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Abstract. We extend, to parabolic equations of the KPP type in periodic media, a result of Bram-
son which asserts that, in the case of a spatially homogeneous reaction rate, the time lag between
the position of an initially compactly supported solution and that of a traveling wave grows loga-
rithmically in time.
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1. Introduction

1.1. Model and question

We study solutions u(t, x) of the initial value problem

ut = uxx + f (x, u) (t > 0, x ∈ R), u(0, x) = u0(x). (1.1)

The initial datum u0 is nonnegative, nonzero and compactly supported. The function f is
of class C1

[0, 1], 1-periodic in x, concave in u, and satisfies f (x, 0) = 0. We also assume
that:

1. The first periodic eigenvalue of −∂xx − g(x) is negative, where g(x) = ∂uf (x, 0).
2. We have f (x, u) = g(x)u− q(x, u), with q(x, u) ≥ mu2 for large u.

Thus, f (x, u) < 0 as soon as u is larger than some s0 > 0. We will sometimes say
that f satisfies the KPP assumptions, in reference to the seminal paper of Kolmogorov,
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Petrovskiı̆ and Piskunov [23]. Also note that they do not preclude g to be negative in
some regions; this is important for models in ecology, where the nonlinearity f (x, u) =
g(x)u− u2 is of special interest.

Under those assumptions, there is (see [6]) a unique positive solution π(x) to −π ′′ =
f (x, π) on R, which is in addition 1-periodic. This function π(x) attracts, locally uni-
formly, the solutions of (1.1). Thus, there is a moving transition between the values of
u(t, ·) that are close to π(x), and those close to 0. We are going to study how this transi-
tion moves to the right, and to this end let us define

X(t) = max
{
x ≥ 0 : u(t, x) = 1

2 inf
R
π
}
. (1.2)

Then (Freidlin–Gärtner [17], Freidlin [15], Weinberger [32], Berestycki–Hamel–Nadin
[5]) the function X(t)/t tends, as t → ∞, to a constant c∗ which is the smallest speed
of a pulsating front solution to (1.1) (we will come back to this definition later, in much
more detail). The question we ask is the following: what can we say about X(t)− c∗t?

1.2. The case of a homogeneous medium

Here we just mean that f does not depend on x: f (x, u) = f (u). Assumptions 1 and 2
translate into f ′(0) > 0, π(x) ≡ 1 and f ′(1) < 0. Then, given any c ≥ c∗ = 2, there
exists a traveling wave solution u(t, x) = Uc(x − ct) of (1.1), which satisfies −cU ′c =
U ′′c + f (Uc), Uc(−∞) = 1, Uc(∞) = 0 and Uc > 0. For c > c∗ the function Uc(x)
decays exponentially as x → ∞: Uc(x) ∼ Ce−λcx , with the decay rate λc being the
smallest positive solution of λ2

− cλ+ 1 = 0.
On the other hand, at c = c∗ the traveling wave asymptotics is Uc∗(x) ∼ Cxe−λ

∗x ,
with λ∗ = 1. It has been shown in the pioneering work of Bramson [8, 9] that

X(t) = c∗t −
3

2λ∗
log t +O(1) as t →∞.

There is even a little more: the region in R+ where u(t, x) transitions from the value
u ≈ 1 to u ≈ 0 has a width that is uniformly bounded in time, and is located at the
distance (3/(2λ∗)) log t behind the location of the traveling wave with minimal speed c∗.
Bramson’s proofs were based on probabilistic techniques, and were later extended by
Gärtner to higher dimensions [16], and recently revisited by Roberts [29], while a PDE
proof of this result was later given in [31]. It was extended in [24], with the additional
assumption f ′(s) ≤ f ′(0) on [0, 1], to initial data that decay faster than the wave with
minimal speed. These results were recently revisited in [20], which is actually a compan-
ion paper to the present one.

1.3. Main results

The goal of this paper is to understand whether we can generalize Bramson’s results to the
periodic case (1.1). While there is, as we just saw, a rather large literature concerning the
homogeneous case, nothing of that sort exists in the case of coefficients that are not space-
homogeneous. We are going to prove that there is still a logarithmic lag in the periodic
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case, and we will identify it precisely. As a by-product of our analysis, we will obtain
the convergence of the solution to a family of traveling pulsating waves, in the correct
reference frame.

So, let us recall the notion of a pulsating traveling wave that generalizes the notion
of a traveling wave to periodic media. A pulsating front with speed c > 0 is a function
Uc(t, x) satisfying

Ut = Uxx + f (x,U), t, x ∈ R, (1.3)

and U(t + 1/c, x) = U(t, x − 1), as well as the boundary conditions U(t,−∞) = 1,
U(t,∞) = 0. Let us now recall some of the results about spreading speeds and pulsating
traveling wavesUc(t, x) [2, 4, 19, 21, 32, 33] under the given assumptions on f (x, u). It is
known that there is a minimal speed c∗ > 0 such that for each c ≥ c∗, there exists a unique
(up to time shifts) pulsating traveling front Uc(t, x), while no pulsating traveling front
exists with a speed less than c∗. Furthermore, all pulsating traveling fronts are necessarily
increasing in t . Lastly, the minimal speed c∗ may be characterized as follows. Given
λ > 0, let ψ = ψ(x, λ) > 0 be the principal eigenfunction of the 1-periodic eigenvalue
problem

ψxx − 2λψx + (λ2
+ g(x)f ′(0))ψ = γ (λ)ψ,

ψ(x + 1, λ) = ψ(x, λ), ψ(x, λ) > 0, x ∈ R,
(1.4)

and γ (λ) the corresponding eigenvalue. The eigenfunction is normalized so that∫ 1
0 ψ(x, λ) dx = 1 for all λ > 0. The minimal wave speed is given by c∗ =

minλ>0 γ (λ)/λ = c(λ∗). Here λ∗ > 0 minimizes γ (λ)/λ. In particular, we have
γ ′(λ∗) = γ (λ∗)/λ∗ = c∗. Our first main result is as follows.

Theorem 1.1. Let u(t, x) solve (1.1) with a nonnegative, nonzero, compactly supported
initial datum u0(x). Then for any ε > 0 there exist s(ε) and L(ε) such that

u(t, x) ≥ π(x)− ε for all t > s(ε) and x ∈
[

0, c∗t −
3

2λ∗
log t − L(ε)

]
and

u(t, x) < ε for all t > s(ε) and x ∈
[
c∗t −

3
2λ∗

log t + L(ε),∞
)
.

So, the front is located at distance (3/(2λ∗)) log t behind the pulsating front.
Let us explain informally, in PDE terms, how the logarithmic decay comes about. The

main observation is that solutions of the nonlinear problem (1.1) behave very similar to
those of the linearized problem vt = vxx + g(x)v, with the Dirichlet boundary condition
v(t, c∗t) = 0 and any rapidly decaying initial datum. With g(x) ≡ 1, c∗ = 2 and λ∗ = 1,
let us write v(t, x) = p(t, x − 2t)e−(x−2t). Then p(t, x) satisfies the standard heat equa-
tion pt = pyy , p(t, 0) = 0. It follows that p(t, y = 1) ∼ t−3/2 as t → ∞, or, in the
original variables, v(t, x = 2t + 1) ∼ t−3/2. Assuming that the solution u(t, x) of the
nonlinear problem has the same behavior as v(t, x), and has the exponential asymptotics
u(t, x) ∼ e−(x−X(t)), we deduce that X(t) ∼ 2t − (3/2) log t . For the homogeneous case
g ≡ 1, we have worked out this argument in detail in [20], producing quite a short proof
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of the Bramson shift. This is the idea that we will put to work here, at the unfortunate
expense of much heavier technicalities.

In the proof of Theorem 1.1, one shows actually more precise exponential estimates
on u(t, x) for x ≥ c∗t − (3/(2λ∗)) log t . These estimates imply that the solution u is
asymptotically trapped between two finite space shifts of the minimal front Uc∗ around
the position x = c∗t − (3/(2λ∗)) log t . Equivalently, u is asymptotically trapped between
two finite time shifts of the minimal frontUc∗ around the time t−(3/(2c∗λ∗)) log t . Then,
by passing to the limit along any level set, any limiting solution is necessarily equal to a
shift of the minimal front: this follows from a new Liouville-type result which is similar
to what had already been known in the homogeneous case. So, our result is:

Theorem 1.2. There exist a constant C ≥ 0 and a function ξ : (0,∞) → R such that
|ξ(t)| ≤ C for all t > 0 and

lim
t→∞

∥∥∥∥u(t, ·)− Uc∗(t − 3
2c∗λ∗

log t + ξ(t), ·
)∥∥∥∥

L∞(0,∞)
= 0. (1.5)

Furthermore, for everym ∈ (0, infπ) and every sequence (tn, xn) such that tn→∞ and
xn − [xn] → x∞ ∈ [0, 1] as n→∞, and u(tn, xn) = m for all n ∈ N, we have

u(t + tn, x + [xn]) −−−→
n→∞

Uc∗(t + T , x) locally uniformly in (t, x) ∈ R2, (1.6)

where [xn] denotes the integer part of xn and T ∈ R denotes the unique real number such
that Uc∗(T , x∞) = m.

This shows in particular the convergence to the family of minimal fronts along the level
sets of u.

1.4. Discussion

To the best of our knowledge, Theorem 1.1 is the first of this type for models with pe-
riodic coefficients. As is well-known, most of the information is retrieved through the
analysis of the linearized equation vt − vxx = g(x)v. The bulk of the proof is in getting
the decay estimates for the heat kernel in a half-space for this equation, with a Dirich-
let condition at a boundary moving with speed c∗ to the right. Heat kernel estimates for
second-order linear parabolic equations in the whole space are well-known, starting from
the pioneering work of Nash [26] for operators in divergence form—a different viewpoint
being provided by Fabes–Stroock [12]—and extended to general operators by Norris [28].
However, we are not aware of such results in a half-space for periodic coefficients. In fact,
although the papers [12] and [28] were crucial to us, we had to introduce a new ingredi-
ent. Indeed, the Fabes–Stroock/Norris proofs need the conservation of the total mass—a
trivial but indispensable property. Nothing of that sort is available here and, as a matter
of fact, it should not be expected. What is true in the homogeneous case is the conserva-
tion of

∫
∞

0 xp(t, x) dx if p(t, x) solves the heat equation on R+ with Dirichlet boundary
conditions. However, we are dealing in the periodic case with an equation with variable
coefficients, so trying to compute the integral of xp does not lead very far. One of our
contributions in this paper is to have identified a family of multipliers which, integrated
against a solution, yield a conserved—or controlled from above and below—quantity.
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Turn to Theorem 1.2. This is a result of the type “convergence along level sets”, i.e.
it identifies a limiting profile for the solutions, in the (a priori unknown) reference frame
of X(t). The first—and most famous—one is the KPP theorem [23] for homogeneous
equations. For equations with periodic coefficients, results of this type have been obtained
recently in Ducrot–Giletti–Matano [11] for more general nonlinearities f and Heaviside
initial conditions u0, and in Giletti [18] for asymptotically periodic KPP functions f and
compactly supported initial conditions u0. See also Ducrot [10] that adapts our ideas in
[20] to an equation that becomes asymptotically homogeneous in x. The proofs in [11, 18]
are based on the time-decay property of the number of intersections of any two solutions
and on the fact that the minimal fronts are the steepest ones. In particular, they do not
identify whether or not the level sets of the solutions travel at the same speed as those of
the traveling waves or, as opposed to that, if they travel with a time lag.

When f (u) = u(1− u), there is a well-known connection between solutions of (1.1)
and branching Brownian motion [8, 25]. Consider a branching Brownian motion with
constant branching rate g > 0. Initially, there is one Brownian particle, X1(0) = 0.
At a random time T1, which is an independent exponential random variable with rate g,
this particle gives birth to two independent Brownian motions and then dies immediately
itself. The two new particles start their motions from the final location of the parent par-
ticle. The process continues in this way, each living particle reproducing and dying at an
independent random time, leaving two new Brownian particles as offspring. As shown
by McKean [25], the function u(t, x) = P(maxk∈L(t)Xk(t) > x | X1(0) = 0) satisfies
ut =

1
2uxx + gu(1 − u) and u(0, x) is the Heaviside function. The set L(t) is the set

of indices corresponding to particles that are alive at time t . The zero Dirichlet bound-
ary condition corresponds to Gärtner’s [16] strategy of killing the branching Brownian
motion at a moving boundary. If f (x, u) has the form g(x)u(1 − u), there is a similar
interpretation of the solution u in terms of branching Brownian motion with spatially-
variable branching rate g(x). However, our general assumptions on f also include cases
where the solution u seems not to have such a simple representation.

In a slightly different vein, let us mention the contribution of Fang–Zeitouni [13],
where the medium is taken to be time-dependent, with the diffusion coefficient σ(t)
slowly and monotonically varying between two different values σ1 and σ2. The authors
prove, by probabilistic techniques, that the lag behind X(t) and the traveling front posi-
tion depends strongly on the respective positions of σ1 and σ2. In particular, it is shown
that it can be of the order t1/3. In [27], we identify the lag to be ∼ −kt1/3+O(log t), the
constant k being explicitly computed.

We end this section by a discussion of some issues that we are not treating here; they
range from easy generalizations to truly difficult questions. The first one concerns equa-
tion (1.1) with a spatially periodic diffusion. We have chosen not to treat it, because it
would only make the notation heavier. The results would be exactly the same. A more
interesting question concerns what happens for equations of the type (1.1) in cylindrical
geometries, or even in cylinders with oscillating boundaries. Dirichlet or Neumann con-
ditions should be imposed. More than likely, the results would not change too much, but
one might expect nontrivial technical issues in the study of the linearized equation. In the
same (we believe) order of difficulty, one may ask about convergence to a single wave,
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rather than a family of waves. This is true in the homogeneous case. Moreover some of
our intermediate results—the first moment conservation being one of them—would point
towards this. We are not, however, in a position to be more conclusive. Finally, quite an
interesting question is the multi-dimensional case, i.e. what is the shift in every direction
if the initial datum is compactly supported? There is at the background a free boundary
problem that is less than obvious, and so it is not a mere adaptation of Theorem 1.1. These
last three questions are left for future research.

1.5. Organization of the paper

The proof of Theorem 1.1 is long and technical, so we will try to present it in a way that is
the most reader-friendly as possible. As said before, the main effort is to be concentrated
on the linearized equation vt − vxx = g(x)v; so, in Section 2, we state the main estimates
that we would like to prove, and explain how these estimates entail the sought-for time
shift: X(t)− c∗t = (3/(2c∗λ∗)) log t +O(1). Section 3 is an important part of the paper.
We put the linearized equation in an almost self-adjoint form (as is done in Norris [28]),
and we construct multipliers which, integrated against a solution, will produce conserved
(or approximately conserved) quantities. In Section 4, we prove the estimate on the lin-
earized equation that entail the lower bound on X(t). In Section 5 we prove the estimates
that imply the upper bound. Finally, in Section 6, we prove Theorem 1.2.

