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Abstract. We study the degree 3 cohomological invariants with coefficients in Q/Z(2) of a semi-
simple group over an arbitrary field. A list of all invariants of adjoint groups of inner type is given.
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1. Introduction

1a. Cohomological invariants. Let G be a linear algebraic group over a field F (of
arbitrary characteristic). The notion of an invariant of G was defined in [9] as follows.
Consider the functor

H 1(−,G) : FieldsF → Sets,

where FieldsF is the category of field extensions of F , taking a field K to the set
H 1(K,G) of isomorphism classes of G-torsors over SpecK . Let

H : FieldsF → Abelian Groups

be another functor. An H -invariant of G is then a morphism of functors

I : H 1(−,G)→ H.

We denote the group of H -invariants of G by Inv(G,H).
An invariant I ∈ Inv(G,H) is called normalized if I (X) = 0 for the trivial G-

torsor X. The normalized invariants form a subgroup Inv(G,H)norm of Inv(G,H) and
there is a natural isomorphism

Inv(G,H) ' H(F)⊕ Inv(G,H)norm.

Of particular interest to us is the functor H which takes a field K/F to the Galois
cohomology group H n(K,Q/Z(j)), where the coefficients Q/Z(j) are defined as the
direct sum of the colimit over n of the Galois modules µ⊗jn , where µn is the Galois

A. Merkurjev: Department of Mathematics, University of California,
Los Angeles, CA 90095-1555, USA; e-mail: merkurev@math.ucla.edu

Mathematics Subject Classification (2010): 12G05, 11E72, 14F20, 14F42



658 A. Merkurjev

module of nth roots of unity, and a p-component in the case p = char(F ) > 0 defined
via logarithmic de Rham–Witt differentials (see [13, I.5.7], [14]).

We write Invn(G,Q/Z(j)) for the group of cohomological invariants of G of degree
n with coefficients in Q/Z(j).

If G is connected, then Inv1(G,Q/Z(j))norm = 0 (see [15, Proposition 31.15]). The
degree 2 cohomological invariants with coefficients in Q/Z(1) (equivalently, the invari-
ants with values in the Brauer group Br) of a smooth connected group were determined
in [1]:

Inv2(G,Br)norm = Inv2(G,Q/Z(1))norm ' Pic(G).

In particular, for a semisimple group G we have

Inv2(G,Q/Z(1))norm ' Ĉ(F ),

where Ĉ(F ) is the character group of the kernel C of the universal cover G̃→ G by [21,
Prop. 6.10].

The group of degree 3 invariants Inv3(G,Q/Z(2))norm was determined by Rost in the
case whenG is simply connected quasi-simple. This group is finite cyclic with a canonical
generator called the Rost invariant (see [9, Part II]).

In the present paper, based on the results in [18], we extend Rost’s result to all semi-
simple groups.

Theorem. Let G be a semisimple group over a field F . Then there is an exact sequence

0→ CH2(BG)tors → H 1(F, Ĉ(1))
σ
−→

Inv3(G,Q/Z(2))norm → Q(G)/Dec(G)→ H 2(F, Ĉ(1)).

Here BG is the classifying space of G and Q(G)/Dec(G) is the group defined in Sec-
tion 3c in terms of the combinatorial data associated with G (the root system, weight and
root lattices).

If G is simply connected, the group Ĉ is trivial and we obtain Rost’s theorem men-
tioned above.

The main result has clearer form for adjoint groupsG of inner type. We show that the
group Inv3(G,Q/Z(2))dec := Im(σ ) of decomposable invariants (given by a cup-product
with the degree 2 invariants), is canonically isomorphic to Ĉ ⊗ F×. The factor group
Inv3(G,Q/Z(2))ind of Inv3(G,Q/Z(2))norm by the decomposable invariants is nontrivial
if and only if G has a simple component of type Cn or Dn (when n is divisible by 4), E6
or E7. If G is simple, the group of indecomposable invariants is cyclic with a canonical
generator restricting to a multiple of the Rost invariant.

We will use the following notation:

F the base field, Fsep a separable closure of F , 0F = Gal(Fsep/F ).

For a complex A of étale sheaves on a variety X, we write H ∗(X,A) for the étale
(hyper-)cohomology group of X with values in A.
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2. Preliminaries

2a. Cohomology of BG. Let G be a connected algebraic group over a field F and let V
be a generically free representation ofG such that there is an openG-invariant subscheme
U ⊂ V and a G-torsor U → U/G such that U(F) 6= ∅ (see [26, Remark 1.4]).

LetH be a (contravariant) functor from the category of smooth varieties over F to the
category of abelian groups. Very often the valueH(U/G) is independent (up to canonical
isomorphism) of the choice of the representation V provided the codimension of V \ U
in V is sufficiently large. This is the case, for example, if H = CHi , the Chow group
functor of cycles of codimension i (see [26] or [5]). We write H(BG) for H(U/G) and
view U/G as an “approximation” for the “classifying space” BG of G.

We have the two maps p∗i : H(U/G) → H((U × U)/G), i = 1, 2, induced by the
projections pi : (U × U)/G → U/G. An element h ∈ H(U/G) is called balanced
if p∗1(h) = p∗2(h). We write H(U/G)bal for the subgroup of all balanced elements in
H(U/G).

Write Hn(Q/Z(j)) for the Zariski sheaf on a smooth scheme X associated to the
presheaf U 7→ H n(U,Q/Z(j)).

Let u ∈ H 0
Zar(U/G,H

n(Q/Z(j)))bal. Define an invariant Iu ∈ Invn(G,Q/Z(j))
as follows (see [1]). Let X be a G-torsor over a field extension K/F . Choose a point
x ∈ (U/G)(K) such that X is isomorphic to the pull-back via x of the versal G-torsor
U → U/G and set Iu(X) = x∗(u), where

x∗ : H 0
Zar(U/G,H

n(Q/Z(j)))→ H 0
Zar(SpecK,Hn(Q/Z(j))) = H n(K,Q/Z(j))

is the pull-back homomorphism given by x : Spec(K)→ U/G. The fact that the element
u is balanced ensures that x∗(u) does not depend on the choice of the point x (see [1,
Lemma 3.2]).

WriteH
0
Zar(U/G,Hn(Q/Z(j))) for the factor group ofH 0

Zar(U/G,H
n(Q/Z(j))) by

the natural image of H n(F,Q/Z(j)).

Proposition 2.1 ([1, Corollary 3.4]). The assignment u 7→ Iu yields an isomorphism

H
0
Zar(U/G,Hn(Q/Z(j)))bal

∼
−→ Invn(G,Q/Z(j))norm.

2b. The map αG. Let G be a semisimple group over F and let C be the kernel of the
universal cover G̃→ G. For a character χ ∈ Ĉ(F ) over F consider the push-out diagram

1 // C //

χ

��

G̃ //

��

G // 1

1 // Gm // G′ // G // 1

We define a map
αG : H

1(F,G)→ Hom(Ĉ(F ),Br(F ))

by αG(ξ)(χ) = δ(ξ), where δ : H 1(F,G) → H 2(F,Gm) = Br(F ) is the connecting
map for the bottom row of the diagram.
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Example 2.2. Let G = PGLn. Then Ĉ = Z/nZ and the map αG takes the class [A] ∈
H 1(F,PGLn) of a central simple algebra A of degree n to the homomorphism i+nZ 7→
i[A] ∈ Br(F ).

