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Abstract. Let W be a linear system of quadrics on the real projective space RPn and X be the
base locus of that system (i.e. the common zero set of the quadrics in W ). We prove a formula
relating the topology of X to that of the discriminant locus 6W (i.e. the set of singular quadrics
in W ). The set 6W equals the intersection of W with the discriminant hypersurface for quadrics;
its singularities are unavoidable (they might persist after a small perturbation of W ) and we let
{6
(r)
W
}r≥1 be its singular point filtration, i.e. 6(1)

W
= 6W and 6(r)

W
= Sing(6(r−1)

W
). With this

notation, for a generic W the above mentioned formula reads

b(X) ≤ b(RPn)+
∑
r≥1

b(P6(r)
W
).

In the general case a similar formula holds, but we have to replace each b(P6(r)
W
) with

1
2b(6

(r)
ε ), where6ε equals the intersection of the discriminant hypersurface with the unit sphere on

the translation of W in the direction of a small negative definite form. Each 6(r)ε is a determinantal
variety on the sphere Sk−1 defined by equations of degree at most n+ 1 (here k denotes the dimen-
sion of W ); we refine Milnor’s bound, proving that for such affine varieties, b(6(r)ε ) ≤ O(n)k−1.

Since the sum in the above formulas contains at most O(k)1/2 terms, as a corollary we prove
that if X is any intersection of k quadrics in RPn then the following sharp estimate holds:

b(X) ≤ O(n)k−1.

This bound refines Barvinok’s style estimates (recall that the best previously known bound, due to
Basu, is O(n)2k+2).
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1. Introduction

This paper addresses the question of bounding the topology of the set

X = intersection of k quadrics in RPn.
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More specifically we are interested in finding a bound for its homological complexity
b(X), namely the sum of its Betti numbers.1

The problem of bounding the topology of semialgebraic sets belonging to some spec-
ified family dates back to the works of Milnor, Oleı̆nik and Petrovskiı̆, Thom and Smith.
Specifically, J. Milnor proved that a semialgebraic set S defined in Rn by a conjunc-
tion of s polynomial inequalities of degree at most d has complexity bounded by b(S)
≤ O(sd)n. What is special about sets defined by quadratic inequalities is that the role
of s and n in the above can be “exchanged” to give A. Barvinok’s bound b(S) ≤ nO(s)

(see [4]).
This kind of duality between the variables and the equations in the quadratic case is

the leading theme of this paper.
Barvinok’s bound, and its subsequent improvements by S. Basu, D. Pasechnik and

M.-F. Roy [8] and S. Basu and M. Kettner [7], concern sets defined by s quadratic in-
equalities. The most refined estimate for the complexity of such sets is polynomial in n
of degree s, but since we need two inequalities to produce an equality, this bound when
applied to the set X of our interest (an intersection of k quadrics) produces (in its best
form)

Basu’s bound: b(X) ≤ O(n)2k+2 (s = 2k).

In this paper we focus on the algebraic case rather than the semialgebraic one. From
the viewpoint of classical algebraic geometry our problem can be stated as follows. We are
given a linear system W of real quadrics, i.e. the span of k quadratic forms in the space
R[x0, . . . , xn](2), and we consider the base locus X = XW of W , i.e. the set of points
in RPn where all these forms vanish. What we consider to be the dual object to XW is the
set 6W of critical points of W , i.e. those nonzero elements in W that are degenerate. The
set6W is the intersection ofW with the discriminant hypersurface6 in R[x0, . . . , xn](2).

Even if we allow W to be a generic subspace, the set 6W might have unavoidable
singularities. Thus we consider 6(1)W = 6W and for r ≥ 2,

6
(r)
W = Sing(6(r−1)

W ).

In this notation one of the main results of this paper is the following formula, which holds
for a generic2 W :

b(XW ) ≤ b(RPn)+
∑
r≥1

b(P6(r)W ). (1)

The sum is finite, since for a generic W the set 6(r)W is empty for
(
r+1

2

)
≥ k. In fact

we notice that for every natural r and a generic W the set 6(r+1)
W coincides with the set

of quadratic forms in W of corank at least r . The codimension of this singular locus is
exactly

(
r+1

2

)
, thus it is empty for r > 1

2 (−1+
√

8k − 7).

1 From now on, unless differently specified, all homology and cohomology groups are assumed
to be with coefficients in Z2.

2 We require W to be transversal to all strata of the singular point-stratification of 6.
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Example 1. In the case k = 3 the set X of interest is the intersection of three quadrics
in RPn. Let us assume for this example that W is generic. Thus P6W is a real algebraic
plane curve of degree n+ 1. In this case statement (1) can be made even stronger:

|b(X)− b(P6W )| ≤ O(n).

Thus for a generic choice ofW we can replace the homological complexity of X with
the one of P6W and the error we are making in such replacement is bounded by O(n);
the generic choice produces a smooth X and also a smooth curve P6W (such a curve is
usually referred to as the spectral variety of X): the singularities of 6 have codimension
three and in this case are avoidable (for a generic three-dimensional W the only singular
point of 6W is the origin). Notice that essentially under this correspondence,

number of variables in the equations for X = deg(P6W ),
number of equations for X = number of variables for P6W .

Harnack’s theorem on real plane curves states that

b(P6W ) ≤ n2
− n+ 2.

On the other hand, the complete intersection XC of three real quadrics in CPn has b(XC)
= n2

+O(1) and Smith’s inequality implies

b(X) ≤ n2
+O(1).

A well known theorem of Vinnikov [19] (see also [12]) states that every real curve of
degree n+ 1 arises as the spectral variety of an intersection of three real quadrics (except
for empty curves if n + 1 ≡ 2 mod 4). In particular (almost) maximal intersections of
three real quadrics in RPn correspond to (almost) maximal curves of degree n+1 in RP2.

Going back to the general case, if we remove the genericity assumption, a similar formula
can be proved, but a perturbation of 6W is introduced. More specifically, we have to
translate W in the direction of a small negative definite quadratic form −εq, getting in
this way an affine space Wε = W − εq. We then consider a big enough sphere in Wε and
the set 6(r)ε of quadratic forms on this sphere where the kernel has dimension at least r.
The following formula holds (now for any X):

b(X) ≤ b(RPn)+
1
2

∑
r≥1

b(6(r)ε ). (2)

The same remark on codimensions as above applies here and this sum is actually
finite, containing no more than O(k)1/2 summands. For a generic choice of W these
two constructions coincide, since the set 6W deformation retracts on its intersection with
any unit sphere in W ; such an intersection double covers P6W , and the Gysin sequence
produces (1) from (2). We will adopt this notation in what follows and think of 6W as its
homotopy equivalent intersection with a sphere.
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Remark 1 (A notion of geometric complexity for X). Notice that (1) becomes effective
especially because we are in the framework of real algebraic geometry. Here the idea is to
consider the number on the r.h.s. of (1) as a “geometric complexity” of X (other than the
degree or the number of monomials appearing in the equations). As with fewnomial-type
bounds, the structure of the equations (the arrangement in the space of quadratic forms of
the linear system) gives finer predictions on the complexity of X.

The bounds (1) and (2) just reflected the above mentioned duality between equations and
variables; the real tool encoding this duality is a spectral sequence introduced by A. A.
Agrachev [1] and developed by him and the author [3].

The power of these bounds is that they are intrinsic, and different X might produce
different ones: for example a set W whose nonzero forms have constant rank has base
locus with complexity bounded by b(RPn). On the other hand, the bounds are sufficiently
general to produce sharp numerical estimates. Indeed, using them we can get the follow-
ing, which improves Basu’s bound:

b(X) ≤ O(n)k−1. (3)

This estimate is sharp in the following sense: if we let B(k, n) be the maximum
of b(X) over all possible intersections X of k quadrics in RPn, then

B(k, n) = O(n)k−1. (4)

The upper bound for B(k, n) is provided by (3), and the lower bound by the exis-
tence of a maximal real complete intersection, i.e. a complete intersection M of k real
quadrics in CPn satisfying b(MR) = b(M). Such a complete intersection for k ≥ 2 has
the property

b(MR) = ckn
k−1
+O(n)k−2.

