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Abstract. We introduce the notion of a matroid M over a commutative ring R, assigning to every
subset of the ground set an R-module according to some axioms. When R is a field, we recover
matroids. When R = Z, and when R is a DVR, we get (structures which contain all the data of)
quasi-arithmetic matroids, and valuated matroids, i.e. tropical linear spaces, respectively.

More generally, whenever R is a Dedekind domain, we extend all the usual properties and op-
erations holding for matroids (e.g., duality), and we explicitly describe the structure of the matroids
over R. Furthermore, we compute the Tutte–Grothendieck ring of matroids over R. We also show
that the Tutte quasi-polynomial of a matroid over Z can be obtained as an evaluation of the class of
the matroid in the Tutte–Grothendieck ring.

Keywords. Matroid, module over Dedekind ring, arithmetic matroid, valuated matroid, arithmetic
Tutte polynomial, tropical flag Dressian, Tutte–Grothendieck ring

1. Introduction

The notion of a matroid axiomatizes the linear algebra of a list of vectors. Matroid theory
has proved to be a versatile language to deal with many problems on the interface of com-
binatorics and algebra. In the years since 1935, when Whitney first introduced matroids, a
number of enriched variants thereof have arisen, among them oriented matroids [2], valu-
ated matroids [9], complex matroids [1], and (quasi-)arithmetic matroids [17, 6]. Each of
these structures retains some information about a vector configuration, or an equivalent
object, which is richer than the purely linear algebraic information that matroids retain.

As a running motivating example, let us focus on quasi-arithmetic matroids. A quasi-
arithmetic matroid endows a matroid with a multiplicity function, whose values are the
cardinalities of certain finite abelian groups, namely, the torsion parts of the quotients
of an ambient lattice Zn by the sublattices spanned by subsets of vectors. From a list
of vectors with integer coordinates one may produce objects like a toric arrangement,
a partition function, and a zonotope (see [8]). In order to have a combinatorial structure
from which these objects may be read off, one needs to keep track of arithmetic properties
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of the vectors, and this is what quasi-arithmetic matroids provide. (For the difference
between quasi-arithmetic and arithmetic matroids, see Remark 6.4.)

It is natural to ask to what extent these generalizations of matroids can be unified
under a common framework. Such a unification was sought by Dress in his program of
matroids with coefficients, represented for example in his work with Wenzel [9] wherein
valuated matroids are matroids with coefficients in a “fuzzy ring”.

In the present paper we suggest a different approach to such unification, by defining
the notion of a matroid M over a commutative ring R. Such an M assigns, to every sub-
set A of a ground set, a finitely generated R-module M(A) according to some axioms
(Definition 2.1). We find this definition to have multiple agreeable features. For one, by
building on the well-studied setting of modules over commutative rings, we get a the-
ory where the considerable power and development of commutative algebra can be easily
brought to bear. For another, unlike arithmetic and valuated matroids, a matroid over R is
not defined as a matroid decorated with extra data; there is only one axiom, and we sug-
gest that it is comparably simple to the matroid axioms themselves. Indeed, a realizable
matroid over R is precisely a vector configuration in a finitely generated R-module, and
the axioms of a matroid over R say only that minors of at most two elements are such
realizable matroids—that is, matroids are locally realizable matroids.

When R is a field, a matroid M over R is nothing but a matroid: the datum M(A)

is a vector space, which contains only the information of its dimension, and this directly
encodes the rank function of M . When R = Z, every module M(A) is an abelian group,
and by extracting its torsion subgroup we get a quasi-arithmetic matroid. When R is a dis-
crete valuation ring (DVR), we may similarly extract a valuated matroid. More generally,
whenever R is a Dedekind domain, we can extend the usual properties and operations
holding for matroids, such as duality.

The idea of matroids over rings was suggested by certain features of the theory of
quasi-arithmetic matroids. Some significant information about an integer vector config-
uration is lost in passing to the multiplicity function, as there exist many finite abelian
groups with the same cardinality. Recording the whole structure of these groups is more
desirable in several situations, for example, in developing a combinatorial intersection
theory for the arrangements of subtori arising as characteristic varieties. The properties
of the multiplicity function of a quasi-arithmetic matroid turn out to be just shadows of
group-theoretic properties.

One of the most-loved invariants of matroids is their Tutte polynomial TM(x, y). It
thus comes as no surprise that the Tutte polynomial has been considered for generaliza-
tions of matroids as well. A quasi-arithmetic matroid M̂ has an associated arithmetic Tutte
polynomial M

M̂
(x, y), which has proved to be a useful tool in studying toric arrange-

ments, partition functions, zonotopes, and graphs [17, 7, 3]. More strongly, the authors
of [3] define a Tutte quasi-polynomial of an integer vector configuration, interpolating
between TM(x, y) and M

M̂
(x, y), which is no longer an invariant of the quasi-arithmetic

matroid (as it depends on the groups, not just their cardinalities).
Among its properties, the Tutte polynomial of a classical matroid is the universal

deletion-contraction invariant. In more algebraic language, following [4], the class of a
matroid in the Tutte–Grothendieck ring for deletion-contraction relations is exactly its
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Tutte polynomial. While the arithmetic Tutte polynomial and Tutte quasi-polynomial are
deletion-contraction invariants, neither is universal for this property. Our generalization of
the Tutte polynomial for matroids over a Dedekind ring R is also the class in the Tutte–
Grothendieck ring, so it retains the universality of the usual Tutte polynomial, and we
obtain the two generalizations of Tutte just mentioned as evaluations of it.

This paper is organized as follows. In Section 2 we give the basic definitions for
matroids over a commutative ring, including realizability, and we explain how they gen-
eralize the classical ones.

In Section 4 we establish the existence (Definition 4.3, Proposition 4.6) and the prop-
erties of the dual of a matroid over a Dedekind domain or over a local ring (of arbitrary
dimension). The former case, of Dedekind domains, is the one we focus primarily on
thereafter, and we review the properties of such rings in Section 3.

In Section 5 we develop the local theory, by proving a structure theorem for matroids
over a DVR (Propositions 5.2 and 5.4). We show connections with the Hall algebra and
with tropical geometry. A matroid over a DVR defines a point on each Dressian, one of
the tropical analogues of the Grassmannian; this is equivalent by definition to being a
valuated matroid. In fact, such a matroid defines a point on the corresponding analogue
of the full flag variety (Corollary 5.7).

The global theory is developed is Section 6. We describe the structure of a matroid
over a Dedekind ring R in terms of that of all its localizations, whose structure was com-
pletely described in the previous section, plus some global information coming from the
Picard group of R (Propositions 6.1 and 6.2). This also explains the connection between
matroids over Z and quasi-arithmetic matroids (Corollary 6.3).

In Section 7 we compute the Tutte–Grothendieck ring (Theorem 7.1, Corollary 7.4).
In particular, given a matroid over Z, we present its Tutte quasi-polynomial as an evalua-
tion of its class in K(Z-Mat).

2. Matroids over a ring

By R-Mod we mean the category of finitely generated R-modules over a commutative
ring R. We will feel free to write “f.g.” for “finitely generated” throughout.

Definition 2.1. Let R be a commutative ring. A matroid over R on the ground set E is
a function M assigning to each subset A ⊆ E a finitely generated R-module M(A) such
that

(M) for every subset A ⊆ E and elements b, c ∈ E, there exist elements x = x(b, c) and
y = y(b, c) of M(A) satisfying

M(A ∪ {b}) ∼= M(A)/(x),

M(A ∪ {c}) ∼= M(A)/(y),

M(A ∪ {b, c}) ∼= M(A)/(x, y).
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Clearly, the choice of the modules M(A) is only relevant up to isomorphism. We regard
matroidsM andM ′ over R to be equal if they are on the same ground set E andM(A) ∼=
M ′(A) for all A ⊆ E.

For notational concision, we will hereafter letM(Ab) abbreviateM(A∪{b}),M(Abc)
stand for M(A ∪ {b, c}), and so forth.

The case of axiom (M) where b = c is the following statement, which we separate
out here as it will provide a useful waypoint in many of the proofs to come:

(M1) for every subset A ⊆ E and element b ∈ E, there exists an element x = x(b) of
M(A) such that M(A ∪ {b}) ∼= M(A)/(x).

A more abstract, but equivalent definition will be given in Section 2.1.
The fundamental way of producing matroids over R is from vector configurations in

an R-module. Given a f.g. R-module N and a list X = x1, . . . , xn of elements of N , the
matroid MX of X associates to the sublist A of X the quotient

MX(A) = N
/(∑

x∈A

Rx
)
. (2.1)

For each x ∈ X there is a quotient map fromMX(A) toMX(A∪{x}), which quotients out
by the image of Rx in MX(A). This single system of maps satisfies axiom (M): indeed,
the element x depends only on b, and y only on c.

Definition 2.2. A matroid over R is realizable (or representable) if it has the form MX

for some list X of elements of a f.g. R-module. We call X a realization (representation)
of M .

Not all matroids over rings are realizable: indeed, nonrealizable matroids in the usual
sense will provide examples. Axiom (M) requires only a sort of “local” realizability. Al-
lowing the elements x and y in the axiom to depend on both b and c is what prevents this
local realizability from immediately extending to global realizability.

Example 2.3. The following four abelian groups do not form a matroid over Z:

M(∅) = Z/8, M({1}) = Z/2, M({2}) = Z/2, M({1, 2}) = 1.

In axiom (M), when (A, b, c) = (∅, 1, 2), the elements x and y must both be chosen to
be in the subgroup of Z/8 generated by 2 for the isomorphisms for M({1}) and M({2})
to hold, but then the isomorphism for M({1, 2}) fails.

The following four abelian groups do form a matroid over Z:

M(∅) = Z/4⊕ Z/2, M({1}) = Z/2, M({2}) = Z/2, M({1, 2}) = 1.

Indeed, it is a realizable matroid, with a realization being given by N = Z/4 ⊕ Z/2,
x1 = (1, 0), x2 = (1, 1).
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Our having chosen to call these objects “matroids over R” is appropriate, as they are a
generalization of matroids in the classical sense, as we show in Proposition 2.6. There is
one hitch in the equivalence, corresponding to the ability to choose a vector configuration
that does not span its ambient space. Accordingly, let us say that a matroid M over R
is essential if no nontrivial projective module is a direct summand of M(E) (the term is
adopted from the theory of hyperplane arrangements). Lemma 2.5 shows that very little
is lost in restricting to essential matroids.

Before getting there we must generalize some standard operations on matroids. In
several cases this is straightforward, but duality is conspicuously not among these: for
matroid duality to work well, we must assume that R is a Dedekind domain, and so we
treat it in Section 4.

LetM andM ′ be matroids over R on respective ground setsE andE′. We define their
direct sum M ⊕M ′ on the ground set E q E′ by

(M ⊕M ′)(Aq A′) = M(A)⊕M ′(A′).

If i is an element of E, we define two matroids over R on the ground set E \ {i}: the
deletion of i in M , denoted M\i, by

(M\i)(A) = M(A)

and the contraction of i in M , denoted M/i, by

(M/i)(A) = M(A ∪ {i}).

It is easy to check that these matroids satisfy axiom (M); in fact, this axiom is entirely
inherited except for M ⊕M ′ when one of b and c in E and the other is in E′, but these
cases are clear. Since these constructions can be made without reliance on axiom (M), we
will sometimes use them when speaking of a map B(E) → R-Mod which has not yet
been shown to be a matroid over R.

The next fact is immediate from these definitions.

Fact 2.4. The class of realizable matroids is closed under minors and direct sums:

(a) If M is realized by the vector configuration X within a module N , then M/A \ B is
realized by the images of the vectors xi where i ∈ E \ (A∪B) in the quotient module
N/(xi : i ∈ A).

(b) IfMi is realized by the vector configurationXi within a moduleNi , for i = 1, 2, then
M1 ⊕M2 is realized by the configuration (X1, 0) ∪ (0, X2) within N1 ⊕N2.

IfN is an R-module, let the empty matroid forN be the matroid over R on the ground
set ∅ which maps ∅ to N . By a projective empty matroid we mean an empty matroid for a
projective module.

Lemma 2.5. Every matroid M over R is the direct sum of an essential matroid over R
and a projective empty matroid.

Note that this decomposition is unique ifR is a field, or ifR is Dedekind (Proposition 3.3).
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Proof. SupposeM is not essential, so that some projective module P is a direct summand
of M(E). Then in fact P is a direct summand of every module M(A), since this property
lifts back along the surjections M(A)� M(Ab). Therefore M is a direct sum of another
matroid M ′ over R and the empty matroid for P . Since M is finitely generated, iterating
this process with M ′ in place of M eventually reaches an essential matroid. ut

Recall that the corank cork(A) of a set A in a classical matroid is rk(E) − rk(A), where
rk(E) is the rank of the matroid.

Proposition 2.6. Let K be a field. Essential matroids M over K are equivalent to
(classical) matroids. If M is an essential matroid over K, then dimM(A) is the corank
of A in the corresponding classical matroid.

A matroid over K is realizable if and only if, as a classical matroid, it is realizable
over K.

Proof. The finitely generated modules over K are the finite-dimensional K-vector spaces,
which are completely classified up to isomorphism by dimension. So we may replace
M(A) by its K-dimension without losing information.

We now check that the conditions on the dimensions of theM(A) given by axiom (M)
and the “essential” condition are equivalent to the following set of rank axioms for ma-
troids, recast in terms of a corank function cork : 2E → N:

(C0) cork(E) = 0.
(C1) For A ⊆ E and b ∈ E \ A, cork(A)− cork(Ab) equals 0 or 1.
(C2) For A ⊆ E and b 6= c ∈ E \ A,

cork(A)+ cork(Abc) ≥ cork(Ab)+ cork(Ac).

Axiom (C0) is the “essential” condition. For x in a K-vector space V , the difference
dimV −dim(V/〈x〉) equals zero if x is zero and one otherwise, so that (C1) is equivalent
to (M1).

Finally, in axiom (M), let the singly generated subspaces K = (x) and L = (y)

be the respective kernels of M(A) → M(Ab) and M(A) → M(Ac). Then M(Abc) =
M(A)/(K ∪ L). By arranging K and L suitably, their sum K + L can be chosen to have
any dimension from max(dimK, dimL) to dimK + dimL inclusive (except those that
exceed dimM(A)), but no others. That is, the only conditions on dimM(Abc) in terms
of the other dimensions are the monotonicity conditions

dimM(Abc) ≤ min(dimM(Ab), dimM(Ac)),

and the submodularity condition

dimM(A)+ dimM(Abc) ≥ dimM(Ab)+ dimM(Ac),

which is (C2). Since (C1) and/or (M1) implies the monotonicity conditions, we have the
desired equivalence.

The realizability claim is already proved by our prior observation that a realized ma-
troid over K embodies a K-vector configuration. ut
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Let R → S be a map of rings. Then every matroid over S is naturally also a matroid
over R. Furthermore, given such a map R → S, the tensor product − ⊗R S is a functor
R-Mod→ S-Mod. One can use this to perform base change of matroids over R. If M is
a matroid over R, define M ⊗R S to be the composition of M with −⊗R S, so that

(M ⊗R S)(A) = M(A)⊗R S

for all A. As with other uses of the tensor product, we will omit the subscript R in the
notation where this causes no unclarity.

Proposition 2.7. If M is a matroid over R, then M ⊗R S is a matroid over S.

Proof. Let 0 → K → N → N ′ → 0 be a short exact sequence of R-modules, with K
cyclic. Tensor product being right exact, we get an exact sequence K ⊗ S → N ⊗ S →

N ′ ⊗ S → 0, so the kernel of N ⊗ S → N ′ ⊗ S is a quotient of the cyclic S-module
K ⊗ S, and is therefore cyclic. Therefore the maps from M(A)⊗ S to M(Ab)⊗ S and to
M(Ac)⊗ S have cyclic kernels, and this establishes condition (M1) for M ⊗ S.

Since tensor product is a left adjoint functor (to Hom), it preserves pushouts, including
the pushout from axiom (M) for M:

M(A)

y
//

��

M(Ab)

��
M(Ac) // M(Abc)

This proves axiom (M) for M ⊗ S. ut

Two special cases of this construction will be of fundamental importance for our theory:

(1) For every prime ideal m of R, let Rm be the localization of R at m. We call

Mm
.
= M ⊗R Rm

the localization of M at m.
(2) If R is a domain, let Frac(R) be the fraction field of R. Then we call

Mgen
.
= M ⊗R Frac(R)

the generic matroid of M .

A generic loop or generic coloop of a matroid over R is a loop, respectively a coloop,
of its generic matroid. Thus a is a generic coloop of M if and only if M(E \ {a}) has a
nontrivial projective summand.

Our approach will be much based on studying the matroid M via these localizations.
The localizations, matroids over Rm, induce matroids over the residue fields Rm/(m);
the generic matroidMgen is also over a field. Both constructions thus give rise to ordinary
matroids (as the decomposition in 2.5 is unique).
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2.1. Towards generalizations. Classical matroids can be defined in several, “crypto-
morphic” ways, for instance by giving axioms satisfied by the bases, or circuits, or in-
dependent sets. As we have seen, our definition of matroids over rings generalizes the
(co)rank function definition of matroids. This makes the following question natural.

Question 2.8. Are there cryptomorphic definitions of matroids over rings?

