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Abstract. Using path lattice cohomology we provide a conceptual topological characterization of
the geometric genus for certain complex normal surface singularities with rational homology sphere
links, which is uniformly valid for all superisolated and Newton non-degenerate hypersurface sin-
gularities.
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1. Introduction

In this introduction we present the main result of the manuscript; for detailed definitions,
motivations, historical remarks and examples see the next section.

In the last years several conjectures and theorems target the topological characteri-
zation of the geometric genus pg of complex normal surface singularities with rational
homology sphere links. They are usually formulated for certain families, and any attempt
to find a uniform characterization failed.

In order to have a chance for such a characterization, one has to assume two restric-
tions, an analytical one and a topological one. The Casson Invariant Conjecture (CIC)
of Neumann and Wahl [46] predicts that for a complete intersection with integral ho-
mology sphere link, pg can be determined from the Casson invariant of the link (see
2.4.1 here). This was generalized to rational homology sphere links by the first author
and Nicolaescu [40]; the Seiberg–Witten Invariant Conjecture (SWIC) connects pg with
the Seiberg–Witten invariant of the link (associated with the canonical spinc-structure;
see 2.4.2). The predicted formula was proved for several analytic families (e.g. ratio-
nal, minimally elliptic, weighted homogeneous, splice quotient singularities), but it fails
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to hold for some sporadic hypersurfaces, namely, for certain superisolated singulari-
ties.

The present note aims to find a uniform treatment for these counterexamples, and
proposes a new conceptual topological candidate for pg , which is valid even for other im-
portant families of hypersurface singularities, e.g. for those with Newton non-degenerate
principal part. The main ingredient of the topological characterization is the path lattice
cohomology associated with the link (or, with the negative definite lattice of a fixed reso-
lution graph).

Recall that the lattice cohomology {Hqred(M)}q≥0 of the link (introduced in [35]) is a
new categorification of the Seiberg–Witten invariant, that is, its ‘normalized’ Euler char-
acteristic eu(H∗(M)) is the Seiberg–Witten invariant. In the pg-comparisons the main
dominating term is the first module H0

red(M), and in the superisolated case the non-
vanishing of the next terms is responsible for the failure of the SWIC.

Accordingly, the proposed new invariant targets a different version of lattice coho-
mology, which concentrates only on the q = 0 part, and even optimizes it along different
‘paths’. A path is a sequence of integral cycles supported on the exceptional curve of
a fixed resolution, at each step increasing only by a base element, and connecting the
trivial cycle to the anticanonical cycle. For such a path γ one defines a path lattice coho-
mology H0(γ ), and one takes its normalized rank eu(H0(γ )). Then one shows that for
any analytic type one has pg ≤ minγ eu(H0(γ )), hence it provides a natural topologi-
cal upper bound for the geometric genus. (The authors do not know if minγ eu(H0(γ ))

can be defined by any other construction, say, using gauge theory or low dimensional
topology.)

The main result of the article is the following.

Theorem 1.0.1. Assume that (X, 0) is a normal surface singularity whose link is a ra-
tional homology sphere. Then the identity pg = minγ eu(H0(γ )) is true in the following
cases:

(a) if Hq(M) = 0 for q ≥ 1 and the singular germ satisfies the SWIC Conjecture (in
particular, for all weighted homogeneous and minimally elliptic singularities);

(b) for superisolated singularities (with any number of cusps);
(c) for singularities with non-degenerate Newton principal part.

Moreover, since the conjecture is stable with respect to equisingular deformation of hy-
persurfaces, the conjecture remains valid for such deformations of any of the above
cases.

The next section contains all the necessary definitions, main guiding examples, and sta-
tus quo of the problem. Section 3 contains the proof for superisolated germs. In this
case the link is a surgery 3-manifold. The proof has two non-trivial ingredients, already
present in the recent literature: the first one provides the lattice cohomology of surgery
3-manifolds [44], the other is an application of a d-invariant vanishing result for certain
L-space surgery 3-manifolds in Heegaard–Floer knot theory [5]. The next sections con-
tain the proof of the Newton non-degenerate case; it involves deeply the very specific
combinatorics of the associated toric resolution, and a lattice point counting.
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2. Geometric genus formulae, conjectures, guiding examples

2.1. Preliminaries: the geometric genus

Let us fix a complex analytic normal surface singularity (X, 0). LetM be its link, the ori-
ented smooth 3-manifold which is the boundary of a convenient small representative X
of the germ. Since the real cone over M is homeomorphic to X, M characterizes com-
pletely the local topology of (X, 0). If we consider a resolution of X with dual resolution
graphG, thenM can be realized as a plumbed 3-manifold associated withG, and, in fact,
it contains the same information as G itself (cf. [45]). The topological invariants of the
germ (X, 0) are read off either from the topology of M , or from the combinatorics of G.

The analytic invariants of (X, 0) are a priori associated with the analytic structure
of (X, 0) read off e.g. from the local algebra OX,0, or from the analytic sheaves of a
resolution X̃ → X of X. The very first one, and probably the most important one, is the
geometric genus pg := dimH 1(X̃,OX̃). It guides (partially) the classification of singular
germs and their deformation theory [4, 19, 20, 22, 23, 31, 58, 59, 56]; it is the local analog
of the global Todd index of complex manifolds. As a ‘local index’, it has several key con-
nections with other numerical invariants (see e.g. (2.1.3)). Usually, the geometric genus
cannot be determined from the link, even if we consider rather ‘simple’ singularities. For
example, the hypersurface singularities {x2

+ y3
+ z18

= 0} and {z2
= y(x4

+ y6)} have
the same link but their pg are 3 and 2 respectively (cf. [39, 4.6]).

Nevertheless, there is a strong belief, seriously supported by the results of the last
decade, that under some restrictions, pg can be determined from M . First of all, one
needs to assume that M is a rational homology sphere, or equivalently, the resolution ex-
ceptional divisor is a tree of rational curves (in the above example the first Betti number
b1(M) of M is 2). This is still not enough. Consider for example an elliptic singular-
ity with pg ≥ 2 (and even with integral homology sphere link), say the hypersurface
x2
+ y3

+ z13
= 0 with pg = 2. Then, by [20, 4.1], the generic (non-Gorenstein) an-

alytic structure supported by the same topological type has pg = 1 (see also [31]). For
other pairs with the same integral homology sphere link, but with different geometric
genus, see [26]. Hence, one needs to add some analytic restriction too to guarantee the
topological characterization of pg .

In the choice of the analytic structures one possibility would be to consider a generic
one on each irreducible component of the moduli space of analytic structures—which, by
the semicontinuity of pg [11], would provide the smallest pg of that moduli component.
But it is equally challenging (and this is our interest here) to search for the geometric
genus of special families of germs, which are the candidates providing the topological
upper bound for pg . They can be related either to special properties of (X, 0) (e.g. hyper-
surface, ICIS, Gorenstein, Q-Gorenstein), or with special constructions (see 2.1.1 below).

Example 2.1.1. The next families will play a key role in the next discussions.
(a) Splice quotient singularities were introduced by Neumann and Wahl [46, 47, 48];

their graph G has to satisfy some arithmetical properties, which allow one to write down
from the combinatorics of G the equations of the universal abelian cover of (X, 0) (up
to equisingular deformation), together with the corresponding action of H1(M,Z) on it.
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They generalize the weighted homogeneous germs, but the equations associated with dif-
ferent nodes might have different weights and degrees. By construction their geometric
genus depends only on G; the precise expression is given in [43] as an answer to Conjec-
ture 2.4.2.

(b) Superisolated singularities were introduced by I. Luengo [25], and they played
a crucial role in several testing procedures or counterexamples [2, 3, 26, 27]. If C is a
projective reduced plane curve with homogeneous equation fd of degree d , and fd+1 is a
generic homogeneous equation of degree d + 1, then f = fd + fd+1 : (C3, 0)→ (C, 0)
is called superisolated. Its link and pg are independent of the choice of fd+1 (see e.g.
[26]); in fact, pg = d(d − 1)(d − 2)/6. We will assume that C is irreducible. Then the
link of f is QHS3 if and only if C is a rational cuspidal curve. We write ν for the number
of cusps.

(c) For Newton non-degenerate hypersurfaces see e.g. [16]. The principal part of such
a germ is a sum of monomials situated on a fixed Newton diagram 0 with generic coef-
ficients. The geometric genus can be recovered as the number of lattice points with all
positive entries and which are ‘not above 0’ [29]. For more see Section 4.

2.1.2. If (X, 0) is a hypersurface singularity in (C3, 0) then the topological and analytic
invariants are strongly related to those provided by the embedded topological type of
(X, 0), that is, the topology of the embedding M ⊂ S5, and the numerical invariants of
the Milnor fibration. Recall that the second Betti number of the Milnor fiber F is the
Milnor number µ, the intersection form on H2(F ) determines the Sylvester invariants
µ+, µ− and µ0, while the signature is defined by σ = µ+ − µ−. Modulo the link M ,
the numerical invariants pg , µ and σ are related by two identities. Indeed, if K is the
canonical class/cycle on X̃ and |V| is the number of vertices of G, then K2

+ |V| is a
well-defined topological invariant ofM , and one has the following identities (valid in fact
for any smoothing of a Gorenstein (X, 0)) [9, 21, 54, 57, 24]:

(a) µ = 12pg +K2
+ |V| − b1(M), (b) −σ = 8pg +K2

+ |V|. (2.1.3)

Hence, if any of pg, µ or σ can be described from M then the same is true for all of
them. Note that µ can be recovered from the embedded topological type (as the second
Betti number of the universal cover of S5

\M), hence this fact remains true for pg as well.