(A smooth nonsingular quadric in CPn has total Betti number n+ 1
2 (1+ (−1)n+1).)

We list the first small values of ck starting from k = 2 (the general problem is not
trivial):

2, 1,
2
3
,

1
3
,

2
15
, . . .

For small values of k the leading coefficient we get by expanding the r.h.s. of (1) in n is
the same as the complete intersection one. This provides

B(1, n) = n, B(2, n) = 2n, B(3, n) = n2
+O(n).

We conjecture that in general for k ≥ 2 we have B(k, n) = ckn
k−1
+ O(nk−2).

This conjecture can be tackled—and indeed this is the way we produce the numerical
bound (3)—by studying the topology of symmetric determinantal varieties. In fact each
set 6(r)ε is defined by the vanishing of some minors of a symmetric matrix depending on
parameters (in our case the parameter space is the unit sphere in Wε).

The geometry of symmetric determinantal varieties over the complex numbers was
studied in [13], where the degrees of such varieties were explicitly computed. Here we do
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not need this degree computation, though we use the fact that determinantal varieties are
defined by (possibly many) polynomials of small degree. This property, combined with a
refinement of Milnor’s classical bound,3 produces the general estimate

b(6(r)ε ) ≤ (2n)k−1
+O(n)k−2. (5)

Notice that if we plug this into (1) we immediately get B(k, n) ≤ O(n)k−1 (this fol-
lows at once using the fact that there are less thanO(k)1/2 terms in the sum we consider).

On the other hand, such algebraic sets, among those defined by polynomials of degree
less than n, are very special. For example they have unavoidable singularities—that is the
reason for the appearance of higher order terms in (1). That is why we expect the leading
coefficient of the bound (5) not to be optimal. In fact for k = 1, 2, 3 we have bounded the
complexities of these varieties with a direct argument, getting the optimal coefficient.

As an example for these ideas (“determinantal varieties have small homological com-
plexity”) we compute the cohomology of the set 6 of (nonzero) symmetric matrices with
zero determinant. This set coincides with the discriminant hypersurface of homogeneous
polynomials of degree two (minus zero). The degree of this hypersurface is n and Milnor’s
bound gives b(6) ≤ O(n)(

n
2). On the other hand, 6 happens to be Spanier–Whitehead

dual to a disjoint union of Grassmannians and

H ∗(6) '

n⊕
j=0

H∗(Gr(j, n)). (6)

In particular, the complexity of 6 is exactly 2n, much smaller than Milnor’s prediction.
The paper is organized as follows. Section 2 gives an account of the known numerical

bounds. Section 3 introduces the spectral sequence approach, from which one can recover
Barvinok’s bound. Section 4 deals with symmetric determinantal varieties and contains
the proof of (6). Section 5 is the technical bulk of the paper and deals with the transver-
sality arguments needed in order to prove (2). Section 6 contains the proof of (1) and (2).
Section 7 contains the proof of the numerical translation (3) of the previous bounds as
well as a discussion of its sharpness. Section 8 brings some examples.

From now on all algebraic sets are assumed to be real (in particular projective spaces
and Grassmannians are the real ones) unless otherwise specified. All homology and co-
homology groups are with coefficients in Z2.

2. Complexity of intersections of real quadrics

The aim of this section is to review the numerical bounds that can be derived from the
literature for the homological complexity of X.

We first mention the result due to J. Milnor, who proved that if Y is an algebraic
set defined by homogeneous polynomials of degree at most d in RPn, then b(Y ) ≤

3 Milnor’s bound would give an estimate of the formO(n)k , but the fact that we are on the sphere
allows us to improve it, essentially using a combination of Alexander duality and a general position
argument.
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nd(2d − 1)n−1 [18, Corollary 3]. If we apply this bound to the set X we immediately
get

Milnor’s bound: b(X) ≤ 2n3n−1.

What is interesting about this bound is that it does not depend on the number of equations
defining Y (respectively X), but only on their degrees; it is thus natural to expect that this
bound can be improved by confining oneself to a fixed number of equations.

A. Barvinok studied the complexity of basic semialgebraic subsets of Rn defined by
a fixed number of inequalities of degree at most two. Using the main result from [4] we
can derive another bound, whose shape is different from the previous one:4:

Barvinok’s bound: b(X) ≤ nO(k).

Proof. Theorem (1.1) of [4] states that if Y is defined by k inequalities of degree at most
two in Rn then b(Y ) ≤ nO(k).

At this point this is just a result for Y (a semialgebraic set in Rn); we now explain
how to use it for X ⊂ RPn.

We decompose our X into its affine part A and its part at infinity B and we use
a Mayer–Vietoris argument. More specifically, we let A = X ∩ {x0 6= 0} and B =
X ∩ {x2

0 ≤ ε}. Now A is defined by 2k quadratic inequalities in Rn (each equation is
equivalent to a pair of inequalities) and B by k quadratic equations in RPn (in fact this
set for small ε deformation retracts to X ∩ {x0 = 0}). The intersection A ∩ B is defined
in Rn by 2k + 1 quadratic inequalities: those defining A plus the one defining a big ball.
We now apply Theorem (1.1) of [4] to A and A ∩ B to get a bound of the form nO(k) for
their total Betti numbers. Induction on n and the Mayer–Vietoris long exact sequence of
the semialgebraic pair (A,B) finally give

b(X) ≤ b(A)+ b(B)+ b(A ∩ B) ≤ nO(k). ut

The subtlety of the previous bound is the implied constant in its definition: indeed in The-
orem (1.1) of [4] this implied constant is at least two. This provides an implied constant
of at least four in Barvinok’s bound. The work [7] of S. Basu and M. Kettner provides a
better estimate for this constant:

Basu’s bound: b(X) ≤ O(n)2k+2.

Proof. Corollary 1.7 of [7] states the following: Let S be a semialgebraic subset of Rn
defined by k quadratic inequalities. Then

b(S) ≤
n

2

k∑
j=0

(
k

j

)(
n+ 1
j

)
2j = s(k, n).

4 Following [9], in this context the notation f (l) = O(l)means that there exists a natural number
b such that f (l) ≤ bl for every l ∈ N.
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Let us show first that s(k, n) behaves asymptotically as O(n)k+1; indeed, let us prove
that limn

log s(k,n)
log n = k + 1. Notice first that for every k there exists Ck > 0 such that for

every n, (
n+ 1
k

)
≤

k∑
j=0

(
k

j

)(
n+ 1
j

)
2j ≤ Ck

(
n+ 1
k

)
.

The existence of Ck is due to the fact that the number of terms we are adding and the
number

(
k
j

)
do not depend on n but only on k. Using Stirling’s asymptotic at infinity

n! ∼
√

2πn(n/e)n we can write(
n+ 1
k

)
∼

1
k!ek

(n+ 1)n+1

(n+ 1− k)n+1−k

√
n+ 1

n+ 1− k
∼ Akn

k,

for some constant Ak > 0. The inequalities n
2

(
n+1
k

)
≤ s(k, n) ≤

Ckn
2

(
n+1
k

)
and the previ-

ous asymptotic immediately give the limit.
Proceeding now as in the proof of Barvinok’s estimate, i.e. decomposing X into its

affine and infinity part and using Mayer–Vietoris bounds, yields the result. ut

The bound in [7] is the best known for semialgebraic sets defined by quadratic inequali-
ties. Surprisingly enough, in the special case of our interest, i.e. algebraic sets, the expo-
nent of Basu’s bound can be lowered to k−1. This will be a straightforward consequence
of a deeper approach to bounding the topology of X with the complexity of some deter-
minantal varieties associated (and in a certain sense dual) to it. This is based on a spectral
sequence argument and has strong consequences, besides the framework of bounding the
topology of X.