Certain axiomatizations show some promise: for example, the discussion before Re-
mark 5.8 suggests that an axiomatization of polytopes of matroids over a DVR may be
approachable.

The focus of this section is instead on the potential to generalize the “base” of the
construction, away from rings. With an eye to this, we will recast the axioms in a more
categorical fashion, without reference to elements. We also discuss polymatroids. To be-
gin, matroids over rings may be taken to be instead over affine varieties:

Example 2.9. Let X be an affine algebraic variety, and R = OX be the ring of regular
functions on X. For every point of X, the functions vanishing at it form a maximal ideal
of R. Then a matroid over R can be seen as a bundle of matroids over X. Of course, since
many of our general results hold when R is a Dedekind ring, the first case to be investi-
gated is when X is an affine algebraic curve. In this case, by Propositions 6.1 and 6.2, M
is a matroid over OX if and only if for every point of X the corresponding localization
Mm is a matroid over OXm,Mgen is a matroid over Frac(OX), and it is verified the global
condition the Picard group Pic(X) stated in Proposition 6.1.

There appears to be no obstruction to patching these “bundles of matroids” in a sheaf-
theoretic fashion to yield (bundles of) matroids over arbitrary schemes. Proper investiga-
tion of these is left to future work.

The next definition is Definition 2.1 recast without reference to elements, with an eye
towards possible categorical generalizations; however, reference is still made to cyclic
modules. We have also separated out the statement (M1).

Definition 2.10. Let R be a commutative ring. A matroid over R on the ground set E
is a function M assigning to each subset A ⊆ E a finitely generated R-module M(A)
satisfying the following axioms:

(M1) For any A ⊆ E and b ∈ E \ A, there exists a surjection M(A) � M(A ∪ {b})

whose kernel is a cyclic submodule of M(A).
(M2) For any A ⊆ E and b, c ∈ E, there exists a pushout

M(A)

y
//

��

M(A ∪ {b})

��
M(A ∪ {c}) // M(A ∪ {b, c})

where all four morphisms are surjections with cyclic kernel.
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We have already seen the pushout in the proof of Proposition 2.7. Conversely, using the
element-based criterion for pushouts, the fact that

M(A)
ϕ //

ψ

��

M(Ab)

ψ ′

��
M(Ac)

ϕ′ // M(Abc)

is a pushout diagram of modules can be restated as

M(Abc) '
M(Ac)⊕M(Ab)

{(ψ(x),−ϕ(x)) : x ∈ M(A)}
.

The fact that the maps are surjections implies

M(Abc) ' M(A)/(kerϕ, kerψ).

where by (kerϕ, kerψ) we denote the submodule ofM(A) generated by the two kernels.
Then the elements x and y required by axiom (M) can be chosen as generators of kerϕ
and kerψ .

Realizability may also be recast; notionally, a realizable matroid is still one in which
the choices in axioms (M1) and (M2) may be made globally. Let B(E) be the category of
the Boolean poset of subsets of E, where inclusions of sets are the morphisms.

Definition 2.11. A matroid M over R is realizable if it is the map on objects of some
functor F : B(E) → R-Mod, and axioms (M1) and (M2) are satisfied by choosing the
morphisms F(A→ Ab). A realization of M is a choice of such an F .

Indeed, if a matroid M over R is realizable in the above sense, corresponding to the
functor F , then it is also realizable as defined before: the matroidMX of a vector configu-
ration (N,X = {xa}), whereN is F(∅), and xa is a generator of kerF(∅ → {a}) for each
a ∈ E. Indeed, in this above setting, the pushout axiom (M2) applied to F guarantees that
equation (2.1) holds for all A ⊆ E. The converse is similarly easy.

If we remove the cyclicity requirement, we wind up with polymatroids.

Definition 2.12. A polymatroid over R on the ground set E is a function M assigning to
each subset A ⊆ E a finitely generated R-module M(A) such that

(PM) for every subset A ⊆ E and elements b, c ∈ E, there exist submodulesK and L of
A satisfying

M(A ∪ {b}) ∼= M(A)/K,

M(A ∪ {c}) ∼= M(A)/L,

M(A ∪ {b, c}) ∼= M(A)/(K + L).

Axiom (PM) is also equivalent to axiom (M2) with the words “‘with cyclic kernel”
stricken. We note that Proposition 2.6 is true for polymatroids as well, and its proof goes
through mutatis mutandis, when the corank axiom (C1) is replaced with

(PC) For A ⊆ E and b ∈ E \ A, cork(A) ≥ cork(Ab).
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Example 2.13. Not every polymatroid over R satisfying (M1) is a matroid over R. For a
counterexample, let R = Z. There is a pushout diagram of surjections

Z⊕ Z/2Z

y
//

��

Z/2Z

��
Z/4Z // Z/2Z

(2.2)

in which the top map has kernel 〈(2, 0), (0, 1)〉 and the left map has kernel 〈(2, 1)〉. More-
over there exist surjections Z ⊕ Z/2Z � Z/2Z with cyclic kernel: there are two such,
one with kernel 〈(1, 0)〉 and one with kernel 〈(1, 1)〉. However, neither of these maps can
be fitted into a pushout diagram of surjections with groups isomorphic to (2.2); both those
pushouts are the trivial group. So diagram (2.2) corresponds to a function from B(2) to
Z-Mod that satisfies (PM) and (M1) but not (M2).

Question 2.14. There are various ways to axiomatize matroids using rank functions.
It is possible to state the submodularity axiom for matroids as our axiom (C2) paral-
lelling (M2), that is,

rk(Ab)+ rk(Ac) ≥ rk(A)+ rk(Abc),

but the more usual statement of this axiom does not restrict to covers in the Boolean
lattice: it asserts that

rk(A)+ rk(B) ≥ rk(A ∩ B)+ rk(A ∪ B)

for allA,B ⊆ E. Similarly, the fact that rank is nondecreasing and bounded by cardinality
can be framed on covers, like our (M1), or on all containments. Is there an axiomatization
of matroids over R which replaces (M1) and (M2) with axioms on all containments,
respectively pairs of sets?

Example 2.13 suggests that such an axiom system would still need to make reference
to the number of generators of kernels. It is also conceivable that the axioms sought would
only agree over Dedekind domains: the behaviour exhibited in Example 3.2 below for a
non-Dedekind domain interferes with naı̈ve attempts to patch pushout squares together.

3. Dedekind domains

The theory arising from Definition 2.1 makes a good parallel to the theory of classical
matroids when R is a Dedekind domain, and this is the case we will give most attention to
in the following sections. In this section we review some properties of Dedekind domains
for use in following sections.

One well-behaved feature of Dedekind domains in our setting is Lemma 3.1. Ex-
ample 3.2 shows that this fails in the two-dimensional setting.

Lemma 3.1. Let R be a Dedekind domain. Given two R-modules N and N ′, all cyclic
modules that appear as kernels of surjections N � N ′ are isomorphic.
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Proof. Suppose we have two surjections N � N ′ with kernels respectively generated by
elements x and y of N . We show that 〈x〉 and 〈y〉 are isomorphic as R-modules with the
isomorphism given by x 7→ y. It is enough to show that this map is an isomorphism after
localizing at every maximal prime m of R. Now, the isomorphism class of 〈x〉m can be
read off from the other two modules in the localized exact sequence

0→ 〈x〉m→ Nm→ N ′m→ 0.

To be precise, if the rank of Nm exceeds that of N ′m, then 〈x〉m ∼= Rm is free; otherwise,
〈x〉m is torsion and is determined up to isomorphism by its (R/m)-dimension, which is
the difference of the dimensions of the torsion parts of Nm and N ′m. The isomorphism
class of 〈y〉m is determined in the same way from the same data, so that 〈x〉m ∼= 〈y〉m for
all m. And since x and y are generators, the isomorphism can be taken to send x 7→ y. ut

Example 3.2. Let R = K[x, y]/〈x, y〉2, the ring of two-dimensional first-order jets
(which is imprecisely the “smallest” two-dimensional ring). Let N be the length 3
R-module 〈x, y〉/〈x2, y2

〉, where these x and y should be read as elements not of R
but of K[x, y]: thus N is isomorphic to the so-called Matlis dual of R. Then the quo-
tients N/〈x〉 and N/〈y〉 are both isomorphic to K, but their kernels 〈x〉/〈x2, xy2

〉 and
〈y〉/〈x2y, y2

〉 are not isomorphic.

We next recall some structural results about R-modules. Given an R-module N , let Ntors
⊆ N denote the submodule of its torsion elements, andNproj denote the projective module
N/Ntors. Then N can be described as follows.

Proposition 3.3 ([10, exercises 19.4–6]). Let R be a Dedekind domain. Every f.g.
R-module N is the direct sum of its torsion submodule Ntors and of a projective mod-
ule isomorphic to Nproj.

Every torsion module may be written uniquely up to isomorphism as a sum of submod-
ules R/mk for m a maximal prime of R and k ∈ Z>0. It may also be written uniquely as
a sum of submodules R/I1⊕· · ·⊕R/Im (its invariant factors) for a chain I1 ⊆ · · · ⊆ Im
of ideals of R.

Every nonzero projective module is uniquely isomorphic to Rh ⊕ I for some h ≥ 0
and nonzero ideal I , up to differing isomorphic choices of I . In particular, for ideals I
and J , we have I⊕J ∼= R⊕(I⊗J ), so that the direct sum of any two projective modules
of ranks i, j ≥ 0 is given by

(Ri−1
⊕ I )⊕ (Rj−1

⊕ J ) ∼= R
i+j−1

⊕ (I ⊗ J ). (3.1)

We recall the following definitions. The Picard group of R, Pic(R), is the group of frac-
tional ideals of R under multiplication, modulo the subgroup of principal ideals. If R is
Dedekind, then Pic(R) is isomorphic to the group of the isomorphism classes of f.g. pro-
jective modules of rank 1, with product induced by the tensor product. If P is a projective
module of rank n, the exterior algebra 3nP is a f.g. projective module of rank

(
n
n

)
= 1.

Its class in Pic(R) is called the determinant of P and denoted by det(P ).
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Example 3.4. The Picard group is trivial in many familiar Dedekind rings, including the
cases that this paper works out in detail: Z and discrete valuation rings. So we name here
some examples where it is not. Among rings of integers of number fields we have ex-
amples like R = Z[

√
−5], whose Picard group is isomorphic to Z/2Z, with the noniden-

tity class necessarily represented by any nonprincipal ideal, for instance (2, 1+
√
−5).

Another example, among rings of regular functions, is the coordinate ring R =

C[x, y]/(y2
− x(x − 1)(x − λ)) of an elliptic curve punctured at the identity, whose

Picard group is isomorphic to the group of points of the (complete) elliptic curve as an
abelian variety, that is, to the additive group C modulo an embedded lattice Z2: the ideal
(x − x0, y − y0) of the point (x0, y0) represents its class in Pic(R).

We will also find useful a description of the algebraic K-theory group K0(R) of f.g.
R-modules, that is, the abelian group generated by the classes [N ] of f.g. R-modules,
modulo the relations [N ] = [N ′] + [N ′′] for any exact sequence

0→ N ′→ N → N ′′→ 0.

Proposition 3.5. There is an isomorphism of groups

8 : K0(R)→ Z⊕ Pic(R).

Proof. In [22, Corollary 2.6.3] the K-theory group K0(R) of projective R-modules is
shown to be Z⊕ Pic(R), via the map

[P ] 7→ (rk(P ), det(P ))

as a consequence of formula (3.1). But since R is a regular ring, the natural homomor-
phism K0(R)→ K0(R) is an isomorphism [11, §15.1]. ut

In virtue of the isomorphism above, from now on we will denote by det(N), and name
determinant, the class of any f.g. R-module N in the Picard group, i.e. the second sum-
mand of 8(N). In the same way, by rk(N) we denote the first summand of 8(N); this
coincides with the rank of Nproj, i.e. with the dimension of N ⊗ Frac(R).

Note in particular that 8 extends the usual map from invertible ideals to Pic(R).
The potential nontriviality of this summand Pic(R) ⊆ K0(R) has global consequences

for matroids over R: see Proposition 4.11 below.

4. Duality

One of the first notions to be demanded of a putative generalization of matroids is du-
ality. Our construction of duality springs from the case of realized matroids, where we
have Gale duality of vector configurations. Some conditions are required on R for this
construction to produce a unique dual for any matroid over R. One sufficient condition
will be that R is a Dedekind domain, and therefore of global dimension 1; this case will
continue being our primary focus. However, dual matroids are defined in some other set-
tings as well, for instance, when R is a local ring. We do not have a definitive answer to
the following natural question:
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Question 4.1. What is the most general class of rings R for which duality of matroids
over R is well defined and correctly behaved?

Remark 4.2. As can be observed in the proofs to follow in this section, the construction
of dual matroids over local rings relies only on the existence of minimal projective reso-
lutions, which is a consequence of Nakayama’s lemma. Versions of Nakayama’s lemma
hold in other settings as well, for instance over graded rings, suggesting that if our defi-
nitions were extended to encompass graded matroids over graded rings, these would also
have duality.

We give an outline of this section here to provide some guideposts for readers less fa-
miliar with homological algebra. Duality is defined in Definition 4.3; its relationship to
the Gale dual is Proposition 4.8. The construction ultimately reduces to dualizing a map
of modules, in the sense of applying the functor Hom(−, R). We produce the needed
map by specifying a maximal chain of sets and composing the quotient maps provided by
axiom (M); it is of course necessary to check that this independent of the choices made
(Lemma 4.4), and that the resulting dual satisfies (M) as well (Theorem 4.6). In the es-
sential case, duality is an involution (Proposition 4.10) which behaves as expected under
direct sums and minors (Proposition 4.9). Our most concrete description of the dual in the
Dedekind case is Corollary 4.12: as we explain after the statement, this is a generalization
of the duality formula for corank functions of usual matroids. We also show in this case
that certain base changes we will use later behave well under duality (Proposition 4.13).

Let R be a Dedekind domain or local ring. Let M be a matroid over a ring R, on a
ground set E. For any A ⊆ E and b ∈ E \ A, the map provided by condition (M1) may
be fitted into an exact sequence of the shape

0→ I → R→ M(A)→ M(Ab)→ 0 (4.1)

where R/I is chosen isomorphic to the cyclic kernel from condition (M1), with I an ideal
of R.

The next ingredient is a projective resolution of form

· · · → P ∅2 → P ∅1 → P ∅0 → M(∅)→ 0, (4.2)

where P ∅0 and P ∅1 are projective; this can be attained from a projective resolution of M .
If R is Dedekind, then there is a f.g. projective resolution of M(∅) of length at most 1, so
P ∅2 and the terms left of it are zero; fix one of these resolutions. If R is a local ring, then
all projective modules are free and minimal free resolutions exist; let (4.2) be the minimal
free resolution.

From any maximal flag of subsets ∅ = A0 ( A1 ( · · · ( A|A| = A we obtain a
composite map

P ∅0 → M(∅)→ M(A1)→ · · · → M(A).

The kernel of this composition P ∅0 → M(A) has a filtration whose subquotients are the
kernels of the individual arrows in it. The exact sequences above continue to free resolu-
tions for these kernels, allowing us to resolve kerP ∅0 → M(A) with a correspondingly
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filtered resolution by the Horseshoe Lemma:

P(A)• : · · · → P2 → P ∅1 ⊕ R
|A| d1
→ P ∅0 → M(A)→ 0.

The subquotient complexes appearing in the filtration of the map P2 → P ∅1 ⊕R
|A| in this

complex are one copy of P ∅2 → P ∅1 , from (4.2), and |A| copies of complexes I → R,
from (4.1).

For convenience we will give the modules in P(A)• simpler names:

P(A)• : · · · → P2(A)→ P1(A)
d1
→ P0(A)→ M(A)→ 0.

As usual, we write ∨ for the contravariant functor Hom(−, R).

Definition 4.3. Define the module M∗(E \ A) as the cokernel of the map dual to d1 in
P(A)•, that is,

M∗(E \ A)
.
= coker(P0(A)

∨
d∨1
−→ P1(A)

∨).

We define M∗, the dual matroid over R to M , to be the collection of these modules
M∗(E \ A).

Lemma 4.4. If R is local or Dedekind, then the module M∗(E \ A) is well-defined.

The proof will be separated according to our two cases for R.

Proof of Lemma 4.4, R local. Let m be the maximal ideal of R. The terms of P(A)• to
the left of P0(A) form a free resolution of the kernel K1 of the map P0(A) → M(A).
By Nakayama’s lemma, the minimal free resolution of K1 is a summand of this sub-
complex. The rightmost term F1 of the minimal free resolution embeds into P1(A), and
since P0(A) = P

∅

0 is independent of the choices made in P(A)•, so is F1. Also, we have
P1(A) ∼= F1⊕G1 whereG1 is a free module on dimR/m P1(A)−dimR/m F1 generators,
where dimR/m P1(A) = dimR/m P

∅

1 + |A|, so up to isomorphism G1 is independent of
the choices too.