Let C′ be the center of G̃. Recall that there is the Tits homomorphism (see [15, Theo-
rem 27.7])

βG̃ : Ĉ
′(F )→ Br(F ).

A central simple algebra over F representing the class βG̃ for some χ ∈ C′(F ) is called
a Tits algebra of G over F .

In the following proposition we relate the maps αG and βG̃.

Proposition 2.3. Let G be a semisimple group, X a G-torsor over F and χ ∈ Ĉ′(F ),
where C′ is the center of the universal cover G̃ of G. Let XG := AutG(X) be the twist
of G by X and XG̃ the universal cover of XG. Then

αG(X)(χ |C) = βXG̃(χ)− βG̃(χ),

where C ⊂ C′ is the kernel of G̃→ G.

Proof. By [15, §31], there exist a unique (up to isomorphism) G-torsor Y such that the
twist YG = AutG(Y ) is quasi-split and αG(Y )(χ |C) = −βG̃(χ). If XY is the twist of Y
by X, then AutXG(XY ) ' AutG(Y ) is quasi-split. Hence αXG(

XY )(χ |C) = −βXG̃(χ). It
follows from [15, Proposition 28.12] that αXG(

XY )+ αG(X) = αG(Y ). ut

2c. Admissible maps. Let G be a split simply connected group over F , and 5 a set of
simple roots of G.

Proposition 2.4 (cf. [10, Proposition 5.5]). Let G be a split simply connected group
over F , and C the center of G. Let 5′ be a subset of 5 and let G′ be the subgroup of G
generated by the root subgroups of all roots in 5′. Then G′ is a simply connected group
and C ⊂ G′ if and only if every fundamental weight wα for α ∈ 5 \5′ is contained in
the root lattice 3r of G.

Proof. The group G′ is simply connected by [22, 5.4b]. The images of the co-roots α∗ :
Gm → T for α ∈ 5′ generate the maximal torus T ′ = G′ ∩ T of G′. Therefore, the
character group � of the torus T/T ′ coincides with

{λ ∈ T̂ : 〈λ, α∗〉 = 0 for all α ∈ 5′}

and hence � is generated by the fundamental weights wβ for all β ∈ 5 \ 5′. We have
T̂ ′ = 3w/� and Ĉ = 3w/3r . Therefore, C ⊂ G′ ∩ T = T ′ if and only if � ⊂ 3r . ut

A homomorphism a : Ĉ(F )→ Br(F ) is called admissible if ind a(χ) divides ord(χ) for
every χ ∈ Ĉ.

Example 2.5. SupposeG is the product of split adjoint groups of typeA. By Example 2.2,
every admissible map belongs to the image of αG.
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Proposition 2.6. Let G be a split adjoint group over F . Then every admissible map in
Hom(Ĉ(F ),Br(F )) belongs to the image of αG.

Proof. Let 5′ be the subset of 5 of all roots α such that wα ∈ 3r and let G′ be the sub-
group of G̃ generated by the root subgroups for all roots in 5′. Then by Proposition 2.4,
G′ is a simply connected group such that C ⊂ G′. Let C′ be the center of G′ and set
C′′ := C′/C. By Lemma 2.7 below, the top row in the commutative diagram

H 1(F,G′/C) //

αG′/C

��

H 1(F,G′/C′) //

αG′/C′

��

Hom(Ĉ′′(F ),Br(F ))

Hom(Ĉ(F ),Br(F )) �
� // Hom(Ĉ′(F ),Br(F )) // Hom(Ĉ′′(F ),Br(F ))

is exact.
Let a ∈ Hom(Ĉ(F ),Br(F )) be an admissible map. Then the image a′ of a in

Hom(Ĉ′(F ),Br(F )) is also admissible. Inspection shows that every component of the
Dynkin diagram of G′ is of type A. (A root α belongs to 5′ if and only if the ith row
of the inverse C−1 of the Cartan matrix is integer, see Section 4b.) By Example 2.5, a′

belongs to the image of αG′/C′ . A diagram chase shows that a belongs to the image of
αG′/C . The map αG′/C is the composition of H 1(F,G′/C)→ H 1(F,G) and αG, hence
a belongs to the image of αG. ut

Lemma 2.7. Let G1 → G2 be a central isogeny of split semisimple groups with ker-
nel C1. Then the sequence

H 1(F,G1)→ H 1(F,G2)→ Hom(Ĉ1(F ),Br(F )),

where the second map is the composition of αG2 and the restriction map on C1, is exact.

Proof. The group C1 is diagonalizable asG1 is split. Let T be a split torus containing C1
as a subgroup. The push-out diagram

1 // C1 //

χ

��

G1 //

��

G2 // 1

1 // T // G3 // G2 // 1

yields a commutative diagram

H 1(F,G1) //

��

H 1(F,G2) // Hom(Ĉ1(F ),Br(F ))

χ∗

��
H 1(F,G3) // H 1(F,G2) // Hom(T̂ (F ),Br(F ))

The bottom row is exact as Hom(T̂ (F ),Br(F )) = H 2(F, T ). The left vertical arrow is
surjective since H 1(F,Coker(χ)) = 1 by Hilbert’s Theorem 90. The result follows by
diagram chase. ut



662 A. Merkurjev

2d. The morphism βf . Let G be a semisimple group, C the kernel of the universal
cover G̃ → G and f : X → SpecF a G-torsor. Write Zf (1) for the cone of the nat-
ural morphism ZF (1) → Rf∗ZX(1) of complexes of étale sheaves over SpecF , where
Z(1) = Gm[−1]. The composition (see [18, §4])

βf : Ĉ ' τ≤2Zf (1)[2] → Zf (1)[2] → ZF (1)[3]

yields a homomorphism

β∗f : Ĉ(F )→ H 3(F,ZF (1)) = Br(F ).

In the following proposition we relate the maps β∗f and αG.

Proposition 2.8. For a G-torsor f : X→ SpecF , we have β∗f = αG(X).

Proof. By [18, Example 6.12], the map β∗f coincides with the connecting homomorphism
for the exact sequence

1→ F×sep → Fsep(X)
×
→ Div(Xsep)→ Ĉsep → 0, (2.1)

where Div is the divisor group (recall that Ĉsep = Pic(Xsep)).
Consider first the case where G = PGLn and X = Isom(B,Mn) is the variety of

isomorphisms between a central simple algebra B of degree n and the matrix algebra Mn

over F . We have C = µn and Ĉ = Z/nZ. The exact sequence (2.1) for the Severi–Brauer
variety S of B in place ofX gives the connecting homomorphism Z→ Br(F ) that takes 1
to the class [B] by [12, Theorem 5.4.10]. A natural map between the two exact sequences
induced by the natural morphism X→ S and Example 2.2 yields

β∗f (1̄) = [B] = αPGLn(X)(1̄). (2.2)

Suppose now thatG = PGL1(A) for a central simple algebraA of degree n. Consider
the PGLn-torsor Y = Isom(A,Mn). Then G is the twist of PGLn by Y . The G-torsor
Z = Isom(B,A) is the twist of X by Y . It follows from [15, Proposition 28.12] that

αG(Z)(1̄) = αPGLn(X)(1̄)− αPGLn(Y )(1̄) = [B] − [A]. (2.3)