2.1.4. Notation regarding G. Regarding the link we will need the following notation
and terminology. We fix a resolution π : X̃ → X with resolution graph G as above. We
assume that M is a QHS3. Consider the lattice L = H2(X̃,Z); it is freely generated by
{Ev}v∈V , the irreducible components of the exceptional divisor E := π−1(0) of π . It is
known thatG is connected andL (that is, the intersection form I := {(Ev, Eu)}v,u) is neg-
ative definite. The determinant of the graph G is defined as the absolute value of det(I).

Since we treat mainly hypersurface singularities, which are Gorenstein, we will as-
sume that G is numerically Gorenstein. This means that the canonical cycle K , which
satisfies the system of adjunction relations (K + Ev, Ev) = −2 for all v, is an integral
cycle of L.

We define χ : L→ Z by χ(l) = −(l, l+K)/2. (This is the Riemann–Roch formula:
for l effective χ(l) is the analytic Euler characteristic of Ol .) Set m := minl∈L χ(l).
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If l′k =
∑
v l
′

kvEv for k = 1, 2, then we write min{l′1, l
′

2} :=
∑
v min{l′1v, l

′

2v}Ev , and
l′1 ≤ l′2 if l′1v ≤ l′2v for all v ∈ V . The valency of the vertex v ∈ V in G is denoted
by δv . We will write ZK := −K . Furthermore, we will assume that G is a minimal good
(resolution) graph. In that case one has the following.

Lemma 2.1.5. Either (X, 0) is rational (equivalently A-D-E, hence ZK=0) or ZK>E.
Moreover, in the second case, the support of ZK − E is connected.

Proof. It is known that the only rational numerically Gorenstein graphs are of type
A-D-E. Otherwise, under the assumption that the graph is a tree of rational vertices,
ZK ≥ E by [52, 2.8]. But ZK = E cannot happen. Indeed, pg = h1(OZK ) =

h1(OE) = 0 would imply rationality, hence ZK = 0. For the connectedness, see e.g.
[55, 2.10] or [52, 2.6]. ut

2.1.6. In the last years there has been an intense activity to identify pg with certain in-
gredients of the Seiberg–Witten (or other equivalent/similar) theories. This worked nicely
for several analytic structures, but failed for some others. Though the goal of the present
note is to present the parallel theory for those cases which fail the ‘Seiberg–Witten con-
nection’, for a complete picture we need to review certain notions from this part as well.

2.2. Preliminaries: Seiberg–Witten invariant and lattice cohomology of M

Here is a short review of the lattice cohomology and path lattice cohomology of M . For
more details see [32, 34, 35, 37].

2.2.1. Lattice cohomology. Zs ⊗ R has a natural decomposition into cubes. The 0-
dimensional cubes are the lattice points Zs . Any l ∈ Zs and subset I ⊆ J of cardinality q
define a q-dimensional cube, which has its vertices at the lattice points (l +

∑
j∈I ′ Ej )I ′ ,

where I ′ runs over all subsets of I . We define the weight of any such cube �q by

w(�q) := max{χ(v) : v is a vertex of �q}.

Lattice cohomology (associated with the canonical spinc structure of M) is defined as
follows. For each N ∈ Z, define SN ⊂ Rs as the union of all the cubes �q (of any
dimension) with w(�q) ≤ N . Clearly, SN = ∅ whenever N < m. Then for any q ≥ 0,
set

Hq(G) :=
⊕
N≥m

H q(SN ,Z), Hqred(G) :=
⊕
N≥m

H̃ q(SN ,Z).

Then Hq is 2Z-graded, the d = 2N -homogeneous elements consist of H q(SN ,Z). Also,
Hq is a Z[U ]-module: the U -action is given by the restriction map H q(SN+1,Z) →
H q(SN ,Z). Moreover, for q = 0, a base-point l ∈ Sm provides an augmentation
H 0(SN ,Z) = Z ⊕ H̃ 0(SN ,Z), hence an augmentation of the graded Z[U ]-modules
H0
= (

⊕
N≥m Z) ⊕ H0

red. The graded Z[U ]-modules H∗ and H∗red are called the lat-
tice cohomology and the reduced lattice cohomology of G. They depend only on M , and
H∗red is a finite Z-module.
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2.2.2. The Seiberg–Witten invariant. Recall that the Seiberg–Witten invariants
of an oriented 3-manifold M are rational numbers sws(M) associated with the
Spinc-structures s of M . They can be recovered as (normalized) Euler characteristics of
different cohomology theories, e.g. for their relation with Heegaard–Floer homology see
[50, 51]). In the following we consider only the canonical spinc structure, hence the sym-
bol s will be omitted.

By [36] the normalized Euler characteristic of lattice cohomology also agrees with
the Seiberg–Witten invariant:

−sw(M)− (K2
+ |V|)/8 = eu(H∗(M)), (2.2.3)

where eu(H∗(M)) := −m+
∑
q(−1)q rankZHqred(M). Later it will be convenient to use

the following notation as well: eu(H0(M)) := −m+ rankZH0
red(M).

2.3. Path lattice cohomology

The search for a topological upper bound for pg leads to the definition of path lattice
cohomology (in fact, this was the starting point of lattice cohomology as well) [32, 35].

Consider a sequence γ := {li}ti=0 with li ∈ L such that l0 = 0, lt = ZK , and
li+1 = li+Ev(i) for some vertex v(i) ∈ V(G). This defines a path (or 1-dimensional sim-
plicial complex) with 0-cubes {li}i and 1-cubes [li, li+1]. We can repeat the construction
of lattice cohomology, but now only for those cubes which are supported by γ . Indeed,
let mγ = mini χ(li), and set SγN to be the union of the cubes supported by γ and with
weight ≤ N . Then one defines

Hq(γ ) =
⊕
N≥mγ

H q(S
γ

N ,Z), Hqred(γ ) =
⊕
N≥mγ

H̃ q(S
γ

N ,Z).

It turns out that Hq(γ ) = 0 for q 6= 0, H0(γ ) = (
⊕

N≥mγ
Z)⊕H0

red(γ ), and H0
red(γ ) is

a finite Z-module. Similarly to lattice cohomology, we set

eu(H0(γ )) := −mγ + rankZH0
red(γ ).

One verifies (see [35, 3.5.2]) that

eu(H0(γ )) =

t−1∑
i=0

max{0, χ(li)− χ(li+1)}. (2.3.1)

There is a natural cohomological morphism r∗ : H0(G)→ H0(γ ) induced by restriction.
Usually it is neither injective nor surjective. Nevertheless, r∗ is onto for certain well-
chosen paths. Moreover, if r∗ is onto, then by [35, 3.5.4], eu(H0(γ )) ≤ eu(H0(G)),
hence

min
γ
eu(H0(γ )) ≤ eu(H0(G)). (2.3.2)

Intuitively, eu(H0(G)) depends on those lattice points {lm}m∈M of L which realize the
‘local minima’ of χ , and also on the ‘optimal’ connecting paths of these points: for each
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pair lm and lm′ there is a minimal N(m,m′) such that lm and lm′ can be connected by
a path in SN(m,m′). On the other hand, eu(H0(γ )) codifies similar data supported on the
path γ , and minγ eu(H0(γ )) minimizes the sum

∑t−1
i=0 max{0, χ(li) − χ(li+1)} among

all the possible paths γ .

2.3.3. The analytic interpretation of minγ eu(H0(γ )). For any analytic realization,
by Riemenschneider–Kodaira vanishing h1(X̃,OX̃(−ZK)) = 0, hence pg = h1(OZK ).

Next, consider a sequence {li}ti=0 with li ∈ L such that l0 = 0, lt = ZK , and li+1 =

li+Ev(i) as above. RecallEj ' P1 for all j , hence χ(li+1)−χ(li) = 1−(Ev(i), li). Then
for any 0 ≤ i < t the exact sequence 0→ OEv(i)(−li)→ Oli+1 → Oli → 0 induces

h1(Oli+1)− h
1(Oli ) ≤ h

1(OEv(i)(−li)) = max{0, χ(li)− χ(li+1)}. (2.3.4)

Taking the sum one obtains h1(OZK ) ≤ eu(H0(γ )) for any path γ , hence

pg ≤ min
γ
eu(H0(γ )). (2.3.5)

Equality holds if for some γ the cohomology exact sequences split for all i.
Usually the concrete computation of minγ eu(H0(γ )) is rather difficult.

2.4. Some conjectures, results and examples

We briefly review some key steps in the topological characterization of the geometric
genus via the Seiberg–Witten invariant. We start with the Casson Invariant Conjecture
(CIC) of Neumann–Wahl:

Conjecture 2.4.1 ([46]). Consider an isolated complete intersection singularity with
signature σ , and whose link is an integral homology sphere with Casson invariant λ(M).
Then σ/8 = λ(M).

The conjecture was verified for Brieskorn–Hamm complete intersections and for those
hypersurfaces which are suspensions of irreducible plane curve singularities [46] (see
also [15]). Note that via (2.1.3)(b), the identity can be replaced by pg = −λ(M) −
(K2
+ |V|)/8, a version independent of any smoothing. This version was verified for

splice quotient singularities (without the ICIS assumption) in [42]. The original CIC is
still open.

