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Abstract. Consider the classical (2+ 1)-dimensional Solid-On-Solid model above a hard wall on
an L×L box of Z2. The model describes a crystal surface by assigning a nonnegative integer height
ηx to each site x in the box and 0 heights to its boundary. The probability of a surface configuration
η is proportional to exp(−βH(η)), where β is the inverse-temperature and H(η) sums the absolute
values of height differences between neighboring sites.

We give a full description of the shape of the SOS surface for low enough temperatures. First we
show that with high probability (w.h.p.) the height of almost all sites is concentrated on two levels,
H(L) = b(1/4β) logLc and H(L)− 1. Moreover, for most values of L the height is concentrated
on the single value H(L). Next, we study the ensemble of level lines corresponding to the heights
(H(L),H(L)−1, . . .). We prove that w.h.p. there is a unique macroscopic level line for each height.
Furthermore, when taking a diverging sequence of system sizes Lk , the rescaled macroscopic level
line at height H(Lk) − n has a limiting shape if the fractional parts of (1/4β) logLk converge
to a noncritical value. The scaling limit is an explicit convex subset of the unit square Q and its
boundary has a flat component on the boundary of Q. Finally, the highest macroscopic level line
has L1/3+o(1)

k
fluctuations along the flat part of the boundary of its limiting shape.

Keywords. SOS model, scaling limits, loop ensembles, random surface models

1. Introduction

The (d + 1)-dimensional Solid-On-Solid model is a crystal surface model whose defini-
tion goes back to Temperley [38] in 1952 (also known as the Onsager–Temperley sheet).
At low temperatures, the model approximates the interface between the plus and minus
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phases in the (d + 1)D Ising model, with particular interest stemming from the study of
3D Ising.

The configuration space of the model on a finite box 3 ⊂ Zd with boundary condi-
tions at height zero is the set of all height functions η on Zd such that 3 3 x 7→ ηx ∈ Z
whereas ηx = 0 for all x /∈ 3. The probability of η is given by the Gibbs distribution
proportional to

exp
(
−β

∑
x∼y

|ηx − ηy |
)
, (1.1)

where β > 0 is the inverse-temperature and x ∼ y denotes a nearest-neighbor bond in Zd .
Numerous works have studied the rich random surface phenomena, e.g. roughening,

localization/delocalization, layering and wetting to name but a few, exhibited by the SOS
model and some of its many variants. These include the discrete Gaussian (replacing
|ηx−ηy | by |ηx−ηy |2 for the integer analogue of the Gaussian free field), restricted SOS
(nearest neighbor gradients restricted to {0,±1}), body centered SOS [6], etc. (for more
on these flavors see e.g. [1, 5, 9]).

Of special importance is SOS with d = 2, the only dimension featuring a roughening
transition. For d = 1, it is well known [38, 39, 23] that the SOS surface is rough (delo-
calized) for any β > 0, i.e., the expected height at the origin diverges (in absolute value)
in the thermodynamic limit |3| → ∞. However, for d ≥ 3 it is known that the surface is
rigid (localized) for any β > 0 (see [14]), i.e., |η0| is uniformly bounded in expectation.
A simple Peierls argument shows that this is also the case for d = 2 and large enough
β [12, 28]. That the surface is rough for d = 2 at high temperatures was established in
seminal works of Fröhlich and Spencer [25, 26, 27]. Numerical estimates for the critical
inverse-temperature βr where the roughening transition occurs suggest that βr ≈ 0.806.
When the (2+1)D SOS surface is constrained to stay above a hard wall (or floor), i.e. η is
constrained to be nonnegative in (1.1), Bricmont, El-Mellouki and Fröhlich [13] showed
in 1986 the appearance of entropic repulsion: for large enough β, the floor pushes the
SOS surface to diverge even though β > βr . More precisely, using Pirogov–Sinaı̆ theory
(see the review [37]), the authors of [13] showed that the SOS surface on an L × L box
rises, amid the penalizing zero boundary conditions, to an average height in the interval
[(1/Cβ) logL, (C/β) logL] for some absolute constant C > 0, in favor of freedom to
create spikes downwards. In a companion paper [15], focusing on the dynamical evolu-
tion of the model, we established that the average height is in fact (1/4β) logL up to an
additive O(1)-error.

Entropic repulsion is one of the key features of the physics of random surfaces. This
phenomenon has been rigorously analyzed mainly for some continuous-height variants
of the SOS model in which the interaction potential |ηx − ηy | is replaced by a strictly
convex potential V (ηx − ηy); see, e.g., [11, 8, 17, 19, 10, 40, 41], and also [4] for a
recent analysis of the wetting transition in the SOS model. It was shown in the companion
paper [15] that entropic repulsion drives the evolution of the surface under the natural
single-site dynamics. Started from a flat configuration, the surface rises to an average
height of (1/4β) logL − O(1) through a sequence of metastable states, corresponding
roughly to plateaux at heights 0, 1, . . . , (1/4β) logL.
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Despite the recent progress on understanding the typical height of the surface, little
was known on its actual 3D shape. The fundamental problem is the following:

Question. Consider the ensemble of all level lines of the low temperature (2+ 1)D SOS
on an L × L box with floor and boundary conditions at height zero, rescaled to the unit
square.

(i) Do these jointly converge to a scaling limit as L→∞, e.g., in Hausdorff distance?
(ii) If so, can the limit be explicitly described?

(iii) For finite large L, what are the fluctuations of the level lines around their limit?

In this work we fully resolve parts (i) and (ii) and partially answer part (iii). En route, we
also establish that for most values of L the surface height concentrates on the single level
b(1/4β) logLc.

1.1. Main results. We now state our three main results. As we will see, two parameters
rule the macroscopic behavior of the SOS surface:

H(L) =

⌊
1

4β
logL

⌋
, α(L) =

1
4β

logL−H(L), (1.2)

that is, integer part and the fractional part of (1/4β) logL. The first result states that with
probability tending to one as L → ∞ the SOS surface has a large fraction of sites at
height equal either to H(L) or to H(L) − 1. Moreover only one of the two possibili-
ties holds, depending on whether α(L) is above or below a critical threshold that can be
expressed in terms of an explicit critical parameter λc = λc(β). The second result de-
scribes the macroscopic shape for large L of any finite collections of level lines at height
H(L),H(L)− 1, . . . . The third result establishes cube root fluctuations of the level lines
along the flat part of its macroscopic shape.

In what follows we consider boxes 3 of the form 3 = 3L = [1, L] × [1, L], L ∈ N.
We write π0

3 for the SOS distribution on 3 with floor and boundary conditions at height

Fig. 1. Loop ensemble formed by the level lines of an SOS configuration on a box of side-length
1000 with floor (showing loops longer than 100).
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zero, and let π̂0
3 be its analog without a floor. The function L 7→ λ(L) ∈ (0,∞) appear-

ing below is explicitly given in terms of α(L) (see Definition 2.5 below). For large β it
satisfies λ(L)e−4βα(L)

' 1.

Theorem 1 (Height concentration). Fix β > 0 sufficiently large and define

Eh =
{
η : #{x : ηx = h} ≥ 9

10L
2}.

Then the SOS measure π0
3 on the box 3 = 3L with floor, at inverse-temperature β,

satisfies
lim
L→∞

π0
3(EH(L)−1 ∪ EH(L)) = 1. (1.3)

Furthermore, the typical height of the configuration is governed by L 7→ λ(L) as follows.
Let 3k be a diverging sequence of boxes with side-lengths Lk . For an explicit constant
λc > 0 (given by (3.5)) we have:

(i) If lim infk→∞ λ(Lk) > λc then limk→∞ π
0
3k
(EH(Lk)) = 1.

(ii) If lim supk→∞ λ(Lk) < λc then limk→∞ π
0
3k
(EH(Lk)−1) = 1.

Remark 1.1. The constant 9/10 in the definition of Eh can be replaced by 1− ε for any
arbitrarily small ε > 0 provided that β is large enough. As shown in Remark 3.7, for large
enough fixed β, λc ' 4β whereas λ(L) ' e4βα(L), and hence most values of L ∈ N will
yield π0

3(EH(L)) = 1− o(1).

It is interesting to compare these results to the 2D Gaussian free field (GFF) conditioned
to be nonnegative, qualitatively akin to high-temperature SOS. It is known [8] that the
height of the GFF in the box 3 = 3L with floor and boundary conditions at height zero,
at any point x ∈ 3 such that dist(x, ∂3) ≥ δL, δ > 0, is asymptotically the same as
the maximal height in the unconditioned GFF in 3. (Here, dist(·, ·) denotes Euclidean
distance and ∂3 is the external boundary of 3.) On the other hand, our results show that
the SOS surface is lifted to height H(L) or H(L) − 1, which is asymptotically only one
half of the SOS unconditioned maximum. Moreover, on the comparison of the maxima
of the fields with and without wall we obtain the following:

Corollary 1.2. Fix β > 0 large enough, let X∗L be the maximum of the SOS surface on
the box3 = 3L with floor, and let X̂∗L be its analog in the SOS model without floor. Then
for any diverging sequence ϕ(L) one has

lim
L→∞

π̂0
3

(∣∣X̂∗L − 1
2β logL

∣∣ ≥ ϕ(L)) = 0, (1.4)

lim
L→∞

π0
3

(∣∣X∗L − 3
4β logL

∣∣ ≥ ϕ(L)) = 0. (1.5)

We now address the scaling limit of the ensemble of level lines. The latter is described as
follows (see Section 3 for the full details). As for the 2D Ising model (see e.g. [20, 7]),
for the low-temperature SOS model without floor there is a natural notion of surface
tension τ(·) satisfying the strict convexity property. We emphasize that the surface tension
we consider here is constructed in the usual way, namely by imposing Dobrushin type
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conditions (between height zero and height one) around a box. Consider the associated
Wulff shape, namely the convex body with support function τ , and let W1 denote the
Wulff shape rescaled to enclose area 1. For a given s > 0, define the shape Lc(s) by taking
the union of all possible translates of `c(s)W1 within the unit square, with an explicit
dilation parameter `c(s) (defined in (3.4)) which satisfies `c(s) ∼ 2β/s for large β. (Of
course, Lc(s) is defined only if `c(s)W1 fits inside a unit square.) Next, for a fixed λ? > 0,
consider the nested shapes {Lc(λ(n)? )}n≥0 obtained by taking s equal to λ(n)? := e4βnλ?,
n = 0, 1, . . . as shown in Figure 2. See Claim 3.8 for the interpretation of Lc as the
solution of a surface tension variational problem.

Fig. 2. The nested limiting shapes {Lc(λ(n)? )} of the rescaled loop ensemble (1/L){0n}.

The next theorem gives a necessary and sufficient condition for the existence of the
scaling limit of the ensemble of level lines in terms of the above defined shapes. As a
convention, we often write “with high probability”, or w.h.p., whenever the probability of
an event is at least 1− e−c(logL)2 for some constant c > 0, uniformly in L.

Theorem 2 (Shape Theorem). Fix β > 0 sufficiently large and let Lk be a diverging
sequence of side-lengths. Set Hk = H(Lk). For an SOS surface on the box 3k with side
Lk , let (0(k)0 , 0

(k)
1 , . . .) be the collections of loops with length at least (logLk)2 belonging

to the level lines at heights (Hk, Hk − 1, . . .), respectively. Then:

(a) W.h.p. the level lines of every height h > Hk consist of loops shorter than (logLk)2,
while 0(k)0 is either empty or contains a single loop, and 0(k)n consists of exactly one
loop for each n ≥ 1.

(b) If λ? := limk→∞ λ(Lk) exists and differs from λc (as given by (3.5)) then the rescaled
loop ensemble (1/Lk)(0

(k)
0 , 0

(k)
1 , . . .) converges to a limit in the Hausdorff distance:

for any ε > 0, w.h.p.

• if λ? > λc then
sup
n≥0

dH
( 1
Lk
0(k)n ,Lc(λ(n)? )

)
≤ ε,

where dH denotes the Hausdorff distance;
• if instead λ? < λc then 0(k)0 is empty while

sup
n≥1

dH
( 1
Lk
0(k)n ,Lc(λ(n)? )

)
≤ ε.
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As for the critical behavior, from the above theorem we immediately read that it is possi-
ble to have λ(Lk)→ λc without admitting a scaling limit for the loop ensemble (consider
a sequence that oscillates between the subcritical and supercritical regimes). However,
understanding the critical window around λc and the limiting behavior there remains an
interesting open problem.

The fluctuations of the loop 0(k)0 (the macroscopic plateau at level H(Lk) if it exists)
from its limit Lc(λ?) along the side-boundaries are now addressed. As shown in Figure 2,
the boundary of the limit shape Lc(λ?) coincides with the boundary of the unit square Q
except for a neighborhood of the four corners of Q. Let the interval [a, 1 − a], a =
a(λ?) > 0, denote the horizontal projection of the intersection of the shape Lc(λ?) with
the bottom side of the unit square Q.

Theorem 3 (Cube-root fluctuations). In the setting of Theorem 2 suppose λ? > λc. Then
for any ε > 0, w.h.p. the vertical fluctuation of 0(k)0 from the boundary interval

I (k)ε = [a(1+ ε)Lk, (1− a(1+ ε))Lk]

is of order L1/3+o(1)
k . More precisely, let ρ(x) = max{y ≤ Lk/2 : (x, y) ∈ 0

(k)
0 } (and set

for instance ρ(x) = 0 if there is no y satisfying (x, y) ∈ 0(k)0 ) be the vertical fluctuation
of 0(k)0 from the bottom boundary of 3k at coordinate x. Then w.h.p.

L
1/3−ε
k < sup

x∈I
(k)
ε

ρ(x) < L
1/3+ε
k .

Remark 1.3. We will actually prove the stronger fact that w.h.p. a fluctuation of at least
L

1/3−ε
k is attained in every subinterval of I (k)ε of length L2/3−ε

k (cf. Section 6.4).

As a direct corollary of Theorem 3 it was deduced in [16] that the following upper bound
on the fluctuations of all level lines 0(k)n (n ≥ 1) holds.

Corollary 1.4 (Cascade of fluctuation exponents). In the same setting of Theorem 3, let
ρ(n, x) be the vertical fluctuation of 0(k)n from the bottom boundary at coordinate x. Let
0 < t < 1 and let n = btHkc with Hk defined in Theorem 2. Then for any ε > 0,

lim
k→∞

π0
3k

(
sup
x∈I

(k)
ε

ρ(n, x) > L
(1−t)/3+ε
k

)
= 0.

1.2. Related work. In the two papers [35, 36] Schonmann and Shlosman studied the
limiting shape of a droplet of the low temperature 2D Ising with minus boundary under a
prescribed small positive external field, proportional to the inverse of the side-length L.
The behavior of the droplet of plus spins in this model is qualitatively similar to the be-
havior of the top loop 00 in our case. Here, instead of an external field, it is the entropic
repulsion phenomenon that induces the surface to rise to levelH(L) producing the macro-
scopic loop 00. In line with this connection, the shape Lc(s) appearing in Theorem 2 is
constructed in the same way as the limiting shape of the plus droplet in the aforemen-
tioned works, although with a Wulff shape generated by the surface tension of the SOS
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model. In particular, as in [35, 36], the shape Lc(s) arises as the solution to a variational
problem (see Section 3 below).

An important difference between the two models, however, is that in our case there
exist H(L) loops (rather than just one), which are interacting in two nontrivial ways.
First, by definition, they cannot cross each other. Second, they can weakly either attract
or repel one another depending on the local geometry and height. Moreover, the box
boundary itself can attract or repel the level lines. A prerequisite to proving Theorem 2
is to overcome these “pinning” issues. We remark that at times such pinning issues have
been overlooked in the relevant literature.

As for the fluctuations of the plus droplet from its limiting shape, it was argued in [35]
that these should be normal (i.e., of order

√
L). However, due to the analogy mentioned

above between the models, it follows from our proof of Theorem 3 that these fluctuations
are in fact L1/3+o(1) along the flat pieces of the limiting shape, while it seems natural to
conjecture that normal fluctuations appear along the curved portions, where the limiting
shapes corresponding to distinct levels are macroscopically separated (see Figure 2).

