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Abstract. We introduce Oberwolfach randomness, a notion within Demuth’s framework of statisti-
cal tests with moving components; here the components’ movement has to be coherent across levels.
We show that a ML-random set computes all K-trivial sets if and only if it is not Oberwolfach ran-
dom, and indeed there is aK-trivial set which is not computable from any Oberwolfach random set.
We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems
of analysis, such as the Lebesgue density theorem and Doob’s martingale convergence theorem. We
also show that random sets which are not Oberwolfach random satisfy highness properties (such as
LR-hardness) which mean they are close to computing the halting problem.

A consequence of these results is that a ML-random set failing the effective version of
Lebesgue’s density theorem for closed sets must compute allK-trivial sets. Combined with a recent
result by Day and Miller, this gives a positive solution to the ML-covering problem of algorithmic
randomness. On the other hand these results settle stronger variants of the covering problem in the
negative: no low ML-random set computes all K-trivial sets, and not every K-trivial set is com-
putable from both halves of a random set.
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1. Introduction

1.1. K-triviality. Turing reducibility captures the intuitive concept of relative informa-
tion content. A set B of natural numbers is reducible to another set A, or is computable
from A, if A has at least as much information as B does. Using this yardstick, a set is
considered complicated if it is useful as an oracle, i.e. if it computes many sets.
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Algorithmic randomness gives another measure for complexity of sets. A set is con-
sidered complicated if it is hard to detect patterns in its characteristic function:1 if it passes
all effective statistical tests. A major programme in the field of algorithmic randomness
is to investigate the relationship between these two concepts of complexity. Can random
sets be useful as oracles? On the one hand, random sets, lacking any pattern, should be
hard to compute; but on the other, since they mostly contain “white noise”, they should
not be able to compute many sets.

The notion of compressibility is often a conduit between randomness and computabil-
ity. The (plain) Kolmogorov complexity C(σ) of a string σ is, roughly, the length of the
shortest computer programme which outputs σ . We say that a string σ is incompressible
if its complexity C(σ) is close to the length of σ , which roughly says that the only way to
describe σ is by writing it down in its entirety. At the other end of the spectrum, a string σ
of length n is very compressible if it contains no more information than the string of n
zeros; that is, if its complexity is the same as the complexity of its length, C(σ) ∼ C(n).
Chaitin [7] showed that an infinite sequence X is computable if and only if every initial
segment of X is very compressible. In this way, computability itself is characterised by
compressibility.

The most useful notion of randomness, due to Martin-Löf, is not described precisely
by plain complexity. Shifting to prefix-free Kolmogorov complexity K , which is defined
by using self-delimiting machines, allows us to apply measure-theoretic tools to the study
of complexity of finite strings. We then have analogous notions of compressibility: a
string σ isK-incompressible ifK(σ) ∼ |σ |, and veryK-compressible ifK(σ) ∼ K(|σ |).
Schnorr ([47], see [6]) showed that an infinite sequence X is ML-random if and only if
each initial segment of X is K-incompressible. Solovay, on the other hand, showed that
Chaitin’s theorem does not hold for K: there are non-computable sequences X, all of
whose initial segments are very K-compressible. He called these sequences K-trivial.
These are the sequences that are as far from being random as possible.

The K-trivial sets turned out to be central to the investigations into the interactions
between computability and randomness. One example is related to an early result of
Kučera’s [29]: every ML-random set which is 10

2-definable (equivalently, is computable
from the halting problem ∅′) is Turing above a non-computable, computably enumerable
set. This is surprising: in general, computably enumerable (c.e.) sets are very far from
random and one would expect there is no interaction between these sets and random sets.
Kučera’s result, though, gives an example of precisely such an interaction. Hirschfeldt,
Nies and Stephan [25] showed that the c.e. sets given by Kučera’s argument, in the case
where the random set is incomplete, must be K-trivial.

A hint that K-triviality is related to computable enumerability was first given by
Chaitin [8], who showed that all K-trivial sets are 10

2. Nies [40] extended this result
significantly by showing that every K-trivial set is computable from a c.e. K-trivial set.
Thus, K-trivial sets are inherently enumerable, and unlike random sets, cannot be con-
structed by a forcing argument. Nies’s result was a corollary to a deep investigation of

1 Throughout, we identify a subset of N with its characteristic function, an element of Cantor
space 2ω.
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K-triviality (initiated in [15] and performed in [40]) which clarified the central role played
by K-trivial sets. Nies showed that the K-trivial sets are computationally weak, and that
they can be characterised by a variety of concepts, beyond compressibility. For example,
the K-trivial sets are precisely those which are low for ML-randomness: the sets which
cannot detect any patterns in (and thus derandomise) ML-random sets.

The result by Hirschfeldt, Nies and Stephan mentioned above did not pertain only
to Kučera’s construction: they showed that if Y is any ML-random set which is Turing
incomplete (i.e. does not compute ∅′) then every c.e. set computable from Y is K-trivial.
In light of this work, Stephan asked whether the converse holds:

Is every K-trivial set computed by a ML-random set that is Turing incomplete?

The inherent enumerability ofK-triviality implies that this is indeed a converse to the
Hirschfeldt–Nies–Stephan result. Miller and Nies [36, 4.6] included this question, which
became known as the ML covering problem, as one of the four major questions in their
2006 survey of open problems in algorithmic randomness. Combining the work in this
paper with a recent result by Day and Miller [9] (obtained after the research described
here was done) gives the affirmative solution to the problem (see [1]). However, we also
show here that any ML-random set computing all K-trivial sets must be very close to
being Turing complete.

1.2. Oberwolfach randomness. The main tool in our investigations is a randomness no-
tion slightly stronger than Martin-Löf’s. We call this notion Oberwolfach randomness in
appreciation of our two-week Research in Pairs stay at the Mathematisches Forschungs-
institut Oberwolfach in early 2012, where this research began.

Recall that a Martin-Löf test is a sequence 〈Um〉m∈ω of uniformly effectively open
sets such that λ(Um) ≤ 2−m for each m ∈ ω. A set Z ⊆ ω fails the test if Z ∈

⋂
m Um,

otherwise Z passes the test. Demuth [10] introduced the idea of increasing the power of
a ML-test by allowing a computably bounded number of changes to the whole 60

1 set Um
(see [31] for background). Oberwolfach tests use this idea, but in a very restricted fashion.
The changes of components of the test have to be coherent across the levels of the test.
Any two successive changes in Um+1 must be accompanied by a change in Um.

Oberwolfach randomness fits into another framework for extending Martin-Löf ran-
domness. Weak 2-randomness is defined by tests 〈Un〉n∈ω which are uniformly c.e., but for
which the requirement λ(Un) ≤ 2−n is replaced by limn λ(Un) = 0. Restrictions on the
rate of convergence of λ(Un) to 0 yield notions of randomness between ML-randomness
and weak 2-randomness. Tests in which the rate of convergence is controlled by some
left-c.e. real determine Oberwolfach randomness. In Section 2 we give another class of
tests which determine the same notion of randomness.

While these two definitions of Oberwolfach randomness fit naturally into these
schemes, it is a variety of properties of this notion which make it useful. Chief among
them is that it is the notion of randomness which describes computing all K-trivial sets.
We show:

Theorem 1.1. If Z is ML-random but not Oberwolfach random, then Z computes every
K-trivial set.
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Theorem 1.2. There is a K-trivial set which is not computable from any Oberwolfach
random set.

Thus a ML-random set Z is Oberwolfach random if and only if it fails to compute some
K-trivial set; and the K-trivial set A given by Theorem 1.2 has the property that any
ML-random set computing A must compute all K-trivial sets. We call such a set A a
“smart”K-trivial set. The smartK-trivial set shows that a positive solution to the covering
problem must be strong in that it would give a single incomplete random set computing
all K-trivial sets. We prove Theorems 1.1 and 1.2 in Section 4.

1.3. Randomness and analysis. Demuth (again see [31] for background) started the
program of analyzing how much randomness of a real z is needed to make effective func-
tions of a certain type differentiable at z, when we know classically that they are differen-
tiable at almost every real. In full generality, this program tries to identify the randomness
strength needed to make effective versions of “almost-everywhere” theorems hold, such
as ergodic theorems. A goal is to characterize known randomness notions by effective
versions of classical theorems of analysis. Recent activity followed Demuth’s original
question; see for example [5, 46]. In this paper we relate Oberwolfach randomness to
three almost-everywhere theorems: differentiability of monotone functions, martingale
convergence and the Lebesgue density theorem.

Let λ denote Lebesgue measure on R. For measurable sets P,A ⊆ R withA non-null,
λ(P |A) = λ(P ∩ A)/λ(A) is the conditional measure (probability) of P given A. The
lower density of a measurable set P ⊆ R at a point z ∈ R is

ρ(P |z) = lim inf
h→0
{λ(P |I ) : I is an open interval, z ∈ I & |I | < h}.

Intuitively, ρ(P |z) gauges the fraction of space filled by P around z if we “zoom in”
arbitrarily close to z.

Lebesgue’s density theorem [34, p. 407] says that for any measurable set P , for almost
all z ∈ P we have ρ(P |z) = 1. An effective version of this theorem is given by identifying
a collection of effectively presented sets P and the collection of random points z for
which ρ(P |z) = 1 for all sets P in the collection containing z as an element. Since the
theorem is immediate for open sets, the simplest non-trivial effective version is obtained
by choosing P to range over the collection of effectively closed subsets of R. We call a
real number z ∈ R a density-one point if for every effectively closed set P containing z
we have ρ(P |z) = 1.

In Section 5 we prove:

Theorem 1.3. Every Oberwolfach random set is a density-one point.

1.4. Randomness enhancement. The randomness enhancement principle [43] states
that beyond Martin-Löf, randomness strength corresponds inversely to proximity to ∅′.
That is, among the ML-random sets, failing stronger randomness properties means be-
ing closer to being Turing complete. Being a density-one point (in conjunction with
ML-randomness) is a randomness property which turns out to be strictly stronger than
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ML-randomness. An instance of the randomness enhancement principle is Theorem 1.1.
As a direct corollary of Theorems 1.1 and 1.3 we obtain:2

Theorem 1.4. A Martin-Löf random set which is not a density-one point computes every
K-trivial set.

Day and Miller [9] constructed an incomplete ML-random real z which is not a density-
one point. Theorem 1.4 says that z computes all K-trivial sets, thereby giving a positive
answer to the ML-covering problem. We remark that the notion of density plays an even
greater role in the proof of the Day-Miller theorem. Franklin and Ng introduced a notion
of randomness called difference randomness and showed that this notion is equivalent to
being ML-random and incomplete. A result of Bienvenu, Hölzl, Miller and Nies [2] says
that a ML-random real z is difference random if and only if ρ(P |z) > 0 for all effectively
closed sets P containing z. Day and Miller’s construction produced a ML-random set
with the latter property, and they use the Franklin–Ng and the Bienvenu–Hölzl–Miller–
Nies results to conclude that the set they produced is Turing incomplete.

Recall that an oracle Y ∈ 2ω is LR-hard if every set which is ML-random relative
to Y is 2-random, i.e., random relative to ∅′. Intuitively, such an oracle is “nearly” Turing
complete. An instance of a formulation of this intuition is Cole and Simpson’s result [49]
that every LR-hard set is superhigh (∅′′ ≤tt Y

′). A lower bound on the complexity of a
solution to the covering problem is given by the following result, which is yet another
instance of the randomness enhancement principle.

Theorem 1.5. Every ML-random set which is not Oberwolfach random is LR-hard.

We prove Theorem 1.5 in Section 3, where we give another indication that ML-random
sets which are not Oberwolfach random are close to being Turing complete, using trace-
ability (Theorem 3.2).

1.5. Strong variants of the covering problem. As a second part of his question,
Stephan also asked (see [36, 4.6]) whether every K-trivial set is computable from a low
ML-random set. Further evidence for the plausibility of the existence of such a set was
later given by Kučera and Slaman [32] who showed that there is a low PA-complete set
which computes all K-trivial sets. Our results now answer this question in the negative:
A LR-hard set (alternatively, a JT-hard set) cannot be low, and so the smart K-trivial set
given by Theorem 1.2 gives the negative answer to Stephan’s question:

Theorem 1.6. There is aK-trivial set which is not computable from any low ML-random
set.

We also answer in the negative another strong variant of the ML-covering question
([36, 4.7], which is related to a question asked by Kučera in 2005). By the halves of a
set X we mean the sets X0 and X1 where X = X0 ⊕ X1; that is, the bits in the even and
the bits in the odd positions. In [17], Figueira et al. show that for any ML-random set X,
at least one of the halves X0 or X1 is balanced random, and hence Oberwolfach random.
Again with Theorem 1.2 we obtain:

2 We note, though, that after learning about Theorem 1.4, Miller gave a direct proof; see [2].
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Theorem 1.7. There is a K-trivial set which is not computable from both halves of any
random set.3

1.6. Questions, and further work. The ML covering problem is now solved, but the
work described suggests possibly more fundamental questions. The characterisation of
density-one points within the random reals is still open, as is their relationship to LR-
hardness. For example, we ask:

• Is there a density-one ML-random point which is not Oberwolfach random?
• Is there an LR-hard Oberwolfach random set?

Since this work was done, further work by Andrews, Cai, Khan, Lempp and Miller, and
later Miyabe, Nies and Zhang [38] has shed more light on analytic properties of random
sets such as martingale convergence and density.

Later work by Greenberg, Miller and Nies gives a characterisation of those K-trivial
sets which are computable from both halves of a random set; for example, they show that
the random set can always be taken to be Chaitin’s �, and so these sets form an ideal.