One of the difficulties of a possible proof is the lack of any characterization/descrip-
tion of integral homology sphere hypersurfaces or complete intersection links other than
iterated cyclic covers (for the behavior of λ(M) for such covers, see e.g. Collin–Saveliev
[7, 8]). Having no other examples in hand, it is hard to decide whether the validity of the
conjecture is guaranteed merely by the special properties of cyclic covers, or it covers a
much deeper geometrical phenomenon. Moreover, integral homology sphere links appear
rather rarely (e.g. among the Newton non-degenerate hypersurfaces all germs with ZHS3

links are of Brieskorn type, while among rational graphs there is only one, namely theE8).
Hence, it was necessary to extend the above conjecture to rational homology sphere links.
The conjectured identity was proposed by Némethi–Nicolaescu:
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Conjecture 2.4.2 ([40]). Assume that the link M of a normal surface singularity is a
rational homology sphere, whose Seiberg–Witten invariant (associated with the canonical
spinc-structure) is sw(M). If its analytic structure is ‘nice’ then

pg = −sw(M)− (K
2
+ |V|)/8.

The conjecture is proved for splice quotient singularities (including all rational, minimal
elliptic and weighted homogeneous singularities) [6, 38, 43], and for suspensions of irre-
ducible plane curve singularities [41]. It was extended to the equivariant case (involving
the Seiberg–Witten invariant of all spinc-structures and equivariant geometric genus of
the universal abelian cover [6, 38]).

On the other hand, there are even hypersurface singularities which do not satisfy the
conjecture. The typical counterexample are the superisolated singularities with ν≥2 [26].

Example 2.4.3. Assume that (X, 0) is a superisolated singularity with QHS3 link.
(a) If ν = 1, that is, C is unicuspidal, whose local cusp has local irreducible plane

curve singularity knot K ⊂ S3, then M = S3
−d(K). In [13] (see also [12, 44]) it is

proved that the statement of Conjecture 2.4.2 is equivalent to a ‘Density Property’ of
the semigroup of the local cusp. This last property was checked in [12] for ‘all known’
curves C via case-by-case verification, and it was also proved recently in [5] using the
d-invariant of Heegaard–Floer theory. Hence pg = eu(H∗(M)).

Here we wish to emphasize an important point. The link M with ν = 1 is ‘almost
rational’, that is, modifying the resolution graph at only one vertex we can get a rational
graph (see [33]). Consequently (see [37]), one has the vanishing Hq(M) = 0 for q ≥ 1.
Therefore, eu(H∗(M)) = eu(H0(M)). In particular, in this case

pg ≤ min
γ
eu(H0(γ )) ≤ eu(H0(M)) = eu(H∗(M)) = pg, (2.4.4)

hence everywhere we must have equality.
(b) Nevertheless, for ν ≥ 2 counterexamples to Conjecture 2.4.2 exist [26]. In this

case the above vanishing has the weaker form: Hq(M) = 0 only for q ≥ ν [44, 37].
Hence, as we will see, for superisolated singularities the non-vanishing of Hq(M)
(1 ≤ q < ν) obstructs the validity of Conjecture 2.4.2.

Let us consider the case C4 of [26] (see also [35, 7.3.3]). C has degree d = 5 and two
cusps, both with one Puiseux pair: (3, 4) and (2, 7). The graph G is

t t t t tt t
−2 −1 −31 −1 −3

−4 −2

t t t−2 −2 −2

One shows that m = −5, rankZ(H0) = 5, rankZ(H1) = 2. Hence eu(H0) = 10, but
eu(H∗) = 8. Since for the superisolated germ with d = 5 one has pg = 10, by equations
(2.3.2) and (2.3.5) one gets minγ eu(H0(γ )) = 10 as well. Hence, for this superisolated
germ, (2.3.5) is valid with equality, while Conjecture 2.4.2 fails.

If we take any other analytic structure supported by the above graph, pg ≤ 10 still
holds by (2.3.5), hence superisolated germs realize the optimal upper bound.
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Note also that this topological type supports another natural analytic structure, namely
a splice quotient analytic type: it is the Z5-factor of the complete intersection {z3

1 + z
4
2 +

z5
3z4 = z

7
3 + z

2
4 + z

4
1z2 = 0} ⊂ (C4, 0) by the diagonal action (α2, α4, α, α) (α5

= 1).
By [43] it satisfies the SWIC Conjecture 2.4.2, hence pg = 8.

In particular, in their choices of the topological characterization of their pg , some
analytic structures prefer eu(H∗), some of them the extremal minγ eu(H0(γ )) (and there
might even exist other choices).

(c) We can ask whether the choice between eu(H∗) and minγ eu(H0(γ )) is uniform in
the case of hypersurface singularities, that is, if all hypersurfaces choose minγ eu(H0(γ )),
as superisolated germs do. We expect that this is not the case; here is a possible candidate
which makes a different choice. We consider the suspension f (x, y, z) := (x3

+ y2)2 +

yx5
+ z19 of an irreducible plane curve singularity with two Puiseux pairs. Note that in

this case the link is even an integral homology sphere. The graph of {f = 0} is

t t t t tt t
−2 −1 −19 −1 −3

−3 −2

tt t −2−2 −3

The following facts were checked by Helge M. Pedersen (via a computer pro-
gram based on the ‘Reduction Theorem’ of [17]): m = −18, rankH0

red = 26, hence
eu(H0) = 44, and rankH1

= 8. Since the graph has only two nodes, one has Hq = 0 for
q ≥ 2 (cf. [37]), hence eu(H∗) = 44− 8 = 36. On the other hand, the Milnor number of
the plane curve singularity is 16, hence the Milnor number of f is µ = 16 · 18 = 288.
Then, by 2.1.3, one gets pg = 36 (as expected, since this germ satisfies both Conjec-
tures 2.4.1 and 2.4.2, cf. [41]).

Therefore (cf. (2.4.4)), 36 ≤ minγ eu(H0(γ )) ≤ 44. Computer search in the ‘re-
duced lattice’ of [17] gives 44, however at this moment we do not know if the ‘Reduction
Theorem’ of [17] works for minγ eu(H0(γ )) too. Still, we expect that pg = eu(H∗) <
minγ eu(H0(γ )).

2.5. The new proposed identity

Having in mind the conclusion of Example 2.4.3(b)–(c), we can ask how accidental the
superisolated example is; or, what are the choices of other important families of hyper-
surfaces, e.g. of Newton non-degenerate ones. Here we wish to recall that in [6] it is
shown that for such germs one can recover from M the Newton diagram of the equation,
hence the equisingularity type of the germ too. Hence, in principle, pg can be recovered
from M; however this statement does not indicate any topological candidate for pg . (For
comparison, a similar statement regarding the possibility to recover the equisingularity
type of suspensions of irreducible curves from their link is provided in [28]. In that case
the choice is pg = eu(H∗).)

The next theorem says that the extremal choice minγ eu(H0(γ )) is not accidental at
all: in fact, all superisolated and Newton non-degenerate germs prefer uniformly exactly
this one.
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Theorem 2.5.1. Assume that (X, 0) is a normal surface singularity with rational homol-
ogy sphere link. Then the identity pg = minγ eu(H0(γ )) is true in the following cases:

(a) if pg = eu(H0(M)) [this happens e.g. whenever Hq(M) = 0 for q ≥ 1 and (X, 0)
satisfies the SWIC (Conjecture 2.4.2); in particular, the conjecture is true for all
weighted homogeneous and minimally elliptic singularities];

(b) for superisolated singularities with any number of cusps (in this case, in fact, pg =
minγ eu(H0(γ )) = eu(H0(M)) too);

(c) for singularities with non-degenerate Newton principal part.

Since the conjecture is stable with respect to equisingular deformation of hypersurfaces,
it remains valid for such deformations of any of the above cases.

Corollary 2.5.2. A superisolated singularity, where C is an irreducible rational unicus-
pidal curve, satisfies the Seiberg–Witten Invariant Conjecture 2.4.2 (predicted in [12, 13]
too).

Indeed, in this case the graph is ‘almost rational’ (cf. [33]), hence Hq(M) = 0 for q ≥ 1
by [37]. In particular, eu(H∗(M)) = eu(H0(M)). Hence part (b) of the theorem suffices.

2.5.3. Let us repeat the meaning of the identity in Theorem 2.5.1. For any sequence
γ := {li}

t
i=0 with li ∈ L where l0 = 0, lt = ZK , and li+1 = li + Ev(i) (v(i) ∈ V) we

set eu(H0(γ )) :=
∑t−1
i=0 max{0, χ(li)− χ(li+1)} =

∑t−1
i=0 max{0, −1+ (li, Ev(i))}. The

statement is that pg = eu(H0(γ )) for a well-chosen path γ .

2.5.4. Part (a) follows easily via the inequalities (2.3.2) and (2.3.5). By isolating (a)
we wish to emphasize that for several ‘simple cases’, one has all the equalities pg =
minγ eu(H0(γ )) = eu(H0(M)) = eu(H∗(M)). (This explains why earlier, when we had
complete information only about these simple cases, it was difficult to predict the general
behavior.)

Regarding (a), note also that the condition pg = minγ eu(H0(γ )) is more restric-
tive: there exist examples with pg = minγ eu(H0(γ )) but pg < eu(H0(M)) (see next
example).

Example 2.5.5 ([17]). Consider the germ (X, 0) = {x13
+ y13

+ x2y2
+ z3

= 0} with
non-degenerate Newton principal part with pg = 5. The graph is

t t t t tt t
−2 −1 −7 −3 −3

−3 −3

tt t −2−7 −1

Then m = −1, eu(H0) = 6, rankH1
= 1, and minγ eu(H0(γ )) = 5.

2.5.6. The proof of part (b) of Theorem 2.5.1 will be given is Section 3. In fact, we will
show that for superisolated singularities we have pg = eu(H0(M)), hence (a) applies.