There is a rich literature on contour models featuring similar cube root fluctuations.
In some of these works (e.g., [3, 22, 32, 41]) the phenomenon is induced by an externally
imposed constraint (by conditioning on the event that the contour contains a large area
and/or by adding an external field); see in particular [41] for the above mentioned case
of the 2D Ising model in a weak external field, and the recent works [29, 30] for refined
bounds in the case of FK percolation. In other works, modeling ordered random walks
(e.g., [18, 33] to name but a few), the exact solvability of the model (e.g., via determinan-
tal representations) plays an essential role in the analysis. In our case, the phenomenon is
again a consequence of the tilting of the distribution of contours induced by the entropic
repulsion. The lack of exact solvability for the (2+ 1)D SOS forces us to resort to cluster
expansion techniques and contour analysis as in the framework of [20].

We conclude by mentioning some problems that remain unaddressed by our results.
The first is to establish the exponents for the fluctuations of all intermediate level lines
from the side-boundaries. We believe the upper bound in Corollary 1.4 features the correct
cascade of exponents. The second problem is to find the correct fluctuation exponent of
the level lines {0n} around the curved part of their limiting shapes {Lc(λ(n)? )}. Third, we
expect that, as in [3, 29, 30], the fluctuation exponent of the highest level line around its
convex envelope is 1/3, while, as mentioned above, there should be normal fluctuations
around the curved parts of the deterministic limiting shape.

1.3. On the ensemble of macroscopic level lines. We turn to a high-level description
of the statistics of the level lines of the SOS interface. Given a closed contour γ (i.e.,
a closed loop of dual edges as for the standard Ising model), a positive integer h and a
surface configuration η we say that γ is an h-contour (or h-level line) for η if the surface
height jumps from being at least h along the internal boundary of γ to at most h−1 along
the external boundary of γ . Clearly an h-contour γ is energetically penalized proportion-
ally to its length |γ | because of the form of the SOS energy function. As in many spin
models admitting a contour representation, with high probability contours are either all
small, say |γ | = O((logL)2), or there exist macroscopically large ones (i.e. |γ | ∝ L),
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if L is the size of the system. An instance of the first situation is the SOS model without
a wall and boundary conditions at height zero (see [12]). On the contrary, macroscopic
contours appear in the low temperature 2D Ising model with negative boundary condi-
tions and a positive external field H of the form H = B/L, B > 0, as in [35, 36]. In this
case the probabilistic weight of a contour separating the inside plus spins from the outside
minus spins is roughly given by exp(−β|γ | +9(γ )+m∗βHA(γ )), where A(γ ) denotes
the area enclosed by γ , m∗β is the spontaneous magnetization and 9(γ ) is a “decora-
tion” term which is not essential for the present discussion. If the parameter B is above
a certain threshold then the area term dominates the boundary term and a macroscopic
contour appears with high probability. Moreover, by simple isoperimetric arguments, the
macroscopic contour is unique in this case.

The SOS model with a wall shares some similarities with the Ising example above but
has a richer structure that can be roughly described as follows.

Suppose {γ1, . . . , γn} are macroscopic h-contours corresponding to heights h =
1, . . . , n and no other macroscopic contour exists. Then necessarily the collection {γi}ni=1
must consist of nested contours, with γn and γ1 being the innermost and outermost con-
tour respectively. If we denote by 3i the region enclosed by γi , and by Ai the annulus
3i \3i+1, then the partition function of all the surfaces satisfying the above requirements
can be written as

Z(γ1, . . . , γn) = exp
(
−β

∑
i

|γi |
)∏

i

ZAi

where ZAi is the partition function of the SOS model in Ai , with a wall at height zero,
boundary conditions at height h = i and restricted to configurations without macroscopic
contours.1

Usually (see, e.g., [20]) in these cases one tries to exponentiate the partition func-
tions ZAi using cluster expansion techniques. However, because of the presence of the
wall, one cannot apply this approach directly and it is instead more convenient to com-
pare ZAi with ẐAi , where ẐAi is as ZAi but without the wall. One then observes that the
ratio ZAi/ẐAi is simply the probability that the surface is nonnegative computed for the
Gibbs distribution of the SOS model in Ai with boundary conditions at height h = i,
no wall, and conditioned to have no macroscopic contours. The key point, which was al-
ready noted in [15], is that with respect to the above Gibbs measure the random variables
{1ηx≥0}x∈Ai behave approximately as i.i.d. with

P(ηx ≥ 0) ' 1− c∞e−4β(i+1),

where is c∞ a computable constant. Therefore,

ZAi ' exp(−c∞e−4β(i+1)
|Ai |)ẐAi .

In conclusion, rewriting |Ai | = |3i | − |3i+1|, we get

Z(γ1, . . . , γn) ∝ exp
(∑

i

[−β|γi | + c∞e
−4βi(1− e−4β)|3i |]

)∏
i

ẐAi .

1 Strictly speaking, one should also require that the height is at most i [at least i] along the inner
[outer] boundary of the annulus, but we skip these details for the present discussion.
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The terms proportional to the area encode the effect of the entropic repulsion and play the
same role as the magnetic field term in the Ising example. Cluster expansion techniques
can now be applied to the partition functions ẐAi without wall. As in many other simi-
lar cases their net result is the appearance of a decoration term 9(γi) = O(εβ |γi |) for
each contour, εβ small for large β, and an effective many-body interaction8(γ1, . . . , γn)

among the contours, which however is very rapidly decaying with their mutual distance.
Thus the probability of the above macroscopic contours should then be proportional to

exp
(∑

i

[−β|γi | + c∞e
−4βi(1− e−4β)|3i | +9(γi)] +8(γ1, . . . , γn)

)
. (1.6)

Note that in each term of the above sum the area part is dominant up to height i '
(1/4β) logL. In other words, macroscopic h-contours are sustained by the entropic repul-
sion up to a height h ' (1/4β) logL while higher contours are exponentially suppressed.
More precisely, if we measure heights relative to H(L) = b(1/4β) logLc, then the ith

area term can be rewritten as

λ
e4β(H(L)−i)

L
|3i | with λ = λ(L) = c∞e

4βα(L)(1− e−4β).

The quantity λ(L) is exactly the key parameter appearing in the main theorems. Notice
that the loop 00 appearing in Theorem 2 would correspond to the contour γn if n = H(L).

Summarizing, the macroscopic contours behave like nested random loops with an
area bias and with some interaction potential 8. While the latter is in many ways a weak
perturbation, in principle delicate pinning effects may occur among the different level
lines, as emphasized earlier.

Although one could try to implement the above line of reasoning directly, we found it
more convenient to combine the above ideas with monotonicity properties of the model
(with respect to the height of the boundary conditions and/or the height of the wall) to
reduce ourselves always to the analysis of one single macroscopic contour at a time. That
allowed us to partially overcome the above mentioned pinning problem. On the other
hand, a more detailed control of the interaction between level lines should be crucial in
order to derive finer results.

2. General tools

In this section we collect some preliminary definitions together with basic results which
will be used several times throughout the paper. Once combined together with standard
cluster expansion methods, they precisely quantify the effect of the entropic repulsion
from the floor.

2.1. Preliminaries. In order to formulate our first tools we need a bit of extra notation.

Boundary conditions and infinite volume limit. Given a height function Z2
3 x 7→

τx ∈ Z (the boundary conditions) and a finite set 3 ⊂ Z2 we denote by �(τ )3 (resp. �̂(τ )3 )
all the height functions η on Z2 such that 3 3 x 7→ ηx ∈ Z+ (resp. 3 3 x 7→ ηx ∈ Z)
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whereas ηx = τx for all x /∈ 3. The corresponding Gibbs measure given by (1.1) will be
denoted by π τ3 (resp. π̂ τ3). In other words π τ3 describes the SOS model in 3 with bound-
ary conditions τ and floor at zero while π̂ τ3 describes the SOS model in 3 with boundary
conditions τ and no floor. The corresponding partition functions will be denoted by Zτ3
and Ẑτ3 respectively. If τ is constant and equal to j ∈ Z we will simply replace τ by j in
all the notation. We will denote by π̂ the infinite volume Gibbs measure obtained as the
thermodynamic limit of the measure π̂0

3 along an increasing sequence of boxes. The limit
exists and does not depend on the sequence of boxes (see [12]).

Monotonicity. On the set �(τ )3 (or on �̂(τ )3 ) one can define the partial order such that
σ ≤ η if σx ≤ ηx for every x ∈ 3. A function f is said to be increasing (resp. decreasing)
if σ ≤ η implies f (σ) ≤ f (η) (resp. f (σ) ≥ f (η)). An event E is called increasing
(resp. decreasing) if the indicator function f = 1E is increasing (resp. decreasing). The
SOS Gibbs measure enjoys the following crucial properties.

• Monotonicity with respect to boundary conditions: If τ ≤ τ ′, then π τ3(f ) ≤ π
τ ′

3 (f )

for all increasing functions. The same holds for π̂ τ3.
• Monotonicity with respect to floor constraints: If V ⊂ 3 and ξ ∈ ZV , then for all

increasing functions f one has π̂ τ3(f ) ≤ π̂
τ
3(f | Eξ ), where Eξ denotes the increasing

event η�V ≥ ξ . Moreover, π̂ τ3(f | Eξ ) is an increasing function of ξ .

The above items are a consequence of the more general FKG inequality [24]: for all
3 ⊂ Z2 and all boundary conditions τ , one has

π̂ τ3(fg) ≥ π̂
τ
3(f )π̂

τ
3(g)

for all bounded increasing functions f, g. In turn the FKG inequality follows from the
so-called FKG lattice condition which is easily verified for the SOS Gibbs measure. We
shall make repeated use of such relations, and will often refer to them simply as “mono-
tonicity”.

Contours and level lines. The level lines of the SOS surface, and the corresponding loop
ensemble they give rise to, are formally defined as follows.

Definition 2.1 (Geometric contour). We let (Z2)∗ be the dual lattice of Z2 and we define
a bond to be any segment joining two neighboring sites in (Z2)∗. Two sites x, y in Z2

are said to be separated by a bond e if their distance (in R2) from e is 1/2. A pair of
orthogonal bonds which meet in a site x∗ ∈ (Z2)∗ is said to be a linked pair of bonds if
both bonds are on the same side of the forty-five degrees line (in the north-east direction)
across x∗. A geometric contour (for short a contour) is a sequence e0, . . . , en of bonds
such that:

(1) ei 6= ej for i 6= j , except for i = 0 and j = n where e0 = en,
(2) for every i, ei and ei+1 have a common vertex in (Z2)∗,
(3) if ei, ei+1, ej , ej+1 intersect at some x∗ ∈ (Z2)∗, then ei, ei+1 and ej , ej+1 are linked

pairs of bonds.
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We denote the length of a contour γ by |γ |, its interior (the sites in Z2 it surrounds) by3γ
and its interior area (the number of such sites) by |3γ |. Moreover we let 1γ be the set of
sites in Z2 such that either their distance (in R2) from γ is 1/2, or their distance from the
set of vertices in (Z2)∗ where two nonlinked bonds of γ meet equals 1/

√
2. Finally, we

let 1+γ = 1γ ∩3γ and 1−γ = 1γ \1
+
γ .

Definition 2.2 (h-contour). Given a contour γ we say that γ is an h-contour (or an h-
level line) for the configuration η if the height function restricted to 1−γ (resp. to 1+γ ) is
pointwise smaller than h− 1 (resp. larger than h), in formulas

η�1−γ ≤ h− 1, η�1+γ ≥ h.

We will say that γ is a contour for the configuration η if there exists h such that γ is
an h-contour for η. Contours longer than (logL)2 will be called macroscopic contours.2

Finally Cγ,h will denote the event that γ is an h-contour.

Note that γ can be at the same time an h-contour and an h′-contour with h 6= h′. In
general, contours are not disjoint but they cannot cross.

Definition 2.3 (Negative h-contour). We say that a closed contour γ is a negative h-
contour if the height on the external boundary of γ is at least h and the height on the
internal boundary of γ is at most h − 1. That is to say, denoting this event by C−γ,h, we
have η ∈ C−γ,h iff η�1+γ ≤ h− 1 and η�1−γ ≥ h.

Entropic repulsion parameters. In order to define key parameters measuring the entropic
repulsion we need the following lemma whose proof is postponed to Appendix A.1.

Lemma 2.4. For β large enough the limit c∞ := limh→∞ e
4βhπ̂(η0 ≥ h) exists and

|c∞ − e
4βhπ̂(η0 ≥ h)| = O(e

−2βh).

Moreover limβ→∞ c∞ = 1.

Definition 2.5. Given an integer L > 1 we define

λ := λ(L) = e4βα(L)c∞(1− e−4β) (2.1)

where α(L) denotes the fractional part of (1/4β) logL. Also, for n ≥ 0, we let λ(n) :=
λ(n)(L) = λe4βn.

2 This convention is slightly abusive, since the term macroscopic is usually reserved to objects
with size comparable to the system size L. However, as we will see, it is often the case in our
context that with overwhelming probability, there are no contours at intermediate scales between
(logL)2 and L.
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2.2. An isoperimetric inequality for contours. The following simple lemma will prove
useful in establishing the existence of macroscopic loops.

Lemma 2.6. For all δ′ > 0 there exists a δ > 0 such that the following holds. Let {γi} be
a collection of closed contours enclosing areas A(γi) satisfying A(γ1) ≥ A(γ2) ≥ · · · ,
and suppose that∑

i

|γi | ≤ (1+ δ)4L and
∑
i

A(γi) ≥ (1− 2δ)L2.

Then the interior of γ1 contains a square of area at least (1− δ′)L2.

Proof. Define αi = A(γi)[(1 − 2δ)L2
]
−1 so that

∑
i αi ≥ 1. Then (see, e.g., [20, Sec-

tion 2.9])
∑
i

√
αi ≥ 1/

√
α1. From the isoperimetric bound |γi | ≥ 4

√
A(γi), it follows

that

(1+ δ)4L ≥
∑
i

|γi | ≥ 4
√
(1− 2δ)L2

∑
i

√
αi

≥ 4
√
(1− 2δ)L2 1

√
α1
= 4(1− 2δ)L2 1

√
A(γ1)

.

This implies, for δ small enough,

A(γ1) ≥
(1− 2δ)2

(1+ δ)2
L2
≥ (1− 8δ)L2.

Noting that the unit square is the unique shape with area at least 1 andL1-boundary length
at most 4, it follows by continuity that for all δ′ > 0 there exists δ > 0 such that if a curve
has length at most (1+δ)4 and encloses an area of at least 1−8δ then it contains a square
of side-length 1− δ′, implying the last assertion of the lemma. ut

2.3. Peierls estimates and entropic repulsion. Our first result is an upper bound on the
probability of encountering a given h-contour; it is a refinement of [15, Proposition 3.6].
Recall the definition (1.2) of the height H(L), of the parameters λ(n) (Definition 2.5) and
of the events Cγ,h, C−γ,h (Definitions 2.2 and 2.3).

Proposition 2.7. Fix j ≥ 0 and consider the SOS model in a finite connected subset V of
Z2 with floor at height 0 and boundary conditions at height j ≥ 0. There exist δh and εβ
with limh→∞ δh = limβ→∞ εβ = 0 such that, for all h ∈ N,

π
j
V (Cγ,h) ≤ exp

(
−β|γ | + c∞(1+ δh)|3γ |e−4βh) exp(εβ e−4βh

|γ | log |γ |), (2.2)

π
j
V (C

−

γ,h) ≤ e
−β|γ |. (2.3)

Remark 2.8. Notice that if h = H(L)− n then c∞e−4βh
= (1− e−4β)−1λ(n)/L.