3. The spectral sequence approach

In this section we will discuss a different approach to the study of intersections of real
quadrics. This was first introduced by A. A. Agrachev [1], [2] for the nonsingular case
and then extended in [3] to the general case.

Let Qn denote the vector space of homogeneous polynomials of degree two in n
variables, i.e. the space of quadratic forms over Rn. Then X is the zero locus in the
projective space of the elements q1, . . . , qk ∈ Qn+1 and we consider the linear system5

defined by these elements:

W = span{q1, . . . , qk} ⊂ Qn+1.

For a given quadratic form p ∈ Qn+1 we denote by i+(p) its positive inertia index, the
maximal dimension of a subspace of Rn+1 such that the restriction of p to it is positive
definite. The idea of the spectral sequence approach is to replace the geometry of X with
the one of the restriction of the function i+ to W . More precisely, let us consider the sets

W j
= {q ∈ W | i+(q) ≥ j}, j ≥ 1.

5 In classical algebraic geometry, X is referred to as the base locus of W .
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Notice that none of these sets contains zero and all of them are invariant under multipli-
cation by positive numbers, hence they are deformation retracts of their intersections with
a unit sphere in W (with respect to any scalar product):

�j = W j
∩ {any unit sphere in W }, j ≥ 1.

Even if not canonical (it depends on the choice of a scalar product on W ) sometimes
it is more convenient to use this family rather than the previous one; notice though that
different scalar products will produce homeomorphic families. The spirit of this approach
is to exploit the relation between X and the filtration

�n+1
⊆ �n ⊆ · · · ⊆ �2

⊆ �1.

This is made precise by a Leray spectral sequence argument, and produces the following

Theorem 1.

Agrachev’s bound: b(X) ≤ n+ 1+
∑
j≥0

b(�j+1).

Proof. Let SW be any unit sphere inW and consider the topological space B = {(ω, [x])
∈ SW × RPn | (ωq)(x) > 0} together with its two projections p1 : B → SW and
p2 : B → RPn. The image of p2 is easily seen to be RPn \ X and the fibers of this map
are contractible sets, hence p2 gives a homotopy equivalence6 B ∼ RPn \X.

Consider now the projection p1; for a point ω ∈ SW the fiber p−1
1 (ω) has the homo-

topy type of a projective space of dimension i+(ωq)−1, thus the Leray spectral sequence7

for p1 converges to H ∗(RPn \X) and has the second term E
i,j

2 isomorphic to H i(�j+1).
A detailed proof of these statements can be found in [3]. Since rk(E∞) ≤ rk(E2), we
have b(RPn \ X) ≤

∑
j≥0 b(�

j+1). Recalling that by Alexander–Pontryagin duality
Hn−∗(X) ' H ∗(RPn,RPn \ X), then the exactness of the long cohomology exact se-
quence of the pair (RPn,RPn \X) gives the desired inequality. ut

It is interesting to notice that Agrachev’s bound implies Barvinok’s. Indeed, let us fix
a scalar product on Rn+1; then the formula 〈x,Qx〉 = q(x) for x ∈ Rn+1 defines a
symmetric matrix Q whose number of positive eigenvalues equals i+(q). Consider the
polynomial

f (t,Q) = det(Q− tI ) = a0(Q)+ · · · + an(Q)t
n
± tn+1

defined over R×W = R×span{q1, . . . , qk}. Then by Descartes’ rule of signs the positive
inertia index of Q is given by the sign variation in the sequence (a0(Q), . . . , an(Q)).

6 Strictly speaking, if we want to use the Vietoris–Begle theorem, we should check that p2 closed.
This can be avoided if we replace B with Bε = {(ω, [x]) ∈ SW × RPn | (ωq)(x) ≥ ε}: this set
is now compact, p2|Bε is closed and its fibers are still contractible. By semialgebraic triviality for
small ε the inclusion i : Bε → B is a homotopy equivalence; since the projection p2|B(ε) factors
as p2 ◦ i, p itself is a homotopy equivalence.

7 Notice that this is not the spectral sequence of the filtration {p−1
2 (�j+1)}n

j=1: the latter would
converge in n+ 1 steps, whereas our Leray spectral sequence converges in k + 1 steps.
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Thus the sets�j+1 are defined on the unit sphere inW by sign conditions (quantifier-free
formulas) whose atoms belong to a set of n+ 1 polynomials in k variables and of degree
less than n + 1. For such sets we have the estimate, proved in [9]: b(�j+1) ≤ nO(k).
Putting all this together we get

b(X) ≤ n+ 1+
∑
j≥0

b(�j+1) ≤ nO(k).

Example 2. Before going on we give an idea of which direction this spectral sequence
approach will lead us in; this will be just a motivation for the next sections, the detailed
theory being developed in the final part of the paper. Let SW be the unit sphere in W and
assume that the set

6W = {q ∈ SW | ker(q) 6= 0}

is a smooth manifold and each time we cross it the index function changes exactly by±1.
Then the components of this manifold are exactly the boundaries of the sets �j and
b(6W ) =

∑
�j 6=SW

b(∂�j ). On the other hand, each ∂�j is a submanifold of the sphere
and it is not difficult to show that b(∂�j ) = 2b(�j ) (we will give an argument for this in
Lemma 9). Inserting all this into Agrachev’s bound we get

b(X) ≤ n+ 1+ 1
2b(6W ), (7)

which relates the topology ofX (the base locus ofW ) to the topology of6W (the singular
locus of W ). In the general case 6W will not be smooth, nor the index function well
behaving, and a more refined approach is needed. This approach is based on the study of
the topology of 6W and its singularities. These two objects are very particular algebraic
sets: they are defined by the set of points where a family of matrices has some rank
degeneracy, i.e. they are determinantal varieties.

4. Symmetric determinantal varieties

The aim of this section is to bound the topology and describe some geometry of sym-
metric determinantal varieties. In a broad sense these will be defined by rank degeneracy
conditions of (algebraic) families of symmetric matrices. Recall that our interest is in
families of quadratic forms; we switch to symmetric matrices simply by establishing a
linear isomorphism between Qn and Symn(R). This can be done once a scalar product on
Rn has been fixed, by associating to each quadratic form q the matrix Q defined by

q(x) = 〈x,Qx〉 ∀x ∈ Rn.

Notice that the dimension of the vector space Symn(R) is
(
n
2

)
.

Suppose now that Y is an algebraic subset of Symn(R); for every natural number r
we define the rank degeneracy locus

Y (r) = {Q ∈ Y | dim ker(Q) ≥ r}.

Using the bound of [18] we can immediately prove the following proposition, which
exploits the idea that symmetric determinantal varieties have relatively simple topology.
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Proposition 2. Let Y be defined by polynomials of degrees less than d in Symn(R)
and Rk be a subspace; let also δ = max{d, n− r + 1}. Then

b(Y (r) ∩ Rk) ≤ δ(2δ − 1)k−1.

Proof. The set Y (r) is defined in Symn(R) be the same equations defining Y plus all the
equations for the vanishing of minors of order r + 1; these last equations have degree
r + 1. Once we intersect Y (r) with a linear space of dimension k, we get a set defined by
equations of degree at most δ in k variables, and Milnor’s estimate applies. ut

Let us now fix a scalar product also on the space Symn(R), e.g. we can take 〈A,B〉 =
1
2 tr(AB). We consider the set of singular matrices of norm one:

6 = {‖Q‖2 = 1, det(Q) = 0}.

This set is a deformation retract of the set of nonzero matrices with determinant zero
and for n > 1 it is defined by equations of degree at most n in Symn(R). The previous
proposition would produce a bound of the form an(

n
2) for its topological complexity;

indeed the bound is much better, as shown in the next theorem.

Theorem 3.

H ∗(6) '

n⊕
j=0

H ∗(Gr(j, n)) and b(6) = 2n.