The group homomorphism PGL1(B)×PGL1(A
op)→ PGL1(B ⊗A

op) takes the torsor
Z × Isom(Aop, Aop) to V := Isom(B ⊗ Aop, A ⊗ Aop). Let g and h be the structure
morphisms for Z and V , respectively. It follows from (2.2) applied to β∗h and (2.3) that

β∗g (1̄) = β
∗

h(1̄) = [B] − [A] = αG(Z)(1̄). (2.4)

Now consider the general case. By [25, Théorème 3.3], for every χ ∈ Ĉ(F ), there is
a central simple algebra A (of degree n) over F and a commutative diagram

1 // C //

χ

��

G̃ //

��

G //

��

1

1 // µn // SL1(A) // PGL1(A) // 1
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A G-torsor f : X → SpecF yields a PGL1(A)-torsor, say k : W → SpecF . By (2.4),
we have

β∗f (χ) = β
∗

k (1̄) = αPGL1(A)(W)(1̄) = αG(X)(χ). ut

3. The group Inv3(G,Q/Z(2))

In this section we determine the group Inv3(G,Q/Z(2)) of degree 3 cohomological in-
variants of a semisimple group G.

Recall first the degree two cohomological invariants ofGwith coefficients in Q/Z(1),
or equivalently, the invariants with values in the Brauer group. Every character χ ∈ Ĉ(F )
yields an invariant Iχ of G of degree 2 with coefficients in Q/Z(1) defined by

Iχ (X) = αG(X)(χK) ∈ Br(K).

By [1, Theorem 2.4], the assignment χ 7→ Iχ yields an isomorphism

Ĉ(F )
∼
−→ Inv2(G,Q/Z(1))norm.

3a. Representation ring. (See [25].) Write R(G) for the representation ring of G, i.e.,
R(G) is the Grothendieck group of the category of finite-dimensional representations
ofG. As an abelian group, R(G) is free with basis the isomorphism classes of irreducible
representations.

Consider the weight lattice 3 of G (the character group of a maximal split torus
over Fsep) as a 0F -lattice with respect to the ∗-action (see [24]). Let 0′ be the (finite)
factor group of 0F acting faithfully on3. Write1 for the semidirect product of the Weyl
group W of G and 0′ with respect to the natural action of 0′ on W . The group 1 acts
naturally on 3.

Assigning the character to a representation of G, we get an injective homomorphism

ch : R(G)→ Z[3]1.

For any λ ∈ 3 write Aλ for the corresponding Tits algebra (over the field of definition
of λ) and 1(λ) for the sum

∑
eλ
′

in Z[3]1, where λ′ runs over the 1-orbit of λ (we
employ the exponential notation for Z[3]). By [9, Part II, Theorem 10.11], the image
of R(G) in Z[3]1 is generated by ind(Aλ) ·1(λ) over all λ ∈ 3.

In particular, ifG is quasi-split, all Tits algebras are trivial and hence ch is an isomor-
phism.

Example 3.1. Consider the variety X of maximal tori in G and the closed subscheme
T ⊂ G×X of all pairs (g, T )with g ∈ T . The generic fiber of the projection T → X is a
maximal torus inGF(X ), called the generic maximal torus Tgen ofG. By [27, Theorem 1],
ifG is split, the decomposition group of Tgen coincides with the Weyl groupW . It follows
that if G is quasi-split, then 1 is the decomposition group of Tgen. Moreover, ch is an
isomorphism, hence the restriction homomorphism R(G) → R(Tgen) = Z[3]1 is an
isomorphism for a quasi-split G.
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3b. Root systems and invariant quadratic forms. Let {α1, . . . αn} be a set of simple
roots of an irreducible root system in a vector space V , {w1, . . . , wn} the corresponding
fundamental weights generating the weight lattice 3w, and W the Weyl group.

Consider the n-columns α :=
∑
αiei and w :=

∑
wiei , where {ei} is the standard

basis in Zn. Then α = Cw, where C = (cij ) is the Cartan matrix (see [2, Chapitre VI]).
There is a (unique)W -invariant bilinear form on the dual space V ∗ such that the length of
a short co-root is equal to 1. LetD := diag(d1, . . . , dn) be the diagonal matrix with di the
length of the ith co-root. Then DC is a symmetric even integer matrix (i.e., the diagonal
terms are even).

Note that if A is a symmetric n × n matrix over Q, then 1
2w

tAw is contained in
Sym2(3w) if and only if the matrix A is even integer.

Consider the integer quadratic form

q := 1
2w

tDCw ∈ Sym2(3w)

on 3∗r , where 3r is the root lattice. Recall that the Weyl group W acts naturally on 3w.

Lemma 3.2. The quadratic form q is W -invariant.

Proof. Let si be the reflection with respect to αi . It suffices to prove that si(q) = q. We
have si(w) = w − αiei . Hence

si(q) =
1
2 (w − αiei)

tDC(w − αiei) = q − αie
t
iD
(
Cw − 1

2αiCei
)

= q − αidi
(
etiα −

1
2αie

t
iCei

)
= q − αidi

(
αi −

1
2αicii

)
= q

as cii = 2. ut

If α∗i is a short co-root, then q(α∗i ) = di = 1 since 〈wj , α∗i 〉 = δji . It follows that q is a
(canonical) generator of the cyclic group Sym2(3w)

W .

Example 3.3. For the root system of type An−1, n ≥ 2, we have 3w = Zn/Ze, where
e = e1 + · · · + en. The root lattice 3r is generated by the simple roots ē1 − ē2, ē2 − ē3,

. . . , ēn−1 − ēn. The Weyl group W is the symmetric group Sn acting naturally on 3w.
The generator of Sym2(3w)

W is the form

q = −
∑
i<j

x̄i x̄j =
1
2

n∑
i=1

x̄2
i .

The group Sym2(3r)
W
= Sym2(3r) ∩ Sym2(3w)

W is also cyclic with the canonical
generator a positive multiple of q.

Proposition 3.4. Let m be the smallest positive integer such that the matrix mDC−1 is
even integer. Then mq is a generator of Sym2(3r)

W .

Proof. Rewrite q in the form q = 1
2 (C
−1α)tDC(C−1α) = 1

2α
tDC−1α. The multiple

mq is contained in Sym2(3r) if and only if the matrix mDC−1 is even integer. ut
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3c. The groups Dec(G) ⊂ Q(G). Let A be a lattice. Consider the abstract total Chern
class homomorphism

c• : Z[A] → Sym•(A)[[t]]×

defined by c•(ea) = 1+ at . We define the abstract Chern class maps

ci : Z[A] → Symi(A), i ≥ 0,

by c•(x) =
∑
i≥0 ci(x)t

i . Clearly, c0(x) = 1,

c1

(∑
i

eai
)
=

∑
i

ai, c2

(∑
i

eai
)
=

∑
i<j

aiaj ,

c1 is a homomorphism and

c2(x + y) = c2(x)+ c1(x)c1(y)+ c2(y)

for all x, y ∈ Z[A].
If a group W acts on A, then all the ci are W -equivariant.
Suppose that AW = 0. Then c1 is zero on Z[A]W and c2 yields a group homomor-

phism
c2 : Z[A]W → Sym2(A)W . (3.1)

We write Dec(A) for the image of this homomorphism. The group Dec(A) is generated
by the decomposable elements

∑
i<j aiaj , where {a1, . . . , an} is a W -invariant subset

of A. We also have
c2(xy) = rank(x)c2(y)+ rank(y)c2(x) (3.2)

for all x, y ∈ Z[A]W , where rank : Z[A] → Z is the map ea 7→ 1. If S ⊂ A is a finite
W -invariant subset, then since

∑
x∈S x ∈ A

W
= 0, we have

c2

(∑
a∈S

ea
)
= −

1
2

∑
a∈S

a2. (3.3)

Let G be a semisimple group over F . Recall that the weight lattice 3 is a 1-module
(see Section 3a). Note that3W = 0, so we have the homomorphism (3.1) of 0F -modules
with A = 3.