2. Computing the time shift from the linearized equation

This section is divided into two subsections, the first one dealing with the lower bound
on the front location, the second with the upper bound. Both are organized in the same
fashion: in the first paragraph, we state the linear estimates that we will prove later. In the
subsequent paragraphs, we explain how these bounds turn into a lower estimate for the
front location.

2.1. The lower bound

2.1.1. Estimates on the linearized Dirichlet problem. The proof of the lower bound in
Theorem 1.1 is based on the analysis of the linearized equation

wt = wxx + g(x)w (x ≥ c
∗t), w(0, x) = u0(x) (x ≥ 0), w(t, c∗t) = 0, t ≥ 0.

(2.1)
It is convenient to represent w(t, x) in the form w(t, x) = e−λ

∗(x−c∗t)ψ(x, λ∗)p(t, x),
where ψ(x, λ∗) is the normalized eigenfunction of (1.4) with λ = λ∗ satisfying γ ′(λ∗) =
γ (λ∗)/λ∗ = c∗, and p(t, x) satisfies

pt = pxx +
2φx
φ
px, x ≥ c∗t, (2.2)

p(t, c∗t) = 0, t > 0,

p(0, x) = p0(x) = u0(x)e
λ∗x(ψ(x, λ∗))−1, x > 0,
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with φ(t, x) = e−λ
∗(x−c∗t)ψ(x, λ∗). The initial datum p0(x) is nonnegative and com-

pactly supported on [0,∞). For convenience, we define

κ(x) =
2φx
φ
= −2λ∗ + 2

ψx(x, λ
∗)

ψ(x, λ∗)
, (2.3)

which is the drift term in (2.2). The function κ(x) is 1-periodic in x and independent of t .
We will need two ingredients. The first one is an upper estimate on the solution p(t, x)

of (2.2).

Lemma 2.1. There exists a constant C > 0 such that

|p(t, x + c∗t)| ≤
Cx

(t + 1)3/2

∫
∞

0
yp0(y) dy for all t, x > 0. (2.4)

For the homogeneous heat equation pt = pxx on R+ (g is constant), with Dirichlet
conditions, this is quite a classical result which can be seen by inspection of the solution
p(t, x) = (4πt)1/2

∫ t
0 (e
−(x−y)2/4t

− e−(x+y)
2/4t )p(0, y) dy. The second ingredient is a

lower bound when x − c∗t is of order
√
t .

Proposition 2.2. There exist constants T0, σ, C0 > 0 such that

p(t, c∗t + σ
√
t) ≥ C0/t for all t ≥ T0.

Lemma 2.1 will be proved in Section 3, and Proposition 2.2 in Section 4. For the homo-
geneous heat equation, both are once again quite simple results.

2.1.2. From the linearized problem to a subsolution for the nonlinear problem. Given
the lower bound of Proposition 2.2, the next step is to construct a subsolution for (1.1)
using the solution of (2.1). If w̄(t, x) = a(t)w(t, x), then w̄(t, x) is a subsolution for
(1.1), that is, w̄t ≤ w̄xx + g(x)w̄− q(x, w̄) with q(x, w̄) = g(x)w̄− f (x, w̄) = O(w̄2),
provided that

a′(t)w(t, x) ≤ −q(x, a(t)w(t, x)). (2.5)
So, (2.5) holds provided that

a′(t)w(t, x) ≤ −Ma(t)2w(t, x)2 (2.6)

with a large enough constantM . From Lemma 2.1, there exists C0 > 0, depending on u0,
such that

w(t, x) ≤
C0

(t + 1)3/2
for all t ≥ 0, x ∈ R (2.7)

(we may define w(t, x) = 0 for x < c∗t). So, given (2.7), (2.6) holds provided that
a′(t) ≤ −M(t + 1)−3/2a(t)2, and we may take

a(t) =
a(0)

1+ 2Ma(0)(1− (t + 1)−1/2)

with a(0) > 0, which satisfies a(0)/1+ 2Ma(0) ≤ a(t) ≤ a(0) for all t ≥ 0. If a(0) < 1,
then w̄(0, x) ≤ u0(x) for all x ∈ R. Therefore, the comparison principle implies u(t, x) ≥
w̄(t, x) = a(t)w(t, x) ≥ Cw(t, x) for all t ≥ 0 and x ≥ c∗t . In particular, Proposition 2.2
yields

u(t, ct + σ
√
t) ≥ Ct−1e−λ

∗σ
√
t for t ≥ T0. (2.8)
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2.1.3. From a lower bound on the far right to the bound at the front. Now we show that
(2.8) implies the lower bound in Theorem 1.1. Let π(x) be the positive steady solution
of (1.1). Let ε > 0. We want to show that there is a constant L(ε) ∈ R such that, for
large t ,

u(t, x) ≥ π(x)− 2ε, ∀x ∈

[
0, c∗t −

3
2λ∗

log t − L(ε)
]
. (2.9)

The idea is to put a certain translate of the pulsating front Uc∗ below u. However, u(t, x)
might be a little below π(x) even in the areas where it should be close to π , so we have to
slightly deform Uc∗ . For every λ ≥ 1, consider f (λ, x, u) = g(x)u+ λq(x, u); we have
f (1, x, u) = f (x, u) and ∂λf ≤ 0 due to the assumptions on f . The function f (λ, x, ·)
is still concave, and we still have ∂uf (λ, x, 0) = g(x). Let πλ be the unique bounded
positive solution of −π ′′ = f (λ, x, π); it is still 1-periodic in x. From the linear stability
[6] of πλ with respect to (1.1), and the strong maximum principle, we have ∂λπ < 0.
Thus, if ε > 0 is small, let λε > 1 be the largest λ such that πλ(x) ≥ π(x)− ε for all x.
By the Harnack inequality, there is δε > 0 such that π(x)−πλ(x) ≥ δε. We fix such a λε,
and denote it by λ for convenience. Because ∂uf (λ, x, 0) = g(x), c∗ is still the minimal
speed for the pulsating traveling front problem, with f (x, u) replaced by f (λ, x, u). Let
Uλc∗ be such a traveling front; it connects monotonically πλ on the left to 0 on the right.

To show (2.9), we will bound u from below by the function Ũ (t, x) = Uλc∗(t−r(t), x),
with r(t) = o(t) to be chosen. Since ∂tUλc∗(t, x) > 0 we have, provided that r ′ ≥ 0,

Ũt − Ũxx − f (x, Ũ) ≤ Ũt − Ũxx − f (λ, x, Ũ) = −r
′(t)∂tU

λ
c∗ ≤ 0.

Since the first periodic eigenvalue of −∂xx − g(x) is negative, it is known from [7] that
u(t, x) → π(x) as t → ∞ locally uniformly in x ∈ R. Therefore, there exists T1 > 0,
depending on u0 and ε, such that u(t, 0) ≥ π(0) − δε/2 for all t ≥ T1. Consequently,
Ũ (t, 0) < π(0) − ε ≤ u(t, 0) for all t ≥ T1. By taking T1 larger if necessary, we may
assume T1 > T0 so that (2.8) holds for all t ≥ T1. Therefore, the maximum principle and
(2.8) imply that the bound

Ũ (t, x) ≤ u(t, x) for all t ≥ T1, x ∈ [0, c∗t + σ
√
t], (2.10)

will hold if the following two conditions are satisfied:

Ũ (T1, x) ≤ u(T1, x), x ∈ [0, c∗T1 + σ
√
T1], (2.11)

Ũ (t, c∗t + σ
√
t) ≤

C

t
e−λ

∗σ
√
t , t > T1. (2.12)

We now claim that (2.11) and (2.12) hold with r(t) = 3
2λ∗c∗ log t + L0 if L0 is

sufficiently large. For (2.11), because of the monotonicity of Uλc∗ , one just has to take
L0 large enough. As for (2.12), recall [19] that Uλc∗(t, x) ≤ C(x − c∗t)e−λ

∗(x−c∗t)
≤

(C/t)e−λ
∗σ
√
te−λ

∗c∗L0 for all t > T1. So, if L0 is sufficiently large, we have (2.12). With
this choice of r , the lower bound of Theorem 1.1 follows from (2.10). ut
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2.2. The upper bound

As we have seen, the idea behind the (3/(2λ∗)) log(t) delay is that the evolution is driven
by the behavior of solutions to the Dirichlet problem (2.1), which is zt−zxx−g(x)z = 0,
x > c∗t , with z(t, c∗t) = 0. The problem is that such solutions that are initially compactly
supported will decay in time like t−3/2, hence they cannot serve as supersolutions to the
nonlinear problem. The correction to this inconvenience is to devise a reference frame
in which the Dirichlet problem will have solutions that remain bounded both from above
and below by positive constants for finite x, and this is exactly what the (3/(2λ∗)) log t
shift achieves.

2.2.1. The linearized problem in the logarithmically shifted reference frame. We expect
the front to be at x(t) = c∗t − r log t with r = 3/(2λ∗). For the moment, let us assume
that the constant r is still general, and we will choose r appropriately later. Accordingly,
we consider the Dirichlet problem{

zt − zxx − g(x)z = 0, t > 0, x > c∗t − r log(t + T )+ r log T ,
z(t, c∗t − r log(t + T )+ r log T ) = 0,

with a given nonnegative continuous compactly supported initial condition z(0, ·) 6≡ 0
in (0,∞).

Define the new time variable τ by c∗τ = c∗t − r log(t + T ) + r log T , and set
z̃(τ, x) = z(t, x). Let us also denote t = h(τ), and choose T > 0 sufficiently
large so that the function h(τ) is well-defined and monotonic. Then, set z̃(τ, x) =
e−λ

∗(x−c∗τ)ψ(x, λ∗)α(τ)p̃(τ, x) with an increasing function α(τ) > 0 to be determined.
Here, as before, ψ(x, λ∗) is the eigenfunction of (1.4). The function p̃(τ, x) must satisfy

1
h′(τ )

p̃τ = p̃xx + 2
φx

φ
p̃x +

(
−

1
h′(τ )

α′(τ )

α(τ)
+ λ∗c∗

(
1−

1
h′(τ )

))
p̃ = 0,

τ > 0, x > c∗τ, (2.13)

where 2φx/φ is as in (2.3). We first compute h′(τ ):

1
h′(τ )

= 1−
r

c∗(h(τ )+T )
= 1−

r

c∗(τ+T )+r log((t+T )/T )
= 1−

r

c∗(τ+T )
+β(τ),

with

β(τ) =
r

c∗(τ + T )
−

r

c∗(τ + T )+ r log((t + T )/T )

=
r2 log((t + T )/T )

c∗(τ + T )
(
c∗(τ + T )+ r log((t + T )/T )

) . (2.14)

Observe that |β(τ)| ≤ Cτ−3/2, and if r > 0, then h′(τ ) > 1 for all τ > 0.
To eliminate the low-order term in (2.13), we now choose α(τ) so that

α′(τ )

α(τ)
= c∗λ∗(h′(τ )− 1) =

rλ∗

τ + T
+O

(
1

(τ + T )3/2

)
,



474 François Hamel et al.

hence

α(τ) = exp[rλ∗ log(τ + T )+O(τ−1/2)] = (τ + T )rλ
∗

(1+O(τ−1/2)). (2.15)

The function p̃(τ, x) then satisfies

1
h′(τ )

p̃τ = p̃xx + 2
φx

φ
p̃x, τ > 0, x > c∗τ, (2.16)

with the Dirichlet condition p̃(τ, c∗τ) = 0. Observe that if r = 0 (taking no logarithmic
shift), and h′ ≡ 1, this is identical to equation (2.2) which is satisfied by p(t, x) that was
used in the construction of a subsolution. However, we cannot take r = 0 and use p(t, x)
for a supersolution since p(t, x) decays as t−3/2 as t →∞, while for a supersolution we
need p(t, x) to stay bounded from above and below for finite values of x.

To bound the function z(t, x) = z̃(τ, x) = e−λ
∗(x−c∗τ)ψ(x, λ∗)α(τ)p̃(τ, x), we need

an estimate on p̃(τ, x) from above and below. The main technical step in the proof of
the upper bound in Theorem 1.1 is the following estimate on p̃(τ, x), which implies that
p̃ has the same leading order behavior as p, even though h′(τ ) 6= 1 in (2.16). Let us
set ω(τ) = 1− 1

h′(τ )
=

r
c∗(τ+T )

− β(τ). Observe that ω(τ) ∼ r/c∗τ as τ → ∞, and
|ω(τ)| ≤ C/τ , |ω′(τ )| ≤ C/τ 2 for τ > τ0. The linear estimate that we shall need is as
follows.

Proposition 2.3. Let p̃(τ, x) satisfy

(1− ω(τ))p̃τ = p̃xx + 2
φx

φ
p̃x, x ≥ c∗τ, (2.17)

with the Dirichlet boundary condition p̃(τ, c∗τ) = 0. Then there exist constants k,K, τ0
> 0 such that

k(x − c∗τ)

τ 3/2 ≤ p̃(τ, x) ≤
K(x − c∗τ)

τ 3/2 for all τ > τ0, x ∈ (c
∗τ, c∗τ + k

√
τ).

2.2.2. Proof of the upper bound in Theorem 1.1, knowing Proposition 2.3. In terms of
the function z̃(τ, x), Proposition 2.3 says that

α(τ)

τ 3/2 k(x − c
∗τ)e−λ

∗(x−c∗τ)
≤ z̃(τ, x) ≤

α(τ)

τ 3/2 K(x − c
∗τ)e−λ

∗(x−c∗τ)

for all τ > τ0 and x ∈ (c∗τ, c∗τ + k
√
τ), possibly after changing the positive con-

stants k and K . Expression (2.15) for α(τ) shows that the choice of r = 3/(2λ∗) gives
K1 ≤ α(τ)/τ

3/2
≤ K2 for τ ≥ τ0, and therefore k(x − c∗τ)e−λ

∗(x−c∗τ)
≤ z̃(τ, x) ≤

K(x − c∗τ)e−λ
∗(x−c∗τ) for all τ > τ0 and x ∈ (c∗τ, c∗τ + k

√
τ).

Now, we go back to the t variable. Since c∗τ = c∗t − r log(t + T )+ r log T , we get
the lower and upper bounds

z(t, x) ≥ k(x − c∗t + r log(t + T )− r log T )e−λ
∗(x−c∗t+r log(t+T )−r log T ),

z(t, x) ≤ K(x − c∗t + r log(t + T )− r log T )e−λ
∗(x−c∗t+r log(t+T )−r log T ),

(2.18)



KPP fronts in a periodic medium 475

for all t ≥ h(τ0), in the interval c∗t − r log(t + T )+ r log T ≤ x ≤ c∗t − r log(t + T )+
r log T + kt1/2, possibly after decreasing the positive constant k.