Proof. In the space of all symmetric matrices let us consider the open set A where the
determinant does not vanish; this set deformation retracts to SN \ 6 and by Alexander–
Pontryagin duality it follows that

H ∗(6) ' H∗(A). (8)

On the other hand A is the disjoint union of the open sets

Gj,n = {det(Q) 6= 0, i+(Q) = j}, j = 0, . . . , n.

We prove that each of these sets is homotopy equivalent to a Grassmannian; this, together
with equation (8), will give the desired result. More specifically, we show that the semi-
algebraic map

pk : Gj,n→ Gr(j, n)

which sends each matrix Q to its positive eigenspace, is a homotopy equivalence. In fact,
let {e1, . . . , en} be the standard basis of Rn andEj be the span of the first j basis elements.
The preimage of Ej under pj equals the set of all symmetric block matrices of the form

Q =

(
D2 0
0 Q′

)
with D diagonal invertible and Q′ invertible and negative definite, i.e. Q′ ∈ G0,n−j . In
particular, since the set G0,n−j is an open cone, it is contractible and

p−1
j (Ej ) ' (R+)j ×G0,n−j is contractible.
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For W ∈ Gr(j, n) let M be any orthogonal matrix such that MW = Ej ; then clearly
p−1
j (W) = M−1p−1

j (Ej )M and all the fibers of pj are homeomorphic. Notice that the
matrix M can be chosen to depend continuously (and indeed semialgebraically) on W ;
hence pj is a semialgebraic fibration with contractible fibers, hence a homotopy equiva-
lence.

The last part of the theorem follows from the well known fact that b(Gr(j, n)) =
(
n
j

)
and the formula

∑n
j=0

(
n
j

)
= 2n. ut

Let Z be the algebraic set of all singular matrices in Symn(R); we will be interested in
greater generality in the filtration

{0} = Z(n) ⊂ Z(n−1)
⊂ · · · ⊂ Z(2) ⊂ Z(1) = Z. (9)

We recall that each Z(r) is a real algebraic subset of Symn(R) of codimension
(
r+1

2

)
and

that the singular loci of these varieties are related by

Sing(Z(j)) = Z(j+1). (10)

References for this statements are [1] and [3]; in particular Proposition 9 of [3] shows
that Z is Nash stratified by the smooth semialgebraic sets Nr = Z(r) \ Z(r+1) (see [10]
for the definition and properties of Nash stratifications). Notice also that using the above
notation we have the equalities Y (r) = Y ∩ Z(r) and 6 = {‖Q‖2 = 1} ∩ Z(1).

The degrees of the complexifications Z(r)C of these varieties are computed in [13]:

degZ(r)C =
r−1∏
α=0

(
n+α
r−α

)(2α+1
α

) = O(n)r(r+1)/2.

Notice that they have big degree but small topological complexity and the same holds
for their hyperplane sections. High degree is essentially due to their unavoidable singular-
ities, small complexity (via Milnor’s bound) to the fact that they can be defined by many
equations of low degree.

Let us denote by i−(Q) the number of negative eigenvalues of a symmetric matrix Q
and recall that

Pj = {Q ∈ Symn(R) | i−(Q) ≤ j}, 0 ≤ j ≤ n− 1,

is a (noncompact) topological submanifold of Symn(R) ' Qn with boundary (see [1]).
Let us also set

Aj = ∂Pj , 0 ≤ j ≤ n− 1.

The following proposition describes in more detail the structure of the sets Z(r), using the
combinatorics of the Aj ’s.

Proposition 4. For every r ≥ 0 let Ir be the set of all the subsets α of {0, . . . , n − 1}
consisting of r consecutive integers. Then

Z(r) =
⋃
α∈Ir

⋂
j∈α

Aj .
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P0

∂P0

P1 ⊃ P0

∂P1

Fig. 1. A picture of the filtration P0 ⊂ P1 ⊂ Sym2(R). The set P0 is the closed cone of positive
semidefinite matrices, its boundary is a topological manifold; P1 is the set of sign-indefinite matri-
ces, it contains P0 and its boundary is again a topological manifold. The union ∂P0 ∪ ∂P1 is the set
of singular matrices and this set is not a manifold: its singular locus (the zero matrix) is given by
∂P0 ∩ ∂P1.

Proof. For l ≥ 0 let us say that a matrixQ has the property s(l) if there exists a sequence
{Qn}n≥0 converging to Q such that i−(Qn) ≥ l. Using this notation we have Aj =
{i−(Q) ≤ j and Q has the property s(j + 1)}. From this it follows that for every r ≥ 0,

Ai ∩ Ai+r−1 = {i−(Q) ≤ i and Q has the property s(i + r)},

which also says that Ai ∩Ai+1 ∩ · · · ∩Ai+r−1 = Ai ∩Ai+r−1. Let nowQ ∈ Z(r) andM
be an orthogonal matrix such that

M−1QM = diag(−λ2
1, . . . ,−λ

2
i−(Q), µi−(Q)+1, . . . , µn−r , 0, . . . , 0)

with the λi’s greater than zero. Let now Dn be defined by changing each zero on the
diagonal of the previous matrix to −1/n. Then if we set Qn = MDnM

−1 we find that Q
satisfies the property s(i−(Q)+ r) and thus belongs to

⋃
α∈Ir

⋂
j∈α Aj . Conversely, letQ

be in
⋃
α∈Ir

⋂
j∈α Aj ; then Q satisfies s(i−(Q)+ r) and there exists {Qn}n≥0 such that

dim kerQ = n− i+(Q)− i−(Q) ≥ n− i+(Qn)− i−(Qn)+ r ≥ r

(for the inequality i+(Qn) ≥ i+(Q) we have used the fact that {i+(Q) ≥ j} is an open
set), i.e. Q is in Z(r). ut

5. Transversality arguments

In this section we will discuss the following idea. Suppose we are given X by the van-
ishing of some quadratic polynomials in RPn and let W be the span of these polynomials
as in the previous sections. The homological complexity of X (up to an n + 1 term) can
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be bounded, using Agrachev’s bound, by the sum of the complexities of the sets �j . To
have an alternative description of these sets let us introduce the following notation. Let
q1, . . . , qk ∈ Qn+1 be the quadratic forms defining X and q : Sk−1

→ Qn+1 the map
defined by

ω = (ω1, . . . , ωk) 7→ ωq = ω1q1 + · · · + ωkqk.

The map q is the restriction to the sphere of the linear map sending the standard basis
of Rk to {q1, . . . , qk}. We redefine now

�j = {ω ∈ Sk−1
| i+(ωq) ≤ j}, j ≥ 1.

If q1, . . . , qk are linearly independent, then this definition agrees with the previous one;
if they are not linearly independent, the map q is no longer an embedding, though a look
at the proof of Agrachev’s bound shows that it still holds:

b(X) ≤ n+ 1+
∑
j≥0

b(�j+1)

(it is sufficient to use the set B ′ = {(ω, [x]) ∈ Sk−1
× RPn | (ωq)(x) ≥ 0} instead

of B and the proof works the same; actually it can also be proved that these new sets
deformation retract onto the previously defined ones). The question we address is now
the following: what happens if we perturb the map q?

The perturbations we will be interested in are of the form

qε : ω 7→ ωq − εp,

where p is a positive definite quadratic form; in other words we will be interested in small
affine translations q−εp of the map q. It turns out that if p is a positive definite quadratic
form and ε > 0 is small enough then each set �j is homotopy equivalent to

�n−j (ε) = {ω ∈ S
k−1
| i−(ωq − εp) ≤ n− j},

where i− denotes the negative inertia index, i.e. i−(ωq−εp) = i+(εp−ωq). In particular
the Betti numbers of �j+1 and of its perturbation �n−j (ε) are the same, as proved in the
following lemma from [17].

Lemma 5. For every positive definite form p ∈ Qn+1 and for every ε > 0 sufficiently
small,

b(�j+1) = b(�n−j (ε)).