The Newton non-degenerate case is treated in the remaining sections.
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3. The proof of Theorem 2.5.1(b) for superisolated singularities

For the proof of Theorem 2.5.1(b) we have to combine two results from the literature. In
order to provide a more complete picture, we give some additional details as well.

In the last years we have witnessed a focused effort to prove the (SWI) Conjecture
2.4.2 for superisolated singularities with ν = 1 cusp, or to understand the main cause
of its failure in particular cases with ν ≥ 2. This materialized in several results [12, 13,
14, 26, 33, 34, 44] and a new conjecture regarding the algebraic realization of cuspi-
dal rational curves of fixed degree and given local singularities, the ‘semigroup distribu-
tion property’ [12, 13]. These results and their reformulations in different languages of
Heegaard–Floer or Seiberg–Witten theory (although they were originally motivated and
guided by the SWIC and the distribution property), reorganized and put together in a new
puzzle, provide the proof of Theorem 2.5.1. This also shows that, in fact, for certain ana-
lytic structures the statement of 2.5.1 is the right guiding statement and not the one in the
SWIC.

Let f = fd + fd+1 : (C3, 0) → (C, 0) be a superisolated singularity as in Ex-
ample 2.1.1(b), where C = {fd = 0} ⊂ CP2 is an irreducible rational cuspidal curve
with ν cusps. Let (C, pi) ⊂ (CP2, pi) be the local singularities of C; denote their Milnor
numbers by µi , and their local links by Ki ⊂ S3. Then the link of (X, 0) = {f = 0}
is S3
−d(K), where K is the connected sum K1# · · · #Kν . For the plumbing graph con-

structed from the embedded resolution graphs of (C, pi) and the integer d, see [44,
2.3]. The degree d and the local singularity types (C, pi) are related: the rationality of
C implies

∑
i µi = (d − 1)(d − 2). In particular, any statement like the SWIC (or

our main theorem) makes a bridge between the local topological types (C, pi) and the
global degree d. Computations show that for general S3

−d(K) (when the pair (K, d) has
no algebraic realization as above) such identities cannot be expected. Hence such identi-
ties provide criterions for the algebraic realizations of a degree d curve with given local
singularities.

3.0.1. The proof splits into two parts. The first part, done in [44], is valid for any surgery
3-manifold S3

−d(K). It provides H∗(S3
−d(K)), where K is a connected sum of algebraic

knots in S3, and d is an arbitrary positive integer (and we do not assume the existence of a
degree d curve with local types Ki ⊂ S3, nor even the identity

∑
i µi = (d − 1)(d − 2)).

The cohomology is described completely in terms of the semigroups {Si}νi=1 of the al-
gebraic knots Ki ⊂ S3. The construction uses the ‘reduction theorem’ of [17], which
describes the lattice cohomology (defined a priori in the lattice L) in the first quadrant of
a lattice of rank ν. The formula for eu(H0) is the following. For any n ∈ Z≥0 set

6n :=
{
(β1, . . . , βν) ∈ (Z≥0)

ν
:

∑
i

βi = n+ 1
}
,

and for any (β1, . . . , βν) ∈ (Z≥0)
ν define the weight

W(β1, . . . , βν) :=

ν∑
i=1

|{ki 6∈ Si : ki ≥ βi}|.
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Then, by [44, 6.1.15] (see also Remark 6.1.19, loc. cit.),

eu(H0(S3
−d(K))) =

∑
j≥0

min {W restricted to 6jd}. (3.0.2)

The sum in (3.0.2) is finite: since {ki 6∈ Si : ki ≥ µi} = ∅, if jd + 1 ≥
∑
i µi we get

min({W |6jd} = 0. For example, if
∑
i µi = (d − 1)(d − 2), then for j ≥ d − 2 we get a

zero contribution.

Remark 3.0.3. Though H0(γ ) is not mentioned in [44], in its Section 6 one can see
clearly that minγ eu(H0(γ )) = eu(H0) even in this general topological context; never-
theless, we do not need this—in our case it will follow automatically from the estimate of
the second part.

3.0.4. The second ingredient is the main result of [5] (as a possible answer to the conjec-
tures of [12]), and it is valid only in the presence of the algebraic realization of S3

−d(K).
Its proof uses surgery properties of the d-invariant of Heegaard–Floer theory.

[5, Theorem 5.4] reads as follows. If for any (β1, . . . , βν) ∈ Zν one writes

W
∗
(β1, . . . , βν) :=

ν∑
i=1

|{ki ∈ Z \ Si : ki ≥ βi}|,

then
min {W

∗
restricted to 6jd} = (j − d + 1)(j − d + 2)/2. (3.0.5)

Since Si ⊂ Z≥0, the minimum in (3.0.5) is realized for (β1, . . . , βν) ∈ (Z≥0)
ν ,

hence the minima in (3.0.5) and (3.0.2) agree. (Indeed, if β1 < 0 and βν > 0, then
W
∗
(β1, . . . , βν) ≥ W

∗
(β1 + 1, . . . , βν − 1).) Hence (3.0.5) and (3.0.2) combined give

eu(H0(S3
−d(K))) =

d−2∑
j=0

j (j + 1)/2 = d(d − 1)(d − 2)/6 = pg.

This together with inequalities (2.3.2) and (2.3.5) ends the proof (cf. part (a) of the theo-
rem).

For us, in fact, the main geometric meaning of the ‘arithmetical result’ of [5] is exactly
the statement of Theorem 2.5.1(b).

4. Preliminaries on Newton non-degenerate singularities

4.1. The Newton boundary [16]

For any set S ⊂ N3 denote by 0+(S) ⊂ R3 the convex closure of
⋃
p∈S(p + R3

+). The
collection of all boundary faces of 0+(S) is denoted by F , while the set of compact faces
of 0+(S) by Fc. By definition, the Newton boundary (or diagram) 0(S) associated with
S is the union of compact boundary faces of 0+(S). Let 0−(S) denote the cone with
base 0(S) and vertex 0.
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Let f : (C3, 0)→ (C, 0) be an analytic function germ defined by a convergent power
series

∑
p apz

p, where p = (p1, p2, p3) and zp := zp1
1 z

p2
2 z

p3
3 . By definition, the Newton

boundary 0(f ) of f is 0(supp(f )), where supp(f ) = {p : ap 6= 0}, and we write
0±(f ) for 0±(supp(f )). The Newton principal part of f is

∑
p∈0(f ) apz

p. Similarly,
for any q-dimensional face M of 0(f ), set fM(z) :=

∑
p∈M apz

p. We say that f is non-
degenerate on M if the system of equations ∂fM/∂z1 = ∂fM/∂z2 = ∂fM/∂z3 = 0 has
no solution in (C∗)3. When f is non-degenerate on every q-face of 0(f ), we say (after
Kouchnirenko [16]) that f has a non-degenerate Newton principal part. In what follows
we assume that f has this property. Moreover, we also assume that f defines an isolated
singularity at the origin. This can be characterized by 0(f ) as follows (cf. [16, 1.13(ii)]
or [6, 2.1]):

0(f ) has a vertex on every coordinate plane, and it has
a vertex at most 1 away from any chosen coordinate axis. (4.1.1)

Nevertheless, we will not assume that 0(f ) is ‘convenient’ (recall that 0(f ) is convenient
if it intersects all the coordinate axes). In fact, if f is not convenient, there are several ways
to complete the diagram to a convenient one without modifying the equisingularity type.
Hence, in general, several diagrams might produce the same equisingularity type. From
all possible diagrams we choose a minimal one (with respect to inclusion; for its existence
and ‘almost unicity’ see [6, §3]). This minimal diagram, in general, is not convenient.

Furthermore, as always in this note, we assume that the link M of (X, 0) = {f = 0}
is a rational homology sphere. This, in terms of the Newton boundary 0(f ), reads as
follows (cf. [53]):

M is a rational homology sphere ⇔ 0(f ) ∩ N3
>0 = ∅. (4.1.2)

Lemma 4.1.3 ([6, §2.3]). Under the above assumptions, if a face of 0(f ) is not a trian-
gle then it is a trapezoid. Up to permuting coordinates, its vertices are: (p, 0, n), (0, q, n),
(r1, r2+ tq, 0) and (r1+ tp, r2, 0), where p, q > 0, gcd(p, q) = 1, t ≥ 1 and r1, r2 ≥ 0.

For any face of the diagram at most one edge might have inner lattice points, and if
an edge has inner lattice points then that edge sits in a coordinate plane.

We will denote by 〈p, q〉 =
∑
i piqi the standard scalar product on R3. Let NM be the

primitive normal vector of a 2-face M ∈ F oriented so that 〈NM, (1, 1, 1)〉 > 0. In the
case of two adjacent faces M and O from F , we write tM,O − 1 for the number of interior
lattice points of the common edge. If both faces are compact then tM,O = 1 by (4.1.2).
Furthermore, let nM,O be the greatest common divisor of the 2-minors of the vectors NM
and NO.

4.2. Oka’s algorithm for G

Let f : (C3, 0) → (C, 0) be a germ as in 4.1. We recall the combinatorial algorithm of
M. Oka (based on toric resolution), which provides a dual resolution graph G of (X, 0)
from 0(f ) (cf. [49, Theorem 6.1]).
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4.2.1. The algorithm. The graph G is a subgraph of a larger graph G̃, whose construc-
tion is the following. We start with a set of vertices, each of them corresponding to a face
from F (we will call them face vertices). Consider two adjacent faces M and O from F .
Then we connect the corresponding vertices by tM,O copies of the following chain.