Let π(x) be the steady solution of (1.1). It follows from (2.18) that there exist
x1, x2 > 0, both independent of t ≥ h(τ0), such that if we choose M ≥ ‖π‖∞
large enough, then (i) Mz(t, c∗t − r log(t + T ) + r log T + x1) ≥ 2‖p‖∞ and
(ii) Mz(t, c∗t − r log(t + T )+ r log T + x) ≤ 1

2 infR π for all x > c∗t − r log(t + T )+
r log T + x2. Then we set

ū(t, x) =

{
π(x), x ≤ c∗t − r log(t + T )+ r log T + x1,

min(π(x),Mz(t, x)), x ≥ c∗t − r log(t + T )+ r log T + x1,
(2.19)

for t ≥ h(τ0). Note that ū(t, x) = Mz(t, x) for all x > c∗t − r log(t + T )+ r log T + x2.
Moreover, u(0, x) ≤ ū(h(τ0), x) for all x ∈ R, possibly after increasing the constant M .
Therefore, since ū(t, x) is a supersolution because of the KPP assumption, the maximum
principle implies that u(t, x) ≤ ū(t + h(τ0), x) for all t ≥ 0 and x ∈ R. Therefore, for
any γ > 0, we may choose x̄ sufficiently large so that

u

(
t, x + c∗t −

3
2λ∗

log(t)
)
≤ Mz

(
t + h(τ0), x + c

∗t −
3

2λ∗
log(t)

)
< γ

for all t > 0 and x ≥ x̄. ut

3. Almost self-adjoint form and special solutions for the linearized equation

The first part of this section is standard, and simply consists in writting (2.2) in a form
that is as close as possible to self-adjoint, as is done in [28]. This form is the best suited
for studying moments of the solution. In the second part, we generalize to (2.2) the ob-
servation that, for the Dirichlet heat equation pt = pxx on R+, there is first moment
conservation:

∫
∞

0 xp(t, x) dx is time-constant. We are going to show that integrals of the
form I (t) =

∫
∞

c∗t
ν(x)f (t, x)p(t, x) dx, where f (t, x) solves an adjoint equation, are

preserved. A more flexible version of this principle will also be presented, and will turn
out to be useful in the more technical estimates of the solution of the linear equation. As
an application, we will prove the t−3/2 upper bound on the solutions p(t, x).

3.1. The almost self-adjoint form

We summarize everything in

Lemma 3.1. Let κ(x) = 2φx/φ be defined by (2.3). There is a unique positive, periodic
function ν(x) with mass 1 over a period, such that for any function p(x),

pxx + κ(x)px =
1
ν(x)

∂

∂x
(ν(x)px)−

c∗

ν(x)
px . (3.1)
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Proof. The identity (3.1) means that

ν′(x) = κ(x)ν(x)− b̄ (3.2)

with b̄ = −c∗, and hence νxx − (κ(x)ν)x = 0. This equation has a positive periodic
solution: indeed, ν̃(x) ≡ 1 satisfies the adjoint problem ν̃xx + κ(x)ν̃x = 0, and the
Krein–Rutman theorem applies.

To find b̄, observe that the periodic function χ(x) = − 1
ψ(x,λ∗)

dψ(x,λ∗)
dλ

satisfies

χxx + κ(x)χx = −κ(x)− c
∗. (3.3)

Indeed, differentiating (1.4) in λ gives the following equation for ψλ = dψ/dλ:

(ψλ)xx − 2λ(ψλ)x + λ2ψλ − 2ψx + 2λψ + g(x)ψλ = γ ′(λ)ψ + γψλ.

Then, using the identity γ ′(λ∗) = γ (λ∗)/λ∗ = c∗, we obtain at λ = λ∗, with ψ∗λ (x) =
ψλ(x, λ

∗),

(ψ∗λ )xx − 2λ∗(ψ∗λ )x + ((λ
∗)2 + g(x))ψ∗λ − 2ψ∗x + 2λψ∗ = c∗ψ + c∗λ∗ψ∗λ .

Writing now ψ∗λ = −χ(x)ψ(x, λ
∗) and using the definition of κ(x) gives (3.3). Mul-

tiplying (3.3) by ν(x) and integrating over the period gives
∫ 1

0 (κ(x) + c
∗)ν dx = 0.

Therefore, since ν is of mass 1 we have−c∗ =
∫ 1

0 κ(x)ν(x) dx. It follows from (3.2) that
b̄ =

∫ 1
0 κ(x)ν(x) dx = −c

∗. ut

The periodic function χ(x) which satisfies (3.3) will be useful later. For this reason,
let us remark that there is a unique periodic function χ0(x) which satisfies both χ0

xx +

2(φx/φ)χ0
x = −2φx/φ − c in R, and

∫ 1
0 χ

0(x) dx = 0, which is obtained by adding a
suitable constant to χ . To end this paragraph, let us write the system satisfied by p(t, x),
the form which we shall work with from now on:

ν(x)pt = (ν(x)px)x − c
∗px, c∗t ≤ x, (3.4)

p(t, c∗t) = 0, t > 0,
p(0, x) = p0(x) = u0(x)e

λ∗x(ψ(x, λ∗))−1, x ≥ 0.

3.2. Multipliers and approximate multipliers

Let us consider the linear boundary value problem{
ν(x)ft + (ν(x)fx)x + c

∗fx = 0, t ∈ R, x > c∗t,

f (t, c∗t) = 0, t ∈ R,
(3.5)

and its adjoint form{
ν(x)ζt − (ν(x)ζx)x − c

∗ζx = 0, t ∈ R, x > c∗t,

ζ(t, c∗t) = 0, t ∈ R.
(3.6)
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Lemma 3.2. There are functions f (t, x) and ζ(t, x) and a constant m > 0 such that
ft , ζt < 0 and

m(x − c∗t) < f (t, x), ζ(t, x) < m−1(x − c∗t) for all t ∈ R, x > c∗t . (3.7)

Proof. We only provide the construction for f . Observe that (3.5) has a solution of
the form Y (t, x) = (x − c∗t) + y(x), where y(x) is periodic and satisfies −c∗ν(x) +
(ν(x)(1+ yx))x + c∗(1+ yx) = 0, or

(ν(x)yx)x + c
∗yx = c

∗(ν(x)− 1)− ν′(x). (3.8)

Equation (3.8) has a periodic solution because the integral of the right side over the
period vanishes, as ν is of mass 1. By subtracting a constant from y, we may assume
Y (t, c∗t) ≤ 0. Although Y (t, x) grows linearly in x− c∗t and is a solution of (3.5) for all
t ∈ R and x ∈ R, it may not satisfy the desired Dirichlet boundary condition at x = c∗t .
On the other hand, if β(t) is the largest zero of Y then

|β(t)− c∗t | ≤ M, (3.9)

with a constant M that does not depend on t .
A function f (t, x) having the desired properties may be constructed as the limit of

the sequence of functions f (n)(t, x) which satisfy

f
(n)
t +

1
ν(x)

(ν(x)f (n)x )x +
c∗

ν(x)
f (n)x = 0, t ≤ n, x > c∗t,

f (n)(t, c∗t) = 0, t ≤ n,

f (n)(n, x) = max(0, Y (n, x)), x ≥ c∗n.

It follows from the maximum principle and (3.9) that there exists a constant C, indepen-
dent of n, such that

Y (t, x)− C ≤ f (n)(t, x) ≤ Y (t, x)+ C, t ≤ n, x ≥ c∗t. (3.10)

Using (3.10), we can find positive constants L, M , m, independent of n, so that

f (n)(t, ct + L) > M1 for all t ≤ n,

and, in addition, m(x − c∗t) < f (n)(t, x) < m−1(x − c∗t) for t < n/2 and x > c∗t +L.
Then the strong maximum principle and parabolic regularity imply that f (n)x (t, c∗t) > c0
for all t < n/2, for some positive constant c0 that does not depend on n or t . By parabolic
regularity, we may then extract a subsequence converging to a limit f (t, x) satisfying
(3.5), (3.7) and the boundary condition f (t, c∗t) = 0 for all t ∈ R. Note that f (n)t ≤ 0:
this follows from the maximum principle since f (n)(t, x) ≥ 0 and f (n)(t, x) ≥ Y (t, x)
for all t ≤ n and x ≥ c∗t . It follows that in the limit we also have ft (t, x) ≤ 0. ut

Then, we need a more flexible quantity, which we call ηα(t, x), whose role will be to
measure how much the solution p(t, x) of (3.4) is concentrated in intervals of the form
[c∗t, c∗t + σ

√
t] (the parameter α will, as is often the case, play the role of t−1/2).
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Lemma 3.3. There is a constant C > 0 such that for each α sufficiently small there is a
constant µ(α) and a function ηα(t, x) satisfying

ν(x)
∂ηα

∂t
+

(
ν(x)

∂ηα

∂x

)
x

+ c∗
∂ηα

∂x
= µ(α)ν(x)ηα, t ∈ R, x ≥ c∗t, (3.11)

ηα(t, c
∗t) = 0 for t ∈ R, and

C
eαx − e−αx

α
≤ ηα(t, x + c

∗t) ≤ C−1 e
αx
− e−αx

α
for all t ∈ R and x ≥ 0.

In addition, there exists µ0 > 0 such that

µ(α) = µ0α
2
+O(α3) for all α > 0 sufficiently small. (3.12)

For the homogeneous medium, we have ν(x) ≡ 1, and the function

ηα(t, x) =
eα(x−c

∗t)
− e−α(x−c

∗t)

α

satisfies (3.11) with µ(α) = α2. In the general case, ηα has exponential asymptotics as
x → ∞: ηα(t, x) ∼ (1/α)eα(x−c

∗t)η̄α(x)as x → ∞, where η̄α(x) is a positive periodic
solution of(
ν(x)

∂η̄α

∂x

)
x

+α(ν(x)η̄α)x+(c
∗
+αν(x))

∂η̄α

∂x
+c∗α(1−ν(x))η̄α = (µ(α)−α2)ν(x)η̄α,

and µ(α) is the corresponding eigenvalue.

Proof of Lemma 3.3. The proof is divided into three steps, each corresponding to an item
of the lemma.

1. The eigenvalue asymptotics for α � 1. Consider the periodic eigenvalue problem{(
ν(x)

∂η
∂x

)
x
+ α(ν(x)η)x + (c

∗
+ αν(x))

∂η
∂x
+ c∗α(1− ν(x))η = γ (α)ν(x)η,

η(x + 1) = η(x) > 0,

with γ (α) = µ(α) − α2 and the normalization
∫ 1

0 ν(x)η(x) dx = 1. Observe that
γ (0) = 0 and η(x, α = 0) ≡ 1. Moreover, as γ (0) = 0 is a simple eigenvalue, γ (α)
is an analytic function of α for α sufficiently small. The function η′ = ∂η/∂α satisfies

γ νη′ + γ ′νη =

(
ν(x)

∂η′

∂x

)
x

+ α(ν(x)η′)x + (c
∗
+ αν(x))

∂η′

∂x

+ c∗α(1− ν(x))η′ + (νη)x + ν
∂η

∂x
+ c∗(1− ν)η. (3.13)

Setting α = 0 we obtain

γ ′ν =

(
ν(x)

∂η′

∂x

)
x

+ c∗
∂η′

∂x
+ νx + c

∗(1− ν). (3.14)
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Integrating (3.14), we conclude that γ ′(0) = 0. Next, η′′ solves

γ νη′′ + 2γ ′νη′ + γ ′′νη =
(
ν(x)

∂η′′

∂x

)
x

+ α(ν(x)η′′)x + (c
∗
+ αν(x))

∂η′′

∂x

+ c∗α(1− ν(x))η′′ + 2(νη′)x + 2ν
∂η′

∂x
+ 2c∗(1− ν)η′.

So, at α = 0 we have(
ν(x)

∂η′′

∂x

)
x

+ c∗
∂η′′

∂x
+ 2(νη′)x + 2ν

∂η′

∂x
+ 2c∗(1− ν)η′ = γ ′′ν.

Integrating this equation, we obtain

γ ′′ = 2
∫ 1

0

(
ν
∂η′

∂x
+ c∗(1− ν)η′

)
dx. (3.15)

Since γ ′(0) = 0, (3.14) implies that

c∗(1− ν) = −νx − c∗
∂η′

∂x
−

(
ν
∂η′

∂x

)
x

.

Plugging this into (3.15) yields

γ ′′(0) = 4
∫ 1

0
ν
∂η′

∂x
dx + 2

∫ 1

0
ν

(
∂η′

∂x

)2

dx.

Since 4y + 2y2
≥ −2 for all y ∈ R, we conclude that γ ′′(0) ≥ −2

∫ 1
0 ν(x) dx = −2,

with equality if and only if ∂η′/∂x ≡ −1. Since η′ is periodic, ∂η′/∂x = −1 cannot
hold at all x, so we must have γ ′′(0) > −2. Finally, since µ(α) = α2

+ γ (α), we have
µ′′(0) = 2+ γ ′′(0) > 0, proving (3.12).

Let us now denote the eigenfunction of (3.13) by η̄α to indicate its dependence on α.

2. Construction of the function ηα(t, x). We first claim that there is a constant C such
that for all α > 0 sufficiently small, there is β(α) > 0 with µ(−β) = µ(α) and such
that |β/α − 1| ≤ Cα and supx |η̄α(x) − 1| ≤ Cα, supx |η̄β(x) − 1| ≤ Cα. Indeed, the
existence of such a β follows from the fact that µ(α) ∼ Cα2 for α small. The bounds
on η̄α and η̄β follow from elliptic regularity and the fact that for α = 0, η̄0(x) ≡ 1.

So, choose β = β(α) > 0 accordingly, and consider the terminal value problem

ν(x)
∂ηα,T

∂t
+

(
ν(x)

∂ηα,T

∂x

)
x

+ c∗
∂ηα,T

∂x
= µ(α)ν(x)ηα,T , t < T , x ≥ c∗t, (3.16)

with the terminal condition ηα,T (T , x) ≥ 0 to be determined. The function ηα(t, x) of
Lemma 3.3 will be defined as limT→∞ ηα,T (t, x). Observe that for any constant C, the
function

α−1eα(x−c
∗t)η̄α(x)− Cβ

−1e−β(x−c
∗t)η̄β(x)
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satisfies (3.16), since µ(−β) = µ(α). If we choose the constant Cu =
β
α

minx
η̄α(x)
η̄β (x)

> 0,
then the function

hu(t, x) = α
−1eα(x−c

∗t)η̄α(x)− Cuβ
−1e−β(x−c

∗t)η̄β(x)

satisfies hu(t, c∗t) ≥ 0 for all t ∈ R. Similarly, if we choose Cl =
β
α

maxx
η̄α(x)
η̄β (x)

> 0,
then the function

hl(t, x) = α
−1eα(x−c

∗t)η̄α(x)− Clβ
−1e−β(x−c

∗t)η̄β(x) (3.17)

satisfies hl(t, c∗t) ≤ 0 for all t ∈ R. Now, if we choose the terminal condition ηα,T (T , x)
= max(0, h`(T , x)), the maximum principle implies that

hl(t, x) ≤ ηα(t, x) ≤ hu(t, x) for all t ≤ T , x ≥ c∗t . (3.18)

Although the constants Cu and Cl depend on α, we have Cu = 1 + O(α) and Cl =
1+O(α) as α→ 0.

