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Abstract. We prove that the complete L-functions of classical holomorphic newforms have in-
finitely many simple zeros.
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1. Introduction

Let π be a cuspidal automorphic representation of GLn(AQ) with corresponding
L-function 3(s, π). The Grand Riemann Hypothesis (GRH) and Grand Simplicity Hy-
pothesis (GSH) predict that the zeros of 3(s, π) lie on the line <(s) = 1/2 and are
simple, apart from at most one multiple zero if π is associated to a geometric motive
(cf. the BSD conjecture). These conjectures have not yet been shown to hold for a single
example, and most partial evidence in their favor has been for n = 1, i.e. the Dirichlet
L-functions. In particular, until recently, the only cuspidal representation for n > 1 for
which3(s, π) was known to have infinitely many simple zeros was the one associated to
the Ramanujan1modular form, which is a theorem of Conrey and Ghosh [4] from 1988.

As Conrey and Ghosh remark in their paper, most of their arguments would apply to
any degree 2 L-function, but they were unable to conclude the proof without assuming
a priori the existence of at least one simple zero (which they verified directly for the L-
function associated to 1). In this paper, we analyze their method from a structural point
of view, along the lines of [2] and [7], to prove the following:

Theorem 1.1. Let f ∈ Sk(01(N))
new be a normalized Hecke eigenform of arbitrary

weight and level. Then the complete L-function 3f (s) =
∫
∞

0 f (iy)ys−1 dy has infinitely
many simple zeros.

As our proof will show, a lack of simple zeros leads to inconsistencies unless the local
L-factor of 3f (s) is a square at every unramified prime (which cannot happen for holo-
morphic modular forms). In effect, we establish a connection (albeit a very loose one)
between the zeros of the global L-function and those of its local factor polynomials.
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Recently, Cho [3] has generalized [4] to prove that the L-functions of the first few
Maass cusp forms of level 1 have infinitely many simple zeros. Our proof could be mod-
ified in an analogous fashion to extend Theorem 1.1 to all cuspidal Maass newforms.
Moreover, the assumption that f is a cusp form is also unnecessary, so in fact the method
could be generalized to show that if χ1 and χ2 are primitive Dirichlet characters and t ∈ R
then 3(s, χ1)3(s + it, χ2) has infinitely many simple zeros unless χ1 = χ2 and t = 0.
However, stronger results of this type may be obtained by other methods (see e.g. [5]).

Note that Conrey and Ghosh’s result for f = 1 is a bit stronger than the conclusion
of Theorem 1.1 for that case. Precisely, if N s

f (T ) denotes the number of simple zeros
of 3f (s) with imaginary part in [0, T ], they showed that for every ε > 0, the inequality
N s
1(T ) ≥ T

1/6−ε holds for some arbitrarily large values of T . With Theorem 1.1 in hand,
it seems likely that their proof of this estimate would generalize at least to all eigenforms
of level 1. However, in this paper we content ourselves with the qualitative statement of
Theorem 1.1.

Finally, we remark that concurrent work of Milinovich and Ng [8] also establishes
Theorem 1.1, assuming GRH. Although their proof is conditional, it yields the much
better quantitative estimate N s

f (T ) ≥ T (log T )−ε for any fixed ε > 0 and all sufficiently
large T .

Notation

Let f be as in the statement of Theorem 1.1, and let ξ denote its nebentypus character.
Let

Lf (s) =

∞∑
n=1

af (n)n
−s
=

∏
p

1
1− af (p)p−s + ξ(p)pk−1−2s

be the finite L-function of f , and 3f (s) = (2π)−s0(s)Lf (s) the completed version.
Then we have the functional equation

3f (s) = εN
k/2−s3f̄ (k − s), (1.1)

where f̄ ∈ Sk(00(N), ξ) is the dual of f , and ε ∈ C is the root number. We define

Df (s) = Lf (s)
d2

ds2 logLf (s) =
∞∑
n=1

cf (n)n
−s .

Note thatDf (s) continues meromorphically to C, with poles precisely at the simple zeros
of Lf (s) (including the trivial zeros s = 0,−1,−2, . . .).