Then d1 is the sum of the canonical map d1|F1 : F1 → P0(A) and the map G1 → 0.
The dual map d∨1 splits correspondingly as the sum of (d1|F1)

∨
: P0(A)

∨
→ F∨1 and the

map 0→ G∨1 , so its cokernel is

coker((d1|F1)
∨)⊕G∨1 ,

which is independent of the choices. ut

Lemma 4.5. Let R be a Dedekind domain. For any exact sequence

0→ K2 → Q1 → Q0 → N → 0

of R-modules with Q1 and Q0 projective, the cokernel of the induced map Q∨0 → Q∨1 is
isomorphic to Ext1(N,R)⊕ Hom(K2, R).



Matroids over a ring 695

Proof. Let K1 be the kernel of Q0 → N . This splits the given sequence into two short
exact sequences

0→ K2 → Q1 → K1 → 0, 0→ K1 → Q0 → N → 0,

which yield the following long exact sequences of Ext(−, R):

0→ Hom(K1, R)→ Hom(Q1, R)→ Hom(K2, R)→ Ext1(K1, R)→ 0,
0→ Hom(N,R)→ Hom(Q0, R)→ Hom(K1, R)

→ Ext1(N,R)→ 0→ Ext1(K1, R)→ 0.

The last zero arises since R has global dimension 1, and it implies Ext1(K1, R) = 0. The
cokernel of the composition Hom(Q0, R) → Hom(K1, R) → Hom(Q1, R) is canoni-
cally isomorphic to an extension of the cokernels of the maps being composed, which is
an extension of Ext1(N,R) by Hom(K2, R). The latter is projective, so the extension can
(noncanonically) be taken to be a direct sum. ut

Proof of Lemma 4.4, R Dedekind. First of all, Lemma 3.1 implies that, given a fixed
maximal flag of subsets {Ai} of A, there is a unique choice of the modules I in each
instance of (4.1), up to isomorphism. Therefore the isomorphism class of P2(A) is well-
defined for each fixed flag.

We are done so long as every maximal flag of subsets yields the same projective
module P2. One can obtain any maximal flag of subsets from any other by successive
replacements of a segment Ai ( Aib ⊆ Aibc with Ai ( Aic ⊆ Aibc, so it is sufficient
to show that one such replacement does not alter P2(A). For any such replacement, there
exists a commutative diagram as in axiom (M).

M(Ai)
f //

g

��

M(Aib)

g′

��
M(Aic)

f ′ // M(Aibc)

Whichever of the two flags of subsets is used, these two maps correspond to two steps like
(4.1) in the filtration of P(A)•. In either case, the subquotient complex of P(A)• formed
from the extension formed of these two steps is a resolution of ker(M(Ai)→ M(Aibc))

like

0→ K → R2 d
→ ker(M(Ai)→ M(Aibc))→ 0

where the labelled map d may be chosen to be (r, s) 7→ rx + sy if x and y generate the
kernels of f and g, respectively. It follows that K , and therefore the module P2(A), is
isomorphic in the two cases.

Finally, by Lemma 4.5, since M∗(E \ A) depends only on the isomorphism classes
of P2(A) and M(A) itself, it is well-defined. ut
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Theorem 4.6. IfM is a matroid over R, andM∗ is defined, thenM∗ is a matroid over R
as well.

Proof. Let A ⊆ E and b ∈ E \A. In the construction of P(Ab)•, choose a maximal flag
of subsets ending in · · · ⊆ A ⊆ Ab. The construction then provides an exact sequence of
complexes which, at the P0 and P1 terms, looks like

0 // P1(A) //

��

P1(Ab) //

��

R //

��

0

0 // P0(A) // P0(Ab) // 0

All these modules are projective, so dualizing all the maps preserves exactness: we have

0 P1(A)
∨oo P1(Ab)

∨oo R∨oo 0oo

0 P0(A)
∨oo

OO

P0(Ab)
∨oo

OO

0oo

OO

(4.3)

This induces a map between the cokernels of the left two upward arrows, which is still
surjective, and has kernel some quotient of R. That is, we have a surjectionM∗(E \A)←
M∗(E \ (Ab)) whose kernel is a cyclic module. These maps are exactly what is needed
to establish condition (M1) for M∗.

Now let b, c ∈ E \ A. Building off the maps in the pushout diagram assured by
axiom (M) for M , we get a commuting square of the maps among the modules P1 con-
structed above:

P1(A) //

��

P1(Ab)

��
P1(Ac) // P1(Abc)

Each of these inclusions has cokernel R, and so the target splits as a direct sum. Regard
the various complexes P(·)• as resolutions of kernels ker(P ∅0 → M(·)). Then, taking for
example the top map, P1(A)→ P1(Ab), we can identify P1(Ab) with P1(A)⊕R, where
P1(A) maps to ker(P ∅0 → M(Ab)) via its map to ker(P ∅0 → M(A)), and R maps to
ker(P ∅0 → M(Ab)) by sending 1 to a lift of a generator of ker(M(A)→ M(Ab)).

Now, this lift of a generator of ker(M(A)→ M(Ab)) to P0 is also a lift of a generator
of ker(M(Ac) → M(Abc)). The same is true with the roles of b and c reversed. So in
fact the whole square of maps can be split compatibly, as

P1(A) //

��

P1(A)⊕ R

(x,r)7→(x,r,0)
��

P1(A)⊕ R
(x,r) 7→(x,0,r)

// P1(A)⊕ R
2
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Dualizing this square yields the square

P1(A)
∨ P1(A)

∨
⊕ R∨oo

P1(A)
∨
⊕ R∨

OO

P1(A)⊕ (R
∨)2oo

OO

(4.4)

in which all the maps are projections onto summands, which is a pushout.
Finally, the square with which we are ultimately concerned,

M∗(E \ A) M∗(E \ (Ab))oo

M∗(E \ (Ac))

OO

M∗(E \ (Abc))oo

OO

(4.5)

is obtained by taking the quotient of each of the modules in square (4.4) by the image of
the corresponding module P0(·)

∨. In fact all the P0(·)
∨ are isomorphic to (P ∅0 )

∨, com-
patibly. This remains a pushout by the universal property, as follows. Commuting maps
from M∗(E \ (Ab)) and M∗(E \ (Ac)) to a module N lift to commuting maps to N
from the upper-right and lower-left instances of P1(A)

∨
⊕ R∨ in (4.4), whose kernels

contain (P ∅0 )
∨. Since that square is a pushout, a map P1(A)

∨
→ N can be provided.

The kernel of this map contains (P ∅0 )
∨ and so it descends to a map M∗(E \ A) → N .

Uniqueness can be argued similarly. We have thus established axiom (M) for M∗. ut

We now state a fact whose substantive content is Lemma 4.5, and the analogous local fact
that the minimal free resolution is a summand of every free resolution. We have postponed
it to here only so that “matroid over R” could appear in the statement.

Corollary 4.7. When it is defined, M∗ is an essential matroid over R.
Suppose a system {M ′(A) : A ⊆ E} of modules is constructed as in Definition 4.3

except that we allow sequence (4.2) to be an arbitrary projective resolution. Then M ′(A)
is the direct sum of M∗(A) and a projective empty matroid.

Proof. Take first the case whereR is Dedekind. The module P2(∅) is trivial, and therefore
M∗(E) ∼= M(∅)tors by Lemma 4.5.

If now we substitute for (4.2) a different projective resolution, say with second syzygy
module K2, the effect on the sequence P(A)• is to add a K2 summand to the cokernel of
the dual of the differential d1. So by Lemma 4.5 again, M ′(A) will differ from

M∗(E \ A) ∼= Ext1(M(A),R)⊕ Hom(P2(A), R) ∼= M(A)tors ⊕ P2(A)
∨

only up to the projective summand Hom(K2, R).
Now suppose R is local. If M∗(E) had a nonzero projective, i.e. free, summand,

say F , then the minimal projective resolution 0 → F → F splits as a direct summand
out of the complex

(P ∅0 )
∨
d∨1
→ (P ∅1 )

∨
→ M∗(E).
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This induces a splitting of a zero map F∨→ 0 as a summand of the map d1 : P
∅

1 → P ∅0 ,
but this contradicts the choice of complex (4.2) as a minimal free resolution.

If the sequence we use in place of (4.2) is

Q• : · · · → Q1
e
Q
1
→ Q0 → M(∅)→ 0,

then the minimal free resolution P ∅• splits as a summand out of Q•, and the map eQ1 is
the direct sum of dP

∅

1 : P
∅

1 → P ∅0 and a surjection of free modules f1 : F1 → F0. In the
construction of P(A)•, the liftings of the maps R → M(A) in (4.1) can still be chosen
to have image contained in P ∅0 , so that the first differential d1 of the analogue P(A)• is
again the direct sum of the original d1 and f1. Upon dualizing, therefore, the analogue of
d∨1 has an extra summand f ∨1 , an injection of free modules. Its cokernel is a free module,
which is independent of A and therefore splits as a matroidal direct summand. ut

Our notion of duality reduces to the classical Gale duality of vector configurations in the
realizable case. It was prefigured by the construction of the dual of a realizable arithmetic
matroid in [6], in which the matrix transpose operation used to construct the Gale dual
corresponds to dualizing our differential d1.

Proposition 4.8. If a matroid M is realizable and its dual M∗ is defined, then M∗ is
realizable too.

Proof. Let M be realized by the vector configuration (xa : a ∈ E) within M(∅). Fix lifts
of these vectors to vectors (x̃a : a ∈ E) within P ∅0 .

For a setA ⊆ E and an element a ∈ A, the map dA1 : P
∅

1 ⊕R
A
→ P ∅0 appearing in the

resolution P(A)• satisfies d1(0, ea) = x̃a . Thus each of these maps is a restriction of the
map dE1 : P

∅

1 ⊕R
E
→ P ∅0 in the complex P(E)• to the submodule P ∅1 ⊕R

A
⊆ P ∅1 ⊕R

E .
Let us dualize, and write {ea : a ∈ E} for the dual standard basis of (RE)∨. The map
(dA1 )

∨ factors as qA ◦ (dE1 )
∨, where qA : (P ∅1 ⊕ R

E)∨ → (P ∅1 ⊕ R
A)∨ is the quotient

map by the submodule 〈ea : A ∈ E \ A〉. Hence, M∗(E \ A) = coker((dA1 )
∨) is the

quotient of M∗(∅) = coker((dE1 )
∨) by the submodule generated by the images of the ea

for a ∈ E \ A. But we have now exactly described a vector configuration realizing M∗:
the ambient module is M∗(∅) = coker((dE1 )

∨), and the vector labelled by a is the image
of ea . ut

Matroid duality over R has the properties expected of it.

Proposition 4.9. If M and M ′ are matroids over a ring R where matroid duality is de-
fined, then

(a) (M\i)∗ = M∗/i.
(b) (M/i)∗ is isomorphic to M∗\i plus a projective empty matroid. If M({i}) is a quo-

tient of M(∅) by R, then (M/i)∗ = M∗\i.
(c) (M ⊕M ′)∗ = M∗ ⊕M ′∗.
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The extra hypothesis in part (b) plays the role of the condition that one should not contract
a loop of a classical matroid. Part (a) has no corresponding condition because all dual
matroids are essential, which adjusts for the discrepancy that might otherwise be expected
if a coloop is deleted.

Proof. (a) This is immediate: M(A) equals (M\i)(A) for A 63 i, so the chains of maps
used in constructing P(A)• are identical in M∗ and (M\i)∗. In the former dual, the dual
of d1 in P(A)• isM∗(E \A) = (M∗/i)((E\i) \A); in the latter it is (M\i)∗((E\i) \A).

(b) The matroid M∗\i over R is obtained by the construction of Definition 4.3 on
the matroid M/i except that the resolution used of (M/i)(∅) = M({i}) is not the one
specified there, but rather P({i})•. By Corollary 4.7, M∗\i is the direct sum of (M/i)∗

and a projective empty matroid, so it is enough to show that M∗\i is essential, i.e. that
M∗(E\i) has no projective summands.

If M∗(E\i) had a nonzero projective summand Q, it would pull back to a summand
of P1({i})

∨, and this can be done in such a way that 0→ Q→ Q→ 0 is a summand of

P0({i})
∨
→ P1({i})

∨
→ M∗(E\i)→ 0.

In the undualized complex P({i})•, this would appear as a summand Q∨→ 0 of d1.
However, in the construction of P({i})•, the fact that the map M(∅) � M({i}) has

kernel R implies that the images d1(P
∅

1 ) and d1(R) intersect in zero. Because d1|P ∅1
is

part of a minimal resolution, it has no direct summand lying in its kernel. Together, these
imply that there is no nonzero summandQ of P1(A) lying in ker d1, as was sought above.

(c) To distinguish the complexes used in the various matroids at hand, let us write the
complex P(A)• for the matroid M with a subscript PM(A)• (and similarly for the other
matroids involved). For subsets A and A′ of the respective ground sets of M and M ′, it is
easy to check from the definition that these complexes (can be taken to) split as

PM⊕M ′(Aq A
′)• = PM(A)• ⊕ PM ′(A

′)•,

from which the result follows. ut

Proposition 4.10. If M is a matroid over a ring R for which duality is defined, then M
is the direct sum of M∗∗ and a projective empty matroid. In particular, if M is essential,
M∗∗ = M .

Proof. Suppose first that M is a realizable matroid over R, and fix a realization (xa :
a ∈ E). The proof of Proposition 4.8 gives a configuration of module elements realiz-
ingM∗. Now, ifM∗(∅) is given a projective resolution whose first map is (dE1 )

∨, and this
resolution is used in place of (4.2) to construct a system of modules M∗′, Corollary 4.7
shows that M∗′ is the direct sum of M∗∗ and a projective empty matroid.

Let us write simply d = d∅1 : P
∅

1 → P ∅0 for the first differential in the resolution
of M(∅). Then the map dE1 is given in matrix notation, treating direct sums as spaces of
column vectors, by

dE1 : P
∅

1 ⊕ R
E

( d x )
−−−→ P ∅0
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where x : RE → P ∅0 is determined by x(ea) = x̃a , this x̃a being a lift of xa to P ∅0 . In
the dual, the vector configuration which realizes M∗ is the image of the standard basis
of (RE)∨. So when we run the duality construction the second time, the first differential
of the resolution P(E)• in M∗ is

(P ∅0 )
∨
⊕ RE

(
d∨ 0
x∨ 1

)
−−−→ (P ∅1 )

∨
⊕ (RE)∨,

where the map 1 : RE → (RE)∨ sends the primal to the dual standard basis. Therefore,
M∗′ is realized within the cokernel of

P ∅1 ⊕ R
E

(
d x
0 1

)
−−−→ P ∅0 ⊕ (R

E)∨

(the maps 1 and 0 being self-dual) by the image of the standard basis {(0, ea) : a ∈ E}
of the (RE)∨ summand on the right. By a change of basis on the target of the above map,
corresponding to composition on the right by the isomorphism

P ∅0 ⊕ (R
E)∨

(
1 −x
0 1

)
−−−→ P ∅0 ⊕ (R

E)∨,

we find that M∗′ is realized within the cokernel of

P ∅1 ⊕ R
E

(
d 0
0 1

)
−−−→ P ∅0 ⊕ (R

E)∨,

with the realizing vector configuration the image of {(x̃a, ea) : a ∈ E}. But the identity
map RE → (RE)∨ that is a summand of the above map can be ignored in the cokernel;
that is, M∗′ is realized in coker d by {xa : a ∈ E}, which shows M∗′ ∼= M . We conclude
that M is the direct sum of M∗∗ and a projective empty matroid.

Now, let us drop the assumption that M is realizable. Axiom (M) indicates that
every two-element minor of M is realizable, so by the above discussion and Proposi-
tion 4.9(a,b), the modules in the corresponding minor of M∗∗ differ from those of M
only up to projective summands. The rings over which we have defined matroid dual-
ity have the cancellative property for projective summands: if N , N ′, P are R-modules
with P projective such that N ⊕ P ∼= N ′ ⊕ P , then N ∼= N ′. So, since any two subsets
A,B ⊆ E, may be linked with a chain of overlapping two-element minors on which the
realizable result above may be invoked, we conclude there are fixed projective modules
P , Q such that M(A)⊕ P ∼= M∗∗(A)⊕Q for any A ⊆ E. The proposition is proved by
observing that, since M∗∗ is essential, P must be zero; and if M is essential as well, also
Q must be zero. ut

The remainder of this section is dedicated to explicit formulae for the modules making up
the dual matroid in the Dedekind case.
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Proposition 4.11. LetM be a matroid over a Dedekind domainR. The element of Pic(R)

det(M) .= det(M(A)proj)+ det(M∗(E \ A)proj)+ det(M(A)tors)

= det(M(A))+ det(M∗(E \ A))− det(M(A)tors)

is independent of the choice of A ⊆ E.

In particular, if A is an independent set (or, more strongly, a basis) of the generic matroid
of M , then by Corollary 4.7 we have det(M(A)) = det(M).

Proof. Given a set A ⊆ E, let det(M)(A) be the value of det(M) computed using that
choice of A. It is enough to show that, for each A ⊆ E and b ∈ E \A, det(M)(A) equals
det(M)(Ab).

Given A and b, it is true of exactly one of the two dual maps M(A) → M(Ab) and
M∗(E \ (Ab)) → M∗(E \ A) provided by condition (M1) that the rank of the target is
one less than the rank of the source. In the other map, these two ranks are equal.

