: Bernoulli convolutions associated with certain non-Pisot numbers. Adv.
Math. 187, 173–194 (2004) Zbl 1047.60044 MR 2074175

[10] Furstenberg, H.: Ergodic fractal measures and dimension conservation. Ergodic Theory Dy-
nam. Systems 28, 405–422 (2008) Zbl 1154.37322 MR 2408385

[11] Girgensohn, R.: A survey of results and open problems on the Schilling equation. In: Func-
tional Equations—Results and Advances, Adv. Math. (Dordr.) 3, Kluwer, Dordrecht, 159–174
(2002) Zbl 1066.39021 MR 1912711

[12] Hochman, M.: On self-similar sets with overlaps and inverse theorems for entropy. Ann. of
Math. (2) 180, 773–822 (2014) Zbl 06346461 MR 3224722

[13] Jordan, T., Shmerkin, P., Solomyak, B.: Multifractal structure of Bernoulli convolutions.
Math. Proc. Cambridge Philos. Soc. 151, 521–539 (2011) Zbl 1248.11054 MR 2838343

[14] Kempton, T.: Counting β-expansions and the absolute continuity of Bernoulli convolutions.
Monatsh. Math. 171, 189–203 (2013) Zbl 06197845 MR 3077931

[15] Kempton, T.: On the invariant density of the random beta-transformation. Acta Math. Hungar.
142, 403–419 (2014) Zbl 1299.11011 MR 3165489

[16] Lindenstrauss, E., Peres, Y., Schlag, W.: Bernoulli convolutions and an intermediate value
theorem for entropies of K-partitions. J. Anal. Math. 87, 337–367 (2002) Zbl 1024.37004
MR 1945288

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0553.58020&format=complete
http://www.ams.org/mathscinet-getitem?mr=0758890
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1266.37005&format=complete
http://www.ams.org/mathscinet-getitem?mr=3001244
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06371491&format=complete
http://www.ams.org/mathscinet-getitem?mr=3276338
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1074.28008&format=complete
http://www.ams.org/mathscinet-getitem?mr=2120990
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1117.28012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2283107
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1035.37006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1972232
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1060.28005&format=complete
http://www.ams.org/mathscinet-getitem?mr=2118797
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1273.11018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2747343
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1047.60044&format=complete
http://www.ams.org/mathscinet-getitem?mr=2074175
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1154.37322&format=complete
http://www.ams.org/mathscinet-getitem?mr=2408385
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1066.39021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1912711
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06346461&format=complete
http://www.ams.org/mathscinet-getitem?mr=3224722
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1248.11054&format=complete
http://www.ams.org/mathscinet-getitem?mr=2838343
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06197845&format=complete
http://www.ams.org/mathscinet-getitem?mr=3077931
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1299.11011&format=complete
http://www.ams.org/mathscinet-getitem?mr=3165489
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1024.37004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1945288


Sets of β-expansions and Hausdorff measure of slices 351

[17] Marstrand, J. M.: The dimension of Cartesian product sets. Proc. Cambridge Philos. Soc. 50,
198–202 (1954) Zbl 0055.05102 MR 0060571

[18] Marstrand, J. M.: Some fundamental geometrical properties of plane sets of fractional dimen-
sions. Proc. London Math. Soc. (3) 4, 257–302 (1954) Zbl 0056.05504 MR 0063439

[19] Mauldin, R. D., Simon, K.: The equivalence of some Bernoulli convolutions to Lebesgue
measure. Proc. Amer. Math. Soc. 126, 2733–2736 (1998) Zbl 0912.28004 MR 1458276

[20] Orponen, T.: On the packing measure of slices of self-similar sets. J. Fractal Geom. 2, 389–
401 (2015) Zbl 06498414 MR 3416845

[21] Parry, W.: On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416
(1960) Zbl 0099.28103 MR 0142719

[22] Pesin, Y., Climenhaga, V.: Lectures on Fractal Geometry and Dynamical Systems. Student
Math. Library 52, Amer. Math. Soc., Providence, RI (2009) Zbl 1186.37003 MR 2560337

[23] Pollicott, M., Weiss, H.: The dimensions of some self-affine limit sets in the plane and hyper-
bolic sets. J. Statist. Phys. 77, 841–866 (1994) Zbl 0840.58027 MR 1301464
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