Next, for any α ∈ Q×, we define the additive twists

Lf (s, α) =

∞∑
n=1

af (n)e(αn)n
−s and Df (s, α) =

∞∑
n=1

cf (n)e(αn)n
−s .

By Deligne’s bound |af (p)| ≤ 2p(k−1)/2, we see that each of these is holomorphic for
<(s) > (k + 1)/2. Moreover, it follows from [1, Prop. 3.1] that Lf (s, α) continues to an
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entire function. One could similarly prove that Df (s, α) has meromorphic continuation
to C for every α, but it turns out to be enough for our purposes to consider α = 1/q,
where q is a prime number not dividing N . In this case, we have the following expansion
of the exponential function in terms of Dirichlet characters:

e

(
n

q

)
= 1−

q

q − 1
χ0(n)+

1
q − 1

∑
χ (mod q)
χ 6=χ0

τ(χ)χ(n),

where χ0 (mod q) is the trivial character, the sum ranges over all non-trivial χ (mod q),
and τ(χ) denotes the Gauss sum of χ . Multiplying both sides by cf (n)n−s and summing
over n, we thus see that

Df

(
s,

1
q

)
= Df (s)−

q

q − 1
Df (s, χ0)+

1
q − 1

∑
χ (mod q)
χ 6=χ0

τ(χ)Df (s, χ),

where, for each χ , Df (s, χ) denotes the multiplicative twist

Df (s, χ) =

∞∑
n=1

cf (n)χ(n)n
−s .

By the known non-vanishing results for automorphic L-functions [6], all poles of
Df (s)/0(s) and Df (s, χ)/0(s) for χ 6= χ0 are confined to the critical strip {s ∈ C :
<(s) ∈ ((k − 1)/2, (k + 1)/2)}. On the other hand, from the formula

∞∑
n=1

af (n)χ0(n)n
−s
= (1− af (q)q−s + ξ(q)qk−1−2s)Lf (s),

it follows that Df (s, χ0) has a pole at every simple zero of the local Euler factor polyno-
mial 1 − af (q)q−s + ξ(q)qk−1−2s , except possibly at s = 0 when k = 1. By Deligne,
the zeros of this polynomial occur on the line <(s) = (k − 1)/2, and they are simple if
and only if the polynomial is not a square. By the above, we see that Df (s, 1/q) inherits
these poles when they occur.

2. Proof of Theorem 1.1

The main tool used in the proof is the following proposition, whose proof we defer until
the final section.

Proposition 2.1. Suppose that 3f (s) has at most finitely many simple zeros. Then, for
any α ∈ Q× and M ∈ Z≥0,

Df (s, α)− ε(i sgn(α))k(Nα2)s−k/2
M−1∑
m=0

m!

(
iNα

2π

)m(
s +m− 1

m

)(
s +m− k

m

)
·Df̄

(
s +m,−

1
Nα

)
(2.1)

continues to a holomorphic function for <(s) > (k + 1)/2−M .
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From now on we will assume that 3f (s) has at most finitely many simple zeros and
attempt to reach a contradiction. To that end, letM be a positive integer and q a prime not
dividingN . By Dirichlet’s theorem, there are distinct primes q1, . . . , qM ∈ q+NZ, and it
follows that Df̄ (s,−qj/N) = Df̄ (s,−q/N) for every j . Thus, applying Proposition 2.1
with α = 1/qj , we find that

(
N

q2
j

)(k)/2−s
Df

(
s,

1
qj

)
− εik

M−1∑
m=0

m!

(
iN

2πqj

)m(
s +m− 1

m

)(
s +m− k

m

)
·Df̄

(
s +m,−

q

N

)
(2.2)

is holomorphic for <(s) > (k + 1)/2−M .
Next let m0 ∈ Z with 0 ≤ m0 < M . By the formula for the determinant of a Vander-

monde matrix, there are numbers c1, . . . , cM ∈ Q such that

M∑
j=1

cjq
−m
j =

{
1 if m = m0,

0 if m 6= m0
for every m ∈ Z ∩ [0,M).