If nM,O > 1 then let 0 < cM,O < nM,O be the unique integer for which

NM,O := (NO + cM,ONM)/nM,O (4.2.2)

is an integral vector. Let us write nM,O/cM,O as a (negative) continued fraction:

nM,O

cM,O
= e1 −

1

e2 −
1

· · · −
1
ek

, (4.2.3)

with each ei ≥ 2. Then the chain with the corresponding self-intersection numbers is

t t tM O
−e1 −e2 −ek

· · ·

The left ends of all the tM,O copies of the chain (marked by M) are identified with the
face vertex corresponding to M, and similarly for the right ends marked by O.

If nM,O = 1 then the chain consists of an edge connecting the vertices M and O (we
put tM,O such edges). Also, in this case we set cM,O := 0 and NM,O := NO.

Next, we compute the decoration bM of any face vertex M ∈ Fc from the equation

bMNM +
∑

O∈FM

tM,ONM,O = 0, (4.2.4)

where FM is the collection of all 2-faces of 0+(f ) adjacent to M.
In this way we obtain the graph G̃. Notice that the face vertices corresponding to

non-compact faces are not decorated.

Proposition 4.2.5. (a) [49] If we delete all the vertices corresponding to non-compact
faces (and all the edges adjacent to them) we get a dual resolution graph G.

(b) [6, 4.2.5] Under the above choice of the ‘minimal’ Newton diagram (cf. 4.1), the
graphG is the minimal good resolution graph. In particular, the nodes (vertices with
valency δv ≥ 3) are exactly the face vertices associated with compact faces of the
diagram.

(c) [6, 3.3.11] IfM is a compact face andO is an adjacent non-compact face, then nM,O >
1. Hence, such an edge of M produces a non-trivial chain (leg) of G.

We denote by {bv}v∈V the decorations (self-intersections) of the corresponding vertices.

4.2.6. The ‘extended’ graph Ge. Replace each edge of G̃ connecting a face vertex ṽ
of G̃\G and another vertexw ofG by an arrow with arrowhead a and supporting vertexw.
Then Ge consists of G equipped with this type of arrowheads.
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The set of vertices of G is denoted by V , the set of arrowheads of Ge by A, and we
refer to Ve := V ∪A as the set of (arrowhead and non-arrowhead) vertices of Ge. Let N
be the set of (non-arrowhead) face vertices of Ge; these are the nodes in both graphs G
and Ge.

To each v ∈ Ve we associate a vector Nv in Z3
≥0. If v is a face vertex of G corre-

sponding to M then Nv = NM. If a ∈ A corresponds to M ∈ F \ Fc then Na = NM. All
the other vectors are determined in a unique way by the following identities (see [6]):

Fix v ∈ V , and set Vev := {w ∈ Ve : w adjacent to v in Ge} and Vv := Vev ∩ V . Then

bvNv +
∑
w∈Vev

Nw = 0. (4.2.7)

(In this procedure it helps to know that the vector associated with a neighbor of a face
vertex v corresponding to M on the chain in the direction w corresponding to O is NM,O.)

If v is on a chain connecting the face vertices w1 and w2, then Nv = r1Nw1 + r2Nw2

with r1, r2 ∈ Q>0. Since for any v ∈ N all the entries of Nv are strictly positive, the
same property remains true for all v ∈ V . By (4.2.7) (which typically characterizes the
multiplicities of the function encoded in an embedded resolution graph), or by [49],

the multiplicity of zi along Ev is the i-th coordinate of Nv (v ∈ V). (4.2.8)

In fact, if we decorate the (arrowhead and non-arrowhead) vertices of Ge by the i-th
coordinate of the vectorsNv , then we get the embedded resolution graph of the germ zi on
(X, 0), where the arrowheads with zero decorations can be deleted, while the arrowheads
with positive decorations represent strict transforms of zi = 0 which are not necessarily
transversal to their supporting curves (the corresponding decoration is the intersection
multiplicity of the strict transform with the supporting curve). This decoration can be
larger than 1 if the corresponding non-compact face is not a coordinate plane.

Definition 4.2.9. (i) For each v ∈ Ve we denote by `v the linear function 〈Nv, ·〉.
(ii) If l =

∑
v∈V lvEv ∈ L, then we writemv(l) = lv . We extend this by settingmv(l) :=

−1 for any v ∈ Ve \ V . (For a motivation of the value −1 see the proof of Lemma
4.3.4.)

(iii) For any l ∈ L and v ∈ Ve we define the half-space H≥v (l) := {p ∈ R3
| `v(p) ≥

mv(l)}, and write H=v (l) for its boundary plane. Moreover, we define the rational
polytope

0e+(l) :=
⋂
v∈Ve

H≥v (l).

4.3. Divisorial valuations, weights and the canonical cycle

Let f be as in (4.1) and L the lattice of rank |V| associated with G, with Ev as its basis.
The resolution with exceptional curve E =

⋃
v Ev is denoted by X̃ (as in 2.1.4).

Definition 4.3.1. (a) For a non-empty finite set S in Z3
≥0 and v ∈ V define wtv(S) =

minp∈S `v(p) and wt(S) :=
∑
v∈V wtv(S)Ev ∈ L. For 0 6= h ∈ C{z} set wtv(h) =

wtv(supp(h)) and wt(h) = wt(supp(h)).
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(b) For any h̄ ∈ OX,0, denote by divv(h̄) the order of vanishing on Ev of the pullback of
h̄ to X̃, and set div(h̄) =

∑
v divv(h̄)Ev . If h ∈ C{z}, let div(h) = div(h|X).

Remark 4.3.2. The functions wtv are order functions. For any p ∈ N3, we have wt(zp)
= div(zp) (cf. 4.2.8). Since for all h1, h2 ∈ C{z} with supp(h1) ∩ supp(h2) = ∅ one has
wt(h1 + h2) = min{wt(h1),wt(h2)}, and the divv are valuations, we get wt(h) ≤ div(h)
for any h ∈ C{z}.

Lemma 4.3.3 ([49, Theorem (9.1)]). The (anti)canonical divisor ZK = −K ∈ L satis-
fies

ZK − E = wt(f )− wt(z1z2z3).

Lemma 4.3.4. 0e+(ZK − E) = 0+(f )− (1, 1, 1).

Proof. Let us analyse the non-compact faces of 0+(f ). Up to a permutation of coordi-
nates they have the form z1 + az2 = a for some a ∈ Z≥0. This follows from (4.1.1)
or from [6, 3.1.2]. This plane shifted by (1, 1, 1) gives the plane z1 + az2 = −1, a fact
which explains Definition 4.2.9 for v 6∈ V too. Otherwise the statement follows from
Lemma 4.3.3. ut

5. The proof of Theorem 2.5.1(c)

Since part (a) covers the rational hypersurfaces, we assume that (X, 0) is not rational. Let
X̃ be a minimal good resolution (provided by Prop. 4.2.5); we write O for OX̃. Let G be
the corresponding resolution graph. By Lemma 2.1.5 we get ZK > E.

5.1. The sequence {zi}i (preliminaries)

5.1.1. From the definition of path cohomology, by paragraphs 2.3.3 and 2.5.3, we have
to construct a sequence {li}ti=0 with li ∈ L such that l0 = 0, lt = ZK , li+1 = li + Ev(i)
with

pg =

t−1∑
i=0

(h1(Oli+1)− h
1(Oli )) =

t−1∑
i=0

h1(OEv(i)(−li)).

5.1.2. We need the dual picture. Take a sequence {zi}ti=0 with zi ∈ L where z0 = 0,
zt = ZK , zi+1 = zi + Ev(i). Then the pair of sheaves O(−zi+1) ↪→ O(−zi) gives an
exact sequence

0→ H 0(X̃,O(−zi+1))→ H 0(X̃,O(−zi))→ H 0(OEv(i)(−zi))→ · · · . (5.1.3)

Since H 0(O)/H 0(O(−ZK)) ' H 0(OZK ) = Cpg , and since we have h0(OEv(i)(−zi)) =

max{0, 1− (Ev(i), zi)}, it follows that

pg =

t−1∑
i=0

dim
H 0(X̃,O(−zi))
H 0(X̃,O(−zi+1))

≤

t−1∑
i=0

max{0, 1− (Ev(i), zi)}. (5.1.4)

The dual statement of 5.1.1 requires the existence of {zi}i with equality in (5.1.4) for all i.
The duality is realized by zi := ZK − lt−i and Serre duality.
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[Indeed, if zi+1 = zi+Ev(i), lj+1 = lj+Eu(j), zi = ZK−lt−i , then with j := t−1−i
one has u(j) = v(i) and h1(OEu(j)(−lj )) = h

0(OEv(i)(−zi)) by Serre duality.]
Since H 1(OEj ) = H 1(OE) = 0, in fact, in 5.1.1 we need a sequence {li}i which

starts with l0 = E and ends with lt = ZK (and otherwise is as in 5.1.1).
By dual considerations (since H 0(O(−ZK)) ↪→ H 0(O(−ZK + E)) is an isomor-

phism) it is enough to construct a sequence {zi}ti=0 which starts with z0 = 0 and ends
with zt = ZK − E (and otherwise is as above). This is what we will do.

