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Abstract. We introduce a new construction of exceptional objects in the derived category of co-
herent sheaves on a compact homogeneous space of a semisimple algebraic group and show that
it produces exceptional collections of the length equal to the rank of the Grothendieck group on
homogeneous spaces of all classical groups.
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1. Introduction

The study of derived categories of coherent sheaves on algebraic varieties has been an
increasingly popular subject in algebraic geometry. One of important devices relevant
for this study is the notion of an exceptional collection (see 1.1 below). In the present
paper we give a new general construction of such collections in the derived categories of
compact homogeneous spaces of semisimple algebraic groups and show that for classical
groups it gives exceptional collections of maximal length.

1.1. An overview of exceptional collections on homogeneous varieties. Let k be a
base field which we assume to be algebraically closed of characteristic 0. Recall that an
object E of a k-linear triangulated category T is exceptional if

Ext•(E,E) = k

(that is,E is simple and has no higher self-Ext’s). An ordered collection E1, . . . , Em in T
is an exceptional collection if each Ei is exceptional and

Ext•(Ei, Ej ) = 0

for all i > j . Finally, an exceptional collection E1, . . . , Em is full if the smallest triangu-
lated subcategory of T containing all the objects E1, . . . , Em is T itself.

The simplest geometrical example of a full exceptional collection is the collection

O,O(1), . . . ,O(n− 1),O(n)
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in the bounded derived category D(Pn) of coherent sheaves on Pn constructed by Beilin-
son in his pioneering work [Bei]. Later a large number of exceptional collections were
constructed by Kapranov [Kap]. In fact, he constructed full exceptional collections of
vector bundles on all homogeneous spaces of simple algebraic groups of type A and on
quadrics (which are special homogeneous spaces of types B andD). This naturally led to
the following conjecture.

Conjecture 1.1. If G is a semisimple algebraic group and P ⊂ G is a parabolic sub-
group of G then there is a full exceptional collection of vector bundles in D(G/P).

Up to now only partial results in this direction have been obtained. Below we list all
minimal homogeneous varieties of simple groups (corresponding to maximal parabolic
subgroups) for which a full exceptional collection was constructed. Recall that simple
algebraic groups are classified by Dynkin diagrams that fall into types A, B, C, D, E,
F and G. Maximal parabolic subgroups correspond to vertices of Dynkin diagrams for
which we use the standard numbering (see [Bou]). Thus, we denote by Pi the maximal
parabolic subgroup corresponding to the vertex i.

Type An: A full collection was constructed by Kapranov [Kap].
Type Bn: For P = P1 (so that G/P = Q2n−1, a quadric of dimension 2n − 1) a full

exceptional collection was constructed by Kapranov [Kap]. For P = P2 (so that
G/P = OGr(2, 2n+ 1), the Grassmannian of lines on Q2n−1) a full exceptional col-
lection was constructed in [K08]. For n = 4 and P = P4 (so that G/P = OGr(4, 9) =
OGr+(5, 10)) a full exceptional collection was constructed in [K06].

Type Cn: For P = P1 (so that G/P = P2n−1) Beilinson’s collection works. For P = P2
(so that G/P = SGr(2, 2n), the Grassmannian of isotropic planes in a symplectic vec-
tor space) a full exceptional collection was constructed in [K08]. For n = 3, 4, 5 and
P = Pn (so that G/P = SGr(n, 2n), the Lagrangian Grassmannian) full exceptional
collections were constructed in [S01] and [PS].

Type Dn: For P = P1 (so that G/P = Q2n−2, a quadric of dimension 2n − 2) a full
exceptional collection was constructed by Kapranov [Kap]. For P = P2 (so that
G/P = OGr(2, 2n), the Grassmannian of isotropic lines on Q2n−2) an almost full
exceptional collection was constructed in [K08].

Type En: For n = 6 and P = P1 (or P = P6) an exceptional collection was constructed
by Manivel [Man]. The collection was proved to be full in [FM].

Type F4: For P = P4 (so that G/P is a hyperplane section of E6/P1) an exceptional
collection can be constructed by restricting Manivel’s collection.

Type G2: For P = P1 (so that G/P = Q5) Kapranov’s collection works. For P = P2 a
full exceptional collection was constructed in [K06].

1.2. The statement of results. The main result of the present paper can be formulated as
follows. Let us say that an exceptional collection in D(X), the bounded derived category
of coherent sheaves on an algebraic variety X, is of expected length if its length is equal
to the rank of the Grothendieck group, rk(K0(X)). Note that if K0(X) is a free abelian
group then this implies that the corresponding classes generate K0(X).
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Let us say that a simple group G is of type BCD if its type is Bn, Cn, or Dn, and is
classical if its type is An, Bn, Cn, or Dn.

Theorem 1.2. Let G be a simply connected simple group of type BCD. Then for each
maximal parabolic subgroup P ⊂ G there exists an exceptional collection of expected
length in D(G/P) consisting of objects that have a G-equivariant structure.

Note that the existence of a G-equivariant structure here is a general result (see [P11,
Lem. 2.2]) but also comes naturally from the construction. The G-equivariant structure
on objects of our collections allows one to construct a relative exceptional collection on
any fibration with fiber G/P (see [S07, Thm. 3.1]).

Corollary 1.3. Let G and P be as in Theorem 1.2, and let G → X be a principal
G-bundle over an arbitrary algebraic variety X. Consider the corresponding fibration
Y = G ×G (G/P) → X. Then there exists a semiorthogonal decomposition of Db(Y )

consisting of rk(K0(G/P)) subcategories, each equivalent to Db(X), and possibly an ad-
ditional subcategory. In particular, if X has an exceptional collection of expected length
then so does Y .

Both Theorem 1.2 and Corollary 1.3 will be proved in Section 9.5.
Note that for an arbitrary (not maximal) parabolic subgroup P ⊂ G the homogeneous

space G/P has a structure of an iterated fibration with fibers of the form Gi/Pi , where Gi

are semisimple algebraic groups and Pi ⊂ Gi are maximal parabolic subgroups. More-
over, if G is a classical group then all Gi are classical as well. So, applying Corollary 1.3
(or Kapranov’s construction in type A) several times we conclude that

Corollary 1.4. If G is a simple group of type BCD and P ⊂ G is a (not necessarily max-
imal) parabolic subgroup then there exists an exceptional collection of expected length
in D(G/P).

We conjecture that the exceptional collections we construct are full and possess further
nice properties that we checked in some special cases (see Conjecture 1.9).

Finally, we would like to stress that our construction of an exceptional collection is
quite general: we use special properties of types BCD only in some computations. So, we
hope that the approach of this paper can be used to construct full exceptional collections
for all the remaining homogeneous spaces (i.e., for the exceptional groups E6, E7, E8
and F4).

1.3. An overview of the construction. The main part of any construction of an ex-
ceptional collection is to find sufficiently many exceptional objects. For a homogeneous
variety it is natural to try equivariant bundles.

Note that when we fix the type of a simple group we have several choices of the group
itself, ranging from simply connected to adjoint cases. The simply connected group has
the richest category of equivariant bundles. On the other hand, the variety G/P does not
change if we replace G by its simply connected covering. Because of this from now on
we will assume that G is simply connected.
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Recall that there is a natural equivalence of the category of G-equivariant coherent
sheaves on G/P with the category of representations of P:

CohG(G/P) ∼= RepP

(see [BK90]). In fact, it is an equivalence of tensor abelian categories. In particular, each
representation of P can be considered as a vector bundle onX = G/P. The group P is not
reductive, so its representation theory is rather complicated. Let us start by considering
the semisimple part of the category, Repss P, i.e., the subcategory of representations on
which the unipotent radical U of P acts trivially. Thus, if

L = P/U

is the Levi quotient, then extending a representation of L to a representation of P via
the projection P → L we get an equivalence RepL ∼= Repss P. The Levi group L is
reductive, and its weight lattice PL is canonically isomorphic to the weight lattice PG
of the group G. Let us choose a maximal torus T ⊂ L and a Borel subgroup B in P
containing T such that B ∩ L is a Borel subgroup in L. We denote the corresponding
cones of L-dominant and G-dominant weights by P+L ⊂ PL and P+G ⊂ PG, respectively.
Irreducible representations of L are parameterized by their highest weights which are
L-dominant. For each L-dominant weight λ ∈ P+L we denote by V λL the corresponding
irreducible representation of L, as well as its extension to P, and by Uλ the corresponding
G-equivariant bundle on X = G/P.

In type A there are sufficiently many exceptional bundles among the Uλ’s, so one can
construct an exceptional collection of expected length out of them. However, for other
types the situation is not so nice. Although all the bundles Uλ are exceptional as objects of
the derived category of equivariant sheaves DG(X), it turns out that only few of them are
exceptional in D(X). For example, in the case when G is of type Cn and P = Pn, so that
X = SGr(n, 2n) (the Lagrangian Grassmannian), one can check that Uλ is exceptional if
and only if

λ = ωi + tωn,

where ωi is the fundamental weight of the vertex i of the Dynkin diagram and t ∈ Z.
Since the canonical bundle is ωX = U−(n+1)ωn , one can deduce easily that the maximal
possible length of an exceptional collection in D(X) consisting of vector bundles of the
form Uλ is n(n+ 1) (we have n choices for i and n+ 1 choices for t in the above formula
for λ), whereas rk(K0(X)) = 2n. So, for n ≥ 5 we have no chance to find an exceptional
collection of expected length consisting only of Uλ’s. In other words, we need to introduce
another class of P-modules. In fact, this is the most interesting problem discussed in this
paper.

To explain how we do it let us return to the example of the group G of type Cn and of
P = Pn. Recall that in this case the lattice of weights is

PL = PG = Zn = {(λ1, . . . , λn)},

and the dominant cones can be described as

P+G = {λ1 ≥ · · · ≥ λn ≥ 0}, P+L = {λ1 ≥ · · · ≥ λn}
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(the Levi group L in this case is isomorphic to GLn). Take any integer 0 ≤ a ≤ n and
consider a subset (a block)

Ba = {n ≥ λ1 ≥ · · · ≥ λa ≥ λa+1 = · · · = λn = a}.

Its elements can be viewed as Young diagrams inscribed in an (n − a) × a rectangle. In
particular,

#Ba =
(
n

a

)
.

It turns out that for the weights λ,µ within such a block B = Ba the following amusing
property is satisfied: the canonical map⊕

ν∈B

Ext•G(U
λ,Uν)⊗ Hom(Uν,Uµ)→ Ext•(Uλ,Uµ) (?)

is an isomorphism (here ExtG stands for the Ext groups in the derived category DG(X)
of G-equivariant coherent sheaves on X, and the map is given by the composition of
equivariant Ext’s with Hom’s).

As already mentioned above, all the objects Uλ are exceptional when considered as
objects of the derived category DG(X) of equivariant sheaves (and in fact form an ex-
ceptional collection), while when considered as objects of D(X) (by forgetting the equiv-
ariant structure), they are not exceptional in general. Now, having property (?) one can
formally check that

• considering {Uλ}λ∈Ba as a (nonfull) exceptional collection in DG(X),
• passing to the right dual exceptional collection {Eλ}λ∈Ba in DG(X), and then
• forgetting the equivariant structure on all Eλ,

one obtains an exceptional collection {Eλ}λ∈Ba in the nonequivariant category D(X) that
generates the same subcategory as the original (nonexceptional) collection {Uλ}. This
strange procedure (see details in Section 3) can be considered as the central construction
of the paper. To make it work in general we introduce the notion of an exceptional block.
By definition, an exceptional block is a subset B ⊂ P+L of L-dominant weights such
that the morphism (?) is an isomorphism. The procedure described above produces an
exceptional collection {Eλ}λ∈B generating the subcategory

AB := 〈Uλ〉λ∈B.

However, in general one cannot find a single exceptional block of expected length.
To obtain an exceptional collection of expected length we combine several exceptional
blocks in a semiorthogonal sequence of blocks, i.e. with vanishing Ext’s between blocks
in the order-decreasing direction. For example, for G of type Cn and P = Pn we take the
blocks Ba described above for all a from 0 to n. Note that the total number of exceptional
objects in the blocks Ba is

∑n
a=0

(
n
a

)
= 2n, which is the expected length in this case.

1.3.1. The choices and the restriction. Now let us describe the construction in the general
case. The details can be found in Section 5. The construction depends on several choices
(subject to one restriction) that we are going to explain now. Let D = DG be the Dynkin
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diagram of G. Denote by β the simple root (a vertex of D) corresponding to the maximal
parabolic subgroup P, and by ξ the corresponding fundamental weight of G. The first
choice is the following.

(C1) We choose a connected component ofD\β, called the outer component and denoted
by Dout. We also allow Dout to be empty.

The restriction is

(R) If Dout is nonempty then it is a Dynkin diagram of type A.

We denote the complement of β and Dout by Dinn,

Dinn = DG \ (Dout ∪ β),

and call it the inner component of DG. We consider the simply connected subgroups

Lout,Linn ⊂ L

corresponding to the subdiagrams Dout,Dinn ⊂ D \ β = DL and denote by

i : Linn → L, o : Lout → L

the embeddings. Abusing the notation we denote the embeddings of these subgroups
into G by the same letters. Our restriction on Dout means that Lout ' SLk for some
k ≥ 1.

The next choice is the following.

(C2) We choose a standard numbering of vertices in Dout.

Since Dout is of type A, there are two possibilities for this choice (unless Dout is empty
or consists of one vertex). Let b be the number corresponding to the vertex inDout which
is adjacent to β. The chain of vertices 1, 2, . . . , b ofDG will play an important role in the
construction below.

c c c c c cc s1 2 3

4

5 6 7

b = 3, k = 5 c c c c c cc s4 3 2

1

5 6 7

b = 2, k = 5

c c c c c cc s4 5 6

7

3 2 1

b = 2, k = 3 c c c c c cc s4 5 6

7

3 1 2

b = 1, k = 3

Fig. 1. Choices of the outer component and of the numbering
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The possibilities of the choice of the outer component and of the numbering of its
vertices are illustrated in Figure 1. We take the Dynkin diagram of type E7; the black
circle marks the vertex corresponding to the parabolic subgroup P, and the thick lines
mark the outer component of the diagram. So, there are four choices with nonempty outer
component and the fifth choice (not illustrated in the picture) when Dout is empty.

We have the following decreasing chain of Dynkin subdiagrams in DG:

Da = DG \ {1, . . . , a}

for a = 0, 1, . . . , b (so D0 = DG). Let ha : Ha → G be the embedding of the simply
connected subgroup corresponding to the subdiagram Da . Note that Linn ⊂ Ha since
Dinn ⊂ Da , so the embedding i : Linn → G factors through an embedding Linn → Ha

that we will also denote by i. If K is any of the groups G, L, Linn, Lout, Ha then we
denote by PK (resp., WK) the corresponding weight lattice (resp., Weyl group).

The last choice is the following.

(C3) For each a = 0, 1, . . . , b we choose a strictly dominant weight δa ∈ P+Ha
.

For each a = 0, 1, . . . , b we define a polyhedron in PHa ⊗ R by

Rδa = {λ ∈ PHa ⊗ R | ∀w ∈WHa (λ,wδa) ≤ (ρHa , δa)},

where ρHa is the sum of the fundamental weights of Ha . We will refer to Rδa as the core
in PHa ⊗ R.

1.3.2. The indexing set. The exceptional blocks that we construct are indexed by the set

J = {j ∈ (θ, PL) | 0 ≤ j < r}.

Here θ is the unique element of PL ⊗Q such that

θ ∈ 〈ω1, . . . , ωk−1〉
⊥
∩ Ker i∗ and (θ, ξ) = 1,

where ωt is the fundamental weight of the vertex t ∈ DG, i∗ : PL → PLinn is the natural
restriction map, and r is the index of the Grassmannian G/P (the integer such that U−rξ
is the canonical class of G/P). Note that the scalar product with θ defines a linear map
(θ,−) : PL → Q, its image (θ, PL) is a finitely generated subgroup of Q containing Z,
so J is a finite totally ordered set.

1.3.3. The construction of the blocks. Recall that we have a chain of subgroups Hb ⊂

· · · ⊂ H1 ⊂ H0 = G. For each subgroup Ha denote by ra the index of the Grassmannian
Ha/(P ∩Ha). We prove that the sequence of integers ra is strictly decreasing,

r = r0 > r1 > · · · > rb−1 > rb > rb+1 := 0,

so it gives a subdivision of the indexing set J = J0 t J1 t · · · t Jb, where

Ja = {j ∈ J | r − ra ≤ j < r − ra+1}.

We denote by a the function J→ Z equal to a on Ja . In other words, it is defined by

r − ra(j) ≤ j < r − ra(j)+1.

For brevity we will write Hj = Ha(j) , hj = ha(j) and Rj = Rδa(j) .
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Now we are ready to describe the blocks. First, we construct for each j ∈ J a block

Bj = Bout
j + jξ + i∗(B

inn
j ) ⊂ PL

with Bout
j ⊂ Ker h∗j = 〈ω1, . . . , ωa(j)−1〉 (called the outer part), and Binn

j ⊂ PLinn (the
inner part). The inner part is given by

Binn
j =

{
ν ∈ P+Linn

∣∣∣∣ (1) ρHj ± 2i∗(wν) ∈ Rj for all w ∈WLinn
(2) jξ + i∗ν ∈ PL

}
,

and then the outer part is defined by

Bout
j =

{
µ∈Ker h∗j ∩P

+

G

∣∣∣∣ ρHj − h
∗

j (wLoutµ)− i∗(wLinnν)+ i∗(w
′

Linn
ν′)∈Rj

for all ν, ν′ ∈Binn
j , wLout ∈WLout , and wLinn , w

′

Linn
∈WLinn

}
.

Note that by definition of θ we have (θ,Bj) = j. So, the pairing with θ gives the ordering
of the blocks.

We check that the blocks Bj constructed above are exceptional provided the group G
is of type BCD (for other types one has to slightly modify the definition of the outer part;
see details in Section 5.5). It follows that for each j ∈ J the subcategory 〈Uλ 〉λ∈Bj

is
generated by an exceptional collection.

1.3.4. Modification of the blocks and the main result. It turns out that the subcategories
〈Uλ 〉λ∈Bj

are not semiorthogonal, so we have to make our blocks slightly smaller. Let R∗j
denote the interior of the core Rj. We define subsets B̄inn

j ⊂ Binn
j for j ∈ J recursively

(starting from j = 0) by

B̄inn
j =

{
ν ∈ Binn

j

∣∣∣∣ for all j′ < j, ν′ ∈ B̄inn
j′ , and wLinn , w

′

Linn
∈WLinn

one has ρHj′
− (j− j′)ξ − wLinn i∗ν + w

′

Linn
i∗ν
′
∈ R∗j′

}
.

Then we set

B̄out
j =

{
λ0 ∈B

out
j

∣∣∣∣ for all j′< j, ν ∈ B̄inn
j , ν′ ∈ B̄inn

j′ , wLinn , w
′

Linn
∈WLinn , and wL ∈WL

one has ρHj′
− h∗j′(wLλ0 + (j− j′)ξ)− wLinn i∗ν + w

′

Linn
i∗ν
′
∈R∗j′

}
and, as before,

B̄j = B̄out
j + jξ + i∗B̄

inn
j .

The subcategories Aj = 〈Uλ〉λ∈B̄j
generated by these smaller blocks are semiorthogonal.

This construction looks intimidating. However, we show in Section 8 that the defini-
tion of the blocks B̄out

j and B̄inn
j can be rewritten in terms of simple inequalities, and in

Section 9 we describe these blocks for classical groups.
Here is a more precise version of our main result. Note that B̄out

j is a set of linear
combinations of fundamental weights ω1, . . . , ωa(j) with nonnegative coefficients. These
can be considered as Young diagrams—a weight x1ω1 + · · · + xaωa corresponds to the
Young diagram with xi columns of length i. Let us say that the set B̄out

j is closed under
passing to Young subdiagrams if the corresponding set of Young diagrams is.
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Theorem 1.5. (i) Let G be a simple simply connected group. For any choices (C1)–
(C3) subject to the restriction (R), the collection {Aj}j∈J of subcategories con-
structed above is semiorthogonal.

(ii) For j ∈ J such that B̄out
j is closed under passing to Young subdiagrams, the block B̄j

is exceptional.
(iii) If G is a group of type BCD then the choices (C1)–(C3) can be made in such a

way that the assumption of (ii) is satisfied for all j ∈ J and the resulting exceptional
collection

{Eλ}
λ∈B̄j, j∈J

(1)

in D(X) is of expected length.

We will describe explicit choices in Theorem 1.5(iii) in Section 9 along with the explicit
description of the blocks B̄j. The theorem is proved in Section 9.5. Note that Theorem 1.2
follows from this.

Conjecture 1.6. The exceptional collections constructed in the Theorem 1.5(iii) are full.

Remark 1.7. We conjecture that in fact every exceptional collection of expected length
on G/P is full. The more general Nonvanishing Conjecture of [K09] stating that every
exceptional collection of expected length is full turned out to be false—counterexamples
were constructed in [BBS], [AO], [GS], [BBKS]. Nevertheless, we believe that the con-
jecture is still true for homogeneous spaces.

1.3.5. Properties of the exceptional collection. Recall that an exceptional collection
E1, . . . , Em in a triangulated category T is strong if

Ext 6=0(Ei, Ej ) = 0

for all i, j . An advantage of a full strong exceptional collection is that it gives an equiva-
lence of the category T with the derived category of modules over an algebra End(

⊕
Ei)

(for a nonstrong collection one has to deal with a DG-algebra). Let us say that an excep-
tional collection is pure if all Ei are vector bundles.

Theorem 1.8. For the blocks of the collections constructed in Theorem 1.5(i) strongness
and purity are equivalent.

The proof will be given in Proposition 4.2. In fact, we conjecture the following.

Conjecture 1.9. The collections constructed in Theorem 1.5(iii) are pure and their
blocks are strong.

We verify this conjecture for all maximal isotropic Grassmannians (symplectic and or-
thogonal).

1.4. Further questions. There are several questions to be investigated.

Question 1.10. Is there a way to make choices (C1)–(C3) in a canonical way? Is restric-
tion (R) really necessary for the construction?
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This expectation is justified partly by a result of A. Fonarev [Fon], who proved that col-
lections of objects, constructed in Db(Gr(k, n)) by formally applying our procedure with
choices violating restriction (R), are still exceptional. See Section 9.6 for more details.