Now, we claim there are constants L,M > 0, independent of T , such that

M
eαx − e−αx

α
≤ ηα,T (t, x + c

∗t) ≤ M−1 e
αx
− e−αx

α
(3.19)

for all x > L and t ≤ T , and all α sufficiently small. Given this claim, parabolic
regularity and the maximum principle imply that there is b > 0 universal such that
b <

∂ηα,T
∂x

(t, c∗t) < b−1 for all t ≤ T − 1 and α > 0 sufficiently small. Since
d
dx

(
eαx−e−αx

α

)∣∣
x=0 = 2, it follows by parabolic regularity that (3.19) also holds for all

x ≥ 0 and t ≤ T − 1, with a constant C independent of T . Then letting T → ∞ we
may take a subsequence of functions ηα,Tk (x, t) such that Tk → ∞ and ηα,Tk converges
locally uniformly to a function ηα(t, x) satisfying all the criteria of Lemma 3.3.

3. The proof of (3.19). Let us derive the upper bound in (3.19). Because of (3.18), it
suffices to show that

hu(t, x + c
∗t) ≤ M−1 e

αx
− e−αx

α
for all t ∈ R, x ≥ L, (3.20)

with L > 0 and M independent of α. Let us write

hu(t, x + c
∗t) = α−1η̄α(x + c

∗t)

(
eαx − Cu

α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−βx

)
.

Since η̄α is uniformly bounded in x, independently of α ∈ (0, 1), the upper bound (3.20)
holds if

eαx − Cu
α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−βx ≤ M2(e

αx
− e−αx)
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for some constant M2, which is equivalent to

e−2αx
(
M2 − Cu

α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−(β−α)x

)
≤ M2 − 1. (3.21)

Since Cu, η̄α , η̄β are positive, this inequality certainly holds if e−2αxM2 ≤ M2 − 1. So,
if we set M2 = 2, then (3.21) holds for all x ≥ log(2)/(2α). Now consider (3.21) for
x ≤ log(2)/(2α). By the beginning of step 2, Cu αβ

η̄β (x+c
∗t)

η̄α(x+c∗t)
= 1 + O(α) as α → 0,

uniformly in x and t . Moreover, β − α = O(α2), so that for x ≤ log(2)/(2α), we have
Cu

α
β

η̄β (x+c
∗t)

η̄α(x+c∗t)
e−(β−α)x = 1 + O(α). Therefore, with M2 = 2 and x ≤ log(2)/(2α),

inequality (3.21) becomes

e−2αx
≤

M2 − 1
M2 − 1+O(α)

= 1−O(α).

Hence there is a constant L such that (3.21) holds for all t ∈ R and x ≥ L, and all α
sufficiently small. This establishes the upper bounds in (3.20) and (3.19).

In a similar manner, we now prove the lower bound in (3.19). It suffices to show that

hl(t, x) ≥ M
eαx − e−αx

α
(3.22)

for all t ∈ R and x ≥ L. Let us write

hl(t, x + c
∗t) = α−1η̄α(x + c

∗t)

(
eαx − Cl

α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−βx

)
.

Since η̄α(x) is uniformly bounded away from zero, independently of α ∈ (0, 1), the lower
bound (3.22) holds if

M3

(
eαx − Cl

α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−βx

)
≥ eαx − e−αx

for some constant M3, which is equivalent to

M3 − 1 ≥ M3Cl
α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−(β+α)x − e−2αx . (3.23)

This bound certainly holds if

M3 − 1 ≥ M3Cl
α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−(β+α)x .

By construction of ηα we know that Cl αβ
η̄β (x+c

∗t)

η̄α(x+c∗t)
= 1+O(α) ≤ 2 uniformly in x and t

if α is sufficiently small. So, if we set M3 = 2, then (3.23) holds for all x ≥ log(2)/α.
Now consider (3.23) for x ≤ log(2)/α. Recall that β + α = 2α +O(α2), so that for

x ≤ log(2)/α, we have

Cl
α

β

η̄β(x + c
∗t)

η̄α(x + c∗t)
e−(β−α)x = e−2αx(1+O(α)).
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Therefore, with M3 = 2 and x ≤ log(2)/α, inequality (3.23) becomes

M3 − 1 ≥ (M3(1+O(α))− 1)e−2αx,

which is e−2αx
≤

1
2(1+O(α))−1 = 1−O(α). Hence there is a constant L such that (3.23)

holds for all t ∈ R and x ≥ L, and all α sufficiently small. This proves the lower bounds
in (3.22) and (3.19), completing the proof of Lemma 3.3. ut

Lemma 3.4. (i) There is a constant C > 0 such that |∂τ ζ(τ, x)| ≤ C for all x > c∗τ .
(ii) There is a constant C such that |∂τηα(τ, x)| ≤ C for all x ∈ (c∗τ, c∗τ + α−1).

(iii) There is a constant C such that |∂τηα(τ, x)| ≤ Cαηα(τ, x) for all x > c∗τ .

Proof. Part (i) just comes from parabolic regularity. As for (ii), we come back to the
notation of Lemma 3.3. Let T > 0; at τ = T we have, just using the equation for ηα ,

∂τηα(T , x) = O(e
α(x−c∗T )

+ e−α(x−c
∗T ))+ dµα(x)

where µα is a measure carried by the (compact) zero set of the function hl , which was de-
fined at (3.17), and whose mass is uniformly bounded with respect to α. So, the equation
for ∂τηα (recall that it solves the same equation as ηα) yields

∂τηα(T − 1, x) = O(eα(x−c
∗T )
+ e−α(x−c

∗T ))+O(1) = O(eα(x−c
∗T )).

Running the equation for τ ≤ T − 1 yields

|∂τηα(τ, x)| ≤ Ce
α(x−c∗τ)η̄α(x),

and so ∂τηα(τ, x) = O(eα(x−c
∗τ)), which is sufficient to prove the claim. ut

3.3. Application: the t−3/2 bound

Proof of Lemma 2.1. We are working with the almost self-adjoint form of (2.2), which is
(3.4). We use a duality argument, and the main step is to derive the L2 bound(∫

∞

c∗t

p(t, x)2 dx

)1/2

≤
C

t3/4

∫
∞

0
xp0(x) dx, ∀t > 0. (3.24)

It follows from (3.4) that

1
2
d

dt

∫
∞

c∗t

ν(x)p(t, x)2 dx = −

∫
∞

c∗t

ν(x)px(t, x)
2 dx. (3.25)

The right side of (3.25) may be bounded from above by using a Nash-type inequality:
there is a constant C such that∫

∞

0
|β(x)|2 dx ≤ C

(∫
∞

0
β2
x dx

)3/5 (∫ ∞
0

xβ(x) dx

)4/5

(3.26)
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for all β ∈ L1([0,∞)) ∩ H 1([0,∞)) satisfying β(0) = 0 and β(x) ≥ 0 for x ≥ 0. This
inequality can be verified in the usual manner: if ξ(x) is an odd extension of β(x) to all
of R, then ∫

∞

−∞

|ξ(x)|2 dx = C

∫
∞

−∞

|ξ̂ (k)|2 dk, (3.27)

where ξ̂ (k) is the Fourier transform of ξ(x). Note that ξ̂ (0) = 0 and
∣∣ d
dk
ξ̂ (k)

∣∣ ≤
C
∫
∞

0 xβ(x) dx, whence |ξ̂ (k)| ≤ C|k| ‖xβ‖1. It follows from (3.27) that for any R > 0,∫
∞

−∞

|ξ(x)|2 dx ≤ C

∫
|k|≤R

|ξ̂ (k)|2 dk + C

∫
|k|≥R

|k|2

R2 |ξ̂ (k)|
2 dk

≤ CR3
‖xβ‖21 +

C

R2 ‖βx‖
2
2.

Choosing R = (‖βx‖22/‖xβ‖
2
1)

1/5 gives (3.26).
Going back to (3.25), since ν(x)−1 > 0 is bounded, we conclude that

1
2
d

dt

∫
∞

c∗t

ν(x)p(t, x)2 dx

≤ −C

(∫
∞

c∗t

p(t, x)2 dx

)5/3(∫ ∞
c∗t

(x − c∗t)p(t, x) dx

)−4/3

. (3.28)

Next, we work toward an estimate of the right side of (3.28). Let us multiply (3.4) by a
function ν(x)f (t, x) with f (t, c∗t) = 0 and integrate:

d

dt

∫
∞

c∗t

ν(x)f (t, x)p(t, x) dx =

∫
∞

c∗t

ν(x)ft (t, x)p(t, x) dx

−

∫
∞

c∗t

ν(x)fx(t, x)px(t, x) dx − c
∗

∫
∞

c∗t

fpx dx.

We choose f to be a solution of the backward equation, as in Lemma 3.2. Recall that
the integral I (t) =

∫
∞

c∗t
ν(x)f (t, x)p(t, x) dx is preserved: I (t) = I (0) for all t ≥ 0.

Moreover, (3.7) implies that(∫
∞

c∗t

(x − c∗t)p(t, x) dx

)−4/5

≥ C

(∫
∞

c∗t

ν(x)f (t, x)p(t, x) dx

)−4/5

= CI (0)−4/5

for all t > 0. So, if I2(t) =
∫
∞

c∗t
ν(x)p(t, x)2 dx, we conclude from (3.28) that

dI2(t)

dt
≤ −C

I2(t)
5/3

I (0)4/3
.

It follows that I2(t)
−2/3
≥ CtI (0)−4/3 for all t > 0, which implies the L2 bound (3.24).

The standard duality argument can now be applied. If St is the solution operator map-
ping p0(·) to p(t, ·), then the adjoint operator S∗t is of the same form as St except that
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c∗ is replaced by −c∗ and the direction of time is changed. Hence, the L1
→ L2 bound

(3.24) for St also implies the dual L2
→ L∞ bound:

|p(t, x)| ≤
C(x − c∗t)

t3/4
‖p0‖L2 , t > 0, x > c∗t.

Finally, writing St = St/2 ◦ St/2 we obtain the conclusion of Lemma 2.1. ut

4. Estimate from below for the linearized equation

Recall that we are dealing with the almost self-adjoint form (3.4), and that we wish to
prove Proposition 2.2, namely: p(t, x) is larger than O(t−1) if x − c∗t is of order

√
t .

We will take three steps: in the first one, we will show that the estimate is true for a lot
of points in the range x − c∗t ∼

√
t ; this will be an integral estimate. This is not good

enough to propagate the estimate inside, and so another step will be to prove a Harnack-
type inequality (Section 5.2), which will retrieve all the points of the real line. The last
item is proved in Section 5.3.

4.1. Proposition 2.2 is true in the integral sense

Proposition 4.1. There exist a time T0 > 0 and constants c0, β,N > 0, depending only
on the initial data, such that for any t > T0 there exists a set It ⊂ [c∗t +

√
t/N, c∗t +

N
√
t] with |It | ≥ β

√
t and

p(t, x) ≥ c0/t for all x ∈ It . (4.1)

Proof. We define the second exponential moment by

Vα(t) =

∫
∞

c∗t

ν(x)η2α(t, x)p(t, x)q(t, x) dx =

∫
∞

c∗t

ν(x)η2α(t, x)ζ(t, x)q(t, x)
2 dx.

Then
dVα(t)

dt
=

∫
∞

c∗t

ν(∂tη2α)pq dx +

∫
∞

c∗t

νη2αptq dx +

∫
∞

c∗t

νη2αpqt dx

= µ(2α)Vα(t)−
∫
∞

c∗t

ν(L∗η2α)pq dx +

∫
∞

c∗t

νη2αptq dx +

∫
∞

c∗t

νη2αpqt dx,

where L∗η = ν−1(νηx)x + ν
−1c∗ηx . Since pt = Lp and qt = Lq + 2 ζx

ζ
qx we have

V ′α(t) = µ(2α)Vα(t)− 2
∫
∞

c∗t

νη2αpxqx dx + 2
∫
∞

c∗t

νη2αp
ζx

ζ
qx dx. (4.2)

As p = ζq, we have px = ζxq + ζqx and so p ζx
ζ
qx = qζxqx = pxqx − ζq

2
x . Therefore,

the last two terms in (4.2) reduce to

V ′α(t) = µ(2α)Vα(t)− 2
∫
∞

c∗t

νη2αζq
2
x dx = µ(2α)Vα(t)− 2Dα(t), (4.3)

where Dα(t) =
∫
∞

c∗t
νη2αζq

2
x dx.
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The quantity Vα(t) is the one we need to estimate; we do this by bounding the
right side of (4.3). We claim that there is a constant C > 0 such that Dα(t) ≥
CVα(t)

5/3/Iα(t)
4/3 for all t > 1 and α > 0 sufficiently small. Since ν > 0 is periodic,

this is equivalent to the statement that for any α > 0,(∫
∞

c∗t

η2αζq
2 dx

)5/3

≤ C

(∫
∞

c∗t

ηαζq dx

)4/3(∫ ∞
c∗t

η2αζq
2
x dx

)
. (4.4)

By Lemma 3.3, ζ(t, x) is comparable with the linear function x − c∗t , and ηα(t, x) with
(eαx − e−αx)/α. That is, for α > 0 sufficiently small,∫

∞

c∗t

η2αζq
2 dx ≤ C1

∫
∞

0

e2αx
− e−2αx

2α
xq(t, x + c∗t)2 dx =: C1V̂α,∫

∞

c∗t

ηαζq dx ≥ C2

∫
∞

0

eαx − e−αx

α
xq(t, x + c∗t) dx =: C2Îα,

and∫
∞

c∗t

η2αζq
2
x dx ≥ C3

∫
∞

0

e2αx
− e−2αx

2α
x
(
qx(t, x + c

∗t)2 − α2q(t, x + c∗t)2
)
dx

=: C3D̂α.