Proof. Let us first prove that�j+1
=
⋃
ε>0�n−j (ε). Let ω ∈

⋃
ε>0�n−j (ε); then there

exists ε such that ω ∈ �n−j (ε) for every ε < ε. Since for ε small enough,

i−(ωq − εp) = i−(ωq)+ dim(ker(ωq)),

it follows that

i+(ωq) = n+ 1− i−(ωq)− dim(kerωq) ≥ j + 1.
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Conversely, if ω ∈ �j+1 the previous inequality proves ω ∈ �n−j (ε) for ε small enough,
i.e. ω ∈

⋃
ε>0�n−j (ε).

Notice now that if ω ∈ �n−j (ε) then, possibly choosing a smaller ε, we may assume
ε properly separates the spectrum of ω and thus, by continuity of q, there exists an open
neighborhood U of ω such that ε also properly separates the spectrum of ηq for every
η ∈ U . Hence every η ∈ U also belongs to �n−j (ε). From this consideration it easily
follows that each compact set in �j+1 is contained in some �n−j (ε) and thus

lim
−→
ε

H∗(�n−j (ε)) = H∗(�
j+1).

It remains to prove that the topology of �n−j (ε) is definitely stable as ε goes to zero.
Consider the semialgebraic compact set Sn−j = {(ω, ε) ∈ Sk−1

×[0,∞) | i−(ωq−εp) ≤
n − j}. By Hardt’s triviality theorem (see [10]) the projection (ω, ε) 7→ ω is a locally
trivial fibration over (0, ε) for ε small enough; from this the conclusion follows. ut

The following is a variation of [17, Lemma 4] and describes the structure of the sets of
degenerate quadratic forms on the ‘perturbed sphere’. We recall that the space Z of all
degenerate forms in Qn+1 admits the semialgebraic Nash stratification8 Z =

∐
Nr where

Nr = Z(r) \ Z(r+1) (as above we use the linear identification between quadratic forms
and symmetric matrices).

Lemma 6. There exists a positive definite form p ∈ Qn+1 such that for every ε > 0
small enough the map qε : Sk−1

→ Qn+1 defined by

ω 7→ ωq − εp

is transversal to all strata of Z =
∐
Nr . In particular q−1

ε (Z) =
∐
q−1
ε (Nr) is a Nash

stratification, the closure of q−1
ε (Nr) equals q−1

ε (Z(r)) and

Sing(q−1
ε (Z(r))) = q−1

ε (Z(r+1)).

Proof. Let Q+ be the set of positive definite quadratic forms in Qn+1 and consider the
map F : Sk−1

×Q+ defined by

(ω, p) 7→ ωq − p.

Since Q+ is open in Q, the map F is a submersion and F−1(Z) is Nash-stratified by∐
F−1(Ni). Then for p ∈ Q+ the evaluation map ω 7→ f (ω) − p is transversal to

all strata of Z if and only if p is a regular value for the restriction of the second factor
projection π : Sk−1

× Q+ → Q+ to each stratum of F−1(Z) =
∐
F−1(Ni). Thus

let πi = π |F−1(Ni )
: F−1(Ni) → Q+; since all data are smooth semialgebraic, by

semialgebraic Sard’s Lemma (see [10]) the set 6i = {q̂ ∈ Q+ | q̂ is a critical value
of πi} is a semialgebraic subset of Q+ of dimension strictly less than dim(Q+). Hence
6 =

⋃
i 6i is also a semialgebraic subset of Q+ with dim(6) < dim(Q+) and for every

p ∈ Q+ \6 the map ω 7→ f (ω)− p is transversal to each Ni . Since 6 is semialgebraic
of codimension at least one, there exists p ∈ Q+ \ 6 such that {tp}t>0 intersects 6 in
a finite number of points, i.e. for every ε > 0 sufficiently small, εp ∈ Q+ \ 6. This
concludes the proof. ut
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b

b

b b

W

det(ωq) = 0

W − ǫp

det(ωq − ǫp) = 0

Fig. 2. Effect on the spectral variety of the perturbation from Lemma 6.

Since the codimension of Z(r) is
(
r+1

2

)
, we can immediately derive the following.

Corollary 7. Assume r > 1
2 (−1+

√
8k − 7). Then there exists a positive definite form p

such that for ε > 0 small enough,

{ω ∈ Sk−1
| dim ker(ωq − εp) ≥ r} = ∅.

We recall the following result describing the local topology of the space of quadratic
forms (see [3, Proposition 9]).

Proposition 8. Let q0 ∈ Q be a quadratic form and let V be its kernel. Then there exists
a neighborhood Uq0 of q0 and a smooth semialgebraic map φ : Uq0 → Q(V ) such that:

1) φ(q0) = 0;
2) i−(q) = i−(q0)+ i−(φ(q));
3) dim ker(q) = dim ker(φ(q));
4) dφq0(p) = p|V for every p ∈ Q.

Combining Lemma 6 and the previous proposition we can prove the following corollary,
which shows that after the perturbation the sets �n−j (ε) have a very nice structure.

Corollary 9. Let p be the positive definite form provided by Lemma 6. Then for every
ε > 0 small enough,

�n−j (ε) is a topological submanifold of Sk−1 with boundary.

Proof. Let p be the quadratic form given by Lemma 6 and f = qε : S
k−1
→ Qn+1

the map defined there. Let us consider a point ω in �n−j (ε) and the map φ : Uf (ω) →
Q(ker f (ω)) given by Proposition 8. Since dφf (ω)p = p|ker f (ω), the map dφf (ω) is sur-
jective. On the other hand, by transversality of f to each stratum Nr we have

im(dfω)+ Tf (ω)Nr = Qn+1.

8 The symbol
∐

means disjoint union.
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Since φ(Nr) = {0} (notice that this condition implies (dφf (ω))|Tf (ω)Nr = 0), we have

Q(ker f (ω)) = im(dφf (ω)) = im(d(φ ◦ f )ω),

which tells us that φ ◦ f is a submersion at ω. Thus by the Rank Theorem there exist an
open neighborhood Uω of ω and an open diffeomorphism ψ onto its image such that the
following diagram is commutative:

Q(ker f (ω))

Uω Q(ker f (ω))× Rl
ψ

φ◦f p1

(in particular ψ(Uω) is an open subset of Q(ker f (ω))× Rl). Let us pick an open neigh-
borhood of ψ(ω) of the form A × B, with A ⊂ Q(ker f (ω)) and B ⊂ Rl contractible,
and consider the open set U ′ = Uω ∩ ψ−1(A× B) and the commutative diagram

A

U ′ A× B
ψ

φ◦f p1

Notice now that for every η in U ′ the second point of Proposition 8 implies that
i−(f (η)) = i−(f (ω)) + i−(φ(f (η))). In particular, U ′ ∩ �n−j (ε) is homeomorphic,
through ψ , to the set(

A ∩ {q ∈ Q(kerf (ω)) | i−(q) ≤ n− j − i−(f (ω))}
)
× B.

The first factor is the intersection ofAwith the set of quadratic forms in Q(kerf (ω))with
negative inertia index ≤ n − j − i−(f (ω)); since this set is a topological submanifold
with boundary in Q(kerf (ω)), it follows that U ′ ∩ �n−j is homeomorphic to an open
neighborhood of a topological manifold with boundary. This proves that every point ω
in �n−j (ε) has an open neighborhood U ′ω such that U ′ω ∩ �n−j (ε) is homeomorphic to
an open set of a topological manifold with boundary; thus �n−j (ε) itself is a topological
manifold with boundary (the boundary being possibly empty). ut

6. A topological bound

The aim of this section is to provide a formula which generalizes (7) from Example 2.
The idea is to use Lemma 5 and Corollary 9 in Agrachev’s bound: the first says that we
can perturb each set �j to a set �n−j (ε) without changing its Betti numbers, the second
says that we can do that and make the new sets topological manifolds with boundary.
As we will see, we can use the topological manifold structure of these sets to get more
information out of Agrachev’s bound.

We start by proving the following lemma from algebraic topology (see also the proof
of [18, Theorem 2]).
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Lemma 10. Let M be a semialgebraic topological submanifold of the sphere Sn with
nonempty boundary and nonempty interior. Then

b(M) = 1
2b(∂M).