Question 1.11. Assume that G is an exceptional group (types E6, E7, E8 and F4). Is it
possible to make the choices (C1)–(C3) in a way analogous to Theorem 1.5(iii), so as to
get an exceptional collection of expected length?

Note that in the case of groups of type BCD the equality of the length of the constructed
collection with the rank of the Grothendieck group is a result of direct calculation without
an a priori explanation. It would be nice to understand the combinatorics behind this coin-
cidence. Recall that the rank of the Grothendieck group K0(G/P) is equal to |WG/WL|,
so the following question seems natural.

Question 1.12. Find a decomposition of the set WG/WL =
⊔

j∈JWj and a bijection
between the sets Wj and the sets B̄j.

The above decomposition should depend on a chain of subgroups Hb ⊂ · · · ⊂ H1 ⊂

H0 = G.

Question 1.13. What happens with our exceptional collections in positive characteristic?

For the case of Grassmannians of type A this was studied in [BLV].

1.5. The structure of the paper. We start by collecting in Section 2 the notation and
basic facts about representation theory of algebraic groups.

In Section 3 we define exceptional blocks, prove that they produce exceptional col-
lections, investigate their properties, and state a criterion of exceptionality of a block.

In Section 4 we discuss strongness and purity of the collection obtained from an ex-
ceptional block.

In Section 5 we define the blocks Bj and B̄j and show that (Aj) is a semiorthogonal
collection of subcategories.

In Section 6 we verify the first part of the exceptionality criterion from Section 3—the
invariance condition—for the blocks Bj and B̄j.

In Section 7 we verify the second part of the criterion—the compatibility condition—
modulo a technical assumption (that the outer part of each block is closed under passing
to Young subdiagrams).

In Section 8 we rewrite the definition of the blocks in a more explicit form.
In Section 9 we write down the precise choices for classical groups and prove that

they give exceptional collections of expected length.
Finally, in the Appendix (Section 10) we prove a certain property of representations

of the general linear group which is used in the proof of the exceptionality of the blocks.
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2. Preliminaries

2.1. Notation

(1) Groups:
• G, a simple simply connected algebraic group;
• P ⊂ G, a maximal parabolic subgroup;
• U ⊂ P, the unipotent radical;
• L = P/U, the Levi quotient, there is also an embedding L ⊂ P ⊂ G;
• Linn ⊂ L, the inner part of L, see Section 5.2;
• Lout ⊂ L, the outer part of L, see Section 5.2;
• Ha ⊂ G, Linn ⊂ Ha , a semisimple subgroup, see Section 5.2;
• Ma = L ∩Ha , the Levi of Ha ;
• Ma,inn = Linn ∩Ha = Linn, the inner part of the Levi of Ha ;
• Ma,out = Lout ∩Ha , the outer part of the Levi of Ha .

(2) Roots, weights:
• D = DG, DLinn = Dinn ⊂ D, DLout = Dout ⊂ D, DHa = Da ⊂ D, the Dynkin

diagrams;
• QG, QL, QLinn , QLout , QHa , the root lattices;
• Q+G, Q+L , Q+Linn

, Q+Lout
, Q+Ha

, the cones generated by simple roots;
• PG, PL = PG, PLinn , PLout , PHa , the weight lattices;
• P+G ⊂ PG, P+L ⊂ PL, P+Lout

⊂ PLout , P
+

Linn
⊂ PLinn , P+Ha

⊂ PHa , the dominant
cones;
• αi , the simple roots;
• ωi , the fundamental weights;
• β, the simple root corresponding to the maximal parabolic P;
• ξ , the fundamental weight corresponding to the maximal parabolic P;
• ρ = ρG =

∑
i∈DG

ωi ∈ PG;
• ρHa =

∑
i∈Da

ωi ∈ PHa ;
• (−,−), the scalar product on the root/weight lattices.

(3) Weyl groups:
• WG, WL, WLinn , WLout , WHa , the Weyl groups;
• sα , si = sαi , sβ , the simple reflections corresponding to simple roots;
• ` :W→ Z≥0, the length function on a Weyl group;
• wG

0 , wL
0 , wLinn

0 , wLout
0 , wHa

0 , the longest elements in the corresponding Weyl
groups;
• SRL

G, the set of special representatives of left WL-cosets in WG, see Section 2.5;
• SRM

H , the set of special representatives of left WM-cosets in WH.
(4) Maps:
• i : Linn → L, Linn → Ha , Linn → G, the natural embeddings;
• o : Lout → L, Lout → G, the natural embeddings;
• ha : Ha → G, the natural embedding;
• i∗ : PG → PLinn , o∗ : PG → PLout , h

∗
a : PG → PHa , the restriction of weights;

• i∗ : QLinn → QG, o∗ : QLout → QG, ha∗ : QHa → QG, the embedding of roots.
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(5) Representations and bundles:
• V λG, the irreducible representation of G with the highest weight λ ∈ P+G ;
• V λL , the irreducible representation of L with the highest weight λ ∈ P+L ;
• Uλ, the G-equivariant vector bundle on G/P corresponding to (V λL )|P.

(6) Other:
• X = G/P, the homogeneous space associated with a parabolic subgroup P;
• SGr(k, 2n) (resp., OGr(k, n)), symplectic (resp., orthogonal) isotropic Grassman-

nian;
• D(X), the bounded derived category of coherent sheaves on X;
• DG(X), the bounded derived category of G-equivariant coherent sheaves on X.

2.2. Roots and weights. Let G be a simple algebraic group, P a maximal parabolic
subgroup, and G/P = X. Let β be the corresponding simple root of G, and ξ the corre-
sponding fundamental weight.

We denote by U ⊂ P the unipotent radical of P and by L = P/U the Levi quotient.
Recall that the projection P → L admits a splitting. We choose such a splitting and
consider L as a subgroup of P, and hence of G. We also choose a maximal torus T ⊂ L
and a Borel subgroup B in P such that T ⊂ B and L ∩ B is a Borel subgroup in L. Note
that the set of simple roots of L is the complement of β in the set of simple roots of G.

The embedding of groups L ⊂ G induces an isomorphism of weight lattices
PG

∼
→ PL. We use this isomorphism to identify the lattices. Let P+L and P+G denote

the dominant cones in P of L and G respectively.
We identify the simple roots of the group G with the vertices of the Dynkin diagram

DG. In particular, we say that simple roots α and α′ are adjacent if the corresponding
vertices are connected by an edge, or equivalently if α 6= α′ but (α, α′) 6= 0.

The fundamental weight of G corresponding to the vertex i ∈ DG is denoted by ωi .
Also, we denote by ρ = ρG half the sum of the simple roots of G, or equivalently the sum
of the fundamental weights.

We consider the root lattice QG of G as a sublattice of the weight lattice (roots are
weights in the adjoint representation). We denote by (−,−) the scalar product on the
weight lattice. This scalar product is defined uniquely up to a multiplicative constant. We
choose the standard scaling as in [Bou]. Note that with this choice all scalar products of
roots are integers and scalar products of weights are rational.

2.3. Weyl group action. The simple reflection corresponding to a root α = αi is denoted
by sα = sαi = si . Note that

si(ωj ) = ωj − δijαj , (2)

which means that
(ωj , αi) = δijα

2
i /2. (3)

It follows that
siρ = ρ − αi (4)

for all i.
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We identify WL with the subgroup in WG generated by all simple reflections sαi with
αi 6= β. Together with (2) this immediately implies the following

Lemma 2.1. The weight ξ is invariant under the action of WL.

The length function on the Weyl group is denoted by ` (recall that `(w) is the length of a
minimal representation of w as a product of simple reflections). The following lemma is
well-known (see [Hum, Lemma 10.3A and its proof]).

Lemma 2.2. If w ∈WG and sj is a simple reflection corresponding to the simple root αj
then one has `(wsj ) > `(w) if and only if the root w(αj ) is positive.

Recall that the dominant cone P+G is a fundamental domain for the action of WG on PG.
In particular, for each λ ∈ PG there is an elementw ∈WG such thatwλ ∈ P+G . Moreover,
such a w is unique unless λ is orthogonal to a root of G (i.e., unless λ lies on a wall of a
Weyl chamber).

Let us denote by Q+G ⊂ PG the cone of all linear combinations of simple roots with
nonnegative integer coefficients. The following lemma is also well known but we provide
a proof for completeness.

Lemma 2.3. If λ is dominant then for any w ∈WG one has λ− wλ ∈ Q+G.

Proof. Since λ is a positive linear combination of fundamental weights, it is enough to
check that for every ωi and every w the weight ωi − wωi is a sum of positive roots. This
can be checked by induction on the length of w. When w is a simple reflection sj , this
follows from (2). Let s = sj be a simple reflection, and assume `(wsj ) = `(w)+ 1. Then

ωi − wsjωi = ωi − wωi + w(ωi − sjωi) = ωi − wωi + w(δijαj ).

Now the assertion follows from the induction assumption and from Lemma 2.2. ut

The following consequence of this lemma will be extremely important for us.

Corollary 2.4. For a pair of weights λ andµ the maximum (resp., minimum) of the scalar
product (wλ,µ), where w runs through the Weyl group W, is achieved when wλ and µ
lie in the same Weyl chamber (resp., opposite Weyl chambers).

Proof. Since the scalar product is W-invariant, we can assume that µ is dominant. To
prove the assertion about the maximum we have to check that if λ is also dominant then
(wλ,µ) ≤ (λ, µ) for anyw ∈W. But this follows easily from Lemma 2.3 since the scalar
product of a positive root with a dominant weight is nonnegative by (3). The assertion
about the minimum follows as well since (wλ,µ) is minimal exactly when (wλ,−µ) is
maximal. ut

Assume that H is a simply connected semisimple algebraic group and let H = H1 × · · ·

×Hk be its decomposition into the product of simple groups. Then PH = PH1⊕· · ·⊕PHk

and P+H = P+H1
× · · · × P+Hk

. Denote by λi the component of a weight λ ∈ PH in the
summand PHi

.
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Definition 2.5. A weight λ ∈ P+H is strictly dominant if all its components λi ∈ P+Hi
are

nonzero.

Lemma 2.6. If λ,µ ∈ P+H then (λ, µ) ≥ 0. Moreover, if λ is strictly dominant andµ 6= 0
then (λ, µ) > 0. In particular, if H is simple then the latter inequality holds for any pair
of nonzero dominant weights.

Proof. This follows immediately from the fact that all scalar products of fundamental
weights of a simple group are strictly positive. ut

Let β be the simple root corresponding to P. The WL-orbit of β has the following nice
description.

Lemma 2.7. The WL-orbit of β consists of all roots of G that have the coefficient of β
equal to 1, when expressed as a linear combination of simple roots, and have the same
length as β.

Proof. The coefficient of β in a root α is given by (ξ, α)/(ξ, β), where ξ is the funda-
mental weight corresponding to β. Since ξ is invariant under the action of WL, we have

(ξ, wLβ) = (w
−1
L ξ, β) = (ξ, β)

for all wL ∈WL, so the coefficient of β is equal to 1 for all roots in the WL-orbit of β.
Conversely, let us check that if a positive root α has the coefficient of β equal to 1 and

(α, α) = (β, β) then α is in the WL-orbit of β. Let us write α =
∑
ciαi , where αi are

simple roots. We will use induction on
∑
ci . If

∑
ci = 1 then α = β, so the statement

is true. Now assume that
∑
ci > 1. It is enough to prove that there exists a simple root

αi 6= β such that (α, αi) > 0. Indeed, then siα will have a smaller sum of coefficients
and by the induction assumption, we would deduce that siα is in the WL-orbit of β.

Suppose (α, αi) ≤ 0 for all αi 6= β. Then

(α, α) =
(
β +

∑
αi 6=β

ciαi, α
)
= (β, α)+

∑
αi 6=β

ci(αi, α) ≤ (β, α).

Since (α, α) = (β, β) by assumption, we get (β, β) ≤ (β, α). But sβ(α) = α − 2 (α,β)
(β,β)

β

should be a positive root (since α 6= β). Looking at the coefficient of β in sβ(α)we obtain

2
(α, β)

(β, β)
≤ 1,

which contradicts the previous inequality. ut

We denote by wG
0 and wL

0 the longest elements of the Weyl groups WG and WL respec-
tively. Note that

(wL
0 )

2
= (wG

0 )
2
= 1.

Note also that wG
0 takes any simple root of G to minus a simple root, and hence any

fundamental weight to minus a fundamental weight. In particular,

wG
0 ρG = −ρG (5)

and wG
0 (P

+

G ) = −P
+

G , wL
0 (P

+

L ) = −P
+

L .
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2.4. Representations. For each dominant weight λ ∈ P+G (resp., λ ∈ P+L ) we denote
by V λG (resp., V λL ) the corresponding irreducible representation of G (resp., L).

The dual of any irreducible representation is also irreducible. To be more precise,

(V λL )
∨
= V

−wL
0 ·λ

L . (6)

Indeed, if λ is the highest weight of an irreducible representation of L then wL
0 λ is the

lowest weight, so −wL
0 λ is the highest weight of the dual.

Since the group L is reductive, the tensor product of two irreducible representations
of L is a direct sum of irreducibles. We denote by mult(V νL , V

λ
L ⊗ V

µ
L ) the multiplicity

of V νL in the tensor product. The following simple result will be useful.

Lemma 2.8. We have

mult(V νL , V
λ
L ⊗ V

µ
L ) = dimHomL(V

ν
L , V

λ
L ⊗ V

µ
L ) = dimHomL(V

λ
L ⊗ V

µ
L , V

ν
L ).

In particular, mult(V νL , V
λ
L ⊗ V

µ
L ) = mult((V

µ
L )
∨, V λL ⊗ (V

ν
L )
∨).

Proof. The first part follows from the fact that there are no maps between different irre-
ducibles and a one-dimensional space of maps between isomorphic irreducibles.

The second part follows from the canonical isomorphism HomL(V
ν
L , V

λ
L ⊗ V

µ
L )
∼=

HomL((V
µ
L )
∨, V λL ⊗ (V

ν
L )
∨). ut

We also need the following standard result that gives restrictions on the possible highest
weights of irreducible summands of the tensor product of two irreducible representations
(obtained e.g. by combining [FH, Thm. 14.18] with [Zhel, §131, Thm. 5]; see also [Hum,
Exer. 24.12] and [FH, Exer. 25.33]).

Lemma 2.9. If mult(V νL , V
λ
L ⊗ V

µ
L ) > 0 then ν ∈ Conv(λ + wµ)w∈WL , where

Conv stands for the convex hull and WL is the Weyl group of L. Similarly, if
mult(V νL , V

λ
L ⊗ (V

µ
L )
∨) > 0 then ν ∈ Conv(λ− wµ)w∈WL .

2.5. Special representatives. For any w ∈ W the set w(P+G ) belongs to a unique WL-
chamber, so in the coset WLw ⊂ W of WL there is a unique representative which takes
the G-dominant cone to the L-dominant cone. We call it the L-special representative of
the coset and denote the set of all L-special representatives in W by SRL

G. Note that the
WL-chamber containing w(P+G ) is determined by w(ρ), hence the L-special representa-
tive w1 is determined by the condition w1(ρ) ∈ P

+

L .
The elements of SRL

G can also be characterized as follows.

Lemma 2.10. The set SRL
G ⊂ W consists of the elements that have minimal length in

their left WL-cosets.

Proof. Let w ∈W be an element of minimal length in its left WL-coset. Then `(w−1sj )

= `(sjw) > `(w) = `(w−1) for every simple reflection sj in WL. Hence, by Lemma 2.2,
the root w−1(αj ) is positive for every simple root αj that belongs to the root system of L.
Thus, (wρ, αj ) = (ρ,w−1αj ) > 0 for every such simple root, i.e., wρ is L-dominant.
Hence, w is a special representative. ut
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Recall that β is the simple root corresponding to P.

Lemma 2.11. (0) The only element of length 0 in SRL
G is 1.

(1) The only element of length 1 in SRL
G is sβ .

(2) All elements of length 2 in SRL
G are of the form sβsα , where α is a simple root of G

adjacent to β.

Proof. Part (0) is clear. For (1) we note that elements of length 1 in WG are just simple
reflections and for α 6= β the reflection sα is in the same WL-coset as 1, which has smaller
length. Similarly, all elements of length 2 are products sα1sα2 of simple reflections. If
α1 6= β then sα2 is in the same coset and has smaller length, hence α1 = β. And if
α := α2 is not adjacent to β then the reflections sα and sβ commute, so sβsα = sαsβ is in
the same coset as sβ , which has smaller length. ut

Take any reductive subgroup H ⊂ G compatible with the torus and the Borel subgroups
T ⊂ B ⊂ G, i.e. such that H ∩ T ⊂ H ∩ B is a maximal torus and a Borel subgroup
in H, and such that M = H ∩ L is the Levi subgroup in a parabolic subgroup of H. Let
WH and WM be the corresponding Weyl groups. Note that WM =WH ∩WL. It follows
that WH/WM ⊂ WG/WL. Actually, the same inclusion holds for the sets of special
representatives.

Lemma 2.12. We have SRL
G ∩WH = SRM

H .

Proof. The inclusion SRL
G ∩WH ⊂ SRM

H is clear. Now let w ∈ SRM
H . We have to show

that (wρ, αi) ≥ 0, where αi is any simple root of L. If αi belongs to the root system of H∩
L = M then this follows from the definition of SRM

H . Otherwise, the simple reflection si
associated with αi is different from all simple reflections in WH, so `(w−1si) > `(w−1).
Hence, by Lemma 2.2, w−1αi is a positive root, and so (wρ, αi) = (ρ,w−1αi) ≥ 0. ut

The following inequality is very important for us.

Lemma 2.13. Assume that v ∈ SRL
G. Then

(ξ, ρ − vρ) ≥ `(v)(ξ, β).

If `(v) = 1 then this inequality becomes an equality.

Proof. Let us prove this by induction on the length of v. In the case v = 1 both sides
of our inequality are equal to zero. Now assume that `(v) ≥ 1. Recall that v is the
representative of minimal length in the coset WLv. Thus, we can write v = usi , where si
is a simple reflection, `(u) = `(v)− 1, and u ∈ SRL

G. We have

(ξ, ρ − vρ) = (ξ, ρ − uρ)+ (ξ, u(ρ − siρ)) = (ξ, ρ − uρ)+ (ξ, u(αi)).

The first summand on the right-hand side is ≥ `(u)(ξ, β) by the induction assumption.
Thus, it suffices to check that (ξ, u(αi)) ≥ (ξ, β).

Since `(usi) = `(u)+ 1, the root u(αi) is positive (by Lemma 2.2), so we only have
to check that β appears in u(αi) with nonzero coefficient, i.e., (ξ, u(αi)) 6= 0. Suppose
(ξ, u(αi)) = 0. Then u(αi) =

∑
αj 6=β

njαj with nj ≥ 0. The fact that v has minimal
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length in its rightWL-coset implies that `(v−1sj ) > `(v−1) for every j such that αj 6= β.
Hence, all the roots v−1(αj ) are positive, and therefore

−αi = siαi = v
−1u(αi) =

∑
αj 6=β

njv
−1(αj )

should be positive, so we get a contradiction.
If `(v) = 1 then v = sβ by Lemma 2.11, hence ρ − vρ = β, and both sides are equal

to (ξ, β). ut

Remark 2.14. Note that if the root β is cominuscule, which means that the coefficient
of β in any root of G does not exceed 1, then

(ξ, ρ − vρ) = `(v)(ξ, β)

for all v ∈ SRL
G. Indeed, in the argument above we conclude that the coefficient of β

in u(αi) is precisely 1, hence we obtain an inductive proof of the equality.

2.6. Equivariant bundles Uλ and Borel–Bott–Weil Theorem. Since X = G/P is a
homogeneous variety, the category CohG(X) of G-equivariant coherent sheaves on X is
equivalent to the category of representations of P:

CohG(X) ∼= Rep-P (7)

(see [BK90], [Hille] and references therein). This equivalence is compatible with the
structures of tensor abelian categories on both sides, i.e. it preserves tensor products and
duals.

For each λ ∈ P+L , a dominant weight of the Levi quotient L = P/U, we consider V λL ,
the corresponding irreducible representation of L. Extending V λL to P (via the projection
P → L) we obtain a representation of P, and hence a G-equivariant vector bundle on X
which we denote by Uλ. Since the above equivalence preserves the tensor structure, we
deduce from Lemma 2.8 and (6) that

Uλ ⊗ Uλ
′

=

⊕
µ∈P+L

Hom(V
µ
L , V

λ
L ⊗ V

λ′

L )⊗ Uµ, (Uλ)∨ ∼= U−w
L
0 λ. (8)

Note that V ξL is a one-dimensional representation of L, hence U ξ is a line bundle onX.
Moreover, it is the ample generator of PicX = Z, so we will denote it by OX(1). Thus,

OX(t) = U tξ . (9)

Similarly, we will denote the bundle Uλ+tξ by Uλ(t).
The cohomology groups of the bundles Uλ can be computed via the Borel–Bott–Weil

Theorem. Recall that a weight λ ∈ PG is called G-singular if it lies on a wall of a Weyl
chamber of G (equivalently, if it is orthogonal to some root of G). If a weight does not
lie on a wall of a Weyl chamber, it is called G-regular. If the group G is clear from the
context, we will write just singular and regular. The sets of G-singular and of G-regular
weights are invariant under the natural action of the Weyl group WG on PG.
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Theorem 2.15 ([Bott, Thm. IV′]). Take any λ ∈ P+L ⊂ PL = PG. If λ + ρG is G-
singular thenH •(X,Uλ) = 0. If λ+ρG is G-regular then there exists a unique w ∈WG
such that w(λ+ ρG) is dominant. In this case

H `(w)(X,Uλ) = V w(λ+ρG)−ρG
G

and the other cohomology groups vanish. In particular, if λ is G-dominant then
H 0(X,Uλ) = V λG.