The Nash inequality in R3 [30, Lemma I.1.1] gives V̂ 5/3
α ≤ CÎ

4/3
α D̂α , and (4.4) follows

for all t > 1.
Returning to (4.3) we now have

V ′α(t) ≤ µ(2α)Vα(t)− C
Vα(t)

5/3

Iα(t)4/3

where I ′α(t) = µ(α)Iα(t). For Vα(t) = eµ(2α)tZα(t), this implies the bound

Z′α(t) ≤ −C
e−tµ(2α)et5µ(2α)/3Zα(t)

5/3

et4µ(α)/3Iα(0)4/3
= −C

Zα(t)
5/3

Iα(0)4/3
etRα (4.5)

for t ≥ 1, where Rα = 2
3µ(2α)−

4
3µ(α) =

1
3µ(2α)+O(α

3). We used (3.12) in the last
step above. We deduce from (4.5) that

Zα(t) ≤ C

(
Iα(0)4/3Rα
etRα − eRα

)3/2

= C
Iα(0)2

(t − 1)3/2

(
tRα − Rα

etRα − eRα

)3/2

. (4.6)

Note that since ex is a convex function, we have b−a
eb−ea

≤ e−a for all b > a. Moreover,
Rα > 0 for α sufficiently small, so Rαt > Rα for t > 1. Hence, (4.6) implies

Zα(t) ≤ C
Iα(0)2

(t − 1)3/2
e−3Rα/2 ≤

CIα(0)2

(t − 1)3/2
.
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Therefore, we have Vα(t) ≤ Ceµ(2α)tIα(0)2/(t − 1)3/2, which is(∫
∞

c∗t

η2α(t, x)ν(x)ζ(t, x)q
2 dx

)1/2

≤ C
eµ(2α)t

(t − 1)3/4

∫
∞

0
ηα(0, x)ν(x)ζ(0, x)p0(x) dx.

By Lemma 3.3 and the definition of q(t, x), this implies(∫
∞

0

e2αx
− e2αx

2αx
p(t, c∗t + x)2 dx

)1/2

≤ C
eµ(2α)t

(t − 1)3/4

∫
∞

0

eαx − eαx

α
xp0(x) dx.

From now on, we take α = 1/
√
t . If T0 is sufficiently large, and t > T0, then for any

x ∈ supp p0 we have eαx−e−αx

α
≤ 4x. So, for all t > T0 we have(∫

∞

0

e2x/
√
t
− e−2x/

√
t

2x/
√
t

p(t, x)2 dx

)1/2

≤
C

t3/4

∫
∞

0
xp0(x) dx, (4.7)

or (∫
∞

0

e2x/
√
t
− e−2x/

√
t

x
p(t, x)2 dx

)1/2

≤
C

t

∫
∞

0
xp0(x) dx. (4.8)

Let us take N > 1 sufficiently large (but independent of t); then for x > N
√
t we have

e2x/
√
t > 2e−2x/

√
t , thus (4.8) implies(∫
∞

N
√
t

e2x/
√
t

x
p(t, x)2 dx

)1/2

≤
C

t

∫
∞

0
xp0(x) dx.

Moreover, we have∫
∞

N
√
t

xp(t, x) dx ≤

∫
∞

N
√
t

ex/
√
t

√
x
p(t, x)e−x/

√
tx3/2 dx

≤

(∫
∞

N
√
t

e2x/
√
t

x
p(t, x)2 dx

)1/2(∫ ∞
N
√
t

e−2x/
√
tx3 dx

)1/2

≤ C

(∫
∞

0
xp0(x) dx

)(∫
∞

N

y3e−y dy

)1/2

≤ 2N3e−N/2
∫
∞

0
xp0(x) dx = I (0)/4

as long as N > N0 is large enough (but independent of t). Recall now the conservation
of I (t) =

∫
∞

c∗t
ν(x)f (t, x)p(t, x) dx, together with the fact that m(x − c∗t) ≤ f (t, x) ≤

m−1(x− c∗t) for somem > 0 and all x ≥ c∗t . It follows that
∫ N√t

0 xp(t, x) dx ≥ 3I0/4.

From Lemma 2.1 have
∫ √t/N

0 xp(t, x) dx ≤ CN−3I0. Therefore, by taking N larger

if necessary, we have
∫ N√t
√
t/N

xp(t, x) dx ≥ I0/2. For c0 > 0 to be chosen, let H+t =
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{x ∈ [
√
t/N,N

√
t] : p(t, x) ≥ c0/t} and H−t = {x ∈ [

√
t/N,N

√
t] : p(t, x) < c0/t}.

We have
I0

2
≤

∫
H+t

xp(t, x) dx +

∫
H−t

xp(t, x) dx ≤

∫
H+t

xp(t, x) dx +
c0

2
N2.

so that by choosing c0 ≤ I0/(2N2), we have I0/4 ≤
∫
H+t

xp(t, x) dx. Now, Lemma 2.1
again yields

I0

4
≤

∫
H+t

xp(t, x) dx ≤
CI0

t3/2

∫
H+t

x2 dx ≤
CI0

t3/2
|H+t |N

2t.

It follows that |H+t | ≥
√
t/(4N2C). This proves Proposition 4.1. ut

4.2. A Harnack type estimate

For R > 0 and ξ ∈ R fixed, let 0̄(t, x, s, y) = 0̄(t, x, s, y;R, ξ) denote the heat kernel
for νρt − (νρx)x + c∗ρx = 0 in the tilted cylinder

T (ξ, R, s) = {(t, x) ∈ R2
: t ≥ s, |x − ξ − c∗t | < R}

with the Dirichlet boundary conditions on the lateral boundary of the cylinder. That is,
if s ∈ R and |y − ξ − cs| < R, 0̄(t, x, s, y) satisfies the PDE for (t, x) ∈ T (ξ, R, s),
with the boundary condition 0̄(t, x, s, y) = 0 if |x − ξ − c∗t | = R, and the initial
condition limt↘s 0̄(t, x, s, y) = ν(y)

−1δy(x). The following lemma gives a lower bound
on 0̄(t, x, s, y), provided that x and y are sufficiently far from the boundary of T (ξ, R, s).
It is directly inspired by Fabes–Stroock [12, Lemma 5.1].

Lemma 4.2. For all δ ∈ (0, 1), there are constants α,K > 0 such that

0̄(t, x, s, y − c∗(t − s);R, ξ) ≥
α

2K(t − s)1/2
e−K|y−x|

2/(t−s)

for all R > 0, t ∈ (s, s + R2
], and x, y ∈ (c∗t + ξ − δR, c∗t + ξ + δR).

Proof. Let ρ(t, x) =
∫
R 0(t, x, s, y)ρ(s, y)ν(y) dy where 0(t, x, s, y) denotes the free-

space heat kernel for t ≥ s. We have the following estimates of Norris [28, Theorem 1.1]:
there is a constant K > 0 such that

e−K|x−y|
2/(t−s)

K|t − s|1/2
≤ 0(t, x, s, y − c∗(t − s)) ≤

Ke−|x−y|
2/(K(t−s))

|t − s|1/2
(4.9)

for all x, z ∈ R and t > s. Obviously, (4.9) implies the upper bound

0̄(t, x, s, y−c∗(t−s);R, ξ) ≤ 0(t, x, s, y−c∗(t−s)) ≤ K|t−s|−1/2e−|x−y|
2/(K(t−s)).

It suffices to assume s = 0 and ξ = 0. The first step is the identity

0̄(t, x, 0, y) = 0(t, x, 0, y)−
∫ t

0

(
0(t, x, r, c∗r+R)h+(r)+0(t, x, r, c∗r−R)h−(r)

)
dr

(4.10)
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where h±(r) ≥ 0 depends on y and R, but
∫ t

0 (h
+(r) + h−(r)) dr ≤ 1 always holds.

This is analogous to a statement in [12, p. 335], obtained by integrating the equation for ρ
against a test function. By combining (4.10) with the estimate (4.9) for 0, we obtain a
lower bound on 0̄:

0̄(t, x, 0, y − c∗t) ≥
e−K|y−x|

2/t

Kt1/2
−K sup

0<τ≤t

e−R
2(1−δ)2/(Kτ)

τ 1/2 (4.11)

for all x ∈ [−δR, δR], y ∈ [−R,R] and t > 0. The unique maximum of the function
0 < τ 7→ β(τ) = e−R

2(1−δ)2/(Kτ)/τ 1/2 occurs at the point τ ∗ = 2R2(1 − δ)2/K . So, if
ε2 < 2(1− δ)2/K and t ≤ ε2R2, we have t ≤ τ ∗. In this case, (4.11) gives us the bound

0̄(t, x, 0, y − c∗t) ≥
e−K|y−x|

2/t

Kt1/2
−K sup

0<τ≤t

e−R
2(1−δ)2/(Kτ)

τ 1/2

=
e−K|y−x|

2/t

Kt1/2

(
1−K2e−R

2(1−δ)2/(Kt)+K|x−y|2/t).
If also x ∈ [−δR, δR] and |x− y| ≤ εR, and ε2 < (1− δ)2/(2K2) is small enough, then

1−K2e−R
2(1−δ)2/(Kt)+K|x−y|2/t

≥ 1−K2e−t
−1R2(1−δ)2/(2K)

≥ 1−K2e−ε
−2(1−δ)2/(2K) > 1/2.

This implies that for any δ ∈ (0, 1) and R > 0,

0̄(t, x, 0, y − c∗t) ≥
1

2Kt1/2
e−K|y−x|

2/t

if x ∈ [−δR, δR] and |x−y| ≤ εR, t ≤ ε2R2, and ε is sufficiently small, depending only
on δ and K . A chaining argument, as in [12], now shows that for any δ ∈ (0, 1), there
must be a constant α, depending only on δ and K , such that

0̄(t, x, 0, y − c∗t) ≥
α

2Kt1/2
e−K|y−x|

2/t

for all x, y ∈ [−δR, δR] and t ≤ R2 (i.e. rather than just t ≤ ε2R2). Although 0̄ depends
on R, α and K are independent of R. This finishes the proof of Lemma 4.2. ut

4.3. Proof of Proposition 2.2

By Proposition 4.1 we have p(s, x) ≥ c0/s for all s ≥ T0 and x ∈ Is , where Is ⊂
[c∗s + N−1√s, c∗s + N

√
s] and |Is | ≥ β

√
s. Let s ≥ T0, R =

√
s(N−1

+ N)/2, ξ =
c∗s + R, and 0̄ = 0̄(t, x, s, y;R, ξ) be the heat kernel in the tilted cylinder T (ξ, R, s)
with Dirichlet boundary conditions. For t > s and x ∈ [c∗t, c∗t + 2R], we have

p(t, x) ≥

∫ cs+2R

cs

0̄(t, x, s, y)p(s, y)ν(y) dy. (4.12)
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Set δ = N−N−1

N+N−1 ∈ (0, 1) and t = s+R2. Observe that Is ⊂ [c∗s+N−1√s, c∗s+N
√
s] =

[c∗s + (1− δ)R, c∗s + (1+ δ)R]. By Lemma 4.2, we have

0̄(t, x, s, y) ≥
α

2(t − s)1/2
e−K|x−y|

2/(t−s)
=

α

2KR
e−K|x−y|

2/R2

for all

x ∈ [c∗t + (1− δ)R, c∗t + (1+ δ)R] = [c∗t +N−1√s, c∗t +N
√
s],

y ∈ [c∗s + (1− δ)R, c∗s + (1+ δ)R] = [c∗s +N−1√s, c∗s +N
√
s].

Therefore, by combining p(s, x) ≥ c0/s and (4.12) we obtain

p(t, x) ≥

∫
Is

0̄(t, x, s, y)p(s, y)ν(y) dy

≥ |Is |min
y∈Is

0̄(t, x, s, y)p(s, y)ν(y) ≥ |Is |
C
√
s

min
y∈Is

p(s, y) ≥
C

s

for all x ∈ [c∗t+(1−δ)R, c∗t+(1+δ)R]. SinceR =
√
s(N−1

+N)/2 and t = s+R2 we
have shown that for σ = 1+ (N−1

+N)2/4, there is C > 0 such that p(t, c∗t + σ
√
t) ≥

C/s = Cσ/t for t ≥ σT0. ut

5. The perturbed linearized equation in the diffusive range

Recall that the upper bound in Theorem 1.1 was reduced in Section 2.2 to the proof of
Proposition 2.3, which we present in this section. Let p̃(τ, x) be as in this proposition,
that is,

(1− ω(τ)) p̃τ = p̃xx + 2
φx

φ
p̃x, x ≥ c∗τ, (5.1)

with the Dirichlet boundary condition p̃(τ, c∗τ) = 0. The coefficient ω(τ) satisfies
ω(τ) ∼ 3/(2c∗τ) as τ → ∞, and |ω(τ)| ≤ C/τ , |ω′(τ )| ≤ C/τ 2 for τ > τ0. The
general philosophy is that the correction ω(τ) does not play a role in most of the decay
estimates, and the function p̃(t, x) behaves essentially as p(t, x), which is the solution
of (5.1) with ω(τ) = 0, and which we have studied in detail in the preceding sections.
We could think of re-using the arguments already displayed in the preceding section and,
in particular, trying to adapt the proof of Lemma 2.1. However, as far as the perturbed
equation is concerned, we do not have exact linear solutions anymore. As a consequence,
the computations of Proposition 2.2 and Lemma 2.1 would yield big errors, which would
in the end yield not sufficiently precise estimates. So, we have chosen a different way,
which in turn allows us to gain a little more insight in the heat kernel.

Proposition 5.1. For any L0, ε > 0, there is Cε > 0 such that

1
Cετ
≤ p̃(τ, c∗τ + L0 + ε

√
τ) ≤

Cε

τ
for all τ ≥ 1.
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This is a direct generalization of Proposition 2.2 and Lemma 2.1 to the case ω(τ) 6= 0.
We will also need a more or less explicit solution of the approximate equation that we
will need to compare with p̃(t, x). It is described in the next proposition.

Proposition 5.2. Let χ̄ ∈ R and let

χ(x) = −
1

ψ(x, λ∗)

dψ(x, λ∗)

dλ
.

There is a function θapp(τ, x) such that for any σ > 0,

(1− ω(τ))
∂θapp

∂τ
− θ

app
xx − 2

φx

φ
θ

app
x = O(τ−3), τ ≥ 1, c∗τ < x < c∗τ + σ

√
τ ,

and there is a constant C (depending on σ and m) such that∣∣∣∣θapp(τ, x)−
x − c∗τ + χ(x)+ χ̄

τ 3/2 e
−
(x−c∗τ)2
4(1+κ)τ

∣∣∣∣ ≤ Cτ−3/2
(
x − c∗τ
√
τ

)2

+O(τ−2) (5.2)

for all τ ≥ 1 and x ∈ [c∗τ, c∗τ + σ
√
τ ]. The constant κ in the exponential factor is

defined by formula (5.11) below and satisfies 1+ κ > 0.

Observe that the approximate solution θapp satisfies the conclusion of Proposition 2.3. So,
the last step is to transfer these estimates to the true solution.

Proposition 5.3. Let σ > 0 be fixed, and let θapp(τ, x) be defined as in Proposition 5.2
for some χ̄ ∈ R. Let ξ(τ, x) solve

(1− ω(τ))
∂ξ

∂τ
= ξxx + 2

φx

φ
ξx, τ > 1, x ∈ (c∗τ, c∗τ + σ

√
τ), (5.3)

with the boundary conditions

ξ(τ, c∗τ) = θapp(τ, c∗τ),

ξ(τ, c∗τ + σ
√
τ) = θapp(τ, c∗τ + σ

√
τ). (5.4)

There is τ0 > 0 such that |ξ(τ, x) − θapp(τ, x)| ≤ Cτ−3/2 for τ ≥ τ0 and c∗τ < x <

c∗τ + σ
√
τ .