Proof of (2.2). Let Z+,nin (resp. Ẑ+,nin ) be the partition function of the SOS model in 3γ
with floor at height 0 (resp. no floor), boundary conditions at height n and η�1+γ ≥ n.
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Similarly let Z−,nout be the partition function of the SOS model in V \ 3γ with floor at
height 0, boundary conditions at height j along ∂V , at height n along γ and satisfying
η�1−γ ≤ n. One has

π
j
3(Cγ,h) = e

−β|γ | Z
−,h−1
out Z

+,h
in

Z
j
V

≤ e−β|γ |
Z
−,h−1
out Z

+,h
in

Z
−,h−1
out Z

+,h−1
in

= e−β|γ |
Z
+,h
in

Z
+,h−1
in

≤ e−β|γ |
Ẑ
+,h
in

Z
+,h−1
in

= e−β|γ |
Ẑ
+,h−1
in

Z
+,h−1
in

,

where in the last equality we have used the fact that Ẑ+,nin is independent of n.
Let now π̂n3γ be the Gibbs measure in3γ with boundary conditions at height n and no

floor. Then, using the FKG inequality (all the events involved are increasing and therefore
positively correlated), we get

Z
+,h−1
in

Ẑ
+,h−1
in

= π̂h−1
3γ

(η�3γ ≥ 0 | η�1+γ ≥ h− 1) ≥ π̂h−1
3γ

(η�3γ ≥ 0)

≥

∏
x∈3γ

π̂h−1
3γ

(ηx ≥ 0) =
∏
x∈3γ

[1− π̂0
3γ
(ηx ≥ h)]. (2.4)

In the last step we have used the symmetry of π̂0
3 under η ↔ −η. It follows from [15,

Proposition 3.9] that maxx∈3γ π̂
0
3γ
(ηx ≥ h) ≤ c exp(−4βh) for some constant c inde-

pendent of β. Moreover, using the exponential decay of correlations of the SOS measure
without floor (cf. [12]), we obtain

π̂0
3γ
(ηx ≥ h) ≤

{
ce−4βh if dist(x, γ ) ≤ εβ log |3γ |,
π̂(ηx ≥ h)+ 1/|3γ |2 otherwise,

with limβ→∞ εβ = 0. If we now use Lemma 2.4 to write π̂(ηx ≥ h) = c∞(1+ δh)e−4βh

with limh→∞ δh = 0, we get∏
x∈3γ

[1− π̂0
3γ
(ηx ≥ h)] =

∏
x∈3γ

dist(x,γ )≤εβ log |3γ |

[1− π̂0
3γ
(ηx ≥ h)]

×

∏
x∈3γ

dist(x,γ )>εβ log |3γ |

[1− π̂0
3γ
(ηx ≥ h)]

≥ exp(−cεβe−4βh
|γ | log |3γ |) exp(−c∞(1+ δh)e−4βh

|3γ |),

possibly for slightly modified values of εβ and δh. The proof is completed by using
|3γ | ≤ |γ |

2/16. ut

Proof of (2.3). With the same notation as before (see proof of (2.2)) we write

π
j
3(C

−

γ,h)e
−β|γ | Z

+,h
out Z

−,h−1
in

Z
j
V

≤ e−β|γ |
Z
+,h
out Z

−,h−1
in

Z
+,h
out Z

−,h
in

≤ e−β|γ |. ut
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The next result is a simple geometric criterion to exclude certain large contours.

Lemma 2.9. Fix n ∈ Z and consider the measure πh−1
V of the SOS model in a finite

connected subset V of Z2, with floor at height 0 and boundary conditions at height h− 1
where h := H(L)− n. Let c0 = 2 log 3. If

|V | ≤

[
4(β − c0)(1− e−4β)L

λ(n)

]2

, (2.5)

then w.h.p. there are no macroscopic contours.

An immediate consequence of the above bound is that for any sufficiently large β one can
exclude the existence of macroscopic (H(L)+ 1)-contours.

Corollary 2.10. Let 3 be the square of side-length L and let β be large enough. Then
w.h.p. the SOS measure π0

3 does not admit any (H(L)+1)-contours of length larger than
(logL)2.

Proof. The statement is just a special case of Lemma 2.9 with n = −1 and V = 3. In
this case the inequality (2.5) is obvious since λ(−1)

= e−4βλ ≤ c∞ ≤ 2 for β large. ut

Proof of Lemma 2.9. The statement is an easy consequence of Proposition 2.7, applied
with j = h − 1. Let us first show that w.h.p. there are no macroscopic h-contours. First
of all we observe that the error term exp(εβe−4βh

|γ | log |γ )) on the r.h.s. of (2.2) is at
most exp(c′L−1

|γ | logL) for some constant c′ = c′(β, n) because |γ | ≤ c1|V | ≤ c2L
2.

Hence it is negligible with respect to the main term exp(−β|γ |+ c∞(1+ δh)|3γ |e−4βh).
If we now use the inequality |3γ | ≤ |V |1/2|γ |/4 (that just comes from |3γ | ≤ |V | and
|γ | ≥ 4

√
|3γ |), we see immediately that, under the stated assumption on the cardinality

of V , the area term satisfies

c∞(1+ δh)|3γ |e−4βh
=
(1+ δh)λ(n)

(1− e−4β)L
|3γ | ≤ (1+ δh)(β − c0)|γ |.

Hence the probability that a macroscopic h-contour exists can be bounded from above by∑
γ : |γ |≥(logL)2

e−(c0−c
′L−1 logL+βδh)|γ | = O(e−c(logL)2)

for some positive constant c. We have used the fact that h tends to infinity with L (at
β fixed), so that βδh is negligible with respect to c0, and the fact that the number of
contours of length m is bounded by exp(am) for some absolute constant a. Clearly, if
no macroscopic h-contour exists then there is no macroscopic j -contour for j ≥ h. It
remains to rule out macroscopic j -contours with j ≤ h − 1. However, the existence of
such a contour would imply the existence of a negative macroscopic contour, and such an
event has probability O(e−c(logL)2) because of Proposition 2.7. ut

Fix n ∈ Z (independent of L) and consider the SOS model in a finite connected subset V
of Z2, with floor at height 0 and boundary conditions at height h−1 where h := H(L)−n.
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Let ∂∗V denote the set of y ∈ V either at distance 1 from ∂V or at distance
√

2 from ∂V

in the south-west or north-east direction. In particular, if V is the set3γ corresponding to
a contour γ , then ∂∗V = 1+γ . For a fixed U ⊂ ∂∗V , define the partition function Zh−1,+

V,U

(resp. Zh−1,−
V,U ) of the SOS model on V with boundary conditions at height h− 1 on ∂V ,

with floor at height 0 and with the further constraint that ηy ≥ h−1 (resp. ηy ≤ h−1) for
all y ∈ U . We write Ẑh−1,±

V,U for the same partition functions without the floor constraint.

By translation invariance, Ẑh−1,±
V,U does not depend on h. We let πh−1,±

V,U and π̂h−1,±
V,U be

the Gibbs measures associated to the partition functions Zh−1,±
V,U and Ẑh−1,±

V,U respectively.

Remark 2.11. Exactly the same argument given above shows that Lemma 2.9 applies as
is to the measures πh−1,±

V,U for any U ⊂ ∂∗V .

The next proposition quantifies the effect of the floor constraint.

Proposition 2.12. In the above setting, fix ε ∈ (0, 1/10) and assume that |∂V | ≤ L1+ε.
Then

Z
h−1,±
V,U ≥ Ẑ

h−1,±
V,U exp(−c∞e−4βh

|V | +O(L1/2+2ε)). (2.6)

If, in addition, (2.5) holds, then

Z
h−1,±
V,U ≤ Ẑ

h−1,±
V,U exp(−c∞e−4βh

|V | +O(L1/2+c(β))), (2.7)

where c(β)→ 0 as β →∞.

Remark 2.13. In Section 4 we will apply the above result to sets V with area of orderL2.
In this case the error terms in (2.6)–(2.7) will be negligible (recall that e−4βh

∝ L−1, since
h = H(L) − n with n fixed independent of L). In Section 5 we will instead apply it to
sets with area of order L4/3, and then it will be necessary to refine it and show that, in this
case, the error term becomes o(1).

The core of the argument is to show that, with respect to the measure π̂
h−1,±
V,U ,

the Bernoulli variables {1ηx≥0}x∈V behave essentially as i.i.d. random variables with
P(1ηx≥0 = 1) ≈ 1 − π̂(η0 ≥ h) where π̂ is the infinite volume SOS model without
floor.

Proof of (2.6). From the FKG inequality (it is immediate to see that the modified model
with partition function Zh−1,±

V,U still satisfies the FKG lattice condition)

Z
h−1,±
V,U

Ẑ
h−1,±
V,U

= π̂
h−1,±
V,U (ηx ≥ 0 ∀x ∈ V ) ≥

∏
x∈V

π̂
h−1,±
V,U (ηx ≥ 0).

At this point one can proceed exactly as in the proof of Proposition 2.7 (see (2.4) and
its sequel). Indeed, using |V | ≤ |∂V |2 ≤ L2+2ε, δh = O(e−2βh) = O(L−1/2) (see
Lemma 2.4) and e−4βh

= O(L−1), one sees that

max(δhe−4βh
|V |, e−4βh

|∂V | log |V |) = O(L1/2+2ε). ut
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Proof of (2.7). The upper bound is more involved and it is here that the area constraint
plays a role. Without it, the entropic repulsion could push up the whole surface and the
product

∏
x∈V 1ηx≥0 would no longer behave (under π̂h−1,±

V,U ) as a product of i.i.d. vari-
ables.

Let S denote the event that there are no macroscopic contours, and use the identity

π̂
h−1,±
V,U (ηx ≥ 0 ∀x ∈ V ) =

π̂
h−1,±
V,U (S)
π
h−1,±
V,U (S)

π̂
h−1,±
V,U (ηx ≥ 0 ∀x ∈ V |S).

Thanks to Lemma 2.9 (see Remark 2.11) and our area constraint, one has πh−1,±
V,U (S) =

1− o(1). Hence, it is enough to show that

π̂
h−1,±
V,U (ηx ≥ 0 ∀x ∈ V |S) ≤ exp

(
−π̂(η0 ≥ h)|V | +O(L

1/2+c(β))
)
, (2.8)

where c(β) is a constant that can be made small if β is large, since then one can appeal
to Lemma 2.4 to write π̂(η0 ≥ h)|V | = c∞e

−4βh
|V | +O(L−3/2

|V |). The estimate (2.8)
has been essentially already proved in [15, Section 7]. For the reader’s convenience, we
give the details in Appendix A.3. ut

Remark 2.14. For technical reasons, later in the proofs we will need Proposition 2.7,
Lemma 2.9 and Proposition 2.12 in a slightly more general case, referred to as the “partial
floor setting”, in which the SOS model in V has the floor constraint ηx ≥ 0 only for those
vertices x inside a certain subset W of V . Exactly the same proofs show that in this new
setting the very same statements hold with3γ replaced by |3γ ∩W | in (2.2), and with |V |
replaced by |V ∩W | in (2.5) and in the exponent at (2.6)–(2.7).

We conclude by describing a monotonicity trick to upper bound the probability of an in-
creasing eventA, under the SOS measure π0

3 in some domain3with boundary conditions
at height zero and floor at height zero.

Lemma 2.15 (Domain-enlarging procedure). Let 3 ⊂ 3′, let V ⊂ 3′ such that
(3 ∪ ∂3) ∩ 3′ ⊂ V , let τ be nonnegative (but otherwise arbitrary) boundary condi-
tions on ∂3′ and let π τ

3′,V
denote the SOS measure on 3′ with boundary conditions τ

and floor at height zero in V . Let A be an increasing event in �3. Then

π0
3(A) ≤ π

τ
3′,V (A). (2.9)

Proof. Note first of all that π τ
′

3′,V
(A) ≤ π τ

3′,V
(A) where τ ′ is obtained from τ by setting

τ ′x = 0 for every x ∈ ∂3′∩∂3. Then π0
3 can be seen as the marginal in3 of the measure

π τ
′

3′,V
conditioned on the decreasing event that η = 0 on ∂3. By FKG, removing the

conditioning can only increase the probability of A. ut

2.4. Cluster expansion. In order to write down precisely the law of certain macroscopic
contours we shall use a cluster expansion for partition functions of the SOS with partial or
no floor. Given a finite connected set V ⊂ Z2 and U ⊂ ∂∗V (the set ∂∗V has been defined
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before Remark 2.11), we write ẐV,U for the SOS partition function with the sum over η
restricted to those η ∈ �̂0

V such that ηx ≥ 0 for all x ∈ U . Notice that ẐV,U coincides
with the partition function Ẑh,+V,U appearing in Proposition 2.12 (the latter does not depend
on h). We refer the reader to [15, Appendix A] for a proof of the following expansion.

Lemma 2.16. There exists β0 > 0 such that for all β ≥ β0, for all finite connected
V ⊂ Z2 and U ⊂ ∂∗V ,

log ẐV,U =
∑
V ′⊂V

ϕU (V
′), (2.10)

where the potentials ϕU (V ′) satisfy:

(i) ϕU (V ′) = 0 if V ′ is not connected.
(ii) ϕU (V ′) = ϕ0(V

′) if dist(V ′, U) 6= 0 for some shift invariant potential V ′ 7→
ϕ0(V

′), that is,
ϕ0(V

′) = ϕ0(V
′
+ x) ∀x ∈ Z2.

(iii) For all V ′ ⊂ V ,

sup
U⊂∂∗V

|ϕU (V
′)| ≤ exp(−(β − β0) d(V

′))

where d(V ′) is the cardinality of the smallest connected set of bonds of the dual
lattice (Z2)∗ separating points of V ′ from points of its complement.

3. Surface tension and variational problem

In this section we first collect all the necessary information about surface tension and as-
sociated Wulff shapes. We then consider the variational problem of maximizing a certain
functional which will play a key role in our main results, and describe its solution.

We begin by defining the surface tension of the SOS model without the wall (see
also Appendix A.4). We assume β is large enough in order to enable cluster expansion
techniques [12, 20].

Definition 3.1. Let 3n,m = {−n, . . . , n} × {−m, . . . , m} and let ξ(θ), θ ∈ [0, π/2), be
the boundary conditions given by

ξ(θ)y =

{
+1 if En · y ≥ 0,
0 if En · y < 0,

∀y ∈ ∂3n,m

where En is the unit vector orthogonal to the line forming an angle θ with the horizontal
axis.

The surface tension τ(θ) in the direction θ is defined by

τ(θ) = lim
n→∞

lim
m→∞

−
cos θ
2βn

log
Ẑ
ξ(θ)
3n,m

Ẑ0
3n,m

. (3.1)

Using the symmetry of the SOS model we finally extend τ to an even, π/2-periodic
function on [0, 2π ]. Finally, if one extends τ(·) to R2 as x 7→ τ(x) := |x|τ(θx), θx being
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the direction of x, then τ(·) becomes (strictly) convex and analytic. See [20, Ch. 1 and 2]
for additional information,3 and Appendix A.4 for an equivalent definition of τ(·) in the
cluster expansion language.

Next we proceed to define the Wulff shape.

Definition 3.2. Given a closed rectifiable curve γ in R2, let A(γ ) be the area of its inte-
rior and let W(γ ) be the Wulff functional γ 7→

∫
γ
τ(θs) ds, with θs the direction of the

normal with respect to the curve γ at the point s and ds the length element. The convex
body with support function τ(·) (see e.g. [21]) is denoted by Wτ . The rescaled set

W1 =

√
2

W(∂Wτ )
Wτ

is called the Wulff shape and it has unit area (see e.g. [20, Ch. 2]). W1 is also the subset
of R2 of unit area that minimizes the Wulff functional. We set w1 := W(∂W1).

Now, given λ > 0, consider the problem of maximizing the functional

γ 7→ Fλ(γ ) := −βW(γ )+ λA(γ ) (3.2)

among all curves contained in the square Q = [0, 1] × [0, 1]. In order to solve this
variational problem we proceed as follows.

We first observe that if `τ denotes the side of the smallest square with sides parallel
to the coordinate axes into which W1 can fit, then

`τ = 2

√
2

W(∂Wτ )
τ (0) = 4

τ(0)
w1

. (3.3)

Remark 3.3. As β tends to ∞, one has τ(θ) → |cos θ | + |sin θ | (analyticity is lost in
this limit) and the Wulff shape converges to the unit square.

We now set
λ̂ = 2βτ(0), `c(λ) = βw1/2λ. (3.4)

Definition 3.4. For r, t, λ such that 0 < t`c`τ ≤ 1 and r ∈ (−1, 1) we define the convex
body L(λ, t, r) as the (1 + r)-dilation of the set formed by the union of all possible
translates of t`cW1 contained inside Q. When t = 1 and r = 0 we write Lc(λ) for
L(λ, 1, 0).