If the first map has this rank drop, then its kernel must be isomorphic to R, and the
exact sequence

0→ R→ M(A)→ M(Ab)→ 0

implies that det(M(A)) = det(M(A)proj) + det(M(A)tors) equals det(M(Ab)) =
det(M(Ab)proj) + det(M(Ab)tors). Since the second map has no rank drop, its ker-
nel is contained in the torsion submodule of its source, so det(M(E \ A)proj) equals
det(M(E \ (Ab))proj). Adding these equalities, we have det(M)(A) = det(M)(Ab).

If instead the second map has the rank drop, then the same argument shows that
det(M)(A) = det(M)(Ab) after exchanging M for M∗ and sets A for their complements
E \ A, and using the fact that M(A)tors ∼= M

∗(E \ A)tors. ut

Recall that K0(R) = Z ⊕ Pic(R). Let σ : K0(R) → K0(R) be the involution acting as
the identity on the summand Z and negation on the summand Pic(R).

Corollary 4.12. If M is a matroid over a Dedekind domain R, then M∗(E \ A) is the
module whose torsion part is M∗(E \ A)tors ∼= M(A)tors and whose projective part is
determined by the equality

[M∗(E \ A)proj] = σ
(
[M(A)] + |A| · [R] − [M(∅)]

)
(4.6)

in K0(R).

Note that, over a field, equation (4.6) specializes to the formula for dualizing rank func-
tions familiar from the matroid setting,

cork∗M(E \ A) = corkM(A)+ |A| − r

where r is the rank of M .

Proof of Corollary 4.12. The assertion on the torsion parts is noted in the discussion after
Lemma 4.5.
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As for the projective part, we treat the summands of K0(R) = Z⊕ Pic(R) separately.
In the Pic(R) summand, Proposition 4.11 implies that

det(M∗(E \ A)proj)+ det(M(A)) = det(M) = det(M∗(E)proj)+ det(M(∅)),

which becomes the Pic(R) part of (4.6) on noting that M∗ is essential so M∗(E)proj is
trivial.

Regarding the rank, consider again the ideal I ∼= coker(f ∨) in the proof of Proposi-
tion 4.10. Since ∨ preserves rank and f ∨ is an injection, we have

rk(I ) = rk(M(A))− rk(M(Ab)).

As well,
rk(M∗(E \ Ab))− rk(M∗(E \ A)) = rk(R/I) = 1− rk(I ).

By induction on the size of E \ A, we deduce that rk(M(A)) − rk(M∗(E \ A)) + |A| is
constant, and thus always equal to its value rk(M(∅)) taken when A = ∅. This proves the
part of (4.6) in the Z summand. ut

Proposition 4.13. Let M be a matroid over a Dedekind domain R.

(a) Let f : R → S be a flat map to a Dedekind domain S. Then (M ⊗ S)∗ = M∗ ⊗ S
(as matroids over S).

(b) Let f : R→ S be the quotient by a maximal ideal. Then again (M⊗S)∗ = M∗⊗S.

Proof. Since base changes are computed one module at a time, these are straightforward
to check given Corollary 4.12.

For part (a), to begin, we have (M ⊗ S)∗(A)tors = (M(E \ A) ⊗ S)tors directly. On
the other hand, since projective modules remain projective under − ⊗ S, we find that
(M∗(A) ⊗ S)tors equals (M∗(A)tors ⊗ S)tors, which in turn is (M(E \ A)tors ⊗ S)tors =

(M(E \ A)⊗ S)tors. So the torsion parts agree.
As for the projective parts, because f is flat, the induced homomorphism f∗ :

K0(R) → K0(S) is given simply by f∗[N ] = [N ⊗ S]. Also, torsion modules remain
torsion on tensoring with S, so that the operations −⊗ S and −proj commute. Hence, by
(4.6),

[(M ⊗ S)∗(A)proj] = σ
(
[M(A)⊗ S] + |A| · [S] − [M(∅)⊗ S]

)
equals

[(M∗ ⊗ S)(A)proj] = [M
∗(A)proj ⊗ S] = f∗[M

∗(A)proj]

= f∗
[
σ
(
[M(A)] + |A| · [R] − [M(∅)]

)]
.

For part (b),M⊗S is a classical matroid, over a field, and so we need only check that
the corank functions of (M ⊗ S)∗ andM∗⊗ S are equal. Let I be the maximal ideal such
that S = R/I . For a f.g. R-module N , the S-dimension of N ⊗ S is the rank of Nproj plus
dimS TorR1 (N, S); the latter summand is the number of indecomposible summands of N
isomorphic to R/In for some n. Now,

cork(M⊗S)∗(E \ A) = corkM⊗S(A)+ |A| − r
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where r is the generic rank of M ⊗ S. The term corkM⊗S(A) is computed as described
just above, for N = M(A): we get rk(M(A)) + dimS TorR1 (M(A), S). On the other
hand, we know that M∗(E \ A) has the same projective part as M(A); this means
TorR1 (M

∗(E \ A), S) = TorR1 (M(A), S). And the rank of the module M∗(E \ A) is
rk(M(A)) + |A| − rk(M(∅)) = rk(M(A)) + |A| − r , by (4.6). Therefore the dimension
of M∗(E \ A) is

rk(M(A))+ |A| − r + dimS TorR1 (M
∗(E \ A), S),

which agrees with cork(M⊗S)∗(E \ A) as required. ut

5. Structure of matroids over a DVR

In this section and the next we record some structure theorems for matroids over R in
terms of structure theorems for the modules over R themselves. Our analysis of general
Dedekind domains in the next section will make much use of base changing to local-
izations of R, so we begin here with the local case, i.e. where R is a discrete valuation
ring.

We will see that these objects have connections to tropical geometry. A matroid over
a DVR (discrete valuation ring) R defines a point on each Dressian, one of the tropical
analogues of the Grassmannian; this is equivalent to being a valuated matroid. (As per
Remark 5.10, “discrete” appears to be inessential here, so rings familar to tropicalists like
the Puiseux series should also serve.)

For the whole of this section, R will be a DVR with maximal ideal m. We first recall
the structure theory of f.g. R-modules: any indecomposable f.g. R-module is isomorphic
to either R or R/mn for some integer n ≥ 1. We will sometimes formally subsume R
into the latter family by writing it as R/m∞. So, if N is a f.g. R-module and i ≥ 1 is an
integer, define

di(N)
.
= dimR/m(m

i−1N/miN), d≤i(N)
.
=

i∑
j=1

dj (N) = dimR/m(N/m
iN),

and for convenience di(N) = d≤i(N) = 0 if i ≤ 0. Let d•(N) denote the infinite se-
quence of these. We have

di(R/m
n) =

{
1, 0 < i ≤ n,

0, i > n,

where n may be∞. The following is a quick consequence.

Proposition 5.1. Isomorphism types of f.g. R-modules are in bijection with nonincreas-
ing infinite sequences d• of nonnegative integers indexed by positive integers, the bijection
being given by

N ↔ d•(N).

This bijection permits a straightforward identification of those isomorphism classes of
modules which permit maps satisfying condition (M1).
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Proposition 5.2. Let N and N ′ be f.g. R-modules. There exists a surjection φ : N → N ′

with cyclic kernel if and only if

di(φ)
.
= di(N)− di(N

′)

equals 0 or 1 for each i ≥ 1.

We can also easily extract the di(φ).

Corollary 5.3. Let {eα} be a minimal set of generators for an f.g. R-module N , and
suppose eα generates a summand isomorphic to R/m`α , wherein `α may be∞. Let x =∑
xαeα be an element of N , and φ the canonical map N → N/〈x〉. Then d•(φ) is the

lexicographically least sequence d• such that for every α,

#{i ≤ `α : di = 0} ≤ dimR/m(〈eα〉/〈xαeα〉). (5.1)

When `α is finite, condition (5.1) is equivalent to

d≤`α ≥ dimR/m(〈xαeα〉).

In the case that N and N ′ have finite length, Proposition 5.2 follows from facts about
the Hall algebra [15]. Indeed, it is equivalent that N have finite length and that di(N)
stabilize to 0 for i � 0. In this case di is a partition, and its conjugate partition is the one
usually used to label N . For a cyclic module, this conjugate partition has a single row.
Then, under the specialization taking the Hall polynomials to the Littlewood–Richardson
coefficients, Proposition 5.2 is a consequence of the Pieri rule. (Taking this further, our
foundational Lemma 3.1 is essentially the statement that all coefficients in the Pieri rule
are equal to 1.)

We include a proof of the proposition nonetheless, both because we do not require
finite length and because we reuse its framework in proving Corollary 5.3.

Proof of Proposition 5.2. Necessity. Let 〈x〉 be the cyclic kernel of N → N ′, for x ∈ N .
The kernel of the induced surjection N ⊗ R/mn→ N ′ ⊗ R/mn is

Kn = 〈x〉/(〈x〉 ∩m
nN).

The dimensions over R/m of these three modules are related by

d≤n(N)− d≤n(N
′) = dimR/mKn,

and, by subtracting two such relations,

dn(N)− dn(N
′) = dimR/mKn − dimR/mKn−1.

It is clear by definition that the Kn are an increasing sequence of modules, so that
dimR/mKn − dimR/mKn−1 is nonnegative. On the other hand,

(〈x〉 ∩mn−1N)/(〈x〉 ∩mnN)

has length at most 1, since if mix ⊆ mn−1N then mi+1x ⊆ nnN . But this length is
dimR/mKn − dimR/mKn−1, which is thus at most 1.
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Sufficiency. Given N and an infinite list δi ∈ {0, 1} such that di(N) − δi is also a non-
increasing sequence of naturals, equal therefore to di(N ′) for a module N ′, we wish to
construct x ∈ N so that N/〈x〉 ∼= N ′.

Let I be the set of indices i for which δi = 1 and δi+1 = 0; also include in I the
symbol ∞ if δi = 1 for all sufficiently large i. For each i ∈ I , there is a summand
isomorphic to R/mi in N . Splitting off one module of each of these isomorphism classes,
we can make the identification

N =
⊕
i∈I

R/mi ⊕ P

for some module P , and let {ei : i ∈ I } be generators of the summands other than P . Let
t ∈ R be a generator of m, and define

x =
∑
k∈I

tk−δ≤kek,

where as expected δ≤k means
∑k
i=1 δi .

The module P will remain as a summand in N/〈x〉, and we may restrict attention to
the remaining summand, call it Q. Towards describing it, define the elements

ẽi =
∑

k∈I, k≥i

t (k−δ≤k)−(i−δ≤i )ek ∈ N.

Fix for the moment some i ∈ I . Let j = j (i) be the greatest index less than i such that
δj = 0 and δj+1 = 1; or if there is no such index let j = 0. Then we have

tj ẽi = t
δ≤j x.

This is because j − δ≤j = i − δ≤i by the definition of i, so that the coefficients of ek
agree for all k ≥ i; for k < i, however, we also have k < j and thus k − δ≤k + δ≤j ≥ k,
so that the coefficient of ek in tj ẽi is zero. Therefore, tj ẽi equals zero in N/〈x〉.

However, if some R-linear combination y =
∑
i∈I ri ẽi ∈ N is zero in N/〈x〉, then

ri ∈ mj (i)N for each i. Otherwise, write y = sx. Let i be minimal such that ri 6∈ mj (i)N ,
and let j = j (i). If y is expanded in terms of the ek , then the least k such that ek has
a nonzero coefficient is k = i. Let i′ be the greatest element of I less than i. Since
the coefficient of ei′ in y is zero, the m-valuation of s must be greater than or equal
to i′ − (i′ − δ≤i′) = δ≤i′ = δ≤j , in view of the definition of x. (Or, if there is no
element of I less than i, then consideration of the coefficient of ei in x yields the same
conclusion.) But then the m-valuation of the coefficient of ei in y is greater than or equal
to (i − δ≤i)+ δ≤j = j , contradicting our assumption on i.

It follows that the R-module generated by the ẽi is isomorphic to⊕
i∈I

R/mj (i),

wherein {j (i) : i ∈ I } is the set of all indices j for which δj = 0 and δj+1 = 1. The
elements ẽi in fact generate Q, by a triangularity argument between the ẽi and the ei . We
conclude that the sequences di(N)− di(N ′) and δi are equal. ut
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Proof of Corollary 5.3. Let να = dimR/m(〈eα〉/〈xαeα〉); this is the maximum of `α and
the m-valuation of xα . Suppose first that xα = 0 for all α except for a single list A =
{α1, . . . , α|A|} such that both (ναi ) and (`αi − ναi ) are strictly increasing sequences. To
avoid proliferation of subscripts we will write νi

.
= ναi and `i

.
= `αi .

The condition (5.1) is vacuous when xα = 0. The sequence d• that we obtain from
(5.1) for the α ∈ A is

0ν11`1−ν10ν2−ν11`2−ν2−`1+ν10ν3−ν21`3−ν3−`2+ν2 . . . ,

exponents indicating repetition. For this sequence, if the sufficiency argument of Proposi-
tion 5.2 is run with the same choice of generators {eα}, the element x produced to generate
the kernel is the same one we have chosen here (up to automorphisms of the cyclic sum-
mands 〈eα〉). So the corollary is proven in this case.

Now suppose two indices α and α′ are such that

να ≤ να′ and `α − να ≥ `α′ − να′ . (5.2)

The inequality (5.1) holds if and only if the (να + 1)th 0 of d•, if any, follows at least
`α − να 1s. Hence, (5.1) for α′ is implied by (5.1) for α, and thus α′ is irrelevant for
computing d•. Moreover, inequalities (5.2) ensure that we may change our basis for N by
adding a multiple of e′α to eα , yielding another generator ẽα of 〈eα〉, so that

xαeα + xα′eα′ = x̃α ẽα

for some x̃α with the same m-valuation as xα .
By repeatedly making such changes of basis, we may, with no changes to the se-

quence d• that will be computed, assume that xα = 0 for all α except for a set no two
of whose members α, α′ satisfy (5.2). But such a set may be ordered so that (ναi ) and
(`αi − ναi ) are both strictly increasing, and this reduces to the first case. ut

Having control over condition (M1), we turn to axiom (M).

Proposition 5.4. Let M(∅), M(1), M(2), and M(12) be f.g. R-modules. There exist four
surjections with cyclic kernels forming a pushout square

M(∅)

y

φ //

ψ

��

M(1)

ψ ′

��
M(2)

φ′
// M(12)

if and only if
(L1) the source and target of each map satisfy the equivalent conditions of Proposi-

tion 5.2;
(L2a) for each n ≥ 1,

d≤n(M(∅))− d≤n(M(1))− d≤n(M(2))+ d≤n(M(12)) ≥ 0;

(L2b) for any n ≥ 1 such that dn(M(1)) 6= dn(M(2)), equality holds above:

d≤n(M(∅))− d≤n(M(1))− d≤n(M(2))+ d≤n(M(12)) = 0.
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The numbering of these conditions is chosen to agree with the numbering of the axioms
for a quasi-arithmetic matroid in Corollary 6.3.

Condition (L2a) asserts that A 7→ −d≤n(M(A)) is a submodular function.

Proof of Proposition 5.4. Necessity. Condition (L1) is clear from the fact that axiom (M)
implies condition (M1).

Tensoring the matroid M with with R/mn gives a matroid M ′ .= M ⊗ (R/mn) over
that ring. All of its modules are of finite length. Now regard these modules M ′(A) as
R/m-vector spaces. The maps M ′(A) → M ′(Ab) given by (M1) remain surjective, and
the pushout diagrams in (M) remain pushouts, since surjectivity and pushout-hood can be
checked set-theoretically. Accordingly,M ′ can be interpreted as a polymatroid over R/m,
that is, a classical polymatroid. The negative of the corank function of a polymatroid is
submodular, and this is condition (L2a).

As for condition (L2b), suppose that the inequality of (L2a) were strict. Let the kernel
of φ be 〈x〉, and the kernel of ψ be 〈y〉, so that the kernel of the composite ψ ′ ◦φ = φ′ ◦ψ
is 〈x, y〉. So our assumption is

dim 〈x〉/(〈x〉 ∩mnN)+ dim 〈y〉/(〈y〉 ∩mnN) > dim 〈x, y〉/(〈x, y〉 ∩mnN)

where all dimensions are over R/m. (Note that the nonstrict version of this inequality
manifestly holds, providing another proof of (L2a).) That is, there exist r, s ∈ R such that
sy − rx ∈ mnN , but neither rx nor sy is in mnN .

Now, suppose that dn(M(∅)) − dn(M(1)) = 1. By the proof of Proposition 5.2, the
module (〈x〉 ∩mn−1N)/(〈x〉 ∩mnN) is nontrivial, i.e. there exists q ∈ R such that

qx ∈ mn−1N \mnN.

Because qx ∈ mn−1N and rx 6∈ mnN , we see that r divides q in R, say q = pr . Then

psy − qx = p(sy − rx) ∈ mnN

and by adding, we get psy ∈ mn−1N \ mnN , which implies that dn(M(∅)) − dn(M(2))
= 1. Of course the same holds with the roles of 1 and 2 in the ground set reversed, so that
dn(M(1)) = dn(M(2)). By contradiction, (L2b) is proved.