5.1. Proof of Proposition 2.3, granting Propositions 5.1–5.3

Observe that by choosing χ̄ > ‖χ‖∞ in Proposition 5.2, we may arrange that θapp(τ, c∗τ)

> 0 for τ sufficiently large. Similarly, with χ̄ < −‖χ‖∞, we have θapp(τ, c∗τ) < 0 for τ
sufficiently large. Let us define θapp

+ to be a solution with χ̄ = 2‖χ‖∞ and θapp
+ (τ, c∗τ)

> 0; let θapp
− be a solution with m = −2‖χ‖∞ and θapp

− (τ, c∗τ) < 0. To prove Proposi-
tion 2.3, we wish to compare p̃(τ, x) with the functions θapp

± . We know from Proposition
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5.2 that |θapp
± (τ, c∗τ + σ

√
τ) − Cσ/τ | ≤ C/τ 3/2. Combining this with Proposition 5.1,

we see that there must be C1 > 0 such that

p̃(τ, c∗τ + σ
√
τ) ≤ C1θ

app
+ (τ, c∗τ + σ

√
τ),

p̃(τ, c∗τ + σ
√
τ) ≥ C−1

1 θ
app
− (τ, c∗τ + σ

√
τ),

for all τ ≥ 1. Now if ξ±(τ, x) solve (5.3) for τ ≥ 1 with the boundary conditions (5.4)
using θapp

= θ
app
± , we have

ξ+(τ, c
∗τ) = θ

app
+ (τ, c∗τ) > 0 = C−1

1 p̃(τ, c∗τ),

ξ+(τ, c
∗τ + σ

√
τ) = θ

app
+ (τ, c∗τ + σ

√
τ) ≥ C−1

1 p̃(τ, c∗τ),

ξ−(τ, c
∗τ) = θ

app
− (τ, c∗τ) < 0 = C1p̃(τ, c

∗τ),

ξ−(τ, c
∗τ + σ

√
τ) = θ

app
− (τ, c∗τ + σ

√
τ) ≤ C1p̃(τ, c

∗τ).

The maximum principle implies C−1
1 ξ−(τ, x) ≤ p̃(τ, x) ≤ C1ξ+(τ, x) for all τ suffi-

ciently large and x ∈ [c∗τ, c∗τ + σ
√
τ ]. Proposition 5.3 implies that for any δ > 0 there

exists xδ such that |ξ±(τ, x)− θ
app
± (τ, x)| ≤ δθ

app
± (τ, x) for c∗τ + xδ < x < c∗τ + ε

√
τ ,

if τ ≥ τ0. It follows that (C−1
1 /2)θapp

− (τ, x) ≤ p̃(τ, x) ≤ 2C1θ
app
+ (τ, x) for all τ ≥ τ0

and c∗τ + xδ < x < c∗τ + ε
√
τ . Proposition 2.3 follows from (5.2) and parabolic regu-

larity. ut

5.2. The proof of Proposition 5.1

The proof of Proposition 5.1 is as in the case ω(τ) = 0 (i.e. Proposition 2.2 and Lemma
2.1) but a little more technical—we focus only on the differences. The first ingredient
needed is a quantity that is bounded from above and below.

Lemma 5.4. Let p̃(τ, x) be as in Proposition 2.3. There is C > 0 such that

C−1
≤

∫
∞

c∗τ

(x − c∗τ)p̃(τ, x) dx ≤ C, ∀τ ≥ 0.

Proof. It suffices to bound the integral I (τ ) =
∫
∞

c∗τ
ν(x)(1 − ω(τ))f (τ, x)p̃(τ, x) dx,

where f (τ, x) is defined in Lemma 3.2 with m(x − c∗τ) ≤ f (τ, x) ≤ m−1(x − c∗τ). In
the case ω ≡ 0, I (τ ) is conserved. We compute

dI

dτ
= −ω′

∫
∞

c∗τ

νf p̃ dx − ω

∫
∞

c∗τ

νfτ p̃ dx = O(τ
−2)I (τ )− ω

∫
∞

c∗τ

νfτ p̃ dx. (5.5)

For an upper bound on I (τ ), we treat the spurious term
∫
∞

c∗τ
νfτ p̃ dx as follows:

∫
∞

c∗τ

νfτ p̃ dx =

∫ c∗τ+τ 1/4

c∗τ

νfτ p̃ dx +

∫
∞

c∗τ+τ 1/4
νfτ p̃ dx =: II + III.
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By parabolic regularity, there is a constant C > 0 such that |∂τf (τ, x)| ≤ C, hence

|III| ≤ Cτ−1/4
∫
∞

c∗τ

xp̃ dx ≤ Cτ−1/4
∫
∞

c∗τ

ν(x)f (τ, x)p̃(τ, x) dx.

Recall that equation (2.17) for p̃ is equivalent to

(1− ω(τ))p̃τ =
1
ν(x)

(ν(x)p̃x)x −
c∗

ν(x)
p̃x, x > c∗τ, (5.6)

with p̃(τ, c∗τ) = 0. The time change dτ ′ = (1 − ω(τ))−1dτ shows that the heat kernel
bounds of [28] in the whole space hold (with the time change) for the perturbed equation

(1− ω(τ))Pτ =
1
ν(x)

(ν(x)Px)x −
c∗

ν(x)
Px, x ∈ R.

In particular, we have |P(τ, x)| ≤ Cτ−1/2 ∫
R |P(0, y)| dy. So, because p̃(τ, x) is less

than the solution of (5.6) in the whole space with the same initial data p̃(0, ·), we have

|II| ≤ Cτ−1/2
∫ c∗τ+τ 1/4

c∗τ

∫
R
|p̃(0, y)| dy dx = Cτ−1/4

∫
∞

0
p̃(0, x) dx.

Gathering these estimates we conclude I ′(τ ) ≤ O(τ−2)I + O(τ−5/4)I + O(τ−5/4),

which implies the existence of C > 0 such that I (τ ) ≤ C(1+ I (0)).
For a lower bound, note that fτ ≤ 0, while ν, p̃ ≥ 0. Therefore, the term

−ω
∫
∞

c∗τ
νfτ p̃ dx in (5.5) is nonnegative. This implies I ′(τ ) ≥ O(τ−2)I , so that I (t) ≥

CI (0) > 0, with some universal constant C > 0. ut

We are going to estimate

Vα(τ ) = (1− ω(τ))
∫
∞

c∗τ

ν(x)η2α(τ, x)p̃(τ, x)q(τ, x) dx,

which is the main step in the proof of Proposition 5.1. Here q(τ, x) = p̃(τ, x)/ζ(τ, x)

and ζ(τ, x) is defined by Lemma 3.2. The function ηα(τ, x) is defined by Lemma 3.3.

Proof of Proposition 5.1. A straightforward computation shows that

dVα

dτ
= (µ(2α)− ω′)Vα + ω

∫
∞

c∗τ

(
νη2αζτq

2
− ν(∂τη2α)pq

)
dx − 2Dα.

Here, as in the case ω = 0, we have defined Dα(τ ) =
∫
c∗τ
νη2αζq

2
x dx. We now

use the following fact: for all M > 0, there is a constant κM > 0 such that for all
nonnegative functions u(x) ∈ C1([0, 1]) such that |u′(x)| ≤ M

∫ 1
0 u(x) dx we have∫ 1

0 u(x) dx ≤ κM
∫ 1

0 xu(x) dx. If not, there is a sequence un of such functions with unit
mass and uniformly bounded derivatives whose first moments tend to 0, an impossibility.
Now, from this remark ω

∫
∞

c∗τ
ν|ζτη2α|q

2 dx ≤ Cτ−1Vα , and from Lemma 3.4,

ω

∫
∞

c∗τ

ν|∂τη2α|p̃q dx ≤ Cω

∫
∞

c∗τ

νη2αp̃q dx ≤ Cτ
−1Vα.
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Because of Lemma 5.4, we have (following the lines of the proof of Proposition 4.1)

dVα

dτ
≤ (µ(2α)+O(τ−1))Vα(τ )−C

V
5/3
α

I
4/3
α

=−C
V

5/3
α

Iα(0)4/3
eτRα+(µ(2α)+O(τ−1))Vα(τ ).

Let us choose T > 0 and examine the above differential inequality with α = T −1 and
τ ≤ T . For 3 > 0 large enough, the function 3τ−3/2 is a supersolution for τ ≤ T ,
showing that Vα(T ) = O(T −3/2). So, for all τ > 0, we have Vα(τ ) ≤ Cτ−3/2, and the
rest of the proof follows as in Proposition 4.1. ut

5.3. The proof of Proposition 5.2

The proof is by a multiple-scale expansion. We will construct a function θapp having
the form θapp(τ, x) = a(τ)v(τ, (x− c∗τ)/R(τ), x) which satisfies θapp(τ, c∗τ) = 0 with
R(τ) = τ 1/2. Plugging this ansatz into (1−ω(τ))θτ = θxx+2φx

φ
θx , we see that v(τ, z, x)

should satisfy

(1− ω)
[
a′

a
v + vτ −

zR′

R
vz −

c∗

R
vz

]
=

1
R2 vzz +

2
R
vzx + vxx + 2

φx

φ
vx +

2
R

φx

φ
vz.

We will construct an approximate solution given by the expansion

v = v(τ, z, x) = v0(z)+
1
R
v1(z, x)+

1
R2 v

2(z, x)+
1
R3 v

3(z, x),

where v1(z, x) and v2(z, x) are uniformly bounded in each compact set in z and x, and
are both periodic in x. Therefore, the desired equality is

(1− ω)
a′

a

(
v0
+

1
R
v1
+

1
R2 v

2
+

1
R3 v

3
)
− (1− ω)

R′

R2

(
v1
+

2
R
v2
+

3
R2 v

3
)

− (1−ω)
zR′

R

(
v0
z +

1
R
v1
z +

1
R2 v

2
z +

1
R3 v

3
z

)
− (1−ω)

c∗

R

(
v0
z +

1
R
v1
z +

1
R2 v

2
z +

1
R3 v

3
z

)
=

1
R2 v

0
zz +

1
R3 v

1
zz +

1
R4 v

2
zz +

2
R2 v

1
zx +

2
R3 v

2
zx +

2
R4 v

3
zx

+
1
R
v1
xx +

1
R2 v

2
xx +

1
R3 v

3
xx +

2
R

φx

φ
v1
x +

2
R2

φx

φ
v2
x +

2
R3

φx

φ
v3
x

+
2
R

φx

φ
v0
z +

2
R2

φx

φ
v1
z +

2
R3

φx

φ
v2
z +

2
R4

φx

φ
v3
z . (5.7)

Set a(τ) = τ−m, so that a′/a = −mτ−1
= O(R−2). Now we choose vi, i ∈ {0, . . . , 3},

so that terms of order O(R−1), O(R−2) and O(R−3) will cancel. Recall that ω(τ) ∼
3/(2c∗λ∗τ), so ω will not play a role until we equate terms of order O(R−3), and even
then the only term to contribute is ωc∗v0

z/R. All other terms involving ω(τ) are smaller
than O(τ−3/2).
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If we equate the leading order terms (of order O(R−1)), we obtain an equation for v1

in terms of v0:

v1
xx + 2

φx

φ
v1
x = −

(
2
φx(x)

φ(x)
+ c

)
v0
z (z). (5.8)

Let us re-introduce the solution χ(x) of χxx + 2φx
φ
χx = −2φx

φ
− c; we see that (5.8) has

a solution of the form v1(z, x) = v0
z (z)χ

0(x) − p0(z) with χ0(x) = χ(x) + χ̄ being
periodic in x, and χ̄ any constant. For any choice of χ̄ and p0(z), (5.8) holds and the
O(R−1) terms in (5.7) cancel.

Let us now equate the terms of O(R−2) in (5.7) to obtain

v2
xx + 2

φx

φ
v2
x +mv

0
+
z

2
v0
z + v

0
zz + cv

1
z + 2v1

zx + 2
φx

φ
v1
z = 0. (5.9)

Consider the operator ρxx + 2φx (x)
φ(x)

ρx = φ̂
−2(φ̂2ρx)x acting on 1-periodic functions,

where φ̂ = e−µxψ(x). We claim that the adjoint operator has one-dimensional kernel.
A function η is in the kernel of the adjoint operator if and only if (φ̂2(φ̂−2η)x)x = 0,
which holds if and only if η(x) = k1φ̂(x)

2 ∫ x
0 φ̂(s)

−2 ds+ k2φ̂(x)
2 for some constants k1

and k2. If k1 = 0, the function η cannot be periodic, since φ̂(x)2 = e−2µxψ(x)2 is not pe-
riodic. So, we may assume k1 = 1. However, the function η(x) = φ̂(x)2

∫ x
0 φ̂(s)

−2 ds +

k2φ̂(x)
2 will be periodic only for k2 =

φ̂(1)2

φ̂(0)2−φ̂(1)2
∫ 1

0 φ̂(s)
−2 ds > 0. Any other solution

of the equation for φ̂ must be a multiple of this function η. Observe that η(x) > 0 for all x.
If η(x) is 1-periodic and spans the kernel of (φ̂2(φ̂−2η)x)x , then equation (5.9) is

solvable if and only if the sum mv0
+

z
2v

0
z + v

0
zz + cv

1
z + 2v1

zx + 2φx
φ
v1
z is orthogonal

to η for each z ∈ R. Using v1
= v0

z (z)χ(x)− p
0(z), we write the sum as

mv0
+
z

2
v0
z + v

0
zz + cv

0
zzχ

0
+ 2v0

zzχ
0
x + 2

φx

φ
v0
zzχ

0
−

(
c + 2

φx

φ

)
p0
z . (5.10)

So, the solvability condition is(
mv0
+
z

2
v0
z + v

0
zz

)∫ 1

0
η(x) dx = −

∫ 1

0

(
cv1
z + 2v1

zx + 2
φx

φ
v1
z

)
η(x) dx

= −

∫ 1

0

(
cv0
zzχ

0
+ 2v0

zzχ
0
x + 2

φx

φ
v0
zzχ

0
)
η(x) dx.

Here we have used the fact that
∫ 1

0 (c+2φx/φ)η(x) dx = 0, so that the terms involving p0
z

cancel after integration against η. Hence, v0(z) should solve mv0
+ (z/2)v0

z + (1+ κ)v
0
zz

= 0 where

κ =

(∫ 1

0
η(x) dx

)−1 ∫ 1

0

(
cχ0(x)+ 2χ0

x (x)+ 2
φx

φ
χ0(x)

)
η(x) dx. (5.11)

It is not difficult to show that 1 + κ =
∫
η(1+ χ0

x )
2 dx/

∫
η dx > 0. In particular, κ is

independent of the normalization of χ0(x) (the choice of χ̄ ). Thus, we choose v0(z) > 0
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to be the principal eigenfunction of mv0
+ (z/2)v0

z + (1+ κ)v
0
zz = 0, z > 0, v0(0) = 0,

which forces m = 1, and v0(z) = ze−z
2/(4(1+κ)).