Set
Q(G) := Sym2(3)1 = (Sym2(3)W )0F

and write Dec(G) for the image of the composition

τ : R(G)
ch
−→ Z[3]1 c2

−→ Sym2(3)1 = Q(G). (3.4)

Example 3.5. The map τ : R(SLn)→ Q(SLn) takes the class of the tautological repre-
sentation to the quadratic form

∑
i<j x̄i x̄j which is the negative of the canonical generator

of Q(SLn) (see Example 3.3).
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It follows from Example 3.5 that if G is a quasi-simple group, then for a representation ρ
ofG, we have τ(ρ) = −N(ρ)q, whereN(ρ) is the Dynkin index of ρ (see [7]). Hence the
image of Dec(G) under τ is equal to nGZq, where nG is the gcd of the Dynkin indexes
of all the representations of G. The numbers nG for split adjoint groups G of types Bn,
Cn and E7 were computed in [7] (see also Section 4b).

A loop in G is a group homomorphism Gm → Gsep over Fsep (see [15, §31]). By [9,
Part II, §7]), the group Q(G) has an intrinsic description as the group of all 0F -invariant
quadratic integral-valued functions on the set of all loops inG. It follows that a homomor-
phism G → G′ of semisimple groups yields a group homomorphism Q(G′) → Q(G).
The functoriality of the Chern class shows that this homomorphism takes Dec(G′) into
Dec(G).

3d. The key diagram. Let V be a generically free representation ofG such that there is
an open G-invariant subscheme U ⊂ V and a G-torsor U → U/G such that U(F) 6= ∅
(see Section 2a). We assume in addition that V \ U is of codimension at least 3.

By [14, Th. 1.1], there is an exact sequence

0→ CH2(Un/G)→ H
4
(Un/G,Z(2))→ H

0
Zar(U

n/G,H3(Q/Z(2)))→ 0

for every n. We can view it as an exact sequence of cosimplicial groups. The group
CH2(Un/G) is independent of n, so it represents a constant cosimplicial group
CH2(BG). Therefore, we have an exact sequence

0→ CH2(BG)→ H
4
(U/G,Z(2))bal → H

0
Zar(U/G,H3(Q/Z(2)))bal → 0.

The right group in the sequence is canonically isomorphic to Inv3(G,Q/Z(2))norm by
Proposition 2.1, and hence is independent of V . Therefore, the middle term is also inde-
pendent of V and we writeH

4
(BG,Z(2)) forH

4
(U/G,Z(2))bal. Therefore, we have the

exact row in the following diagram with the exact column given by [18, Theorem 5.3]:

0

��
H 1(F, Ĉ(1))

��
σ

((
0 // CH2(BG) //

γ
''

H
4
(BG,Z(2)) //

��

Inv3(G,Q/Z(2))norm // 0

Q(G)

θ∗G
��

H 2(F, Ĉ(1))
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where Ĉ(1) is the derived tensor product Ĉ
L
⊗ ZY (1) in the derived category of étale

sheaves on F . Explicitly (see [18, Section 4c]),

Ĉ(1) = TorZ1 (Ĉsep, F
×
sep)⊕ (Ĉsep ⊗ F

×
sep)[−1].

Example 3.6. The group SLn is special simply connected, hence we have Ĉ = 0 and
Inv3(SLn,Q/Z(2))norm = 0. This yields isomorphisms of infinite cyclic groups

γ : CH2(B SLn)
∼
−→ H

4
(B SLn,Z(2))

∼
−→ Q(SLn).

The group CH2(B SLn) is generated by c2 of the tautological representation by [20, §2].

3e. The map σ . The map σ is defined as follows (see [18, §5]). Let f : X → SpecK
be a G-torsor over a field extension K/F , so we have a morphism βf : Ĉ → ZK(1)[3]
as in Section 2d, and therefore the composition

Ĉ(1) = Ĉ
L
⊗ ZF (1)

βf
L
⊗Id
−−−→ (ZK(1)

L
⊗ ZF (1))[3] → ZK(2)[3],

which induces a homomorphism H 1(F, Ĉ(1)) → H 4(K,Z(2)) = H 3(K,Q/Z(2)).
Then the value of the invariant σ(α) for an element α ∈ H 1(F, Ĉ(1)) is equal to the
image of α under this homomorphism.

Let χ ∈ Ĉ(F ) and a ∈ F×. By [18, Remark 5.2], we have χ ∪ (a) ∈ H 1(F, Ĉ(1)),
and therefore σ(χ∪(a)) is the invariant taking aG-torsorX overK to αG(X)(χK)∪(a) ∈
H 3(K,Q/Z(2)). Here the cup-product is taken with respect to the pairing

Br(K)⊗K× = H 2(K,Q/Z(1))⊗H 1(K,Z(1))→ H 3(K,Q/Z(2)).

3f. The map γ . We will determine the map γ in the key diagram.

Lemma 3.7. The maps γ and H
4
(BG,Z(2))→ Q(G) are functorial in G.

Proof. In [18] the map γ is given by the composition

CH2(BG)→ H 4(BG,Z(2)) ∼−→ H 3(BG,Zf (2))
∼
−→

H 3(BG, τ≤3Zf (2))→ H 1
Zar(BG,K2)

0F → D(G),

where Zf (2) is the cone of ZBG(2) → Rf∗ZEG(2) for the versal G-torsor f : EG →
BG and the group D(G) containing Q(G) is defined in [18]. The first four homomor-
phisms are functorial inG, and the last one is functorial as was shown in [9, p. 116] in the
case G is simply connected; the proof goes through for an arbitrary semisimple G. ut

Lemma 3.8. The composition of the second Chern class map

R(G)→ K0(BG)
c2
−→ CH2(BG)

with the diagonal morphism γ in the diagram coincides with the map τ in (3.4) up to
sign. The image of γ coincides with Dec(G).
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Proof. As Q(G) injects when the base field gets extended, for the proof of the first state-
ment we may assume that F is separably closed. Let ρ : G → SLn be a representation.
Write x1, . . . , xn for the characters of ρ in the weight lattice 3. Consider the diagram

R(SLn)

c2 &&

τ //

��

Q(SLn)

��

CH2(B SLn)

��

γ

88

R(G)

c2 &&

τ // Q(G)

CH2(BG)

γ

88

with the vertical homomorphisms induced by ρ. The vertical faces of the diagram are
commutative by Lemma 3.7 and the functoriality of c2 and the character map ch. By
Example 3.5, the top map τ takes the class of the tautological representation ι of SLn to
a generator of Q(SLn). By Example 3.6, γ in the top of the diagram is an isomorphism
taking the canonical generator of CH2(B SLn) to a generator of Q(SLn). It follows that
τ(ι) and γ (c2(ι)) in the top face of the diagram are equal up to sign. The class of ρ
in R(G) is the image of τ under the left vertical homomorphism. It follows that τ(ρ) and
γ (c2(ρ)) in the bottom face of the diagram are also equal up to sign.