2. Characterizations of Oberwolfach randomness

Recall that aGδ set is the intersection
⋂

Un of a nested sequence 〈Un〉 of open sets; nested
means that Un+1 ⊆ Un. The Gδ set is null if and only if lim λ(Un) = 0. There are two
ways to measure the complexity of such null sets.

• Via definability: an effectiveness condition is placed on the sequence 〈Un〉. In all cases
we are concerned with, this results in the intersection being 50

2 (effectively Gδ). Most
commonly the sequence 〈Un〉 is uniformly 60

1 (effectively open), but it is possible to
relax this condition; indeed sometimes the sets Un may not be open.
• By calibrating the speed of convergence of λ(Un) to zero. The most common way is to

require that λ(Un) ≤ 2−n.

We say that a sequence Z is captured by a test 〈Un〉 if Z ∈
⋂

Un. Otherwise it passes the
test. Because the test is nested, this passing condition is equivalent to Solovay’s notion of
escaping co-finitely many test components Un.

If C is a countable collection of tests, then we say that a real is C-random if it passes
every test in C. For example, a difference test (Franklin and Ng [19]) is a nested sequence
of classes Un = Am ∩ B (with λ(Un) ≤ 2−n), where the sequence 〈Am〉 is uniformly 60

1
(effectively open) and the class B is 50

1 (effectively closed). A real is difference random
if it passes every difference test. Oberwolfach randomness implies difference randomness
and is very close to, but distinct from, difference randomness.

3 The referee points out that LR-hardness can be used to give another proof of Theorem 1.7.
Let A be a smart K-trivial set, and let X be random. If A ≤T X0 then X0 is LR-hard, whence X1
is 2-random, and so does not compute A.
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The statistical tests that define Oberwolfach randomness can be presented in a variety
of ways.

(1) Oberwolfach tests are a “coherent” form of the balanced tests introduced in [17].
(2) Interval tests are uniformly60

1 classes indexed by rational intervals with certain mea-
sure and monotonicity conditions, and a left-c.e. real picking the60

1 classes that have
to be avoided.

(3) Left-c.e. bounded tests are50
2 (effectivelyGδ) null classes of the form

⋂
n Vn, where

the convergence to 0 of λ(Vn) is quantified by an additive cost function.

In this section we introduce the three test notions and show they all determine the same
randomness class. Each of the three test concepts is intended for a different type of appli-
cation. (1) is used to build the smartK-trivial set. (2) is mainly needed for the application
to differentiability and density; in particular, for showing that effectively closed sets have
density one at Oberwolfach random points. (3) is useful to show that any ML-random set
that is not Oberwolfach random is close to being Turing complete, and to show that ev-
ery such random set computes all K-trivial sets. We now put some work into introducing
these test notions and showing that they are equivalent. Their conceptual closeness to the
intended applications will make that work pay off later on.

Remark 2.1. We will work in three computable (metric) measure spaces: Cantor
space 2ω, the unit interval [0, 1], and sometimes the real line R. The equivalence of
the first two is given by the “near-isomorphism” 2 : 2ω � [0, 1] given by 2(Z) =∑
n<ω Z(n)2

−n−1. The map 2 is computable, continuous and closed, is measure-
preserving, and injective when restricted to infinite, co-infinite sets (with image contain-
ing all irrational numbers in the unit interval). If 2(Z) = z we say that Z is a binary
expansion of z.

A randomness notion can be defined in any of these spaces, and will usually be in-
variant. For example, a ML-test is a sequence 〈Un〉 of uniformly effectively open sets
with λ(Un) ≤ 2−n. This definition makes sense in Cantor space, the unit interval and
the real line, and so we get a notion of ML-randomness in each of these spaces. Because
2 is computable and measure-preserving, if 〈Un〉 is a ML-test in the unit interval, then
〈2−1Un〉 is a ML-test in Cantor space. In the other direction, let R be the set of sequences
in Cantor space which are eventually constant. Then 2�2ω\R is an open map. If 〈Vn〉 is a
ML-test in Cantor space, then 〈2[Vn \R]〉 is a ML-test in the unit interval. Since2[R] is
the set of binary rational numbers, none of which are ML-random, altogether we see that
for all Z ∈ 2ω, Z is ML-random if and only if 2(Z) is ML-random.

We take the same approach when defining Oberwolfach randomness. The test notions
we introduce below make sense in every computable probability space, and the argument
above will show that for all Z ∈ 2ω, Z is Oberwolfach random if and only if 2(Z) is
Oberwolfach random.

2.1. Oberwolfach tests. We introduce tests which are a special case of weak limit tests
(and in fact weak Demuth tests); see for instance [30]. In this context, we require that
λ(Un) ≤ 2−n, but the sequence 〈Un〉 need not be given effectively. Let 〈We〉e<ω be an
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effective list of all 60
1 classes. We are interested in tests of the form 〈Wf (n)〉, where

f ≤T ∅
′.

A computable approximation 〈fs〉 for f gives an approximation for the test. We write:

• Un〈s〉 = W(≤2−n)
fs (n)

, where W(≤ε)
e is the result of enumerating We up to the point at

which its measure reaches ε; and
• Un[s] = Un,s〈s〉 = W(≤2−n)

fs (n),s
, where We,s is the clopen set which is the result of enu-

merating We for s steps.

The set Un〈s〉 is called a version of Un. We can require that at every stage s, Un+1〈s〉

⊆ Un〈s〉. We say that the version of Un changes at a stage s if fs(n) 6= fs−1(n). We
write, though, Un〈s − 1〉 6= Un〈s〉 in this event, even if it is not technically true. That is, a
version changes if its description (its index) changes, even if extensionally, the60

1 classes
described are the same.

To be pedantic, the test 〈Un〉 does not contain all the information above; different
choices of f and of the approximation 〈fs〉 for f may yield the same test. Below, we
always assume that a test comes with its approximation.

For background, we recall the following.

Definition 2.2. A test 〈Un〉 = 〈Wf (n)〉 is a weak Demuth test if the index function f is
ω-c.a.: the number of stages s at which the version Un〈s〉 of Un changes is bounded by a
computable function. If this computable bound isO(2n), then the test is called a balanced
test [17].

In [17, Rmk. 18] it is shown that imposing the bound 2n on the number of version changes
of the n-th component results in the same notion of randomness, balanced randomness.

An Oberwolfach test is a balanced test for which the changes are coherent between
the levels.

Definition 2.3. A weak Demuth test 〈Un〉 is an Oberwolfach test if for all n, for every
interval I of stages, if Un〈s〉 is constant on I , then there is at most one stage s in I at
which Un+1〈s〉 changes.

It is easily observed that every Oberwolfach test is a balanced test. Hence:

Proposition 2.4. Every balanced random set is Oberwolfach random.

The notions do not coincide: in [17] the authors construct a low ML-random set which is
not balanced random. Such a set must be Oberwolfach random by Theorem 1.5 below.

Franklin and Ng [19] showed that difference randomness is also captured by the class
of “version-disjoint” weak Demuth tests. In fact, these tests are naturally Oberwolfach
tests. To wit, if Z is ML-random and not difference random, then it is Turing complete.
So it computes Chaitin’s complete random set �. Let 0 be a Turing functional such that
0(Z) = �. By a result of Levin [35], and Miller and Yu [37] (also see [41, Prop. 5.1.14]),
there is a constant c such that 2−m ≥ λ{Z : ��m+c ≺ 0(Z)} for each m. The version-
disjoint weak Demuth test capturing Z defined by Franklin and Ng is defined by letting

Um〈s〉 = {Z : �s�m+c ≺ 0(Z)}(≤2−n).
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This test is in fact an Oberwolfach test, since two changes in�t�n+1 necessitate a change
in �t�n. To sum up, difference randomness is captured by so-called “version-disjoint”
Oberwolfach randomness. Hence:

Proposition 2.5. Every Oberwolfach random set is difference random.

The notions do not coincide. This follows from Day and Miller’s construction [9] of a
difference random real which is not a density-one point. Theorem 1.3 shows this real is
not Oberwolfach random.

Below, when considering an Oberwolfach test, we often assume without further men-
tion that U0〈s〉 never changes (we can simply start the test late enough). Also note that by
delaying enumerations, we may assume that for all s, for all n ≥ s, Un[s] = ∅.

2.2. Interval tests. The very general notion of a statistical test that we defined can be in
fact further generalised, by replacing the natural numbers by indices coming from some
partial ordering, and slightly less generally, from a filter in a separative partial ordering.
To avoid excess abstraction, we consider a useful collection of such generalised tests.
They will be useful for our intended application of Oberwolfach randomness in effective
analysis in Section 6.

In this section, let X ,Y ∈ {2ω, [0, 1]}, considered as computable probability spaces.
A rational open ball in 2ω is a subbasic clopen subset of the form [σ ] for some σ ∈ 2<ω,
and in [0, 1] is an open interval with rational endpoints (including [0, a) and (b, 1]).

Definition 2.6. An interval array (in Y , indexed by X ) is an effective map G from the
collection of rational balls in X to the effectively open subsets of Y such that:

(a) for all I , λ(G(I)) ≤ λ(I); and
(b) if I ⊆ J then G(I) ⊆ G(J ).

An interval test consists of an interval array G and a left-c.e. real α ∈ X . The set of reals
in Y which are captured by the test (G, α) is⋂

α∈I

G(I).

In the case X = 2ω, an interval array G is an effective mapping σ 7→ Gσ such that
λ(Gσ ) ≤ 2−|σ | and Gτ ⊆ Gσ if τ extends σ . The set of reals captured by an interval test
(G, α) is

⋂
n Gα�n . It is not hard to see that in fact in this case, 〈Gα�n〉 is an Oberwolfach

test. Below we will see that all Oberwolfach tests are of this form.

Remark 2.7. It is sometimes convenient to extend an interval array to be defined on all
open subsets of X . If G is an interval array, then for open U ⊆ X we let

G(U) =
⋃
G(I) JI is a rational open ball contained in UK.

This function certainly extendsG, and satisfies conditions (a) and (b) from Definition 2.6.
The reason that (a) holds is that every open subset U of 2ω equals the disjoint union of the
maximal rational balls contained in U ; and that every open subset of [0, 1] is the disjoint
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union of the maximal open intervals contained in U , while every open interval in [0, 1] is
the increasing union of its rational subintervals. We note that if (G, α) is an interval test,
then the reals captured by (G, α) are precisely the reals Z such that Z ∈ G(U) for all
open subsets U of X containing α.

Remark 2.8. In Theorem 6.8 below we make use of the fact that in (a) of Definition 2.6
for the case X = [0, 1]we could also require the weaker condition that λ(G(I)) ≤ Dλ(I)
for some constant D ∈ Q+ while retaining the same randomness notion. For let I ∗ be
a rational interval of length < 1/D containing α. We only need to consider G(J ) for
subintervals J of I ∗. Let f be the increasing linear map sending I ∗ to [0, 1]. We define
a new interval array by G̃(I ) = G(f−1(I )). Then the new array satisfies (a), and the test
(G̃, f (α)) captures the same reals as (G, α).

Proposition 2.9. Every real which is not Oberwolfach random is captured by an interval
test indexed by 2ω.

The converse of Proposition 2.9 is proved in the next section.

Proof. Let Un〈s〉 be an approximation for an Oberwolfach test. Let α0 = 0ω. Inductively
define αs by letting αs(n) = 1 for the least n such that Un〈s〉 changes at stage s; αs�n =
αs−1�n and αs(m) = 0 for m > n. If no version changes at stage s then αs = αs−1. We
then let α = limαs and define Gσ to be empty until we see a stage s at which σ is an
initial segment of αs ; then we let Gσ = U|σ |〈s〉. Then (σ 7→ Gσ , α) is an interval test
which captures the same reals captured by 〈Un〉. ut

Proposition 2.10. Every real which is captured by an interval test indexed by 2ω is also
captured by an interval test indexed in [0, 1].

Proof. Let (G = 〈Gσ 〉, α) be an interval test indexed by 2ω. We extend it to all open
subsets of 2ω, as in Remark 2.7. Let 2 : 2ω → [0, 1] be the canonical near-isomorphism
(Remark 2.1). We push the array 〈G(U)〉 forward by2: we let (2∗G)(I) = G2−1I . Then
2∗G is an interval array indexed in [0, 1], and (2∗G,2(α)) captures every real captured
by (G, α). ut

2.3. Cost functions. The third test notion which captures Oberwolfach randomness uses
the notion of an additive cost function. We review relevant material concerning cost func-
tions.

As in [41, Section 5.3], a cost function is a computable function

c : ω × ω→ {x ∈ Q : x ≥ 0}.

We say c is monotonic if c(x + 1, s) ≤ c(x, s) ≤ c(x, s + 1) for each x < s. In this
paper, all cost functions we encounter will be monotonic, and so we omit this adjective
from now on.

When building a computable approximation of a10
2 set A, we view c(x, s) as the cost

of changing A(x) at stage s. We also write cs(x) instead of c(x, s) to indicate it is the cost
of a change at x at stage s. We can then express that the total cost of changes, taken over
all x, is finite [41, Section 5.3]. We say that a computable approximation 〈As〉s∈ω obeys a
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cost function c if

∞ >
∑
x,s

{cs(x) : x < s ∧ x is least such that As−1(x) 6= As(x)}.

We say that a 10
2 set A obeys c if some computable approximation of A obeys c.

We write c(x) = sups c(x, s) and call c(x) a limit cost function. We say that a cost
function c fulfills the limit condition if limx c(x) = 0. The by-now classical cost-function
construction states that every cost function with the limit condition is obeyed by some
promptly simple c.e. set. The cost function construction originated in [33, 15] and was
formulated in the present generality first in [41, Section 5.3]. Again, all cost functions
considered in this paper satisfy the limit condition, and so we omit mentioning it below.