Sufficiency. Suppose the modules M(A) satisfy (L1), (L2a), (L2b). By (L1), if f is one
of the maps in the pushout, the sequence d•(f ) has elements drawn from {0, 1}. Let I (f )
be the set of positions i such that di(f ) = 1 and di+1(f ) = 0, together with ∞ if d•
stabilizes at 1. We are assured of the existence of various simultaneous cyclic summands
of M(∅) (i.e. all participating in a single direct sum decomposition), for which we may
choose generators as follows: a generator ei with 〈ei〉 = R/mi for each i ∈ I (φ)∪ I (ψ),
and a generator εi (distinct from ei) with 〈εi〉 = R/mi for each i ∈ I (φ′) ∩ I (ψ ′).

Let t ∈ R be a generator of m and define two elements x and y in M(∅) by

x =
∑
i∈I (φ)

t i−d≤i (φ)ei,

y =
∑
i∈I (ψ)

t i−d≤i (ψ)ei +
∑

i∈I (ψ ′)\(I (ψ)\I (φ))

t i−d≤i (ψ
′)εi .
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Let φ be the quotient map on M(∅) by 〈x〉, ψ the quotient map by 〈y〉, and φ′ and ψ ′

the maps completing this to a pushout. We must check that the images of these maps, i.e.
the quotients M(∅)/〈x〉, M(∅)/〈y〉, and M(∅)/〈x, y〉 have the isomorphism types they
should.

The element x is the same one we constructed in the proof of Proposition 5.2, so
M(∅)/〈x〉 ∼= M(1). Next consider y. By (L2a), we have d≤i(ψ ′) ≤ d≤i(ψ) for any i, and
therefore i − d≤i(ψ ′) ≥ i − d≤i(ψ). Among the first i entries of d•(ψ) there are exactly
i − d≤i(ψ) zeroes, and hence at most i − d≤i(ψ ′) of them. Therefore, by Corollary 5.3,
the presence of the second sum in the definition of y does not affect the isomorphism type
of M(∅)/〈y〉, and parallel to the x case we have M(∅)/〈y〉 ∼= M(2).

Lastly, we wish to show that M(1) modulo the image φ(y) is isomorphic to M(12).
As our set of generators ofM(1)we will use the images of the generators we have defined
for M(∅), except replacing the ei for i ∈ I (φ) with the ẽi defined in the proof of Propo-
sition 5.2. From the definition of the ẽi , we obtain the following base change formulae:
for i ∈ I (φ), if i′ is the minimum element of I (φ) exceeding i, and j is the unique index
with i < j < i′ such that dj (φ) = 0 and dj+1(φ) = 1, then

ei = ẽi − t
(i′−δ≤i′ )−(i−δ≤i )ẽi′ = ẽi − t

j−i ẽi′ .

If there is no i′ then ei = ẽi .
If i is in I (ψ ′), the latter sum in the definition of y includes a term t i−d≤i (ψ

′)εi ,
which is also a term in our expansion of φ(y), unless i ∈ I (ψ) and i 6∈ I (φ). The
latter noninclusion implies that the image of ei is still one of the elements in our set of
generators for M(1). We also have di(ψ) = 1 and di+1(ψ) = 0, while either di(φ) = 0
or di+1(φ) = 1. In the former case, (L2b) immediately implies d≤i(ψ) = d≤i(ψ ′); in the
latter case, it implies d≤i+1(ψ) = d≤i+1(ψ

′), from which the statement with i in place
of i + 1 follows. Therefore, in either case the former sum in the definition of y includes
a term t i−d≤i (ψ)ei = t i−d≤i (ψ

′)ei , which is also a term in φ(y). These terms of φ(y)
establish inequalities on the sequence d•(ψ), of the sort described in Corollary 5.3, which
dn(M(1))−dn(M(12)) is the lexicographically first sequence satisfying. To complete the
proof, we need only check that the terms of φ(y) we have not yet accounted for introduce
no incompatible inequalities (much like we just checked for y).

The remaining terms of φ(y) are those corresponding to terms of y in the first sum
which we have not treated yet, in 〈ei〉 for i ∈ I (ψ) \ I (ψ ′). Now, any such i is in
I (φ). To justify this, we have (di(ψ), di+1(ψ)) = (1, 0), while (di(ψ ′), di+1(ψ

′)) is
some other two-bit sequence. The easiest case is (di(ψ ′), di+1(ψ

′)) = (0, 1). Then
(di(φ), di+1(φ)) = (1, 0) because

dn(φ)+ dn(ψ
′) = dn(M(∅))− dn(M(12)) = dn(ψ)+ dn(φ′)

for all n, and the dn are in {0, 1}. Next suppose (di(ψ ′), di+1(ψ
′)) = (0, 0). Then

di(φ) = 1 and di(φ′) = 0. Since property (L2a) holds at i − 1, the equality in this
property must be strict at i, and therefore it would contradict property (L2b) if di+1(φ)

were 1. The argument is similar with 0 and 1 exchanged and sequences reversed if
(di(ψ

′), di+1(ψ
′)) = (1, 1). Therefore i ∈ I (φ) as claimed. It follows that our remaining

terms of φ(y) are terms containing generators of the form ẽi .
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For any index i ∈ I (ψ)∩I (φ), let k ≤ i be minimal and ` ≥ i maximal (possibly∞)
such that dj (φ) = dj (ψ) for all k < j ≤ `. Summing over this range, we have∑

i∈I (ψ)∩I (φ)
k<i≤`

t i−d≤i (ψ)ei =
∑

i∈I (ψ)∩I (φ)
k<i≤`

t i−d≤i (ψ)ẽi − t
i′−d≤i′ (ψ)ei′

= t i0−d≤i0 (ψ)ẽi0 − t
i1
′
−d≤i1

′ (ψ)
ei1 ′

where i0 is the least element of I (ψ) ∩ I (φ) ∩ (k, `] and i1 is the greatest; if i′1 does
not exist, the term containing it above simply drops. Property (L2b) applies at n = k, so
by property (L2a), we must have di(ψ ′) = 0 for all k < i ≤ i0. Therefore the inequal-
ity of Corollary 5.3 for the term t i0−d≤i0 (ψ)ẽi0 is satisfied by the sequence dn(M(1)) −
dn(M(12)). Likewise, if there is an i′1, then ` is finite, and property (L2b) applies at
n = `, whence property (L2a) implies that di(ψ ′) = 1 for all i1 < i ≤ `. Therefore
the inequality of Corollary 5.3 for the term t

i1
′
−d≤i1

′ (ψ)
ei1 ′ is satisfied by the sequence

dn(M(1))−dn(M(12)) as well. This accounts for the last of the terms of φ(y), and at last
we conclude by that corollary that M(1)/〈φ(y)〉 ∼= M(12), as desired. ut

By the time we come to three-element matroids over R, there are already nontrivial con-
ditions on the functions d≤n beyond their negatives being submodular.

Proposition 5.5. LetM be a matroid over R on the ground set [3], and let n be a natural
or∞. Then, among the three quantities

d≤n(M(1))+d≤n(M(23)), d≤n(M(2))+d≤n(M(13)), d≤n(M(3))+d≤n(M(12)),

the minimum is achieved at least twice.

Proof. If M ′ is a two-element matroid over R, let s≤n(M) denote the alternating sum
appearing in conditions (L2a,b). The matroid M has six minors with two elements. By
adding

d≤n(M(∅))− d≤n(M(1))− d≤n(M(2))− d≤n(M(3))

to the three quantities in the proposition, we obtain the three values s≤n(M\a) for the
deletions; by adding instead

d≤n(M(123))− d≤n(M(12))− d≤n(M(13))− d≤n(M(23)),

we recover the three values s≤n(M/a) for the contractions. So it is equivalent to prove
that either of these sets of three attains its minimum multiple times.

We use induction on n. As base case we take n = 0, and see that s≤0(M
′) = 0

for any M ′. So let n > 0. Suppose first, as A varies over subsets of [3], that dn(M(A))
depends only on |A|. In this case, the three sums of form

dn(M(∅))− dn(M(a))− dn(M(b))+ dn(M(ab))

are equal, as of course are the three sums of form

dn(M(c))− dn(M(ac))− dn(M(bc))+ dn(M(abc)).
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Therefore the differences s≤n(M\a)− s≤n−1(M\a) are all equal, and the induction step
succeeds.

So suppose this is not the case, and there are two setsA and B with |A| = |B| ∈ {1, 2}
for which dn(M(A)) 6= dn(M(B)). We will proceed assuming that |A| = |B| = 1; the
argument for the other case is exactly analogous (in fact, the two cases are exchanged
by replacing M by its dual). Since there are only two possible values for dn(M(A)) with
|A| = 1, namely dn(M(∅)) and dn(M(∅)) − 1, two of the dn(M(A)) with |A| = 1
are equal and are unequal to the third. Without loss of generality suppose dn(M(1)) =
dn(M(2)) 6= dn(M(3)). By condition (L2b), it follows that s≤n(M\1) = s≤n(M\2) =
0. Since s≤n(M\3) is nonnegative by condition (L2a), this completes the induction for
finite n.

Finally, the case n = ∞ holds because if any d≤∞(A) is finite, then d≤n(A) must be
eventually constant and equal to d≤∞(A). If the minimum in the proposition is not ∞,
there is nothing to prove; if this minimum is finite, the claim follows on replacing n by a
sufficiently large finite number. ut

Suppose we are given a matroid M over R with ground set E. For A ⊆ E, define pA to
be d≤n(M(A)). Apply Proposition 5.5 to all three-element minors ofM; the result can be
restated to say that the tropicalizations of the relations

pAbpAcd − pAcpAbd + pAdpAbc = 0 (5.3)

hold of the numbers p•, where we continue abbreviating A∪ {b, c} as Abc and similarly.
For background on tropical geometry, see [16]. We say a bare minimum here: tropical-

ization is a procedure transforming algebraic varieties to tropical varieties, combinatorial
“shadows” thereof, which are the sets of points on which the tropicalizations of all ele-
ments of their ideal of defining equations vanish. In our situation without a valued field,
the tropicalization of a polynomial f =

∑
a∈A cax

a in variables x1, . . . , xd is said to van-
ish at those points (xi) where, of linear forms

∑
i aixi corresponding to the monomials

in f , the minimum value is attained by two or more of the forms.
The relations (5.3) are among the Plücker relations for the full flag variety (of typeA).

A Plücker relation is a quadratic relation among the p• arising from the straightening
algorithm for Young tableaux. The full flag variety has a tropical analogue, the tropical
flag Dressian [12] cut out by the tropical Plücker relations, which arise from tropicalizing
those Plücker relations with the fewest terms. To be precise, the tropical Plücker relations
arise from the Plücker relations of the form∑

i∈T \S

±pS∪{i}pT \{i} = 0 (5.4)

where S and T are subsets of E satisfying |S| + 1 ≤ |T | − 1. When one considers only
those pA with |A| = r one can restrict to the relations with |S| = r − 1 and |T | = r + 1.
These relations define the Dressian Dr(r, n), which is one Grassmannian-like space in
tropical geometry. It is the parameter space for tropical linear spaces [14]. That is, there
is a tropical linear space determined by (pA : |A| = r) if and only if this point lies on the
Dressian. Observe that if |S| + 1 = |T | − 1 and S ⊆ T , the relation (5.4) vacuously says
0 = 0, so the smallest tropical Plücker relations have three terms.
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Considering all the tropical Plücker relations yields the flag Dressian, which is to the
full flag variety as the Dressian is to the Grassmannian: while points in the Dressian are
tropical linear spaces, points in the flag Dressian are full flags of tropical linear spaces,
where a flag is defined by satisfying incidence conditions.

Proposition 5.6. Define pA = d≤n(M(A)), where M is a matroid over R, and n is a
natural or ∞. Then the collection of pA for all subsets A ⊆ E satisfies every tropical
Plücker relation.

Corollary 5.7. The collection of pA in Proposition 5.6 gives a point on the flag Dressian.

In particular, for every 0 < r < n, the point (pA : |A| = r) lies on the Dressian
Dr(r, n). As another equivalent formulation, if M is a matroid over R, then in the regular
subdivision of the hypersimplex conv{

∑
i∈A ei} wherein the height of vertex A is pA =

d≤n(M(A)), then all maximal faces of this subdivision are matroid polytopes. For more
on these correspondences see [20] and [16, Section 4.4].

Remark 5.8. In general, M is not determined by the collection (pA : A ⊆ E), for any
fixed n. For instance, they do not distinguish the two one-element matroids M(∅) =
R/(m2), M(1) = R/m and M(∅) = R/m⊕ R/m, M(1) = R/m. However, M is deter-
mined by the whole family of tuples (pA : A ⊆ E) as n varies (geometrically, by a map
from a tropical ray into each Dressian).

Corollary 5.9. Let M be a matroid over a DVR (R,m). Then the function A 7→

dimR/mM(A) makes the generic matroid of M into a valuated matroid, in the sense
of Dress and Wenzel [9].

To be precise, our sign convention is the opposite of the one adopted in [9]; for perfect
agreement we would have to negate this function. But our sign convention is frequently
adopted in tropical geometry (see e.g. [16]).

Proof of Corollary 5.9. Choose n � 0 sufficiently larger than the greatest length of any
finite length summand of a module M(A). The lengths of M(A) ⊗ R/mn for A not a
spanning set of the generic matroid are sufficiently greater than these lengths when A is
a spanning set, since A is a spanning set of the generic matroid if and only if M(A) has
R as a summand.

The axiom of Dress and Wenzel for the valuation v of a valuated matroid is that, given
basesA and B and a ∈ A\B, there exists b ∈ B\A such thatA\{a}∪{b} and B∪{a}\{b}
are bases, and such that

v(A)+ v(B) ≥ v(A \ {a} ∪ {b})+ v(B ∪ {a} \ {b}).

The fact that the sets on the right hand side are bases follows from our choice of n, and
the inequality is immediate from the minimum in the Plücker relation∑

b∈(B\A)∪{a}

±pA\{a}∪{b}pB∪{a}\{b} = 0

being attained multiply, since pApB is one of its terms. ut
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Remark 5.10. We expect that matroids over the ring of integers in the Puiseux series,
R =

⋃
n≥1 K[[t1/n]], should directly produce tropical objects with coordinates in Q, when

the length of R/(ta) is taken as a for a ∈ Q; and that it is possible to use other valued
rings similarly. Everywhere we have assumed R is a Dedekind domain, we expect it is
sufficient to let R be a Prüfer domain, that is, a ring all of whose localizations at primes
are valuation rings, but not necessarily discrete (which is to say Noetherian). Verifying
this, and extending those parts of the theory which have relied on Noetherianity, is left for
future work.

Proof of Proposition 5.6. In any Plücker relation with |Ae| = 1, the constraint |Ae| +

|Be| = |B \ A| + 1 implies that Be is all of B \ A. So, once A and B are chosen, there is
just one exchange relation for each one-element subset (i.e. element) of A \ B.

We will proceed by induction on |A \ B| + |B \ A|. If A is a subset of B, or if
|A \ B| = |B \ A| = 1, there is no nontrivial Plücker relation. Thus the first nontrivial
case is |A \B| = 1 and |B \A| = 2, and this is equation (5.3), which we have established
as a base case.

The second nontrivial case is |A \ B| = |B \ A| = 2, and we again handle this
case separately. In this case, let F = A ∩ B, which equals Bf and is one element short
of Af. Suppose without loss of generality that (A \ B) ∪ (B \ A) = {1, 2, 3, 4}. Then the
tropicalized Plücker relation to be proved involves the three terms

pF12 + pF34, pF13 + p24, pF14 + pF23.

Consider the six sums pF∪S1 + pF∪S2 + pF∪S3 , where S1, S2, and S3 are subsets
of {1, 2, 3, 4} of respective sizes 2, 2, and 1, whose union is {1, 2, 3, 4}, and such that 1
is the unique element appearing twice. There are six of these sums (not twelve, because
the sum is the same even if S1 and S2 are exchanged). Among them there are three sums
in which pF12 appears. The remaining two summands in these sums are the tropicalized
terms of a Plücker relation (5.3), so their minimum is attained twice. The same goes for
the sums in which pF13 appears, or pF14.

From there, it follows that if the minimum value of all six of these sums were not
attained by, say, (S1, S2, S3) = (13, 14, 2), it would be attained at both (13, 24, 1) and
(23, 14, 1), and then by subtracting the common pF∪{1} we would be finished. Accord-
ingly, and by symmetry permuting {2, 3, 4}, we may assume that (13, 14, 2), (12, 14, 3),
and (12, 13, 4) all attain the minimum. In particular, they are all equal, and we rearrange
to

pF12 − pF2 = pF13 − pF3 = pF14 − pF4.

The same argument can be repeated with any of the elements of {2, 3, 4} taking the
place of 1. So if none of those gives the relation sought, we may conclude pFij − pFj =
pFik − pFk for every i, j, k in {1, 2, 3, 4}. But then

(pF12 − pF2)+ (pF34 − pF4) = (pF14 − pF4)+ (pF23 − pF2)

so that pF12+pF34 = pF14+pF23, and by symmetry pF13pF24 is equal to both of these
as well. This finishes the case |A \ B| = |B \ A| = 2.
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We finally proceed to the remaining cases, where |B \A| > 2. For convenience, write
C = Ae∪Be. It is reasonable to do this because, when |Ae| = 1, there is only one distinct
Plücker relation for C: different partitions of it back into Ae and Be of the correct sizes
yield the same relation.