Proof. By assumption also N = Sn \ int(M) is a semialgebraic topological manifold
with boundary ∂N = ∂M . Let us consider collar neighborhoods A ofM and B ofN such
that A ∩ B deformation retracts onto ∂M (such collar neighborhoods certainly exist by
semialgebraicity and the Collaring Theorem). From the reduced Mayer–Vietoris sequence
for the pair (A,B) we get b̃i(A) + b̃i(B) = b̃i(A ∩ B) for i 6= n − 1, and b̃n−1(A) +

b̃n−1(B) = b̃n−1(A ∩ B)− 1. Adding all these equalities we obtain

b̃(A)+ b̃(B) = b̃(A ∩ B)− 1

(here we are using the notation b̃(Y ) for the sum of the reduced Betti numbers of a semi-
algebraic set Y ). Alexander–Pontryagin duality implies that b̃(N) = b̃(M); on the other
hand, A and B deformation retract respectively onto M and N , which means b̃(A) =
b̃(M) = b̃(N) = b̃(B). Plugging this equality in the previous formula immediately gives
the statement. ut

We now prove the main technical theorem of the paper. A toy model proof in the case
when 6ε is smooth was provided in Example 2; another proof for the case 6ε has only
isolated singularities is given in Example 5; the reader uncomfortable with technical de-
tails is advised to take a look at them first.

Theorem 11. LetX be defined by the vanishing of the quadratic forms q1, . . . , qk in RPn.
For every quadratic form p and real number ε define

6ε = {ω ∈ S
k−1
| det(ωq − εp) = 0},

where q = (q1, . . . , qk). Then there exists a positive definite form p ∈ Qn+1 such that
for every ε > 0 small enough:

(i) the map qε : Sk−1
→ Qn+1 given by ω 7→ ωq − εp is transversal to all strata of Z,

stratified as in (9); in particular

6(r)ε = {ω ∈ S
k−1
| dim ker(ωq − εp) ≥ r}

is an algebraic subset of Sk−1 of codimension
(
r+1

2

)
;

(ii) if we letµ and ν be respectively the maximum and the minimum of the negative inertia
index on the image of qε , then

b(X) ≤ n+ 1− 2(µ− ν)+
1
2

∑
r≥1

b(6(r)ε ). (11)

The last sum is indeed finite since for
(
r+1

2

)
≥ k part (i) implies 6(r)ε = ∅.
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Proof. The first statement follows directly from Lemma 6. For the second, in order to
get the −2(µ − ν) term in (11), we will use a refined version of Agrachev’s bound.
The refined bound follows by considering, in the proof of Agrachev’s bound, a spectral
sequence converging directly to H∗(X) and whose second term is isomorphic to E2 '⊕
j H
∗(Bk, �j+1), where Bk is the unit ball in Rk such that ∂Bk = Sk−1. The existence

of such a spectral sequence is the content of [3, Theorem A]; repeating verbatim the above
argument we get b(X) ≤

∑
j≥0 b(B,�

j+1). Let now p be given by Lemma 6; since p is
positive definite, Lemma 5 implies b(�j+1) = b(�n−j (ε)) for ε > 0 sufficiently small
and for every j ≥ 0. In particular we can rewrite the refined Agrachev bound as

b(X) ≤ n+ 1− 2(µ− ν)+
∑

ν≤j≤µ−1

b(�j (ε)). (12)

The rest of the proof is devoted to bounding
∑
b(�j (ε)). First notice that Corollary 9

says that each nonempty �j (ε) is a topological submanifold of Sk−1 with boundary and
nonempty interior; thus applying Lemma 10 we get

b(�j (ε)) =
1
2b(∂�j (ε)), ν ≤ j ≤ µ− 1.

For convenience of notation let us rename these boundaries as follows:

Cj = ∂�ν+j−1(ε), j = 1, . . . , l = µ− ν.

Thus (12) can be rewritten as

b(X) ≤ n+ 1− 2(µ− ν)+
1
2

l∑
j=1

b(Cj ). (13)

Let us now analyze the structure of 6ε = 6
(1)
ε . By construction this set equals the union

of all the Cj ’s, but the union is not disjoint since6ε might have singularities, which occur
precisely when two sets Cj and Cj+1 intersect (this immediately follows from the fact
that qε is transversal to all the strata of Z, and 6ε is stratified by the preimages of the
strata of Z as described in Lemma 6). For convenience of notation, let S(ω, j) denote the
assertion that there exists a sequence {ωn}n≥0 converging to ω such that i−(qε(ωn)) ≥ j .
Corollary 9 implies now that Cj = �ν+j−1(ε) ∩ Cl(�ν+j−1(ε)

c), i.e.

Cj = {ω | i−(qε(ω)) ≤ j and S(ω, j + 1)}. (14)

Let Ir be the set of all subsets α of {1, . . . , l} consisting of r consecutive integers; if
α = {α1, . . . , αr} ∈ Ir , we assume its elements are arranged in increasing order, α1 <

· · · < αr . Let now r ∈ {1, . . . , l}, α ∈ Ir and for i ∈ {1, . . . , l − r} consider the sets

Ei,r =
⋃
α1≤i

⋂
j∈α

Cj , Fi+1,r =

i+r⋂
j=i+1

Cj .

For example if r = 1 we have Ei,1 = C1 ∪ · · · ∪ Ci and Fi+1,1 = Ci+1; if r = 2 then
Ei,2 = (C1 ∩C2)∪ · · · ∪ (Ci−1 ∩Ci) and Fi+1,2 = Ci+1 ∩Ci+2. We have the following
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combinatorial properties:

Ei,r ∪ Fi+1,r = Ei+1,r and Ei,r ∩ Fi+1,r =

i+r⋂
j=i

Cj .

The first equality is clear from the definition; for the second, notice that (14) implies

Ei,r ∩ Fi+1,r =
⋃
α1≤i

{ω | i−(qε(ω)) ≤ α1 and S(ω, l + r + 1)}

= {ω | i−(qε(ω)) ≤ i and S(ω, l + r + 1)} =
i+r⋂
j=i

Cj .

Plugging these equalities in the semialgebraic Mayer–Vietoris exact sequence of the pair
(Ei,r , Fi+1,r) we get

b
( i+r⋂
j=i+1

Cj

)
≤ b

( ⋃
α1≤j+1

⋂
j∈α

Cj

)
+ b

(i+r⋂
j=i

Cj

)
− b

( ⋃
α1≤j

⋂
j∈α

Cj

)
. (15)

If we now add all these inequalities, we obtain

l−r∑
i=0

b
( i+r⋂
j=i+1

Cj

)
≤ b

( ⋃
α1≤l−r+1

⋂
j∈α

Cj

)
+

l−r−1∑
i=0

b
(i+r⋂
j=i

Cj

)
. (16)

In fact, in the sum all the first and the last terms of the r.h.s. of (15) cancel (since they
appear with opposite signs), except for the last inequality which gives the contribution
b(
⋃
α1≤l−r+1

⋂
j∈α Cj ). Moreover since qε is transversal to all strata of Z, Proposition 4

implies ⋃
α1≤l−r+1

⋂
j∈α

Cj =
⋃
α∈Ir

⋂
j∈α

Cj = 6
(r)
ε .

Substituting this formula into (16) we finally get

l−r∑
i=0

b
( i+r⋂
j=i+1

Cj

)
≤ b(6(r)ε )+

l−r−1∑
i=0

b
(i+r⋂
j=i

Cj

)
. (17)

In particular we have the following chain of inequalities (we keep on substituting at each
step what we get from (17)):

l∑
i=1

b(Ci) =

l−1∑
i=0

b
( i+1⋂
j=i+1

Cj

)
≤ b(6(1)ε )+

l−2∑
i=0

b
(i+1⋂
j=i

Cj

)

≤ b(6(1)ε )+ b(6(2)ε )+

l−3∑
i=0

b
(i+2⋂
j=i

Cj

)
≤ · · · ≤

∑
r≥1

b(6(r)ε ).