Multiplying (2.2) by −cj , summing over j and replacing s by s −m0, we find that

εikm0!

(
iN

2π

)m0
(
s − 1
m0

)(
s − k

m0

)
Df̄

(
s,−

q

N

)
−

M∑
j=1

cj

(
N

q2
j

)k/2+m0−s

Df

(
s−m0,

1
qj

)
is holomorphic for <(s) > m0 + (k + 1)/2 − M . This establishes the meromorphic
continuation ofDf̄ (s,−q/N) to that region. Moreover, sinceDf (s, 1/qj ) is holomorphic
on {s ∈ C : <(s) < (k − 1)/2} \ Z for each j , we see that Df̄ (s,−q/N) is holomorphic
on {s ∈ C : <(s) ∈ (m0+ (k + 1)/2−M,m0+ (k − 1)/2)} \Z. Thus, choosing m0 = 2
and M arbitrarily large, we find that Df̄ (s,−q/N) has meromorphic continuation to C,
with poles possible only at integer points.

Hence, applying Proposition 2.1 again with α = 1/q and M = 2, we learn that
Df (s, 1/q) can only have poles at integer points. However, we have already seen that
Df (s, 1/q) has a pole at every simple zero (except possibly s = 0) of the local Euler
factor polynomial 1 − af (q)q−s + ξ(q)qk−1−2s . This polynomial, in turn, has infinitely
many simple zeros along the line <(s) = (k − 1)/2 if and only if |af (q)| < 2q(k−1)/2.
By the Rankin–Selberg method, the average value of |af (q)|2/qk−1 is 1, so such primes
q exist in abundance. This concludes the proof of Theorem 1.1.

3. Proof of Proposition 2.1

Let 1f (s) = (2π)−s0(s)Df (s). Taking the logarithm of (1.1) and differentiating twice,
we find

ψ ′(s)+
d2

ds2 logLf (s) = ψ ′(k − s)+
d2

ds2 logLf̄ (k − s),
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where ψ(s) = 0′

0
(s) is the digamma function. Thus, it follows that

1f (s)+3f (s)(ψ
′(s)− ψ ′(k − s)) = εNk/2−s1f̄ (k − s). (3.1)

Next, since3f (s) has at most finitely many simple zeros, there is a rectangle C contained
within the critical strip {s ∈ C : <(s) ∈ ((k − 1)/2, (k + 1)/2)} which encloses all
simple zeros. For z ∈ H = {z ∈ C : =(z) > 0}, we define

F(z) =

∞∑
n=1

cf (n)e(nz), F (z) =

∞∑
n=1

cf̄ (n)e(nz),

A(z) =
1

2πi

∫
<(s)=k−1/2

(
ψ ′(s)+ ψ ′(s + 1− k)

)
3f (s)(−iz)

−s ds,

B(z) =
1

2πi

∫
C
1f (s)(−iz)

−s ds +
1

2πi

∫
<(s)=k−1/2

π2

sin2(πs)
3f (s)(−iz)

−s ds.

Here C is given counter-clockwise orientation, and (−iz)−s is defined as e−s log(−iz) using
the principal branch of the logarithm.

These functions are related as follows:
Lemma 3.1. We have

F(z)+ A(z) = ε(−i
√
Nz)−kF

(
−

1
Nz

)
+ B(z) (3.2)

for all z ∈ H.
Proof. By Mellin inversion, we have

F(z) =
1

2πi

∫
<(s)=k/2+1

1f (s)(−iz)
−s ds

and

ε(−i
√
Nz)−kF

(
−

1
Nz

)
=
εNk/2

2πi

∫
<(s)=k/2+1

1f̄ (s)(−iNz)
s−k ds.