Let g : ω→ ω. A cost function c is called g-benign if g(n) bounds the length of any
finite sequence x0 < x1 < · · · < xk such that c(xi, xi+1) ≥ 2−n for each i < k. A cost
function is benign if it is g-benign for some computable function g.

The following was defined in [42].

Definition 2.11. We call a cost function c additive if x < y < t implies c(x, t) =
c(x, y)+ c(y, t).

We see that if c is additive then c(x, t) =
∑
a∈[x,t) c(a, a + 1). Thus the additive cost

functions are of the form cβ(x, s) = βs − βx for some left-c.e. real β ∈ [0,∞) (simply
let βs = c(0, s)). We note that every additive cost function is o(2n)-benign.

Obedience to cost functions characterises lowness classes by results in [40, 24, 11].

Theorem 2.12. (1) A set is K-trivial if and only if it obeys every additive cost function
if and only if it obeys the cost function cα for some left-c.e. random real α.

(2) A set is strongly jump-traceable if and only if it obeys every benign cost function.

2.4. Left-c.e. bounded tests. For Oberwolfach tests (as well as Martin-Löf, weak De-
muth and limit tests) 〈Un〉 we require that λ(Un) ≤ 2−n. As we mentioned above, more
general notions of tests (such as weak 2-random tests) allow λ(Un) to approach 0 more
slowly. In this section we require that 〈Un〉 is a uniformly 60

1 sequence (that is, Un =
Wf (n) for a computable function f ), but allow λ(Un) to approach 0 more slowly than
computable functions do. The speed at which λ(Un) tends to 0 is calibrated by cost func-
tions discussed in Subsection 2.3. Recall that we assume the limit condition c(n)→ 0 for
all cost functions c.

Definition 2.13. Let c be a limit cost function. A (uniformly 60
1 ) test 〈Vn〉 is a c-test if

λ(Vn) ≤ c(n) for all n.

Definition 2.14. A left-c.e. bounded test is a c-test for c the limit of an additive cost
function.

Thus, a left-c.e. bounded test is a nested sequence 〈Vn〉 of uniformly 60
1 classes such that

for some left-c.e. approximation 〈βs〉 of a real β we have λ(Vn) ≤ β − βn for all n. By
delaying enumeration into Vn, we may assume that λ(Vn[s]) ≤ βs − βn for all n and s.
Below we will assume this throughout.
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Proposition 2.15. The following are equivalent for a real Z:

(1) Z is captured by some Oberwolfach test.
(2) Z is captured by some interval test.
(3) Z is captured by some left-c.e. bounded test.

That is, Oberwolfach, interval and left-c.e. bounded randomness coincide.

For comparison, a set is weakly Demuth random if and only if it passes every c-test when
c is benign, and is balanced random if and only if it passes every c-test when c is 2n-
benign. On the other hand, a set is ML-random if and only if it passes every cβ -test for
the additive cost function cβ where the real β is computable.

Proof of Proposition 2.15. (1)⇒(2): This is Proposition 2.9.
(2)⇒(3): Using Proposition 2.10, we may assume that Z is captured by an interval

test (G, α) indexed by [0, 1]. We may assume that G is defined on all open subsets of
[0, 1] (Remark 2.7). We let In be the open interval (αn, α + 2−n), which is 60

1 , and let
Vn = G(In). Then

λ(Vn) ≤ λ(In) = α − (αn − 2−n),

and we note that 〈αs − 2−s〉 is also a left-c.e. approximation of α. So 〈Vn〉 is a left-c.e.
bounded test. IfZ is captured by (G, α), then, as observed in Remark 2.7 above,Z∈G(U)
for all open U containing α, and so Z is captured by 〈Vn〉.

(3)⇒(1): Let 〈Vn〉 be a left-c.e. bounded test, with λ(Vn) ≤ α−αn for some left-c.e.
real α, which we may assume is irrational and lies in the open interval (0, 1). For all
n < ω and s ≤ ω, we let ks(n) be the greatest integer k such that αs ≥ k/2−n; and we let
ts(n) be the least stage t ≤ s such that αt ≥ ks(n)/2−n. We let

Un〈s〉 = V(≤2−n)
ts (n)

.

It is easy to see that Un is an Oberwolfach test, that tω(n) is a non-decreasing and un-
bounded sequence, and that Un = Vtω(n). Because 〈Vn〉 is nested, so is 〈Un〉, and

⋂
Un

=
⋂

Vn. ut

3. A ML-random set which is not Oberwolfach random is LR-hard

In this section we show that a Martin-Löf random set that is not Oberwolfach random is
close to Turing complete. We provide two formal interpretations of the latter condition.
The first is being LR-hard as discussed in the introduction. The second is tracing every
partial computable function relative to ∅′, where the size of the n-th tracing set is bounded
by 2K(n). Note that usually trace bounds are computable. In our case, the bound is merely
upper semicomputable. We also discuss existence of Turing incomplete sets that are close
to Turing complete in the second sense. Interestingly, these cannot be obtained through
pseudo-jump inversion in the sense of Jockusch and Shore.
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3.1. LR-hardness. Here we prove Theorem 1.5.

Theorem 1.5. Every ML-random set which is not Oberwolfach random is LR-hard.

This theorem improves a result of Bienvenu et al. [3] where the hypothesis was that Y is
not a density-one point. The proof relies on the technique used to prove this earlier result.

Proof of Theorem 1.5. Dobrinen and Simpson [12] called a set X almost everywhere
(a.e.) dominating if for almost every oracle B, every function g ≤T B is dominated by
some function h ≤T Y . Kjos-Hanssen, Miller and Solomon [26, 28] proved that X is
LR-hard iff X is a.e. dominating.

Now suppose that Y is not LR-hard. As in [3], there is a positive measure class of
oracles B such that some function g ≤T B is not dominated by any function h ≤T Y .
Pick a set B in this class such that B is ML-random relative to Y . By van Lambalgen’s
theorem, Y is ML-random relative to B.

Suppose also that there is a left-c.e. bounded test 〈Vx〉 capturing Y with λVx ≤ β−βx
for some left-c.e. real β. We show that Y is not ML-random relative to B, which is a
contradiction.

We define a function f ≤T Y . Let f (0) be the least s such that Y ∈ V0[s]. If f (n) has
been defined, let f (n+ 1) be the least s > max(f (n), n) such that Y ∈ Vf (n)[s].

Fix a function g ≤T B such that ∃∞n g(n) > f (n+ 1).

Case 1: g(n) > f (n+ 1) for almost all n. Let h(r) = g(r)(0), and let

Sr = Vh(r)[h(r + 1)].

For almost every r , h(r + 1) = g(h(r)) > f (h(r) + 1), so Y ∈ Vf (h(r))[h(r + 1)] by
definition. By construction, for every r > 0, h(r) ≤ f (h(r)). So

Sr ⊇ Vf (h(r))[h(r + 1)],

and Y ∈ Sr for almost every r . We have
∑
r λSr ≤

∑
r(βh(r+1) − βh(r)) = β − βh(0), so

〈Sr 〉 is a Solovay test. Hence, Y is not Martin-Löf random relative to B.

Case 2: Otherwise. Then there are infinitely many n such that g(n) ≤ f (n + 1) and
f (n+ 2) ≤ g(n+ 1). Let instead

Sn = Vg(n)[g(n+ 1)].

For such n,
Sn ⊇ Vf (n+1)[f (n+ 2)],

so Y ∈ Sn. Again, 〈Sn〉 is a Solovay test, so Y is not Martin-Löf random relative to B. ut

3.2. JT-hardness for upper-c.e. bounds. Let h : ω → ω − {0}. We say that an oracle
Y is h-JT-hard if every function f that is partial computable in ∅′ has a Y -c.e. trace 〈Tx〉
that is bounded by h. That is, |Tx | ≤ h(x), and f (x)↓ implies f (x) ∈ Tx .
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In the following we show that if Y is a Martin-Löf random set that is not Oberwolfach
random, then Y is h-JT-hard for functions h such as h(n) = α2K(n) for some α > 0.
We use the following “measure-bounding” lemma, which reveals a salient property of
Oberwolfach randomness. Although stated for left-c.e. bounded tests, it isolates the key
difference between Oberwolfach tests and balanced tests: in the former, the opponent
cannot let small components of the test “gang up” and amass much measure.

Lemma 3.1. Let 〈Vn〉 be a left-c.e. bounded test, where λ(Vn) ≤ α−αn for some left-c.e.
real α. Suppose 〈ti〉 is an increasing sequence in ω with t0 = 0. Consider the sets
Vt0 [t1],Vt1 [t2], . . . , and let W(k) be the 60

1 class consisting of reals Y which occur in
at least k of these sets. Then λ(W(k)) ≤ α/k.

Proof. For all i ∈ ω, let pi be the characteristic function of Vti [ti+1]. Let p =
∑
i pi .

Then Y ∈W(k)⇔ p(Y ) ≥ k. Also,∫
p dλ =

∑
i

∫
pi dλ =

∑
i

λVti [ti+1] ≤
∑
i

(αti+1 − αti ) = α.

Since p is non-negative,
∫
p dλ ≥ k · λW(k). The lemma follows. ut

A function h : ω → ω is called upper-c.e. if it has a computable approximation h(x) =
lims hs(x) with hs(x) ≥ hs+1(x) for each x, s.

Theorem 3.2. Let h : ω→ ω−{0} be an upper-c.e. function such that
∑
k 1/h(k) <∞.

Suppose that a Martin-Löf random set Y is not Oberwolfach random. Then Y is h-JT-
hard.

Note that by the machine existence theorem (see e.g. [41, Theorem 2.2.17]), for an
upper-c.e. function h, the hypothesis

∑
k 1/h(k) <∞ is equivalent to 2K(n) = O(h(n)).

Note, though, that traceability is not invariant under multiplying bounds by constants.
The idea for the following proof originates in [17, Theorem 23].

Proof of Theorem 3.2. Let f be any partial ∅′-computable function. We let 〈fs〉 be a
computable sequence of total functions converging to f in a60

2 -fashion. That is, if f (n)↓,
then lims fs(n) = f (n), while if f (n)↑, then lims fs(n) does not exist.

Fix a left-c.e. bounded test 〈Vn〉 with associated left-c.e. real α which Y fails. First
we construct a sequence of c.e. operators 〈Tk〉. Then we will verify that 〈T Yk 〉 eventually
traces f and has size bounded by h.

In our strategy for constructing Tk , we keep an auxiliary value t (k, s). We begin
by defining t (k, 0) = 0. When not otherwise defined at the end of stage s, we define
t (k, s + 1) = t (k, s). In the following, s is always the current stage.

1. While fs(k) = ft (k,s)(k), enumerate fs(k) into T Yk for all Y ∈ Vt (k,s)[s].
2. When fs(k) 6= ft (k,s)(k), define t (k, s + 1) = s.
3. Return to step 1.

Now, suppose f (k)↓. Then the fs(k) (s ∈ ω) take on only finitely many values, and so the
strategy for Tk reaches step 2 only finitely many times. Let t (k) = lims t (k, s). Once f (k)
has converged and Y has entered Vt (k)[s], f (x) will be enumerated into T Yk . So 〈T Yk 〉k∈ω
traces f .



Coherent randomness tests and computing the K-trivial sets 787

Finally, we must show that |T Yk | ≤ h(k). We let Wk be the 60
1 class consisting of all

realsX with |T Xk,s | > hs(k) for some s. Let 〈ti〉 be the sequence of values t (k, s) takes as s
ranges over all stages of the construction. Now, note that while t (k, s) is constant, fs(k)
is constant. Hence to enter Wk , X must enter at least h(k) different Vti [ti+1]. By the
measure-bounding Lemma 3.1, we thus know that λ(Wk) ≤ α/h(k). By assumption,∑
k α/h(k) = α

∑
k 1/h(k) < ∞, so since Y is Martin-Löf random, Y must occur in

only finitely many of the Wk . Hence |T Yk | ≤ h(k) for all but finitely many k. ut

3.3. Discussion. By random pseudo-jump inversion (Kučera (unpublished) and indepen-
dently Nies; see [48] and [41, Cor. 6.3.9]), it is known that there is an incomplete, LR-
hard ML-random set, which can in fact be chosen to be 10

2. By Theorem 3.2 and the
Day–Miller theorem [9] that some difference random real is not a density-one point, we
now know that there is an incomplete, 10

2 random set satisfying the highness condition
of Theorem 3.2—being α2K(n)-JT-hard for all rational α > 0. However, we do not know
at present how to directly construct such a ML-random set. We can directly build such a
10

2 set if we discard the requirement to be ML-random.

Proposition 3.3 (with Hirschfeldt). There is an incomplete 10
2 set which is h-JT-hard

for some function h = o(2K(n)).

Proof. By the existence of compression functions in the sense of [45] and its extension
toK in [41, 3.6.16], there is a low setA and a function h ≤T A such that h(n) = o(2K(n))
but lim h(n) = ∞. For every order function g there is a non-computable c.e. set which
is g-jump-traceable. In fact, the requirement that the bound function g be monotone is
not necessary; all we need is that lim g(n) = ∞. Relativizing this fact to A, and then to
every B ≥T A, we get an A-computable pseudo-jump operator W such that W(A ⊕ X)
is h-jump traceable in, and properly Turing above, A⊕X for each set X. Now relativize
the usual Jockusch–Shore pseudo-jump inversion to A, and obtain Y <T ∅

′ such that
W(A⊕ Y ) ≡T A

′
≡ ∅
′. The set Y ⊕ A is as required. ut

Note that the set Y constructed in this proof can be chosen to be ML-random in A, by us-
ing the relativisation to A of the ML-random pseudo-jump inversion theorem mentioned
above. So if we start with a ML-random setA then Y⊕A is ML-random. However, we do
not know whether there is a low ML-random computing a compression function forK . If
we replace K by plain complexity C, then we see that in fact there is no low ML-random
set A computing a compression function for C, because such a function would be of PA
degree by [27, Theorem 4.1].