The second statement follows from the first and the surjectivity of the second Chern
class map R(G)→ CH2(BG) (see [6, Appendix C] and [26, Corollary 3.2]). ut

3g. Main theorem. The following theorem describes the group of degree 3 cohomolog-
ical invariants with coefficients in Q/Z(2) of an arbitrary semisimple group.

Theorem 3.9. Let G be a semisimple group over a field F . Then there is an exact se-
quence

0→ CH2(BG)tors → H 1(F, Ĉ(1))

σ
−→ Inv3(G,Q/Z(2))norm → Q(G)/Dec(G)

θ∗G
−→ H 2(F, Ĉ(1)).

Proof. Follows from the key diagram above and Lemma 3.8 as Q(G) is torsion-free and
H 1(F, Ĉ(1)) is torsion. ut

Remark 3.10. The map θ∗G is trivial if G is split or adjoint of inner type (see [18, Propo-
sition 4.1 and Remark 5.5]).

The exact sequence in Theorem 3.9 is functorial inG. More precisely, letG→ G′ be
a homomorphism of semisimple groups extending to a homomorphism C → C′ of the
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kernels of the universal covers. By Lemma 3.7, the diagram

H 1(F, Ĉ′(1)) σ ′ //

��

Inv3(G′,Q/Z(2))norm //

��

Q(G′)/Dec(G′)

��
H 1(F, Ĉ(1)) σ // Inv3(G,Q/Z(2))norm // Q(G)/Dec(G)

is commutative.
Write Inv3(G,Q/Z(2))dec for the image of σ . We call these invariants decomposable.

Thus, we have an exact sequence

0→ CH2(BG)tors → H 1(F, Ĉ(1))
σ
−→ Inv3(G,Q/Z(2))dec → 0.

We do not know if the group CH2(BG)tors is trivial, but it is always finite:

Proposition 3.11. The group CH2(BG) is finitely generated. In particular, CH2(BG)tors
is finite.

Proof. By [25, Théorème 3.3] and Section 3a, we have

Z[3r ]1 ⊂ R(G) ⊂ Z[3w].

The Noetherian ring Z[3r ] is finite over Z[3r ]1, hence Z[3r ]1 is Noetherian. The
Z[3r ]1-algebra Z[3w] is finite, hence so is R(G). It follows that the ring R(G) is
Noetherian. Let I be the kernel of the rank map R(G) → Z. Since I is finitely gen-
erated, the factor group R(G)/I 2 is finitely generated. By (3.2), the second Chern class
factors through a surjective homomorphism R(G)/I 2

→ CH2(BG), whence the result.
ut

We will show in Section 4a that the group CH2(BG)tors is trivial if G is adjoint of inner
type.

The factor group

Inv3(G,Q/Z(2))ind := Inv3(G,Q/Z(2))/Inv3(G,Q/Z(2))dec

is called the group of indecomposable invariants. Thus, we have an exact sequence

0→ Inv3(G,Q/Z(2))ind → Q(G)/Dec(G)
θ∗G
−→ H 2(F, Ĉ(1)).

If G is simply connected quasi-simple, all decomposable invariants are trivial, and
the group Inv3(G,Q/Z(2)) = Inv3(G,Q/Z(2))ind ' Q(G)/Dec(G) is cyclic generated
by the Rost invariant RG. The order of the Rost number nG of RG is determined in [9,
Part II].

4. Groups of inner type

Let G be a semisimple group over F . A group G′ is called an inner form of G if there is
aG-torsor X over F such thatG′ is the twist ofG by X, or equivalently, G′ ' AutG(X).



670 A. Merkurjev

The choice of the torsor X yields a canonical bijection ϕ : H 1(K,G′)
∼
−→ H 1(K,G) for

every field extensionK/F (see [15, Proposition 8.8]). Therefore, we have an isomorphism
Invn(G,Q/Z(j)) ∼−→ Invn(G′,Q/Z(j)). Note that this isomorphism does not preserve
normalized invariants as ϕ does not preserve trivial torsors. Precisely, ϕ takes the class of
a trivial torsor to the class of X. We modify the isomorphism to get an isomorphism

Invn(G,Q/Z(j))norm
∼
−→ Invn(G′,Q/Z(j))norm, (4.1)

taking an invariant I of G to an invariant I ′ of G′ satisfying

I ′(X′) = I (ϕ(X′))− I (X).

4a. Decomposable invariants. Let G be a semisimple group of inner type. Then Ĉ is a
diagonalizable finite group.

Lemma 4.1. There is a natural isomorphism H 1(F, Ĉ(1)) ' Ĉ ⊗ F×.

Proof. Write Ĉ ' R/S, where R and S are lattices. In the exact sequence

H 1(F, S(1))→ H 1(F,R(1))→ H 1(F, Ĉ(1))→ H 2(F, S(1))

the first two terms are S ⊗ F× and R ⊗ F×, respectively, and the last term is equal to
S ⊗H 2(F,Z(1)) = 0 by Hilbert’s Theorem 90. The result follows. ut

Recall that under the isomorphism in Lemma 4.1, the map σ in Theorem 3.9 is defined as
follows. For every χ ∈ Ĉ and a ∈ F×, the invariant σ(χ ∪ (a)) takes a G-torsor X over
a field extension K/F to αG(X)(χK) ∪ (a) ∈ H 3(K,Q/Z(2)) (see Section 3e).

Theorem 4.2. LetG be a semisimple adjoint group of inner type over a field F . Then the
homomorphism

σ : Ĉ ⊗ F×→ Inv3(G,Q/Z(2))dec

is an isomorphism. Equivalently, the group CH2(BG) is torsion-free.

Proof. As G is an inner form of a split group, by (4.1) we may assume that G is split.
The group Ĉ is a direct sum of cyclic subgroups generated by χ1, . . . , χm, respectively.
Let a1, . . . , am ∈ F

× be such that the element u :=
∑
χi⊗ai belongs to the kernel of σ .

It suffices to show that ai ∈ (F×)si , where si := ord(χi) for all i.
Fix an integer i. For a field extension K/F and any ρ ∈ H 1(K,Q/Z) of order si ,

consider the admissible map f : Ĉ → Br(K(t)) for the field K(t) of rational functions
over K , defined by

f (χj ) =

{
ρ ∪ (t) in Br(K(t)) if j = i,
0 otherwise.

By Proposition 2.6, there is a G-torsor X over K(t) satisfying αG(X)(χj ) = f (χj ) for
all j . As u ∈ Ker(σ ), we have

0 = σ(u)(X) =
∑
j

αG(X)(χj ) ∪ (aj ) = ρ ∪ (t) ∪ (ai)
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in H 3(K(t),Q/Z(2)). Taking the residue at t (see [9, Part II, Appendix A]),

H 3
nr(K(t),Q/Z(2))→ H 2(K,Q/Z(1)) = Br(K),

we get ρ ∪ (ai) = 0 in Br(K). By Lemma 4.3 below, we have a ∈ (F×)si . ut

Lemma 4.3. Let a ∈ F× and s > 0 be such that for every field extensionK/F and every
ρ ∈ H 1(K,Q/Z) of order s one has ρ ∪ (a) = 0 in H 2(K,Q/Z(1)) = Br(K). Then
a ∈ F×s .