Let P reg
G denote the set of all regular weights of G, and P reg

G − ρG denote the set of all
weights µ ∈ PG such that µ + ρG ∈ P

reg
G . Further, for each µ ∈ P reg

G − ρG denote
by wµ the unique element of the Weyl group WG such that wµ(µ+ ρG) is G-dominant.
Combining the theorem above with (8) and Lemma 2.9 we deduce

Corollary 2.16. We have

Ext•(Uλ,Uλ
′

)

=

⊕
µ∈Conv(λ′−wλ)w∈WL∩P

+

L ∩(P
reg
G −ρG)

Hom(V
µ
L , V

λ′

L ⊗V
−wL

0 λ

L )⊗V
wµ(µ+ρG)−ρG
G [−`(wµ)],

where [−`(wµ)] stands for cohomological shift.

We will also need a way to compute Ext-groups in the derived category DG(X) of G-
equivariant coherent sheaves on X. Let us denote these Ext groups between F,F ′ ∈
DG(X) by ExtiG(F, F

′) = HomDG(X)(F, F
′
[i]).

Proposition 2.17. One has
(i) ExtiG(F, F

′) = (Exti(F, F ′))G, the space of G-invariants in the Ext-group between
F and F ′ in D(X).

(ii) Ext•G(Uλ,Uλ
′

) =
⊕

v∈SRL
G
Hom(V

vρ−ρ
L , V λ

′

L ⊗ V
−wL

0 λ

L )[−`(v)].

(iii) Ext1G(Uλ,Uλ
′

) = Hom(V
−β
L , V λ

′

L ⊗ V
−wL

0 λ

L ).

Proof. (i) This follows from HomG(F, F
′) = Hom(F, F ′)G because the functor of in-

variants is exact (since the group G is reductive).
(ii) Note that (V νG)

G is zero for ν 6= 0 and is equal to k for ν = 0, hence µ from the
formula of Corollary 2.16 contributes to ExtG if and only if wµ(µ+ ρ)− ρ = 0, that is,
if µ = vρ − ρ for some v ∈ WG. Since µ should be L-dominant, the element v should
be a special representative, that is, v ∈ SRL

G. Of course, if vρ − ρ 6∈ Conv(λ′ −wλ) then
Hom is zero, so we can forget this restriction.

(iii) This follows from (ii) using the fact that by Lemma 2.11(1) the only special
representative of length 1 is sβ , and sβρ = ρ − β. ut

2.7. The canonical class. Let G be a semisimple algebraic group (not necessarily
simple). Recall that by [Hille, Sec. 1.5], the canonical class of X = G/P is the line
bundle corresponding to the weight equal to minus the sum of all positive roots of G
which are not roots of L. The following formula is also well known but we give a proof
for completeness.
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Lemma 2.18. The canonical class ωX of X = G/P is isomorphic to the line bundle
UwL

0 w
G
0 ρ−ρ .

Proof. Recall that ρ is half the sum of all positive roots of G. As wG
0 takes all positive

roots of G to negative roots and wL
0 takes all negative roots of L to positive roots of L, it

follows that wL
0w

G
0 ρ is half the sum of all positive roots of L minus half the sum of all

positive roots of G which are not roots of L. So, subtracting ρ we obtain minus the sum
of all positive roots of G which are not the roots of L. ut

We will also need the following more explicit formula.

Lemma 2.19. Let β be the simple root corresponding to P, and ξ the corresponding
fundamental weight. There exists a maximal root in the WL-orbit of β, i.e., a positive root
β̄ ∈ WLβ satisfying β̄ − wβ̄ ∈ Q+G for any w ∈ WL. Then ωX = OX(−r) = U−rξ ,
where

r = (ρ, β̄ + β)/(ξ, β).

Proof. The Picard group of G/P is generated by U ξ , hence ωX ∼= UwL
0 w

G
0 ρ−ρ ∼= U−kξ

for some k ∈ Z. To find k we compute the scalar product with β. We get

k = (ρ − wL
0w

G
0 ρ, β)/(ξ, β).

Further (−wL
0w

G
0 ρ, β) = (wL

0 ρ, β) = (ρ,wL
0 β) by (5). Note that β considered as a

weight of L is antidominant (its scalar products with simple roots of L are nonpositive),
hence wL

0 β is L-dominant. By Lemma 2.3 we conclude that β̄ := wL
0 β is the maximal

root in the WL-orbit of β. Finally, it is a positive root since (ξ, wL
0 β) = (wL

0 ξ, β) =

(ξ, β) > 0, because ξ is WL-invariant. ut

Remark 2.20. By Lemma 2.7, β̄ is in fact the maximal root of the same length as β and
with the coefficient of β equal to 1. This gives an easy way to find β̄ just by looking at
the table of roots.

Remark 2.21. The integer r is called the index of the Grassmannian G/P.

The following consequence of the above formula is useful.

Corollary 2.22. Let P be a maximal parabolic subgroup in G, and β the corresponding
simple root. Let H ⊂ H′ ⊂ G be a pair of semisimple subgroups corresponding to a
pair of Dynkin subdiagrams DH ⊂ DH′ ⊂ DG such that β ∈ DH and there is a simple
root α ∈ DH′ \DH adjacent to the connected component of β in DH. Let r and r ′ be the
indices of the Grassmannians H/(H ∩ P) and H′/(H′ ∩ P) respectively. Then r ′ > r .

Proof. Let M = L ∩ H and M′ = L ∩ H′. Let β̄ be the maximal root in the WM-orbit
of β, and β̄ ′ the maximal root in the WM′ -orbit of β. Let C ⊂ DH denote the connected
component of β in DH, and let α be a simple root of H′ adjacent to C. Note that since β̄
is maximal, the coefficient of any simple root of C in β̄ is strictly positive. In particular,
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the coefficients of simple roots in C adjacent to α are positive, hence the scalar product
(α, β̄) is strictly negative. Therefore,

sα(β̄) = β̄ − 2
(α, β̄)

α2 α

has a strictly positive coefficient of α. Therefore,

(ρ, β̄ ′) ≥ (ρ, sα(β̄)) ≥ (ρ, β̄)+ (ρ, α) > (ρ, β̄)

since (ρ, α) = α2/2 > 0. Now the assertion follows from Lemma 2.19. ut

3. Exceptional blocks

Let G be a simple simply connected algebraic group and P ⊂ G a maximal parabolic
subgroup. We take X = G/P and denote by D(X) the bounded derived category of
coherent sheaves on X, and by DG(X) the bounded derived category of G-equivariant
coherent sheaves. We denote by Fg : DG(X)→ D(X) the forgetful functor.

We denote as usual Exti(F, F ′) = Hom(F, F ′[i]), the Ext-groups in the cate-
gory D(X). Similarly, Ext-groups in the equivariant category DG(X) are denoted by
ExtiG(F, F

′). Recall that ExtiG(F, F
′) = Exti(F, F ′)G by Proposition 2.17(i). Note that

the forgetful functor induces a linear map

Fg : ExtiG(F, F
′)→ Exti(F, F ′).

For each triple of L-dominant weights λ,µ, ν ∈ P+L consider the map

Ext•G(U
λ,Uν)⊗ Hom(Uν,Uµ)→ Ext•(Uλ,Uµ),

the composition of the action of the forgetful functor with the Yoneda multiplication.
Now we can introduce the main notion of this section.

Definition 3.1. A set of L-dominant weights B ⊂ P+L is called an exceptional block if
for all λ,µ ∈ B the canonical map⊕

ν∈B

Ext•G(U
λ,Uν)⊗ Hom(Uν,Uµ)→ Ext•(Uλ,Uµ) (10)

is an isomorphism.

The goal of this section is to show that for any exceptional block B ⊂ P+L the category

DB(X) = 〈Uλ〉λ∈B ⊂ D(X)

generated in D(X) by the bundles Uλ with λ ∈ B has a full exceptional collection.

3.1. The ξ -ordering. Recall that β is the simple root of G corresponding to the maximal
parabolic P, and ξ is the corresponding fundamental weight. By Lemma 2.1 it is invariant
under the action of WL.
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Consider the partial ordering on the weight lattice PL defined by:

λ ≺ µ if (ξ, λ) < (ξ, µ),

λ � µ if either λ ≺ µ or λ = µ.
(11)

We will call it the ξ -ordering.

Lemma 3.2. If Hom(Uλ,Uµ) 6= 0 then λ � µ.

Proof. By Corollary 2.16 if Hom(Uλ,Uµ) 6= 0 then there is a nontrivial L-map V κL ⊂
(V λL )

∨
⊗ V

µ
L for some G-dominant weight κ . This means that there is a nontrivial L-map

V κL ⊗ V
λ
L → V

µ
L , hence µ ∈ Conv(λ+ wκ)w∈WL by Lemma 2.9. But for any w ∈WL,

(ξ, λ+ wκ)− (ξ, λ) = (ξ, wκ) = (w−1ξ, κ) = (ξ, κ) ≥ 0,

where the last inequality follows from Lemma 2.6 since both ξ and κ are G-dominant.
Moreover, since G is simple, the inequality is strict unless κ = 0. Thus, λ ≺ µ unless
κ = 0. But if κ = 0 then V κL ⊗ V

λ
L = V

λ
L , hence µ = λ. ut

Thus, we see that nonzero Hom groups between Uλ in D(X) are compatible with the
ξ -ordering (they cannot go from a bigger weight to a smaller weight). It turns out that Ext
groups in the equivariant category go in the opposite direction!

Lemma 3.3. If Ext•G(Uλ,Uµ) 6= 0 then µ � λ. More precisely, if ExtiG(Uλ,Uµ) 6= 0
then

(ξ, λ)− (ξ, µ) ≥ i(ξ, β),

and for i = 1 this inequality becomes an equality. Also, each bundle Uλ is exceptional
in DG(X).

Proof. By Proposition 2.17, if ExtiG(Uλ,Uµ) 6= 0 then there is a nontrivial L-map V vρ−ρL
→ (V λL )

∨
⊗ V

µ
L for some v ∈ SRL

G with `(v) = i. This means that there is a nontrivial
L-map V vρ−ρL ⊗V λL → V

µ
L , hence µ ∈ Conv(λ+w(vρ−ρ))w∈WL by Lemma 2.9. Now

by Lemma 2.13, for any w ∈WL we have

(ξ, λ+w(vρ−ρ))−(ξ, λ) = (ξ, w(vρ−ρ)) = (w−1ξ, vρ−ρ) = (ξ, vρ−ρ) ≤ −i(ξ, β),

where the last inequality becomes an equality for i = 1. This implies that

(ξ, µ)− (ξ, λ) ≤ −i(ξ, β)

with equality for i = 1, as required. Thus, we see that µ ≺ λ unless v = 1. But if
v = 1 then V vρ−ρL ⊗ V λL = V λL , hence µ = λ. Also, if v = 1 then i = `(v) = 0, so
Ext>0

G (Uλ,Uλ) = 0 and by Proposition 2.17 we have HomG(Uλ,Uλ) = HomL(V
λ
L , V

λ
L )

= k, hence Uλ is exceptional in DG(X). ut

Lemma 3.3 has the following important consequence.

Theorem 3.4. The bundles {Uλ}λ∈P+L , ordered with respect to any total ordering refin-
ing the opposite of the ξ -ordering, constitute a full exceptional collection in the derived
category of equivariant sheaves DG(X).
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Proof. The fact that we get an exceptional collection follows from Lemma 3.3. It remains
to check that it is full.

Indeed, let us show that every object belongs to the triangulated subcategory generated
by this collection. It suffices to check this for pure objects, that is, for G-equivariant co-
herent sheaves. As we know, the category of G-equivariant coherent sheaves is equivalent
to the category of P-representations. But each such representation has a filtration (a re-
finement of the radical filtration) with the quotients that are simple L-representations, i.e.
correspond to bundles Uλ with appropriate λ ∈ P+L . Thus, it is contained in the subcate-
gory generated by the Uλ. ut

Remark 3.5. The fact that the orderings of Hom’s in D(X) and Ext’s in DG(X) are oppo-
site is the reason for the fact that an object Uλ is typically not exceptional in D(X)—one
can construct a nontrivial element of Ext•(Uλ,Uλ) by composing Hom’s and equivariant
Ext’s. As we will see in Section 3.3 below, the cure is, in a sense, to reverse one of the
orderings.

3.2. The forgetful functor and its adjoint. Let B ⊂ P+L be an exceptional block. Let

DG
B(X) = 〈U

λ
〉λ∈B

denote the subcategory of DG(X) generated by Uλ with λ in B. Since the collection
{Uλ}λ∈B is exceptional, the category DG

B is saturated (see [BK89]), hence the forgetful
functor Fg : DG

B(X) → DB(X) has a right adjoint functor Fg! : DB(X) → DG
B(X) (cf.

[BK89, Prop. 2.7]).
The crucial observation is the following

Proposition 3.6. If B is an exceptional block then

Fg!(Fg(Uµ)) =
⊕
ν∈B

Hom(Uν,Uµ)⊗ Uν,

where Hom(Uλ,Uµ) are considered just as vector spaces, not as representations of G.

Proof. Let
Ũµ :=

⊕
ν∈B

Hom(Uν,Uµ)⊗ Uν ∈ DG
B(X).

We have a canonical evaluation map ev : Fg(Ũµ)→ Fg(Uµ) in D(X). By adjunction it
gives a map Ũµ → Fg!Fg(Uµ). Let us show it is an isomorphism. For this let us check
that the induced map

f : Ext•G(U
λ, Ũµ)→ Ext•G(U

λ,Fg!Fg(Uµ))

is an isomorphism for all λ ∈ B. Indeed, we have a commutative diagram⊕
ν∈B

Ext•G(Uλ,Uν)⊗Hom(Uν,Uµ)

Fg⊗1
��

Ext•G(Uλ, Ũµ)
f //

Fg
��

Ext•G(Uλ,Fg
!Fg(Uµ))

⊕
ν∈B

Ext•(Uλ,Uν)⊗Hom(Uν,Uµ) Ext•(Fg(Uλ),Fg(Ũµ)) ev// Ext•(Fg(Uλ),Fg(Uµ))
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The composition of the left vertical map with the maps in the bottom row is the map (10),
which is an isomorphism since B is an exceptional block. Hence, the map f in the top
row is an isomorphism as well.

It follows that the cone of the map Ũµ → Fg!Fg(Uµ) is orthogonal to all Uλ
in DG

B(X). But Uλ generate this category, hence the cone is zero. ut

Question 3.7. It would be of interest to find a general formula for Fg! (or maybe for the
composition Fg! ◦ Fg).

3.3. Exceptional bundles Eλ. The crucial step is to replace the exceptional collec-
tion Uλ in DG

B(X) by its right dual exceptional collection (see [B]).
Recall that if (E, F ) is an exceptional pair in a triangulated category T then the right

mutation RF (E) is defined as the (shifted) cone

RF (E) := Cone(E
coev
−−→ Hom•(E, F )∨ ⊗ F)[−1],

It is well known that (F,RF (E)) is also an exceptional pair which generates the same
subcategory in T as the initial pair (E, F ).

Now assume that E1, . . . , En is an exceptional collection. Its right dual collection is
defined as the collection obtained by a sequence of right mutations

(En,REnEn−1,REnREn−1En−2, . . . ,REn · · ·RE2E1).

This collection is exceptional and generates the same subcategory as the initial collection.
Note that the composition of mutations REn · · ·REn−i depends only on the subcategory
generated by En, . . . , En−i , so we denote it by R〈En,...,En−i 〉.

Now we apply this construction to the exceptional collection (Uλ)λ∈B (with respect
to some total ordering refining the opposite of the ξ -ordering) in the derived category of
equivariant sheaves DG(X) and denote by

EλB := R〈Uµ〉{µ∈B |µ≺λ}U
λ (12)

the objects of the right dual collection (as this formula indicates, EλB does not depend on
the choice of the total ordering). Further on we will frequently drop the index B in the
notation EλB if it is clear which block B is considered.

By definition, the objects Eλ are exceptional in the derived category of equivariant
sheaves. Our goal now is to show that the objects Fg(Eλ) in the usual derived category
D(X) are also exceptional and moreover form a full exceptional collection in DB(X).

First of all, recall that the standard property of the right dual exceptional collections
gives

Ext•G(E
λ,Uµ) =

{
k for λ = µ,
0 otherwise

(13)

(see e.g. [B]). Also, it follows from the construction of the dual collection that the subcat-
egories both in DG(X) and D(X) generated by the objects Eµ and Uµ coincide:

〈Eµ〉µ�λ = 〈Uµ〉µ�λ, (14)
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and moreover for each λ there is a morphism Eλ→ Uλ such that

Cone(Eλ→ Uλ) ∈ 〈Uµ〉µ≺λ. (15)

Corollary 3.8. For all λ,µ ∈ B we have

Ext•(Fg(Eλ),Uµ) = Hom(Uλ,Uµ). (16)

Proof. Indeed, by Proposition 3.6 we have

Ext•(Fg(Eλ),Uµ) ∼= Ext•G(E
λ,Fg!(Uµ)) ∼= Ext•G

(
Eλ,

⊕
ν∈B

Hom(Uν,Uµ)⊗ Uν
)
.

Now note that by (13) we have Ext•G(Eλ,Uν) = 0 unless λ = ν. Thus, the RHS equals
Hom(Uλ,Uµ). ut

Proposition 3.9. For an exceptional block B the objects Fg(Eλ) form a full exceptional
collection in DB(X) with respect to any total ordering refining the ξ -ordering.

Proof. First, take µ ≺ λ. By (16) and Lemma 3.2 we have Ext•(Fg(Eλ),Uµ) = 0.
Then (14) implies that Ext•(Fg(Eλ),Fg(Eµ)) = 0 as well. On the other hand, using this
semiorthogonality and (15) we deduce that Ext•(Fg(Eλ),Fg(Eλ))∼=Ext•(Fg(Eλ),Uλ)=
Hom(Uλ,Uλ) = k, so each Fg(Eλ) is exceptional. Finally, the fullness of the collection
{Fg(Eλ)}λ∈B in DB(X) follows from (14). ut

From now on to unburden the notation we will denote Fg(Eλ) simply by Eλ.

3.4. Properties of exceptional blocks. Let B be any subset of P+L and µ ∈ P+L . Denote

B+ µ = {λ+ µ | λ ∈ B}.

Lemma 3.10. If B is an exceptional block then for each t ∈ Z the block B + tξ is
exceptional. Moreover, Eλ+tξB+tξ = EλB(t).

Proof. Recall that U tξ = OX(t) and twisting by this bundle takes Uλ to Uλ+tξ . Since
such a twisting is an autoequivalence, it follows that it preserves the exceptionality of a
block. ut

Let us say that a subset B′ ⊂ B is downward closed with respect to the ξ -ordering if for
any λ,µ ∈ B, if λ ∈ B′ and µ � λ then µ ∈ B′.

Lemma 3.11. Let B be an exceptional block, and let B′ ⊂ B be a subset downward
closed with respect to the ξ -ordering. Then B′ is an exceptional block. Moreover, EλB′ =
EλB for all λ ∈ B′.

Proof. Take λ,µ ∈ B′ and consider the map (10). It is an isomorphism since B is excep-
tional. On the other hand, ν ∈ B contributes to the LHS only if Ext•G(Uλ,Uν) 6= 0 which
by Lemma 3.3 implies that ν ≺ λ. But then ν ∈ B′ since B′ is downward closed with
respect to the ξ -ordering. Thus, the LHS of (10) coincides with the LHS of the analogous
map written for the block B′, hence B′ is exceptional.

Isomorphism of EλB′ and EλB follows immediately from the definition (12). ut



532 Alexander Kuznetsov, Alexander Polishchuk

3.5. The output set and the criterion of exceptionality. In this section we give a crite-
rion for a block B to be exceptional in terms of the Weyl group action on weights and the
representation theory of L. We start with some preparations.

Lemma 3.12. Let µ ∈ P+L ∩ (P
reg
G − ρ). Then there exists a unique pair (κ, v), where

κ ∈ P+G and v ∈WG such that

µ = v(κ + ρ)− ρ.

Moreover, v ∈ SRL
G.

Proof. The existence and uniqueness of the pair (κ, v) follow from the regularity ofµ+ρ.
And since µ ∈ P+L we conclude that v ∈ SRL

G. ut

Using this simple observation we can rewrite the formula of Corollary 2.16 as follows:

Ext•(Uλ,Uλ
′

)

=

⊕
κ∈P+G , v∈SR

L
G | v(κ+ρ)−ρ∈Conv(λ

′−wλ)w∈WL

Hom(V
v(κ+ρ)−ρ
L , V λ

′

L ⊗V
−wL

0 λ

L )⊗V κG[−`(v)].

It is clear from this formula that it is convenient to have control over the set of all pairs
(κ, v) which can appear on the RHS. So, we define the output set for the pair of weights
λ, λ′ of L as

OP(λ, λ′) = {(κ, v) ∈ P+G × SRL
G | v(κ + ρ)− ρ ∈ Conv(λ′ − wλ)w∈WL}.

Consequently, we define the output set of a block B to be

OP(B) =
⋃

λ,λ′∈B

OP(λ, λ′) ⊂ P+G × SRL
G,

and we denote by OP1(B) ⊂ P
+

G and OP2(B) ⊂ SRL
G the projections of OP(B) to P+G

and SRL
G respectively, so that

OP(B) ⊂ OP1(B)× OP2(B).

Using these definitions we can rewrite the formula of Corollary 2.16 as follows:

Ext•(Uλ,Uλ
′

) =
⊕

(κ,v)∈OP(λ,λ′)

Hom(V
v(κ+ρ)−ρ
L , V λ

′

L ⊗ V
−wL

0 λ

L )⊗ V κG[−`(v)]. (17)

Note that we can extend the range of summation in the above formula. Indeed, if for a pair

(κ, v) one has v(κ+ρ)−ρ 6∈Conv(λ′−wλ)w∈WL thenHom(V v(κ+ρ)−ρL , V λ
′

L ⊗V
−wL

0 λ

L )=0
by Lemma 2.9, and we have no contribution. So, we can replace OP(λ, λ′) by OP(B), or
even by OP1(B)× OP(B2).

Also, for each set of L-dominant weights S ⊂ P+L denote by 5S : RepL → RepL
the projector onto the subcategory formed by all V νL with ν ∈ S. In other words, 5S is a
functor such that

5S(V
λ
L ) =

{
V λL if λ ∈ S,
0 otherwise.
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Proposition 3.13. Assume that a subset B ⊂ P+L has the following two properties:
(a) for all κ ∈ OP1(B) and v ∈ OP2(B) we have vκ = κ;
(b) for all κ ∈ OP1(B), v ∈ OP2(B) and λ ∈ B the canonical map

5B(V
κ+vρ−ρ
L ⊗ V λL )→ 5B(V

κ
L ⊗5B(V

vρ−ρ
L ⊗ V λL )) (18)

is an isomorphism.
Then the block B is exceptional.