For a c.e. set Y , the highness condition actually implies Turing completeness. Be-
cause of the pseudo-jump inversion theorems, it is not common to see a highness property
shared by some incomplete random sets but not by some incomplete c.e. sets.

Proposition 3.4 (F. Stephan). Suppose a c.e. set Y is 2K(n)-JT-hard. Then ∅′ ≤T Y .

Proof. Assume for a contradiction that Y is 2K(n)-JT-hard via a Y -c.e. trace 〈T Yx 〉, but
∅
′
6≤T Y . Then the size of the T Yx is unbounded in x. Define a Turing functional 0Z as

follows: given n, search for p and stage s such that |T Zp,s | > 22n and output p at that
stage.
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There is a prefix free machine that, if n enters ∅′ at stage s and p = 0Yss (n)↓, ensures
K(p) ≤ n + O(1). We show ∅′ ≤T Y . Given n, since Y is c.e., we can, using Y as an
oracle, compute s such that 0Yss (n)↓ with Y stable on the use. Then n ∈ ∅′ ↔ n ∈ ∅′s . ut

In particular, ∅′ ≤LR Y does not in general imply that Y is 2K(n)-JT-hard, so Theorems 1.5
and 3.2 are independent. By a result of [28], ∅′ ≤LR Y implies that Y is h-JT-hard for any
computable function h with

∑
n 1/h(n) finite (also see [41, Theorem 8.4.15]). A closer

look at the proof reveals that the weaker hypothesis that h be computable from both Y
and ∅′ is sufficient. For instance, if Y is 10

2 we could let h(n) = 2K
g(n) where g ≤T Y is

a time bound.

4. Oberwolfach randomness and computing K-trivial sets

4.1. Sets that are Martin-Löf, but not Oberwolfach random, compute all K-trivial
sets. Our goal in this subsection is to show that every K-trivial is computed by every
Martin-Löf random set Z that is not Oberwolfach random.

Proposition 4.1. Every c.e. K-trivial set A obeys every additive cost function.

In fact, everyK-trivial set, whether c.e. or not, obeys every additive cost function [44]; but
this fact relies on the golden run method in the form of the Main Lemma [41, 5.5.1]. For
the c.e. case, a short direct proof that every K-trivial obeys the standard cost function cK
was first given in [41, Thm. 5.3.27]. It can be easily adapted to the case of additive cost
function (see [44]). To be self-contained, we give here a direct short proof.

Proof of Proposition 4.1. Let c be an additive cost function; c = cβ for some left-c.e.
real β, and without loss of generality, 0 < β < 1. Let 〈βs〉 be a left-c.e. approximation
for β so that β0 = 0 and βs < βs+1 for all s.

Let f (s) = − log(βs − βs−1). Because
∑

2−f (s) = β, we have K ≤+ f . Let A be
K-trivial; so K(A�n) ≤+ K(n), and moreover K(A�n) ≤ f (n)+ b for some constant b.
By speeding up, we can find an enumeration 〈As〉 of A so that for all n ≤ s,

Ks(As�n) ≤ f (n)+ b.

For each s, let xs be the least x such that As(x) 6= As−1(x) if such an x exists, otherwise
xs = s. Let S = {s : xs < s}. Note that if xs ≥ s then c(xs, s) = 0. So we need to show
that

∑
s∈S(βs − βxs ) is finite.

For s ∈ S, let Ts = {σ ≺ As : xs < |σ | ≤ s}. Since K(σ) ≤ f (|σ |) + b for all
σ ∈ Ts , we have ∑

σ∈Ts

2−K(σ) ≥
s∑

n=xs+1

2−(f (n)+b) = 2−b(βs − βxs ).

The definition of xs shows that the sets Ts are pairwise disjoint, and so∑
s∈S

∑
σ∈Ts

2−K(σ) < �. ut
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As already mentioned in the introduction, Kučera [29] showed that every10
2 ML-random

is Turing above an incomputable c.e. set. We use a key fact which comes from a re-
sult by Hirschfeldt–Miller (see [41, 5.3.15]) extending Kučera’s argument. Again, to be
self-contained, we give a proof using our notation.

Proposition 4.2. Let c be a cost function, and let 〈Vn〉 be a c-test. If A is a 10
2 set which

obeys c, then A is computable from every ML-random set in
⋂
n Vn.

Proof. Define a functional 0 by letting 0X(n) = As(n) for all X ∈ Vn,s − Vn,s−1. Here
〈As〉 is an enumeration ofA which witnesses thatA obeys c, and 〈Vn,s〉 is an enumeration
of Vn such that for all s, λ(Vn,s) ≤ cs(n).

Certainly, if Z is captured by 〈Vn〉 then 0Z is total. We show that if Z is captured by
〈Vn〉 but Z is ML-random, then 0Z(n) = A(n) for all but finitely many n.

Let xs be the least x such that As(x) 6= As−1(x) if such an x exists, otherwise xs = s.
So

∑
s cs(xs) is finite. Now consider the sequence 〈Vxs ,s〉. For all s, we have λ(Vxs ,s)

≤ cs(xs), and so
∑
λ(Vxs ,s) is finite. That is, 〈Vxs ,s〉 is a Solovay test.

Suppose that 0Z(n)↓ 6= A(n). Let s be the stage at which Z ∈ Vn,s − Vn,s−1. So
A(n) 6= As(n) = 0Z(n); this means that there is some t > s such that xt ≤ n. So
Z ∈ Vn,t ⊆ Vxt ,t . This shows that if 0Z(n) 6= A(n) for infinitely many n, then Z is
captured by the Solovay test 〈Vxs ,s〉. ut

Remark 4.3. The proof of Proposition 4.2 actually shows that Z computes a modulus
for A, and so a c.e. set which computes A. This is not surprising, since every 10

2 set
which obeys a cost function is computable from a c.e. set which obeys the same cost
function [41, 5.3.6].

We recall Theorem 1.1:

Theorem 1.1. If Z is ML-random but not Oberwolfach random, then Z computes every
K-trivial set.

Proof. EveryK-trivial set is computable from a c.e.K-trivial set [40], so we may assume
that A is c.e. By Proposition 2.15, Z fails a left-c.e. bounded test 〈Vn〉 with associated
additive cost function c. By Proposition 4.1,A obeys c. HenceA ≤T Z by Proposition 4.2.

ut

4.2. There is a K-trivial set not computable from any Oberwolfach random set. In
this subsection we build a c.e. K-trivial set A which is computable from no Oberwolfach
random set (Theorem 1.2). Intuitively, A is a relatively complicated K-trivial set in that
the only ML-random sets able to compute it are close to Turing complete, or equivalently,
not very random. As mentioned in the introduction, in conjunction with the result of the
previous subsection, we see that a Martin-Löf random set computes A if and only if it
computes all the K-trivial sets.

Recall the notion of balanced randomness from Definition 2.2. As a warm-up to the
proof, we first provide the simpler proof of a result which is not, in fact, implied by the
main theorem of this subsection. This is because some K-trivial set does not obey every
2n-benign cost function by Corollary 4.8 below.
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Theorem 4.4. For any 2n-benign cost function c there is some c.e. set which obeys c and
is computable from no balanced random set.

Kučera and Nies have shown that for any benign cost function c, there is some c.e. set
which obeys c and is computable from no weak Demuth random set [30]. We emphasise
the strong parallels with this theorem: balanced tests are a special case of weak Demuth
tests, obtained by allowing at most 2n version changes instead of allowing an arbitrary
computable bound; similarly, 2n-benign cost functions are a special cast of benign cost
functions, obtained by allowing sequences of a certain type to have length at most 2n

instead of allowing an arbitrary computable bound.

Proof of Theorem 4.4. We fix a Turing functional ϒ that is universal in the sense that
ϒ(0e1ˆX) = 8e(X) for eachX, e. We enumerate a c.e. set A. To show that A is not com-
putable from any balanced random set, we show that no element of {X ∈ 2ω : ϒ(X) = A}
is balanced random. Consequently, if X computes A then there is some e such that
ϒ(0e1ˆX) = A. So 0e1ˆX is not balanced random; it follows that X is not balanced
random either because we allowed the O(2n) bound on changes in Definition 2.2.

Construction. We define an approximation 〈Gn〈s〉〉 for a test 〈Gn〉. We also enumerate
a 60

1 class E , which is a permanent error class. The key idea for giving a bound on the
number of changes to each Gn〈s〉 and showing that A obeys c is by tying the cost of
enumerating elements into A to the measure these enumerations add to E .

We define diagonalisation witnesses vn,s targeted for A, which have the purpose
of showing that lots of oracles compute the wrong set. To be precise, by vn,s , As , Es
and Gn〈s〉 we mean the values of these objects at the beginning of stage s.

When we start a new version of Gn at a stage t , we choose vn,t+1 to be large, and let

Gn〈t + 1〉 = {X ∈ 2ω \ Et+1 : ϒ(X) � At�vn,t+1+1}.

Whenever we start a new version of Gn, we also start a new version of Gm for m ≥ n. So
vn,s < vn+1,s for all n and s. It follows that the sequence 〈Gn〈s〉〉n<ω is nested.

We decide to start a new version of Gn at a stage s if λ(Gn[s]) > 2−n. If there is such
an n at stage s, we choose the least such. Then there are three cases:

(1) λ(E ∩ Gn)[s] > 2−n−1;
(2) λ(E ∩ Gn)[s] ≤ 2−n−1 and c(vn)[s] > 2−n−1; and
(3) Cases (1) and (2) fail.

If either case (1) or case (2) holds, then we just start a new version of Gn (and Gm for all
m > n). If case (3) holds, that is, if both λ(E ∩ Gn)[s] ≤ 2−n−1 and c(vn)[s] ≤ 2−n−1,
then we enumerate vn,s into As+1, Gn[s] into Es+1, and start new versions of Gm for
m ≥ n.

Verification. The main task is to obtain the O(2n) bound on the number of times each
version of Gn changes. First we note that G0 never changes. Now let n > 0, let s be a stage
at which Gn changes but Gn−1 does not, and let t be the stage at which the version Gn〈s〉
was defined.

One of the cases (1), (2) and (3) above holds at stage s.
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(1) In this case, since we know that Gn〈s〉 = Gn〈t + 1〉, and by definition Gn〈t + 1〉 is
disjoint from Et+1, we can conclude that λ(Es − Et+1) > 2−n−1. This shows that
case (1) can hold at most at 2n+1 stages s.

(2) In this case, since vn,s = vn,t+1 is chosen to be large at stage t , the benignity bound
on c shows that this case can hold at most at 2n+1 stages.

(3) Finally, in this case, the failure of (1), the fact that λ(Gn)[s] ≥ 2−n, and the action
taken in this case, together show that λ(Es+1 − Es) ≥ 2−n−1. So this case too can
happen most at 2n+1 times.

Altogether, we see that the number of stages s at which Gn changes but Gn−1 does not is
at most 6 · 2n. By induction, we see that the total number versions of Gn is bounded by

1+ 6 · 2+ 6 · 4+ · · · + 6 · 2n ≤ 12 · 2n.

Hence the approximation 〈Gn〈s〉〉 stabilizes at some value Gn, and the sequence 〈Gn〉 is
nested. Certainly, for all n, λ(Gn) ≤ 2−n.

Claim 4.4.1. For all X ∈ E , ϒ(X) 6= A.

Proof. Suppose that Gn[s] is enumerated into E at stage s. This enumeration is accompa-
nied by the enumeration of vn,s into As+1, while for everyX ∈ Gn[s] we have ϒ(X, vn,s)
= At (vn,s) = 0 (for the stage t at which this version was defined). ut

Claim 4.4.2. For all X, if ϒ(X) = A then X ∈
⋂

Gn.

Proof. Let n < ω; let t be the stage at which the final version of Gn was defined; let
vn = vn,t+1 be the final value of 〈vn,s〉. Let α = At+1�vn+1; so

Gn = {X ∈ 2ω \ Et+1 : ϒ(X) < α}.

The fact that none of the versions Gm form ≤ n change after stage t , and that the sequence
〈vm,t 〉m<ω is strictly increasing, shows that α = A�vn+1. By Claim 4.4.1, if ϒ(X) = A
then X /∈ Et+1. Hence such an X must be an element of Gn. ut

Our final task is to show that A obeys c; of course, the enumeration of A witness-
ing this will be the enumeration given by the construction. Suppose that As+1 6= As ;
then at stage s, some (unique) vn,s is enumerated into As+1. We know that in this case,
c(vn)[s] ≤ 2−n−1 and λ(Et+1 − Et ) ≥ 2−n−1. This shows that the total cost∑

cs(x) Jx is enumerated into A at stage sK

is bounded by ∑
s

λ(Es+1 − Es) = λ(E) ≤ 1.

Hence the total cost is bounded as required. ut

Note a feature of this construction: unlike most cost-function constructions, we cannot
bound, for each n, the contribution of the n-th actor to the total cost c(〈As〉). The only
possible calculation is global. We will see that, in some sense, this is even more so when
Oberwolfach randomness is concerned: the relationship between the total cost and the
measure of E is tighter.

Toward a proof of Theorem 1.7 we need one fact that is implicit in [17].
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Proposition 4.5. Suppose X is ML-random. Let X0, X1 be the two halves of X. Then at
least one of X0, X1 is balanced random.

Proof. Greenberg and Nies [24] defined a set Z to be ω-c.a.-tracing if each function
f ≤wtt ∅

′ has a Z-c.e. trace (T Zx )x∈ω such that |T Zx | ≤ 2x for each x. By [17, The-
orem 23], if X0 is not ω-c.a. tracing then X0 is balanced random. Otherwise, by [17,
Prop. 32], any set ML-random in X0 is weakly Demuth random; thus by van Lambal-
gen’s Theorem, X1 is weakly Demuth random, which implies that it is balanced random.

ut

The following is now immediate from Theorem 4.4.