Since 3f (s) has at most finitely many simple zeros, there is a δ > 0 such that 1f̄ (s)
is holomorphic for <(s) > (k + 1)/2 − δ. Moreover, it follows from the Phragmén–
Lindelöf convexity principle that for any fixed z, 1f̄ (s)(−iNz)

s−k decays rapidly as
|=(s)| → ∞ in any fixed vertical strip. Hence, we may shift the contour of the last line to
<(s) = (k + 1− δ)/2 and apply (3.1) to obtain

εNk/2

2πi

∫
<(s)=(k+1−δ)/2

1f̄ (s)(−iNz)
s−k ds

=
εNk/2

2πi

∫
<(s)=(k−1+δ)/2

1f̄ (k − s)(−iNz)
−s ds

=
1

2πi

∫
<(s)=(k−1+δ)/2

1f (s)(−iz)
−s ds

+
1

2πi

∫
<(s)=(k−1+δ)/2

3f (s)[ψ
′(s)− ψ ′(k − s)](−iz)−s ds. (3.3)
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Note that

1
2πi

∫
<(s)=k/2+1

1f (s)(−iz)
−s ds −

1
2πi

∫
<(s)=(k−1+δ)/2

1f (s)(−iz)
−s ds

=
1

2πi

∫
C
1f (s)(−iz)

−s ds,

which is the first term of B(z). Next, since ψ ′(s)− ψ ′(k − s) is holomorphic for <(s) ∈
(0, k), we may shift the contour of the last integral in (3.3) to <(s) = k − 1/2. Using the
reflection formula ψ ′(1− s)+ ψ ′(s) = π2/sin2(πs), we have

ψ ′(s)− ψ ′(k − s) = ψ ′(s)+ ψ ′(s + 1− k)−
π2

sin2(πs)
.

This yields A(z) and the remaining term of B(z). ut

Now, the main idea of the proof of Proposition 2.1 is to compute (2π)s/0(s) times the
Mellin transform of both sides of (3.2) along the line <(z) = α ∈ Q×. For F(z), we have

(2π)s

0(s)

∫
∞

0
F(α + iy)ys

dy

y
=
(2π)s

0(s)

∫
∞

0

∞∑
n=1

cf (n)e(αn)e
−2πnyys

dy

y

=

∞∑
n=1

cf (n)e(αn)n
−s
= Df (s, α). (3.4)

Lemma 3.2. For any α ∈ Q×,

(2π)s

0(s)

∫
∞

0
A(α + iy)ys

dy

y

continues to an entire function of s.

Proof. Set 8(s) = ψ ′(s) + ψ ′(s + 1 − k). From the identity ψ ′(s) =
∫
∞

1
log x
x−1 x

−s dx,
we get the integral representation 8(s) =

∫
∞

1 φ(x)x−s dx for <(s) > k − 1, where

φ(x) =
(xk−1

+1) log x
x−1 . Hence

8(s)0(s) =

∫
∞

1
φ(x)

∫
∞

0
e−y(y/x)s

dy

y
dx =

∫
∞

1
φ(x)

∫
∞

0
e−xyys

dy

y
dx

=

∫
∞

0

∫
∞

1
φ(x)e−xy dx ys

dy

y
.

Therefore, by Mellin inversion,

A(z) =
1

2πi

∫
<(s)=k+1

8(s)0(s)

∞∑
n=1

af (n)(−2πinz)−s ds

=

∞∑
n=1

af (n)

∫
∞

1
φ(x)e(nxz) dx.
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Specializing to z = α + iy, we get

A(α + iy) =

∞∑
n=1

af (n)

∫
∞

1
φ(x)e(αnx)e−2πnxy dx,

so that∫
∞

0
A(α + iy)ys

dy

y
=

∞∑
n=1

af (n)

∫
∞

1
φ(x)e(αnx)

∫
∞

0
e−2πnxyys

dy

y
dx

=

∞∑
n=1

af (n)(2πn)−s0(s)
∫
∞

1
φ(x)e(αnx)x−s dx.

For j = 0, 1, 2, . . . , define functions φj = φj (x, s) recursively by

φ0 = φ, φj+1 = x
∂φj

∂x
− (s + j)φj .

Then, by integration by parts,∫
∞

1
φj (x, s)e(αnx)x

−s−j dx = −
e(αn)φj (1, s)

2πiαn

−
1

2πiαn

∫
∞

1
φj+1(x, s)e(αnx)x

−s−j−1 dx.