In what follows we will refer to part (a) of this criterion as the invariance condition, and
to part (b) as the compatibility condition.
Proof. Fix a pair of weights λ, λ′ ∈ B. We have to check that the map (10) (with µ = λ′)
is an isomorphism.

We start by rewriting (17) in a more convenient form. First of all, we extend the
summation to OP1(B) × OP2(B) (as mentioned above, this does not spoil the equality).
Next, we use the isomorphism

Hom(V
v(κ+ρ)−ρ
L , V λ

′

L ⊗ V
−wL

0 λ

L ) ' Hom(V λ
′

L , V
v(κ+ρ)−ρ
L ⊗ V λL )

∨

' Hom(V λ
′

L ,5B(V
v(κ+ρ)−ρ
L ⊗ V λL ))

∨,

where the second isomorphism follows from the condition λ′ ∈ B. Finally, by the invari-
ance condition we have v(κ + ρ)− ρ = κ + vρ − ρ. Thus,

Ext•(Uλ,Uλ
′

)

=

⊕
κ∈OP1(B), v∈OP2(B)

Hom(V λ
′

L ,5B(V
κ+vρ−ρ
L ⊗ V λL ))

∨
⊗ V κG[−`(v)]. (19)

Now specializing (19) we can obtain an expression for ExtG and Hom on the LHS
of (10). To obtain an expression for ExtG we should restrict to the case κ = 0. Replacing
also λ′ by ν ∈ B gives

Ext•G(U
λ,Uν) =

⊕
v∈OP2(B)

Hom(V νL ,5B(V
vρ−ρ
L ⊗ V λL ))

∨
[−`(v)]. (20)

On the other hand, to obtain an expression for Hom we should restrict to v = 1.
Replacing also λ by ν we obtain

Hom(Uν,Uλ
′

) =
⊕

κ∈OP1(B)

Hom(V λ
′

L ,5B(V
κ
L ⊗ V

ν
L ))
∨
⊗ V κG. (21)

Combining (20) with (21) we rewrite the LHS of (10) as⊕
ν∈B

Ext•G(U
λ,Uν)⊗ Hom(Uν,Uλ

′

) =⊕
ν∈B, κ∈OP1(B), v∈OP2(B)

Hom(V νL ,5B(V
vρ−ρ
L ⊗V λL ))

∨
⊗Hom(V λ

′

L ,5B(V
κ
L⊗V

ν
L ))
∨
⊗V κG[−`(v)]

=

⊕
κ∈OP1(B), v∈OP2(B)

Hom(V λ
′

L ,5B(V
κ
L ⊗5B(V

vρ−ρ
L ⊗ V λL )))

∨
⊗ V κG[−`(v)],
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where the second equality follows from the formula

5B(V
vρ−ρ
L ⊗ V λL ) =

⊕
ν∈B

Hom(V νL ,5B(V
vρ−ρ
L ⊗ V λL ))

∨
⊗ V νL .

To conclude we compare the expression for the LHS of (10) with the expression (19)
for the RHS and note that the map from the LHS of (10) to the RHS is induced by the
map (18). Thus, if the compatibility property (b) holds then this map is an isomorphism,
hence the block B is exceptional. ut

4. On strongness and purity

Note that a priori the exceptional objects Eλ constructed above are complexes. However,
we have the following

Conjecture 4.1. For any exceptional block B ⊂ P+L and any λ ∈ B the object Eλ is a
vector bundle.

Note that the standard t-structure on DG(X) restricts to a t-structure on the category
DG
B(X) whose heart CB consists of G-equivariant coherent sheaves that are obtained by

successive extensions from Uλ with λ ∈ B. As already mentioned, the category of G-
equivariant coherent sheaves on X is equivalent to the category of finite-dimensional
representations of P, which in turn is equivalent to the category of finite-dimensional
representations of a certain infinite quiver with relations (Q, I) (see [Hille]). Recall that
the vertices of Q are in bijection with the set P+L of dominant weights of L, and there is
an arrow λ→ µ if and only if V µL appears in V −βL ⊗ V λL (i.e., when there is a nontrivial
Ext1G(Uλ,Uµ)). Note that by Lemma 3.3, this quiver is leveled by the function

w(λ) = −(ξ, λ)/(ξ, β), (22)

which means that for every arrow λ→ µ one has w(µ) = w(λ)+1. The subcategory CB
corresponds to the subcategory of representations supported at the vertices B ⊂ P+L .
Hence, it is equivalent to the category of finite-dimensional representations k[QB]/IB,
where k[QB] is the path algebra of the full subquiver QB ⊂ Q corresponding to the set
of vertices B, and IB is an ideal of relations.

We refer to [ARS] for an introduction to quivers and representation theory of finite-
dimensional algebras. In particular, we use the notion of a projective cover P of a simple
object S corresponding to a vertex (such a P is an indecomposable projective object with
a surjective map P → S).

Proposition 4.2. The following conditions are equivalent:

(i) Each Eλ for λ ∈ B is a vector bundle.
(ii) For each λ ∈ B, Eλ is a projective cover of Uλ in the category CB.

(iii) The natural map Ext•CB(U
λ,Uµ) → Ext•G(Uλ,Uµ) is an isomorphism for any

λ,µ ∈ B.
(iv) The exceptional collection (Eλ)λ∈B in D(X) is strong.
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Furthermore, under these conditions the canonical map Eλ → Uλ induces an isomor-
phism

Hom(Uλ, Eµ) ∼→ Ext•(Eλ, Eµ), (23)

where λ,µ ∈ B.

Proof. (i)⇒(ii). If the objects Eλ are vector bundles then they belong to CB. Furthermore,
since CB is the heart of a t-structure of a full subcategory DG

B(X) of DG(X) we have
Ext1CB(E

λ,Uµ) ' Ext1G(Eλ,Uµ) = 0 for λ,µ ∈ B. This implies that Ext1CB(E
λ,F) = 0

for any F in CB, i.e., Eλ is projective.
(ii)⇒(i). If Eλ is a projective cover of Uλ in CB then Eλ itself is an object of CB,

hence a successive extension of Uµ with µ ∈ B. In particular, it is a vector bundle on X.
(ii)⇒(iii). Using (ii) we can construct for any object F in CB a projective resolution

consisting of direct sums of objects Eλ. Computing Ext•CB(F ,U
µ) using such a resolution

and using the isomorphisms

HomCB(E
λ,Uµ) ' Ext•G(E

λ,Uµ)

(coming from the assumption that Eλ is a projective cover of Uλ and from the orthog-
onality relations (13)), we derive that the map Ext•CB(F ,U

µ) → Ext•G(F ,Uµ) is an
isomorphism.

(iii)⇒(ii). For λ ∈ B let Pλ → Uλ be the projective cover of Uλ in CB. Condition
(iii) implies that the natural map

Ext•CB(P
λ,Uµ)→ Ext•G(P

λ,Uµ)

is an isomorphism. It follows that (Pλ) satisfies the orthogonality relations (13), charac-
terizing the right dual exceptional sequence to (Uλ)λ∈B, so we get Pλ ' Eλ for λ ∈ B.

(i)⇒(iv). Condition (10) implies that the natural map⊕
ν∈B

Ext•G(A,U
ν)⊗ Hom(Uν, B)→ Ext•(A,B)

is an isomorphism for any A,B ∈ CB. Applying this to A = Eλ, B = Eµ, where
λ,µ ∈ B, and using (13), we derive the isomorphism (23), which implies that the ex-
ceptional collection (Eλ) is strong.

(iv)⇒(i). Choose any ordering of Uλ compatible with the partial ordering ≺. Let Up
denote the p-th object for this ordering. Let Ep be the objects of the dual collection. Then
for any F ∈ DG

B(X) there is a spectral sequence Ext
q

G(Ep[p],F) ⊗ Up ⇒ H q−pF . For
F = Eλ this spectral sequence implies (i). ut

Now we are going to prove two criteria for the equivalent conditions of Proposition 4.2
to hold.

Proposition 4.3. Assume that the subquiver QB ⊂ Q contains entirely any path in Q
that starts and ends in QB. Then the equivalent conditions of Proposition 4.2 hold.
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Proof. Recall that the projective cover of a simple object of a vertex λ is the representa-
tion of (QB, IB) associating with a vertex µ ∈ B the vector space generated by all paths
in the quiver from λ to µ (modulo the relations). The assumption of the proposition en-
sures that this representation is isomorphic to the restriction to QB of the projective cover
of the simple object of the vertex λ in the category of representations of Q. It follows that
Hom’s between projective objects in QB are the same as in Q, and moreover, minimal
projective resolutions of simple objects in QB are the restrictions of their minimal pro-
jective resolutions in Q. Combining all this we deduce that Ext’s between simple objects
in CB are isomorphic to those in C = CohG(X), i.e. condition (iii) of Proposition 4.2
holds. ut

Also, the properties of purity and strongness of the collection Eλ are related to the Koszul-
ity of a certain algebra. We refer to [BGS], [PP] for basic facts about Koszul algebras.

Proposition 4.4. (i) Assume that the graded algebra

AB =
⊕
λ,µ∈B

Ext•G(U
λ,Uµ)

is Koszul (with respect to the cohomological grading). Then the equivalent conditions
of Proposition 4.2 hold.

(ii) If the algebra AB is one-generated then Koszulity of AB is equivalent to the condi-
tions of Proposition 4.2.

Proof. (i) This follows from the main result of [Pos, Cor. 8] (see also [P97, proofs of
Theorems 4.1 and 4.2]).

(ii) If condition (iii) of Proposition 4.2 is satisfied then AB is isomorphic (as a graded
algebra) to the Ext-algebra between simple objects in the abelian category CB. Thus, the
assumption that AB is one-generated implies that (22) is a Koszul weight function on the
set of simple objects of CB, i.e., ExtiCB(U

λ,Uµ) 6= 0 only for w(µ)−w(λ) = i. Thus, by
[BGS, Prop. 2.1.3], the algebra k[QB]/IB is Koszul, hence its Yoneda algebra AB is also
Koszul. ut

Remark 4.5. In the case when the unipotent radical of P is abelian (in this case the
Grassmannian X = G/P is called cominuscule) and the subquiver QB ⊂ Q contains
entirely any path that starts and ends in QB, the algebra AB is Koszul, as follows from
the main result of [Hille] and from Proposition 4.3.

Remark 4.6. In Section 9.3 we will give an example (Example 9.5) of an exceptional
block for which Proposition 4.3 does not apply, and at the same time the inequality of
Lemma 3.3 becomes strict in some cases (and so the algebra AB is not one-generated)
and so Proposition 4.4 does not apply either, but the equivalent conditions of Proposition
4.2 still hold. See Conjecture 9.6 for a possible explanation of this.

5. Constructing exceptional blocks

In this section we suggest a construction of a semiorthogonal collection of blocks, which
will be proved to be exceptional in Sections 6 and 7.
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5.1. Cores. Let H be a semisimple group. Let δ ∈ P+H be a strictly dominant weight (see
Definition 2.5).

Definition 5.1. The polyhedron

Rδ = {λ ∈ PH ⊗ R | ∀w ∈WH (wδ, λ) ≤ (δ, ρH)} (24)

is called the core of shape δ.

We will denote by

R∗δ := {λ ∈ PH ⊗ R | ∀w ∈WH (wδ, λ) < (δ, ρH)} (25)

the interior of the core Rδ . Note that both Rδ and R∗δ are WH-invariant and convex.

Lemma 5.2. The intersection of a core with the set of dominant weights is given by

Rδ ∩ P+H = {λ ∈ P
+

H | (δ, λ) ≤ (δ, ρH)}.

Similarly,
R∗δ ∩ P

+

H = {λ ∈ P
+

H | (δ, λ) < (δ, ρH)}.

Proof. Let us check the first equality (the second is proved analogously). By definition,
the LHS is contained in the RHS. On the other hand, since both λ and δ are H-dominant,
by Corollary 2.4 we have (wδ, λ) ≤ (δ, λ) for all w ∈ WH, hence the RHS is contained
in the LHS. ut

We will say that a point of PH⊗R is integral if it lies in the weight lattice PH ⊂ PH⊗R.

Lemma 5.3. All integral points of R∗δ are H-singular. All H-regular integral points of the
core Rδ are contained in the WH-orbit of ρH.

Proof. Assume that λ ∈ PH∩Rδ is H-regular. Takew ∈WH such thatwλ is H-dominant.
Thenwλ ∈ Rδ∩P+H , and sincewλ is H-regular, we can writewλ = ρH+µwithµ ∈ P+H .
Therefore,

(δ, ρH + µ) = (δ, wλ) = (w
−1δ, λ) ≤ (δ, ρH),

hence (δ, µ) ≤ 0. Since δ is strictly dominant, this implies that µ = 0 by Lemma 2.6,
hence λ = w−1ρH. ut

5.2. The setup. Consider the complementDG \β of the vertex β of the Dynkin diagram
DG of G. In general it consists of several (up to three) connected components of different
types. We choose one component of type A (possibly empty) to be called the outer com-
ponent and denote it by Dout. The union of the other components will be called the inner
component and denoted by Dinn. We denote the corresponding connected semisimple
groups by Lout and Linn, and by

o : Lout → L, i : Linn → L
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the canonical embeddings. Abusing the notation we will also denote by o (resp., i) the
embedding of Lout (resp., Linn) into G. Note that the groups Lout and Linn are simply
connected (this follows from the fact that an embedding of Dynkin diagrams induces a
surjection of the weight lattices). In particular, we have

Lout ∼= SLk (26)

for some k ≥ 1. We fix a numbering of the vertices of D = DG as follows. First, we
number the vertices of the outer partDout = Ak−1 by integers from 1 to k−1 in a standard
way (if k ≥ 3 there are two ways to number the vertices of Dout; see Section 1.3.1 for an
illustration). Then we number the vertex β by k and the remaining vertices in an arbitrary
way. We denote by b the number of the vertex in Dout which is adjacent to β (note that
such a vertex is unique).

Note that we have the following decomposition of the Weyl group of L:

WL =WLout ×WLinn

(since Dout and Dinn are not adjacent, the corresponding simple reflections commute).
Now consider the chain of subdiagrams

Db ⊂ Db−1 ⊂ · · · ⊂ D1 ⊂ D0 = DG, Da = DG \ {1, . . . , a}.

Let
Hb ⊂ Hb−1 ⊂ · · · ⊂ H1 ⊂ H0 = G

be the corresponding chain of semisimple subgroups of G. For a = 0, . . . , b we denote
by ha : Ha → G the embedding. Note that any Ha contains Linn. Abusing the notation
we will denote the corresponding embedding by i : Linn → Ha .

For each a = 0, . . . , b we choose a strictly dominant weight δa ∈ P+Ha
(in the sense of

Definition 2.5—note that the Dynkin diagram Da may be disconnected, so the group Ha

may be nonsimple) and consider the corresponding core Rδa ⊂ PHa ⊗ R. To ease the
notation we denote this core by Ra . The interior of this core will be denoted by R∗a .

Let r be the index of G/P and let ra be the index of Ha/(Ha ∩ P). Note that by
Corollary 2.22 we have

0 < rb < rb−1 < · · · < r1 < r0 = r.

5.3. The indexing set. Let us denote by θ an element of PL ⊗Q such that

θ ∈ 〈ω1, . . . , ωk−1〉
⊥
∩ Ker i∗ and (θ, ξ) = 1. (27)

Since ω1, . . . , ωk−1, ξ form a basis of Ker i∗ ⊂ PL⊗Q, such a θ exists and unique. Note
that the set (θ, PL) of all scalar products of θ with weights of L is a cyclic subgroup of Q
containing Z. We consider the intersection of this subgroup with the interval [0, r) ⊂ Q:

J = {j ∈ (θ, PL) | 0 ≤ j < r}.

This set will number the blocks in the collection. Note that it is naturally linearly ordered.
The blocks will be shown to be semiorthogonal with respect to this order.
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For each j ∈ J there is a unique integer a(j) in the interval 0 ≤ a(j) ≤ b such that

r − ra(j) ≤ j < r − ra(j)+1, (28)

where we set rb+1 = 0. To unburden the notation we will write Hj = Ha(j) , hj = ha(j)
and Rj = Rδa(j) .

Below we will need the following simple observation.

Lemma 5.4. For any ν ∈ PLinn there is a rational number p ∈ (θ, PL) such that
pξ + i∗ν ∈ PL.

Proof. Since any ν is a linear combination of fundamental weights, it suffices to consider
the case of ν = i∗ωt for some t ∈ Dinn. Then it is clear that i∗ν = i∗i

∗ωt is just the
orthogonal projection of ωt onto the subspace i∗(PLinn ⊗ Q) ⊂ PL ⊗ Q. Its orthogo-
nal complement is generated by the lattice QLout and by the weight ξ . Moreover, ωt is
orthogonal to the lattice QLout since t ∈ Dinn. Hence,

i∗i
∗ωt = ωt −

(ωt , ξ)

ξ2 ξ.

It remains to check that (ωt , ξ)/ξ2
∈ (θ, PL). For this we apply the linear function

(θ,−) to the above equality. Since θ is orthogonal to the image of i∗, we conclude that
(ωt , ξ)/ξ

2
= (θ, ωt ) ∈ (θ, PL). ut

5.4. The first approximation. For each element j ∈ J of the indexing set we will define
a subset B̂j ⊂ P

+

L . We will show that this is an exceptional block if G is of type BCD. In
other cases we will have to replace B̂j by an appropriate smaller subset Bj.

First, we define the inner part as

B̂inn
j =

{
ν ∈ P+Linn

∣∣∣∣ (1) ρHj ± 2i∗(wν) ∈ Rj for all w ∈WLinn
(2) jξ + i∗ν ∈ PL

}
. (29)

After that we define the outer part as

B̂out
j =

{
µ∈Ker h∗j ∩P

+

G

∣∣∣∣ ρHj − h
∗

j (wLoutµ)− i∗(wLinnν)+ i∗(w
′

Linn
ν′)∈Rj

for all ν, ν′ ∈ B̂inn
j , wLout ∈WLout , and wLinn , w

′

Linn
∈WLinn

}
.

(30)
And finally, we consider the set

B̂j = B̂out
j + jξ + i∗(B̂

inn
j ). (31)

Remark 5.5. In both definitions (29) and (30) we can replace all terms of the form
i∗(wν) with w ∈ WLinn by wi∗(ν) and allow w to run through the entire group WL.
Indeed, this follows from the decomposition WL =WLout ×WLinn together with the fact
that WLout acts trivially on the image of i∗.

5.5. Very special representatives. In this section we will define a certain class of ele-
ments of the set SRM

H and use them to define a subblock Bj ⊂ B̂j. In fact, Bj = B̂j if G is
of type BCD.
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Recall that Lout = SLk (see (26)). We will use the following representation of the
weight lattice of SLk:

PSLk =
{
(λ1, . . . , λk) ∈ Qk

∣∣∣ λi − λi+1 ∈ Z for all 1 ≤ i ≤ k − 1 and
k∑
i=1

λi = 0
}
,

where the simple roots and the fundamental weights are given by

αt =
(

0, . . . , 0︸ ︷︷ ︸
t − 1

, 1,−1, 0, . . . , 0︸ ︷︷ ︸
k − t − 1

)
, ωt =

(
k − t

k
, . . . ,

k − t

k︸ ︷︷ ︸
t

,−
t

k
, . . . ,−

t

k︸ ︷︷ ︸
k − t

)
.

Remark 5.6. Note that this representation fixes the scaling of the scalar product as α2
t =

2 for all 1 ≤ t ≤ k − 1. From now on we fix this scaling.

Let H = Ha for some a with 1 ≤ a ≤ b. For each v ∈ SRM
H define a rational number

φ(v) :=
(ξ, ρ − vρ)

k(ξ, ω1)

(
1− k

(ξ, ω1)
2

ξ2

)
. (32)

Definition 5.7. An element v ∈ SRM
H is very special if φ(v) is a positive integer.

Lemma 5.8. If G is a group of type B, C or D, then there are no very special elements.
Proof. Consider the standard numbering of vertices. Let β = αk . Note that if we take
Dout to be empty then we have nothing to check (since we assumed a ≥ 1). This means
that we only have to consider the case when Dout consists of vertices from 1 to k − 1.

First, assume that either k ≤ n − 1 for type B and k ≤ n − 2 for type D or any k
for type C. Then (ξ, ω1) = 1, ξ2

= k and we see that the second factor in (32) vanishes,
hence φ(v) = 0. In the remaining cases (k = n for type B and k = n for typeD) we have
(ξ, ω1) = 1/2, ξ2

= n/4, and k = n, so the second factor vanishes as well. ut

Remark 5.9. It seems plausible that for types E, F and G there are no very special
elements either, although we have not checked this. On the contrary, for type A,

φ(v) = (ξ, ρ − vρ)/(n+ 1− k),

so very special elements correspond to permutations v ∈ Sn+1 such that v(n+ 1) = k.

Now we are ready to define the block—we just set

Bout
j = {λ ∈ B̂out

j | (λ+ρ−vρ, α1+· · ·+αk−1) < φ(v) for all very special v},
Binn
j = B̂inn

j ,

Bj = Bout
j + jξ+ i∗(B

inn
j ),

(33)

Further we will show that the block Bj defined by (33) is exceptional if its outer part
Bout
j , viewed as a set of Young diagrams, is closed under passing to a subdiagram. In

fact, we will prove part (a) of the criterion 3.13 for the block Bj in Section 6 (without
additional conditions). Part (b) of this criterion will be proved in Section 7 assuming that
Bout
j is closed under passing to a subdiagram. Finally, we will verify the latter condition

for groups of type BCD by a direct computation in Section 9.
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5.6. Exceptional collections. Before we proceed to the proof that the blocks constructed
are exceptional, we will explain how one can make these blocks smaller in order to
achieve semiorthogonality of the subcategories of Db(X) generated by the corresponding
equivariant bundles.