Remark 3.5. We point out two useful properties of the parameters `c and λ̂. The first
one is that, by construction, the rescaled droplet `cW1 can fit inside the unit square Q
iff λ ≥ λ̂. The second one, proved in Section 6.1, goes as follows. Consider the SOS
model with floor in a box of side L with boundary conditions at height zero and assume
the existence of an (H(L)−n)-contour containing the rescaled Wulff body L`c(λ(n))W1.
Necessarily that requires λ(n) ≥ λ̂. Then w.h.p. the (H(L)− n)-contour actually contains
the whole region LLc(λ(n)) up to o(L) corrections.

3 Strictly speaking, [20] deals with the nearest-neighbor two-dimensional Ising model, but their
proofs immediately extend to our case. Also in the following, whenever a result of [20] can be
adapted straightforwardly to our context, we just cite the relevant chapter without an explicit caveat.
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Claim 3.6. Set
λc = inf{λ ≥ λ̂ : Fλ(Lc(λ)) > 0}. (3.5)

Then λc = λ̂+ βw1/2.

Proof. Using the definitions of `c, Lc and `τ , we can write

W(Lc(λ)) = `cw1 + 4τ(0)(1− `c`τ ) =
β

2λ
w2

1 + 4τ(0)
(

1− 2β
τ(0)
λ

)
,

A(Lc(λ)) = 1+
β2w2

1
4λ2 −

4β2τ(0)2

λ2 .

Hence

Fλ(Lc(λ)) = −4βτ(0)+ λ−
β2w2

1
4λ
+ 4

β2τ(0)2

λ
.

Solving the quadratic equation Fλ(Lc(λ)) = 0 gives the solutions

λ± = 2βτ(0)± βw1/2 = λ̂± βw1/2. ut

Remark 3.7. In the limit β →∞ we have λ̂/β → 2, λc/β → 4 and `c(λc)→ 1/2.

Going back to the variational problem of maximizing Fλ(γ ), the following holds (cf. [36,
Sects. 3 and 4, in particular Lemma 1]):

Claim 3.8. (i) If λ < λc then the supremum of Fλ(γ ) corresponds to a sequence of
curves γn that shrinks to a point, so that supγ Fλ(γ ) = 0; moreover for any δ > 0
there exists ε > 0 such that Fλ(γ ) ≤ −ε for any curve γ enclosing an area larger
than δ.

(ii) If λ > λc then the maximum is attained for γ = ∂Lc(λ), and Fλ(∂Lc(λ)) > 0.

The area (or perimeter) of the optimal curve has therefore a discontinuity at λc.

We conclude with a last observation on the geometry of the Wulff shape W1 which will
be important in the proof of Theorems 2 and 3.

Lemma 3.9. Fix θ ∈ [−π/4, π/4] and d � 1. Let I (d, θ) be the segment of length d
and angle θ with respect to the x-axis such that its endpoints lie on the boundary of W1.
Let 1(d, θ) be the vertical distance between the midpoint of I (d, θ) and ∂W1. Then

1(d, θ) =
w1

16(τ (θ)+ τ ′′(θ)) cos θ
d2(1+O(d2)) as d → 0.

Proof. Let x be the midpoint of I (d, θ) and let h be the distance between x and ∂W1.
Clearly 1(d, θ) = h

cos θ (1+O(h)). From elementary considerations, as d → 0,

h =
d2

8R(θ)
(1+O(d2))

where R−1(θ) is the curvature of the Wulff shape W1 at angle θ . It is known (see, e.g., [2,
Sec. 5]) that

R(θ) =

√
2

W(∂Wτ )
(τ (θ)+ τ ′′(θ)) =

2
w1
(τ (θ)+ τ ′′(θ))

where we have used also (3.3). ut



950 Pietro Caputo et al.

4. Proof of Theorem 1

4.1. An intermediate step: existence of a supercritical (H(L)− 1)-contour. Our first
goal is to show that w.h.p. there exists a large droplet at level H(L)− 1.

Proposition 4.1. Let 3 be a square of side-length L. If β is large enough, the SOS mea-
sure π0

3 admits an (H(L)− 1)-contour γ whose interior contains a square of side-length
9
10L w.h.p.

Proof. The first ingredient is a bound addressing the contribution of microscopic contours
to the height profile.

Lemma 4.2. Let V ⊂ 3 where 3 is a square of side-length L with boundary condition
ξ ≤ h − 1, where h = H(L) − n for some fixed n ≥ 0. Denote by Bh the event that
there is no h-contour of length at least (logL)2. Then for any δ > 0 there are constants
C1, C2 > 0 such that for any β ≥ C1,

π
ξ
3(#{v : ηv ≥ h} > δL2,Bh) ≤ exp(−C2(logL)2), (4.1)

and for any closed contour γ (see Definition 2.2 for Cγ,h),

π
ξ
3(#{v ∈ 3γ : ηv ≤ h− 1} > δL2

| Cγ,h) ≤ exp(−C2(logL)2). (4.2)

Proof. For a configuration η let Nk(η) denote the number of h-contours of length k ≤
(logL)2. As there are at most L24k possible such contours, Proposition 2.7 shows that for
some constant C0 > 0, for any m,

π
ξ
3(Nk(η) ≥ m) ≤

∑
r≥m

(
4kL2

r

)
er(−βk+C0e

−4βhk2)
≤

∑
r≥m

(
4kL2

r

)
e−rβk/2

≤
P(Bin(4kL2, e−βk/2) ≥ m)

(1− e−βk/2)4kL2

≤ exp(2e−βk/24kL2)P(Bin(4kL2, e−βk/2) ≥ m),

where we have used the fact that 1 − x ≥ e−2x for 0 ≤ x ≤ 1/2 as well as that
e−βk/2 ≤ 1/2 for β large. For each 1 ≤ k ≤ (logL)2 we now wish to apply the above
inequality for a choice of

m(k) = 7 · 4kL2e−βk/2 + (logL)2.

By the well-known fact that P(X ≥ µ + t) ≤ exp[−t2/(2(µ + t/3))] for any t > 0 and
binomial variable X with mean µ, which in our setting of t ≥ 6µ implies a bound of
exp(−t), we get

π
ξ
3(Nk(η) ≥ m) ≤ exp(−4e−βk/24kL2

− (logL)2) ≤ e−(logL)2 .

Each h-contour counted by Nk(η) encapsulates at most k2 sites of height larger than h,

thus setting M(L) =
∑(logL)2
k=1 k2m(k) we get

π
ξ
3(#{v : ηv ≥ h} > M(L),Bh) ≤ e

−(1−o(1))(logL)2 .
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The proof is concluded by the fact that M(L) = O(e−β/2L2) + L1+o(1) for any β large
enough, where the O(L2)-term is easily seen to be less than δL2 for large enough β.

To prove (4.2), observe that by monotonicity

π
ξ
3(#{v ∈ 3γ : ηv ≤ h− 1} > δL2

| Cγ,h) ≤ π
h
3γ
(#{v ∈ 3γ : ηv ≤ h− 1} > δL2)

(on the l.h.s. heights on 1+γ are constrained to be ≥ h while on the r.h.s. they are lowered
to exactly h; this makes the heights in 3γ independent of those outside 3γ ). Thus, if
no large negative contours are present, the argument above for (4.1) will imply (4.2). On
the other hand, Proposition 2.7 and a simple Peierls bound immediately imply that w.h.p.
there exists no macroscopic negative contour. ut

We now need to introduce the notion of external h-contours.

Definition 4.3. Given a configuration η ∈ �3 we say that γ is an external h-contour of
η if γ is a macroscopic h-contour and there exists no other h-contour γ ′ containing it.
We say that {γi}ni=1 forms the collection of external h-contours of η if {γi} is the set of all
external h-contours.

With this notation we have

Lemma 4.4. Let h = H(L) − 1 and δ > 0. If β is sufficiently large then the collection
{γi} of external h-contours satisfies

π0
3

(∑
i

|γi | ≤ (1+ δ)4L
)
≥ 1− e−βδL/2. (4.3)

Proof. Let A =
⋃
3γi and let R =

∑
i |γi |. Let UA : � → � denote the map that in-

creases each v /∈ A by 1 (retaining the remaining configuration as is). Then UA increases
the Hamiltonian by at most |∂3| − R and so

π0
3(UAη) ≥ exp(−4βL+ βR)π0

3(η).

Since UA is bijective, the probability of having a given configuration {γi} of external
contours is bounded by e−β(R−4L). Given R = `, the number of possible external con-
tours is at most `/(logL)2, and the number of their arrangements is easily bounded from
above by C` for some constant C > 0, for L large enough. Therefore, if we sum over
configurations for which R ≥ (1+ δ)4L, we obtain

π0
3(R ≥ (1+ δ)4L) ≤

∑
`≥(1+δ)4L

C`e−β(`−4L)
≤ e−βδL/2

for large enough β. ut

The next ingredient in the proof of Proposition 4.1 is to establish that most of the sites
have height at least H(L)− 1 with high probability.

Lemma 4.5. Let 3 be a square of side-length L. For any δ > 0 there exist constants
C1, C2 > 0 such that for any β ≥ C1,

π0
3(#{v : ηv ≤ H(L)− 2} > δL2) ≤ exp(−C2L).
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Proof. Let Sh(η) = {v ∈ 3 : ηv = h} for h = H(L)− k. Define UA : �→ � for each
A ⊆ Sh(η) as

(UAη)v =

{
ηv + 1, v 6∈ A,

0, v ∈ A.

Since UA is equivalent to increasing each height by 1 followed by decreasing the sites
in A by h+ 1, the Hamiltonian is increased by at most |∂3| + 4(h+ 1)|A| and so

π0
3(UAη) ≥ exp(−4βL− 4β(h+ 1)|A|)π0

3(η).

Therefore, ∑
A⊆Sh(η)

π0
3(UAη) ≥ exp(−4βL)(1+ e−4β(h+1))|Sh(η)|π0

3(η),

≥ exp
(
−4βL+ 1

2e
−4β(h+1)

|Sh(η)|
)
π0
3(η),

where we have used 1 + x ≥ ex/2 for x ∈ (0, 1]. By definition UAη 6= UA′η for any
A 6= A′ with A,A′ ⊆ Sh(η). In addition, if A ⊆ Sh(η) and A′ ⊆ Sh(η′) for some η 6= η′

then UAη 6= UA′η′ (one can read the set A from UAη by looking at the sites at level 0,
and then proceed to reconstruct η). Using the fact that e−4β(h+1)

≥ e4β(k−1)/L we see
that

1 ≥
∑

η: |Sh(η)|≥δe−2β(k−1)L2

∑
A⊆Sh(η)

π0
3(UAη)

≥ exp
(
−4βL+ 1

2δe
2β(k−1)L

)
π0
3(|Sh(η)| ≥ δe−2β(k−1)L2),

and so, for k ≥ 1,

π0
3(|Sh(η)| ≥ δe−2β(k−1)L2) ≤ exp

(
4βL− 1

2δe
2β(k−1)L

)
.

Summing over k ≥ 2 establishes the required estimate for any sufficiently large β. ut

We now complete the proof of Proposition 4.1. Fix 0 < δ � 1. By Lemma 4.5, the
number of sites with height less than H(L)− 1 is at most δL2. Condition on the external
macroscopic (H(L)−1)-contours {γi} and consider the region obtained by deleting those
contours as well as their interiors and immediate external neighborhood, i.e., V = 3 \⋃
i(3γi ∪ 1

−
γi
). An application of Lemma 4.2 to π ξV where ξ is the boundary condition

induced by ∂3 and {γi} (in particular at most H(L) − 1 everywhere) shows that w.h.p.
there are at most δL2 sites of height larger than H(L)− 1 in V . Altogether,∑

i

|3γi | ≥ (1− 2δ)L2,

and therefore, by an application of Lemma 4.4 followed by Lemma 2.6, we can conclude
that w.h.p. one of the γi contains a square with side-length at least 9

10L as required. ut

4.2. Absence of macroscopic H(L)-contours when λ < λc. In this section we prove:

Proposition 4.6. Consider the SOS measure π0
3 on the box 3 = 3L with floor, at

inverse-temperature β. Fix δ > 0 and assume that λ < λc − δ. W.h.p., there are no
macroscopic H(L)-contours.
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Proof. The strategy of the proof is the following:

• Step 1: Via a simple isoperimetric argument, we show that if a macroscopic H(L)-
contour exists, then it must contain a square of area almost L2.
• Step 2: Using the “domain-enlarging procedure” (see Lemma 2.15) we reduce the

proof of the nonexistence of a macroscopic H(L)-contour as in Step 1 to the proof
of the same fact in a larger square 3′ of side 5L with boundary conditions at height
H(L) − 1. That allows us to avoid any pinning issues with the boundary of the orig-
inal square 3. Using Proposition 2.12 we write precisely the law of such a contour
(assuming it exists) and we show that it satisfies a certain “regularity property” w.h.p.
• Step 3: Using the exact form of the law of the macroscopicH(L)-contour in3′ we are

able to bring in the functional Fλ defined in Section 3 and to show, via a precise area vs.
surface tension comparison, that the probability that an H(L)-contour contains such a
square is exponentially (inL) unlikely. This implies that no macroscopicH(L)-contour
exists and Proposition 4.6 is proven.

For lightness of notation, throughout this section we will write h for H(L).

Step 1. We apply Proposition 2.7 with V = 3 and j = 0. Noting that e−4βh log |γ | =
O((logL)/L) and recalling (2.1) defining λ, we have

π0
3(Cγ,h) ≤ exp

(
−(β + o(1))|γ | + (1+ o(1))

λ

L(1− e−4β)
|3γ |

)
(4.4)

where o(1) vanishes with L. This has two easy consequences. From |3γ | ≤ L2 we
see that w.h.p. there are no h-contours γ with |γ | ≥ a1L := (1 + εβ)Lλ/β. Here and
in the following, εβ denotes some positive constant (not necessarily the same at each
occurrence) that vanishes for β → ∞ and does not depend on δ. From |3γ | ≤ |γ |2/16
(isoperimetry) together with standard Peierls counting of contours we see that w.h.p. there
are no h-contours γ with

(logL)2 ≤ |γ | ≤ a2L :=
16
λ
βL(1− εβ). (4.5)

If λ < 4β(1 − εβ) then a1 < a2 and we have excluded the occurrence of h-contours
longer than (logL)2—Proposition 4.6 is proven. The remaining case is

4β(1− εβ) ≤ λ < λc − δ (4.6)

and it remains to exclude h-contours γ with

16
λ
βL(1− εβ) ≤ |γ | ≤ L(1+ εβ)

λ

β
. (4.7)

Recall from Remark 3.7 that λc/4β tends to 1 for β large so that under condition (4.6) we
have 4β(1− εβ) ≤ λ ≤ 4β(1+ εβ). Then condition (4.7) implies

4L(1− εβ) ≤ |γ | ≤ 4L(1+ εβ).
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For all such γ , (4.4) implies that Cγ,h is extremely unlikely, unless |3γ | ≥ L2(1 − εβ).
But, as in the proof of Lemma 2.6, a contour in 3 that has perimeter at most 4L(1+ εβ)
and encloses an area of at leastL2(1−εβ) necessarily contains a square of area (1−εβ)L2,
for a different value of εβ .

Step 2. We are left with the task of proving

π0
3(A) := π

0
3( ∃h-contour containing a square Q ⊂ 3 with area (1− εβ)L2)

≤ e−c(logL)2 . (4.8)

Observe that the event A is increasing. We apply Lemma 2.15 with V = 3 ∪ ∂3, 3′ a
square of side 5L and concentric to 3 and boundary condition h − 1, to write π0

3(A) ≤

πh−1
3′,V

(A). From now on, for lightness of notation, we write π̃h−1
3′

instead of πh−1
3′,V

.
Let γ denote a contour enclosing a squareQ ⊂ 3 of area (1− εβ)L2. As in the proof

of (2.2),

π̃h−1
3′

(Cγ,h) = e−β|γ |
Z
−,h−1
out Z

+,h
in

Z̃h−1
3′

. (4.9)

Here, Z̃h−1
3′

is the partition function corresponding to the Gibbs measure π̃h−1
3′

. In the
partition functions Z−,h−1

out , Z
+,h
in , and Z̃h−1

3′
, the floor constraint, imposing nonnegative

heights in 3 ∪ ∂3, is implicit.
Now we can apply Proposition 2.12 (see also Remark 2.13) to the two partition func-

tions in the numerator. For Z+,hin , we have V = 3γ (as usual 3γ is the interior of γ and
3cγ = 3

′
\ 3γ ), U = ∂∗3γ and n = −1 (recall that λ(n) = λe4βn and λ is around 4β

by (4.6)). Since

|3γ ∩3| ≤ L
2
�

(
4βL
λe−4β

)2

≈ L2e8β ,

condition (2.5) is satisfied, and for some a ∈ (0, 1) we have4

Z
+,h
in = Ẑ

+,h
in exp

[
−
c∞

L
e4βα(L)e−4β

|3γ ∩3| +O(L
a)

]
. (4.10)

To expand Z−,h−1
out we apply the same argument on the region3′ \3γ . Since by assump-

tion γ contains a square Q ⊂ 3 with area (1− εβ)L2, we have

|3 \3γ | ≤ εβL
2
�

(
4β
λ
L

)2

≈ L2.