Proof. Let H = Z/sZ. Choose an H -torsor X → Y with Y smooth, Pic(X) = 0 and
F [X]× = F×. (For example, take an approximation of EH → BH .) By [3] or [17],
there is an exact sequence

Pic(X)H → H 2(H, F [X]×)→ Br(Y ),

which yields an injective map F×/F×s → Br(F (Y )) as H 2(H, F [X]×) = H 2(H, F×)

= F×/F×s and Br(Y ) injects into Br(F (Y )) by [19, Corollary 2.6]. This map takes a to
ρ ∪ (a), where ρ ∈ H 1(F (Y ),Q/Z) corresponds to the cyclic extension F(X)/F (Y ). As
ρ ∪ (a) = 0 by assumption, we have a ∈ F×s . ut

4b. Indecomposable invariants. In this section we compute the groups of indecompos-
able invariants of adjoint groups of inner type.

Type An−1

In the split case we have G = PGLn, the projective general linear group, n ≥ 2,
3w = Zn/Ze, where e = e1 + · · · + en. The root lattice is generated by the simple roots
ē1 − ē2, ē2 − ē3, . . . , ēn−1 − ēn, Ĉ = 3w/3r ' Z/nZ. The generator of Sym2(3w)

W is
the form

q = −
∑
i<j

x̄i x̄j =
1
2

∑
x̄2
i .

The matrix D (see Section 3b) is the identity matrix In. The inverses of Cartan matrices
here and below are taken from [4, Appendix F]:

C−1
=

1
n



n− 1 n− 2 n− 3
... 2 1

n− 2 2(n− 2) 2(n− 3)
... 4 2

n− 3 2(n− 3) 3(n− 3)
... 6 3

· · · · · · · · · · · · · · ·

2 4 6
... 2(n− 2) n− 2

1 2 3
... n− 2 n− 1


.
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By Proposition 3.4,

Q(G) = Sym2(3r)
W
=

{
2nZq if n is even,
nZq if n is odd.

If a :=
∑n
i,j=1 e

x̄i−x̄j ∈ Z[3r ]W , by (3.3) we have

c2(a) =
1
2

∑
(x̄i − x̄j )

2
= n

∑
x̄2
i = 2nq ∈ Dec(G).

It follows that Dec(G) = Q(G) if n is even.
Suppose that n is odd. If b =

∑n
i=1 e

nx̄i ∈ Z[3r ]W , we have by (3.3),

c2(b) =
1
2

∑
(nx̄i)

2
= n2q ∈ Dec(G).

As n is odd, gcd(2n, n2) = n, hence nq ∈ Dec(G) and again Dec(G) = Q(G).
Thus, Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) = 0.
A G-torsor is given by a central simple algebra A of degree n (here and below

see [15]). The twist ofG by A is the group PGL1(A). The Tits classes of algebras for this
group are the multiples of [A] in Br(F ). In view of Proposition 2.3 and (4.1), we have

Theorem 4.4. Let G = PGL1(A) for a central simple algebra A over F . Then

Inv3(G,Q/Z(2))norm ' F
×/F×n.

An element x ∈ F× corresponds to the invariant taking a central simple algebra A′ of
degree n to the cup-product ([A′] − [A]) ∪ (x).

Type Bn

In the split case we haveG = O+2n+1, the special orthogonal group, n ≥ 2,3w = Zn+Ze,
where e = 1

2 (e1 + · · · + en), 3r = Zn and Ĉ ' Z/2Z. The generator of Sym2(3w)
W is

the form q = 1
2
∑
i x

2
i , and we have D = diag(1, . . . 1, 2) and

C−1
=



1 1 1
... 1 1 1

1 2 2
... 2 2 2

1 2 3
... 3 3 3

· · · · · · · · · · · · · · · · · ·

1 2 3
... n− 2 n− 2 n− 2

1 2 3
... n− 2 n− 1 n− 1

1/2 1 3/2
... (n− 2)/2 (n− 1)/2 n/2


.

By Proposition 3.4, Q(G) = Sym2(3r)
W
= 2Zq.
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If a :=
∑n
i=1(e

xi + e−xi ) ∈ Z[3r ]W , we have

c2(a) =
1
2

∑
(x2
i + (−xi)

2) = 2q ∈ Dec(G).

It follows that Dec(G) = Q(G), so Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) = 0.
A G-torsor is given by the similarity class of a nondegenerate quadratic form p of

dimension 2n + 1. The twist of G by p is the special orthogonal group O+(p) of the
form p. The only nontrivial Tits class of algebras for this group is the class of the even
Clifford algebra C0(p) of p. In view of Proposition 2.3 and (4.1), we have

Theorem 4.5. Let G = O+(p) for a nondegenerate quadratic form p of dimension
2n+ 1. Then

Inv3(G,Q/Z(2))norm ' F
×/F×2.

An element x ∈ F× corresponds to the invariant taking the similarity class of a nondegen-
erate quadratic form p′ of dimension 2n+1 to the cup-product ([C0(p

′)]−[C0(p)])∪(x).

Type Cn

In the split case we haveG = PGSp2n, the projective symplectic group, n ≥ 3,3w = Zn,
3r consists of all

∑
aiei with

∑
ai even, Ĉ ' Z/2Z. The generator of Sym2(3w)

W is
q =

∑
i x

2
i , and we have D = diag(2, . . . , 2, 1) and

C−1
=



1 1 1
... 1 1 1/2

1 2 2
... 2 2 1

1 2 3
... 3 3 3/2

· · · · · · · · · · · · · · · · · ·

1 2 3
... n− 2 n− 2 (n− 2)/2

1 2 3
... n− 2 n− 1 (n− 1)/2

1 2 3
... n− 2 n− 1 n/2


.

By Proposition 3.4,

Q(G) = Sym2(3r)
W
=

Zq if n ≡ 0 mod 4,
2Zq if n ≡ 2 mod 4,
4Zq if n is odd.

If a :=
∑
i(e

2xi + e−2xi ) ∈ Z[3r ]W , we have

c2(a) =
∑

(2xi)2 = 4q ∈ Dec(G).

It follows that Dec(G) = Q(G) if n is odd.
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Suppose that n is even. If b :=
∑
i 6=j (e

xi+xj + exi−xj ) ∈ Z[3r ]W , we have

c2(b) =
1
2

∑
i 6=j

[(xi − xj )
2
+ (xi + xj )

2
] = 2(n− 1)q ∈ Dec(G).

As n is even, gcd(4, 2(n − 1)) = 2, so we have 2q ∈ Dec(G). On the other hand, by [9,
Part II, Lemma 14.2], Dec(G) ⊂ 2qZ, therefore, Dec(G) = 2qZ.

It follows that

Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) =
{
(Z/2Z)q if n ≡ 0 mod 4,
0 otherwise.