Applying this iteratively m times, we find

∫
∞

1
φ(x)e(αnx)x−s dx = e(αn)

m−1∑
j=0

φj (1, s)
(−2πiαn)j+1

+ (−2πiαn)−m
∫
∞

1
φm(x, s)e(αnx)x

−s−m dx.

Substituting this back into the above, we have

(2π)s

0(s)

∫
∞

0
A(α + iy)ys

dy

y
=

m−1∑
j=0

φj (1, s)
(−2πiα)j+1Lf (s + j + 1, α)

+ (−2πiα)−m
∞∑
n=1

af (n)

ns+m

∫
∞

1
φm(x, s)e(αnx)x

−s−m dx.

Each of the terms in the sum over j continues to an entire function of s. On the other hand,
it is straightforward to prove that φm(x, s) �m (1+ |s|)mxk−1. Thus, the final sum over
n is holomorphic for <(s) > k−m. Takingm arbitrarily large establishes the lemma. ut
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Lemma 3.3. Let α ∈ Q× and z = α + iy for some y ∈ (0, |α|/4]. Then

ε(−i
√
Nz)−kF

(
−

1
Nz

)
= Oα,M(y

M−b(k+3)/2c)

+ εN−k/2
M−1∑
m=0

(−iα)−m−k

2πi

∫
<(s)=k/2+1

(
s +m− k

m

)(
Nα2

2π

)s+m
· 0(s +m)Df̄

(
s +m,−

1
Nα

)
y−s ds (3.5)

for every M ∈ Z≥0.

Proof. This was essentially done in [1, §2]; we reproduce the argument here for the sake
of completeness. Let z = α + iy, β = −1/Nα and u = y/α. Then

−
1
Nz
= β + i|βu| −

βu2

1+ iu
,

so that

ε(−i
√
Nz)−kF

(
−

1
Nz

)
= ε(−i

√
Nα)−k

∞∑
n=1

cf̄ (n)e(βn)e
−2πn|βu|(1+ iu)−ke

(
−
nβu2

1+ iu

)
.

Next,

(1+ iu)−ke
(
−
nβu2

1+ iu

)
=

∞∑
j=0

(−iu)j (1+ iu)−j−k
(−2πn|βu|)j

j !

=

∞∑
j=0

∞∑
`=0

(
j + k + `− 1

`

)
(−iu)j+`

(−2πn|βu|)j

j !

=

∞∑
m=0

(−iu)m
m∑
j=0

(
m+ k − 1
m− j

)
(−2πn|βu|)j

j !
.

Note further that for any M,K ∈ Z≥0 we have∣∣∣∣ ∞∑
m=M

(−iu)m
m∑
j=0

(
m+ k − 1
m− j

)
(−2πn|βu|)j

j !

∣∣∣∣
≤ (2πn|βu|)−KK!

∞∑
m=M

|u|m
m∑
j=0

(
m+ k − 1
m− j

)(
j +K

j

)
(2πn|βu|)j+K

(j +K)!

≤ (πn|βu|)−KK!(3/2)k−1
∞∑

m=M

(3|u|)me2πn|βu|

�α,M,K |u|
M−Kn−Ke2πn|βu|,
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since |u| ≤ 1/4. Hence, substituting the definition of u, we have

ε(−i
√
Nz)−kF

(
−

1
Nz

)
= Oα,M,K

(
yM−K

∞∑
n=1

|cf̄ (n)|n
−K
)

+ ε(−i
√
Nα)−k

M−1∑
m=0

(
−iy

α

)m m∑
j=0

(
m+ k − 1
m− j

) ∞∑
n=1

cf̄ (n)e(βn)
1
j !

(
−

2πny
Nα2

)j
e
−

2πny
Nα2 .

If we choose K = b(k − 1)/2c + 2, the error term converges and gives the estimate
Oα,M(y

M−K).
As for the other terms, we have

ym
∞∑
n=1

cf̄ (n)e(βn)
1
j !