First, we define

B̄inn
j =

{
ν ∈ Binn

j

∣∣∣∣ for all j′ < j, ν′ ∈ B̄inn
j′ , and wLinn , w

′

Linn
∈WLinn

one has ρHj′
− (j− j′)ξ − wLinn i∗ν + w

′

Linn
i∗ν
′
∈ R∗j′

}
. (34)

Note that the above formula is recursive—it describes B̄inn
j in terms of all B̄inn

j′ with j′ < j.
We also set

B̄out
j =

{
λ0 ∈B

out
j

∣∣∣∣ for all j′< j, ν ∈ B̄inn
j , ν′ ∈ B̄inn

j′ , wLinn , w
′

Linn
∈WLinn , and wL ∈WL

one has ρHj′
− h∗j′(wLλ0 + (j− j′)ξ)− wLinn i∗ν + w

′

Linn
i∗ν
′
∈R∗j′

}
.

(35)
Note that by Remark 5.5, we can let the elements wLinn and w′Linn

run through the entire
group WL in the definitions (34) and (35). Finally, we set

B̄j = B̄out
j + jξ + i∗B̄

inn
j , (36)

and define the subcategory

Aj := 〈Uλ〉λ∈B̄j
.

Theorem 5.10. The collection {Aj}j∈J of subcategories ordered by increasing j is semi-
orthogonal.

Proof. Assume that j′ < j. Let λ0 ∈ B̄out
j , λ′0 ∈ B̄out

j′ , ν ∈ B̄inn
j , ν′ ∈ B̄inn

j′ . We have to
check that

Ext•(Uλ0+jξ+i∗ν,Uλ
′

0+j
′ξ+i∗ν

′

) = 0.

By Corollary 2.16 we have to check that for any L-dominant weight

µ ∈ Conv(λ′0 − wLλ0 + (j
′
− j)ξ + i∗ν

′
− wLi∗ν)wL∈WL

the sum µ+ ρG is G-singular. Note that h∗j′(λ
′

0) = 0 since λ′0 ∈ B̄out
j′ ⊂ Ker h∗j′ , hence

h∗j′(ρ+λ
′

0−wLλ0+(j
′
−j)ξ+i∗ν

′
−wLi∗ν) = ρHj′

−h∗j′(wLλ0−(j−j
′)ξ)+i∗ν

′
−wLi∗ν.

By definition of B̄out
j , all these weights for wL ∈ WL lie in the interior of the core Rj′ ,

hence we have h∗j′(µ + ρ) ∈ R∗j′ , and so by Lemma 5.3, h∗j′(µ + ρ) is Hj′ -singular. But
the map h∗j′ preserves regularity, hence µ+ ρ is G-singular as well. ut
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6. Verification of the invariance condition

In this section we prove that the blocks Bj and B̄j constructed in Section 5 satisfy the
invariance condition (part (a) of the criterion 3.13).

First, we will need the following simple fact. Assume that H ⊂ H′ is an embedding of
semisimple groups corresponding to the embedding of the Dynkin diagrams DH ⊂ DH′

such that DH′ \ DH consists only of one vertex. Let α be the corresponding simple root
and η the corresponding fundamental weight of H′.

Lemma 6.1. There is a positive integer k = kH′,H such that

ρH′ − kη = w
H
0 w

H′
0 ρH′ .

Moreover, for all 0 < c < k the weight ρH′ − cη is H′-singular.

Proof. Let us denote the embedding H→ H′ by h. Then h∗ρH′ = ρH and Ker h∗ = Zη.
Since

h∗wH
0 w

H′
0 ρH′ = −h

∗wH
0 ρH′ = −w

H
0 ρH = ρH,

we get
ρH′ − w

H
0 w

H′
0 ρH′ = kη

for some k ∈ Z. Moreover, the LHS is a sum of positive roots by Lemma 2.3, hence
(kη, η) > 0, hence k is positive. This proves the first statement.

For the second, by Lemma 5.3 it is enough to show that ρH′ − cη with 0 < c < k is in
the interior of a core R∗δ for some strictly dominant δ. In fact, we will show that one can
take any strictly dominant δ. Indeed, since R∗δ is convex and ρH′ − cη lies in the convex
hull of ρH′ − η and ρH′ − (k − 1)η, it is enough to check that the last two weights are
in R∗δ . Fix some strictly dominant δ.

First, we have (δ, ρH′−η) = (δ, ρH′)−(δ, η) < (δ, ρH′), so since ρH′−η is dominant
we have ρH′ − η ∈ R∗δ by Lemma 5.2. On the other hand,

ρH′ − (k − 1)η = wH
0 w

H′
0 ρH′ + η = w

H
0 w

H′
0 (ρH′ + w

H′
0 w

H
0 η) = w

H
0 w

H′
0 (ρH′ + w

H′
0 η).

Since −wH′
0 η is a fundamental weight of H′, the same argument as above shows that

ρH′ + w
H′
0 η = ρH′ − (−w

H′
0 η) ∈ R∗δ .

Hence, ρH′ − (k − 1)η is also in R∗δ . This finishes the proof. ut

Remark 6.2. One can also deduce the claim geometrically. Consider the Grassmannian
of H′ corresponding to the root α. Then its Picard group is Z and its generator is the
line bundle corresponding to the weight η. By Lemma 2.18 the canonical class of the
Grassmannian is given by the weight wH

0 w
H′
0 ρH′ − ρH′ . On the other hand, it is equal to

the line bundle corresponding to the weight −kη for some k ∈ Z. This gives the equality.
Having all this, it is clear that the weights the weights ρH′ − cη with 0 < c < k are
singular. Indeed, by the Borel–Bott–Weil Theorem the fact that ρ − cη is singular is
equivalent to the vanishing of the cohomology of the line bundle corresponding to the
weight −cη, which indeed vanishes by the Kodaira vanishing theorem.
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Now we can verify the invariance condition formulated in Proposition 3.13(a).

Proposition 6.3. Let κ ∈ OP1(Bj) and v ∈ OP2(Bj). Then κ ∈ Ker h∗j and v ∈WHj . In
particular, vκ = κ .

Proof. Take arbitrary λ, λ′ ∈ Bj. Then λ = λ0 + jξ + i∗ν and λ′ = λ′0 + jξ + i∗ν
′ with

λ0, λ
′

0 ∈ Bout
j and ν, ν′ ∈ Binn

j . Note that for any wL ∈WL we have

h∗j (ρ + λ
′
− wLλ) = h

∗

j (ρ + λ
′

0 + i∗ν
′
− wLλ0 − wLi∗ν)

= h∗j (ρ − wLλ0)+ i∗ν
′
− wLi∗ν (37)

since λ′0 ∈ Ker i∗ and hj ◦ i = i. So, by definition of Bj (using Remark 5.5) we conclude
that the weight (37) is in Rδ .

Let (κ, v) ∈ OP(Bj), that is, (κ, v) ∈ OP(λ, λ′) for some λ, λ′ ∈ Bj. By definition of
the output set the weight

µ := v(κ + ρ)− ρ ∈ Conv(λ′ − wLλ)wL∈WL

is L-dominant and µ + ρ is G-regular. Moreover, h∗j (µ + ρ) is in the convex hull of the
weights (37) (where wL runs through WL), hence it is in the core Rδ . So, Proposition 6.4
below applies and we conclude that κ ∈ Ker h∗j and v ∈WHj . ut

Proposition 6.4. Assume that a weight µ ∈ PL satisfies

µ ∈ P+L , µ+ ρ ∈ P
reg
G , h∗a(µ+ ρ) ∈ Rδ, (38)

for some a with 0 ≤ a ≤ b. Let also µ = v(κ + ρ) − ρ be the unique presentation of µ
with κ ∈ P+G and v ∈ SRL

G. Then

v ∈ SRL
G ∩WHa and κ ∈ P+G ∩ Ker h

∗
a .

In particular, vκ = κ .

Proof. To simplify the notation we write H instead of Ha and h instead of ha . Set
M = L ∩ H. Note that h∗ takes G-regular L-dominant weights of PG to H-regular
M-dominant weights of PH, hence h∗(µ + ρ) is H-regular and M-dominant. On the
other hand, h∗(µ + ρ) ∈ Rδ , so Lemma 5.3 implies that h∗(µ + ρ) = vρH with
v ∈ WH. Thus, vρH is M-dominant, so we have v ∈ SRM

H . Further, vρH = h∗(vρ),
hence h∗(µ+ ρ − vρ) = 0. Denoting

κ = µ+ ρ − vρ

we see that κ ∈ Ker h∗ and µ = vρ − ρ + κ . Since κ ∈ Ker h∗ and v ∈ WH, we have
vκ = κ , so µ can be written as v(κ+ρ)−ρ. So it remains to check that κ is G-dominant.

To check the dominance of a weight we should check that its inner products with all
simple roots are nonnegative. We divide the simple roots into three groups.

Case 1: the simple roots of H. If α ∈ DH then (κ, α) = 0 since κ ∈ Ker h∗.
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Case 2: the simple roots of G not adjacent toDH. If α is such a root then v−1α = α since
v ∈ WH, hence (vρ, α) = (ρ, v−1α) = (ρ, α), therefore (κ, α) = (µ, α) ≥ 0. Here the
last inequality follows from the L-dominance of µ since simple roots not adjacent to DH
are roots of L.

Case 3: the simple root, adjacent toDH. Let α be such a root, and let H′ be the reductive
subgroup of G such that DH′ = DH ∪ {α}. Let η ∈ PH′ be the fundamental weight of H′
corresponding to the root α. Let h′ : H′ → G be the embedding, and let h denote the
embeddings H→ H′ and H→ G. Note that Ker(h∗ : PH′ → PH) = Zη.

Since h∗(h′)∗(µ+ρ) = h∗(µ+ρ) = vρH = h
∗(vρH′), it follows that (h′)∗(µ+ρ) =

vρH′ + cη = v(ρH′ + cη). It is enough to show that c ≥ 0. Indeed, since α is a root of H′
we have α = h′∗α, so

(κ, α) = (κ, h′∗α) = ((h
′)∗κ, α) = ((h′)∗(µ+ ρ − vρ), α)

= (vρH′ + cη − vρH′ , α) = c(η, α) = cα
2/2 ≥ 0,

and we are done. So, assume that c < 0. Since v−1(h′)∗(µ+ρ) is H′-regular, Lemma 6.1
implies that v−1(h′)∗(µ+ ρ) = ρH′ + cη = −w

H
0 ρH′ − c

′η with c′ ≥ 0. Then

(h′)∗µ = v(−wH
0 ρH′ − c

′η)− (h′)∗ρ = −vwH
0 ρH′ − ρH′ − c

′η.

Let us check that the scalar product of this weight with α is always negative. In-
deed, (ρH′ , α) > 0 since α is a simple root of H′. Further, the root wH

0 v
−1α is pos-

itive since (η,wH
0 v
−1α) = (vwH

0 η, α) = (η, α) > 0. Therefore, (vwH
0 ρH′ , α) =

(ρH′ , w
H
0 v
−1α) > 0. Finally, (c′η, α) ≥ 0 since c′ ≥ 0. Thus, we see that

((h′)∗µ, α) < 0.

But this is equal to (µ, α), which is nonnegative sinceµ is L-dominant. This contradiction
shows that we actually have c ≥ 0, which completes the proof. ut

7. Adapted weights and compatibility condition

Let L be a reductive algebraic group. For any subset S ⊂ P+L of the set of domi-
nant weights of L we denote by RepS(L) the subcategory of Rep(L) consisting of di-
rect sums of irreducible representations with highest weights in S. We also denote by
5S : Rep(L)→ Rep(L) the corresponding projector (that leaves unchanged only repre-
sentations in RepS(L)).

A morphism f : V1 → V2 in Rep(L) is called an S-isomorphism if 5S(f ) :
5S(V1) → 5S(V2) is an isomorphism. In other words, f is an S-isomorphism if it
induces an isomorphism on λ-isotypical components for any λ ∈ S.

We say that a pair of L-dominant weights (κ, λ) is adapted to S (or S-adapted) if the
natural map

V κ+λL ⊗ V
µ
L → V κL ⊗ V

λ
L ⊗ V

µ
L → V κL ⊗5S(V

λ
L ⊗ V

µ
L ) (39)

is an S-isomorphism for any µ ∈ S.
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The goal of this section is to show that for all (κ, v) ∈ OP1(B) × OP2(B) the pair
(κ, vρ − ρ) (considered as a pair of weights of the Levi subgroup L) is B-adapted for
either B = Bj or B = B̄j, which will give the compatibility condition of Proposition 3.13.
In fact, we will prove a more general statement.

Let us return to the setup of Section 5.2, i.e., fix a choice of the outer component
Dout of DG \ β of type Ak−1, a standard numbering of its vertices, and a subdiagram
Da = DG \ {1, . . . , a}. We will write H for the corresponding semisimple subgroup
Ha ⊂ G and h for its embedding into G and set M = L ∩ H. Recall also that the
subgroups Lout ⊂ L and Linn ⊂ L correspond to the outer and the inner parts of DG.

Assume that subsets Binn
⊂ P+Linn

, Bout
⊂ P+G ∩Ker h

∗ and j ∈ Q are given such that
jξ + i∗B

inn
⊂ PL. Set

B = Bout
+ jξ + i∗B

inn.

Note that elements of Bout, being linear combinations of the fundamental weights ω1,

. . . , ωa with nonnegative coefficients can be viewed as Young diagrams: a weight x1ω1+

· · · + xaωa corresponds to the Young diagram with xi columns of length i. Recall the
notion of a very special element of SRM

H (Definition 5.7) and the function φ(v) given
by (32).

Theorem 7.1. Assume that the set Bout has the following two properties:

(1) for all λ ∈ Bout and all very special v ∈ SRM
H we have (λ+ρ−vρ, α1+· · ·+αk−1) <

φ(v);
(2) the set Bout is closed under passing to Young subdiagrams.

Then for any κ ∈ P+G ∩ Ker h
∗ and any v ∈ SRM

H the pair (κ, vρ − ρ) is B-adapted.

This result applies to the blocks Bj and B̄j defined by (33) and (36).

Corollary 7.2. Assume for some j ∈ J the set Bout
j (resp., B̄out

j ) is closed under passing

to Young subdiagrams. Then the block Bj (resp., B̄j) is exceptional.

Proof. Set B = Bj (resp., B̄j). It is enough to check the two conditions of Proposition 3.13
for B. The invariance condition holds for this block by Proposition 6.3. To check the
compatibility condition we can apply Theorem 7.1. The first condition of that theorem
holds by the definition (33) of the block Bj, while the second holds by assumption. It
remains to observe that for any pair κ ∈ OP1(B), v ∈ OP2(B) we have κ ∈ P+G ∩ Ker h

∗

and v ∈ SRM
H . Hence, Theorem 7.1, applied to B and a pair κ ∈ OP1(B), v ∈ OP2(B),

implies that the compatibility condition is satisfied for B. ut

Unfortunately, we have not been able to find an abstract way of checking that Bout
j or B̄out

j
is closed under passing to Young subdiagrams. So, we will check it for classical groups
in Section 9 as a result of an explicit description of the blocks.
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7.1. Preparations. We start with a description of the connected component of the center
of L.

Lemma 7.3. Let Z ⊂ L be the connected component of the center of L. Then Z ∼= Gm
and the map PL → PZ = Z, induced by the embedding Z → L, is given by the scalar
product with the minimal rational multiple cξ of ξ such that (cξ,−) is an integer valued
function on PL.

Proof. First, note that Z ∼= Gm since it is a 1-dimensional (since P is maximal) connected
commutative reductive group. As a consequence, PZ ∼= Z. Since the map PL → PZ is
dual to the embedding of Z into a maximal torus of L, it is surjective. Note also that the
adjoint representation of the semisimple part of L is a trivial representation of Z, hence
all simple roots of L are mapped to zero. This implies that the map is given by the scalar
product with a multiple cξ of ξ . Moreover, since the scalar product should be a map to Z,
it follows that (cξ,−) should be an integral function on PL (and in particular, c should
be rational since the scalar product has rational values on the weight lattice), and the
surjectivity of the map implies that c is minimal with this property. ut

Consider the diagram of groups

Lout ×Gm × Linn
$

ss π

((
GLk ×Gm × Linn L

where π and $ are defined as follows. The morphism π is induced by the embeddings
o : Lout → L, i : Linn → L and by the isomorphism Gm ∼= Z. The restriction of $ to
Lout = SLk (resp., Linn) is given by the natural embedding SLk ⊂ GLk (resp., the identity
map to Linn). Finally, the restriction of$ to Gm is given by z 7→ (z(cξ,ω1)×1, z, 1). Note
that the map π is an isogeny and the map $ is an embedding.

Now take any κ ∈ Ker h∗ ∩ P+G , v ∈ SRM
H and µ ∈ B, and consider the morphisms

V
κ+vρ−ρ
L ⊗ V

µ
L → V κL ⊗ V

vρ−ρ
L ⊗ V

µ
L → V κL ⊗5B(V

vρ−ρ
L ⊗ V

µ
L ). (40)

Our goal is to show that after application of 5B this map becomes an isomorphism. For
this we pull back the map (40) via π to a map of representations of the group Lout ×
Gm × Linn and check that the same map can be realized as a pullback via $ of a map
of representations of GLk × Gm × Linn. We also express the action of the projector 5B

in terms of group GLk × Gm × Linn and thus reduce the verification to the latter group.
It turns out that the components Gm and Linn play no role, and the statement essentially
reduces to a similar statement for representations of the group GLk . The latter statement
is proved in the Appendix.

Recall that irreducible representations of GLk are numbered by nonincreasing se-
quences of integers of length k. For a sequence κ• = (κ1 ≥ · · · ≥ κk) we will denote
by V κ•GLk the corresponding GLk-representation.
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Lemma 7.4. For any λ ∈ P+L we have

π∗V λL = V
o∗λ
Lout
⊗ V

(cξ,λ)

Gm
⊗ V i

∗λ
Linn

.

On the other hand, for any nonincreasing sequence κ• = (κ1 ≥ · · · ≥ κk) of integers, any
z ∈ Z and any ν ∈ P+Linn

we have

$ ∗(V
κ•
GLk
⊗ V zGm

⊗ V νLinn
) = V κLout

⊗ V
(cξ,ω1)

∑k
i=1 κi+z

Gm
⊗ V νLinn

,

where κ =
∑k−1
i=1 (κi − κi+1)ωi is the weight of Lout corresponding to κ•.

Proof. Straightforward (to compute the Gm-component of π∗V λL use Lemma 7.3). ut

Now we give a description of the pullbacks via π of the representations V κL , V vρ−ρL
and V

µ
L entering into (40) as the pullbacks via $ of appropriate representations of

GLk×Gm×Linn. In fact, such a description is not unique (which is clear from Lemma 7.4),
so we choose a description which is most convenient for our purposes.

Lemma 7.5. Let κ ∈ Ker h∗ ∩ P+G . Then there exists a unique nonincreasing sequence
of integers κ• = (κ1 ≥ · · · ≥ κa ≥ κa+1 = · · · = κk = 0) such that

π∗V κL = $
∗V

κ•
GLk

.

Proof. By definition, κ is a nonnegative linear combination of ω1, . . . , ωa . Let κ1 − κ2,
κ2 − κ3, . . . , κa−1 − κa and κa be the coefficients. Then κ1 ≥ · · · ≥ κa ≥ 0. Extending
this sequence by κa+1 = · · · = κk = 0 we obtain a sequence κ•. To prove the required
isomorphism we use Lemma 7.4. By that lemma, we only have to check that (cξ, κ) =
(cξ, ω1)

∑k
i=1 κi . For this we note that for i < b we have αi = 2ωi−ωi−1−ωi+1, hence

(cξ, ωi) = i(cξ, ω1), so

(cξ, κ) = (cξ, ω1)

a∑
i=1

i(κi − κi−1) = (cξ, ω1)

a∑
i=1

κi = (cξ, ω1)

k∑
i=1

κi,

as required. ut

Lemma 7.6. Let v ∈ SRM
H . Set νv = i∗(vρ − ρ). Then there exists a unique sequence of

integers τ• = (0 = τ1 = · · · = τa ≥ τa+1 ≥ · · · ≥ τk) such that

π∗V
vρ−ρ
L = $ ∗(V

τ•
GLk
⊗ V

z(v)
Gm
⊗ V

νv
Linn

),

where
z(v) = (vρ − ρ, cξ)(1− k(ω1, ξ)

2/ξ2). (41)

Proof. Consider the restriction o∗(vρ − ρ). It is a weight of SLk . Every weight of SLk
can be thought of as a weight of GLk up to adding a central character. In other words, it is
given by a nonincreasing sequence of integers up to a simultaneous translation. Consider
the sequence τ1 ≥ · · · ≥ τk representing o∗(vρ − ρ) such that τ1 = 0. Note that vρ − ρ
is orthogonal to α1, . . . , αa−1 (because these roots are orthogonal to the roots of H and
hence are v-invariant), hence τ1 = · · · = τa .
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Recall that we denote by νv the weight i∗(vρ−ρ). Then the representations π∗V vρ−ρL
and $ ∗(V τ•GLk ⊗ V

νv
Linn

) have the same restrictions to Lout and Linn, so it remains to com-

pare the central characters. First, the central character of V vρ−ρL is (cξ, vρ − ρ). Further,
the central character of V τ•GLk is (cξ, ω1)

∑
τi , while the central character of V νvLinn

is 0.
Note that since τ1 = 0 and kω1 = (k − 1,−1, . . . ,−1), we have∑

τi = −(kω1, o
∗(vρ − ρ)) = (vρ − ρ,−ko∗ω1)

= (vρ − ρ,−kω1 + k((ω1, ξ)/ξ
2)ξ) = k(vρ − ρ, ξ)(ω1, ξ)/ξ

2.

In the third equality above we use the formula o∗ω1 = ω1 −
(ω1,ξ)

ξ2 ξ analogous to one in
the proof of Lemma 5.4. So, we see that the difference of characters is

(vρ−ρ, cξ)−(cξ, ω1)k(vρ−ρ, ξ)(ω1, ξ)/ξ
2
= (vρ−ρ, cξ)(1−k(ω1, ξ)

2/ξ2) = z(v).