5.1.5. The plan of the proof. To a sequence {zi}i of elements of L (with z0 = 0, zt =
ZK − E, zi+1 = zi + Ev(i)) we associate the sequence {0e+(zi)}i of polytopes. Note that
0e+(zt ) = 0+(f ) − (1, 1, 1) ⊂ 0e+(z0) ⊂ (R≥−1)

3. Clearly 0e+(zi+1) ⊂ 0e+(zi). This
filtration realizes a partition of the lattice points (0−(f )− (1, 1, 1)) ∩ Z3

≥0 by

Pi := ( 0
e
+(zi) \ 0

e
+(zi+1) ) ∩ Z3

≥0. (5.1.6)

Then, for the sequence {zi}i provided by the algorithm 5.3.1 we show that for 0 ≤ i < t ,

max{0, 1− (Ev(i), zi)} ≤ |Pi |, (5.1.7)

|Pi | ≤ dim
H 0(X̃,O(−zi))
H 0(X̃,O(−zi+1))

. (5.1.8)

These two facts together with (5.1.4) show that in (5.1.4) we must have equality.
Note that based on (5.1.7) and (5.1.4) together with the result of Merle–Teissier [29],

which says that |0−(f ) ∩ Z3
>0| = pg , or in the above terms

∑
i |Pi | = pg , we could

already conclude our proof. Nevertheless, by providing an independent argument for the
additional (5.1.8), besides the proof of our theorem we reprove the Merle–Teissier result
as well.

Some of the steps can be analysed easily.

Lemma 5.1.9. Assume that along the sequence one has (Ev(i), zi) > 0 for some i. Then
Pi = ∅, hence (5.1.7) is valid. Moreover, in (5.1.8) one has equality (with both sides
zero).

Proof. Assume that Pi 6= ∅, set p ∈ Pi and v := v(i). Then `v(p) = mv(zi) and
`w(p) ≥ mw(zi) for every w ∈ V . Moreover, since all the entries of p are non-negative,
`w(p) ≥ 0 for everyw ∈ Ve\V as well. Therefore, by (4.2.7), 0 = (bv`v+

∑
w∈Vev `w)(p)

≥ bvmv(zi)+
∑
w∈Vv mw(zi) = (Ev, zi) > 0, a contradiction. For the second statement

use (5.1.3). ut

5.2. The operation l 7→ c(l) and the ratio test

In the construction of the sequence {zi}i a part of the ‘easy’ steps are provided by the next
‘completion operation’.

If l =
∑
v mvEv ∈ L, then we define the support of l as |l| := {v ∈ V : mv 6= 0}.

In the next proposition the meaning of the condition involved is motivated by the
adjunction formula (Ev, ZK − E) = 2− δv . Note that δv ≤ 2 if v 6∈ N .
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Proposition 5.2.1. (A) Fix l ∈ L. Then there exists a unique element c(l) ∈ L with

(1) mn(c(l)) = mn(l) for all n ∈ N ;
(2) (c(l), Ev) ≤ 2− δv for every v 6∈ N ;
(3) c(l) is minimal with properties (1) and (2).

(Clearly, by (1), c(l) depends only on {mn(l)}n∈N .)
(B) Let l be as in (A), and z ∈ L another cycle such that z ≤ c(l) and mn(z) = mn(l)

for all n ∈ N . We construct a ‘computation sequence’ {xj }Tj=0 starting with x0 = z

as follows. First, one takes x0 = z. Then, if xj is already constructed, and it does not
satisfy (A)(2), that is, there exists v with (xj , Ev) > 2− δv , then xj+1 = xj +Ev for
such v. If xj satisfies (A)(2) then we stop and j = T . Then for any such computation
sequence, xT = c(l).

(C) If li ∈ L are such that mn(l1) ≤ mn(l2) for all n ∈ N , then c(l1) ≤ c(l2).
(D) If G is not an An-graph, then c(0) = 0. (For An one has c(0) = −E.)
(E) c(ZK − E) = ZK − E.

Proof. The proof of (A)–(B) is an alteration of Artin’s proof of the existence of the funda-
mental cycle [4] and of the existence of the Laufer computation sequence providing this
cycle [19]. The major steps are the following. First, note that by the negative definiteness
of the intersection form there exists a cycle with properties (A)(1–2). Then one shows (as
in [4]) that if c′(l) and c′′(l) satisfy (A)(1–2) then min{c′(l), c′′(l)} also satisfies them,
hence there exists a unique minimal element c(l) satisfying (A)(1–2). For (B), one checks
by induction that xj ≤ c(l) for every j . Hence the sequence must stop and xT ≤ c(l).
Since xT satisfies (A)(1–2), and c(l) is minimal with this property, xT = c(l).

(C) c(l2)− (l2− l1) satisfies (A)(1–2) and restricted on N is l1, hence c(l1) ≤ c(l2)−
(l2 − l1).

(D) It is an elementary arithmetical verification on the chains of G \N .
(E) Since ZK − E satisfies the conditions (A)(1–2), l := ZK − E − c(ZK − E) ≥ 0

by (A)(3). But (l, Ev) ≥ 0 for all v in the support of l, hence by the negative definiteness
of G we have l ≤ 0 too. Hence l = 0. ut

Definition 5.2.2 (The ratio test). We fix l ∈ L, and we consider the ratio R(v) :=
mv(l)/mv(ZK − E) for every v ∈ V . We say that the ratio test for l chooses the ver-
tex v ∈ V if R(v) = min{R(w) : w ∈ V} and R(v) < R(w) < ∞ for at least one
adjacent vertex w of v. (If mv(ZK − E) = 0 then R(v) = ∞, which is ‘larger than any
real number’.)

Lemma 5.2.3. Assume that for some effective l supported on N one has 0 < c(l) <

ZK − E. Then the ratio test for c(l) always makes a choice, that is, it is not possible
that v 7→ R(v) is a constant on |ZK − E|. Moreover, the chosen v is in the support of
ZK − E − c(l).

Proof. Since the support of ZK − E is connected (cf. 2.1.5), if R(v) is constant on this
support then c(l) = r(ZK − E) for some r ∈ (0, 1) (in the complement of this sup-
port both c(l) and ZK − E are zero). Then for any w with δw = 1 we would get r =
r · (ZK −E,Ew) = (c(l), Ew) ∈ Z, a contradiction. Hence, a choice v exists. Moreover,
mv(c(l)) = mv(ZK −E) would imply 1 = R(v) = minw{R(w)}, or c(l) ≥ ZK −E. ut
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5.3. The algorithm for {zi}i

Definition 5.3.1. The sequence {zi}ti=0 is constructed in the following steps.

S1. z̄0 = 0.
S2. Assume that z̄i is already constructed, and z̄i < ZK − E. If i = 0 then we choose

an arbitrary Ev in the support of ZK − E and we write Ev(0) := Ev . If i > 0, then
z̄i > 0, and the ratio test for z̄i makes a choice (cf. Lemma 5.2.3), say v(i). Then (in
both cases) set z̄i+1 = c(z̄i+Ev(i)). Note that by Lemma 5.2.3 and Proposition 5.2.1
one has z̄i + Ev(i) ≤ z̄i+1 ≤ ZK − E.

S3. If z̄i+1 < ZK − E then run Step S2 again. If z̄i = ZK − E then stop and set t̄ := i.

Note that different choices might produce different sequences {z̄i}t̄i=1.
For any i ≥ 0 one has c(z̄i + Ev(i)) ≥ z̄i + Ev(i). For i = 0 this follows from

Proposition 5.2.1(D), while for i > 0 from part (C). Hence by 5.2.1(B) there exists an
‘intermediate’ sequence between z̄i + Ev(i) and z̄i+1. Completing the above sequence
with these intermediate steps we get the desired sequence {zi}ti=0 for which zi+1 − zi is
always a base element. Along these intermediate steps (cf. Lemma 5.1.9), the inequalities
(5.1.7)–(5.1.8) hold with equality, since (Ev(i), xj ) > 2− δv(i) ≥ 0.

The very first step 0 = z0  z1 = Ev(0) is also easy: (Ev(0), z0) = 0, the factor
space H 0(O)/H 0(O(−Ev(0))) is 1-dimensional, and since for any v ∈ V all the entries
of Nv are positive, (Nv, p) > 0 for all Z3

≥0 \ (0, 0, 0). Hence P0 = {(0, 0, 0)}, and it has
cardinality 1.

The next lemma analyzes the step z̄i  z̄i + Ev(i) (i > 0).

Lemma 5.3.2. δv(i) = 2 cannot happen. If δv(i) = 1 then (z̄i, Ev(i)) = 1.

Proof. The choice of v(i) implies

(z̄i, Ev(i))∑
mw(z̄i)

>
(ZK − E,Ev(i))∑
mw(ZK − E)

=
2− δv(i)∑
mw(ZK − E)

,

where the sums run over w ∈ Vv(i). Then use the fact that z̄i is c of an element. ut

5.3.3. This shows (using again Lemma 5.1.9) that what remains to verify is the validity
of (5.1.7)–(5.1.8) in the step z̄i  z̄i + Ev(i) whenever i > 0, v(i) is a face vertex (that
is, node with δv(i) ≥ 3) and (z̄i, Ev(i)) ≤ 0. In what follows, we assume all these facts.

It is also convenient to define, for any n ∈ N and cycle l > 0,

Fn(l) :=
( ⋂
w∈V\n

H≥w (l)
)
∩H=n (l) and F nbn (l) :=

( ⋂
w∈Vn

H≥w (l)
)
∩H=n (l).

Let Cn (resp. Cnbn ) be the real cone over Fn(ZK −E) (resp. F nbn (ZK −E)) with vertex 0.
The definition of Fn(l) should be compared with the definition of the face F en (l) of

0e+(l) which sits in H=n (l), defined by (
⋂
w∈Ve\nH

≥
w (l)) ∩ H

=
n (l) (which, having extra

equations indexed by Ve \V , is a subset of Fn(l)). Also, Fn(l) ⊂ F nbn (l) since Vn ⊂ V \n.
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Lemma 5.3.4. Fix n ∈ N . Then F nbn (ZK − E) = Fn(ZK − E) = F en (ZK − E). In
particular, Cnbn = Cn.