Corollary 4.6. There is a c.e., K-trivial set which is not computable from both halves of
any random set. In fact, for every 2n-benign cost function c, there is a c.e. set of this kind
that obeys c.

We proceed to the main result of this subsection, the construction of a smart K-trivial
set. To justify the use of a universal Turing functional ϒ , we prove an analogue of the
fact used above that balanced randomness is preserved under adding a finite string at the
beginning of a bit sequence.

Lemma 4.7. Let Z be an Oberwolfach random set. Then ρˆZ is Oberwolfach random for
each string ρ.

Proof. For a 60
1 class W and a string ρ we let

W|[ρ] = {X ∈ 2ω : ρˆX ∈W}.

Suppose that ρˆZ is not Oberwolfach random. Let (σ 7→ Gσ , α) be an interval test cap-
turing ρˆZ (see the proof of Proposition 2.9). Let τ = α�|ρ|. For all σ , let Vσ = Gτ ˆσ |[ρ].
Let β be such that α = τˆβ. Then (σ 7→ Vσ , β) is an interval test which captures Z. ut

We can now prove Theorem 1.2:

Theorem 1.2. There is a K-trivial set which is not computable from any Oberwolfach
random set.

We note that this yields another, albeit circuitous, proof of Proposition 2.5 that every
Oberwolfach random set is difference random. A ML-random which is not difference
random is complete, and so computes all K-trivial sets. Hence it is not Oberwolfach
random.

Proof of Theorem 1.2. We actually prove an exact analogue of Theorem 4.4: for any
additive cost function c there is some c.e. set obeying c which is computed by no Ober-
wolfach random set. Of course now the point is that theK-trivial sets are characterised as
those which obey all additive cost functions, and in fact some additive cost function such
as c� characterises K-triviality on its own. So fix an additive cost function c.

As in the proof of Theorem 4.4, we enumerate a c.e. set A, and make sure that
A obeys c. Again we fix a universal Turing functional ϒ , and show that {X ∈ 2ω :
ϒ(X) = A} is covered by an Oberwolfach test 〈Gn〉 which we approximate during
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the construction. Now Lemma 4.7 ensures that A is computable from no Oberwolfach-
random set.

The components 〈Gn〈s〉〉 of our approximation will be identical to those of the proof
of Theorem 4.4; we again enumerate the error class E , define markers vn,s , and when
redefining Gn at a stage t , we choose vn,t+1 to be large and let

Gn〈t + 1〉 = {X ∈ 2ω \ Et+1 : ϒ(X) � At�vn,t+1+1}.

Certainly, to make 〈Gn〈s〉〉 an approximation showing that 〈Gn〉 is an Oberwolfach test,
whenever we start a new version of Gn, we also start a new version of Gn+1; so again
vn,s < vn+1,s for all n and s. The only difference is the timing of the changes and the
choice when to enumerate numbers into A, which has to be slightly more delicate.

In general, we need to start a new version of Gn at a stage s if:

(1) either λ(Gn[s]) ≥ 2−n; or
(2) λ(E ∩ Gn)+ c(vn) ≥ 2−n [s].

And the aim is to restart with no enumeration in case (2), and enumerate vn,s into A
(and Gn[s] into E) if (1) (but not (2)) holds.

We note the similarity with the proof of Theorem 4.4. In the previous setting, the only
prompt to changing Gn〈s〉 was if the measure bound λ(Gn) ≤ 2−n was exceeded. In the
current construction we also need to pre-empt situations which entail multiple changes
of Gn while 〈Gn−1〉 is stable. For example, in the previous construction we could see
about 2n+1 stages during which Gn−1 is stable, but at which Gn changes are accompanied
by high c(vn) costs and so by no enumerations into E . However, to ensure the overall co-
herence of moves of various levels, we need to consider the following scenario. Suppose
that at stage s, Gn requests an “aggressive” change which results in enumerations. The
added mass into E will now trigger an earlier Gp, say Gn−1, to want to change as well.
In the previous construction, Gn−1 could wait until the next stage to act. But our analysis
below will show that in fact the change in Gn can be the second change during the time
Gn−1 is fixed, which is not allowed: Gn−1 has to change immediately.

So here is the construction. At stage s, first see if there is some n < s with λ(Gn[s])
≥ 2−n but λ(E ∩ Gn) + c(vn) < 2−n [s]. If there is such an n, we pick the least such,
enumerate vn,s into A and Gn[s] into E . If there is no such n, then As+1 = As and
Es+1 = Es .

Then, we look to see if there is some p such that λ(Es+1 ∩ Gp[s])+ c(vp)[s] ≥ 2−p.
If so, we choose the least such p and restart Gk for all k ≥ min{n, p}. If neither n nor p
are found, then no test component is restarted.

To verify the construction, this time, we first show that the total cost c(〈As〉) is finite.
Suppose that vn,s is enumerated into A at stage s. Again, the finite bound on the total cost
is obtained once we show:

Claim 4.7.1.

c(vn)[s] ≤ λ(Es+1 − Es).
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Proof. At stage s we see that λ(Gn[s]) ≥ 2−n but λ(Es ∩ Gn[s])+ c(vn)[s] < 2−n. This
means that

λ(Gn[s] − Es) ≥ 2−n − λ(Gn[s] ∩ Es) > c(vn)[s].

But at stage s we enumerate Gn[s] into E , so

Gn[s] − Es ⊆ Es+1 − Es,

proving the claim. ut

Now we turn to the main task of showing that 〈Gn〈s〉〉 converges to an Oberwolfach test.
To show that there are only finitely many versions of G0 one can argue directly, as we
shall soon do for Gn, but a quick way is to start our sequence with G−1 instead of G0, and
to scale c so that cs(x) < 1 for all s and x. Then, we easily see that G−1 never changes.

For the rest of the argument we make a simple observation:

Claim 4.7.2. Let n ≥ −1, and let u < w be successive stages at which Gn+1 is restarted.
Suppose that Gn is not restarted at stage w. Then

c(vn+1)[w] + λ(Gn[w] ∩ (Ew+1 − Eu+1)) ≥ 2−n−1.

Proof. Let q = c(vn+1)[w]. There are two cases. In both cases we use the facts that
Gn+1[w] ⊆ Gn[w], and that Gn+1[w] ∩ Eu+1 = ∅.

If vn+1,w is not enumerated into A at stage w, then we know that

q + λ(Ew+1 ∩ Gn+1[w]) ≥ 2−n−1,

and the result follows.
Otherwise, at stage w we enumerate all of Gn+1[w] into Ew+1 ∩ Gn[w], and we know

that λ(Gn+1[w]) ≥ 2−n−1; then in fact we get

λ(Gn[w] ∩ (Ew+1 − Eu+1)) ≥ 2−n−1,

without q’s aid. ut

Fix n ≥ −1, and let r < s < t be successive stages at which a new version of Gn+1 is
defined; suppose, for contradiction, that Gn is restarted at neither stage s nor stage t .

For brevity, let x = vn,r+1 = vn,s = vn,t ; and let y = vn+1,r+1 = vn+1,s and
z = vn+1,s+1 = vn+1,t . So x < y < s < z < t .

Now we apply Claim 4.7.2 twice, at stages s and t . We obtain

ct (z)+ λ(Gn[t] ∩ (Et+1 − Es+1)) ≥ 2−n−1,

and because Gn[s] ⊆ Gn[t] we obtain

cs(y)+ λ(Gn[t] ∩ (Es+1 − Er+1)) ≥ 2−n−1.

Additivity and monotony of c imply that

c(vn)[t] = ct (x) ≥ ct (y) ≥ cs(y)+ ct (z),
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and so putting the two inequalities together we obtain

c(vn)[t] + λ(Gn[t] ∩ Et+1) ≥ 2−n.

Thus, n would play the role of p in the second step of the construction at stage t , and so
we would be instructed to pick a new version for Gn at stage t , contrary to assumption.

The rest of the argument follows the proof of Theorem 4.4 verbatim; we see that
every X for which ϒ(X) = A is in

⋂
n Gn and so is not Oberwolfach random. ut

K-triviality is characterized by obeying the standard cost function cK [40]. This cost
function is o(2n)-benign. We obtain a corollary to Theorem 1.2 by specifying a different
but related sense in which the K-trivial set A constructed there is smart.

Corollary 4.8. There is a c.e., K-trivial set which does not obey some o(2n)-benign cost
function.

Proof. Each computable approximation 〈Ys〉 of a 10
2 ML-random set Y yields a cost

function cY such that any set A obeying it is Turing below Y [24] (or see [41, 5.3.13]). By
[17, Theorem 11] there is a low ML-random set Y with a computable approximation 〈Ys〉
such that Ys�n changes only o(2n)many times. Then by its definition, cY is o(2n)-benign.
Thus, using the fact that each ML-random non-Oberwolfach random set is high, the smart
K-trivial constructed in Theorem 1.2 does not obey cY . ut

Turetsky [51] has built a c.e., K-trivial set A that is complex in the sense that it is not
o(log n) jump traceable. We do not know at present whether the smart K-trivial built in
Theorem 1.2 must have this property.

4.3. Diamond classes and ML-reducibility. For any class C ⊆ 2ω we let C♦ denote
the c.e. sets Turing below every Martin-Löf random member of C (see for example [41,
Sec. 8.5]). Usually C is arithmetical. By the foregoing results, together with [9], the c.e.
K-trivial sets form a diamond class:

Corollary 4.9. Let C be a non-empty class of difference random, non-Oberwolfach ran-
dom sets. Then C♦ coincides with the c.e. K-trivial sets.

For instance, we can let Y be a difference random set that is not a density-one point [9]
and hence not Oberwolfach random; then {Y }♦ equals the class of c.e. K-trivial sets.
Thus, the whole class of K-trivial sets is encoded in a single random set, which can in
fact be chosen to be 10

2.

Proof of Corollary 4.9. C♦ is contained in theK-trivial sets by the aforementioned result
of [25]. On the other hand, each K-trivial set is in C♦ by Theorem 1.1. ut

We let JTH denote the class of sets that are h-JT-hard for some (computable) order func-
tion h. Every LR-hard set is in JTH via an o(2n) order function by [48] (or see [41,
8.4.15]).

The class JTH♦ was discussed in [41, 8.5.12]. In particular, by [24] there is a single
benign cost function c such that any set obeying c is in JTH♦. As a consequence, JTH♦

strictly contains the class of c.e. strongly jump traceable sets. As a consequence of the
previous two theorems, we separate JTH♦ from the c.e. K-trivials.
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Corollary 4.10. JTH♦ is a proper subclass of the c.e. K-trivial sets.

Proof. By [18] there is a c.e. jump traceable set W that is not jump traceable at order n2.
Then, by pseudo-jump inversion for random sets [41, Thm. 6.3.9] there is a ML-random
10

2 set Z which is JT-hard, but not n2-JT-hard. Then Z is Oberwolfach random by Theo-
rem 3.2. Thus the smart K-trivial constructed in Theorem 1.2 is not Turing below Z. ut

The investigations on diamond classes such as in [22], together with the results in this
section, suggest a new reducibility coarser than ≤T among the K-trivials.

Definition 4.11. For K-trivial sets A and B, we write B ≤ML A if A ≤T Y implies
B ≤T Y for any ML-random set Y .

This reducibility gauges complexity via the paradigm of [22] that being low means easy
to compute, in the sense that many oracles compute the set. Clearly,≤T implies≤ML, and
the ML-degrees form an upper semilattice where the least upper bound of K-trivial sets
C and D is given by the K-trivial set C ⊕ D. The set A constructed in Theorem 1.2 is
smart in that it satisfies B ≤ML A for every K-trivial set B.

Consider now the ML-degrees of K-trivial sets. Each diamond class induces an ideal
of this degree structure (an initial segment closed under join). Within the ML-degrees of
c.e. sets, any principal ideal {B : B ≤ML A} is the diamond class of the 60

3 class

CA = {Y : A ≤T Y }.

Thus, B ≤ML A if and only if B lies in every (60
3 ) diamond class that contains A.

Technical questions on ≤ML abound. For instance, is ≤ML arithmetical? Is the order-
ing of ML-degrees linear? Within the c.e. ML-degrees, one can equivalently ask: are there
incomparable diamond classes? To show non-linearity, one would need to build K-trivial
sets A0, A1 and ML-random sets Y0, Y1 such that Ai ≤T Yi yet Ai 6≤T Y1−i (i = 0, 1).

5. Density, martingale convergence, and Oberwolfach randomness

Recall that in the introduction, we discussed the concept of density: for measurable S ⊆ R
and z ∈ R, we define the lower density of S at z to be

ρ(S|z) = lim inf
h→0
{λ(S|I ) : I is an open interval, z ∈ I & |I | < h},

where λ(S|U) = λ(S ∩ U)/λ(U) is the conditional measure of S given U . For brevity,
we sometimes use the notation

lim inf
I→z

λ(S|I )

for the limit above. The upper density of S at z is defined similarly, but using the limit
superior instead of the inferior: it is lim supI→z λ(S|I ). If the upper and lower densities
of S at z are equal, then their common value is known as the density of S at z.

When working in Cantor space, it is more natural to work with dyadic density, which
is defined analogously. For a set S ⊆ 2ω and Z ∈ 2ω, the lower dyadic density of S at Z
is

ρ2(S|Z) = lim inf
n→∞

λ(S|[Z�n]).
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The upper dyadic density of S at Z is lim supn λ(S|[Z�n]). If the lower and upper dyadic
densities of S at Z are equal, then their common value is the dyadic density of S at Z.