Thus, twisting V τ•GLk ⊗ V
νv
Linn

by V z(v)Gm
we obtain an isomorphism. ut

Lemma 7.7. Let µ = µout + jξ + i∗µinn ∈ B. Then there exists a unique nonincreasing
sequence of integers µ• = (µ1 ≥ · · · ≥ µa ≥ µa+1 = · · · = µk = 0) such that

π∗V
µ
L = $

∗(V
µ•
GLk
⊗ V

cjξ2

Gm
⊗ V

µinn
Linn

).

Proof. Note that V µL = V
µout
L ⊗ V

jξ+i∗µinn
L . Since µout ∈ Ker h∗ ∩ P+G , we already

know from Lemma 7.5 that π∗V µout
L = $ ∗V

µ•
GLk

for a uniquely determined sequence
µ• = (µ1 ≥ · · · ≥ µa ≥ µa+1 = · · · = µk = 0). So, it remains to express
π∗V

jξ+i∗µinn
L as a product of representations of Gm and Linn. Since i∗(jξ + i∗µinn) =

µinn, the Linn-component is V µinn
Linn

. On the other hand, the Gm-component has weight
(cξ, jξ + i∗µinn) = cjξ

2. ut

Proposition 7.8. A representation$ ∗(V λ•GLk⊗V
z
Gm
⊗V νLinn

) is isomorphic to the pullback
via π of a representation in B if and only if ν ∈ Binn,

a∑
i=1

(λi − λi+1)ωi ∈ Bout, (42)

and

λa+1 = · · · = λk =
cjξ2
− z

k(cξ, ω1)
. (43)

Proof. Note that by Lemma 7.4 for any s ∈ Z we have

$ ∗(V
(λ1,...,λk)
GLk

⊗ V zGm
⊗ V νLinn

) ∼= $
∗(V

(λ1−s,...,λk−s)
GLk

⊗ V
z+sk(cξ,ω1)
Gm

⊗ V νLinn
).

So, taking s = λk and using Lemma 7.7 we deduce z + kλk(cξ, ω1) = cjξ2, and the
proposition follows. ut

Denote by π∗B the set of all representations of Lout × Gm × Linn which are pullbacks
via π of representations of L from the block B. Now we can rewrite the action of the
projector 5π∗B on the subcategory of representations of Lout × Gm × Linn with a given
Gm-component.
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Corollary 7.9. We have

5π∗B($
∗(V

λ•
GLk
⊗V

z(v)+cjξ2

Gm
⊗V νLinn

)) = $ ∗(5Sout(V
λ•
GLk

)⊗V
z(v)+cjξ2

Gm
⊗5Binn(V

ν
Linn

)),

where Sout is the set of all λ• such that (42) holds and

λa+1 = · · · = λk = φ(v). (44)

Proof. Substituting z = z(v)+ cjξ2 into (43) and comparing (41) with (32) yields (44).
ut

7.2. Proof of the compatibility. The goal of this section is to prove Theorem 7.1. So we
take µ = µout+ jξ + i∗µinn ∈ B and consider the tensor product V κL ⊗V

vρ−ρ
L ⊗V

µ
L . We

have

π∗(V
κ+vρ−ρ
L ⊗V

µ
L ) = $

∗
(
(V

κ•+τ•
GLk

⊗V
µ•
GLk

)⊗V
z(v)+cjξ2

Gm
⊗ (V

νv
Linn
⊗V

µinn
Linn

)
)
,

π∗(V κL ⊗V
vρ−ρ
L ⊗V

µ
L ) = $

∗
(
(V

κ•
GLk
⊗V

τ•
GLk
⊗V

µ•
GLk

)⊗V
z(v)+cjξ2

Gm
⊗ (V

νv
Linn
⊗V

µinn
Linn

)
)
,

π∗(V κL ⊗5B(V
vρ−ρ
L ⊗V

µ
L ))

= $ ∗
(
(V

κ•
GLk
⊗5Sout(V

τ•
GLk
⊗V

µ•
GLk

))⊗V
z(v)+cjξ2

Gm
⊗5Binn(V

νv
Linn
⊗V

µinn
Linn

)
)
.

So, the π -pullback of (40) is equal to the $ -pullback of the tensor product of

V
κ•+τ•
GLk

⊗ V
µ•
GLk
→ V

κ•
GLk
⊗ V

τ•
GLk
⊗ V

µ•
GLk
→ V

κ•
GLk
⊗5Sout(V

τ•
GLk
⊗ V

µ•
GLk

) (45)

with

V
z(v)+cjξ2

Gm

id
−→ V

z(v)+cjξ2

Gm
and V

νv
Linn
⊗ V

µinn
Linn
→ 5Binn(V

νv
Linn
⊗ V

µinn
Linn

).

Since the last map is a Binn-isomorphism, we only have to check that (45) is an Sout-
isomorphism.

Let S̃out be the set of all λ• satisfying only (44). We claim that if we replace in (45)
the projector 5Sout by 5S̃out , then the resulting map

V
κ•+τ•
GLk

⊗ V
µ•
GLk
→ V

κ•
GLk
⊗ V

τ•
GLk
⊗ V

µ•
GLk
→ V

κ•
GLk
⊗5S̃out(V

τ•
GLk
⊗ V

µ•
GLk

) (46)

is an S̃out-isomorphism. Indeed, if φ(v) is a nonpositive integer then this is Corol-
lary 10.2 from Appendix. If φ(v) is not an integer, then S̃out

= ∅, so any map is an
S̃out-isomorphism. Finally, if φ(v) is a positive integer then v is very special, hence
(µ + ρ − vρ, α1 + · · · + αk−1) < φ(v). This means that µ1 + τk < φ(v), so by the
Littlewood–Richardson rule the tensor products V κ•+τ•GLk

⊗V
µ•
GLk

and V τ•GLk ⊗V
µ•
GLk

contain

no terms V λ•GLk with λk = φ(v), and a fortiori no terms in S̃out. Thus, both the source and
the target of (45) become zero after applying 5S̃out , hence the map becomes an isomor-
phism. This finishes the proof that (46) is an S̃out-isomorphism.

Since Sout
⊂ S̃out, it remains to check that

5Sout(V
κ•
GLk
⊗5S̃out(V

τ•
GLk
⊗ V

µ•
GLk

)) = 5Sout(V
κ•
GLk
⊗5Sout(V

τ•
GLk
⊗ V

µ•
GLk

)). (47)
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Indeed, if (47) is true then the result of applying 5Sout to (45) coincides with that of
applying5Sout to (46). Since (46) becomes an isomorphism already after applying5S̃out ,
the assertion would follow.

Now to verify (47) we have to check that for any λ• ∈ S̃out such that V λ•GLk appears as a

summand in V τ•GLk⊗V
µ•
GLk

and5Sout(V
κ•
GLk
⊗V

λ•
GLk

) 6= 0, one has λ• ∈ Sout. Let λ′• ∈ S
out

be such that V λ
′
•

GLk
is a summand in V κ•GLk ⊗ V

λ•
GLk

. Note that both λ• and λ′• satisfy (44).

Since κ• is nonnegative and V λ
′
•

GLk
is a summand in V κ•GLk ⊗ V

λ•
GLk

, the Young diagram
corresponding to the weight

∑a
i=1(λi − λi+1)ωi is a subdiagram in the Young diagram

corresponding to
∑a
i=1(λ

′

i − λ
′

i+1)ωi . The latter is in Bout since λ′• ∈ S
out. Hence, the

former is also in Bout, since Bout is closed with respect to passing to Young subdiagrams.
Thus, λ• is in Sout and we are done.

8. Explicit description of the exceptional blocks

In this section we will pass from the abstract description of the blocks Bj given in Sub-
sections 5.4 and 5.5 to a more explicit description which will be used later to deal with
concrete examples. We show in fact that both the inner and the outer parts of the blocks
are described by several simple inequalities, numbered by WMj -orbits in the WHj -orbit
of the weight δa(j) (the shape of the core Rj).

Let us fix j ∈ J. It will be convenient to write the shape δ = δa(j) ∈ P
+

Hj
of the core

Rj = Rδ in the form
δ = −h∗j γ, (48)

where γ ∈ PG.

Remark 8.1. Since the action of the Weyl group on roots is much better understood than
on arbitrary weights (for example, one can use tables of roots), the most convenient choice
of γ is the simple root of the vertex of DG adjacent to DHj . In this case the WHj -orbit of
γ is described in Lemma 2.7.

8.1. The big blocks. First, we give a description of the block Bj.
Assume that γ ∈ PG and that δ defined by (48) is Hj-dominant. To ease the notation

we will write H for Hj, h for hj, and M for Mj = L∩Hj. Since WM ⊂WH, the WH-orbit
of γ splits into several WM-orbits. We number the orbits by integers 0, . . . , m in such a
way that the 0-th orbit is the WM-orbit of γ itself.

In each WM-orbit we have two special elements: the unique M-dominant representa-
tive γt+ and the unique M-antidominant representative γt− (where 0 ≤ t ≤ m). Note that
γ0− = γ , since we have assumed that h∗γ = −δ is H-antidominant. Using these data we
can describe the block Bj more explicitly. We start with the inner part of the block.

Proposition 8.2. We have

Binn
j =

{
ν ∈ P+Linn

∣∣∣∣ max{(i∗γt+, ν),−(i∗γt−, ν)} ≤ 1
2 (h
∗(γt− − γ ), ρH)

for all 0 ≤ t ≤ m and jξ + i∗ν ∈ PL

}
. (49)
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Proof. By definition, Binn
j is the set of all ν with jξ + i∗ν ∈ PL and ρH± 2wLinn i∗ν ∈ Rδ

for all wLinn ∈ WLinn . We only need to rework the second condition. Substituting the
Definition 5.1 of the core Rδ , it can be rewritten as

−(wHh
∗γ, ρH ± 2wLinn i∗ν) ≤ −(h

∗γ, ρH).

Since h∗ is WH-equivariant, this inequality can be rewritten as

±(h∗wHγ, 2wLinn i∗ν) ≤ (h
∗(wHγ − γ ), ρH).

Note that wHγ = wMγt+ for appropriate wM ∈WM and t ∈ {0, 1, . . . , m}. After such a
substitution the inequality takes the form

±(h∗wMγt+, 2wLinn i∗ν) ≤ (h
∗(wMγt+ − γ ), ρH).

Let Mout = Lout ∩ H and Minn = Linn ∩ H = Linn. Then WM = WMout ×WMinn . In
particular, we can write wM = wMoutwMinn with wMout ∈ WMout and wMinn ∈ WMinn .
Moreover, i∗ν is fixed by WMout , hence the LHS is equal to

±2(h∗γt+, w−1
M wLinn i∗ν) = ±2(h∗γt+, w−1

Mout
w−1

Minn
wLinn i∗ν) = ±2(h∗γt+, w′Linn

i∗ν),

wherew′Linn
=w−1

Minn
wLinn . Note thatw′Linn

on the LHS runs through WLinn independently
of wM on the RHS running through WM. Hence, the inequality for all w′Linn

∈WLinn and
wM ∈WM is equivalent to

max
w′Linn

∈WLinn

{±2(h∗γt+, w′Linn
i∗ν)} ≤ min

wM∈WM
{(h∗(wMγt+ − γ ), ρH)}.

The expression under the maximum can be rewritten as ±2((w′Linn
)−1i∗γt+, ν). Since

both ν and i∗γt+ are Linn-dominant, the expression with the “+” sign is maximal when
w′Linn

= 1, and the one with the “−” sign is maximal when (w′Linn
)−1i∗γt+ = i∗γt−.

Thus, the LHS is
max{2(i∗γt+, ν),−2(i∗γt−, ν)}.

Similarly, since ρH is M-dominant, the expression on the RHS is minimal whenwMγt+ =
γt−. The claim follows. ut

Now let us rewrite more explicitly the definition of the outer part of the block Bout
j . Denote

by γ̂t the Lout-dominant representative in the WLout -orbit of h∗h∗γt+. Also, set

d
t,+
j := max{(i∗γt+, ν) | ν ∈ Binn

j }, d
t,−
j := −min{(i∗γt−, ν) | ν ∈ Binn

j }. (50)

Proposition 8.3. We have

B̂out
j = {λ ∈Ker h

∗
∩P+G | (λ, γ̂t )+d

t,+
j +d

t,−
j ≤ (ρH, γt−−γ ) for all 0≤ t ≤m}. (51)
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Proof. Take λ ∈ Ker h∗ ∩ P+G . By definition λ ∈ B̂out
j if and only if h∗(ρ − wLλ) −

wLinn i∗ν + w
′

Linn
i∗ν
′
∈ Rδ . By definition of Rδ this is equivalent to

(h∗(ρ − wLλ)− wLinn i∗ν + w
′

Linn
i∗ν
′,−vHh

∗γ ) ≤ (ρH,−h
∗γ )

for all ν, ν′ ∈ Binn
j , wL ∈ WL, wLinn , w

′

Linn
∈ WLinn , and vH ∈ WH. Note that WL =

WLout ×WLinn and that λ is WLinn -invariant. So we can rewrite the above condition as

(h∗(ρ − wLoutλ)− wLinn i∗ν + w
′

Linn
i∗ν
′,−vHh

∗γ ) ≤ (ρH,−h
∗γ ).

Since h∗ is WH-equivariant, we have vHh
∗γ = h∗(vHγ ). Further, each weight vHγ can

be written as vMγt+ for some 0 ≤ t ≤ m and vM ∈ WM. This allows us to rewrite the
condition as

(h∗(ρ − wLoutλ)− wLinn i∗ν + w
′

Linn
i∗ν
′,−vMh

∗γt+) ≤ (ρH,−h
∗γ )

for all ν, ν′ ∈ Binn
j , wLout ∈ WLout , wLinn , w

′

Linn
∈ WLinn , vM ∈ WM, and 0 ≤ t ≤ m.

Now recall that h∗ρ = ρH and move it from the LHS to the RHS:

(h∗(−wLoutλ)− wLinn i∗ν + w
′

Linn
i∗ν
′,−vMh

∗γt+) ≤ (ρH, h
∗(vMγt+ − γ )).

Writing vM = vMoutvLinn on the LHS, taking into account that h∗ is WM-equivariant,
and replacing v−1

Mout
wLout with wLout , v

−1
Linn

wLinn with wLinn , and v−1
Linn

w′Linn
with w′Linn

we
rewrite the condition as

(h∗(−wLoutλ)− wLinn i∗ν + w
′

Linn
i∗ν
′,−h∗γt+) ≤ (ρH, h

∗(vMγt+ − γ )).

Finally, using the adjunction of h∗ and h∗ and of i∗ and i∗ we rewrite this as

(wLoutλ, h∗h
∗γt+)+ (wLinnν, i

∗γt+)+ (−w
′

Linn
ν′, i∗γt+) ≤ (ρH, h

∗(vMγt+ − γ )).

Note that each term on both sides contains an action of a Weyl group element, and these
elements run through the corresponding Weyl groups independently. Therefore, one can
replace each summand by its maximum (on the LHS) or minimum (on the RHS) to obtain
an equivalent inequality.

The maxima of the second and the third summands on the LHS are given by d t,±j
by definition. The first summand can be rewritten as (λ,w−1

Lout
h∗h
∗γt+), and since λ is

Lout-dominant, to achieve the maximum one should choose w−1
Lout

in such a way that the
corresponding weight is also Lout-dominant. By definition, it is γ̂t , hence the maximum
of the first summand is (λ, γ̂t ). Finally, as in Proposition 8.2, the minimum on the RHS is
equal to (ρH, γt− − γ ). Combining all this, we obtain the result. ut
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8.2. The small blocks. Now we will give a description of the blocks B̄j.
Take j, j′ ∈ J and assume that j′ < j. As before we write H for Hj, h for hj, and M for

Mj = L ∩Hj. In addition, we will write H′ for Hj′ , h′ for hj′ , and M′ for Mj′ = L ∩Hj′ .
Similarly we denote by γ and γ ′ the weights such that δ = −h∗γ and δ′ = −(h′)∗γ ′ are
the shapes of the corresponding cores. We number the orbits of WM′ on WH′γ

′ from 0
to m′, and we denote by γ ′t± the M′-dominant and antidominant representatives of these
orbits.

The proof of the next two results is analogous to that of Propositions 8.2 and 8.3.

Proposition 8.4. The inner part of the block B̄j can be described as

B̄inn
j ={
ν ∈ Binn

j

∣∣∣∣ (j− j′)((h′)∗ξ, (h′)∗γ ′t+)+ (i
∗γ ′t+, ν)+ d̄

t,−
j′ < (ρH′ , (h

′)∗(γ ′t− − γ
′))

for all j′ < j and for all 0 ≤ t ≤ m′

}
,

(52)

where for j′ < j,
d̄
t,−
j′ := −min{(i∗γ ′t−, ν

′) | ν′ ∈ B̄inn
j′ }. (53)

Proposition 8.5. The outer part of the block B̄j can be described as

B̄out
j ={
λ ∈ Bout

j

∣∣∣∣ (λ, γ̂ ′t )+ (j− j′)((h′)∗ξ, (h′)∗γ ′t+)+ d̄
t+
j′,j + d̄

t−
j′ < (ρH′ , (h

′)∗(γ ′t− − γ
′))

for all j′ < j and for all 0 ≤ t ≤ m′

}
,

(54)

where
d̄
t,+
j′,j := max{(i∗γ ′t+, ν) | ν ∈ B̄inn

j } (55)

and γ̂ ′t is the Lout-dominant representative in WLouth
′
∗(h
′)∗γ ′t+.

9. Explicit collections for classical groups

Now we will show that the construction of the previous section leads to (conjecturally
full) exceptional collections for isotropic Grassmannians of types B, C and D, and to
many interesting collections in type A.

So, assume that G is of type B, C or D and consider the standard numbering of the
vertices of its Dynkin diagram.c c c . . . c s c . . . c c>
1 2 3 k−1 k k+1 n−1 n Diagram Bn

c c c . . . c s c . . . c c<
1 2 3 k−1 k k+1 n−1 n Diagram Cn

c c c . . . c s c . . . c cc��
�

PPP

1 2 3 k−1 k k+1 n−2
n−1

n

Diagram Dn
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To treat these cases simultaneously it is convenient to denote

e =


1/2 if G is of type B,
1 if G is of type C,
0 if G is of type D.

(56)

Then the weight lattice PG can be identified with the sublattice of Qn spanned by ωi
(1 ≤ i ≤ n) with

ω
B,C,D
i = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0︸ ︷︷ ︸
n−i

), 1 ≤ i ≤ n− 2+ 2e,

ωB,Dn = (1/2, . . . , 1/2),

ωDn−1 = (1/2, . . . , 1/2,−1/2).

Let k be the number of the vertex of the Dynkin diagram of G corresponding to the
maximal parabolic subgroup P, so that ξ = ωk .

9.1. Isotropic Grassmannians. First, we assume that

k ≤ n+ 2e − 2.

In other words, k ≤ n− 1 for type B, k ≤ n for type C, and k ≤ n− 2 for type D. Then

X := G/P =


OGr(k, 2n+ 1), k ≤ n− 1 (G is of type Bn),
SGr(k, 2n), k ≤ n (G is of type Cn),
OGr(k, 2n), k ≤ n− 2 (G is of type Dn),

where OGr (resp., SGr) denotes the orthogonal (resp., symplectic) isotropic Grassman-
nian.

Let Dout be the component of D \ β containing the vertices from 1 to k − 1. Then
b = k − 1 and Dinn is the component containing the vertices from k + 1 to n. Note
that i∗ is the projection onto the last n− k coordinates with respect to the standard basis
ε1, . . . , εn in PG = Qn. The simple roots are

α
B,C,D
i = εi − εi+1, 1 ≤ i ≤ n− 1,

αBn = εn, αCn = 2εn, αDn = εn−1 + εn.

Note also that
ρ = (n+ e − 1, n+ e − 2, . . . , e),

thus (ρ, εi) = n+ e − i.
Now take any a ≤ k − 1. Then h∗a is the projection onto the last n − a coordinates

(it kills all εi with i ≤ a). The simple root corresponding to P is β = εk − εk+1, so
the maximal root of Ha with the coefficient of β equal to 1 is β̄a = εa+1 + εk+1, so by
Lemma 2.19 the index of the Grassmannian Ha/(Ha ∩ P) is

ra = (ρ, β + β̄a)/(ξ, β) = 2n+ 2e − a − k − 1.
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In particular, when a decreases by 1, ra increases by 1. Also, rk−1 = 2n+ 2e− 2k, while

r = r0 = 2n+ 2e − k − 1.

Further, the weight θ defined by (27) in this case is

θ = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

).

It follows that (θ, PL) =
1
2Z if G is of type B or D and (θ, PL) = Z if G is of type C,

and

J =


1
2Z ∩ [0, 2n− k − 1/2] if G is of type B,
Z ∩ [0, 2n− k] if G is of type C,

1
2Z ∩ [0, 2n− k − 3/2] if G is of type D.

Applying (28) we conclude that

a(j) =

{
b j c if j < k,

k − 1 if j ≥ k.

Now we are going to apply Propositions 8.2–8.5. We take

γa = αa = εa − εa+1.

Note that WHa acts by permutations of the last n − a coordinates and changes of signs
of the coordinates (in the case of type D by pairwise changes of signs), while WMa acts
by permuting coordinates from a + 1 to k and from k + 1 to n separately and (pairwise)
changes of signs only of the last n− k coordinates. Thus, the WHa -orbit of γa consists of
all vectors εa ± εi , a + 1 ≤ i ≤ n, and it splits into three WMa -orbits:

{εa − εi}a+1≤i≤k, {εa ± εi}k+1≤i≤n, and {εa + εi}a+1≤i≤k.

Thus, using the notation of Section 8 we have m = 2 (unless G has type C and k = n, in
which case the second orbit is empty and so m = 1), and the characteristic weights and
quantities from Section 8 are given by the following table:

t γt− (ρH, γt− − γ ) γt+ h∗aγt+ γ̂t (h∗aξ, h
∗
aγt+) i

∗γt+ i∗γt−

0 εa − εa+1 0 εa − εk −εk −εk −1 0 0

1 εa − εk+1 k − a εa + εk+1 εk+1 εk+1 0 εk+1 −εk+1

2 εa + εk 2n+ 2e − a − k − 1 εa + εa+1 εa+1 ε1 1 0 0

(if G has type C and k = n then the line t = 1 should be omitted).
Applying Proposition 8.2 we obtain the following description of Binn

j :

Binn
j = {(νk+1, . . . , νn) ∈ P

+

Linn
| 2νk+1 ≤ k − a(j) and νi ≡ j (modZ)}.
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Further, we apply (50) and compute

d
1,±
j = {j} + b(k − a(j))/2− {j}c

(where {−} stands for the fractional part), and for other values of t we have d t,±j = 0.