AG-torsor is given by a pair (A, σ ), where A is a central simple algebra of degree 2n
and σ is a symplectic involution on A. The twist of G by (A, σ ) is the projective sym-
plectic group PGSp(A, σ ). The only nontrivial Tits class of algebras for this group is the
class of the algebra A. In view of Proposition 2.3 and (4.1), we have

Theorem 4.6. Let G = PGSp(A, σ ) for a central simple algebra A of degree 2n with
symplectic involution σ . Then

Inv3(G,Q/Z(2))dec ' F
×/F×2.

An element x ∈ F× corresponds to the invariant taking a pair (A′, σ ′) to the cup-product
([A′] − [A]) ∪ (x).

If n is not divisible by 4, we have Inv3(G,Q/Z(2))norm = Inv3(G,Q/Z(2))dec. If n is
divisible by 4, the group Inv3(G,Q/Z(2))ind is cyclic of order 2.

In the case where n is divisible by 4 and char(F ) 6= 2 an invariant I of order 2 generating
Inv3(G,Q/Z(2))ind was constructed in [11, §4]. Thus, in this case we have

Inv3(G,Q/Z(2))norm = Inv3(G,Q/Z(2))dec ⊕ (Z/2Z)I ' F×/F×2
⊕ (Z/2Z).

Type Dn

In the split case we have G = PGO+2n, the projective orthogonal group, n ≥ 4, 3w =
Zn + Ze, where e = 1

2 (e1 + · · · + en), 3r consists of all
∑
aiei with

∑
ai even, C̃

is isomorphic to Z/2Z ⊕ Z/2Z if n is even and to Z/4Z if n is odd. The generator of
Sym2(3w)

W is the form q = 1
2
∑
i x

2
i , and

D = In, C−1
=



1 1 1
... 1 1/2 1/2

1 2 2
... 2 1 1

1 2 3
... 3 3/2 3/2

· · · · · · · · · · · · · · · · · ·

1 2 3
... n− 2 (n− 2)/2 (n− 2)/2

1/2 1 3/2
... (n− 2)/2 n/4 (n− 2)/4

1/2 1 3/2
... (n− 2)/2 (n− 2)/4 n/4


.
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By Proposition 3.4,

Q(G) = Sym2(3r)
W
=

 2Zq if n ≡ 0 mod 4,
4Zq if n ≡ 2 mod 4,
8Zq if n is odd.

If a :=
∑
i(e

2xi + e−2xi ) ∈ Z[3r ]W , we have

c2(a) =
∑

(2xi)2 = 8q ∈ Dec(G).

It follows that Dec(G) = Q(G) if n is odd.
Suppose that n is even. If b :=

∑
i 6=j (e

xi+xj + exi−xj ) ∈ Z[3r ]W , we have

c2(b) =
1
2

∑
i 6=j

[
(xi − xj )

2
+ (xi + xj )

2]
= 4(n− 1)q ∈ Dec(G).

As n is even, gcd(8, 4(n − 1)) = 4, so we have 4q ∈ Dec(G). On the other hand, by [9,
Part II, Lemma 15.2], Dec(G) ⊂ 4Zq, therefore Dec(G) = 4Zq.

It follows that

Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) =
{
(2Z/4Z)q if n ≡ 0 mod 4,
0 otherwise.

AG-torsor is given by a quadruple (A, σ, f, e), whereA is a central simple algebra of
degree 2n, (σ, f ) is a quadratic pair onA of trivial discriminant and e an idempotent in the
center of the Clifford algebra C(A, σ, f ). The twist of G by (A, σ, f, e) is the projective
orthogonal group PGO+(A, σ, f ). The nontrivial Tits classes of algebras for this group
are the class of the algebra A and the classes of the two components C±(A, σ, f ) of the
Clifford algebra. In view of Proposition 2.3 and (4.1), we have

Theorem 4.7. Let G = PGO+(A, σ, f ) for a central simple algebra A of degree 2n
with quadratic pair (σ, f ) of trivial discriminant. Then

Inv3(G,Q/Z(2))dec '

{
(F×/F×2)⊕ (F×/F×2) if n is even,
F×/F×4 if n is odd.

If n is even and x+, x− ∈ F×, then the corresponding invariant takes a quadruple
(A′, σ ′, f ′, e′) to(
[C+(A′, σ ′, f ′)]−[C+(A, σ, f )]

)
∪(x+)+

(
[C−(A′, σ ′, f ′)]−[C−(A, σ, f )]

)
∪(x−).

If n is even and x∈F×, then the corresponding invariant takes a quadruple (A′, σ ′, f ′, e′)
to ([C+(A′, σ ′, f ′)] − [C+(A, σ, f )]) ∪ (x).

If n is not divisible by 4, we have Inv3(G,Q/Z(2))norm = Inv3(G,Q/Z(2))dec. If n is
divisible by 4, the group Inv3(G,Q/Z(2))ind is cyclic of order 2.
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In the case where n is divisible by 4 and char(F ) 6= 2 we sketch below a construction of
a nontrivial indecomposable invariant I of order 2 for a split adjoint group G = PGO+2n.
A G-torsor X over F is given by a triple (A, σ, e), where A is a central simple algebra
over F with an orthogonal involution σ of trivial discriminant and e is a nontrivial idem-
potent of the center of the Clifford algebra of (A, σ ) (see [15, §29F]). We need to deter-
mine the value of I (X) in H 3(F,Q/Z(2)).

We have G = Aut(A, σ, e) = PGO+(A, σ ). The exact sequence

1→ µ2 → O+(A, σ )→ PGO+(A, σ )→ 1,

where O+(A, σ ) is the special orthogonal group, yields an exact sequence

H 1(F,O+(A, σ ))
ϕ
−→ H 1(F,PGO+(A, σ )) δ

−→ Br(F ).

The reduction method used in [11] for the construction of an indecomposable degree 3
invariant for a symplectic involution works as well in the orthogonal case. It reduces
the general situation to the case ind(A) ≤ 4. In this case the algebra A is isomorphic
to M2(B) for a central simple algebra B as 2n is divisible by 8, and hence it admits a
hyperbolic involution σ ′. By [15, Proposition 8.31], one of the two components of the
Clifford algebra C(A, σ ′) is split. Let e′ be the corresponding idempotent in the center of
C(A, σ ′). (If both components split, then A is split by [15, Theorem 9.12], and we let e′

be any of the two idempotents.)
Since δ(A, σ ′, e′) is trivial, (A, σ ′, e′) = ϕ(v) for some v ∈ H 1(F,O+(A, σ )). The

set H 1(F,O+(A, σ )) is described in [15, §29.27] as the set of equivalence classes of
pairs (a, x) ∈ A × F such that a is a σ -symmetric invertible element and x2

= Nrd(a).
Thus, v = (a, x) for such a pair (a, x) and we set I (X) = [A] ∪ (x).

Type E6

We have Ĉ ' Z/3Z and

D = I6, C−1
=

1
3


4 5 6 4 2 3
5 10 12 8 4 6
6 12 18 12 6 9
4 8 12 10 5 6
2 4 6 5 4 3
3 6 9 6 3 6

 .

By Proposition 3.4, Q(G) = Sym2(3r)
W
= 3Zq.