The function p0(z) is undetermined so far. With v0(z) chosen in this way, there exists
a function v2(z, x) which is periodic in x and satisfies (5.9). Thus, the O(R−2) terms
cancel. In view of (5.10) and the definition of v0, we see that (5.9) is equivalent to

v2
xx + 2

φx

φ
v2
x = −v

0
zz(z)

(
cχ0
+ 2χ0

x + 2
φx

φ
χ0
− κ

)
−

(
c + 2

φx

φ

)
p0
z .

Therefore, v2(z, x) must have the form v2(z, x) = v0
zz(z)v̂

2(x) − p0
z (z)χ

0(x) + p1(z),

where v̂2(x) is a periodic solution of v̂2
xx + 2φx

φ
v̂2
x = −

(
cχ0
+ 2χ0

x + 2φx
φ
χ0
− κ

)
. Fi-

nally, equating the R−3 terms suggests choosing v3(x, z) to satisfy

v3
xx + 2

φx

φ
v3
x =

3
2λ∗

v0
z − (m+ 1)v1

−
z

2
v1
z − v

1
zz −

(
c∗ + 2

φx

φ

)
v2
z − 2v2

zx . (5.12)

The right hand side is

3
2λ∗

v0
z − 2v0

zχ
0
+ 2p0

−
z

2
v0
zzχ

0
+
z

2
p0
z − v

0
zzzχ

0
+ p0

zz

−

(
c∗ + 2

φx

φ

)
(v0
zzzv̂

2
− p0

zzχ
0
+ p1

z )− 2(v0
zzzv̂

2
x − p

0
zzχ

0
x ).

Therefore, the solvability condition implies that p0(z) should satisfy

2p0
+
z

2
p0
z + (1+ κ)p

0
zz = β1v

0
zzz + β2

z

2
v0
zz +

(
3

2λ∗
− 2β2

)
v0
z

where

β1 =

(∫ 1

0
η(x) dx

)−1 ∫ 1

0

(
χ0
+

(
c∗ + 2

φx

φ

)
v̂2
+ 2v̂2

x

)
η(x) dx,

β2 =

(∫ 1

0
η(x) dx

)−1 ∫ 1

0
χ0η dx,

and we would like to have p0(0) = 0. The p1 term does not appear in the solvability
condition. Therefore, we may take p1(z) ≡ 0. We let p0(z) be the unique solution of the
initial value problem

2p0
+
z

2
p0
z + (1+ κ)p

0
zz = β1v

0
zzz + β2

z

2
v0
zz +

(
3

2λ∗
− 2β2

)
v0
z , z > 0,

with the initial data p0(z) = 0 and p0
z (0) = 0.

Having chosen p0 in this way, we take v3 to be a solution of (5.12), which is unique
up to addition of a function p3(z). So, the O(R−3) = O(τ−3/2) terms have canceled.
Our approximate solution is

θapp(t, x) = τ−1v0(z)+ τ−3/2v1(z, x)+ τ−2v2(z, x)+ τ−5/2v3(z, x),
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with

v0(z) = ze
−

z2
4(1+κ) , v1(z, x) = χ0(x)e

−
z2

4(1+κ) −
z2χ0(x)

2(1+ κ)
e
−

z2
4(1+κ) − p0(z).

Now, fix a constant σ > 0. Having chosen p0(0) = 0 and p0
z (0) = 0, we may choose

C1 > 0 so that |p0(z)| ≤ C1z
2 for all z ∈ [0, σ ]. Consequently, there is a constant C2 > 0

such that for all τ > 1 and x ∈ [c∗τ, c∗τ + σ
√
τ ] we have∣∣∣∣θapp(t, x)−

x − c∗τ + χ0(x)

τ 3/2 e
−
(x−c∗τ)2
4(1+κ)τ

∣∣∣∣ ≤ C2τ
−3/2

(
x − c∗τ
√
τ

)2

+O(τ−2)

The last term O(τ−2) comes from v2 and v3 and the fact that v2 and v3 are uniformly
bounded over [0, σ ] × R.

Since the periodic function χ0(x) = χ(x)+ χ̄ is unique up to addition of a constant,
we may choose χ̄ < 0 so that maxx χ0(x) < −1. Then at the point x = c∗τ we have

θapp(t, c∗τ) ≤ τ−3/2χ0(c∗τ)+O(τ−2) ≤ −τ−3/2
+O(τ−2),

which is negative for all τ > 1 sufficiently large. Alternatively, we could choose χ̄ > 0
so that minx χ0(x) > 0. Then we would have θapp(τ, c∗τ) > 0 for all τ sufficiently large.

ut

5.4. The proof of Proposition 5.3

Using Lemma 3.1 we bring this problem into the form

(1− ω(τ))ξτ =
1
ν(x)

∂

∂x
(ν(x)ξx)−

c∗

ν(x)
ξx . (5.13)

Let8(τ, x) = ξ(τ, x)−θapp(τ, x) so that8(τ, c∗τ) = 0 and8(τ, c∗τ+L0+ε
√
τ) = 0.

We have
(1− ω(τ))ν(x)8τ = (ν(x)8x)x − c∗8x +O(τ−3).

Multiplying by 8(τ, x) and integrating by parts over I = [c∗τ, c∗τ + L0 + ε
√
τ ], we

obtain

1
2
d

dτ

∫
I

ν(x)(1− ω(τ))82 dx +
ω′(τ )

2

∫
I

ν(x)82 dx

= −

∫
I

ν(x)82
x dx +O(τ

−3)

∫
I

8dx.

Note that since 8(τ, c∗τ) = 0, we have |ω′(τ )|
∫
I
ν82 dx ≤ C

τ 2 ε
2τ
∫
I
ν82

x dx and∣∣∣∣O(τ−3)

∫
I

8dx

∣∣∣∣ ≤ Cε

τ 9/2 +
1
τ

∫
I

82 dx ≤
C

τ 4 + Cε
2
∫
I

ν82
x dx.
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If now ε is small enough so that the constant Cε2 is less than 1/4, it follows that, for
τ > τ0 large enough,

1
2
d

dτ

∫
I

ν(x)(1− ω(τ))82 dx ≤ −
1
2

∫
I

ν(x)82
x dx +

C

τ 4

≤ −
1

C(L0 + ε
√
τ)2

∫
I

ν(x)(1− ω(τ))82 dx +
C

τ 4 .

We conclude that, for ε sufficiently small,∫
I

ν(x)82 dx ≤
Cε

(1+ τ)1/ε2 +
Cε

(1+ τ)3
.

Now, parabolic regularity implies that |8(τ, x)| ≤ C/(1 + τ)3/2 for τ > τ0 sufficiently
large. This completes the proof of Proposition 5.3. ut

6. Convergence to a family of waves

This section is devoted to the proof of the convergence of the solution u to the family of
shifted minimal fronts Uc∗ . We first recall that u is bounded away from 0 or π(x) around
the position c∗t − (3/(2λ∗)) log t for large t . To the right of this position, the solution
u has the same type of decay as the critical front Uc∗ , as follows from the estimates of
Sections 2 and 3. Therefore, u is almost trapped between two finite shifts of the profile of
the front Uc∗ . From a Liouville-type result, similar to that in [3] and based on the sliding
method, the convergence to the shifted approximate minimal fronts will follow. First, we
derive from Sections 2 and 3 some exponential bounds of u to the right of the position
c∗t − (3/(2λ∗)) log t .

Lemma 6.1. Let σ > 0 be as in Proposition 2.2. There are constants 0 < κ ≤ ρ such
that

κye−λ
∗y
≤ u

(
t, c∗t −

3
2λ∗

log t + y
)

for all t ≥ 1 and 0 ≤ y ≤ σ
√
t (6.1)

and

u

(
t, c∗t −

3
2λ∗

log t + y
)
≤ ρye−λ

∗y for all t ≥ 1 and y ≥ 1. (6.2)

Proof. The lower bound (6.1) is a simple consequence of (2.10). On the other hand, it
follows from (2.18), (2.19) and the fact that u(t, x) is below one of its translates in time
that there exist positive constants T , y and ρ such that u(t, c∗t − (3/(2λ∗)) log t + y) ≤
ρye−λ

∗y for all t ≥ T and y ≥ y, hence the inequality (6.2) for a possibly different ρ. ut

The main ingredient in the proof of Theorem 1.2 is a Liouville-type lemma, whose proof
is postponed to the end of the section.
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Lemma 6.2. For any solution 0 ≤ u∞(t, x) ≤ π(x) of (6.7) in R2 satisfying (6.8)
and (6.9) for some positive constants κ and ρ, there is ξ0 ∈ R such that u∞(t, x) =
Uc∗(t + ξ0, x) for all (t, x) ∈ R2.

Proof of Theorem 1.2. First, let σ > 0 and 0 < κ ≤ ρ. Write the pulsating front Uc∗ as

Uc∗(t, x) = φc∗(x − c
∗t, x), (6.3)

where 0 < φc∗(s, x) < π(x) is continuous in R×R, 1-periodic in x, and φc∗(−∞, ·) = π ,
φc∗(∞, ·) = 0. From [19], there is a constant B > 0 such that

φc∗(s, x) ∼ Bψ(x, λ
∗)se−λ

∗s as s →∞, uniformly in x ∈ R. (6.4)

Choose now any real number C̃ ≥ 0 so that

B maxψ(·, λ∗)e−c
∗λ∗C̃
≤ κ ≤ ρeλ

∗

≤ B minψ(·, λ∗)ec
∗λ∗C̃ . (6.5)

Let us prove that (1.5) holds with C = C̃ + 1/c∗. Assume not. There are then ε > 0
and a sequence (tn)n∈N of positive times such that tn→∞ as n→∞ and

min
|ξ |≤C̃+1/c∗

∥∥∥∥u(tn, ·)− Uc∗(tn − 3
2c∗λ∗

log tn + ξ, ·
)∥∥∥∥

L∞(0,∞)
≥ ε

for all n ∈ N. Since φc∗(−∞, ·) = π and φc∗(∞, ·) = 0 uniformly in R, and φ(s, x) is
1-periodic in x, it follows from (6.3) and Theorem 1.1 that there exists a constant θ ≥ 0
such that

min
|ξ |≤C̃

(
max
|y|≤θ

∣∣∣∣u(tn, y + [c∗tn − 3
2λ∗

log tn

])
− Uc∗(ξ, y)

∣∣∣∣) ≥ ε (6.6)

for all n ∈ N, where [c∗tn − (3/(2λ∗)) log tn] denotes the integer part of c∗tn −
(3/(2λ∗)) log tn.

For each n ∈ N, set un(t, x) = uf (t + tn, x + [c∗tn − (3/(2λ∗)) log tn]). Up to ex-
traction of a subsequence, the functions un converge locally uniformly in R2 to a solution
u∞ of

(u∞)t = (u∞)xx + f (x, u∞) in R2 (6.7)

such that 0 ≤ u∞(t, x) ≤ π(x) in R2. Furthermore, Theorem 1.1 implies that

lim
A→∞

(
sup

(t,x)∈R2, x≥c∗t+A

u∞(t, x)
)
= 0,

lim
A→−∞

(
sup

(t,x)∈R2, x≤c∗t+A

(π(x)− u∞(t, x))
)
= 0.

(6.8)

On the other hand, for each fixed t ∈ R and y > 2, and n large enough, write

un(t, c
∗t + y) = u

(
t + tn, c

∗(t + tn)−
3

2λ∗
log(t + tn)+ y + γn

)
,
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where γn = [c∗tn − (3/(2λ∗)) log tn] − (c∗tn − (3/(2λ∗)) log(t + tn)). We have t + tn
≥ 1 and 1 ≤ y + γn ≤ σ

√
t + tn for n large enough, whence κ(y + γn)e−λ

∗(y+γn) ≤

un(t, c
∗t + y) ≤ ρ(y + γn)e

−λ∗(y+γn) for n large enough, from Lemma 6.1. Since −1 ≤
lim infn→∞ γn ≤ lim supn→∞ γn ≤ 0, it follows that

κ(y − 1)e−λ
∗y
≤ u∞(t, c

∗t + y) ≤ ρye−λ
∗(y−1) for all t ∈ R and y ≥ 2. (6.9)

Now, it follows from Lemma 6.2, (6.3), (6.9) and the exponential decay (6.4) of φc∗
that κ ≤ B maxψ(·, λ∗)ec

∗λ∗ξ0 and B minψ(·, λ∗)ec
∗λ∗ξ0 ≤ ρeλ

∗

, whence |ξ0| ≤ C̃

from (6.5). But since (at least for a subsequence) un → u∞ locally uniformly in R2, it
follows in particular that un(0, ·)− Uc∗(ξ0, ·)→ 0 uniformly in [−θ, θ], that is,

max
|y|≤θ

∣∣∣∣u(tn, y + [c∗tn − 3
2λ∗

log tn

])
− Uc∗(ξ0, y)

∣∣∣∣→ 0 as n→∞.

Since |ξ0| ≤ C̃, one gets a contradiction with (6.6). Therefore, (1.5) is proved.
Let us now turn to the proof of (1.6). Let m ∈ (0,minR π) be fixed and let (tn)n∈N

and (xn)n∈N be sequences of positive real numbers such that tn → ∞ as n → ∞ and
u(tn, xn) = m for all n ∈ N. Set Xn = [xn] − [c∗tn − (3/(2λ∗)) log tn]. Theorem 1.1
implies that the sequence (Xn)n∈N of integers is bounded, and may then be assumed to
be equal to a constant integer X∞, up to extraction of a subsequence. In the notation of
the previous paragraphs, the functions

vn(t, x) = u(t+tn, x+[xn]) = u

(
t+tn, x+X∞+

[
c∗tn−

3
2λ∗

log tn

])
= un(t, x+X∞)

converge locally uniformly in R2, up to extraction of another subsequence, to the function

v∞(t, x) = u∞(t, x +X∞) = Uc∗(t + ξ, x +X∞) = Uc∗

(
t + ξ −

X∞

c∗
, x

)
for some real number ξ . Since vn(0, xn − [xn]) = m for all n ∈ N and xn − [xn] → x∞
as n → ∞, one gets Uc∗(ξ − X∞/c∗, x∞) = m, that is, ξ − X∞/c∗ = T , where T
is the unique real number such that Uc∗(T , x∞) = m. Finally, the limit v∞ is uniquely
determined and the whole sequence (vn)n∈N therefore converges to the pulsating front
Uc∗(t + T , x). The proof of Theorem 1.2 is thereby complete. ut

Proof of Lemma 6.2. In the homogeneous case, the function u∞ is assumed to be trapped
between two shifts of the minimal traveling front, so the conclusion follows directly from
[3, Theorem 3.5]. In our periodic case, the comparisons (6.9) and the exponential behav-
ior (6.4) of the minimal front Uc∗ imply that u∞ is actually trapped between two finite
time shifts of Uc∗ in the region {x − c∗t ≥ 0}. In the region where x − c∗t is very nega-
tive, u∞(t, x) is close to π(x) and the maximum principle can be applied since f (x, s)/s
is decreasing with respect to s > 0, at least when s is close to π(x). The solution u∞
can then be compared with some of its shifts in this region. We finally complete the proof
of the lemma by using a sliding method: we shift the function u∞(t, x + 1) in time, we
compare it with the function u∞, and we show that u∞(t + 1/c∗, x + 1) = u∞(t, x)
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in R2. Together with (6.8) and (6.9), this will mean that u∞ is a pulsating front. From the
uniqueness of the pulsating fronts up to time shifts [21], the conclusion of the lemma will
follow. More precisely, for all ξ ∈ R and (t, x) ∈ R2, we set vξ (t, x) = u∞(t+ ξ, x+1).
We shall prove that vξ ≥ u∞ in R2 for all ξ large enough. We will then prove that
vξ ≡ u∞ in R2 for the smallest such ξ , and finally that this critical shift is equal to 1/c∗.