Now we can describe Bout
j . Note that (γ̂t ,Ker h∗a) = 0 unless t = 2. So, for t = 0,

Proposition 8.3 gives an empty condition, and for t = 1 we obtain d1,+
j + d

1,−
j ≤ k − a,

which holds by the definition of d1,±
j . Finally, the condition for t = 2 gives

Bout
j = {(λ1, . . . , λa(j), 0, . . . , 0) | 2n+ 2e − a(j)− k − 1 ≥ λ1 ≥ · · · ≥ λa(j) ≥ 0}.

Note that Bout
j is the set of Young diagrams inscribed in the rectangle a(j)× (2n+ 2e −

a(j)− k − 1), hence it is closed under taking subdiagrams. Thus, the second condition of
Theorem 7.1 is satisfied. Since there are no very special elements by Lemma 5.8, the first
condition is satisfied as well, so the theorem applies, and we conclude that the block Bj

consisting of all (λ1, . . . , λn) ∈ P
+

L such that

2n+ 2e + j− a(j)− k − 1 ≥ λ1 ≥ · · · ≥ λa(j) ≥ j = λa(j)+1 = · · · = λk,

(k − a(j))/2 ≥ λk+1 ≥ · · · ≥ λn,

λ1, . . . , λn ≡ j (modZ)

is exceptional.
Now we are going to apply Proposition 8.4. First, let us show that

B̄inn
j = Binn

j for j < k (57)

and d̄1−
j = d

1−
j = {j}+b(k−a(j))/2−{j}c. We use induction on j. The base of induction,

j = 0, is clear. Assume that the statement is proved for all j′ < j. Then by Proposition 8.4,
the additional condition defining B̄inn

j is

νk+1 + {j
′
} + b(k − a(j′))/2− {j′}c < k − a(j′).

We claim that this condition is always satisfied for ν ∈ Binn
j . Indeed, we have

{j} + b(k − a(j))/2− {j}c + {j′} + b(k − a(j′))/2− {j′}c
≤ (k − a(j))/2+ (k − a(j′))/2 = k − (a(j)+ a(j′))/2 ≤ k − a(j′), (58)

and equality is possible only if a(j) = a(j′) and both (k−a(j))/2−{j} and (k−a(j))/2−{j′}
are integers. But for j′, j < k one has a(j) = b j c, so the first condition shows that the
integer parts of j and j′ are equal, while the second shows that the difference j − j′ is
an integer. This is possible only if j = j′, which is a contradiction. Hence, one of the
inequalities in (58) is strict as claimed. This finishes the proof of (57).
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Now let us check that

B̄inn
j = {0} for integer j ≥ k,

B̄inn
j = ∅ for half-integer j ≥ k.

Indeed, if j is half-integer take j′ = k − 1/2. Then d̄1−
j′ = {j

′
} + b(k − a(j′)/2 − {j′}c =

1/2+ b1/2− 1/2c = 1/2, so the inequality defining B̄inn
j ⊂ Binn

j is

νk+1 + 1/2 < 1.

On the other hand, νk+1 should be a nonnegative half-integer, so B̄inn
j = ∅. For an integer

j ≥ k we note that already Binn
j = {0}, so we only have to check that the inequality (52)

is satisfied for ν = 0. Indeed, if j′ < k then a(j′) ≤ k − 1, hence

0+d̄1−
j′ = {j

′
}+b(k−a(j′))/2−{j′}c ≤ {j′}+(k−a(j′))/2−{j′} = (k−a(j′))/2 < k−a(j′).

Further, if j′ ≥ k is a half-integer then we already know that B̄inn
j′ is empty, so d̄1,−

j′ = −∞

and so we have no restriction on ν. Finally, if j′ ≥ k is an integer then by the induction
hypothesis we have d̄1−

j′ = 0 while a(j′) = k − 1, so νk+1 + d̄
1−
j′ < k − a(j′) in this case.

Now let us describe the outer parts of the blocks, B̄out
j . The inequality (54) gives

λ1 + j− j′ < 2n+ 2e − a(j′)− k − 1.

It can be rewritten as

λ1 < 2n+ 2e − j− k − 1+ (j′ − a(j′)).

Since this should hold for all j′ < j, we can replace the last summand by its minimum,
which is 0. So, the defining inequality of B̄out

j is λ1 < 2n + 2e − j − k − 1. Since λ1

should be an integer, this is equivalent to λ1 ≤ 2n+ 2e − bjc − k − 2.
Now we can write down the answer obtained. We denote by Aj the subcategory in

D(X) corresponding to the block B̄j = B̄out
j + jξ + B̄inn

j .

Theorem 9.1. Let G be of type B orD. Assume that k ≤ n− 1 for type B and k ≤ n− 2
for type D. For each integer t with 0 ≤ t ≤ k − 1, consider the subcategories At and
At+1/2 in D(X) defined by

At =

〈
Eλ
∣∣∣∣ 2n+ 2e − k − 2 ≥ λ1 ≥ · · · ≥ λt ≥ t = λt+1 = · · · = λk,

(k − t)/2 ≥ λk+1 ≥ · · · ≥ λn ≥ (2e − 1)λn−1, λi ∈ Z

〉
,

At+1/2 =

〈
Eλ
∣∣∣∣ 2n+ 2e − k − 3/2 ≥ λ1 ≥ · · · ≥ λt ≥ t + 1/2 = λt+1 = · · · = λk,

(k − t)/2 ≥ λk+1 ≥ · · · ≥ λn ≥ (2e − 1)λn−1, λi ∈ 1/2+ Z

〉
,

where e is defined by (56). Also, for each integer t with k ≤ t ≤ 2n+2e−k−2, consider
the subcategory

At =

〈
Eλ
∣∣∣∣ 2n+ 2e − k − 2 ≥ λ1 ≥ · · · ≥ λk−1 ≥ λk = t,

λk+1 = · · · = λn = 0, λi ∈ Z

〉
.
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Then the collection of subcategories

A0,A1/2,A1,A3/2, . . . ,Ak−1,Ak−1/2,Ak,Ak+1, . . . ,A2n+2e−k−2

is semiorthogonal, and each subcategory is generated by an exceptional collection.

Theorem 9.2. Assume G is of type C and k ≤ n. Consider the following subcategories
in D(X) indexed by integers t = 0, . . . , 2n− k:

At =


〈
Eλ
∣∣∣∣ 2n− k ≥ λ1 ≥ · · · ≥ λt ≥ t = λt+1 = · · · = λk,

b(k − t)/2c ≥ λk+1 ≥ · · · ≥ λn ≥ 0

〉
for t ≤ k − 1,〈

Eλ
∣∣∣∣ 2n− k ≥ λ1 ≥ · · · ≥ λk−1 ≥ λk = t,

λk+1 = · · · = λn = 0

〉
for t ≥ k.

Then the collection of subcategories A0,A1, . . . ,A2n−k is semiorthogonal, and each
subcategory is generated by an exceptional collection.

9.2. Orthogonal maximal isotropic Grassmannians. Note that if G is of type D and
k = n − 1 or k = n then the Grassmannian G/P is isomorphic to the Grassmannian of
type Bn−1 with k = n − 1. Thus, the only remaining case with G classical is when G is
of type Bn and k = n, which we will now consider. Note that in this case

X = G/P = OGr(n, 2n+ 1).

As before we take Dout to be the component containing the vertices from 1 to n− 1, and
thus Dinn = ∅. Further, β = εn, so β̄a = εa+1 and

ra = (ρ, β + β̄a)/(ξ, β) = 2n− 2a.

Hence, when a increases by 1, the index decreases by 2. In particular, r = r0 = 2n. The
weight θ defined by (27) is θ = (0, . . . , 0, 2), hence (θ, PL) = Z and J = Z∩[0, 2n−1].
Applying (28) we deduce that a(j) = b j/2c.

As before we take γa = αa = εa − εa+1. Note that WHa acts by permutations of the
last n− a coordinates and by changes of signs of the coordinates, while WMa acts just by
permutations. Thus, the WHa -orbit of γa consists of all vectors εa ± εi , a + 1 ≤ i ≤ n,
and it splits into two WMa -orbits:

{εa − εi}a+1≤i≤n and {εa + εi}a+1≤i≤n.

Thus, using the notation of Section 8 we have m = 1 and

t γt− (ρH, γt− − γ ) γt+ h∗aγt+ γ̂t (h∗aξ, h
∗
aγt+)

0 εa − εa+1 0 εa − εn −εn −εn −1/2
1 εa + εn n− a εa + εa+1 εa+1 ε1 1/2
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Since PLinn = 0 and a(j) < k = n for all j ∈ J, we have

Binn
j = 0 for all j ∈ J.

In particular, d t,±j = 0 and thus

Bout
j = {n− a(j) ≥ λ1 ≥ · · · ≥ λa(j) ≥ 0}.

Note that this is the set of Young diagrams inscribed into the rectangle a(j)× (n− a(j)),
hence it is closed under taking subdiagrams. Thus, the second condition of Theorem 7.1
is satisfied. Since there are no very special elements by Lemma 5.8, the first condition is
satisfied as well, so the Theorem applies, and we conclude that the block Bj = Bout

j + jξ

consisting of all (λ1, . . . , λn) such that

n+ j/2− a(j) ≥ λ1 ≥ · · · ≥ λa(j) ≥ j/2 = λa(j)+1 = · · · = λn,

λi ≡ j/2 (modZ)

is exceptional.
On the other hand, the condition (54) gives λ1 + (j− j′)/2 < n− a(j′) = n− bj′/2c.

It can be rewritten as
λ1 < n− j/2+ {j′/2}.

Since this should be satisfied for all j′ < j, we conclude that λ1 < n − j/2. On the other
hand, λ1 should be an integer, so we obtain λ1 ≤ n− 1− bj/2c.

Now we can write down the answer obtained. Recall that Aj is the subcategory of
D(X) corresponding to the block B̄j = B̄out

j + jξ + B̄inn
j .

Theorem 9.3. Assume G is of type Bn and k = n. Consider the following subcategories
in D(X) (where t is an integer, 0 ≤ t ≤ n− 1):

A2t = 〈Eλ | n− 1 ≥ λ1 ≥ · · · ≥ λt ≥ t = λt+1 = · · · = λn, λi ∈ Z〉,
A2t+1 = 〈Eλ | n− 1/2 ≥ λ1 ≥ · · · ≥ λt ≥ t + 1/2 = λt+1 = · · · = λn, λi ∈ 1/2+Z〉.

Then the collection of subcategories A0,A1, . . . ,A2n−1 is semiorthogonal, and each
subcategory is generated by an exceptional collection.

9.3. Purity for maximal isotropic Grassmannians. Recall that for an exceptional
block B the exceptional collection (Eλ)λ∈B is strong if and only if it consists of vec-
tor bundles (see Proposition 4.2). Using the explicit form of the blocks we can check that
this is true in the case of maximal isotropic Grassmannians (symplectic or orthogonal).

Theorem 9.4. The exceptional collections of Theorem 9.2 for k = n and of Theorem 9.3
consist of vector bundles.

Proof. By Proposition 4.3, it is enough to check that for each of the blocks B appearing
in the collection the subquiver QB ⊂ Q contains any path that starts and ends in QB.
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First, let us consider the case when G is of type Cn and k = n (so G/P is the La-
grangian Grassmannian SGr(n, 2n)). In this case L = GLn, so the quiver Q has vertices
numbered by dominant weights of GLn and there is an arrow λ→ µ if and only if

HomGLn(V
µ, V λ ⊗ (V 2ω1)∨) = HomGLn(V

µ
⊗ V 2ω1 , V λ) 6= 0.

Thus, if µ corresponds to a Young diagram then so does λ, and µ is contained in λ as a
subdiagram. Since all the blocks consist of Young diagrams and are closed under passing
to subdiagrams, this implies that they satisfy our condition on paths.

In the case when G is of type Bn and k = n, the Levi group L is a twofold covering
of GLn. If j is integer then all λ and µ from this block are restricted from GLn and the
arrow λ→ µ in Q exists if and only if

HomGLn(V
µ
⊗ V ω1 , V λ) 6= 0,

so the above argument shows that the block Bj satisfies the condition on paths. If j is half-
integer then Bj = Bj−1/2+ ξ , and since the twist by ξ is an autoequivalence, we conclude
that the block Bj satisfies the condition on paths as well. ut

Example 9.5. Assume that G is of type C4 and k = 3, i.e. X = G/P = SGr(3, 8), and
take the block

B1 = {5 ≥ λ1 ≥ 1 = λ2 = λ3, 1 ≥ λ4 ≥ 0}.

Note also that L = GL3 × SL2 and V −βL = V
0,0,−1;1
L . In particular, we have a path

(3, 1, 1; 1)→ (2, 1, 1; 2)→ (1, 1, 1; 1)

in the quiver Q that starts and ends in the block B1, while its second vertex is not in
the block. So, the assumption of Proposition 4.3 does not hold. On the other hand, the
assumption of Proposition 4.4(i) is not satisfied either. Indeed, if λ = (4, 1, 1; 0) and µ =
(1, 1, 1; 1) and v = s3s4 ∈ SRL

G then vρ−ρ = (0, 0,−3; 1), hence V µL ⊂ V
λ
L⊗V

vρ−ρ
L , so

by Proposition 2.17(ii) we have Ext2(V λL , V
µ
L ) 6= 0. On the other hand, ξ = (1, 1, 1, 0),

so (ξ, λ) − (ξ, µ) = 6 − 3 = 3. So, in the algebra AB1 its bigrading is (2, 3), while
the first (in the cohomological grading) component of the algebra has bigrading (1, 1) by
Lemma 3.3. Thus, the algebra cannot be one-generated, and in particular it is not Koszul.

On the other hand, one can check that the objects Eλ with λ ∈ B1 are still vec-
tor bundles. To illustrate what goes on let us consider the case λ = (4, 1, 1; 0). By
definition, E (4,1,1;0) is the right mutation of U (4,1,1;0) through the subcategory gener-
ated by Uµ with smaller µ. This mutation is a composition of several simple mutations.
The first simple mutation is the right mutation through U (3,1,1;1). It is easy to see that
Ext•(U (4,1,1;0),U (3,1,1;1)) = k[−1], i.e. Ext1 is one-dimensional and Exti = 0 for i 6= 1.
This means that the result R1 of the first mutation fits into an exact sequence

0→ U (3,1,1;1)→ R1 → U (4,1,1;0)→ 0.
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The second simple mutation is the right mutation of R1 through U (2,1,1;0). It is easy to
see that Ext•(U (4,1,1;0),U (2,1,1;0)) = 0 and Ext•(U (3,1,1;1),U (2,1,1;0)) = k[−1], hence
Ext•(R1,U (2,1,1;0)) = k[−1], so the second mutation is again given by the extension

0→ U (2,1,1;0)→ R2 → R1 → 0,

where R2 is the result of the mutation. The last simple mutation is the right mutation
of R2 through U (1,1,1;1). It is easy to see that we have Ext•(U (4,1,1;0),U (1,1,1;1)) = k[−2],
Ext•(U (3,1,1;1),U (1,1,1;1)) = 0, and Ext•(U (2,1,1;0),U (1,1,1;1)) = k[−1]. It follows that
there is an exact sequence

0→ Ext1(R2,U (1,1,1;1))→ Ext1(U (2,1,1;1),U (1,1,1;1))
→ Ext2(U (4,1,1;0),U (1,1,1;1))→ Ext2(R2,U (1,1,1;1))→ 0, (59)

and that all other Ext spaces from R2 to U (1,1,1;1) vanish. Indeed, the map in the middle
is a map k → k, and a direct computation shows that it is an isomorphism. Thus,
Ext•(R2,U (1,1,1;1)) = 0, so the last mutation changes nothing and E (4,1,1;0) = R2 has a
filtration of length 3 with factors being U (2,1,1;0), U (3,1,1;1), and U (4,1,1;0). In particular,
it is a vector bundle.

It is clear from the above argument that the key point is the surjectivity of the middle
morphism in the 4-term exact sequence (59). In fact, it is equivalent to the surjectivity of
the Massey triple product

Ext1(U (4,1,1;0),U (3,1,1;1))⊗ Ext1(U (3,1,1;1),U (2,1,1;0))⊗ Ext1(U (2,1,1;0),U (1,1,1;1))
→ Ext2(U (4,1,1;0),U (1,1,1;1)).

Since the Massey products are induced by the higher products in the naturalA∞-structure
of the algebra AB1 , this surjectivity can be reinterpreted as the fact that the algebra AB1
is one-generated as an A∞-algebra. This leads to the following conjecture.

Conjecture 9.6. The algebra AB is one-generated as an A∞-algebra. Its Koszul dual is
a usual algebra.

This conjecture implies the purity and strongness of the collections Eλ.

9.4. Numbers of objects. It turns out that the collections constructed in Sections 9.1
and 9.2 contain the maximal possible number of objects. It is well known that the rank
of the Grothendieck group of G/P is equal to the cardinality of WG/WL (this rank is
equal to the rank of the homology group of X due to the Bruhat cell decomposition, and
the homology of X was computed in [BGG, Prop. 5.2]). For the series B, C and D these
ranks are given by

r(n, k) =

(
n

k

)
2k,

where in the case of type D we assume that k ≤ n − 2 (as was explained before, for
type D we do not need to consider the case k = n− 1 or n).
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Proposition 9.7. The total number of objects in the collections of Theorems 9.1–9.3
equals the rank of the Grothendieck group of the corresponding Grassmannian.
Proof. Let us denote

ck(n) = |{n ≥ λ1 ≥ · · · ≥ λk ≥ 0, λi ∈ Z}| =
(
n+ k

k

)
.

We will consider the types B, C and D separately.

1. Type Bn, k ≤ n− 1. In this case we have

|B̄t | = ct (2n− k− 1− t)cn−k(b(k− t)/2c), for integer 0 ≤ t ≤ k− 1,

|B̄t+1/2| = ct (2n− k− 1− t)cn−k(b(k− t − 1)/2c), for integer 0 ≤ t ≤ k− 1,

|B̄t | = ck−1(2n− k− 1− t), for integer k ≤ t ≤ 2n− k− 1.

Hence, the total number of objects in the collection of Theorem 9.1 in this case is

NB(n, k) =

k−1∑
t=0

ct (2n− k − 1− t) · (cn−k(b(k − t)/2c)+ cn−k(b(k − t − 1)/2c))

+

2n−k−1∑
t=k

ck−1(2n− k − 1− t).

But
2n−k−1∑
t=k

ck−1(2n−k−1− t) =
2n−2k−1∑
i=0

ck−1(i) =

2n−2k−1∑
i=0

(
k−1+ i
k−1

)
=

(
2n−k−1

k

)
= ck(2n−2k−1).

Thus,

NB(n, k)

=

k−1∑
t=0

ct (2n−k−1− t) ·
(
cn−k(b(k− t)/2c)+cn−k(b(k− t−1)/2c)

)
+ck(2n−2k−1)

=

k∑
t=0

(
2n− k − 1

t

)
·
(
cn−k(b(k − t)/2c)+ cn−k(b(k − t − 1)/2c)

)
.

Hence, NB(n, k) is the coefficient of xk in (1+ x)2n−k−1f Bn−k(x), where

f Bn−k(x) =
∑
i≥0

(
cn−k(bi/2c)+ cn−k(b(i − 1)/2c)

)
xi

= (1+ 2x + x2)
∑
j≥0

cn−k(j)x
2j
=

(1+ x)2

(1− x2)n−k+1 .

Therefore, NB(n, k) is the coefficient of xk in

(1+ x)2n−k+1

(1− x2)n−k+1 =
(1+ x)n

(1− x)n−k+1 = (1+ x)
n
∑
i≥0

(
n− k + i

i

)
xi .
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Finally, this gives

NB(n, k) =

k∑
i=0

(
n

k − i

)(
n− k + i

i

)
=

k∑
i=0

n!

(k − i)!i!(n− k)!
=

(
n

k

) k∑
i=0

(
k

i

)
=

(
n

k

)
2k.

1′. Type Bn, k = n. In this case

|B̄2t | = |B̄2t+1| = ct (n− t − 1) =
(
n− 1
t

)
,

and the total number of objects is

NB(n, n) = 2
n−1∑
t=0

(
n− 1
t

)
= 2 · 2n−1

= 2n.

2. Type Cn. We have

|B̄t | = ct (2n− k − t)cn−k(b(k − t)/2c) for integer 0 ≤ t ≤ k − 1,

|B̄t | = ck−1(2n− k − t) for integer k ≤ t ≤ 2n− k.

Thus, the total number of objects is

NC(n, k) =

k−1∑
t=0

ct (2n− k − t)cn−k(b(k − t)/2c)+
2n−k∑
t=k

ck−1(2n− k − t)

=

k−1∑
t=0

ct (2n−k−t)cn−k(b(k−t)/2c)+ck(2n−2k) =
k∑
t=0

ct (2n−k−t)cn−k(b(k−t)/2c).

In other words, NC(n, k) is the coefficient of xk in (1+ x)2n−kf Cn−k(x), where

f Cn−k(x) =
∑
i≥0

cn−k(bi/2c)xi = (1+ x)
∑
j≥0

cn−k(j)x
2j
=

1+ x
(1− x2)n−k+1 .

Therefore, NC(n, k) is the coefficient of xk in (1+ x)2n−k+1(1− x2)−(n−k+1), so we get

NC(n, k) = NB(n, k) =

(
n

k

)
2k.

3. Type Dn, k ≤ n− 2. First, we observe that

sk(n) := |{n≥ λ1 ≥ · · · ≥ λk ≥−λk−1, λi ∈ Z}|

=

∑
p≥0

|{n≥ λ1 ≥ · · · ≥ λk−1 = p, λi ∈ Z}|(2p + 1)=
∑
p≥0

(2p + 1)ck−2(n− p),

and so ∑
n≥0

sk(n)x
n
=

(∑
p≥0

(2p + 1)xp
) 1
(1− x)k−1 =

1+ x
(1− x)k+1 .
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Similarly,

tk(n) := |{n+ 1/2 ≥ λ1 ≥ · · · ≥ λk ≥ −λk−1, λi ∈ 1/2+ Z}|

=

∑
p≥0

|{n+ 1/2 ≥ λ1 ≥ · · · ≥ λk−1 = p + 1/2, λi ∈ 1/2+ Z}|(2p + 2)

=

∑
p≥0

(2p + 2)ck−2(n− p),

and so ∑
n≥0

tk(n)x
n
=

(∑
p≥0

(2p + 2)xp
) 1
(1− x)k−1 =

2
(1− x)k+1 .