Therefore,

Z
−,h−1
out = Ẑ

−,h−1
out exp

[
−
c∞

L
e4βα(L)

|3 \3γ | +O(L
a)

]
. (4.11)

4 In principle we should have |3γ ∩ (3 ∪ ∂3)| instead of |3γ ∩3|, but since |∂3|/L = O(1),
the difference can be absorbed into the error O(La).
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As for the denominator Z̃h−1
3′

, via (2.6) we get

Z̃h−1
3′
≥ Ẑh−1

3′
exp

[
−
c∞

L
e4βα(L)

|3| +O(La)

]
. (4.12)

Putting together (4.10)–(4.12) and recalling that λ = c∞e4βα(L)(1− e−4β), we get

π̃h−1
3′

(Cγ,h) ≤ e−β|γ |
Ẑ
−,h−1
out Ẑ

+,h
in

Ẑh−1
3′

exp
[
λ

L
|3 ∩3γ | +O(L

a)

]
. (4.13)

Finally, the partition functions Ẑ−,h−1
out , Ẑ

+,h
in and Ẑh−1

3′
can be expanded using Lemma

2.16. The net result is that

Ẑ
−,h−1
out Ẑ

+,h
out

Ẑh−1
3′

= exp(93′(γ )) (4.14)

where, for every V ⊂ Z2 and γ contained in V ,

9V (γ ) = −
∑
W⊂V
W∩γ 6=∅

ϕ0(W)+
∑
W⊂3γ
W∩γ 6=∅

ϕ1+γ (W)+
∑

W⊂V \3γ
W∩γ 6=∅

ϕ1−γ (W) (4.15)

(see also [15, App. A.3]). Here the notation W ∩ γ 6= ∅ means W ∩ (1+γ ∪1
−
γ ) 6= ∅.

Altogether, we have obtained

π̃h−1
3′

(Cγ,h) = exp
[
−β|γ | +93′(γ )+

λ

L
|3 ∩3γ | +O(L

a)

]
. (4.16)

Let 6 denote the collection of all possible contours that enclose a square Q ⊂ 3 with
area (1− εβ)L2.

A first observation is that the event that there exists an h-contour γ ∈ 6 at distance
less than (logL)2 from ∂3′ (the boundary of the square of side 5L) has negligible proba-
bility. Indeed, such contours have necessarily |γ | ≥ 5L. Then the area term λ|3∩3γ |/L

≤ λL ≈ 4βL cannot compensate for −β|γ |, and from the properties of the potentials ϕ
in Lemma 2.16, we see that |93′(γ )| ≤ εβ |γ |. As a consequence, we can safely replace
93′(γ ) with 9Z2(γ ) in (4.16): indeed, thanks to Lemma 2.16(iii),

|93′(γ )−9Z2(γ )| ≤ |γ | exp(−(logL)2) = O(exp(−(logL)2/2))

if γ has distance at least (logL)2 from ∂3′.
Secondly, we want to exclude contours with long “button-holes”. Choose a′ ∈ (a, 1).

For any contour γ and any pair of bonds b, b′ ∈ γ we let dγ (b′, b) denote the number of
bonds in 0 between b and b′ (along the shortest of the two portions of γ connecting b, b′).
Finally, we define the set of contours with button-holes as the subset 6′ ⊂ 6 such that
there exist b, b′ ∈ γ with dγ (b, b′) ≥ La

′

and |x(b) − x(b′)| ≤ (1/2)dγ (b, b′), where
x(b), x(b′) denote the centers of b, b′, and | · | is the `1 distance. The next result states
that contours with button-holes are unlikely:

Lemma 4.7. For any c > 0 and β large enough,

π̃h−1
3′

(∃γ ∈ 6′ such that Cγ,h holds) ≤ e−cL
a′

.
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Proof. The proof is based on standard Peierls arguments, so we will be extremely concise.
Suppose that γ ∈ 6′; that implies the existence of two bonds b, b′ ∈ γ with dγ (b, b′) ≥
La
′

and |x(b)−x(b′)| ≤ (1/2)dγ (b, b′). One can then short-cut the button-hole, to obtain
a new contour γ ′ that is at least (1/2)dγ (b, b′) ≥ (1/2)La

′

shorter than γ and at the same
time contains the same large square Q ⊂ 3 of area (1− εβ)L2. The basic observation is
then that the area variation satisfies∣∣|3γ ∩3| − |3γ ′ ∩3|∣∣ ≤ min(dγ (b, b′)2, εβL2),

so that

−β|γ | +9Z2(γ )+
λ

L
|3 ∩3γ | ≤ −β|γ

′
| +9Z2(γ

′)+
λ

L
|3 ∩3′γ | − (β/4)L

a′ .

At this point, (4.16) together with routine Peierls arguments allows us to sum over all
possible shapes of the part of the contour between b, b′ and get the claim (recall that
a′ > a). ut

The important property of contours without button-holes is that the interaction between
two portions of the contour is at most of order La

′

:

Claim 4.8. If γ has no button-holes, then for every decomposition of γ into a concate-
nation γ1 ◦ · · · ◦ γn we have5

|9Z2(γ )−
∑n
i=19Z2(γi)| ≤ (n− 1)La

′

.

Proof. It is sufficient to prove the claim for n = 2. Let P be the junction point of the two
paths γ1, γ2. From the representation (4.15), one has

|9Z2(γ )−9Z2(γ1)−9Z2(γ2)| ≤
∑

V∩γ1 6=∅
V∩γ2 6=∅

ϕ̄(V ),

where we write ϕ̄(V ) = supU |ϕU (V )|. The latter sum can be bounded by∑
b∈γ1: dγ1 (b,P )≤L

a′

b′∈γ2: dγ2 (b
′,P )≤La

′

∑
V3{b,b′}

ϕ̄(V )+
∑

b∈γ1: dγ1 (b,P )>L
a′

b′∈γ2

∑
V3{b,b′}

ϕ̄(V )

+

∑
b′∈γ2: dγ2 (b

′,P )>La
′

b∈γ1

∑
V3{b,b′}

ϕ̄(V ).

Using the decay properties of the potentials ϕ(·) (see Lemma 2.16(iii)), one has∑
V3{b,b′}

ϕ̄(V ) ≤
∑

V3{b,b′}

exp(−(β − β0)d(V )) ≤ exp(−cβ |x(b)− x(b′)|)

5 Strictly speaking, in (4.15) we have defined93(γ ) for a closed contour. For an open portion γ ′
of a closed contour γ , one can define for instance

9Z2(γ
′) = −

∑
W⊂Z2

W∩γ ′ 6=∅

ϕ0(W)+
∑

W⊂3γ
W∩γ ′ 6=∅

ϕ
1+γ
(W)+

∑
W⊂Z2

\3γ
W∩γ ′ 6=∅

ϕ
1−γ
(W).
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for a constant cβ > 0 with cβ → ∞ as β → ∞. For β large enough, this implies that
the first term above contributes at most 1

2L
a′ . For the remaining two terms we use the

no-button-hole assumption, which implies that |x(b)− x(b′)| ≥ 1
2dγ (b, b

′), so that each
term contributes at most 1

4L
a′ . ut

Step 3. We are now in a position to conclude the proof of Proposition 4.6. Let M denote
the set of contours in3′, of length at most 5L, that do not come too close to the boundary
of 3′, that include a square Q ⊂ 3 of side (1 − εβ)L2 and finally that have no button-
holes. In view of the previous discussion, it will be sufficient to upper bound the π̃h−1

3′
-

probability of the event
⋃
γ∈M Cγ,h. Let Vs = {v = (v1, . . . , vs, vs+1 = v1) : vi ∈ 3

′
}

denote a sequence of points in 3′. We write γ ∈ Mv if γ ∈ M, all the vi appear
along γ in that order, and for each i ≥ 2, vi is the first point x on γ after vi−1 such that
|x − vi−1| ≥ εL where ε > 0 is a fixed parameter that at the end we will need to take
small enough independently of L. Note that since we are considering |γ | ≤ 5L we have
s ≤ 5/ε. Then

π̃h−1
3′

(∃γ ∈M, Cγ,h) ≤
5/ε∑
s=1

∑
v∈Vs

∑
γ∈Mv

π̃h−1
3′

(Cγ,h)

≤

5/ε∑
s=1

∑
v∈Vs

∑
γ∈Mv

exp
(
−β|γ |+9Z2(γ )+

λ

L
|3γ ∩3|+O(L

a)

)
,

where we have used (4.16) (with 93′ replaced by 9Z2 ). Now let Kv denote the convex
hull of the set of points v. Since the contour γ is never more than εL away from a point
in V (by definition of Mv), we have

|3γ ∩3| ≤ |Kv ∩3| + 4sε2L2
≤ |Kv ∩3| + 20εL2.

Also, from Claim 4.8 we have, if γi,i+1 is the portion of γ between vi and vi+1,∣∣∣9Z2(γ )−

s∑
i=1

9Z2(γi,i+1)

∣∣∣ ≤ sLa′ .
Now note that, by standard estimates of [20, Ch. 4],∑

γ∈Mv

exp(−β|γ | +9Z2(γ )) ≤ e
O(La

′
)
s∏
i=1

∑
γi,i+1

e−β|γi,i+1|+9Z2 (γi,i+1)

≤ eO(L
a′ )

s∏
i=1

exp
(
−(β + o(1))τ (vi+1 − vi)

)
= exp

(
−(β + o(1))

∫
γv

τ(θs) ds +O(L
a′)

)
with o(1) vanishing as L → ∞, the sum is over all contours γi,i+1 from vi to vi+1, γv
denotes the piecewise linear curve joining v1, v2, . . . , v1 and we applied Appendix A.4 to
reconstruct the surface tension τ(vi+1 − vi) from the sum over γi,i+1 (cf. Definition 3.1).
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By convexity of the surface tension,∫
γv

τ(θs) ds ≥

∫
∂Kv

τ(θs) ds ≥

∫
∂[Kv∩3]

τ(θs) ds

where ∂Kv denotes the boundary of Kv and Kv ∩ 3 is the intersection of Kv with
[1, L]2 ⊂ R2. By combining the above inequalities we get∑

γ∈Mv

exp
(
−β|γ | +9Z2(γ )+

λ

L
|3γ ∩3|

)
≤ exp

(
−β

∫
∂[Kv∩3]

τ(θs) ds +
λ

L
|Kv ∩3| + cεL

)
for some constant c > 0 and L large enough. After rescaling Kv ∩ 3 to the unit square
we have a shape with area at least 1− εβ . Since λ < λc we know from Claim 3.8 that for
all curves γ † in [0, 1]2 enclosing such an area,

Fλ(γ †) = −β

∫
γ †
τ(θs) ds + λA(γ

†) ≤ −θ < 0

for some θ (depending on λ, β). Hence∑
γ∈Mv

exp
(
−β|γ | +9Z2(γ )+

λ

L
|3γ ∩3|

)
≤ exp(−θL/2)

provided ε > 0 is sufficiently small and L is sufficiently large. Now since s ≤ 5/ε we
have |Vs | ≤ |3′|5/ε and so

π̃h−1
3′

(∃γ ∈M,Cγ,h) ≤ (5/ε)|3′|5/ε exp(−θL/2) ≤ c1e
−c2(logL)2 ,

which completes the proof of Proposition 4.6. ut

4.3. Existence of a macroscopic H(L)-contour when λ > λc. In the special case
where λ ≥ (1+a)λc for any (arbitrarily small) absolute constant a > 0 independent of β,
one can prove the existence of a macroscopic H(L)-contour w.h.p. by following (with
some more care) the same line of arguments used to establish a supercritical H(L) − 1
droplet in Section 4.1. To deal with the more delicate case where λ is arbitrarily close
to λc we provide the following proposition. Fix a > 0 small enough but independent
of β. Then we have

Proposition 4.9. Let β be sufficiently large. For any δ > 0 there exist constants c1, c2
such that if (1+ δ)λc ≤ λ ≤ λc(1+ a) then

π0
3

(
∃γ : Cγ,H(L), |3γ | ≥ (9/10)L2)

≥ 1− c1e
−c2(logL)2 .

Proof. First of all, from (4.4) and (4.5) we see that if (1 + δ)λc ≤ λ ≤ λc(1 + a) (and
recalling that λc/β ∼ 4), w.h.p. there are no H(L)-contours of length at least (logL)2

and enclosing an area of at most (9/10)L2 (if a was chosen sufficiently small). Let S0
denote the event that there does not exist an H(L)-contour γ enclosing an area larger
than (9/10)L2. Thus, on the event S0 w.h.p. the largest H(L)-contour has length at
most (logL)2.
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Using Proposition 4.1 we find that the assumption of Theorem 6.2 holds. The lat-
ter implies that w.h.p. for any ε > 0 there exists an external (H(L) − 1)-contour 0
containing(1 − ε)LLc(λ). We condition on this 0. Since the event S0 is decreasing, by
monotonicity with respect to the boundary conditions on the interior boundary 1+0 of 0,

π0
3(S0 | 0) ≤ π

H(L)−1
30

(S0),

so it suffices to work under πH(L)−1
30

. Let S denote the event that there are no macroscopic
contours (of any height, positive or negative). The same arguments used in the proof of
Lemma 2.9 show that w.h.p. (with respect to πH(L)−1

30
) there are no macroscopic contours

on the event S0. Thus, πH(L)−1
30

(Sc ∩ S0) is negligible and it suffices to upper bound the

probability πH(L)−1
30

(S).
To this end, we compare πH(L)−1

30
(S) with the probability of a specific contour γ

approximating the optimal curve and then sum over the choices of γ . Let

K = ∂[(L(1− ε)− L3/4)Lc(λ)] (4.17)

be the suitably dilated solution to the variational problem of maximizing Fλ. By our
choice of dilation factor, K is at distance at least L3/4 from 0. Then for some s grow-
ing slowly to infinity with L let v1, . . . , vs be a sequence of vertices in clockwise order
along K with 3L/s ≤ |vi − vi+1| ≤ 5L/s for 1 ≤ i ≤ s where vs+1 = v1.

Let W be the bounded region delimited by the two curves

x 7→ ξ±(x) := ±(x(1− x))3/5, x ∈ [0, 1].

We define the cigar shaped regionWi between points vi and vi+1 as in [34, Section 1.4.6]
to be given by W modulo a translation/rotation/dilation that brings (0, 0) to vi and (1, 0)
to vi+1. Now let γ = γ1 ◦ · · · ◦ γs be a closed contour where each γi is a curve from
vi to vi+1 inside the region Wi . Note that by construction |3γ | ≥ |3K| − s(5L/s)2 =
|3K| − o(L2) and γ is at least at distance 1

2L
3/4 from ∂30 .