Substituting this into (13) and recalling that 6(r)ε = ∅ for
(
r+1

2

)
≥ k yields the result. ut
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As a corollary we immediately get the following theorem.

Theorem 12. Let σk = b 1
2 (−1+

√
8k − 7)c. Then we have

Topological bound: b(X) ≤ b(RPn)+
1
2

σk∑
r=1

b(6(r)ε ).

Proof. This is simply a reformulation of the previous theorem in a nicer form. In fact
µ− ν ≥ 0, n+ 1 = b(RPn) and σk is given by Corollary 7. ut

If we also assume nondegeneracy of the linear system W we get the following theorem.

Theorem 13. For a generic choice of W = span{q1, . . . , qk} and r ≥ 1,

6
(r)
W = {q ∈ W \ {0} | dim ker(q) ≥ r} = Sing(6(r−1)

W )

and

b(X) ≤ b(RPn)+
1
2

∑
r≥1

b(6
(r)
W ).

Proof. Let us fix a scalar product on Qn+1; then for a generic choice of q1, . . . , qk the
unit sphere Sk−1 in W is transversal to all strata of Z =

∐
Nr and the first part of the

statement follows from (10).
Notice that the set of linear affine embeddings f : Rk → Qn+1 whose restriction

to Sk−1 is transversal to all the strata of Z is an open dense set; moreover if two such
embeddings f0 and f1 are joined by a nondegenerate homotopy, then by the Thom Iso-
topy Lemma the sets f−1

0 (Z(r)) and f−1
1 (Z(r)) are homotopy equivalent. In particular

for ε > 0 small enough the map qε given by Theorem 11 is nondegenerate homotopic to
Sk−1 ↪→ Qn+1 and thus for every r ≥ 0 we can substitute

b(6(r)ε ) = b(6
(r)
W )

in (11), which gives the result. ut

Remark 2. From the point of view of classical agebraic geometry, it is natural to consider
the projectivization PW rather than W itself; similarly we can consider P6 and by the
Gysin exact sequence we get, for a generic W ,

b(X) ≤ b(RPn)+
∑
r≥1

b(P6(r)W ).

Unfortunately there is no such formula for the general case; this is due to the fact that the
perturbation 6ε is not invariant by the antipodal map.

7. A numerical bound

From the previous discussion we can derive quantitative bounds on the homological com-
plexity of the intersection of real quadrics. We start by proving the following proposition,
which essentially refines [6, Corollary 2.3].
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Proposition 14. Let Y ⊂ Sk−1 be defined by polynomial equations of degree ≤ d . Then

b(Y ) ≤ (2d)k−1
+

1
8

(
k + 1

3

)
(6d)k−2.

Proof. By Alexander–Pontryagin duality our problem is equivalent to that of bounding
b(Sk−1

\ Y ) = b(Y ). Let Y be defined on the sphere by the polynomials f1, . . . , fR
and consider the new polynomial F = f 2

1 + · · · + f
2
R; then clearly Y is also defined by

{F = 0} on the sphere, and since F ≥ 0 we have Sk−1
\ Y = {F |Sk−1 > 0}; notice that

the degree of F is δ = 2d. By semialgebraic triviality, for ε > 0 small enough we have
the homotopy equivalences

Sk−1
\ Y ∼ {F |Sk−1 > ε} ∼ {F |Sk−1 ≥ ε}.

Let now ε > 0 be a small enough regular value of F |Sk−1 ; then {F |Sk−1 ≥ ε} is a subman-
ifold of the sphere with smooth boundary {F |Sk−1 = ε}, and by Lemma 10 we obtain

b(Sk−1
\ Y ) = 1

2b({F |Sk−1 = ε}).

Thus we have reduced the problem to the study of the topology of {F |Sk−1 = ε}, a set
given in Rk by the two equations F − ε = 0 and ‖ω‖2 − 1 = 0. Equivalently we can
consider their homogenization g1 =

hF − εω2d
0 = 0 and g2 = ‖ω‖

2
− ω2

0 = 0 and
their common zero locus in RPk; since there are no common solutions on {ω0 = 0} (the
hyperplane at infinity), these two equations still define {F |Sk−1 = ε}. By [17, Fact 1]
we can real perturb the coefficients of g1 and g2 and make their common zero set in
CPk a smooth complete intersection. This perturbation of the coefficients will not change
the topology of the zero locus set in RPk since before the perturbation it was a smooth
manifold; the fact that the perturbation is real allows us to use Smith’s theory. Thus let g̃1
and g̃2 be the perturbed polynomials. Then

b({F |Sk−1 = ε}) = b(ZRPk (g̃1, g̃2)) ≤ b(ZCPk (g̃1, g̃2)),

where in the last step we have used Smith’s inequalities. Eventually we end up with the
problem of bounding the homological complexity of the complete intersection C of mul-
tidegree (2, δ) in CPk. Let us first compute the Euler characteristic of C. By Hirzebruch’s
formula this is given by the (k − 2)th coefficient in the series expansion around zero of
the function

H(x) =
2δ(1+ x)k+1

(1+ 2x)(1+ δx)
.

In other words,

χ(C) =
H (k−2)(0)
(k − 2)!

.

To compute this number write H(x) = F(x)G(x) with F(x) = 2δ(1+x)k+1

1+2x and G(x) =
1

1+δx . Then

H (k−2)(0) =
k−2∑
j=0

(
k − 2
j

)
F (j)(0)G(k−2−j)(0).
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To compute the derivatives of F we do the same trick as for H : we write F(x) =
A(x)B(x) where A(x) = 2δ(1 + x)k+1 and B(x) = 1

1+2x . In this way, using the se-
ries expansion B(x) =

∑
∞

i=0(−1)i2ixi , we get

F (j)(0) = j !2(−2)j δ
j∑
i=0

(
k + 1
i

)(
−

1
2

)i
.

Moreover G(i)(0) = (−1)iδi i! (from the series expansion G(x) =
∑
∞

i=0(−1)iδixi

around zero). Plugging these equalities into the above one we get:

χ(C) = (−1)k
k−2∑
j=0

( j∑
i=0

(
k + 1
i

)(
−

1
2

)i)
2j+1δk−j−1.

Recall now that the formula b(C) = (k − 1)(1+ (−1)k+1)+ (−1)kχ(C) gives

b(C) = (k − 1)(1+ (−1)k+1)+

k−2∑
j=0

( j∑
i=0

(
k + 1
i

)(
−

1
2

)i)
2j+1δk−j−1

= (k − 1)(1+ (−1)k+1)+ 2δk−1
+

k−2∑
j=1

( j∑
i=0

(
k + 1
i

)(
−

1
2

)i)
2j+1δk−j−1

Since |
∑j

i=0
(
k+1
i

)(
−

1
2

)i
| ≤

(
k+1

3

)( 3
2

)k−2, from the above equality we can deduce

b(C) ≤ 2(k − 1)+ 2δk−1
+ 2δk−1

(
3
2

)k−2(
k + 1

3

) k−2∑
j=1

(
2
δ

)j
.

Since now δk−1∑k−2
j=1(

2
δ
)j = 2(δk−2

+ 2δk−3
+ · · · + 2k−3δ + 2k−2) and 2k−2

≥ k − 1,

we can bound 2(k − 1)+ 2δk−1∑k−2
j=1(2/δ)

j by 2kδk−2 and finally write

b(C) ≤ 2δk−1
+

1
4

(
k + 1

3

)
(3δ)k−2. (18)

This inequality, together with b(Y ) ≤ 1
2b(C) and δ = 2d, gives the result. ut

Remark 3. We notice that as long as d is large enough with respect to k, the previous
bound improves Milnor’s, which gives b(Y ) ≤ d(2d − 1)k−1; here it is essential that Y is
on the sphere, as we have used Alexander–Pontryagin duality.

As a corollary we get the following theorem.