Let c1 6= c2 be elements of C. Let D be a single-element subset of Af \ B, if that set
is nonempty, and let D = ∅ otherwise. Consider the set P of triples S = (S1, S2, S3) of
sets where S1, S2, and S3 are subsets of C with |S1| = 1, |S2| = |C| − 2, |S3| = |C| − 1,
and such that the multiset union of S1, S2, and S3 contains c1 and c2 with multiplicity 1,
and each element of C \ {c1, c2} with multiplicity 2. To each S ∈ P associate the sum

σ(S)
.
= pAf∪S1 + pBf∪D∪S2 + pBf∪S3 .

A triple S ∈ P is determined by two elements of C, namely the unique element a
of S1 and the unique element b of C \ S3. We write Sa,b for this triple, and observe that
P contains exactly those Sa,b with either a = b or a 6∈ {c1, c2}, b ∈ {c1, c2}.

In particular, P contains three elements Sa,c for each a ∈ C \ {c1, c2}. The sums
σ(Sa,c) for these elements are the constant pAf∪{a} plus the tropicalizations of the three
terms of an instance of (5.3) if D is empty, respectively the three terms of a Plücker
relation where the sets corresponding to A \ B and B \ A each have size 2 if D is a
singleton. Accordingly, the minimum value of σ(Sa,c) as c varies is attained twice.

Similarly, P contains |C| − 1 elements Sc,b for each b ∈ {c1, c2}. The sums σ(Sc,b)
for these elements are the constant pBf∪C\{b} added to tropicalizations of the terms in
another Plücker relation, where c1 has been removed from whichever of A and B it was
in, and D ⊆ A has been added to B. This Plücker relation is one of those covered by the
inductive hypothesis, since we have shrunk the symmetric difference of A and B. So the
minimum value of σ(Sc,b) as c varies is also attained twice.

Once more, for the |C| elements of P of the form Sc,c, each sum σ(Sc,c) is the con-
stant pBf∪C\{c1,c2} plus the tropicalization of a term in the Plücker relation whose tropical
vanishing we are concerned with. So our objective is to show that the minimum value of
σ(Sc,c) is attained twice.

Now let c1 and c2 be chosen so that the number of pairs a 6= b for which σ(Sa,b)
attains the minimum value x = minS∈P σ(S) is as small as possible. We will prove that
the minimum value of σ(Sc,c) is indeed attained twice. Suppose not. We then claim that
there exists a 6∈ {c1, c2} such that σ(Sa,c1) = σ(Sa,c2) = x. If this were false, choose
a 6= b so that σ(Sa,b) = x (this must be possible, because if σ(Sa,b) = x only when
a = b then the minimum of either Sa,c or Sc,b as c varies, whichever is appropriate, is
attained just once.) By the structure of P , b must be c1 or c2; without loss of generality
let it be c1. That is, we are assuming σ(Sa,c1) = x. Then by assumption σ(Sa,c2) > x, so
by the three-term Plücker relation, σ(Sa,a) = x. Moreover there must exist a′ 6= a such
that σ(Sa′,c1) = x, by the other Plücker relation. If a′ = c1 then we have a contradiction
with our first assumption (that the minimum is attained twice); otherwise we repeat for a′

the argument we made for a and have a contradiction with our second.
Thus, we have σ(Sa,c1) = σ(Sa,c2) = x. Now, by assumption, at least one c ∈ {c1, c2}

has σ(Sc,c) > x; without loss of generality let it be c1. Let P ′ be defined like P except
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using {a, c2} where P uses {c1, c2}. For each S = (S1, S2, S3) in P such that a ∈ S2,
there is a corresponding S′ = (S1, S2 \ {a} ∪ {c1}, S3) in P ′, with

σ(S)− σ(S′) = pBf∪D∪S2 − pBf∪D∪S2\{a}∪{c1}.

Therefore, if S attains the minimum value x of σ(S) over P , then S′ attains the minimum
value of σ(S′) over P ′ (unless this new minimum value is strictly less than x−pBf∪D∪S2−

pBf∪D∪S2\{a}∪{c1}, in which case only one Sa,b ∈ P ′ attains it, which contradicts our
choice of c1 and c2). But in {Sa,b ∈ P : a 6= b} we have two elements Sa,c1 and Sa,c2

without counterparts in P ′, both of which attain the minimum, whereas in {Sa,b ∈ P ′ :
a 6= b} we have the counterpart of Sc1,c1 , which does not attain the minimum. So this is
also a contradiction to our choice of c1 and c2, and our Plücker relation is proved in this
case, completing the proof. ut

6. Global structure of matroids over a Dedekind domain

Throughout this section R will be a Dedekind domain. Let us recall that given an R-
module N , we will denote by det(N) its class in the Picard group, as defined in Section 3.
Understanding the local ring case, we can now give a necessary and sufficient condition
for which pairs of modules can occur in condition (M1).

Proposition 6.1. Let N and N ′ be f.g. R-modules. There exists a surjection N → N ′

with cyclic kernel if and only if there exists such a surjection Nm → N ′m after localizing
at each maximal prime m of R, and

• if rk(N)− rk(N ′) = 0 then det(Nproj) = det(N ′proj), whereas
• if rk(N)− rk(N ′) = 1 then det(N) = det(N ′).

To test whether surjections exist in the localizations, we have the criterion in Proposi-
tion 5.2.

Proof of Proposition 6.1. Necessity. Localization is a base change, so preserves condi-
tion (M1). If rk(N) = rk(N ′), then the kernel of N → N ′ is contained in Ntors, so that
Nproj ∼= N ′proj, and so their classes are equal. If rk(N) = rk(N ′) + 1 then the kernel of
N → N ′ must be a cyclic rank 1 R-module, which up to isomorphism is R. Therefore
det(N) = det(R)+ det(N ′) = det(N ′) by the definition of K0(R).

Sufficiency. Note first that rk(N) − rk(N ′) ∈ {0, 1}, because the same is true in ev-
ery localization. Suppose that rk(N) = rk(N ′). Then det(Nproj) = det(N ′proj) implies
Nproj ∼= N

′

proj, by Proposition 3.3. Moreover, Ntors and N ′tors are the direct sums of their
localizations. The kernel of each of the given maps Nm → N ′m is contained in the tor-
sion (Nm)tors = (Ntors)m, so a map (Ntors)m → (N ′tors)m is induced. The direct sum of
all these maps is a map Ntors → N ′tors which is still a surjection; its kernel is a sum of
cyclic modules with disjoint supports, which is still cyclic. Taking the direct sum with an
isomorphism Nproj → N ′proj yields the requisite map N → N ′.
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Now suppose that rk(N) = rk(N ′) + 1. In this case, construct a set function M :
B(1) → R-Mod so that M(∅) = N ′tors and M(1) = Ntors. Note that M∗(∅) and M∗(1)
both have rank 0 and therefore trivial projective part. Moreover, there exist localized sur-
jections with cyclic kernel M(∅)m → M(1)m for each m. This is by Proposition 4.10(c)
(or because localization is flat), because M(∅)m and M(1)m are the modules of a one-
element matroid over Rm, the dual of the matroid built from Nm→ N ′m.

Using the previous case, there exists a surjection with cyclic kernel M(∅) → M(1).
That is, M is a matroid over R. By Proposition 4.10(a), dualizing this matroid and taking
the direct sum with the empty matroid forN ′proj yields a one-matroid overR whose objects
are N and N ′. There thus exists a surjection with cyclic kernel N → N ′. ut

For a complete description of the structure of matroids over R we must of course treat
axiom (M). It turns out there are no (ring-theoretically) global conditions on such squares,
and thus on matroids over R, further to those imposed by condition (M1).

Proposition 6.2. Let M(∅), M(1), M(2), and M(12) be f.g. R-modules. There exist four
surjections with cyclic kernels forming a pushout square

M(∅)

y
//

��

M(1)

��
M(2) // M(12)

if and only if the same is true after localizing at each maximal prime m, and the source
and target of each map satisfy the equivalent conditions of Proposition 6.1.

Proof. Necessity. Trivial in view of Proposition 6.1 and the fact that pushout squares
localize to pushout squares.

Sufficiency. Fix a pushout square for each localization; label its maps as follows:

M(∅)m

y

fm //

gm

��

M(1)m

g′m
��

M(2)m
f ′m

// M(12)m

It is enough to construct two maps M(∅) → M(1) and M(∅) → M(2) which localize
correctly everywhere, for then we may choose M(12) to be their pushout, since pushouts
localize to pushouts.

Suppose first that one of M(1) and M(2) has the same rank as M(∅), without loss of
generality thatM(2) does. By Proposition 6.1, we may construct a map φ : M(∅)→M(1)
so that there exist isomorphisms im(A) for each prime m andA = ∅, 1 making the squares

M(∅)m
φm //

im(∅)

��

M(1)m

im(1)
��

M(∅)m
fm // M(1)m
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commute. Now, by the proof of Proposition 6.1, we constructM(0)→ M(2) as the direct
sum of the restriction of the given gm to the torsion submodule ofM(∅)m, and the identity
map M(0)proj → M(0)proj. It changes nothing to precompose each of these restrictions
of gm with the corresponding im(∅). Doing this yields a commutative square

M(∅)m
ψm //

im(∅)

��

M(2)m

��
M(∅)m

gm // M(2)m

and pasting this square to the last one shows that we have constructed the two maps
M(∅)→ M(1) and M(∅)→ M(2) which localize as desired.

The remaining case is the one in which the ranks of M(1) and M(2) are both less
than that of M(∅). In this case, like the second case of Proposition 6.1, we will proceed
via dualization, and then via a similar argument. In brief, we may first construct a map
M∗(2)→ M∗(12)which localizes correctly, up to intertwining with some isomorphisms.
Then since the map M∗(1) → M∗(12) does not involve a rank drop, we may construct
it as a direct sum of localizations on the torsion parts using the same isomorphisms. This
gives us a diagramM∗(1)→ M∗(12)← M∗(2) which localizes correctly at every maxi-
mal prime. Finally, we may temporarily insert any suitable module in place ofM∗(∅), for
instance the pullback, and then dualize the resulting matroid over R. Discarding the ersatz
M(12) gives us maps M(2)← M(∅)→ M(1) which localize correctly, as desired. ut

6.1. Quasi-arithmetic matroids. If M is a matroid over Z, then we can define a corank
function of M as the corank function of the generic matroid M ⊗Z Q described above,
that is,

cork(A) = dimM(A)proj.

We also define
m(A)

.
= |M(A)tors|.

Corollary 6.3. The triple (E, cork, m) is a quasi-arithmetic matroid, i.e. m satisfies the
following properties:

(A1) Let A ⊆ E and b ∈ E. If b is dependent on A, then m(A ∪ {b}) divides m(A);
otherwise m(A) divides m(A ∪ {b}).

(A2b) If A ⊆ B ⊆ E and B is a disjoint union B = A ∪ F ∪ T such that for all
A ⊆ C ⊆ B we have rk(C) = rk(A)+ |C ∩ F |, then

m(A) ·m(B) = m(A ∪ F) ·m(A ∪ T ).

Furthermore it has the following property:

(A2a) If A,B ⊆ E and rk(A ∪ B) + rk(A ∩ B) = rk(A) + rk(B), then m(A) · m(B)
divides m(A ∪ B) ·m(A ∩ B).

Proof. Since Pic(Z) is trivial, this is immediate from Propositions 5.2, 5.4, 6.1 and 6.2.
ut
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This corollary establishes that matroids over Z recover many of the essential features of
the second author’s theory of arithmetic matroids from [6].

Remark 6.4. An arithmetic matroid is an object satisfying all the axioms of a quasi-
arithmetic matroid plus a further one, namely the positivity property (P) of [3]. The ax-
ioms of quasi-algebraic matroids are arithmetic ones, pertaining to integer divisibility,
whereas (P) has geometric motivation. To be precise, (P) is included as an axiom in order
to force positivity of the arithmetic Tutte polynomial MA(x, y). Its geometric nature is
that the numbers whose positivity it demands are, in the realizable case, numbers of com-
ponents of certain strata in the corresponding toric arrangement. Its coefficients also have
two natural but nontrivial combinatorial interpretations [6, 3].

The additional property (A2a) appeared in an earlier choice of the axioms [6, first
arXiv version].

In fact quasi-arithmetic matroids and matroids over Z are not truly equivalent, in that
the information contained in the latter is richer: it retains isomorphism classes of torsion
groups, not just their cardinalities.

7. The Tutte–Grothendieck ring

In this section we continue to let R be a Dedekind domain. All matroids over R in this
section are essential. The word “matroid” will mean “matroid over R” from here through
the end of the proof of Lemma 7.8, except when we speak of a generic matroid.

As we defined the operations of deletion and contraction in Section 2, any element
may be deleted or contracted. However, if a ∈ E is a generic coloop, then M\a is not
essential, so we will disallow these deletions here. Dually, we will exclude the case of
contracting a generic loop.

Essentially following Brylawski [4], define the Tutte–Grothendieck ring of matroids
overR, which we here denoteK(R-Mat), to be the ring whose underlying abelian group is
generated by a symbol TM for each unlabelled essential matroidM overR with nonempty
ground set, modulo the relations

TM = TM\a + TM/a
whenever a is not a generic loop or coloop; and whose multiplication is given by linear
extension from the relation

TM · TM ′ = TM⊕M ′ .
By “unlabelled”, we mean that we consider two matroids M and M ′ over R to be

identical if there is a bijection σ : E
∼
→ E′ of their ground sets such that M(A) ∼=

M ′(σ (A)) for each subset A of E.
The ring K(R-Mat) turns out to be best understood in terms of the monoid ring of

the monoid of R-modules under direct sum, as in Theorem 7.1 below. This however only
identifies a ring which K(R-Mat) injects into; the precise description of the image is
given in Corollary 7.4.

Define Z[R-Mod] to be the ring with a Z-linear basis {uN } with an element uN for
each f.g. R-module N up to isomorphism, and product given by uNuN

′

= uN⊕N
′

.
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Theorem 7.1. The Tutte–Grothendieck ring injects into

Z[R-Mod] ⊗ Z[R-Mod],

in such a way that for every matroid M over R,

TM 7→
∑
A⊆E

XM(A)YM
∗(E\A) (7.1)

where {XN } and {YN } are the respective bases of the two tensor factors Z[R-Mod].

As a point of notation, we will allow ourselves the abbreviation (XY)N for XNYN .
We immediately compare Theorem 7.1 with the case of matroids over a field, where

the Tutte–Grothendieck invariant is the familiar Tutte polynomial TM ; in Section 7.1 we
will relate it to other known invariants. If R is a field, then Z[R-Mod] is the univariate
polynomial ring Z[u], and then Z[R-Mod]⊗Z[R-Mod] is, appropriately, a bivariate poly-
nomial ring. If we call the generators of the two tensor factors x− 1 and y− 1 rather than
X and Y , then (7.1) in fact gives the classical Tutte polynomial, since dimM(A) is the
corank of A and dimM∗(E \ A) is its nullity.

Remark 7.2. We have excluded empty matroids from the definition of K(R-Mat) be-
cause there are no linear relations relating them to matroids with nonempty ground set:
the unique element in a matroid on one element, whence one might get a relation, must
be a loop or coloop. Thus, constructing the Tutte–Grothendieck ring in the presence of
zero-element matroids would yield a ring which would, in a minimal fashion, fail to be
a domain or to inject into Z[R-Mod] ⊗ Z[R-Mod]. Applying (7.1) to a matroid M on
zero elements yields the monomial XM(∅)YM

∗(∅). But sums of such monomials can also
be achieved as sums of polynomials TM for nonempty M , and these cannot be equal in
K(R-Mat). However, if classes TM for empty matroids are defined via (7.1), these classes
behave correctly under the multiplication of K(R-Mat).

Since decomposing a matroid M over a ring into M\i and M/i is not a unique decom-
position in the sense of [4], and the irreducibles for direct sum are not all single-element
matroids, Theorem 7.1 does not follow directly from the bidecomposition methods of [4],
and we must prove it by hand.

For the proof it will be useful to have some explicit understanding of the ring
Z[R-Mod]⊗Z[R-Mod]. Proposition 3.3 implies that Z[R-Mod] has one generator uR/m

k

for each maximal ideal m and integer k > 0, and no relations involving these, together
with one generator uP for each rank 1 projective module P , among which there are many
relations. Indeed, the subring Z[uP ] embeds in the group ring of the Picard group with
one more variable uR adjoined.

Proof of Theorem 7.1. To be concise, let S be the ring Z[R-Mod] ⊗ Z[R-Mod]. To keep
distinct the objects which we have not yet proven isomorphic, let [M] represent the class
of M in K(R-Mat), reserving TM for the element of S defined in (7.1).

Consider the map T : K(R-Mat) → S given by T([M]) = TM . We find that T is
a homomorphism of rings, because the deletion-contraction relations and multiplicativity
relations hold among the various TM . Both of these are straightforward to check, and
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correspond to easy operations on (7.1). The deletion-contraction relation on an element a
is proved by splitting the sum into one sum containing the terms with a 6∈ A and another
containing the terms with a ∈ A. Multiplicativity under direct sum is proved by expanding
the product of (7.1) forM andM ′, and collecting into a single sum overAqA′ ⊆ EqE′.