Remark 5.1. Even though it is natural to use dyadic density in Cantor space and full
density in the real line, we nonetheless can use both notions in either space, by using the
“near-isomorphism” 2 between the two described in Remark 2.1. We can then extend
the notion from the unit interval to all of R by using rational shifts. If z ∈ R is not a
dyadic rational, then the dyadic density of a set S ⊆ R at z is the limit, as |I | → 0, of
λ(S|I ), where I is a dyadic open interval (an interval of the form (k2−n, (k + 1)2−n) for
k ∈ Z and n < ω) which contains z. Since we mostly consider random points, we are not
concerned about rational numbers. Thus, for any irrational number z and any measurable
set S, ρ(S|z) ≤ ρ2(S|z).

Recall that the Lebesgue density theorem [34, p. 407] says that for any measurable set
S ⊆ [0, 1], for almost all points z ∈ S, the density of S at z is 1. As mentioned in the in-
troduction, an expanding project of algorithmic randomness is to understand the effective
content of “almost everywhere” theorems of analysis by associating with each theorem
the class of random sets which makes every effective instance of this theorem work. Usu-
ally, different choices for the effective version of the theorem would yield different classes
of random sets.

To state an effective version of Lebesgue’s density theorem, we need to choose a
class C of effectively presented subsets of [0, 1] and ask: for which random points z, is
the density of S at z equal to 1 for all S ∈ C containing z? Choosing C to be the class
of effectively open sets will yield trivial answers, and so we concentrate on the class of
effectively closed sets.

As mentioned, a closely related result of Bienvenu, Hölzl, Miller and Nies character-
izes non-zero density of ML-random sets.

Theorem 5.2 ([2, Thm. 3.2, Rmk. 3.4]). The following are equivalent for a Martin-Löf
random set Z ∈ 2ω:

(1) Z is difference random;
(2) ρ2(P |Z) > 0 for every effectively closed subset P of 2ω which contains Z;
(3) ρ(P |z) > 0 for every effectively closed subset P of [0, 1] which contains the real z

with binary expansion given by Z.

The main question—for which random points z, is ρ(P |z) = 1 for all effectively closed
sets P containing z?—remains open. As we mentioned in the introduction, following
Bienvenu et al., we say that a real z ∈ [0, 1] is a density-one point if ρ(P |z) = 1 for every
effectively closed set containing z. As mentioned above, Day and Miller [9] showed that
difference randomness does not suffice to be a density-one point. They construct a Martin-
Löf random set Z such that ρ2(P |Z) > 0 for every effectively closed set containing Z,
but such that ρ2(P |Z) < 1 for some effectively closed set containing Z. The first part
guarantees that Z is difference random (Theorem 5.2).

Remark 5.3. Bienvenu et al. noted that there are density-one points which are not ran-
dom. For example, every 1-generic point is a density-one point, since it lies in the interior
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of any effectively closed set containing it. No 1-generic real is Martin-Löf random, or even
Schnorr random. This is why in this investigation, we focus on classifying the density-one
points within the ML-random points.

In this section we show that every Oberwolfach random set is a density-one point. The ar-
gument filters through martingale convergence. In the next section we give another proof,
using differentiability. As mentioned in the introduction, we do not know whether there
is a density-one random point which is not Oberwolfach random.

5.1. Martingale convergence. In the theory of algorithmic randomness, by a martingale
one means a function M : 2<ω → [0,∞) with the usual averaging condition M(σ0) +
M(σ1) = 2M(σ) for each string σ . For background on martingales in this sense see for
instance [14, Section 5.3]. An important fact frequently used is Kolmogorov’s inequality:
if M(〈〉) < b, then

λ{Z ∈ 2ω : ∃n [M(Z�n) ≥ b]} ≤ M(〈〉)/b.

See for instance [41, 7.1.9] or [14, Section 5.3].
A martingale M is called left-c.e. if M(σ) is a left-c.e. real uniformly in σ ; right-c.e.

martingales are defined analogously.
For a set Z ∈ 2ω, we say that a martingale M converges on Z if the sequence

〈M(Z�n)〉n<ω has a (finite) limit. The “buy low, sell high” trick (see for example [14,
Thm. 7.1.3]) shows that a set Z is computably random if and only if every computable
martingale converges on Z. The analogous fact fails for left-c.e. martingales and ML-
randomness. If every left-c.e. martingale converges on Z (to a finite value) then certainly
no left-c.e. martingale can succeed on Z, and so Z is ML-random. However, the converse
may fail.

To see this, we note that dyadic density translates to martingales. For any measurable
set A ⊆ 2ω, the function MA(σ ) = λ(A|σ) is a martingale. By definition, the dyadic
density of A at Z exists if and only if MA converges on Z. If P ⊆ 2ω is effectively
closed, then MP is a right-c.e. martingale bounded by 1; σ 7→ 1 − M(σ) is a left-c.e.
martingale.

For a random set Z and an effectively closed set P containing Z, the convergence of
density is equivalent to having lower density 1; the same holds for dyadic density.

Proposition 5.4. Let P ⊆ 2ω be an effectively closed set and let Z ∈ P be Martin-Löf
random. Then the upper density of P at Z is 1.

Proof. Fix a50
1-class P ⊆ 2ω. Let Y ∈ P be such that the upper density of P at Y is less

than some rational q < 1. We define a Martin-Löf test 〈Un〉 which captures Y .
The components Un are defined by induction on n. We let U0 = [Y �k], where k is

sufficiently large so that λ(P|Y �m) < q for allm ≥ k. Given Un, let Un be a c.e. antichain
of strings generating Un; note that all of these strings will extend Y �k . We let Un+1 be the
union of the sets Pt ∩ [σ ] where σ ∈ Un and t is the least stage such that λ(Pt |[σ ]) < q.
Note that each such set is clopen, so Un is indeed (effectively) open. By induction, we see
that Y ∈ Un+1. Also, we note that by definition, for each σ ∈ Un, λ(Un+1|[σ ]) < q (it
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is of course possible that Un+1 ∩ [σ ] = ∅) and so λ(Un+1) ≤ qλ(Un). So by induction,
λ(Un) ≤ qn. Replacing Un by Urn for an appropriate r ∈ ω yields a ML-test as required.

ut

The translation of dyadic density to martingales yields:

Corollary 5.5. LetZ ∈ 2ω. If every left-c.e. martingaleM converges onZ, then for every
effectively closed set P ⊆ 2ω containing Z we have ρ2(P|Z) = 1.

Thus, the construction of Day and Miller [9] shows that there is some difference random
set Z and a left-c.e. martingaleM which does not converge on Z. Doob’s martingale con-
vergence theorem [13] states that every martingaleM converges on almost every Z ∈ 2ω.
Hence some notion of randomness ensures the convergence of left-c.e. martingales. We
show that Oberwolfach randomness suffices.

Theorem 5.6. If Z is Oberwolfach random, then every left-c.e. martingale converges
on Z.

Corollary 5.7. Let z ∈ [0, 1] be Oberwolfach random. Then for any effectively closed
set P containing z, the dyadic density of P at z is 1.

For the proof of Theorem 5.6 we observe the oscillations in the value of the martingale
along an element of Cantor space. We need a fact that follows from the upcrossing in-
equality for martingales (see, for instance, [16, p. 235]); the proof of this fact is short, so
we give it for completeness.

Let M be a martingale. Let a < b be real numbers, and let n < ω. Let On =

On(M, a, b) be the set of all sequences X ∈ 2ω for which there is a sequence m1 <

k1 < m2 < k2 < · · · < mn < kn such that for i = 1, . . . , n we have M(X�mi ) < a and
M(X�ki ) > b.

Lemma 5.8. λ(On(M, a, b)) ≤ (a/b)
n.

Proof. We consider “smallest” oscillations. We define antichains of strings Un and Vn by
induction, with Vn refining Un and Un+1 refining Vn. We start with V−1 = 〈〉. Given Vn,
we let Un+1 be the collection of minimal strings τ extending some string in Vn such that
M(τ) < a. Given Un, we let Vn be the collection of minimal strings τ extending some
string in Un such that M(τ) > b. Let Un be the open set generated by Un, and Vn be the
open set generated by Vn. So 2ω = V−1 ⊇ U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ · · · . Kolmogorov’s
inequality tells us that λ(Vn|σ) ≤ a/b for every σ ∈ Un. Hence by induction we see
that λ(Vn) ≤ (a/b)n. But we also see that Vn = On: certainly Vn ⊆ On; for the other
inclusion, take X ∈ On and by induction let m1 be the least m such that M(X�m) < a;
k1 be the least k > m1 such that M(X�k) > b; m2 be the least m > k1 such that
M(X�m) < a; and so on. By induction we see that X�mi ∈ Ui and X�ki ∈ Vi . ut

Let M be a left-c.e. martingale. The set On = On(M, a, b) is open, but may not be
effectively open. The point, of course, is that we can discover that M(X�k) > b at some
stage, but if we see at some stage that M(X�m) < a, there is no guarantee that the
value of M(X�m) will not increase beyond a at some later stage. However, when an
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observed oscillation “goes bad”, i.e. ceases to be a true oscillation, there is a necessary
corresponding increase to M(〈〉). We use an interval test to let components of the test
guess approximate values for M(〈〉), and so limit the amount of badness.

Proof of Theorem 5.6. Let M be a left-c.e. martingale. After applying a rational scal-
ing factor to M , we may assume that M(〈〉) ∈ (0, 1). Suppose that 〈M(Z�n)〉n<ω does
not converge; find rational numbers a < b such that lim infnM(Z�n) < a < b <

lim supnM(Z�n). We will define an interval test that captures Z.
Let 〈Mt 〉 be an increasing, uniformly computable sequence of (rational-valued) mar-

tingales which converges (pointwise) to M . We define an interval test using the left-c.e.
real M(〈〉). We later calculate a constant C > 0. For a rational open interval I ⊆ [0, 1]
we let nI = 1+ bC · (− log2 |I |)c and define

G(I) =
⋃

OnI (Mt , a, b) Jall t such that Mt (〈〉) ∈ IK.

That is, we enumerate into G(I) all the sets X on which we see an (a, b)-oscillation of
length nI in 〈Mt (X�n)〉n<ω, while Mt (〈〉) ∈ I . For all n, and all sufficiently large t , we
have Z ∈ On(Mt , a, b). If M(〈〉) ∈ I then Mt (〈〉) ∈ I for almost all t , and so Z ∈ G(I).
Thus, the interval test (G,M(〈〉)) captures Z. It remains to show that G is an interval
array, as in Definition 2.6.

Suppose that I ⊆ I ′ are rational open intervals. Then |I | ≤ |I ′| implies that nI ≥ nI ′ .
Hence, for all t , OnI (Mt , a, b) ⊆ OnI ′

(Mt , a, b). If Mt (〈〉) ∈ I then Mt (〈〉) ∈ I
′, and we

conclude that G(I) ⊆ G(I ′).
It remains to bound the measure of G(I); by Remark 2.8 it suffices to show that

λ(G(I)) is bounded by a constant multiple of |I |. Fix a rational open interval I , and let
T = T (I) be the set of stages t at whichMt (〈〉) ∈ I ; so T is an interval (or ray) of stages.
We bound the measure of G(I) by considering two parts: oscillations which “go bad”,
and oscillations which remain more or less good.

Let c = (a + b)/2 (any number in the interval (a, b) would do, but it cannot depend
on I ). Let t∗ = sup T (if M(〈〉) ∈ I then t∗ = ω, and below we let Mω = M). We let
G(I)bad

= G(I) \OnI (Mt∗ , c, b), that is, all sequences X which appear to be oscillating
nI times between a and b at some stage t ∈ T , but by stage t∗ we see that they no longer
oscillate even between c and b. We let G(I)good

= G(I) ∩OnI (Mt∗ , c, b).
First, we observe that asG(I)good

⊆OnI (Mt∗,c,b), Lemma 5.8 shows that λ(G(I)good)

≤ (c/b)nI .
Next, we consider G(I)bad. Here we note that for all X ∈ G(I)bad there is some k

and some t < t∗ in T such that Mt (X�k) < a but Mt∗(X�k) ≥ c. Let t∗ = min T and let
K be the set of minimal strings σ such that Mt∗(σ ) < a and Mt∗(σ ) ≥ c. Thus, G(I)bad

is contained in the open set K generated by K . Since K is an antichain, Kolmogorov’s
inequality applied to the martingale Mt∗ −Mt∗ shows that

λ(K) ≤
Mt∗(〈〉)−Mt∗(〈〉)

c − a
≤
|I |

c − a
.

Thus, overall,

λ(G(I)) ≤

(
c

b

)nI
+
|I |

c − a
.
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As mentioned above, by Remark 2.8 it suffices to choose C so that (c/b)nI is bounded by
a constant multiple of |I |. Since nI ≥ −C log2(|I |), we have

(c/b)nI ≤ (c/b)−C log2(|I |) = |I |−C log2(c/b).

So we choose C = −1/log2(c/b) and are done. ut

5.2. Martingale convergence and full density. We use the following lemma to lift
Corollary 5.7 to full (non-dyadic) density.

Proposition 5.9. Let C ⊆ R be effectively closed, and let z ∈ R be irrational. Then C has
density 1 at z⇔ C has dyadic density 1 at z and C+ 1/3 has dyadic density 1 at z+ 1/3.

Proof. ⇒: Full density is translation-invariant. So, by hypothesis that C has Lebesgue
density 1 at z, C + 1/3 has density 1 at z + 1/3. Hence C has dyadic density 1 at z and
C + 1/3 has dyadic density 1 at z+ 1/3.
⇐: We rely on a geometric fact already used in [39]. For m ∈ ω let Dm be the

collection of open intervals of the form (k2−m, (k + 1)2−m) where k ∈ Z. Let D′m be the
set of intervals of the form I − 1/3 where I ∈ Dm. +

Fact 5.9.1. Let m ≥ 1. If I ∈ Dm and J ∈ D′m, then the distance between an endpoint
of I and an endpoint of J is at least 1/(3 · 2m).