Write δi ∈ Z[3w]W for the sum of elements in the W -orbit of ewi . We have c2(δ1) =

6q, c2(δ2) = 24q, c2(δ3) = 150q by [16, §2] and rank(δ1) = [W(E6) : W(D5)] = 27,
rank(δ3) = [W(E6) : W(A1 + A4)] = 216. Note that δ2 and δ1w3 belong to Z[3r ]W .
By (3.2),

c2(δ1δ3) = rank(δ1)c2(δ3)+ rank(δ3)c2(δ1) = 27 · 150q + 216 · 6q = 5346q.
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As gcd(24, 5346) = 6, we have 6q ∈ Dec(G). On the other hand, c2(δi) ∈ 6Zq for all i
by [16, §2], hence Dec(G) = 6Zq. Thus,

Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) = (3Z/6Z)q.

Note that the exponents of the groups Inv3(G)dec and Inv3(G)ind are relatively prime.

Theorem 4.8. Let G be an adjoint group of type E6 of inner type. Then

Inv3(G,Q/Z(2))norm ' (F
×/F×3)⊕ (Z/2Z).

It follows from the computation that the pull-back of the generator of Inv3(G)ind to
Inv3(G̃)norm is 3 times the Rost invariant RG̃. This was observed in [8, Proposition 7.2]
in the case char(F ) 6= 2.

Type E7

We have Ĉ ' Z/2Z and

D = I7, C−1
=

1
2



4 6 8 6 4 2 4
6 12 16 12 8 4 8
8 16 24 18 12 6 12
6 12 18 15 10 5 9
4 8 12 10 8 4 6
2 4 6 5 4 3 3
4 8 12 9 6 3 7


.

By Proposition 3.4, Q(G) = Sym2(3r)
W
= 4Zq.

We have c2(δ1) = 36q and c2(δ7) = 12q by [16, §2] and rank(δ7) = [W(E7) :

W(E6)] = 56. Note that δ1 and δ2
7 belong to Z[3r ]W .

By (3.2),
c2(δ

2
7) = 2 rank(δ7)c2(δ7) = 2 · 56 · 12q = 1344.

As gcd(36, 1344) = 12, we have 12q ∈ Dec(G). On the other hand, c2(δi) ∈ 12Zq
for all i by [16, §2], hence Dec(G) = 12Zq. Thus,

Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) = (4Z/12Z)q.

Theorem 4.9. Let G be an adjoint group of type E7 of inner type. Then

Inv3(G,Q/Z(2))norm ' (F
×/F×2)⊕ (Z/3Z).

It follows from the computation that the pull-back of the generator of Inv3(G)ind to
Inv3(G̃)norm is 4 times the Rost invariant RG̃. This was observed in [8, Proposition 7.2]
in the case char(F ) 6= 3.

Every inner semisimple group of the typeG2, F4 or E8 is simply connected. Then the
group Inv3(G,Q/Z(2))norm is of order 2, 6 and 60, respectively (see [9, Part II]).

Recall that the groups Inv3(G)ind are all the same for all twisted forms of G. This is
not the case for Inv3(G̃)ind = Inv3(G̃). Write G̃gen for a “generic” twisted form of G̃ (see
[8, §6]). For such groups the Rost number nG̃gen

is the largest possible. Their values can
be found in [9, Part II].
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Theorem 4.10. Let G be an adjoint semisimple group of inner type, and G̃ → G a
universal cover. Then the map

Inv3(G)ind ' Inv3(Ggen)ind → Inv3(G̃gen)ind = Inv3(G̃gen) = (Z/nG̃gen
Z)R

G̃gen

is injective. If G is simple, the group Inv3(G)ind is nonzero only in the following cases:

• Cn, n is divisible by 4: Inv3(G)ind = (Z/2Z)RG̃,
• Dn, n is divisible by 4: Inv3(G)ind = (2Z/4Z)RG̃,
• E6: Inv3(G)ind = (3Z/6Z)RG̃,
• E7: Inv3(G)ind = (4Z/12Z)R

G̃
.

5. Restriction to the generic maximal torus

LetG be a semisimple group over F and Tgen the generic maximal torus ofG defined over
F(X ), where X is the variety of maximal tori in G (see Example 3.1). We can restrict
invariants of G to invariants of Tgen via the composition

Invn(G,Q/Z(j))→ Invn(GF(X ),Q/Z(j))
Res
−−→ Invn(Tgen,Q/Z(j)).

The degree 3 invariants of algebraic tori have been studied in [1].
Suppose that G is quasi-split. Then the character group of Tgen is isomorphic to the

weight lattice 3 with the 1-action (see Example 3.1). The exact sequence 0 → 3 →

3w → Ĉ → 0, Example 3.1, Theorem 3.9 and [1, Theorem 4.3] yield a diagram

H 1(F, Ĉ(1)) //

��

Inv3(G,Q/Z(2))norm //

��

Z[3]1/Dec(3)

H 2(F (X ), T̂gen(1)) // Inv3(Tgen,Q/Z(2))norm // Z[3]1/Dec(3)

Theorem 5.1. Let G be a quasi-split group over a perfect field F , and Tgen the generic
maximal torus. Then the homomorphism

Invn(G,Q/Z(j))→ Invn(Tgen,Q/Z(j))

is injective, i.e., every invariant of G is determined by its restriction to the generic maxi-
mal torus.

Proof. Consider the morphism T → X as in Example 3.1. Let V be a generically free
representation of G such that there is an open G-invariant subscheme U ⊂ V and a G-
torsor U → U/G. The group scheme T over X acts naturally on U × X . Consider the
factor scheme (U × X )/T . In fact, we can view it as a variety as follows. Let T0 be a
quasi-split maximal torus in G. The Weyl group W of T0 acts on (U/T0) × (G/T0) by
w(T0u, gT0) = (T0wu, gw

−1T0). Then (U × X )/T can be viewed as the factor variety
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((U/T0)× (G/T0))/W . Note that the function field of (U × X )/T is isomorphic to the
function field of UF(X )/Tgen over F(X ).

We claim that the natural morphism

f : (U × X )/T → U/G

is surjective on K-points for any field extension K/F . A K-point of U/G is a G-orbit
O ⊂ U defined over K . As F is perfect, by [23, Theorem 11.1], there is a maximal torus
T ⊂ G and a T -orbit O ′ ⊂ O defined over K . Then the pair (O ′, T ) determines a point
of ((U × X )/T )(K) over O. The claim is proved.

It follows from the claim that the generic fiber of f has a rational point (overF(U/G)).
Therefore, the natural homomorphism

H n(F (U/G),Q/Z(j))→ H n
(
F(X )(UF(X )/Tgen),Q/Z(j)

)
(5.1)

is injective.
Let I ∈ Invn(G,Q/Z(j)) be an invariant with trivial restriction to Tgen. Let pgen

be the generic fiber of p : U → U/G and let qgen be the generic fiber of q :
UF(X ) → UF(X )/Tgen. Then the pull-back of pgen with respect to the field extension
F(X )(UF(X )/Tgen)/F (U/G) is isomorphic to the pull-back of qgen under the change of
group homomorphism Tgen → G. It follows that

0 = Res(I )(qgen) = I (pgen)F(X )(UF(X )/Tgen).

As (5.1) is injective, we have I (pgen) = 0 in H n(F (U/G),Q/Z(j)) and hence I = 0 by
[9, Part II, Theorem 3.3] or [1, Theorem 2.2]. ut
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