Now

|B̄t | = ct (2n− k − 2− t)sn−k(b(k − t)/2c) for integer 0 ≤ t ≤ k − 1,

|B̄t+1/2| = ct (2n− k − 2− t)tn−k(b(k − t − 1)/2c) for integer 0 ≤ t ≤ k − 1,

|B̄t | = ck−1(2n− k − 2− t) for integer k ≤ t ≤ 2n− k − 2.

Hence, the total number is

ND(n, k) =

k−1∑
t=0

ct (2n−k−2−t)
(
sn−k(b(k−t)/2c)+tn−k(b(k−t−1)/2c)

)
+

2n−k−2∑
t=k

ck−1(2n−k−2−t)

=

k∑
t=0

ct (2n− k − 2− t)
(
sn−k(b(k − t)/2c)+ tn−k(b(k − t − 1)/2c)

)
.

Thus, ND(n, k) is the coefficient of xk in (1+ x)2n−k−2fDn−k(x), where

fDn−k(x) =
∑
i≥0

(
sn−k(bi/2c)+ tn−k(b(i − 1)/2c)

)
xi

= (1+ x)
∑
j≥0

sn−k(j)x
2j
+ x(1+ x)

∑
j≥0

tn−k(j)x
2j

=
(1+ x)(1+ x2)

(1− x2)n−k+1 +
2(1+ x)x

(1− x2)n−k+1 =
(1+ x)3

(1− x2)n−k+1 .

Therefore, ND(n, k) is the coefficient of xk in (1 + x)2n−k+1(1 − x2)−(n−k+1), which
gives

ND(n, k) = NB(n, k) =

(
n

k

)
2k.

This completes the proof. ut

9.5. Proofs. Here we explain how the results of the paper imply the theorems from the
Introduction.
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Proof of Theorem 1.2. The exceptional collections are constructed in Theorems 9.1–9.3.
They have equivariant structure by construction. The number of objects equals the rank
of the Grothendieck group by Proposition 9.7. ut

Proof of Corollary 1.3. Recall that Y = G ×G (G/P) = (G × (G/P))/G, with respect to
the natural right action of G on G and the left action on G/P. By [El, Theorem 9.6], the
derived category D(Y ) is equivalent to D(G × (G/P))G, the category of G-equivariant
objects in D(G × (G/P)). Consider the object OG � Eλ ∈ D(G × (G/P)) with its natural
G-equivariant structure. By the above observation it gives an object EλY ∈ D(Y ) such that
for any point x ∈ X we have

(EλY )|p−1(x)
∼= Eλ.

Thus we can apply Theorem 3.1 from [S07] to conclude that the functors

8λ : D(X)→ D(Y ), F 7→ p∗F ⊗ EλY ,

are fully faithful and the subcategories 8λ(D(X)) ⊂ D(Y ) are semiorthogonal. This
means that we have a semiorthogonal decomposition

Db(Y ) = 〈{8λ(D(X))}λ∈B,A〉,

where A =
⋂
λ∈B

⊥8λ(D(X)). Now if X has an exceptional collection Fi of length
N = rkK0(X) then the objects p∗Fi ⊗ EλY form an exceptional collection of length
N ·#B in D(Y ), so if #B = rkK0(G/P) then this number equals rkK0(X)·rkK0(G/P) =
rkK0(Y ), so we have an exceptional collection of expected length on Y . ut

Proof of Theorem 1.5. Part (i) is given by Theorem 5.10. Part (ii) follows from Proposi-
tion 3.13 combined with Proposition 6.3 and Theorem 7.1. Part (iii) is a combination of
Theorems 9.1–9.3 with Proposition 9.7. ut

Proof of Theorem 1.8. This is just Proposition 4.2. ut

9.6. Usual Grassmannians. In this section we speculate that our construction might
still work with a certain weakening of the assumption (26) (so thatDout is not necessarily
connected). Namely, we consider the case X = Gr(k, n), the usual Grassmannian, and
formally apply the procedure of Section 5 to the data for which (26) does not hold to
construct collections of expected length in Db(X). Of course, our proof of part (b) of the
criterion of exceptionality (see Proposition 3.13) does not work in this situation, so we do
not have a proof of the exceptionality of this collection.

Let G = SLn and L = (GLk ×GLl)∩ SLn (n = k+ l). In the framework of the paper
we could take Dout to be either of the two connected components of DG \ β. Let us take
instead Dout to be the union of both, that is, Dout = DG \ β. Of course we violate here
the assumption (26).

Moreover, we arbitrarily renumber the vertices of DG in such a way that Da = DG \
{1, . . . , a} is always connected and contains β = αn−1. In other words, to obtain from
DG the chain of Dynkin diagrams Da we keep chopping off one of the end-points of the
diagram until only β is left.
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It is clear that such renumberings are in a bijection with isotopy classes of monotone
curves C in a k × l rectangle on an integer grid going from the point (k, l) to the point
(0, 0) and not passing through integer points. We will describe a conjectural exceptional
collection corresponding to an isotopy class of such a curve.

Moreover, in fact we will allow the curve to pass through integer points (this corre-
sponds to allowing both end-points to be chopped off simultaneously).

So, assume we are given such a curve C. Consider the sequence of points Q0,Q1,

. . . ,Qm of intersection of C with the edges of the grid squares (some of the points Qi

can lie at the vertices of the squares) and let (xi, yi) be the coordinates of Qi . Set

ai = bxic, bi = byic, ci = k − dxie, di = l − dyie.

Then consider the blocks

Bi =

{
di + i ≥ λ1 ≥ · · · ≥ λai ≥ i = λai+1 = · · · = λk,

λk+1 = · · · = λn−bi = 0 ≥ λn−bi+1 ≥ · · · ≥ λn ≥ −ci

}
(60)

(in particular, B0 = {0}). Note that the total number of weights in those blocks is

#(B0 t B1 t · · · t Bm) =
m∑
i=0

(
ai + di

ai

)(
bi + ci

bi

)
=

(
k + l

k

)
,

which is the rank of the Grothendieck group of X = Gr(k, n). The equality above has a
simple combinatorial proof—the RHS is the number of Young diagrams inscribed in the
rectangle, we divide the set of all such diagrams into subsets numbered by the point of
intersection of the border of the diagram with the curve C, and the summands on the LHS
correspond to the parts of this decomposition.

In the first version of this paper we suggested the following conjecture.

Conjecture 9.8. The blocks Bi given by (60) are exceptional and the collection
〈A0,A1, . . . ,Am〉 with subcategories Ai = 〈Uλ〉λ∈Bi is a semiorthogonal decomposi-
tion of Db(Gr(k, n)), each component of which is generated by an exceptional collection.

This conjecture was recently proved by A. Fonarev [Fon].

Remark 9.9. One special case is interesting. Assume l = k, and take for C the segment
of the straight line from (k, k) to (0, 0). Then m = k and Qi = (i, i) so that ai = bi = i,
ci = di = k− i. The corresponding exceptional collection is invariant with respect to the
outer automorphism of Gr(k, 2k) (passing to the orthogonal complement with respect to
a nondegenerate bilinear form).

10. Appendix. Key technical proposition

In this Appendix we prove a certain auxiliary result on GLn-representations.
For a dominant weight λ = (λ1 ≥ · · · ≥ λn) of GLn we denote by V λ the corre-

sponding irreducible GLn-representation. We write λ ≥ 0 (and say that λ is nonnegative)
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if λn ≥ 0. Such weights correspond to partitions with at most n parts. Let w0 denote the
longest element of the symmetric group Sn, i.e. the permutation which takes i to n+1− i
for all i.

For an integer a with 0 ≤ a ≤ n, and an integer l ≥ 0, let 5a
−l be the projector on

the category of GLn-representations which acts identically on V λ, where λa+1 = · · · =

λn = −l, and sends all other irreducible representations to zero. We say that a map of
GLn-representations is a 5a

−l-isomorphism (resp. 5a
−l-injection) if applying 5a

−l to this
map we get an isomorphism (resp. injection).

The main result of this Appendix is the following

Proposition 10.1. Fix an integer a with 0 ≤ a ≤ n. Let κ be a partition with at most a
parts, and let τ be a partition with at most n− a parts (both viewed as weights of GLn).
Finally, let W be a representation which is a direct summand of V⊗N , where V is the
standard n-dimensional representation of GLn. Then the natural map

V κ−w0τ ⊗W → V κ ⊗ V −w0τ ⊗W → V κ ⊗5a0(V
−w0τ ⊗W) (61)

is a 5a0-isomorphism.

The following corollary of this proposition is used in Section 7.2.

Corollary 10.2. Fix a with 0 ≤ a ≤ n − 1. Let κ be a partition with at most a parts, τ
a partition with at most n− a parts, and µ a partition with at most n parts. Then for any
l ≥ 0 the natural map

V κ−w0τ ⊗ V µ→ V κ ⊗ V −w0τ ⊗ V µ→ V κ ⊗5a
−l(V

−w0τ ⊗ V µ)

induces an isomorphism after applying 5a
−l .

Proof. Denote by (l) the autoequivalence of the category of representations of GLn that
takes a representation with a highest weight λ = (λ1, . . . , λn) to the representation with
the highest weight (λ1 + l, . . . , λn + l). In other words, it is the twist by (detV )⊗l . Then
for W = V µ(l) we have

5a
−l(V

κ−w0τ ⊗ V µ)(l) = 5a0(V
κ−w0τ ⊗W),

5a
−l(V

κ
⊗ V −w0τ ⊗ V µ)(l) = 5a0(V

κ
⊗ V −w0τ ⊗W),

5a
−l(V

κ
⊗5a

−l(V
−w0τ ⊗ V µ))(l) = 5a0(V

κ
⊗5a

−l(V
−w0τ ⊗ V µ)(l))

= 5a0(V
κ
⊗5a0(V

−w0τ ⊗W)),

so applying 5a
−l to the map in the corollary and twisting by (l) we obtain the map (61)

acted upon by 5a0 . The latter is an isomorphism by Proposition 10.1, hence so is the
former. ut

We start the proof of Proposition 10.1 with the following numerical observation.

Lemma 10.3. Under the assumptions of Proposition 10.1 one has

dim5a0(V
κ−w0τ ⊗W) = dim5a0(V

κ
⊗5a0(V

−w0τ ⊗W)).
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Proof. It is enough to check that the multiplicities of V µ, where µ is a partition with at
most a parts, in V κ−w0τ ⊗ W and in V κ ⊗ 5a0(V

−w0τ ⊗ W) are equal. To this end we
replace W with any of its irreducible summand of the form V λ, where λ ≥ 0, and apply
the Littlewood–Richardson rule. The dimension of the space Hom(V µ, V κ−w0τ ⊗ V λ) is
given by the number of semistandard skew tableaux S of shape (µ) \ (κ −w0τ) with the
content of weight λ, satisfying the lattice permutation condition. Every such skew tableau
contains a skew subtableau S′ of shape µ \ κ that still satisfies the lattice permutation
condition. Let ν be the weight of the content of S′. Then to give S is the same as giving
ν ⊂ λ together with a pair:

(i) a semistandard skew tableau of shape µ \ κ with content of weight ν,
(ii) a semistandard skew tableau of shape ν \ (−w0τ) with content λ.

Let N1 (resp., N2) be the number of choices in (i) (resp., in (ii)). We have

N1 = dimHom(V µ, V κ ⊗ V ν).

On the other hand,
N2 = dimHom(V ν, V −w0τ ⊗ V λ).

Thus, the above argument gives the equality

dimHom(V µ, V κ−w0τ ⊗ V λ)

=

∑
ν≥0, ν⊂µ, ν⊂λ

dim(Hom(V µ, V κ ⊗ V ν)) · dim(Hom(V ν, V −w0τ ⊗ V λ)). (62)

Note that the condition ν ⊂ µ here is automatic since otherwise Hom(V µ, V κ ⊗ V ν) is
zero. On the other hand, we have a decomposition

Hom(V µ, V κ ⊗5a0(V
−w0τ ⊗ V λ))

=

⊕
ν≥0, ν⊂µ, ν⊂λ

Hom(V µ, V κ ⊗ V ν)⊗ Hom(V ν, V −w0τ ⊗ V λ). (63)

Indeed, the summation over ν ≥ 0 on the right-hand side comes from decomposing
5a0(V

−w0τ⊗V λ) into irreducibles. The condition ν ⊂ µ can be added for the same reason
as before, and the condition ν ⊂ λ is added because otherwise Hom(V ν, V −w0τ ⊗ V λ)

vanishes. According to the definition of 5a0 we also have to require ν to have at most a
parts, but this follows from the inclusion ν ⊂ µ. Comparing the dimensions in (63) with
(62), we get the required equality. ut

The above lemma reduces the proof of Proposition 10.1 to showing that the map (61) is
5a0-injective. We will deduce this from a more general Proposition 10.4 below. To state it
we need more notation.

Let us define the depth of a dominant weight λ = (λ1 ≥ · · · ≥ λn) of GLn as the sum
of the absolute values of all its negative entires. In other words, we take 1 ≤ i ≤ n such
that λi ≥ 0 ≥ λi+1, and set

depth(λ) = −λi+1 − · · · − λn.

Note that the depth is always nonnegative, and it is zero if and only if λ ≥ 0.
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Let 5d be the the projector on the category of representations of GLn which acts
identically on all V λ with depth(λ) = d , and sends all other irreducible representations
to zero. Also, set 5≥d0 :=

∑
d≥d0

5d .
Consider the GLn-representations

Vp := V
⊗p and Vp,q := V

⊗p
⊗ (V ∗)⊗q .

We will derive the 5a0-injectivity of (61) from the following result.

Proposition 10.4. Fix integers k, t, N ≥ 0. The natural map

5t (Vk,t )⊗ VN → Vk+N,t → Vk ⊗50(VN,t ) (64)

is 50-injective, i.e. it becomes injective after applying 50.

To prove Proposition 10.4 we will use some simple facts about partial contraction maps
between the GLn-representations Vp,q . First, for each i ≤ p and j ≤ q consider the
partial trace map Tri,j : Vp,q → Vp−1,q−1 given by

Tri,j ((v1 ⊗ · · · ⊗ vp)⊗ (f1 ⊗ · · · ⊗ fq))

= fj (vi)v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vp ⊗ f1 ⊗ · · · ⊗ f̂j ⊗ · · · ⊗ fq . (65)

Clearly it is GLn-equivariant.

Lemma 10.5. The maximal depth of an irreducible representation occurring in Vp,q is
equal to q. The intersection of the kernels of all maps Tri,j for 1 ≤ i ≤ p and 1 ≤ j ≤ q
contains the direct sum of all irreducibles of depth q in Vp,q :

5q(Vp,q) ⊂
⋂

1≤i≤p, 1≤j≤q

Ker Tri,j .

Proof. The first assertion follows easily from the Littlewood–Richardson rule. The sec-
ond follows immediately from the first, as Vp−1,q−1 does not contain irreducible repre-
sentations of depth q. ut

Next, for p ≥ q and a permutation σ ∈ Sp let us define the corresponding contraction
map

Trσ : Vp,q → Vp−q ,

(v1 ⊗ · · · ⊗ vp)⊗ (f1 ⊗ · · · ⊗ fq) 7→ f1(vσp ) · · · fq(vσp−q+1)vσ1 ⊗ · · · ⊗ vσp−q . (66)

In other words, Trσ is the composition of the action of σ ⊗ idV0,q followed by q consecu-
tive contractions of the factors V ⊗ V ∗.

Lemma 10.6. The intersection of the kernels of all maps Trσ for σ ∈ Sp contains the
direct sum of all irreducibles of positive depth in Vp,q :

5≥1(Vp,q) ⊂
⋂
σ∈Sp

Ker Trσ = Ker
( ∑
σ∈Sp

Trσ
)
.
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Proof. This follows from the fact that irreducible representations of positive depth do not
occur in Vp−q . ut

Lemma 10.7. Any GLn-map Vp,q → Vp−q , where p ≥ q, is a linear combination∑
σ∈Sp

aσ Trσ of the contraction maps (66). Moreover, the kernel of the map∑
Trσ : Vp,q −→

⊕
σ∈Sp

Vp−q

is 5≥1(Vp,q). In particular, the restriction of this map to 50(Vp,q) is injective.

Proof. The first part follows immediately from the first fundamental theorem on in-
variants of GLn (see e.g. [CB, Sec. 12]). For the second part, since we already know
that 5≥1(Vp,q) is in the kernel, we have to check that for each irreducible summand
V µ ⊂ Vp,q with µ ≥ 0 the map

∑
Trσ is injective on V µ.

So, let V µ ⊂ Vp,q be an irreducible summand with µ ≥ 0. Note that µ is a partition
of p − q, in particular, V µ is a direct summand of Vp−q . Choose a splitting Vp,q → V µ

of the given embedding and an embedding V µ→ Vp−q . Then the composition

V µ→ Vp,q → V µ→ Vp−q

is an embedding. On the other hand, the composition of the second and third arrows is a
linear combination of the maps Trσ . It follows that for some σ the map Trσ restricted to
V µ is nonzero, hence injective. Therefore

∑
Trσ is also injective on V µ. ut

Proof of Proposition 10.4. If N < t then by the Littlewood–Richardson rule, 50(VN,t )

= 0, hence the third term in (64) is zero. Similarly, in this case 50(V
λ
⊗ VN ) = 0 for

any λ of depth t , hence the first term in (64) becomes zero after applying 50. Thus, the
composition (64) is 50-injective.

From now on assume that N ≥ t . By Lemma 10.7, we have a left exact sequence

0→ 5≥1(VN,t )→ VN,t

∑
Trσ

−−−→

⊕
σ∈SN

VN−t .

Since the complement of 5≥1(VN,t ) in VN,t is 50(VN,t ), this means that the projection
VN,t → 50(VN,t ) fits into a commutative diagram

VN,t //

∑
σ∈SN

Trσ %%

50(VN,t )
jJ

xx⊕
σ∈SN

VN−t

with an injective right bottom arrow. Tensoring it with Vk we obtain the commutative
diagram

Vk+N,t = Vk ⊗ VN,t //

∑
σ∈SN

idVk⊗Trσ
))

Vk ⊗50(VN,t )
iI

vv⊕
σ∈SN

Vk+N−t
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Now consider the composition (64) and assume that V µ ⊂ 5t (Vk,t ) ⊗ VN is an irre-
ducible summand with µ ≥ 0 whose image in Vk+N,t is mapped to zero by the projection
Vk+N,t → Vk ⊗50(VN,t ). By the above commutative diagram this means that

(idVk ⊗ Trσ )(V
µ) = 0 (67)

for all σ ∈ SN . On the other hand, since V µ ⊂ 5t (Vk,t )⊗VN ⊂ Vk+N,t , by Lemma 10.5
we have

Tri,j (V
µ) = 0 (68)

for all 1 ≤ i ≤ k and 1 ≤ j ≤ t . Let us show that (67) and (68) lead to a contradiction.
Indeed, since µ ≥ 0, we know by Lemma 10.7 that for some σ ∈ Sk+N the trace map
Trσ : Vk+N,t → Vk+N−t is injective on V µ. Fix such a σ . There are two possibilities:
either

(1) for each 1 ≤ i ≤ k we have σi ≤ k +N − t , or
(2) for some 1 ≤ i ≤ k we have σi > k +N − t .

In the first case the map Trσ can be rewritten as the composition of idVk ⊗Trσ ′ with some
σ ′ ∈ SN , followed by an appropriate permutation acting on Vk+N−t . In particular, by (67)
it vanishes on V µ. In the second case the map Trσ factors through Tri,j : Vk+N,t →
Vk+N−1,t−1 for j = N + k+ 1−σi , and so it vanishes on V µ by (68). This contradiction
finishes the proof. ut

Now we can finish the proof of our key technical proposition.

Proof of Proposition 10.1. By Lemma 10.3, it is enough to prove that the map (61) is
5a0-injective. Let k be the sum of the parts of κ , and let t be the sum of the parts of
τ . Note that the representation V κ−w0τ has depth t . Let us choose some embeddings
V κ ⊂ Vk , V −w0τ ⊂ V0,t and W ⊂ VN . Their tensor product gives an embedding of
V κ ⊗ V −w0τ ⊗W into Vk+N,t that fits into a commutative diagram

V κ−w0τ ⊗W //

��

V κ ⊗ V −w0τ ⊗W //

��

V κ ⊗5a0(V
−w0τ ⊗W)

��
5t (Vk,t )⊗ VN // Vk+N,t // Vk ⊗50(VN,t )

(the left dotted arrow comes from the embedding V κ−w0τ ⊂ 5t (Vk,t ) and the right dotted
arrow is obtained by the functoriality of the projector 5a0). Note that all vertical arrows
are injective. Applying the projector 50 (and dropping the middle terms) we obtain a
commutative square

50(V
κ−w0τ ⊗W) //

��

50(V
κ
⊗50(V

−w0τ ⊗W))

��
50(5t (Vk,t )⊗ VN ) // 50(Vk ⊗50(VN,t ))
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with injective vertical arrows. The bottom line is injective by Proposition 10.4, hence so
is the top line. Applying additionally the projector 5a0 we conclude that the map

5a0(V
κ−w0τ ⊗W)→ 5a0(V

κ
⊗50(V

−w0τ ⊗W))

is also injective. But

5a0(V
κ
⊗50(V

−w0τ ⊗W)) = 5a0(V
κ
⊗5a0(V

−w0τ ⊗W)).

Indeed, by the Littlewood–Richardson rule, the tensor product of V κ with V µ for non-
negative µ has a summand V λ with λa+1 = · · · = λn = 0 only if µa+1 = · · · = µn = 0.
We conclude that the map

5a0(V
κ−w0τ ⊗W)→ 5a0(V

κ
⊗5a0(V

−w0τ ⊗W))

is injective. ut
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