To see this, assume that |k2−m − (p2−m − 1/3)| < 1/(3 · 2m) for k, p ∈ Z. This yields
|3k − 3p + 2m| < 1, and hence 3 | 2m (or 2m = 0), a contradiction.

For every m ≥ 1, let Im be the unique interval in Dm which contains z, and let I ′m be
the unique interval in Dm which contains z + 1/3. Given ε > 0, by hypothesis we may
choose m∗ ∈ ω so that for each n ≥ m∗ we have

2n λ(In ∩ C) ≥ 1− ε and 2n λ(I ′n ∩ (C + 1/3)) ≥ 1− ε.

Fix n ≥ m∗. Let Jn = I ′n − 1/3, so In ∈ Dn and Jn ∈ D′n. Then z ∈ In ∩ Jn and
λ((In ∪ Jn)∩ C) ≥ (1− ε)|In ∪ Jn| (to see this, note that for an interval L, λ(L∩ C)/λL
is the slope of the function x 7→ λ([v, x] ∩ C) at L, where v < minL; the slope at the
interval I ∪ J is at least the minimum of the slopes at I and at J ).

Suppose thatK is an open interval containing z such that |K| < 2−m
∗
−2. Find n ≥ m∗

such that 2−n−3 < |K| ≤ 2−n−2. Fact 5.9.1 shows that the distance of z to either endpoint
of In ∪ Jn is greater than 2−n/3, and so K ⊆ In ∪ Jn. However, |K| > 2−n/8 >

|In ∪ Jn|/16, and so

λ(K ∩ C)
|K|

≥
λ((In ∪ Jn) ∩ C)

|K|
−
|In ∪ Jn| − |K|

|K|

≥
(1− ε)|In ∪ Jn|

|K|
−
|In ∪ Jn|

|K|
+ 1 ≥ 1− 16ε. ut

As a corollary we obtain Theorem 1.3:

Theorem 1.3. Every Oberwolfach random set is a density-one point.
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Proof. In view of Proposition 5.9, it suffices to show that if z ∈ R is Oberwolfach random,
then so is z+ 1/3. If 〈Un〉 is a left-c.e. bounded test which captures z+ 1/3, then

〈Un − 1/3〉 = 〈{x − 1/3 : x ∈ Un}〉

is a left-c.e. bounded test which captures z. ut

6. Oberwolfach randomness and differentiability

A classical result of Lebesgue states that every non-decreasing function f : [0, 1] → R
is differentiable almost everywhere. As mentioned above, almost-everywhere theorems
invite effectivisation. In this case, for a given class F of effective non-decreasing func-
tions, we ask how random a real z must be so that every function in F is differentiable
at z. For example, Brattka, Miller and Nies [5] studied the case where F is the class of
non-decreasing computable functions (which, for continuous non-decreasing functions,
coincides with the class of functions f mapping a rational number q to a computable real,
uniformly in q). They showed that the randomness notion corresponding to this effective
version of the differentiability theorem is computable randomness, a notion properly im-
plied by Martin-Löf randomness.

Here we consider the larger class F of interval-c.e. functions. We observe that the
corresponding randomness notion—the collection of reals z at which every interval-c.e.
function is differentiable—implies ML-randomness; indeed, it implies that every left-c.e.
martingale converges on the binary expansion of z. However, a short and direct argument,
avoiding Proposition 5.9, shows that each such point is a density-one point. We then show
that Oberwolfach randomness implies this randomness property. This gives us a modified
proof of Theorem 1.3.

6.1. Interval-c.e. functions. Recall that a function f : [0, 1] → R is lower semicontin-
uous if for every q ∈ R, the inverse image f−1(q,∞) is open. Upper semicontinuity is
defined analogously, with f−1(−∞, q) being open instead.

The effective version of lower semicontinuity is lower semicomputability. A func-
tion f : [0, 1] → R is lower semicomputable if for every rational number q, f−1(q,∞)

is effectively open, uniformly in q. A function f is lower semicomputable if and only
if it has an approximation from below; an increasing computable sequence 〈fs〉s<ω of
rational-valued step functions—linear combinations of characteristic functions of ratio-
nal intervals—such that f = lims fs pointwise. The notion of upper semicomputable
functions is defined analogously; a function f is lower semicomputable if and only if−f
is upper semicomputable.

Lower semicontinuous functions to the extended real line can be used, for exam-
ple, to characterise Martin-Löf randomness, via so called “integral tests” [52, 21]: z ∈
[0, 1] is ML-random if and only if for every integrable lower semicomputable function
f : [0, 1] → [0,∞] we have f (z) < ∞. When f is universal among the integral tests,
f (z) can be thought of as the “randomness deficiency” of z, analogous to the index of the
least component of a universal ML-test omitting z.
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Identifying the variations of computable functions, Freer, Kjos-Hanssen, Nies and
Stephan [20] studied a class of monotone, continuous, lower semicomputable functions
which they called interval-c.e.

Let g : [0, 1] → R. For 0 ≤ x < y ≤ 1 define the variation of g in [x, y] by

V (g, [x, y]) = sup
{n−1∑
i=1

|g(ti+1)− g(ti)| : x ≤ t1 ≤ · · · ≤ tn ≤ y
}
.

The function g is of bounded variation if V (g, [0, 1]) is finite. If g is a continuous function
of bounded variation then the function f (x) = V (g, [0, x]) is also continuous. If g is
computable then the function f (x) = V (g, [0, x]) is lower semicomputable (but may
fail to be computable). A further property of this “variation function” comes from the
observation that V (g, [x, y]) + V (g, [y, z]) = V (g, [x, z]) for x < y < z (see [4, Prop.
5.2.2]).

Definition 6.1. A non-decreasing, lower semicontinuous function f : [0, 1] → R is
interval-c.e. if f (0) = 0, and f (y)−f (x) is a left-c.e. real, uniformly in rationals x < y.

Thus, the variation function of each computable function of bounded variation is interval-
c.e. Freer et al. [20], together with Rute, showed that conversely, every continuous
interval-c.e. function is the variation of a computable function.

Note that if the assumption of lower semicontinuity is dropped from Definition 6.1
then we obtain an uncountable class of functions; if an interval-c.e. function f is dis-
continuous at an irrational point a, then changing the value of f (a) to any number be-
tween limx→a− f (x) and limx→a+ f (a) results in a function in that class. We mention
that nonetheless, the differentiability results in this section all hold for this wider class of
functions.

On the other hand, once we require lower semicontinuity, we see that every inter-
val-c.e. function is lower semicomputable: f (x) > q if and only if there is some rational
number r < x such that f (r)− f (0) > q, and this is an effectively open condition.

A simple example of a continuous interval-c.e. function is the function f (x) = λ(U ∩
[0, x)), where U ⊆ [0, 1] is effectively open: f (y)−f (x) = λ(U ∩ (x, y)) is the measure
of a uniformly given, effectively open set, and so is uniformly a left-c.e. real.

6.1.1. Measures and martingales. In general, the non-decreasing and lower semicontin-
uous functions f : [0, 1] → R with f (0) = 0 correspond to Borel measures µ on [0, 1)
by letting fµ(x) = µ([0, x)); in the other direction, given f , we let µf be the measure
generated by letting µf ([x, y)) = f (y)− f (x). The measure µf is atomless if and only
if f is continuous.

Recall that a martingale M is atomless if the measure µM on 2ω generated by letting
µM([σ ]) = 2−|σ |M(σ) has no atoms; that is, if for all X ∈ 2ω, M(X�n) = o(2n).

There is a correspondence between continuous interval-c.e. functions f and atomless
left-c.e. martingales M . Given a continuous interval-c.e. function f we define the mar-
tingale Mf by letting Mf (σ ) = µf (2[σ ]) = f (0.σ1) − f (0.σ0) (see Remark 2.1 for
the definition of the near-isomorphism 2). In the other direction, given M , by pushing
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forward by 2, we identify µM and 2∗µM and so view µM as a measure on [0, 1]. The
corresponding function, denoted by fM , turns out to be interval-c.e.: µM([x, y]) is the
supremum of µM(A), where A is a finite union of dyadic intervals contained in [x, y].

6.2. Characterizing ML-randomness via the existence of the upper derivative. Us-
ing a result of [20] and a combinatorial lemma in [5], we will characterize Martin-Löf
randomness of a real z by the condition that all interval-c.e. functions have a finite upper
derivative at z.

We introduce some convenient notation. Let f : [0, 1] → R. For reals x < y we let

1f (x, y) = f (y)− f (x)

and let

Sf (x, y) =
f (y)− f (x)

y − x

denote the slope of f between x and y. Sometimes we write 1f (I ) and Sf (I ) to denote
1f (x, y) and Sf (x, y) where I = (x, y). Below, it is sometimes important that we work
with open intervals.

In this section and below, we make use of the notion of (p, q)-intervals. For rational
numbers p > 0 and q, we call an image of a basic dyadic interval under the map y 7→
py+ q a (p, q)-interval. That is, the (p, q)-intervals in R are the intervals whose closure
is of the form [p · m2−n + q, p · (m + 1)2−n + q] for some n ≥ 0 and m ∈ Z. As
is shown in [5], (p, q)-intervals allow us to reduce analytic questions on the real line to
arguments in the relatively simple setting of Cantor space. For a setL of rational numbers,
an L-interval is a (p, q)-interval for some p, q ∈ L.

The main combinatorial lemma concerning (p, q)-intervals is [5, Lemma 4.2]:

Lemma 6.2. For any real α > 1 there is a finite set L of rationals with the following
property: for every interval A ⊂ R there are L-intervals B and C such that

• A ⊂ B and |B|/|A| < α;
• C ⊂ A and |A|/|C| < α.

Let f : [0, 1] → R and z ∈ [0, 1]. In the notation introduced above,

Df (z) = lim sup
h→0

Sf (z, z+ h), Df (z) = lim inf
h→0

Sf (z, z+ h),

where of course if h < 0 then (z, z+ h) = (z+ h, z).
Since z may be non-computable, we need to approximate these quantities by look-

ing at rational intervals close to z. Even this may be too complicated, for example
when we want to capture non-differentiability by martingales. We prefer to work with
(p, q)-intervals. Slightly modifying notation from [5], for shorthand we let
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D(p,q)f (z) = lim sup
|A|→0

Sf (A) JA is a (p, q)-interval and z ∈ AK,

D(p,q)f (z) = lim inf
|A|→0

Sf (A) JA is a (p, q)-interval and z ∈ AK.

The following lemma is related to [5, Lemma 4.3].

Lemma 6.3. Let f : [0, 1] → R be non-decreasing. Let z ∈ [0, 1], and suppose that
Df (z) = ∞. Then there are rationals p > 0 and q such that D(p,q)f (z) = ∞.

Proof. Find a finite set L given by Lemma 6.2 for α = 2. Let h > 0, and let A be
either [x, x + h] or [x − h, x]. Find an L-interval B with A ⊂ B and |B| < 2|A|. Then
Sf (B) ≥ Sf (A)/2. Since L is finite, the pigeonhole principle, applied as h→ 0, gives a
single pair (p, q) from L which witnesses that D(p,q)f (z) = ∞. ut

Theorem 6.4. Let z ∈ [0, 1]. Then z is ML-random⇔Df (z) <∞ for each interval-c.e.
function f .

Proof. (⇐) Let U be a universal prefix-free machine (see for instance [41, Chapter 2]);
we assume that U outputs rational numbers. Freer et al. [20, Prop. 2.6] show that the
function fU(x) = λ[{σ : U(σ ) < x}]≺ is interval-c.e., and that DfU(z) < ∞ implies
that z is ML-random.

(⇒) Suppose that f is interval-c.e. andDf (z) = ∞. Applying Lemma 6.3, let p > 0
and q be rationals such that D(p,q)f (z) = ∞. If z is on the boundary of some (p, q)-
interval, then z is rational and so not Martin-Löf random. So we may assume that z is in
the interior of any (p, q)-interval which contains it.

Define the60
1 set Un〈s〉 as follows: enumerate into Un all open (p, q)-intervalsA such

that Sf (A) > 2n (by our earlier argument, open intervals will suffice). This is indeed a
60

1 set since the real Sf (A) is left-c.e. uniformly in A. Let Un be the set of maximal (with
respect to inclusion) (p, q)-intervals enumerated into Un. Importantly, these are disjoint.
Let µf be the measure defined on intervals by µf ([x, y]) = f (y)− f (x). Then

λ(Un) =
∑
A∈Un

λ(A) =
∑
A∈Un

µf (A)/Sf (A) ≤ 2−n
∑
A∈Un

µf (A) ≤ f (1) · 2−n,

with the last inequality coming from the fact that the elements of Un are pairwise disjoint.
Since by construction each Un contains z, we conclude that z is not Martin-Löf random.

ut

The direction (⇐) of Theorem 6.4 has an alternative proof based on the following two
facts of interest on their own. We obtain connections between differentiability and mar-
tingale convergence.

Proposition 6.5. Let M be an atomless left-c.e. martingale, and let fM be the corre-
sponding interval-c.e. function ( from Subsection 6.1.1). Let X ∈ 2ω and let x be the real
with binary expansion X.