In analogy with (4.9) we have

π
H(L)−1
30

(Cγ,H(L))

π
H(L)−1
30

(S)
= e−β|γ |

Z
+,H(L)
in Z

−,H(L)−1
out

Z
H(L)−1
30

(S)

where: Z+,H(L)in (resp. Z−,H(L)−1
out ) is the partition function in 3γ (resp. 30 \ 3γ ) with

floor at zero, boundary conditions at height H(L) (resp. H(L) − 1) and constraint
η ≥ H(L) in 1+γ (resp. η ≤ H(L) − 1 on 1−γ ); ZH(L)−1

30
(S) is the partition func-

tion in 30 , boundary conditions at height H(L) − 1, floor at zero and constraint η ∈ S.
As in Section 4.2, one can apply Proposition 2.12 to the numerator to get

Z
+,H(L)
in Z

−,H(L)−1
out

= Ẑ
+,H(L)
in Ẑ

−,H(L)−1
out exp

[
−
c∞

L
e4βα(L)(e−4β

|3γ | + |30 \3γ |)+ o(L)

]
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where the partition functions with the “hat” have no floor. As for the denominator,

Z
H(L)−1
30

(S) ≤ ẐH(L)−1
30

π̂
H(L)−1
30

(η�30 ≥ 0 | S)

≤ Ẑ
H(L)−1
30

exp
[
−
c∞

L
e4βα(L)

|30| + o(L)

]
where we have applied (2.8) in the second step. Together with (4.14), the Definition 2.5
of λ and the fact that |3γ | ≥ |3K| − o(L2), this yields

π
H(L)−1
30

(Cγ,H(L))

π
H(L)−1
30

(S)
≥ exp

(
−β|γ | +9Z2(γ )+

λ

L
|3K| + o(L)

)
,

where we have replaced 930 (γ ) with 9Z2(γ ) (cf. the discussion after (4.16)), since by
construction γ stays at distance at least (1/2)L3/4 from ∂30 .

At this point we can sum over γ , with the constraint that each portion γi,i+1 from vi
to vi+1 is in Wi as specified before. Since the cigar Wi is close to Wi±1 only at its tips,
we have, from the decay properties of the potentials ϕ that define 9,∣∣∣9Z2(γ )−

s∑
i=1

9Z2(γi)

∣∣∣ = O(s).
Also, by Appendix A.4,∑

γi∈Wi

e−β|γi,i+1|+9Z2 (γi,i+1) = exp
(
−(β + o(1))τ (vi+1 − vi)

)
.

Summing over all such contours we obtain∑
γ π

H(L)−1
30

(Cγ,H(L))

π
H(L)−1
30

(S)
= e

λ
L
|3K|+o(L)

s∏
i=1

∑
γi,i+1

exp(−β|γi,i+1| +9Z2(γvi ,vi+1))

= e
λ
L
|3K|+o(L)

s∏
i=1

exp(−βτ(vi − vi+1))

= exp
(
−β

∫
∂K
τ(θs) ds +

λ

L
|3K| + o(L)

)
= exp(LFλ(L−1K)+ o(L)),

with Fλ(·) the functional in (3.2). Since L−1K is a close approximation to Lc(λ), by
Claim 3.8(ii) it follows that Fλ(L−1K) > 0. Hence πH(L)−1

30
(S) ≤ e−cL, which con-

cludes the proof. ut

4.4. Conclusion: Proof of Theorem 1. Assume that λ(Lk) has a limit (otherwise it is
sufficient to work on converging subsequences). The results established thus far show that
w.h.p.:
• By Proposition 4.1 there exists an (H(Lk) − 1)-contour enclosing an area of at least
(9/10)L2

k .
• By Corollary 2.10 there are no macroscopic (H(Lk)+ 1)-contours.
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• When limk→∞ λ(Lk) < λc, by Proposition 4.6 there is no macroscopicH(Lk)-contour.
• When limk→∞ λ(Lk) > λc, by Proposition 4.9 there exists an H(Lk)-contour enclos-

ing an area of at least (9/10)L2
k .

Combining these statements with (4.1) and (4.2) completes the proof when limk→∞ λ(Lk)

6= λc. Whenever λ(Lk)→ λc we want to prove that π0
3k
(EH(Lk)−1 ∪ EH(Lk))→ 1, i.e.,

we want to exclude, say, that half of the sites have height H(Lk) and the other half have
height H(Lk) − 1. This is a simple consequence of (4.4) and (4.5) which say that, when
λ ≈ 4β, either there are no macroscopicH(Lk)-contours, or there exists one enclosing an
area of (1 − εβ)L2. The proof is then concluded also for limk→∞ λ(Lk) = λc, invoking
again (4.1) and (4.2). ut

4.5. Proof of Corollary 1.2. Consider first the case with no floor. With a union bound the
probability that X̂∗L ≥ ϕ(L)+

1
2β logL can be bounded by L2π̂0

3(ηx ≥ ϕ(L)+
1

2β logL),
which isO(e−4βϕ(L)) by Lemma 2.4. For the other direction, let A denote the set of x ∈ 3
belonging to the even sublattice of Z2 and such that ηy = 0 for all neighbors y of x. Then,
by conditioning on A, and using the Markov property, one finds that the probability of
X̂∗L ≤ −ϕ(L) +

1
2β logL is bounded by the expected value π̂0

3(exp(−e4βϕ(L)
|A|/L2)).

Using Chebyshev’s bound and the exponential decay of correlations [12] it is easily es-
tablished that the event |A| < δL2 has vanishing π̂0

3-probability as L→∞ if δ is small
enough. Since ϕ(L)→∞ as L→∞, this ends the proof of (1.4).

For the proof of (1.5) we proceed as follows. Consider the π0
3-probability that X∗L ≤

3
4β logL−ϕ(L). Condition on the largest (H(L)−1)-contour γ , which contains a square

of side-length 9
10L w.h.p. thanks to Proposition 4.1. By monotonicity we may remove the

floor and fix the height of the internal boundary condition on 3γ to H(L) − 1. At this
point the argument given above for the proof of (1.4) yields

π0
3

(
X∗L ≤

3
4β

logL− ϕ(L)
)
= o(1),

since H(L)+ 1
2β logL = 3

4β logL+O(1). To show that π0
3(X

∗

L ≥
3

4β logL+ ϕ(L)) =
o(1), recall that w.h.p. there are no macroscopic (H(L) + 1)-contours thanks to Corol-
lary 2.10. Condition therefore on {γi}, all the external microscopic (H(L)+ 1)-contours.
The area term in (2.2) is negligible for these, thus it suffices to treat each γi without a floor
and with an external boundary height H(L). The probability that a given x ∈ 3γi sees an
additional height increase of k is then at most ce−4βk , and a union bound completes the
proof. ut

5. Local shape of macroscopic contours

In this section we establish the following result. Given n ∈ Z+, consider the SOS model
in a domain of linear size ` = L2/3+ε , with floor at zero and Dobrushin’s boundary
conditions around it at height {j − 1, j}, where j = H(L)− n (see below for the precise
definition). We show that the entropic repulsion from the floor forces the unique open



962 Pietro Caputo et al.

j -contour to have height (1 + o(1))c(j, θ)`1/2+3ε/2 above the straight line L joining its
end points. The constant c(j, θ) is explicitly determined in terms of the contour index j
and of the surface tension computed at the angle θ describing the tilting of L with respect
to the coordinate axes. This result will be the key element in proving the scaling limit for
the level lines as well as the L1/3-fluctuations around the limit.

5.1. Preliminaries. We define a domino to be any rectangle in Z2 of short and long
sides (logL)2 and 2(logL)2 respectively. A subset C = {x1, . . . , xk} of the domino will
be called a spanning chain if

(i) xi 6= xj if i 6= j ;
(ii) dist(xi, xi+1) = 1 for all i = 1, . . . k − 1;

(iii) C connects the two opposite short sides of the domino.

Remark 5.1. Let Rk be a rectangle with short side 2(logL)2 and long side k(logL)2,
k ∈ N, k ≥ 2. Consider any two coverings of Rk , one with horizontal dominos and
one with vertical ones, and fix a choice of a spanning chain for each domino in these
coverings. The union of all these spanning chains necessarily contains a chain C̃ =
{y1, . . . , yn} ⊂ Rk connecting the opposite short sides of Rk . Any chain constructed
in this way will be called a regular chain.

Given j ≥ 0 consider now the SOS model in a subset V of theL×L box3with boundary
conditions at height j and floor at height 0.

Definition 5.2. Given a SOS-configuration η, a domino entirely contained in V will be
called of positive type if there exists a spanning chain C inside it such that ηx ≥ j for all
x ∈ C. Similarly, if there exists a spanning chain C such that ηx ≤ j for all x ∈ C, then
the domino will be said to be of negative type.

Lemma 5.3. W.h.p. all dominos in V are of positive type.

Proof. A given domino is not of positive type iff there exists a *-chain {y1, . . . , yn} con-
necting the two long opposite sides and such that ηyi < j for all i. Such an event is
decreasing and therefore its probability is bounded from above by the probability with re-
spect to the SOS model without the floor. Moreover, the above event implies the existence
of a (j − 1)-contour longer than (logL)2. The standard cluster expansion shows that the
probability of the latter is O(e−c(logL)2). A union bound over all possible choices of the
domino completes the proof. ut

Under the assumption that |V | is not too large depending on j , we can also show that all
dominos are of negative type. Recall the definition of c∞ and δj from Lemma 2.4.

Lemma 5.4. In the same setting of Lemma 5.3 with j = H(L)−n for fixed n, assume V
satisfies |V |1/2 ≤ 2e4β(j+1)

[(1+ δj )c∞]−1. Then w.h.p. all dominos in V are of negative
type.
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Proof. It follows from Proposition 2.7 that

π
j
V (Cγ,j+1) ≤ e

−β|γ |+(1+δj )c∞e−4β(j+1)
|3γ | eεβe

−4β(j+1)
|γ | log |γ |

with limβ→∞ εβ = 0. Clearly |3γ | ≤ |V |1/2|γ |/4 and |γ | ≤ |V |. Hence,

(1+ δj )c∞e−4β(j+1)
|3γ | ≤ β|γ |/2, εβe

−4β(j+1)
|γ | log(|γ |)� β|γ |,

and a standard Peierls bound proves that w.h.p. there are no macroscopic (j+1)-contours.
Hence w.h.p. all dominos are of negative type. ut

5.2. Main result

Definition 5.5 (Regular circuit C∗). Let 0 < ε � 1 and let Q (resp. Q̃) be the rec-
tangle of horizontal side L2/3+ε and vertical side 2L2/3+ε (resp. L2/3+ε

+ 4(logL)2 and
2L2/3+ε

+ 4(logL)2) centered at the origin. Write Q̃ \ Q as the union of four thin rec-
tangles (two vertical and two horizontal) of shorter side 2(logL)2 and pick a regular
chain for each of them as in Remark 5.1. Consider the shortest (self-avoiding) circuit C∗
surrounding Q, contained in the union of the four chains. We call C∗ a regular circuit.

Definition 5.6 (Boundary conditions on C∗). Given a regular circuit C∗ and integers
a, b, j with j > 0 and −L2/3+ε

≤ a ≤ b ≤ L2/3+ε , we define a height configuration
ξ = ξ(C∗, j, a, b) on C∗ as follows. Choose a point P in C∗, with zero horizontal coordi-
nate and positive vertical coordinate. Follow the circuit anti-clockwise (resp. clockwise)
until you hit for the first time the vertical coordinate a (resp. b), and let A (resp. B) be
the corresponding point of C∗. Set ξx = j − 1 on the portion of C∗ between A and B (not
including extremes) that includes P , and set ξx = j on the rest of the circuit; see Figure 3.
It is easy to check that, given the regularity properties (cf. Remark 5.1) of the four chains
composing the circuit, the construction of ξ is independent of the choice of P as above.

Qt

A

j

B

j−1

j

j−1

0

Aj − 1

j − 1

B j

j

Q

Q̃

Fig. 3. A sketch of the region 3 delimited by the circuit C∗, with the boundary conditions from
Definition 5.6, and the open j -contour 0 induced by the boundary conditions.
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With the above definitions let π ξ3 be the SOS measure in the finite subset3 of Q̃ delimited
by C∗, with boundary conditions ξ on C∗ and floor at height 0. Note that the boundary
conditions ξ induce a unique open j -contour 0 from A to B. Let also θA,B ∈ [0, π/4] be
the angle formed with the horizontal axis by the segment AB, let `A,B be the Euclidean
distance between A,B, and let dA,B = xB − xA where xA, xB denote the horizontal
coordinates of A,B respectively.

Theorem 5.7. Fix n ≥ 0 and recall the Definition 2.5 of λ(n). Let x ∈ [xA, xB ] be such
that (x−xA)∧ (xB −x) ≥ 1

10dA,B , letX±(n, x) be the points with horizontal coordinate
x and vertical coordinate

Y±(n, x) = Y (n, x)± σ(x, θA,B)L
ε,

where

Y (n, x) =
a(x − xA)+ b(xB − x)

dA,B
+

λ(n) (x − xA)(xB − x)

2βL(τ(θA,B)+ τ ′′(θA,B))(cos θA,B)3
,

(5.1)
σ 2(x, θA,B) =

1
β(τ(θA,B)+ τ ′′(θA,B))(cos θA,B)3

(x − xA)(xB − x)

dA,B
.

If the integer j that enters the definition of the boundary conditions ξ is equal toH(L)−n,
then:

(1) if − 1
2L

2/3+ε
≤ a≤ b≤L2/3+ε

− L1/3+3ε then w.h.p. X−(n, x) lies below 0.
(2) if −L2/3+ε

+ L1/3+3ε
≤ a≤ b≤ 1

2L
2/3+ε then w.h.p. X+(n, x) lies above 0.

Remark 5.8. Since n is a fixed parameter, it is clear here that w.h.p. means that there
exists L0 = L0(n) such that for all L ≥ L0 the required probability is greater than 1 −
exp(−c(logL)2) for some c > 0. In the above the fraction 1/10 could be replaced by an
arbitrarily small constant independent ofL. The core of the argument behind Theorem 5.7
is that the height of 0 above x is approximately a Gaussian N (Y (n, x), σ 2(x, θA,B)). Not
surprisingly σ 2(x, θA,B) has the form of the variance of a Brownian bridge. In concrete
applications (see Section 6) we will only need the above statement for x̄ = (xA + xB)/2.
Note that while Y (n, x̄)−(a + b)/2 is of orderL1/3+2ε , the fluctuation term σ(x̄, θA,B)L

ε

is only O(L1/3+3ε/2).

Following [15, Sec. 7 and App. A], we begin by deriving an expression for the law of the
open contour 0. We refer to (4.15) for the definition of the decoration term 93(0) (see
also [15, App. A.3]).

Lemma 5.9. In the setting of Theorem 5.7:

(i) π ξ3(|0| ≥ 2L2/3+ε) ≤ e−cL
2/3+ε

.
(ii) Assume |0| ≤ 2L2/3+ε . Then

π
ξ
3(0) ∝ exp

(
−β|0| +93(0)+

λ(n)

L
|3−| + εn(L)

)
,

where |3−| denotes the number of sites in 3 below 0, and εn(L) = o(1) for any
given n.
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Proof. We first establish (i). Denote by π̂ ξ3 the SOS measure in 3 with boundary condi-
tions ξ and no floor. Then

π
ξ
3(|0| ≥ 2L2/3+ε) ≤

π̂
ξ
3(|0| ≥ 2L2/3+ε)

π̂
ξ
3(ηx ≥ 0 ∀x ∈ 3)

.

The FKG inequality together with the simple bound minx∈3 π̂
ξ
3(ηx ≥ 0) ≥ 1− c/L im-

plies that the denominator is larger than exp(−c′|3|/L) for some constant c′ = c′(n) > 0.
A simple Peierls estimate shows that the numerator is smaller than exp(−cL2/3+ε). Since
|3|/L ≤ cL1/3+2ε the result follows.

We now turn to part (ii). Given 0, the region 3 is partitioned into two connected
regions3+,3− separated by 0 (say that3− is the one below 0). Thus, if Zξ3(0) denotes
the partition function restricted to all surfaces whose open contour is 0, we have

Z
ξ
3(0) = e

−β|0|Z
(j)
3−
Z
(j−1)
3+

, (5.2)

where Z(j)3− is the partition function of the SOS model in3− with boundary conditions at
height zero, floor at height −j and the additional constraint that ηx ≥ 0 for all x ∈ 3−
adjacent to 0; Z(j−1)

3+
is defined similarly except that ηx ≤ 0 for all x ∈ 3+ adjacent to 0.

Let Ẑ3− be defined as Z(j)3− but without floor and similarly for Ẑ3+ . From Proposi-
tion A.1 we know that

Z
(j)
3−
Z
(j−1)
3+

Ẑ3−Ẑ3+

= exp
(
−π̂(η0 > j)|3−| − π̂(η0 ≥ j)|3+| + εn(L)

)
where |3−| denotes the cardinality of 3− and εn(L) = o(1) for any finite n. Since
j = H(L)− n, using Lemma 2.4 we obtain

π̂(η0 ≥ j)− π̂(η0 > j) =
λ(n)

L
(1+O(L−1/2)).