With that, we come to the involved part of the proof, which is to show T is an injection.
Our approach will be to construct a family I of matroids M whose polynomials TM are
linearly independent in S, and use deletion-contraction relations to expand every matroid
in terms of I. This will allow every linear relation among the TM to be lifted to a relation
among the [M] via expansion in terms of I, proving injectivity. We will moreover be able
to conclude that the image of T is the span of the images of the matroids in I.

As we use the deletion-contraction relations, we will make frequent use of induction
on the size of the ground set. In fact, our main technique will be to embed a matroidM as
a minor of another, M ′, and then relate M to another minor of M ′ of the same size plus
a collection of smaller minors. But if the ground set has size 1, this will not be as useful:
the unique element of a 1-element matroid is necessarily either a loop or a coloop, hence
we cannot get construct a deletion-contraction relation involving a smaller matroid as a
minor. This will be our base case, and require a different argument. We have broken out
the arguments expanding these matroids in terms of I into two lemmas, Lemma 7.6 and
Lemma 7.8.

The following construction is relevant to both cases. Linearly extend the divisibility
relation on the ideals of R to a total order ≤ such that for ideals I, J,K , I ≤ J implies
IK ≤ JK . For each class E ∈ Pic(R), letNE equalR/I , where I is the≤-least ideal ofR
whose determinant is E−1. This produces a fixed cyclic torsion module NE representing
each class E ∈ Pic(R). Note that every submodule N ′ of NE is also the representative of
its own class, N ′ = N[N ′]. Define the single-element matroid LE by LE (∅) = NE and
LE (1) = 0. The dual matroid L∗E therefore has L∗E (∅) = R and L∗E (1) = NE . (L and
L∗ can be taken to stand for “loop” and “coloop”.) Also, let ∅N be the empty matroid
associated to a torsion R-module N .

For a torsion module N , define a second sort of loop KN by taking KN (∅) = N and
KN (1) to be the quotient of N by its largest invariant factor.

We construct the set I as follows:

I = {KN : N is torsion}

∪ {∅N ⊕ LE ⊕ L
⊕a
0 : N is torsion, E ∈ Pic(R), a ≥ 0}

∪ {∅N ⊕ L
∗

F ⊕ (L
∗

0)
⊕b
: N is torsion, F ∈ Pic(R), b ≥ 0}

∪ {∅N ⊕ LE ⊕ L
⊕a
0 ⊕ L

∗

F ⊕ (L
∗

0)
⊕b
: N is torsion, E,F ∈ Pic(R), a, b ≥ 0}.

(7.2)

To analyze linear relations in I, we give the ring S a monomial order wherein, if P
andQ are rank 1 projective modules, then XP is greater than YQ, which in turn is greater
than XN or YN for any torsion module N .

Then if M is a matroid with a unique basis, as all the matroids in I are, the initial
term of TM is the term contributed to the sum in (7.1) by the complement of the unique
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basis of M . For the matroid

M = ∅N ⊕ LE ⊕ L
⊕a
0 ⊕ L

∗

F ⊕ (L
∗

0)
⊕b

the complement of the unique basis is sent toN⊕P⊕Rb, where P is the rank 1 projective
module whose determinant is F ∈ Pic(R). For the dual of this matroid, the analogous
module isN⊕Q⊕Ra whereQ is the rank 1 projective whose determinant is E . Therefore
the initial term of TM isXN⊕P⊕R

b
YN⊕Q⊕R

a
. Similarly, if instead ofM we had taken one

of the matroids from the previous two lines in I, the initial term would be just XN⊕P⊕R
b

or YN⊕Q⊕R
a
, respectively. All the monomials in these three classes are distinct.

Finally, the initial term of TKN is YQ times monomials corresponding to torsion mod-
ules, for some rank 1 projective Q. It follows that any nontrivial Z-linear relation among
the classes of elements of I may contain only these matroids and others of smaller lead-
ing terms: that is, it may involve only one-element matroids whose unique element is a
loop.

Temporarily let I1 be the set of the matroids KN , and I2 the set of matroids of form
∅N⊕LE , so that together every matroid in I whose unique element is a loop is in I1 or I2.
Suppose there was a nontrivial linear dependence among the classes of these matroids.
(The sets I1 and I2 share some elements, but since we have taken their union as sets, this
is not a problem.) The class of each matroid in I1∪I2 is of the form (XY)N+YQ(XY)N

′

where N and N ′ are torsion R-modules, and Q is a rank 1 projective module. Moreover,
there is only one element of I1 and one of I2 with a given value of N . Therefore, if there
is any linear relation, there must be a minimal one of the form

k∑
j=1

[M1,j ] −

k∑
j=1

[M2,j ] = 0 (7.3)

where Mi,j ∈ Ii , all Mi,j (∅) have the same determinant in Pic(R), and M1,j (∅) =

M2,j (∅). The equality also implies that the product of the annihilators in R of the kernels
of M1,j (∅) → M1,j (1) equals the corresponding product of annihilators for the kernels
of M2,j (∅) → M2,j (1). All of these annihilators have the same determinant. The latter
product is I k , where I is the annihilator of NE . Therefore, at least one of the ideals in the
former product must be less than or equal to I in ≤ order. But I is the ≤-minimal ideal
of its class, and so these ideals must all equal I , so that all coefficients on the left side of
(7.3) are zero and the relation is trivial. Thus I is dependent, as claimed. ut

We may now describe the image of K(R-Mat) within the ring Z[R-Mod] ⊗ Z[R-Mod].
Two constraints on the monomials that may appear can be extracted from Corollary 4.12.

Corollary 7.3. (a) If XNYN
′

is a term of TM , then Ntors = N
′
tors.

(b) Consider the ring homomorphism

det : Z[R-Mod] ⊗ Z[R-Mod] → Z[uE : E ∈ Pic(R)]

given by det(XN ) = u[N ]−[Ntors] and det(YN ) = u[N ]. Then det(TM) is a scalar
multiple of udet(M).
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Proof. Part (a) is immediate from the preservation of torsion parts under duality in Corol-
lary 4.12, and part (b) from the equality

det(M) = det(M(A))+ det(M∗(E \ A))− det(M(A)tors). ut

Examination of the classes of matroids in I in the proof of Theorem 7.1 shows that they
span the subring of polynomials compatible with Corollary 7.3(a). Thus we deduce the
following.

Corollary 7.4. If empty matroids are included, the ring K(R-Mat) is the subring of
Z[R-Mod] ⊗ Z[R-Mod] generated by the symbols XP and YP as P ranges over rank 1
projective modules, and (XY)N as N ranges over torsion modules.

We now set out the main substance of the proof of Theorem 7.1. The following subsidiary
lemma will afford us useful flexibility for manipulating single-element matroids in prov-
ing Lemma 7.6.

Lemma 7.5. Let E be a class in Pic(R), and P a finite set of maximal primes of R.
There exists a cyclic torsion R-module N whose support is disjoint from P such that
det(N) = E .

Proof. This is a restatement of a standard lemma on ideal factorizations (see e.g. [5,
Corollary 4.9]). In the notation of that corollary, we let a be any ideal of determinant E
and let b be the product of the members of P , and the module we seek is N = R/c. ut

Lemma 7.6. If M is a one-element matroid satisfying any one of the following, then the
class [M] ∈ K(R-Mat) lies in the span of the classes of matroids in the set I of (7.2).

(a) M(∅) = P ⊕N and M(1) = N ⊕ C, where P is rank 1 projective, N is torsion and
C is cyclic, and the supports of N and C are disjoint.

(b) M(∅) = N⊕C andM(1) = N , where N is torsion and C is cyclic, and the supports
of N and C are disjoint.

(c) M(∅) = P ⊕ N ′, M(1) = N , where P is rank 1 projective, N is torsion, and N ′ is
the quotient of N by its largest invariant factor.

(d) EitherM orM∗ sends ∅ to P⊕T⊕N ′ and {1} to T⊕N , where P is rank 1 projective,
N is torsion, N ′ is the quotient of N by its largest invariant factor, and the support
of T is disjoint from that of N .

(e) Either M or M∗ sends ∅ to N ⊕ T and {1} to T , where N is cyclic and T is torsion.
(f) M is any one-element matroid.

Proof. A matroidM ′ on two elements whose generic matroid is the uniform matroidU1,2
gives rise to a linear relation among its four one-element minors,

[M ′\1] + [M ′/1] = [M ′] = [M ′\2] + [M ′/2]. (7.4)

We will use this to prove the cases of the lemma sequentially, reducing each to a linear
combination of matroids in I and matroids in previous cases. For visibility we will specify
these M ′ by drawing the commutative square
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M ′(∅) //

��

M ′(1)

��
M ′(2) // M ′(12)

In each case M ′ can be checked to be a matroid by Proposition 6.2. The nonlocal condi-
tions reduce to checking that det(M ′(1)) = det(M ′(2)).

(a) Let N ′ be the quotient of N by its largest invariant factor. First, suppose that the
support of C is disjoint from the supports of N and L[C](1). In that case, the following
square specifies a matroid M ′. The modules N ⊕ C and N ′ ⊕ LC(1) have the same
determinant by construction. And because of the assumption on supports, modulo each
maximal ideal m, either the top map has kernel Rm and the right one is trivial, or the same
is true of the left and bottom maps respectively. This ensures that the localizations of the
square are pushouts.

P ⊕N //

��

N ⊕ L[C](1)

��
N ⊕ C // N ′

The left minor M ′\1 is the matroid we are interested in; the bottom minor M ′/2 and the
right minorM ′/1 are both among the matroidsKN in I; and the top minorM ′\2 is among
the ∅N ⊕ L∗F . So the relation (7.4) proves the result in this case.

Next, if we lack the support assumptions onC, we are assured the existence of a cyclic
module C′ of support disjoint from L[C](1) and N , with the same determinant as C, by
Lemma 7.5. In this case, we repeat the argument with the following square, which can
similarly be checked to give a matroid M ′′:

P ⊕N //

��

N ⊕ C′

��
N ⊕ C // N ′

Now M ′′\1 is the matroid of interest, the minors M ′/2 and M ′/1 are among the ma-
troids KN , and M ′\2 is in the span of I by the last paragraph. Therefore, using (7.4)
again, we have proved case (a).

(b) Let R/I be the largest invariant factor of N . Let J be a nonzero ideal contained
in I chosen so that det(J ) = − det(C). and the supports of R/J and L[C](1) are disjoint;
this exists by Lemma 7.5. Then R/J is the largest invariant factor of N ⊕ R/J . Having
done this, both of the following squares give matroids, where P is a suitably chosen rank 1
projective module:

M ′ : P ⊕N //

��

N ⊕ L[C](1)

��
N ⊕ R/J // N

M ′′ : P ⊕N //

��

N ⊕ C

��
N ⊕ R/J // N
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Subtracting the relation (7.4) for the two matroids, we express the class ofM ′′/1, which is
the matroid of interest, as a linear combination of the classes of M ′′\2, M ′/1, and M ′\2.
But, of these,M ′′\2 is one of the matroids appearing in part (a),M ′/1 is of form ∅N⊕LE ,
and M ′\2 is of form ∅N ⊕ L∗F . This proves case (b).

(c) Use Lemma 7.5 to produce a cyclic module C whose determinant is det(N) −
det(N ′) and whose support is disjoint from that of N . Then the following square gives a
matroid M ′:

P ⊕N ′ //

��

N ′ ⊕ C

��
N // N ′

Here,M ′/2 is of form ∅N ⊕LE , andM ′/1 is covered by case (b) of the lemma, andM ′\2
is covered by case (a). So (7.4) proves case (c).

At this point, we pause to take note that the matroids of form ∅N ⊕ LE and ∅N ⊕ L∗E
and the matroids encompassed by this last case (c) are the duals of the KN . These are all
the matroids in I of one element. Moreover, in equation (7.4), dualizing M ′ dualizes the
four minors. Therefore, for the rest of this proof, arguing that a class [M] is in the linear
span of classes of matroids in I will imply the same for the class [M∗] of the dual.

(d) As stated just above, it is sufficient to treat the case where M is as described,
not its dual. For this we use induction on the number of invariant factors of the torsion
module T . If it has none, it is the zero module and we are in case (a). Otherwise, let T ′

be the quotient of T by its largest invariant factor.
Let N ′′ be the quotient of N ′ by its largest invariant factor. Lemma 7.5 gives cyclic

modules C and D whose determinants take the necessary values, and whose supports
are disjoint from the supports of other appearing modules as necessary, in order for the
following squares to specify matroids M ′ and M ′′,

M ′ : P ⊕N ′ ⊕ T //

��

N ′ ⊕ T ⊕ C

��
N ⊕ T // N ′ ⊕ T ′

M ′′ : P ⊕N ′′ ⊕ T ′ //

��

N ′ ⊕ T ⊕ C

��
N ′ ⊕ T ′ ⊕D // N ′ ⊕ T ′

HereM ′/1 equalsM ′′/1, and these can be cancelled out of the two corresponding invoca-
tions of (7.4), leaving a linear relation among the six other minors. Of these, M ′\1 is the
matroid of interest.M ′′\1 is the matroid to which we will apply the induction hypothesis:
when applying it we take the new module T to be T ′, which has one invariant factor fewer
than (the old) T , and the new modules N ′ → N to be N ′′ → N ′ ⊕ D. The remaining
minors are dealt with: M ′/2 is among the KN , M ′′/2 is dealt with in case (b) of this
lemma,M ′\2 in case (a), andM ′′\2 in case (c). Therefore the induction goes through and
we have proved case (d).

(e) Again we may assume M (not M∗) is as described. We use induction on the max-
imum k such that, for some maximal prime m contained in the support of N , there are k
cyclic summands of Tm longer than Nm. If k = 0, then N is the largest invariant factor of
the part of N ⊕ T with the same support, and M falls under case (d).
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Otherwise, let F be the direct sum of the localizations of the largest invariant fac-
tor of T of length exceeding the corresponding localization of N , and let T ′ be T/F .
Lemma 7.5 provides cyclic modules C and D so that the following squares are matroids
(for the top maps of the squares, this is where the fact that dimR/m Fm ≥ dimR/mNm is
used):

M ′ : P ⊕N //

��

T ⊕ C

��
N ⊕ T // T

M ′′ : P ⊕N //

��

T ⊕ C

��
N ⊕ T ′ ⊕D // T ′

Again, M ′/2 equals M ′′/2, and two invocations of (7.4) give a linear relation among
the remaining minors. Of these M ′\2 is the matroid of interest, M ′′\2 is covered by the
inductive hypothesis, and all of M ′/1, M ′′/1, M ′\1, and M ′′\1 fall under case (d). This
proves case (e).

(f) Either M or M∗ is of global rank 0, and we may assume it is M . Here we use
one further induction. Let k be the maximum, over maximal primes m, of the number of
times 01 or 10 appear as substrings of the sequence d•(φm) associated in Section 5 to the
map φm in the localized matroid M ⊗ Rm. As a base case, if k ≤ 1, then each φm, and
therefore φ, is a quotient by a cyclic summand; this is case (e).

Otherwise, let N be the quotient of M(∅) by its largest invariant factor. With C pro-
vided by Lemma 7.5 as usual, we have a matroid M ′ given by

P ⊕N //

��

M(1)⊕ C

��
M(∅) // M(1)

The minor M ′/2 is M . The minor M ′\2 is covered by the induction hypothesis: if ψ is
the map in this matroid, then for each m the sequence d•(ψm) is obtained from d•(φm)

by replacing the final infinite run of 0s by 1s, so one of the substrings 10 is lost. The
minorsM ′/1 andM ′\1 are both handled by case (e). This proves case (f) and finishes our
discussion of one-element matroids. ut

We approach the reduction of matroids on several elements to our basis in Lemma 7.8
below, in several steps as we did in Lemma 7.6. The bulk of our discussion here will
pertain to matroids with one generic basis; in the terminology of [6], these are called
molecules (since for matroids over a field all molecules are direct sums of atoms, i.e.
one-element matroids). First we state two subsidiary technical lemmas.

Lemma 7.7. If M is a molecule on a ground set E and a a generic coloop in it, then
M(A)proj = M(E\a)proj ⊕M(Aa)proj for every A ⊆ E \ {a}.

Proof. This is clear for A = E \ {a}, so by induction on the size of the complement of A
we need only establish the statement for A given the statement for Ab. The rank drop
betweenM(A) andM(Ab) equals that betweenM(Aa) andM(Aab). If this rank drop is
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zero, then we are done because M(Ab)proj = M(A)proj and M(Aab)proj = M(Aa)proj. If
the rank drop is one, then given maps making a pushout square

M(A)
φ //

��

M(Ab)

��
M(Aa)

φ′ // M(Aab)

the kernels of φ and φ′ are isomorphic projective modules; call one of them P . Then,
in K0(R), we have

[M(A)] = [M(Ab)] ⊕ [kerφ] = [P ] ⊕ [M(Aab)] ⊕ [kerφ′] = [P ] ⊕ [M(Aa)]

and the K-class of a projective module determines it. ut

Lemma 7.8. IfM is a matroid on a ground set E satisfying any of the following, then the
class [M] ∈ K(R-Mat) lies in the span of the classes of the matroids in I.

(a) M is a direct sum of one-element matroids.
(b) The only generic basis of M is ∅.
(c) M is a molecule.
(d) M is arbitrary.