Proof. With simplified notation we have F nbn ⊃ Fn ⊃ F
e
n . Next note that Ven = Vn (cf.

4.2.5(c)), that is, if n′ ∈ Ve \V is connected by a chain to n, then this chain is non-empty.
If n′ is another face vertex of V connected to n by a chain with vertices v1, . . . , vk ,

then all the intersections H=n (ZK − E) ∩ H
=
vj
(ZK − E) agree with the intersection

H=n (ZK − E) ∩ H
=

n′
(ZK − E). This follows from the adjunction relation and identi-

ties (4.2.7). The same is true if n′ ∈ Ve \ V , and H=
n′
(ZK − E) is {p : `n′(p) = −1}

(compatibly with the convention mn′ = −1, cf. Definition 4.2.9(ii)).
Therefore, F nbn equals the polygon of H=n cut out by the intersections of type H≥

n′
,

where n′ are as in the previous paragraph (neighbor extended face-vertices). But, by
Lemma 4.3.4, this equals the corresponding face of 0+(f )− (1, 1, 1), and also F en , since
the n-face of 0+(f ) is also cut out by the equations given by neighbor face-vertices n′.

ut

5.3.5. Let us consider again the step z̄i  z̄i + Ev(i) of the algorithm with restrictions
as in 5.3.3.

We still denote Pi := (0e+(z̄i) \ 0
e
+(z̄i + Ev(i))) ∩ Z3

≥0.
In the affine plane Hi := H=v(i)(z̄i) there are several polygons:

• Fi := Fv(i)(z̄i) cut out by the half-spaces indexed by V \ v(i);
• F nbi := F

nb
v(i)(z̄i) cut out by the half-spaces indexed by the ‘neighbors’ Vv(i);

• F cni := Cv(i) ∩Hi cut out by the cone over Fv(i)(ZK − E).

By Lemma 5.3.4, the cone Cv(i) is given by the inequalitites

`w(p)

mw(ZK − E)
≥

`v(i)(p)

mv(i)(ZK − E)
for all w ∈ Vv(i).

This restricted to Hi = {lv(i)(p) = mv(i)(z̄i)} transforms into

`w(p) ≥
mv(i)(z̄i)

mv(i)(ZK − E)
·
mw(ZK − E)

mw(z̄i)
·mw(z̄i) = ri,w ·mw(z̄i) (w ∈ Vv(i)). (5.3.6)

By the ratio test ri,w ≤ 1. The inequalities which cut out F nbi in Hi are `w(p) ≥ mw(z̄i)
(w ∈ Vv(i)), hence they are more restrictive than those from (5.3.6). Hence F nbi ⊂ F

cn
i .

For technical purposes we need another polygon F cn−i satisfying F nbi ⊂ F
cn−
i ⊂ F cni .

First we associate to any w ∈ Vv(i) an integer εj ∈ {0, 1}. Fix w and let Iw be the
edge of F cni determined by `w(p) = ri,w · mw(z̄i). Then εw = 0 except if the fol-
lowing happens: Iw contains at least one lattice point (hence ri,w · mw(z̄i) ∈ Z), and
ri,w · mw(z̄i) < mw(z̄i). In this case εw = 1. We define F cn−i ⊂ Hi cut out by the
inequalities `w(p) ≥ ri,w ·mw(z̄i)+ εw for all w ∈ Vv(i). Hence

Fi ⊂ F
nb
i ⊂ F

cn−
i ⊂ F cni . (5.3.7)

The next lemma compares the lattice points of these polygons.



The geometric genus of hypersurface singularities 845

Lemma 5.3.8. Pi = Fi ∩ Z3
≥0 = F

nb
i ∩ Z

3
≥0 = F

cn−
i ∩ Z3

≥0.

Proof. The first equality follows from the fact that `v(i) takes integral values on the lattice
points, hence all the lattice points of 0e+(z̄i)\0

e
+(z̄i +Ev(i)) are on the boundary face Fi .

For the other ones, via (5.3.7), it is enough to show that F cn−i ∩ Z3
≥0 ⊂ Pi . Take

p0 ∈ F
cn−
i ∩ Z3

≥0; we wish to show that p0 ∈ Pi .
Run the algorithm from z0 = 0 to zt = ZK − E. Replacing 0e+(zk) by 0e+(zk+1), we

say that we pass the lattice points in their difference. Along the algorithm we have to pass
all the lattice points of (0+(f )−(1, 1, 1))∩Z3

≥0, each of them exactly once. By the above
discussion (see also 5.1.9), we pass a lattice point only at steps of type z̄j  z̄j + Ev(j),
where v(j) ∈ N . Along this step we pass exactly the lattice points Pj . Moreover, by
(5.3.7) applied for v(j), these lattice points are situated in the cone Cv(j).

Hence, if our chosen lattice point p0 is situated only in the cone Cv(i), then we can
pass it only at step v(i) by the plane Hi , hence it is in Pi .

Assume next that p0 is situated at the intersection of two cones Cv(i) and Cn′ , hence
on an edge Iw of F cni (w being on the chain connecting v(i) and n′).

Then along the algorithm we pass p0 either at step v(i) by Hi , or before that step. In
the first case p0 ∈ Pi . We show that the second case cannot happen.

Indeed, if we pass p0 at step j < i with v(j) = n′, then `v(j)(p0) = mv(j)(z̄j ). Since
z̄i ≥ z̄j + Ev(j), one gets `v(j)(p0) < mv(j)(z̄i).

Claim. `v(i)(p0) = mv(i)(z̄i) and `v(j)(p0) < mv(j)(z̄i) implies `w(p0) < mw(z̄i).

Proof of Claim. Write n = v(i). The Claim follows from the existence of positive rational
numbers a and b with (†) `w = a`n + b`n′ and (‡) mw ≥ amn + bmn′ .

The numbers a and b are the following. Let (w, v1, . . . , vk) be the chain connecting n
and n′. Let d and a′ be the determinant of the chains (w, v1, . . . , vk) and (v1, . . . , vk)

(where the determinant of the empty graph is 1). Then a = a′/d and b = 1/d . This
follows from weighted summation of identities (4.2.7) for (†) and of inequalities 5.2.1(2)
for (‡).

Hence, we have `w(p0) < mw(z̄i), which implies that εw = 1, hence by the construc-
tion of F cn−i we get p0 6∈ F

cn−
i , a contradiction. ut

Remark 5.3.9. By Oka’s algorithm 4.2.1, the greatest common divisor of the 2-minors
of the 2× 3-matrix formed by Nv and Nw of two neighbor vertices (v,w) is one. Hence
`w is a primitive linear function on Hi , and F cn−i ∩ Z3

≥0 is obtained from F cni ∩ Z3
≥0 by

eliminating Iw ∩ Z3
≥0 with εw = 1 (and no other points).

5.4. Polygons in an affine space

In this section we establish some combinatorial facts about triangles and trapezoids in
affine planes of R3. (For motivation see Lemma 4.1.3.)

Definition 5.4.1. A triangle or trapezoid Mst in an affine plane Ast is standard if its
vertices are integral points, it contains no integral points in its interior and at most one
of its edges contains integral points in its interior. If a standard polygon has an edge with
integral points in its interior, call that side the long edge, and the others the short edges.
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Otherwise, any edge may be referred to as long or short. In this way, all standard polygons
Mst have a long edge. Let t (Mst ) − 1 be the number of interior lattice points of the long
edge. (In the case of a trapezoid the long edge is automatically parallel to another edge;
cf. Lemma 4.1.3.)

Let Mst be a standard polygon with edges {Iw}w. To each edge Iw we associate an
integral affine function lst,w, which is constant along Iw, lst,w|Mst ≥ lst,w|Iw , and its
restriction to Ast is primitive. (lst,w is primitive if its restriction lst,w : Ast ∩ Z3

→ Z is
onto.) The restriction of lst,w to Ast is unique up to an additive integral constant.

5.4.2. Assuming that the link of the singularity defined by f is a rational homology
sphere (hence (4.1.2) is valid), all faces of 0+(f ) are either standard triangles or standard
trapezoids; cf. [6, 2.3] or 4.1 here. (There is only one exception to this, namely the Newton
polygon of z2a

1 + z
2b
2 + z

2c
3 , a, b, c pairwise relative primes, in which case three edges

contain interior lattice points. Since this is a weighted homogeneous Newton diagram,
which case is covered by part (a) of Theorem 2.5.1 whose proof was already given, we
can assume that our Newton diagram is not of this type. Alternatively, the interested
reader might run the argument below slightly modified to check this case too.) Moreover,
the edge of such a face which contains integral interior points is necessarily contained in
a coordinate plane.

Accordingly, in our application and proof, the standard polygons are Mst =
F nbv(i)(ZK − E), which by Lemma 5.3.4 are the faces of 0+(f ) shifted by −(1, 1, 1).

Lemma 5.4.3. Consider Mst = F nbv(i)(ZK − E) with long edge I1, and an adjacent short
edge I2. Then the map (lst,1, lst,2) : Ast ∩ Z3

→ Z2 is a Z-affine isomorphism.