(
−

2πny
Nα2

)j
e
−

2πny
Nα2 =

yj+m

j !

dj

dyj

∞∑
n=1

cf̄ (n)e(βn)e
−

2πny
Nα2

=
yj+m

j !

dj

dyj

1
2πi

∫
<(s)=m+k/2+1

(
Nα2

2π

)s
0(s)Df̄ (s, β)y

−s ds

=
1

2πi

∫
<(s)=k/2+1

(
−s −m

j

)(
Nα2

2π

)s+m
0(s +m)Df̄ (s +m,β)y

−s ds.

Moreover, by the Chu–Vandermonde identity we have

m∑
j=0

(
m+ k − 1
m− j

)(
−s −m

j

)
=

(
−s + k − 1

m

)
= (−1)m

(
s +m− k

m

)
.

Collecting these strands together, we arrive at (3.5). ut

Lemma 3.4. For any α ∈ Q× there are numbers Pj (α), j = 0, 1, 2, . . . , such that

B(α + iy) =

M−1∑
j=0

Pj (α)y
j
+Oα,M(y

M)

for all M ∈ Z≥0 and y ∈
(
0, |α|/4

]
.

Proof. For z = α + iy, we have

(−iz)−s = ei
π
2 sgn(α)s

|α|−s
(

1+
iy

α

)−s
= ei

π
2 sgn(α)s

|α|−s
∞∑
j=0

(
−s

j

)(
iy

α

)j
. (3.6)

Since y ≤ |α|/4, the crude bound∣∣∣∣(−sj
)∣∣∣∣ = ∣∣∣∣(s + j − 1

j

)∣∣∣∣ ≤ 2|s|+j



822 Andrew R. Booker

yields
∞∑
j=M

(
−s

j

)(
iy

α

)j
�α,M 2|s|yM .

Hence, if we truncate the sum in (3.6) at M and substitute it for (−iz)−s in the definition
of B(z), then since the contour C is compact, the first integral of the error term con-
verges to give anOα,M(yM) error overall. Similarly, by standard estimates, along the line
<(s) = k − 1/2 the function ei

π
2 sgn(α)s

|α|−s3f (s) has at most polynomial growth, and
π2/sin2(πs) � e−2π |s|. Since e2π > 2, the second integral of the error term converges
as well, and the lemma follows with

Pj (α) =
1

2πi

∫
C
(−iα)−j ei

π
2 sgn(α)s

|α|−s
(
−s

j

)
1f (s) ds

+
1

2πi

∫
<(s)=k−1/2

(−iα)−j eiπ/2 sgn(α)s
|α|−s

(
−s

j

)
3f (s)

π2

sin2(πs)
ds. ut

Now, to conclude the proof, let us define

g(y) = F(α + iy)+ A(α + iy)−

M−1∑
j=0

Pj (α)y
jχ(0,|α|/4](y)

− εN−k/2
M−1∑
m=0

(−iα)−m−k

2πi

∫
<(s)=k/2+1

(
s +m− k

m

)(
Nα2

2π

)s+m
· 0(s +m)Df̄

(
s +m,−

1
Nα

)
y−s ds,

where χ(0,|α|/4](y) = 1 if y ∈ (0, |α|/4] and 0 otherwise. Combining Lemmas 3.1, 3.3
and 3.4, we have g(y) = Oα,M(y

M−b(k+3)/2c) for y ∈ (0, |α|/4]. On the other hand, it
is easy to see that g(y) decays rapidly as y →∞. Thus, (2π)

s

0(s)

∫
∞

0 g(y)ys−1 dy defines a
holomorphic function for <(s) > b(k + 3)/2c −M .

Note that

(2π)s

0(s)

∫
∞

0

M−1∑
j=0

Pj (α)y
jχ(0,|α|/4](y)y

s dy

y
=
(2π)s

0(s)

M−1∑
j=0

Pj (α)
(|α|/4)s+j

s + j

extends to an entire function of s. Together with (3.4) and Lemma 3.2, this shows that
(2.1) is holomorphic for <(s) > b(k + 3)/2c − M . Finally, we replace M by M + 1
and discard the final term of the sum over m to see that (2.1) is in fact holomorphic for
<(s) > (k + 1)/2−M . ut
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