In conclusion, using |3| = |3−| + |3+|, (5.2) can be rewritten as

Z
ξ
3(0) ∝ exp

(
−β|0| +

λ(n)

L
|3−| + εn(L)

)(
Ẑ3−Ẑ3+

Ẑ3

)
Ẑ3

where Ẑ3 is the partition function in 3 with no floor and boundary conditions at height
zero. Using Lemma 2.16, as in (4.14) we have

Ẑ3−Ẑ3+

Ẑ3
= exp(93(0)),

and the result follows. ut

Proof of Theorem 5.7. The fact that the circuit C∗ enclosing 3 is wiggled introduces a
number of inessential technical nuisances. In order not to hide the main ideas we will
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prove the theorem in the case when3 coincides withQ and we refer to Appendix A.5 for
a discussion covering the general case. In what follows we will drop the subscript A,B
from `A,B and θA,B . For simplicity we will only discuss the case x = 1

2 (xA + xB) and
we will drop x from Y (n, x), Y±(n, x). The case of general x at distance at least dA,B/10
from xA, xB can be treated similarly.

Proof of (1). We observe that the event, denoted by U , that the point X−(n) is above 0
is decreasing. Thus, by FKG, if G+ denotes the decreasing event that 0 does not touch a
(logL)2-neighborhood of the top side of 3 then

π
ξ
3(U) ≤

π
ξ
3(U ;G+)

π
ξ
3(G+)

.

The reason for conditioning on G+ will be explained at the end of the proof. Thanks to
Lemma 5.9 we can write

π
ξ
3(U ;G+)

π
ξ
3(G+)

=

∑
0∈U∩G+

e−β|0|+93(0)+
λ(n)

L
A−(0)∑

0∈G+
e−β|0|+93(0)+

λ(n)

L
A−(0)

(1+ o(1)). (5.3)

We observe that A−(0) is, apart from an additive constant, the signed area A(0) of
the contour 0 with respect to the straight line joining A,B. Thus we can safely replace
A−(0) with A(0) in the above ratio.

Upper bound of the numerator. Let G− denote the event that 0 does not touch the
(logL)2-neighborhood of the bottom side of 3. A simple Peierls argument shows that∑

0∈U∩G+

e−β|0|+93(0)+
λ(n)

L
A(0)
= (1+ o(1))

∑
0∈U∩G+∩G−

e−β|0|+93(0)+
λ(n)

L
A(0),

since getting close to the bottom side of 3 implies an anomalous contour excess length.
If now S denotes the infinite vertical strip through the points A,B, for any 0 ∈ G+ ∩G−
the decoration term 93(0) satisfies

|93(0)−9S(0)| = o(1)

thanks to (4.15) and Lemma 2.16. Therefore we can upper bound the numerator by

(1+ o(1))
∑
0∈U

e−β|0|+9S (0)+
λ(n)

L
A(0).

Although we replaced the finite volume decorations 93 with the decorations 9S asso-
ciated to the infinite strip S, we emphasize that the contours will always be constrained
within the original box 3.

It will be convenient in what follows to define, for an arbitrary event E,

Zλ(n)(E) :=
∑
0∈E

e−β|0|+9S (0)+
λ(n)

L
A(0), Zλ(n) :=

∑
0

e−β|0|+9S (0)+
λ(n)

L
A(0).
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Let now Y ∈ [−L2/3+ε, L2/3+ε
] be the height of the first (following 0 from A)

horizontal bond of 0 crossing the middle vertical line of S and let U = U1 ∪ U2 where

U1 = U ∩ {Y ≥ Ŷ
−(n)}, U2 = U ∩ {Y ≤ Ŷ

−(n)}

and Ŷ−(n) = Y (n)− 1
2σ(x, θ)L

ε . In order to estimate Zλ(n)(U1), Zλ(n)(U2)we will apply
the bounds of Section 5.3 below with µ = λ(n).

We start from Zλ(n)(U1). Multiplying and dividing by Z0 gives

Zλ(n)(U1) = Z0 × Eλ=0(U1; e
λ(n)

L
A(0)) ≤ Ce−βτ(θ)`(Z2λ(n)/Z0)

1/2
√
P0(U1) (5.4)

where we used Cauchy–Schwarz together with [20, Sec. 4.12] (or Corollary 5.13 below
at µ = 0) to upper bound Z0. Again by Corollary 5.13 below,

Z2λ(n)/Z0 ≤ e
cL3ε

.

Finally, we observe that the event U1 implies that the contour 0 touches the middle verti-
cal line in two points separated by a distance larger than 1

2σ(x, θ)L
ε
≥ cL1/3+3ε/2. Here

c = c(β) > 0 for all β <∞ by the strict convexity and analyticity of the surface tension.
From [20, Ch. 4] such an event has probability smaller than exp(−cL1/3) under the λ = 0
measure. In conclusion

Zλ(n)(U1) ≤ Ce
−βτ(θ)`e−cL

1/3
. (5.5)

We now turn our attention to the term Zλ(n)(U2). We first decompose 0 = 01 ◦ 02
into the piece 01 from A to C = (0, Y ) and 02 from C to B. Then we write

A(0) = A0 + A1(01)+ A2(02)

whereA0, A1(01), A2(02) are the signed areas of the triangle (ACB) and of the contours
01, 02 with respect to the segments AC,CB respectively. Thus

Zλ(n)(U2) ≤
∑

y≤Ŷ−(n)

e
λ(n)

L
A0

×

∑
0: Y=y

e−β|01|+9S (01)+
λ(n)

L
A1(01)e−β|02|+9S (02)−19S (01,02)+

λ(n)

L
A2(02)

=:

∑
y≤Ŷ−(n)

e
λ(n)

L
A0

∑
01: Y=y

e−β|01|+9S (01)+
λ(n)

L
A1(01)Zλ,y,01

where
19S(01, 02) = 9S(01)+9S(02)−9S(01 ◦ 02). (5.6)

It now follows from Corollary 5.13 that

sup
01

Zλ(n),y,01
≤ exp(Gλ(n)(`2, θ2)+ L

3ε/2),

∑
01: Y=y

e−β|01|+9S (01)+
λ(n)

L
A1(01) ≤ exp(Gλ(n)(`1, θ1)+ L

3ε/2),
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where `1, `2 denote the distances between A,C and C,B respectively, θ1, θ2 the angles
with respect to the horizontal direction of the segments AC and CB, and we define

Gλ(`, θ) = −βτ(θ)`+
λ2`3

24β(τ(θ)+ τ ′′(θ))L2 . (5.7)

Putting all together we get

Zλ(n)(U2) ≤ e
2L3ε/2 ∑

y≤Ŷ−(n)

exp
[
λ(n)

L
A0 + Gλ(n)(`1, θ1)+ Gλ(n)(`2, θ2)

]
=: e2L3ε/2

[61 +62] (5.8)

where

61 =
∑

y≤(a+b)/2−L1/3+3ε

exp
[
λ(n)

L
A0 + Gλ(n)(`1, θ1)+ Gλ(n)(`2, θ2)

]
, (5.9)

and 62 is the remaining sum. Using Gλ(n)(`, θ) ≤ −βτ(θ)` + O(L3ε) together with the
strict convexity of the surface tension, we find that

61 ≤ exp(−βτ(θ)`− cL5ε)

for some constant c > 0 where we have used that A0 ≤ 0 for y ≤ (a + b)/2.
In order to bound 62 we observe that for all y ∈ [(a + b)/2− L1/3+3ε, Ŷ−(n)],

ϕ := θ1 − θ = O(L
−1/3+2ε).

Thus it suffices to expand Gλ(n)(`i, θi) in ϕ up to second order. A little trigonometry shows
that

`1 = L
2/3+ε/cos(θ+ϕ), `2 = L

2/3+ε/cos(θ−ψ(ϕ)), ψ(ϕ) = ϕ+2(tan θ)ϕ2
+O(ϕ3).

Moreover

1
24
`3
i

(λ(n))2

β(τ(θi)+ τ ′′(θi))L2 =
1
8
`3 (λ(n))2

24β(τ(θ)+ τ ′′(θ))L2 + o(1), i = 1, 2,

while

τ(θ1)`1 + τ(θ2)`2 = τ(θ)`+ 2(τ (θ)+ τ ′′(θ))
[y − (a + b)/2]2(cos θ)2

`
+ o(1).

In conclusion

Gλ(n)(`1, θ1)+ Gλ(n)(`2, θ2) = Gλ(n)(`, θ)−
1
32

(λ(n))2`3

β(τ(θ)+ τ ′′(θ))L2

− 2β(τ(θ)+ τ ′′(θ))
[y − (a + b)/2]2(cos θ)2

`
+ o(1)
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and

62 ≤ (1+ o(1)) exp
(
Gλ(n)(`, θ)−

1
32

(λ(n))2`3

β(τ(θ)+ τ ′′(θ))L2

)
×

∑
y∈[(a+b)/2−L1/3+3ε ,Ŷ−(n)]

exp
(
λ(n)

L
A0− 2β(τ(θ)+ τ ′′(θ))

[y − (a + b)/2]2(cos θ)2

`

)
.

(5.10)

Since A0 =
1
2L

2/3+ε(y − (a + b)/2) and ` cos θ = L2/3+ε , one finds that

λ(n)

L
A0 − 2β(τ(θ)+ τ ′′(θ))

[y − (a + b)/2]2(cos θ)2

`

= −
(y − Y (n))2

2σ̄ 2 +
1

32
(λ(n))2 `3

β(τ(θ)+ τ ′′(θ))L2 , (5.11)

where

Y (n) =
a + b

2
+

1
8

λ(n)L1/3+2ε

β(τ(θ)+ τ ′′(θ))(cos θ)3
,

as in (5.1) for x = (xA + xB)/2, and

σ̄ 2
=

`

4β(τ(θ)+ τ ′′(θ))(cos θ)2

Therefore, apart from the factor exp(Gλ(n)(`, θ)), the summand in (5.10) is proportional
to a Gaussian density with mean Y (n) and variance σ̄ 2. Using Ŷ−(n) = Y (n) −
1
2σ(x, θA,B)L

ε
≤ Y (n)− cL1/3+3ε/2, and σ̄ 2

= O(L2/3+ε), one finds, for some c > 0,

62 ≤ exp(Gλ(n)(`, θ)− cL2ε).

In conclusion, using (5.5) and (5.8), the numerator Zλ(n)(U ;G+) appearing on the r.h.s.
of (5.3) satisfies

Zλ(n)(U ;G+) ≤ exp(Gλ(n)(`, θ)− cL2ε) (5.12)

for some new constant c > 0.

Lower bound on the denominator. We consider the restricted class of contours defined as
the set of 0 that stay within the neighborhood of size (L2/3+ε)1/2+ε/3 around the optimal
curve 0λ

(n)

opt defined by

0
µ
opt(x) = 0

(1)
opt(x)+ 0

(2)
opt(x), x ∈ [xA, xB ], (5.13)

where x 7→ 0
(1)
opt(x) describes the straight line segment AB and

0
(2)
opt(x) =

µ`3
A,B

2βL(τ(θA,B)+ τ ′′(θA,B))d3
A,B

(x − xA)(xB − x), x ∈ [xA, xB ],
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where dA,B = xB − xA. Note that, thanks to the assumption a ≤ b ≤ L2/3+ε
− L1/3+3ε ,

the curve 0λ
(n)

opt is well within the domain Q. For such contours 0 one has

A(0) = A(0λ
(n)

opt )+O(L
1+11ε/6).

Thus

Zλ(n)(G+) ≥ e
O(L11ε/6) e

λ(n)

L
A(0λ

(n)

opt )
∑

0: dist(0,0λ(n)opt )≤(L
2/3+ε)1/2+ε/3

e−β|0|+93(0).

As in [34, proof of Lemma A.6], the latter sum is lower bounded by

exp
(
−β

∫
0λ

(n)
opt

ds τ(θs)

)
exp(−(logL)c).

Using (5.17) we finally get

Zλ(n)(G+) ≥ exp
(
Gλ(n)(`, θ)+O(L11ε/6)

)
(5.14)

where Gλ(n)(`, θ) is as in (5.7).

Conclusion. By combining (5.12) with (5.14) we finally get point (1) of the theorem. ut

Proof of (2). The proof of (2) follows exactly the same pattern. Using FKG one first
conditions on G− and then, using Peierls, one restricts to paths in G− ∩G+. ut

This concludes the proof of Theorem 5.7. ut

5.3. Iterative upper bound on the partition function. This is a key technical section
whose main object is a certain contour partition function ZA,B for open contours joining
two points A,B at distance ∼ L2/3+ε . The exponential weight of a contour contains, be-
sides the familiar length term with decorations as in [20], an additional term proportional
to L−1 times the signed area of the contour with respect to the segment AB. The main
output is a precise upper bound on ZA,B . The bound indicates that the main contribution
to ZA,B comes from contours close to a deterministic curve (approximately a parabola)
joining A,B and satisfying a variational principle (cf. (5.16)).

Setting. Recall that Q is a rectangle of horizontal side D := L2/3+ε and vertical side
2D centered at the origin. Set `0 = L

2/3 and δ = 1/10 and define Rn as the set of pairs
(A,B), A,B ∈ Q∩Z2∗, whose Euclidean distance `A,B satisfies 1 ≤ `A,B ≤ 2n(1−δ)`0.
Denote by θA,B the angle formed with the horizontal axis by the straight line throughA,B
and assume that θA,B ∈ [0, π/4]. Without loss of generality we assume that xA < xB if
xA, xB denote the horizontal coordinates of A,B.

Choose two open contours 0left, 0right such that 0left joins A to the left vertical side
ofQ without ever going to the right of A, and 0right joins B to the right vertical side ofQ
without ever going to the left of B.
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Define now the contour ensemble 4 consisting of all contours 0 joining A,B

within Q such that the concatenation 0left ◦ 0 ◦ 0right is an admissible open contour.
Let A(0) be the signed area of 0 with respect to the path obtained as concatenation of
0left, the segment AB and 0right. Fix a parameter µ ≥ 0 and to each 0 ∈ 4 assign the
weight

w(0) = exp
(
−β|0| +9Z2(0)+ e

−β
|0 ∩QA,B | +

µ

L
A(0)

)
(5.15)

where 9Z2(0) has been defined in (4.15), and QA,B ⊂ Q consists of all those points
whose horizontal coordinate x satisfies either x ≤ xA + (logL)2 or x ≥ xB − (logL)2.
The term e−β |0 ∩QA,B | has been added only for technical convenience and, in practice,
it will be O((logL)2) for the “relevant” contours.

Definition 5.10. Let ZA,B :=
∑
0∈4w(0). We say that statement Hn holds if

sup
0left,0right

ZA,B ≤ zne
Gµ(`A,B ,θA,B ) ∀A,B ∈ Rn

where

Gµ(`, θ) = −βτ(θ)`+ `3 µ2

24β(τ(θ)+ τ ′′(θ))L2

and z1 = e
c(logL)2 , zn = (Lz1)

2n−1
, n ≥ 2.

With the above notation the following holds.

Proposition 5.11. For any large L, statement H1 holds. Moreover, for all n ≤ nf ≡

ε(1− δ)−1 log2(L), Hn implies Hn+1. In particular Hn holds for all n ≤ nf .

Remark 5.12. It is important to observe that znf = O(exp(L3ε/2)).

The reason why Hn holds is that the main contribution to the partition function ZA,B
comes from contours 0 which are close to the curve from A to B maximizing the func-
tional

C 7→ −β
∫
C
τ(θs) ds +

µ

L
A(C). (5.16)

By expanding the functional up to second order around the straight line from A to B one
finds easily that such an optimal curve is approximately the parabola given by (5.13).
A short computation shows that

−β

∫
0
µ
opt

τ(θs) ds +
µ

L
A(0

µ
opt) = Gµ(`A,B , θA,B)+ o(1). (5.17)

Before proving the proposition let us state a simple corollary which formalizes a useful
consequence of the result.
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Corollary 5.13. Consider the two partition functions Z(i)A,B :=
∑
0∈4w

(i)(0), i = 1, 2,
corresponding to the weights

w(1)(0) = exp
(
−β|0| +9S(0)+

µ

L
A(0)

)
,

w(2)(0) = exp
(
−β|0| +9S(0)−19S(0, 0left)+

µ

L
A(0)

)
,

where S is any vertical strip containing the strip through the points A,B, and
19S(0, 0left) has been defined in (5.6). Then, uniformly in 0left, 0right,

max(Z(1)A,B , Z
(2)
A,B) ≤ exp

(
Gµ(`A,B , θA,B)+O(L3ε/2)

)
.