Proof. Since Mst contains no integral points in its interior, neither does the parallelogram
spanned by the two primitive vectors supported on its edges I1 and I2. ut

5.4.4. A polygon M in the affine plane A is a small scalar translate of a standard poly-
gon Mst if

there is a vector V ∈ R3 and r ∈ (0, 1) such that M = V + r · Mst . (5.4.5)

Let M be a small scalar translate of Mst ; we denote its edges by the same symbols
{Iw}w (I1 corresponding to the long edge). Then for each w there exists a unique integral
primitive affine function l′w on A such that l′w|Iw is constant with value in (−1, 0], and
l′w|M ≥ l′w|Iw . Additionally, we select εw ∈ {0, 1} (for motivation see 5.3.5) so that if a
short edge contains a lattice point then εw might be 0 or 1, otherwise it is zero. Finally,
set lw := l′w − εw.

In our applications, F cni is a small scalar translate whose equations l′w(p) ≥ l′w|Iw are
replaced by l′w(p) ≥ l′w|Iw + εw in order to obtain F cn−i .

Lemma 5.4.6. With the above notation one has:

(a) All the lattice points of M are on a line parallel to I1.
(b) The function t (Mst )l1+

∑
w>1 lw is constant (say c) onA. Moreover, max{0, c+1} =

|(M \
⋃
εw=1 Iw) ∩ Z3

|.
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Proof. The proof splits into the cases whenMst is a triangle or when it is a trapezoid. First
we fix the equations lst,w of the edges ofMst . We abbreviate t := t (Mst ). By Lemma 5.4.3,
in the case of a triangle, we can take integral linear coordinates (x, y) on Ast so that
lst,1 = y, lst,2 = x and lst,3 = −x − ty. In the case of trapezoid (see Lemma 4.1.3 too)
we can take lst,1 = y, lst,2 = x, lst,3 = 1 − y, and lst,4 = −x − (t − 1)y + t . In both
cases the sum t lst,1 +

∑
w>1 lst,w is constant on Ast . Then note that the corresponding

equations of M, or their modifications by {εw}w, are obtained from the above ones by
adding constants, hence t l1 +

∑
w>1 lw is constant too. Evaluating on a lattice point we

find that this constant is an integer c.
In fact, in A too, we can take an affine coordinate such that l1 = y and l2 = x.
In Mst any line parallel to I2 contains at most two lattice points (two is realized by the

endpoints of that edge). Therefore, a parallel line to I2 in M contains at most one lattice
point (by (5.4.5)). Hence all the lattice points of M are on the line y = 0. This shows (a).

In order to prove the second part of (b), first take εw = 0 for all w.
In the case of a triangle, l3 = −x − ty + c. If c ≥ 0 then the lattice points of M are

exactly {(0, 0), . . . , (c, 0)}. If c < 0 then M has no lattice point.
Next assume that M is a trapezoid. By the choice of l1 = y and l2 = x, the vertex

(a, b) := I1 ∩ I2 is in (−1, 0]2. If r ∈ (0, 1) is the homothety factor of M then the other
vertices are (a, b+ r), (a+ r, b+ r) and (a+ tr, b). Since a+ r ∈ (−1, 1), we have two
cases.

If a + r ≥ 0, then l3 = −y. Therefore, l4 = −x − (t − 1)y + c for some c,
which is the sum t l1 +

∑
w>1 lw. Again, if c ≥ 0 then the lattice points of M are ex-

actly {(0, 0), . . . , (c, 0)}, while if c < 0 then M has no lattice point.
If a+ r < 0, then l3 = −y− 1. Clearly M∩Z3

= ∅, and by a computation c < 0 too.
Finally notice that each εw = 1 decreases both sides of (b) by 1 till either we use all

the edges with εw = 1, or c becomes negative (hence both sides of (b) become zero). ut

Corollary 5.4.7 (The proof of (5.1.7)). Consider the step z̄i  z̄i + Ev(i) where v(i) is
a face vertex and (Ev(i), z̄i) ≤ 0, as in 5.3.3. Then (5.1.7) holds

1− (Ev(i), z̄i) ≤ |Pi |.

Proof. Write mu = mu(z̄i). Recall that M = F cni is given by `w(p) ≥ ri,w · mw, and
F cn−i is given by `w(p) ≥ ri,w ·mw+ εw (w ∈ Vv(i)). Hence lw = `w−dri,w ·mwe− εw,
and mw ≥ dri,w ·mwe + εw for all w. (For the definition of ri,w see (5.3.6).)

Then Vev(i) = Vv(i) (cf. Proposition 4.2.5(c)) and (4.2.7) imply, for any p ∈ H=v(i)(z̄i),

−(Ev(i), z̄i) = −bv(i)mv(i) −
∑

w∈Vv(i)
mw = −bv(i)`v(i)(p)−

∑
w∈Vv(i)

mw

=

∑
w∈Vv(i)

(`w(p)−mw) ≤
∑

w∈Vv(i)
lw(p).

Since by assumption (Ev(i), z̄i) ≤ 0, the sum c :=
∑
w∈Vv(i) lw is non-negative. Hence, by

Lemma 5.4.6, c+1 is the number of lattice points in F cn−i , which is |Pi | by Lemma 5.3.8.
ut
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5.5. The proof of (5.1.8)

The proof is based on the comparison of the divisorial valuation/filtration with the Newton
filtration. For notation see Subsection 4.3.

Lemma 5.5.1 ([10]). For any 0 6= g ∈ C{z} and v ∈ V we denote by gv the prin-
cipal part of g with respect to wtv , the weight corresponding to v. Then for any non-
zero h ∈ C{z}, wtv(h) < divv(h) if and only if hv is divisible by fv over the ring
C{z}[z−1

1 , z−1
2 , z−1

3 ].

As an immediate consequence we have

Proposition 5.5.2. At each step z̄i  z̄i + Ev(i) we have

|Pi | ≤ dim
H 0(X̃,O(−z̄i))

H 0(X̃,O(−z̄i − Ev(i)))
.

Proof. Consider the functions zp for p ∈ Pi . Since wt(zp) = div(zp) (cf. 4.3.2), we have
zp ∈ H 0(X̃,O(−z̄i)) \ H 0(X̃,O(−z̄i − Ev(i))). Therefore, it is enough to show that
the family (zp)p∈Pi is linearly independent modulo H 0(X̃,O(−z̄i −Ev(i))). This can be
verified as follows. Assume that there exist ap ∈ C (not all zero) such that

g :=
∑
p∈Pi

apz
p
∈ H 0(X̃,O(−z̄i − Ev(i))). (5.5.3)

Then g is its own principal part with respect to the weight corresponding to v(i). We have
wtv(i)(g) = mv(i)(z̄i), but by (5.5.3), divv(i)(g) ≥ mv(i)(z̄i + Ev(i)) = mv(i)(z̄i) + 1.
By Lemma 5.5.1 this means that for some h ∈ C{z1, z2, z3}[z

−1
1 , z−1

2 , z−1
3 ] one has g =

fv(i) · h. But this is impossible, since the support of g lies on a segment (cf. Lemma
5.4.6(b)) whereas the same cannot be said about fv(i) (since v(i) is a face vertex), hence
about fv(i) · h neither. ut
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[51] Ozsváth, P. S., Szabó, Z.: Holomorphic discs and three-manifold invariants: properties and
applications. Ann. of Math. 159, 1159–1245 (2004) Zbl 1081.57013 MR 2113020

[52] Popescu-Pampu, P.: Numerically Gorenstein surface singularities are homeomorphic to
Gorenstein ones. Duke Math. J. 159, 539–559 (2011) Zbl 1227.14010 MR 2831877

[53] Saito, M.: Exponents and Newton polyhedra of isolated hypersurface singularities. Math.
Ann. 281, 411–417 (1988) Zbl 0628.32038 MR 0954149

[54] Steenbrink, J. H. M.: Mixed Hodge structures associated with isolated singularities. In: Singu-
larities (Arcata, CA, 1981), Proc. Sympos. Pure Math. 40, Part 2, Amer. Math. Soc., 513–536
(1983) Zbl 0515.14003 MR 0713277

[55] Veys, W.: Stringy invariants of normal surfaces. J. Algebraic Geom. 13, 115–141 (2004)
Zbl 1060.14021 MR 2008717

[56] Wahl, M. J.: Equisingular deformations of normal surface singularities. I. Ann. of Math. 104,
325–356 (1976) Zbl 0358.14007 MR 0422270

[57] Wahl, J.: Smoothings of normal surface singularities. Topology 20, 219–246 (1981)
Zbl 0484.14012 MR 0608599

[58] Yau, S. S.-T.: Gorenstein singularities with geometric genus equal to one. Amer. J. Math. 101,
813–854 (1979) Zbl 0415.14005 MR 0536042

[59] Yau, S. S.-T.: On maximally elliptic singularities. Trans. Amer. Math. Soc. 257, 269–329
(1980) Zbl 0343.32009 MR 0552260

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0704.57007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1036128
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.14502&format=complete
http://www.ams.org/mathscinet-getitem?mr=1900786
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1032.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1981612
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0622.14012&format=complete
http://www.ams.org/mathscinet-getitem?mr=0894303
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1073.57009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2113019
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1081.57013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2113020
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1227.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2831877
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0628.32038&format=complete
http://www.ams.org/mathscinet-getitem?mr=0954149
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0515.14003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0713277
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1060.14021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2008717
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0358.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0422270
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0484.14012&format=complete
http://www.ams.org/mathscinet-getitem?mr=0608599
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0415.14005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0536042
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0343.32009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0552260

	Introduction
	Geometric genus formulae, conjectures, guiding examples
	The proof of Theorem 2.5.1(b) for superisolated singularities
	Preliminaries on Newton non-degenerate singularities
	The proof of Theorem 2.5.1(c)
	References