Theorem 15. Let X be the intersection of k quadrics in RPn. Then

b(X) ≤ O(n)k−1.
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Proof. We use the bound given in Theorem 12; the proof is essentially collecting the
estimates given by the previous proposition for each summand b(6(r)ε ). By construction,
6
(r)
ε is a determinantal variety and it is defined by polynomials f1, . . . , fr of degree

d = n− r + 2 on the sphere Sk−1. The result now follows by plugging the bounds given
in Proposition 14 in the summands of Theorem 12 (there are only σk such summands). ut

Remark 4. As suggested to the author by S. Basu, there are two other possible ways to
get such numerical estimates. The first one is using a general position argument similar
to [6] and combinatorial Mayer–Vietoris bounds as in [9]; the second one is using again a
general position argument and stratified Morse theory (which in the semialgebraic case is
very well controlled, as noticed in [5]). Both these approaches work also in the affine case
producing a bound of the same shape; in the projective case it seems that also the leading
coefficient is the same. As for numerical uniform bounds, the advantage of the first one is
that it is applicable to more general cases, i.e. besides the quadratic one. To the author’s
knowledge nothing has been published on the subject; together with S. Basu the author
plans to give an account of these different techniques in a forthcoming paper.

We introduce the following notation:

B(k, n) = max{b(X) | X is the intersection of k quadrics in RPn}.

We now discuss the sharpness of the previous bound, showing that9

B(k, n) = 2(n)k−1.

Theorem 15 gives the inequality B(k, n) ≤ O(n)k−1; for the opposite inequality we need
to produce for every k and n an intersection MR of k quadrics in RPn with b(MR) ≥
Cnk−1, C > 0. Let us first notice that repeating the argument of Proposition 14, we can
deduce that a complete intersection M of k quadrics in CPn has

b(M) = b(M;Z) = 2(n)k−1

(this computation is already performed in [6]). It is known that there exists a real maxi-
malM , i.e. a complete intersection of k real quadrics in CPn whose real partMR satisfies

b(MR) = b(M).

Such an existence result holds in general for any complete intersection of multidegree
(d1, . . . , dk). An asymptotic construction is provided in [14]; the proof for the general
case has not been published yet but the author has been informed that it will be the subject
of a forthcoming paper of the authors of [14].

9 Here f (n) = 2(g(n)) means that there exist constants a, b such that ag(n) ≤ f (n) ≤ bg(n)
for all n ∈ N.
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8. Examples

Example 3 (k = 2). If X is the intersection of two quadrics in RPn, the previous ideas
produce the sharp bound b(X) ≤ 2n: in fact by inequality (13) we have

b(X) ≤ n+ 1− 2(µ− ν)+ 1
2b(6ε)

(every 6(r)ε with r > 1 is empty). On the other hand, 6ε is defined by an equation of
degree n+ 1 on the circle S1 and thus it consists of at most 2(n+ 1) points. This gives

b(X) ≤ n+ 1− 2(µ− ν)+ n+ 1 ≤ 2n

(in the case µ = ν we have b(X) ≤ n+1 ). Moreover for every n there exist two quadrics
in RPn whose intersection X satisfies b(X) = 2n (see [16, Example 2]). Notice that
the example provided there in the case of n odd gives a singular X. Using the notation
introduced above, this reads

B(2, n) = 2n.

What is interesting now is that for odd n the number B(2, n) is attained only by a singular
intersection of quadrics: the nonsingular one has at most b(X) ≤ 2n − 2 (this follows
from Smith’s inequality and Hirzebruch’s formula for the complete intersection of two
quadrics in CPn). For a more detailed discussion the reader is referred to [16, Section 6].

Example 4 (k = 3). If X is the intersection of three quadrics, then inequality (13) gives

b(X) ≤ n+ 1− 2(µ− ν)+ 1
2b(6ε),

Again, since the codimension of 6(r)ε is greater than 3 for r ≥ 2, in this case all these
sets except 6ε are empty (since k = 3 these sets are subsets of the sphere S2). This also
says that 6ε is a smooth curve on S2; let f = ‖ω‖2 − 1 and g = det(ωq − εp) be
the polynomials defining this curve and F,G their homogenizations. Then there exists
a real perturbation G̃ of G that makes the common zero locus C of G̃ and F a smooth
complete intersection in CP3. Since6ε is nondegenerate, the real partCR of this complete
intersection has the same topology of C, and by Theorem 12,

b(X) ≤ 1
2b(C)+O(n).

Recall that equation (18) was for a complete intersection of multidegree (2, δ) in CP3;
specifying it to this case δ = n+ 1 we get b(C) ≤ 2n2

+O(n), which when plugged into
the previous inequality gives

b(X) ≤ n2
+O(n).

(Indeed Theorem 1 of [17] gives the refined bound b(X) ≤ n2
+ n.) We notice now that

in this case
B(3, n) = n2

+O(n).

In fact the previous inequality provides the upper bound, and the lower bound is given by
the existence of almost maximal real complete intersections of three quadrics (see [15]
for an explicit construction of such maximal varieties).
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For X smooth, using the spectral sequence approach the authors of [11] have proved
that the maximum value B0(3, n) of b0(X) satisfies

1
4 (n− 1)(n+ 5)− 2 < B0(3, n) ≤ 3

2 l(l − 1)+ 2

where l = bn/2c+1. Notice in particular that 1/4 ≤ lim infB0(n, 3)/n2
≤ 3/8 as n goes

to infinity.

Example 5 (k = 4). This is the first case where we need to take into account the com-
plexity of the singular points of 6ε . As promised, we give a simplified proof of part (ii)
of Theorem 11 for this case, aiming to acquaint the reader with the idea of that proof.
Let p ∈ Qn+1 be the positive definite form given by Lemma 6. Then by Lemma 5 and
Agrachev’s bound we get

b(X) ≤
∑

ν≤j≤µ−1

b(�j (ε))+O(n)

where the �j (ε) are now subsets of S3. Corollary 9 says that each of them is a manifold
with boundary; let us rename the boundaries as Cj = ∂�ν+j−1(ε) for j = 1, . . . , l =
µ− ν. Lemma 10 allows us now to use 1

2b(Cj ) instead of b(�ν+j−1(ε)) in the previous
bound to get

b(X) ≤
1
2

l∑
j=1

b(Cj )+O(n).

Now 6ε is a surface on S3 given by C1 ∪ · · · ∪ Cl , but this union is not disjoint since
singular points may occur. They are isolated, since their union (if nonempty) has codi-
mension 3 on the sphere S3. The set 6(2)ε = Sing(6ε) equals exactly the set of points
where two different Cj intersect. On the other hand, if |i − j | ≥ 2 then Cj ∩ Ci = ∅,
since any point on this intersection would have kernel at least of dimension three. Thus
6ε is made by taking the abstract disjoint union of the sets C1, . . . , Cl and identifying
the points on Cj ∩ Cj+1 for j = 1, . . . , l − 1. This identification procedure can increase
the number of generators of the fundamental group; the number of connected components
instead can decrease at most by b(Sing(6ε)), that is,

b(6ε) ≥ b
( l∐
j=1

Cj

)
− b(Sing(6ε)).

Plugging this into the above inequality for b(X) we get

b(X) ≤ 1
2 {b(6ε)+ b(Sing(6ε))} +O(n).

Proposition 14 says that both 6ε and Sing(6ε) have complexity bounded by 16n3 and
thus

b(X) ≤ 16n3
+O(n). (19)

On the other hand, we notice that if X is the real part of a smooth complete intersection
of four real quadrics in CPn, then b(X) ≤ 2

3n
3
+ O(n); thus the above bound is sharp

only in its shape. By the above discussion on the topology of determinantal varieties, we
expect that (19) can be improved.
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b

b b

b

C1 C2 6ǫ

−→

Fig. 3. An example of the way the identification procedure works: 6ε has two singular points and
is obtained by glueing the disjoint union of C1 and C2 along two copies of these singular points
(one copy is on C1 and one on C2).
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