(1) If M succeeds on X then DfM(x) = ∞.
(2) If fM is differentiable at x then M converges on X.
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Proof. Let τ ≺ X and let I = 2[[τ ]] = [a, b]; so a ≤ x ≤ b. We have M(τ) = Sf (I ),
and

min{Sf (a, x), Sf (x, b)} ≤ Sf (I ) ≤ max{Sf (a, x), Sf (x, b)}

(see [5, Fact 2.4]). ut

A universal left-c.e. martingale introduced by Stephan is atomless. For a string τ , let
Eτ be the martingale which starts with 1, doubles its capital along τ , and then rests. So
Eτ (σ ) = 0 if τ and σ are incomparable; for n ≤ |τ |, Eτ (τ�n) = 2n; and Eτ (σ ) = 2|τ |

for σ extending τ . Stephan [50] showed that the martingaleM =
∑
τ 2−K(τ)Eτ is univer-

sal (also see [41, Thm. 7.2.8]). In [23] it is shown that Stephan’s martingale is atomless.
Now (⇐) of Theorem 6.4 can be proved as follows. Suppose that z ∈ [0, 1] is not

ML-random, and let Z be a binary expansion of z. Then Z is not ML-random, and so
Stephan’s martingale succeeds on M . By Proposition 6.5, DfM(z) = ∞. Indeed, since
fM is continuous, we obtain the following strengthening of Theorem 6.4:

Corollary 6.6. The following are equivalent for z ∈ [0, 1]:

(1) z is ML-random.
(2) Df (z) <∞ for every interval-c.e. function f .
(3) Df (z) <∞ for every continuous interval-c.e. function f .

6.3. Being a point of differentiability of every interval-c.e. function. In the introduc-
tion we discussed the program of determining the randomness strength needed to make
effective versions of “almost-everywhere” theorems hold. A main result in [5, Section 4]
states that a real z is computably random iff (a) every non-decreasing computable func-
tion g satisfies Dg(z) <∞ iff (b) every non-decreasing computable function f is differ-
entiable at z. In our setting the effectiveness condition is being interval-c.e. The analog
of (a) is equivalent to ML-randomness by Theorem 6.4. In contrast, the analog of (b) is
stronger than ML-randomness by the following.

Proposition 6.7. Suppose that every continuous interval-c.e. function is differentiable
at z. Then:

(i) Every left-c.e. martingale converges on the binary expansion Z = 2−1(z), and so z
is ML-random.

(ii) z is a density-one point.

Proof. (i) First, we note that if f is differentiable at z then Df (z) < ∞, and so we
conclude that z is ML-random (Theorem 6.4). Suppose that some left-c.e. martingale N
does not converge on Z. Since {N(Z�n) : n < ω} is bounded, we can produce a bounded
martingale M which does not converge on Z (when N(σ) exceeds a bound on N(Z�n),
stop betting). The martingale M is certainly atomless. Proposition 6.5 shows that the
continuous interval-c.e. function fM is not differentiable at z.

(ii) We could combine (i) with the argument in the proof of Theorem 1.3. For a direct
proof, let P be an effectively closed set containing z. Let g(x) = λ([0, x)] \ P). Then
the function g is interval-c.e. and continuous (see Subsection 6.1.1). By hypothesis, g′(z)
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exists. The differentiability of g at z implies that g′(z) is in fact the limit, as |I | → 0,
of Sg(I ) for open intervals I containing z (see the proof of Proposition 6.5). Hence, g′(z)
is the density of [0, 1] \P at z. Thus, we conclude that the upper and lower densities of P
at z are the same. Since z ∈ P and z is ML-random, Proposition 5.4 says that the upper
density of P at z is 1. Hence the lower density of P at z is 1. ut

We turn to the main task of this subsection.

Theorem 6.8. Let z be an Oberwolfach random real. Then every interval-c.e. function is
differentiable at z.

The proof of Theorem 6.8 is a more complex variant of the proof of Theorem 5.6. For
an interval-c.e. function f and an Oberwolfach random real z, we need to show that
the upper and lower derivatives of f at z are finite and equal. Finiteness follows from
Theorem 6.4. If Df (z) < Df (z) then we want to capture z by an interval test with
associated left-c.e. real f (1); this will be done by enumerating intervals on which we
observe long oscillations of the slope Sf .

We note two new problems.

1. We have no access to z directly, and so cannot measure the slopes Sf (z, z + h) which
presumably oscillate beyond two rationals values. We may assume though that f is con-
tinuous at z, and so we can find oscillations in Sf (I ) for rational intervals I containing z.
Even this, though, is insufficient for finding the bound on the measure of G(I)bad. In the
analogous calculation in the proof of Theorem 5.6, we made use of the antichain K of
minimal strings on which M rises from a to c; in the current proof this will be a set of in-
tervals on which the slope grows from a to c. But we may have two overlapping intervals
of this kind, where the union is not so. As in the proof of Theorem 6.4, we want to mimic
the structure of Cantor space. This is again done with the aid of (p, q)-intervals.

2. The previous argument, in particular bounding the measure of G(I)bad, relied on the
existence of a nice effective approximation for the martingale M , namely the increasing
sequence of rational-valued martingales Mt . There may be no full analogue of this ap-
proximation for the function f . Even though Sf (x, y) is left-c.e., uniformly in rationals
x and y, the stage t approximations to these values need not be coherent with each other.
There may be no computable sequence of functions ft increasing to f such that ft is
defined on all rational numbers and 1ft (x, y) is non-decreasing for all rationals x < y.
We restrict ourselves to partially defined approximating functions.

LetQ0 ⊂ Q1 ⊂ Q2 ⊂ · · · be an increasing computable sequence of finite sets whose
union is Q ∩ [0, 1]; we assume that 0, 1 ∈ Q0. For rationals x < y let 〈αx,yt 〉t<ω be a
computable increasing sequence of rational numbers whose limit is 1f (x, y). For t < ω

and x ∈ Qt , we let

ft (x) = max
m∑
i=1

α
xi−1,xi
t J0 = x0 < x1 < · · · < xm = x are in QtK.

We extend the slope notation to Sft (I ), where I is an interval with endpoints in Qt .
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• For any rational x, 〈ft (x)〉x∈Qt is a non-decreasing sequence of rationals which con-
verges to f (x).
• For any interval I with endpoints in Qt , Sft (I ) ≤ Sft+1(I ).

To tackle issue (1) above, we invoke [5, Lemma 4.3].

Lemma 6.9. Suppose f : [0, 1] → R is non-decreasing and continuous at z ∈ [0, 1],
but that Df (z) < Df (z). Then there are pairs (p, q) and (r, s) of rationals such that
D(r,s)f (z) < D(p,q)f (z).

We need to define oscillations in the context of the functions ft and f . Let g be a partial
function from [0, 1] to R (we will use g = ft for various stages t). Fixing parame-
ters, pairs (p, q) and (r, s), rationals a < b, and n < ω, we let On = On(g, a, b) =

On(g, a, b; r, s, p, q) be the set of real numbers z ∈ (0, 1) for which there is a sequence
of open intervals I1 ⊃ J1 ⊃ I2 ⊃ J2 ⊃ · · · ⊃ In ⊃ Jn such that z ∈ Jk and for all
k = 1, . . . , n,

• Ik is an (r, s)-interval with endpoints in dom g and Sg(Ik) < a; and
• Jk is a (p, q)-interval with endpoints in dom g and Sg(Jk) > b.

We note that On is open; it is the union of intervals which appear as Jk in such an oscil-
lating sequence.

We again have to bound the measure of all truly oscillating sequences. This is a cal-
culation which is classical (it contains no consideration of effectiveness). The calculation
is very similar to that proving Lemma 5.8.

Lemma 6.10. λ(On(g, a, b)) ≤ (a/b)
n.

Proof. Shortest strings correspond to maximal intervals. Here Un is a set of pairwise
disjoint (r, s)-intervals and Vn is a set of pairwise disjoint (p, q)-intervals. All intervals
mentioned have endpoints in dom g. Vn refines Un (in the sense that every interval in Vn
is contained in an interval in Un) and Un+1 refines Vn. We let V−1 = (0, 1). Given Vn,
we let Un+1 be the collection of maximal (r, s)-intervals I contained in some interval
in Vn such that Sg(I ) < a. Given Un, we let Vn be the collection of maximal (p, q)-
intervals J contained in some interval in Vn such that Sg(J ) > b. By the same process
of “maximisation”, we observe that On is generated by Vn, and by induction show that
λ(On) ≤ (a/b)

n. Instead of using Kolmogorov’s inequality, we note that if Sg(I ) < a and
V is a collection of pairwise disjoint intervals J ⊆ I with Sg(J ) > b then λ(

⋃
V ) ≤ |I | ·

(a/b). To see why, observe that for any finite V ′ ⊆ V we have 1g(I ) ≥
∑
J∈V ′ 1g(J ).

ut

Proof of Theorem 6.8. Let f : [0, 1] → R be interval-c.e. Suppose that f is not differen-
tiable at z. We show that z is not Oberwolfach random. If Df (z) = ∞ then z is not ML-
random (Theorem 6.4), and so certainly not Oberwolfach random. So we may assume that
the upper and lower derivatives Df (z) and Df (z) are both finite and Df (z) < Df (z).
Since f is non-decreasing and Df (z) < ∞, we conclude that f is continuous at z (in
fact, in [23] it is shown that every point of discontinuity of an interval-c.e. function is
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computable). By Lemma 6.9, there are pairs (r, s) and (p, q), and rationals a < b, such
that

D(r,s)f (z) < a < b < D(p,q)f (z).

We note that if I is any open interval and z ∈ I is irrational, then z ∈ J for some
open (p, q)-subinterval J of I (and similarly for (r, s)). Since we may assume that z
is irrational, we see that for every n, z ∈ On(f, a, b) (from now we fix the parameters
r, s, p, q and do not mention them again). We fix an approximation 〈ft 〉 to f as described
in (2) above. We note that z ∈ On(ft , a, b) for all n, and almost all t .

After applying a rational scaling factor to f , we may assume that f (1) < 1. We define
an interval test associated with the left-c.e. real f (1). Again let C = −1/log2(c/b). For
an interval I ⊆ [0, 1], we let nI = 1+ bC · (− log2 |I |)c and define

G(I) =
⋃

OnI (ft , a, b) Jft (1) ∈ IK.

If f (1) ∈ G(I) then z ∈ G(I) so (G, f (1)) captures z. It remains to show that G is an
interval array.

The argument follows that of the proof of Theorem 5.6. The proof that G respects
inclusion is repeated verbatim. To bound the measure of G(I), we again separate to
good and bad parts; we again let T = T (I) be the interval (or ray) of stages t such
that ft (1) ∈ I , c = (a + b)/2, G(I)bad

= G(I) \ OnI (fsup T , c, b) and G(I)good
=

G(I) ∩ OnI (fsup T , c, b). We use Lemma 6.10 to see that λ(G(I)good) ≤ (c/b)nI which
is bounded by |I | by the choice of C and nI .

Let t∗ = sup T and t∗ = min T . We note that G(I)bad is contained in the union of
(r, s)-intervals J such that for some t ∈ [t∗, t∗), J ’s endpoints lie in Qt and Sft (J ) < a

but Sft∗ (J ) ≥ c. We let K be the set of maximal such intervals; the intervals in K are
pairwise disjoint, and G(I)bad

⊆ K where K is the open set generated by K . We again
want to show that λ(K) ≤ (ft∗(1)− ft∗(1))/(c − a), but the fact that intervals in K may
not have endpoints in Qt∗ makes our life a bit harder.

Claim 6.10.1. Let s < ω, and let L be a finite set of pairwise disjoint intervals with
endpoints in Qs . For all t ≥ s,

ft (1)− fs(1) ≥
∑
J∈L

|J | · (Sft (J )− Sfs (J )).

Proof. Enumerate L as {J1, . . . , Jm} with Ji = (xi, yi) and yi ≤ xi+1. For i = 1, . . . , m
we have ft (yi) − fs(yi) ≥ (ft (xi) − fs(xi)) + |Ji | · (Sft (Ji) − Sfs (Ji)), and we have
ft (xi+1)− fs(xi+1) ≥ ft (yi)− fs(yi). By induction, we see that

ft (1)− fs(1) ≥ ft (ym)− fs(ym) ≥
m∑
i=1

|Ji | · (Sft (Ji)− Sfs (Ji))

as required. ut

Let K ′ ⊆ K be finite. For each J ∈ K ′, let t (J ) be the least stage t ∈ [t∗, t∗) such that
the endpoints of J are in Qt . For t ∈ [t∗, t∗), let Kt be the set of intervals J ∈ K ′ with
t (J ) ≤ t . Claim 6.10.1 tells us that for each t ,

ft+1(1)− ft (1) ≥
∑
J∈Kt

|J | · (Sft+1(J )− Sft (J )).
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Summing for t ∈ [t∗, t∗), we get

ft∗(1)− ft∗(1) ≥
∑
J∈K ′

|J | · (Sft∗ (J )− Sft (J )(J )) ≥ (c − a)
∑
J∈K ′

|J |.

Taking larger and larger K ′ ⊆ K (if K is infinite) shows that

ft∗(1)− ft∗(1) ≥ λ(K) · (c − a)

as required.
This concludes the proof. We remark again on the difference between this last cal-

culation and the corresponding one in the proof of Theorem 5.6. If we knew that all the
intervals in K had endpoints in Qt∗ , then we could take the function ft∗�Qt∗ − ft∗ and
build a martingale from the slopes of this function on (r, s)-intervals; then the inequal-
ity would follow from Kolmogorov’s inequality. This is precisely where the absence of a
“nice” approximation 〈ft 〉 (as in problem (2) above) makes us work harder.

On the other hand, for Claim 6.10.1, we could have restricted ourselves to (r, s)-
intervals and used this approach. We preferred to give a direct proof which does not pass
through martingales. ut
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[34] Lebesgue, H.: Sur l’intégration des fonctions discontinues. Ann. Sci. École Norm. Sup. (3)
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