Proof. As in the last proof, we will manipulate our matroid M by fabricating larger ma-
troids in whichM appears as a minor. But we have more room to manoeuver, as matroids
on fewer elements than M may also appear in the deletion-contraction relations, and in-
duction on the ground set size shows that the classes of these are in the span of I.

(a) For this step of the argument we will use another induction, on the number of
one-element summands of a matroid M which are not L0 or L∗0, possibly excluding one
summand of each of the forms LE and L∗F . (There may also be a summand which is an
empty matroid for a torsion module; this will be inert and have no effect on our argument.)
In the base case, M is a direct sum of some copies of L0, possibly a single LE , some
copies of L∗0, possibly a single L∗E , and some empty matroid ∅N ; this is an element of I.

As inductive step, we will use deletion-contraction relations to increase the number of
such summands in two ways, one of which applies to any direct sum of at least two one-
element matroids. One of our constructions will replace a direct sum of two one-element
summands of the same generic rank by a matroid of form LE ⊕L0 or L∗F ⊕L

∗

0. The other
will replace a direct sum of two one-element summands of unequal generic ranks with
some LE ⊕ L

∗

F .
For the former construction suppose we have a two-element moleculeN , without loss

of generality having two coloops, which is a summand of M; write M = N ⊕ K . For
convenience suppose the ground set of N is {1, 2}.

The basis ofN is ∅, andN(∅) has the form P ⊕R⊕T , where P is a rank 1 projective
module and T is some torsion module. Fix maps φ : N(∅)→ N(1), ψ : N(∅)→ N(2).
By making the nonfree analogue of a change of basis in this splitting P ⊕R if necessary,
we can suppose that neither of the saturations of kerφ nor kerψ is contained in R or P .



726 Alex Fink, Luca Moci

Now embed N in a realizable matroid N ′ on {1, 2, 3, 4} so that N = N ′ \ {3, 4}, the map
N ′(∅)→ N(3) is the quotient map P ⊕ R ⊕ T → L[P ](1)⊕ R ⊕ T on the first factor,
the map N ′(∅)→ N(4) is the quotient P ⊕R⊕ T → P ⊕ T on the second, and the rest
of N ′ is completed by taking pushouts.

By construction, none of the kernels of the maps with source N ′(∅) in this realization
has its saturation contained in another such saturation, so that the quotient of N ′(∅) by
the sum of two such kernels has rank 0. Thus, the generic matroid of N ′ is U2,4. Thus,
the direct sum M ′ = N ′ ⊕ K is U2,4 plus a molecule. We will use deletion-contraction
relations to break M ′ down in two ways, the knowledge of the generic matroid of M ′

assuring us that we are not choosing loops or coloops. On the one hand, use (in sequence)
the elements 3 ofM ′, 4 ofM ′\3, 1 ofM ′\3/4, 1 ofM ′/3, and 2 ofM ′\1/3. On the other,
use the elements 1 of M ′, 2 of M ′\1, 3 of M ′\1/2, 3 of M ′/1, and 4 of M ′\3/1. This
gives us equalities of classes in the Grothendieck ring:

[M ′\3, 4] + [M ′\1, 3/4] + [M ′\3/1, 4] + [M ′\1, 2/3] + [M ′\1/2, 3] + [M ′/1, 3]
= [M ′]

= [M ′\1, 2]+ [M ′\1, 3/2]+ [M ′\1/2, 3]+ [M ′\3, 4/1]+ [M ′\3/1, 4]+ [M ′/1, 3].

The term [M ′/1, 3] cancels, and all of the remaining terms aside from [M ′\3, 4] and
[M ′\1, 2] are classes of matroids on fewer elements, so they are in the span of the classes
of I by our top-level induction. The matroid M ′\3, 4 is our original M . Finally, M ′\1, 2
has more summands thanM which are L0 or L∗0: there is a new such summand inM ′\1, 2
on the element 4. So it is covered by one of our inductions as well.

Turning to the latter construction, we will in fact need to invoke a second induction,
on the rank of the generic matroid ofM , that is the size of its generic basis. We set this up
decreasingly, so the base case is when M has only coloops: in this case, M has no loop
and this construction cannot in fact apply.

Continuing, we suppose M has a two-element summand N , say on the ground set
{1, 2}, which is itself the sum of a matroid N1 on its coloop 1, and a matroid N2 on its
loop 2. Again we write M = N ⊕K .

By choosing any maps and computing the pushout, we may construct a matroid Ñ2 on
the ground set {2, 4} where Ñ2(∅) = N2(∅), Ñ2(2) = N2(2), and Ñ2(4) = N2(∅)tors ⊕

L[P ](1) where P = N2(∅)proj. Its generic matroid will be U1,2. With the dual of this
construction we also construct a matroid Ñ1 on the ground set {1, 3} with generic matroid
U1,2, where Ñ1(3) = N1(∅), Ñ1(13) = N1(1), and Ñ1(1) = N1(1) ⊕ LE (1) where
E = [N1(∅)] − [N1(1)].

We will construct N ′ as a perturbation of Ñ .
= Ñ1 ⊕ Ñ2, as follows. Fix realizations

of Ñ1 and Ñ2, so that the induced realization of Ñ provides four maps φ1, . . . , φ4 with
cyclic kernel from the module Ñ(∅), corresponding respectively to the atoms 1, . . . , 4
covering ∅ in B(4). The kernels of φ1 and φ3 are both contained in Ñ1(∅), while the
kernels of φ2 and φ4 are contained in Ñ2(∅); all of them are isomorphic to R as R-
modules. The module Ñ1(∅) is the direct sum of a projective rank 1 summand P , and a
torsion module. There exists an injectionψ : P ↪→ kerφ2∩kerφ4. This can be composed
with the embedding kerφ2 ∩ kerφ4 ⊆ Ñ(∅) and summed with zero maps on the other
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summands to produce a map ψ : N(∅) → N(∅). The map id + ψ : N(∅) → N(∅) is
then “upper triangular” and hence an automorphism. Let x be a generator of kerφ3, and
define a new map φ′3 from Ñ(∅) to be the quotient by the submodule 〈x+ψ(x)〉. Finally,
let N ′ be the matroid on the ground set {1, 2, 3, 4} with N ′(∅) = Ñ(∅) and whose other
modules and maps are induced as pushouts of φ1, φ2, φ′3, and φ4.

Our perturbation of φ3 to φ′3 has arranged that corkN ′(13) = 0. On the other hand, if
3 6∈ A then N ′(A) is unchanged from Ñ(A); if A contains 3 and one of 2 or 4 but not 1
then N ′(A) ∼= Ñ(A) by construction of ψ ; and N ′(3) ∼= Ñ(3) as well, since id+ψ is an
automorphism. In particular the generic matroid of N is the rank 2 matroid on {1, 2, 3, 4}
with no loops whose only nontrivial parallelism class is {2, 4}.

LetM ′ = N ′⊕K . We have deletion-contraction relations giving the following equal-
ities:

[M ′\3, 4] + [M ′\3/4] + [M ′\1, 2/3] + [M ′\1/2, 3] + [M ′/1, 3]
= [M ′] = [M ′\1, 2] + [M ′\1/2] + [M ′\3, 4/1] + [M ′\3/1, 4] + [M ′/1, 3].

The term [M ′/1, 3] cancels, and the two terms before it in each line are matroids on fewer
elements. The matroidM ′\3/4 is our originalM , sinceM was the same minor of Ñ ⊕K
and we have not altered the relevant modules in it. The matroidN ′\1/2, for the analogous
reason, is the direct sum of L∗

[P ] on the element 4, LE on the element 3, and an empty
matroid, so M ′\1/2 improves on the quantity counted in the induction we introduced at
the start of this case (a). The remaining matroids, M ′\3, 4 and M ′\1, 2, are also direct
sums of one-element matroids, and they both have generic rank 2, so they are covered by
our latest-introduced induction. Altogether, this finishes case (a).

(b) We will use induction on the number of elements of E which are not the ground
set of a one-element direct summand. The base case is part (a).

We construct a matroidM ′ onEq{η}which will agree in most of its modules with the
direct sum ofM and a loop ∅ 7→ 0, {η} 7→ 0. In particularM ′/η will beM . We letM ′(∅)
be obtained from M(∅) by replacing its largest invariant factor with a projective module
with the same determinant. For each b ∈ E, we use Lemma 7.5 to produce a cyclic module
C(b) of support disjoint from any module in M and so that [C(b)] + [M(b)] = [M(∅)]
in Pic(R), and then set M ′(b) = M(b)⊕ C(b). In any other case set M ′(A) = M(A\η),
where η is not necessarily in A.

Our choices of M ′(∅) and the modules M ′(b) for singletons are exactly as is needed
so that all the pairs M ′(∅), M ′(b) satisfy the K-theoretic condition of Proposition 6.1.
For the other covering relations of subsets of E q {η}, both modules are rank 0 so the
K-theoretic condition is trivially satisfied. The localization conditions are essentially in-
herited from M . Since the summands C(b) have supports disjoint from any of the other
modules under consideration, they do not interfere in this respect. The alteration we have
made to M ′(∅) replaces a final infinite string of 0s by 1s in the sequences d• associated
to the maps M ′(∅)m → M ′(b)m; the resulting sequence is still of the sort allowed by
Proposition 5.2. These same facts about the localizations also suffice to establish Propo-
sition 6.2, in which only the local considerations of Proposition 5.4 are relevant.
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The generic matroid of M ′ is U1,|E|+1. Therefore, no deletion of M ′ with more than
one element is a molecule, and we may freely use the deletion-contraction relation on
such deletions. Let a be any element of E. Splitting M into three minors by deletion-
contraction in two ways, we have

[M ′\η\a] + [M ′\η/a] + [M ′/η] = [M ′] = [M ′\a/η] + [M ′\a/η] + [M ′/a],

so that, cancelling the common deletion,

[M ′\η/a] + [M ′/η] = [M ′\a/η] + [M ′/a].

Here, the minor M ′/η is our matroid M of interest. The matroid M ′/a has a one-element
summand with ground set {η} together with whichever one-element summands a had, so
it is subsumed by our induction hypothesis. The other two matroids are on fewer elements.
This proves case (b).

(c) Here we use induction on the number of generic coloops and on the size of the
number of elements which do not generate single-element direct summands.

Suppose that a is a generic coloop of M . Then M(E\a) has a rank 1 projective sum-
mand, call it P . By Lemma 2.5, the empty matroid ∅P for P splits as a direct summand
of M\a. Name the other direct summand N .

Let C be a cyclic module which is sufficiently large that every cyclic summand of
a module appearing in M is isomorphic to a quotient of C, and such that [P ] = [C]
in Pic(R). LetM ′ be a system of R-modules so thatM ′\η = M;M ′/η\a = N ⊕∅C ; and
M ′/η/a = M/a. That is,M ′ is obtained from the direct sum M̃ ofM and the one-element
matroid ∅ 7→ 0, {η} 7→ 0 by replacing a summand P by C at every set containing η but
not a. We will show that M ′ is a matroid using Propositions 6.1 and 6.2.

For Proposition 6.2, since M̃ is a matroid, we need only check that the replacements
of P by C do not interfere with the condition to be checked in Proposition 5.4. If m is
a maximal prime, then the sequences d•(M̃(A)) and d•(M ′(A)) are of course identical
if no replacement has taken place, and if one has, they differ only in that di(M ′(A)) =
di(M̃(A)) − 1 for all i ≥ k, where k is such that every sequence d•(M(B)) is constant
from the kth position on. Replacing P by C cannot cause any difference di(M ′(A)) −
di(M

′(Ab)) to leave the range {0, 1}: if this difference were to be 2 then b must be η,
and if it were to be −1 then b must be a, but neither of these situations occurs in the
construction. The replacement also does not change the quantity on the left side of the
displays in (L2a) and (L2b) for any two-element minor M ′′ of M ′, and hence does not
undermine the truth of these conditions, unless the ground set of M ′′ is {a, η}, in which
case that quantity is incremented. But in this event, by construction, the equality of (L2b)
is attained in the corresponding minor of M̃ for d≤k , and so (L2b) is still true of M ′′.

For Proposition 6.1, all that remains to check are the equalities of determinants. There
are two cases to consider which are not inherited fromM orN⊕∅C . One involvesM ′(A)
and M ′(Aη) for η 6∈ A and a 6∈ A, where the rank drop is 1, and M ′(A) = P ⊕ N(A)
and M ′(Aη) = C ⊕N(A) have the same determinant by choice of C. The other involves
M ′(A) andM ′(Aa) for η ∈ A and a 6∈ A, where the rank drop is 0. In this case Lemma 7.7
gives M(A)proj = P ⊕M(Aa)proj. Then M ′(A)proj = (C ⊕M(Aa))proj = M(Aa)proj
and M ′(Aa)proj = M(Aa)proj agree.
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Thus M ′ is a matroid. In its generic matroid, all elements are loops or coloops ex-
cept for η and a which generate a uniform matroid U1,2, so we have deletion-contraction
relations

[M ′\η] + [M ′/η] = [M ′] = [M ′\a] + [M ′/a].

In this relation M ′\η is our M . The matroid M ′/η has a one-element direct summand on
the ground set {a}, so is encompassed by our second induction; the matroids M ′\a and
M ′/a have a greater number of coloops than M , so are encompassed by our first. This
proves case (c).

(d) Repeatedly using deletion-contraction to break up any matroid with at least two
bases, on any element which is not a loop or coloop, expresses the class of any matroid
as a sum of classes of molecules. ut

7.1. Arithmetic Tutte polynomial and quasi-polynomial. In this subsection, M is a
matroid over Z. We show that the arithmetic Tutte polynomial and the Tutte quasi-poly-
nomial are images of TM under ring homomorphisms.

Since Z[Z-Mod] ⊗ Z[Z-Mod] ' Z[X, Y ], we have

TM =
∑
A⊆E

(XR)corkM (A)(YR)nullityM (A)(XY)M(A)tors ,

where we use the notation nullityM(A) = corkM∗(E\A) = dimM∗(E\A).
We may define a specialization of TM by evaluating XR at (x − 1), YR at (y − 1),

and (XY)N at the cardinality of N for each torsion module N . This specialization is the
arithmetic Tutte polynomial M

M̂
(x, y) of the quasi-arithmetic matroid M̂ defined by M:

M
M̂
(x, y) =

∑
A⊆E

m(A)(x − 1)rk(E)−rk(A)(y − 1)|A|−rk(A),

where m(A) = |M(A)tors|. This polynomial proved to have several applications to
toric arrangements, partition functions, zonotopes, and graphs with labelled edges (see
[17], [6]). Notice that an ordinary matroid M̃ can be trivially made into an arithmetic
matroid M̂ by setting all the multiplicities to be equal to 1, and then M

M̂
(x, y) is nothing

but the classical Tutte polynomial T
M̃
(x, y).

Clearly, the polynomial M
M̂
(x, y) is not the universal deletion-contraction invariant

of M̂ . For instance, the ordinary Tutte polynomial T
M̃
(x, y) of the matroid M̃ obtained

from M̂ by forgetting of its arithmetic data is also a deletion-contraction invariant of M̂ ,
which is not determined by M

M̂
(x, y). This fact led the authors of [3] to define a Tutte

quasi-polynomial QM(x, y), interpolating between T
M̃
(x, y) and M

M̂
(x, y). This invari-

ant is stronger, but still not universal, and more importantly, it is not an invariant of the
arithmetic matroid, as it depends on the groups M(A)tors and not just on their cardinali-
ties. We will now show that QM(x, y) is actually an invariant of the matroid over Z, and
write explicitly how to compute it from the universal invariant.
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For every positive integer q, let us define a function Vq as follows:

Vq((XY)
Z/pk ) =

{
1 if pk divides q,
pk−j if 0 ≤ j < k is maximal such that pj divides q.

We will extend this to define Vq((XY)N )multiplicatively for any torsion abelian groupN .
Then we define a specialization of TM to the ring of quasipolynomials by specializingXR

to x − 1, YR to (y − 1), and (XY)N to V(x−1)(y−1)((XY)
N ). This gives

QM(x, y)
.
=

∑
A⊆E

(x − 1)corkM(A)(y − 1)nullityM(A)V(x−1)(y−1)((XY)
M(A)tors)

=

∑
A⊆E

|M(A)tors|

|(x − 1)(y − 1)M(A)tors|
(x − 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

Since (q + |G|)G = qG for any finite group G, the function QM(x, y) is a quasi-
polynomial in q = (x−1)(y−1). In particular, if |M(A)tors| divides (x−1)(y−1), then
the group (x−1)(y−1)M(A)tors is trivial and QM(x, y) coincides with M

M̂
(x, y); while

if |M(A)tors| is coprime with (x − 1)(y − 1), then QM(x, y) coincides with T
M̃
(x, y).

Then in some sense QM(x, y) interpolates between the two polynomials.
Notice that while M

M̂
and T

M̃
(x, y) only depend on the induced quasi-arithmetic

matroid M̂ , TM and QM(x, y) are indeed invariants of the matroid M over Z. Also the
chromatic quasi-polynomial and the flow quasi-polynomial defined in [3] are actually in-
variants of the matroid over Z: by [3, Theorem 9.1] they are specializations of QM(x, y),
and hence of the universal invariant TM .
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