To do so, we first notice that, for all a ≤ b ∈ R,

inf
(t,x)∈R2, a≤x−c∗t≤b

u∞(t, x) > 0, inf
(t,x)∈R2, a≤x−c∗t≤b

(π(x)− u∞(t, x)) > 0. (6.10)

This a consequence of the strong maximum principle, parabolic regularity, and the fact
that the solution 0 < u∞(t, x) < π(x) converges to two different limits (0 and π(x)) as
x − c∗t → ±∞. Now, if f (x, s) is of the type f (x, s) = g(x)f̃ (s) with, for instance,
f̃ concave and f̃ (1) = 0, there is δ ∈ (0, 1) such that f̃ (s)/s is decreasing in [1− δ, 1];
by defining f (x, s) = 0 for all (x, s) ∈ R × (1,∞), it follows that s 7→ f (x, s)/s is
nonincreasing on [1− δ,∞) for every x ∈ R. Whether f (x, s) is of the type g(x)f̃ (s) or
not, one then deduces from the general assumptions of Section 1 and from the definition
of π(x) that s 7→ f (x, s)/s is nonincreasing on [(1 − δ)π(x),∞) for every x ∈ R.
From (6.8) and the fact that minR π > 0, there is A > 0 such that

u∞(t, x) ≥ (1− δ)π(x) for all (t, x) ∈ R2 such that x − c∗t ≤ −A. (6.11)

As far as the region {x − c∗t ≥ −A} is concerned, we claim that there is ξ ∈ R such
that

vξ (t, x) = u∞(t + ξ, x + 1) ≥ u∞(t, x) for x − c∗t ≥ −A and ξ ≥ ξ . (6.12)

Assume not. Then there exist some sequences (ξn)n∈N in [0,∞) and (tn, xn)n∈N in R2

such that limn→∞ ξn = ∞, while xn−c∗tn ≥ −A and u∞(tn+ξn, xn+1) = vξn(tn, xn) <
u∞(tn, xn) for all n ∈ N. By (6.8)–(6.10), the sequence (xn− c∗tn− c∗ξn)n∈N is bounded
from below by a constantM . Thus, (6.9) and (6.10) provide the existence of some positive
constants κ̃ and ρ̃ such that

κ̃(xn − c
∗tn − c

∗ξn −M + 1)e−λ
∗(xn−c

∗tn−c
∗ξn)

≤ u∞(tn + ξn, xn + 1) < u∞(tn, xn) ≤ ρ̃(xn − c
∗tn + A+ 1)e−λ

∗(xn−c
∗tn) (6.13)

for all n ∈ N. On the other hand,

xn − c
∗tn + A+ 1 = (xn − c∗tn − c∗ξn −M + 1)+ (c∗ξn +M + A)

≤ 2(xn − c∗tn − c∗ξn −M + 1)(c∗ξn +M + A)

for n large enough. Putting this into (6.13) and letting n→∞ (with ξn→∞ as n→∞)
leads to a contradiction. Thus, the claim (6.12) is proved.

Without loss of generality, one can assume that ξ ≥ 1/c∗. In this paragraph, we fix ξ
in [ξ,∞). Set

ε∗ =min{ε ≥ 0 : (1+ ε)vξ (t, x)≥ u∞(t, x) for all (t, x) ∈ R2 such that x − c∗t ≤−A}.



KPP fronts in a periodic medium 501

Notice first that vξ is bounded from below by a positive constant in the region
{x − c∗t ≤ −A} by (6.8) and (6.10), while u∞ is bounded from above, whence ε∗ is
a nonnegative real number. Let us prove that ε∗ = 0. Assume that ε∗ > 0. Since u∞ is
globally Lipschitz continuous and since vξ ≥ u∞ on {x − c∗t = −A} by (6.12), and
both functions vξ (t, x) and u∞(t, x) converge to π(x) as x − c∗t →−∞, there are a se-
quence (εn)n∈N of positive real numbers, a sequence (tn, xn)n∈N in R2 and a real number
y∞ < −A such that

εn→ ε∗, xn−c
∗tn→ y∞ as n→∞ and (1+εn)vξ (tn, xn) < u∞(tn, xn) for all n ∈ N.

Without loss of generality, one can also assume that xn−[xn] → x∞ and tn−[xn]/c∗→ τ

as n → ∞, with y∞ = x∞ − c
∗τ . Up to extraction of a subsequence, the functions

Un(t, x) = u∞(t + [xn]/c
∗, x + [xn]) converge locally uniformly in R2 to a solution

0 ≤ U∞ ≤ π of (6.7) satisfying (6.8) and (6.9). Set V ξ (t, x) = U∞(t + ξ, x + 1) for
(t, x) ∈ R2. Then (1 + ε∗)V ξ (t, x) ≥ U∞(t, x) for all (t, x) ∈ R2 with x − c∗t ≤ −A,
with equality at the point (τ, x∞) such that x∞−c∗τ = y∞ < −A. On the other hand, for
all (t, x) ∈ R2 with x − c∗t ≤ −A, we have (1+ ε∗)V ξ (t, x) ≥ V ξ (t, x) ≥ (1− δ)π(x)
from (6.11), the definition of the functions V ξ and Un, and the assumption ξ ≥ 1/c∗.
Consequently,

(1+ε∗)V ξt (t, x)− (1+ε
∗)V ξxx(t, x) = (1+ε

∗)f (x, V ξ (t, x)) ≥ f (x, (1+ε∗)V ξ (t, x))

for all (t, x) ∈ R2 such that x − c∗t ≤ −A, since s 7→ f (x, s)/s is nonincreasing on
[(1 − δ)π(x),∞) for every x ∈ R. Since U∞ solves (6.7), it follows from the strong
parabolic maximum principle that (1 + ε∗)V ξ (t, x) = U∞(t, x) for all (t, x) ∈ R2 such
that t ≤ τ and x − c∗t ≤ −A. The positivity of ε∗ is in contradiction with the fact that
V ξ (t, x) and U∞(t, x) converge to π(x) > 0 uniformly as x − c∗t → −∞. Therefore,
ε∗ = 0, whence

vξ (t, x) ≥ u∞(t, x) for all (t, x) ∈ R2 such that x − c∗t ≤ −A. (6.14)

Together with (6.12), one finally gets vξ ≥ u∞ in R2 for all ξ ≥ ξ .
Set now ξ∗ = min{ξ ∈ R : vξ ′ ≥ u∞ in R2 for all ξ ′ ≥ ξ}, which is a well-defined

real number such that ξ∗ ≤ ξ (notice that vξ (t, x) → 0 as ξ → −∞ for each fixed
(t, x) ∈ R2, while u∞ > 0 in R2). Our goal is to prove that ξ∗ ≤ 1/c∗, which will
then yield v1/c∗

≥ u∞, and a symmetric argument will then give the desired conclusion.
Assume then by way of contradiction that ξ∗ > 1/c∗. Remember that vξ∗ ≥ u∞ in R2 by
definition of ξ∗. We first claim that, for any a ≤ b in R,

inf
(t,x)∈R2, a≤x−c∗t≤b

(vξ∗(t, x)− u∞(t, x)) > 0. (6.15)

Otherwise, by a usual limiting argument, there would exist a solution 0 ≤ U∞ ≤ π

of (6.7) satisfying (6.8) and (6.9), and such that U∞(t + ξ∗, x + 1) ≥ U∞(t, x) for
all (t, x) ∈ R2, with equality somewhere. From the strong maximum principle and the
uniqueness of the solutions of the Cauchy problem associated with (6.7), it would then
follow thatU∞(t+ξ∗, x+1) = U∞(t, x) for all (t, x) ∈ R2 and thenU∞(t+kξ∗, x+k) =
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U∞(t, x) in R2 for all k ∈ N. Since we have assumed that ξ∗ > 1/c∗ and since U∞
satisfies (6.8), the limit as k → ∞ implies that U∞(t, x) = π(x) for all (t, x) ∈ R2,
which is clearly impossible, because of property (6.9) satisfied by U∞.

Therefore, (6.15) holds. In particular, since u∞ is Lipschitz, there is ξ ∈ (1/c∗, ξ∗)
such that

vξ (t, x) ≥ u∞(t, x) for all (t, x) ∈ R2 with x − c∗t = −A and all ξ ∈ [ξ, ξ∗].

Furthermore, vξ (t, x) ≥ (1 − δ)π(x) for all (t, x) ∈ R2 with x − c∗t ≤ −A and all
ξ ∈ [ξ, ξ∗] ⊂ [1/c∗,∞), from (6.11) and the definition of vξ . As in the proof of (6.14),
it then follows that

vξ (t, x)≥ u∞(t, x) for all (t, x) ∈ R2 with x−c∗t ≤−A and all ξ ∈ [ξ, ξ∗]. (6.16)

On the other hand, the definition of ξ∗ implies that there exist a sequence (ξn)n∈N in
(ξ∗ − 1, ξ∗) and a sequence (tn, xn)n∈N in R2 such that

ξn→ ξ∗ as n→∞ and vξn(tn, xn) < u∞(tn, xn) for all n ∈ N. (6.17)

Property (6.16) yields xn−c∗tn > −A for all n large enough, and (6.15) and (6.17) imply
then that xn − c∗tn→∞ as n→∞. Up to extraction of a subsequence, one can assume
that xn − [xn] → x∞ ∈ [0, 1] as n→∞.

Define now

Un(t, x) =
u∞(t + tn, x + [xn])

u∞(tn, [xn])
and Vn(t, x) =

vξ∗(t + tn, x + [xn])

u∞(t + tn, x + [xn])

for all (t, x) ∈ R2 and n ∈ N. From (6.9) and limn→∞(xn−c
∗tn) = ∞, it follows that the

sequences (Un)n∈N and (Vn)n∈N are bounded in L∞loc(R
2). From standard parabolic esti-

mates and the fact that u∞(tn, [xn]) → 0 as n → ∞, the functions Un converge locally
uniformly in R2, up to extraction of a subsequence, to a nonnegative classical solutionU∞
of (U∞)t = (U∞)xx + g(x)U∞ in R2. Furthermore, (Un)x → (U∞)x locally uniformly
in R2 as n→∞ and U∞(0, 0) = 1, whence U∞ > 0 in R2 from the maximum principle.
In particular, the functions

(u∞)x(t + tn, x + [xn])

u∞(t + tn, x + [xn])
=
(Un)x(t, x)

Un(t, x)

are locally bounded. As far as the functions Vn are concerned, they obey

(Vn)t (t, x) = (Vn)xx(t, x)+2
(Un)x(t, x)

Un(t, x)
(Vn)x(t, x)

+
f (x, u∞(t+ tn, x+[xn])Vn(t, x))

u∞(t+ tn, x+[xn])
−
f (x, u∞(t+ tn, x+[xn]))

u∞(t+ tn, x+[xn])
Vn(t, x)

in R2. Since (Un)x/Un → (U∞)x/U∞ and u∞(t + tn, x + [xn])→ 0 locally uniformly
in R2 as n→∞, and since the functions Vn are locally bounded, it follows from standard
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parabolic estimates that, up to extraction of a subsequence, the functions Vn converge
locally uniformly in R2 to a classical solution V∞ of

(V∞)t = (V∞)xx + 2
(U∞)x

U∞
(V∞)x in R2. (6.18)

Owing to the definitions of Vn and ξ∗, one has Vn ≥ 1, whence V∞ ≥ 1 in R2. On the
other hand,

Vn(ξn−ξ∗, xn−[xn]) =
vξn(tn, xn)

u∞(tn, xn)
×

Un(0, xn − [xn])
Un(ξn − ξ∗, xn − [xn])

≤
Un(0, xn − [xn])

Un(ξn − ξ∗, xn − [xn])

from (6.17). By passing to the limit as n→ ∞, one infers that V∞(0, x∞) ≤ 1. Finally,
V∞(0, x∞) = 1. Therefore, V∞ = 1 in R2 from the strong parabolic maximum principle
and the uniqueness of the Cauchy problem associated with (6.18).

Thus
u∞(t + tn + ξ∗, x + [xn] + 1)

u∞(t + tn, x + [xn])
=
vξ∗(t + tn, x + [xn])

u∞(t + tn, x + [xn])
→ 1 locally uniformly in R2

as n→∞. It follows by immediate induction that, for each p ∈ N,

u∞(t + tn + pξ∗, x + [xn] + p)

u∞(t + tn, x + [xn])
→ 1 locally uniformly in R2 as n→∞.

Fix p ∈ N. Property (6.9) and the limit limn→∞(xn − c
∗tn) = ∞ imply that, for n large

enough,

u∞(tn + pξ∗, [xn] + p)

u∞(tn, [xn])
≥
κ([xn] + p − c

∗tn − pc
∗ξ∗ − 1)e−λ

∗([xn]+p−c
∗tn−pc

∗ξ∗)

ρ([xn] − c∗tn)e−λ
∗([xn]−c∗tn−1) .

By letting n → ∞, one gets 1 ≥ (κ/ρ)epλ
∗(c∗ξ∗−1)−λ∗ . Since this inequality holds for

all p ∈ N and since it was assumed that ξ∗ > 1/c∗, this leads to a contradiction. We
conclude that ξ∗ ≤ 1/c∗, whence v1/c∗

≥ u∞ in R2.
By sliding u∞(t, x+1) in the other t-direction, one can prove similarly that vξ ≤ u∞

in R2 for all ξ ≤ ξ− for some real number ξ−, and that the largest such ξ cannot be
smaller than 1/c∗. Therefore, v1/c∗

≤ u∞ in R2.
Finally, v1/c∗

= u∞ in R2, that is, u∞(t+1/c∗, x+1) = u∞(t, x) for all (t, x) ∈ R2.
In other words, u∞ is a pulsating front with speed c∗, connecting 0 and π(x). The con-
clusion follows from the uniqueness up to time shifts of the pulsating fronts, for a given
speed (see [21]). The proof of Lemma 6.2 is thereby complete. ut
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