Proof. This follows immediately from Proposition 5.11 together with Remark 5.12 and
the bounds

|9Z2(0)−9S(0)| + sup
0left

|19S(0, 0left)| ≤ e
−β
|0 ∩QA,B |. ut

Proof of Proposition 5.11. We use induction on n.

Proof of the base case H1. Fix (A,B) ∈ R1 with xA < xB , mutual distance ` ≤ 2`0
= 2L2/3 and angle θ , together with 0left, 0right, and denote by h0 the maximal vertical
distance (with respect to the line containing A,B) reached by the contour 0. Then

ZA,B = ẐA,B ÊA,B
(
e
µ
L
A(0)+e−β |0∩QA,B |

)
(5.18)

where ẐA,B is defined as ZA,B but with modified weights ŵ(0) in which the area pa-
rameter µ is equal to zero and the term e−β |0 ∩QA,B | is absent. The area A(0) clearly
satisfies |A(0)| ≤ |0|h0 . Because of [20, Ch. 4.15],

P̂A,B(h0 = j) ≤ c`e−min(j,j2/`)/c,

ẐA,B ≤ ce
−βτ(θ)`, (5.19)

P̂A,B(|0 ∩QA,B | ≥ q) ≤ e
−q+c(logL)2 ,

for a suitable constant c and β large enough. From (5.19) it follows that

ÊA,B(e2e−β |0∩QA,B |) ≤ ec
′(logL)2

for some constant c′ > 0. Moreover, using Peierls, the excess length (|0| − 2`)+ has
exponential tail with parameter β−O(1). This, combined with the first estimate in (5.19),
implies that

ÊA,B(e2µ
L
|0|h0 ) ≤ c′ + ÊA,B(e

c′µ 1
√
`
h0
) ≤ c′′`3/2

for some constants c′, c′′ > 0. The claim with z1 := ec(logL)2 then follows from the
Cauchy–Schwarz inequality applied to the r.h.s. of (5.18).
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Proof of the inductive step Hn ⇒ Hn+1. Fix (A,B) ∈ Rn+1 with xA < xB , mutual
distance ` and angle θ , together with 0left, 0right. Let C be the midpoint betweenA and B,
and define L as the vertical line throughC. Write 0 as 0 = 01◦02 where 01 is the contour
from A until the first contact X with L, and 02 is the remaining part. Let also `AX, θAX
be the length and angle of AX, and similarly for `XB , θXB .

Let j be the vertical coordinate of X minus the vertical coordinate of C. We distin-
guish two cases.

Case 1: |j | ≥ L1/3+3ε . With the same notation as in the proof ofH1 and using (5.19) we
get ∑

0: |j |≥L1/3+3ε

w(γ ) ≤ ce−βτ(θ)`−c
′L5ε

(5.20)

for some positive c, c′, which is clearly negligible compared with the target
zn+1 exp(Gµ(`, θ)).
Case 2: |j | ≤ L1/3+3ε . Simple geometry shows that both (A,X) and (X,B) belong to
Rn and we can use induction. Also, a Peierls argument shows that we can safely assume
that 02 does not reach horizontal coordinate xA + (logL)2, with xA the horizontal co-
ordinate of A, otherwise this would imply an extremely unlikely large deviation of the
length |0|.

Note that the area A(0) can be written as

A(0) = A1(01)+ A2(02)+ A0

with A1(01) (resp. A2(02)) the signed area of 01 (resp. 02) with respect to the segment
AX (resp. XB), while

A0 =
`

2
j cos θ

is the signed area with respect to AB of the triangle AXB.
Next, remark that

9Z2(0) = 9Z2(01)+9Z2(02)−19Z2(01, 02).

Using the decay properties of the potentials ϕ (see Lemma 2.16(iii)), we can bound

|19Z2(01, 02)| ≤ e
−β(|01 ∩QA,X| + |02 ∩QX,B |) (5.21)

where QX,B was defined just after (5.15) (with A replaced by X). As a consequence,∑
0: |j |≤L1/3+3ε

w(γ ) ≤
∑

0: |j |≤L1/3+3ε

exp
[
µ

L
(A1(01)+ A2(02))+

µ`

2L
j cos θ

]
× exp[e−β(|01 ∩QA,X| + |02 ∩QX,B |)+9Z2(01)+9Z2(02)].

At last we can use induction: with 0left ◦ 01 playing the role of 0left we have (uniformly
in 01)∑

02

exp
[
µ

L
A2(02)+9Z2(02)+ e

−β
|02 ∩QX,B |

]
≤ zn exp(Gµ(`XB , θXB))
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and similarly, with e.g. horizontal contour from X to the right vertical boundary of Q
playing the role of 0right,∑

01

exp
[
µ

L
A1(01)+9Z2(01)+ e

−β
|01 ∩QA,X|

]
≤ zn exp(Gµ(`AX, θAX)).

To estimate

6 := z2
n

∑
|j |≤L1/3+3ε

exp
[
µ`

2L
j cos θ + Gµ(`AX, θAX)+ Gµ(`XB , θXB)

]
we proceed as in the estimate of the sum62 appearing in (5.9). Using the restriction |j | ≤
L1/3+3ε we can expand up to second order the exponent in e.g. θ − θAX = O(L−1/3+3ε).
The net result is that

6 ≤ (1+ o(1))z2
n exp

(
Gµ(`, θ)−

1
32

µ2`3

β(τ(θ)+ τ ′′(θ))L2

)
×

∑
j

exp
(
µ`

2L
j cos θ − 2β(τ(θ)+ τ ′′(θ))

j2(cos θ)2

`

)
≤ c(β)

√
` z2

n exp(Gµ(`, θ))

where we have used a standard Gaussian summation. In conclusion, using (5.20), we have
shown that

ZA,B ≤ cz
2
n

√
` exp(Gµ(`, θ)) ≤ zn+1 exp(Gµ(`, θ))

thanks to the definition of the constants {zn}n≤nf . The inductive step is complete. ut

6. Proof of Theorems 2 and 3

In this section we show that for all fixed n ∈ Z+ (independent of L), if there exists a
macroscopic (H(L) − n)-contour 0n containing the rescaled Wulff body L`c(λ(n))W1,
then with high probability it is unique and it is contained in the annulus (1+ε0)LLc(λ(n))\
(1− ε0)LLc(λ(n)) for any ε0 > 0. This result will follow from a bootstrap procedure that
involves proving that, roughly, if the macroscopic (H(L) − n)-contour 0n contains a
large enough droplet (i.e. a rescaled Wulff body) then it must contain w.h.p. a slightly
(depending on L) larger droplet. We refer to this phenomenon as growth of droplets.
Combined with the results of Section 4, this will prove Theorem 2. Moreover, we prove
that along the flat part of LLc(λ(n)) the contour 0n has fluctuations on the scale L1/3 up
to O(Lε) corrections. That covers Theorem 3.

6.1. Growth of droplets. Recall the Definition 3.4 of the sets L(λ, t, r) and the
sets Lc(λ). Recall also the Definition 2.5 of the parameters λ(n). To fix ideas, the Wulff
shape W1 appearing below is assumed to be centered at the origin. To simplify the expo-
sition, we introduce the following notation.
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Definition 6.1. Given a subset A ⊂ Z2, we denote by En(A) the event that there exists
an (H(L)− n)-contour 0n that contains A.

Theorem 6.2 (Growth of the critical droplet). Fix ε ∈ (0, 1/10) and set δL = L−ε/8.
Let 3 be the square of side L centered at the origin. Consider the SOS model on 3 with
boundary conditions at height zero and floor at height zero. For any fixed n ∈ Z+, as
L→∞, if

En(L(1+ δL)`c(λ(n))W1) holds w.h.p., (6.1)

then w.h.p.

(a) En(LL(λ(n), 1+ δL,−L−2/3+4ε)) holds;
(b) there exists a unique macroscopic (H(L)− n)-contour.

Remark 6.3. Recall from Remark 3.5 that L`c(λ(n))W1 can fit inside the box 3 iff
λ(n) ≥ λ̂. Since λ̂ ∼ 2β (see Remark 3.7), we see that for n ≥ 1 this condition is always
satisfied (for β large enough) while if n = 0 we need to require λ ≥ λ̂. However, the
results of Section 4 show that a macroscopic H(L)-contour exists w.h.p. iff λ > λc > λ̂.

Remark 6.4 (Growth up to L1/3 from flat boundary). An immediate corollary of Theo-
rem 6.2 is that assuming (6.1), the unique macroscopic (H(L)−n)-contour is at distance
O(L1/3+4ε) from the target region LLc(λ(n)), uniformly along most of the flat boundary
of LLc(λ(n)). Indeed, LL(λ(n), 1 + δL,−L−2/3+4ε) is uniformly at a distance L1/3+4ε

from the critical region LL(λ(n), 1 + δL, 0), which overlaps with LLc(λ(n)) along the
flat boundary of LL(λ(n), 1 + δL, 0). On the other hand, concerning the curved portions
of LLc(λ(n)), the above theorem does not allow us to infer an approximation error bet-
ter than O(δLL), since already the region LL(λ(n), 1 + δL, 0) has radial distance from
LLc(λ(n)) of that order at a corner.

The proof of Theorem 6.2(a) will be based on an inductive argument, but first (b) will be
shown to be a consequence of (a).

Proof of Theorem 6.2(b) assuming (a). Thanks to (a), for any fixed n, assuming (6.1),
w.h.p. there exists an outermost (H(L)−n)-contour, which we denote 0n, containing the
set3n := (1− o(1))LLc(λ(n)) for a suitable error term o(1). Proposition 2.7 and a union
bound imply that there are no macroscopic negative contours w.h.p. and hence there are
no positive macroscopic (H(L) − n)-contours nested inside 0n. Thus the interior of any
other macroscopic contour must be contained inside 3 \3n and

|3 \3n| = (1+ o(1))L2`2
c(λ

(n))(`2
τ − 1) ≤ εβ

β2

(λ(n))2
L2

where εβ → 0 as β → ∞. Here we have used the fact that `c(λ(n)) ∼ 2β/λ(n) for
β →∞ and that limβ→∞ `τ = 1 because, in the same limit, the Wulff shape becomes a
square.

Now a closed contour γ with 3γ ⊆ 3 \3n satisfies

|3γ | ≤

(
|γ |2

16

)1/2

|3 \3n|
1/2
≤
|γ |

4
β

λ(n)
√
εβ L.
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Hence the area term λ(n)|3γ |/L appearing in the exponential weight in (2.2) is negligible
compared to the length term β|γ | and the probability that there exists any such macro-
scopic contour is O(e−c(logL)2) by a simple counting argument. In conclusion, w.h.p.
0n is the unique macroscopic (H(L)− n)-contour. ut

The proof of Theorem 6.2(a) will be based on the following argument.

Proposition 6.5. Fix n ∈ Z+. Let 1 ≤ m ≤ logL, let 3′ ⊂ Z2 be a region containing
LL(λ(n), 1+δL,−(m−1)γL), γL := L−2/3+3ε logL, and consider the SOS model on3′

with boundary conditions at height H(L)− n− 1 and floor at height zero. Conditionally
on En(L(1+ δL)`c(λ(n))W1), the event En(LL(λ(n), 1+ δL,−mγL)) holds w.h.p.

We start with the case n = 0. When n = 0 it is assumed that 3′ contains A := LL(λ,
1+ δL,−(m− 1)γL) and we condition on the event E0(L(1+ δL)`c(λ)W1) that there is
anH(L)-contour containing the Wulff body L(1+ δL)`c(λ)W1. We show that w.h.p. this
initial droplet grows until it invades the whole region LL(λ, 1 + δL,−mγL). The proof
is divided into two main steps.

Step 1. For x ∈ A, ` > 0, let W(x, `) denote the rescaled Wulff shape L`W1 centered
at x. Also, let `x denote the maximal value of ` such that dist(W(x, `),Ac) > L1/3+3ε.
The next lemma shows that at any x ∈ A such that `x > `c(λ) one can let an initial droplet
W(x, `), `c(λ) < ` < `x , grow until it touches the boundary of A up to O(L1/3+3ε); see
Figure 4.

Fig. 4. Growth of the initial droplet as described in Step 1: from W(x, `) to W(x, `x).

Lemma 6.6. Fix x ∈ A and `c(λ)(1+ δL) ≤ ` < `x . Conditionally on E0(W(x, `)), the
event E0(W(x, `x)) holds w.h.p.

Proof. By simple recursion, it suffices to show that conditionally on E0(W(x, `)), the
event E0(W(x, `′)) holds w.h.p., with `′ = `(1 + L−2/3), as long as `′ ≤ `x . Next, we
shall use the growth gadget of Theorem 5.7 along the boundary of W(x, `) to show that
conditionally on E0(W(x, `)), w.h.p. there is a circuit C surrounding W(x, `′) such that
ηy ≥ H(L) for all y ∈ C. The latter event implies E0(W(x, `′)).

By symmetry, we may restrict our analysis to the north-west corner of the droplet
W(x, `). Moreover, using symmetry with respect to reflections along the north-west di-
agonal we may restrict to the upper half of the north-west corner. Let θ ∈ [0, π/4] and
consider the chord of W(x, `) forming an angle θ with the x axis and whose horizontal
projection has length L2/3+ε. Let z = (xz, yz) be the midpoint of this chord and denote
by (xa, ya) and (xb, yb) the intersection points of the chord with ∂W(x, `), the boundary
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(xa, ya)

(xb, yb)

z

w

10

2L2/3+ε

L1/3+3ε

L2/3+ε

2(logL)2

2(logL)2

Q

Q̃

Fig. 5. Analysis of a chord of the droplet W(x, `) as described in Step 1 (Lemma 6.6).

of W(x, `) (see Figure 5). From a natural rescaling of the function 1(d, θ) appearing in
Lemma 3.9, one finds that the vertical distance 10 from z to ∂W(x, `) is given by

10 = `L1

(
L2/3+ε

`L cos θ
, θ

)
=

w1

16(τ (θ)+ τ ′′(θ))(cos θ)3
L1/3+2ε

`
(1+ o(1)).

Since βw1/2 = λ`c(λ), for any λ > 0, one can rewrite

10 =
λ`c(λ)/`

8β(τ(θ)+ τ ′′(θ))(cos θ)3
L1/3+2ε(1+ o(1)). (6.2)

Consider the rectangle Q with horizontal side L2/3+ε and vertical side 2L2/3+ε centered
at the point w = (xw, yw) such that xw = xz and yw = yb+L1/3+3ε

−L2/3+ε, and let Q̃
denote the enlarged rectangle with the same center, horizontal sideL2/3+ε

+4(logL)2 and
vertical side 2L2/3+ε

+4(logL)2 (as illustrated in Figure 5). Observe that the assumption
that ` ≤ `x , or equivalently dist(W(x, `),Ac) > L1/3+3ε, guarantees that the rectangles
Q, Q̃ are indeed contained in our region 3′ ⊃ A.

Notice that, setting n = ya − yw, m = yb − yw, one has − 1
2L

2/3+ε
≤ n ≤ m ≤

L2/3+ε
− L1/3+3ε, as required in Theorem 5.7(1). To ensure that we can indeed apply

that statement we now check that w.h.p. there exists a regular circuit C∗ in Q̃ \ Q with
the required properties, namely that one has w.h.p.: (1) heights at least H(L) − 1 in
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the upper path along C∗ connecting A and B and (2) heights at least H(L) in the lower
path along C∗ connectingA and B, whereA,B are defined in Definition 5.6; see Figure 3.
Point (1) follows from Lemma 5.3 and the fact that we have boundary conditions at height
H(L) − 1. Point (2) follows from the assumption that E0(W(x, `)) holds: Indeed, on
this event, using monotonicity, one may condition on the outermost H(L)-contour in
order to obtain boundary conditions at height H(L) outside a region enclosing the set
(Q̃ \Q)∩W(x, `), so that Lemma 5.3 implies the desired claim. By monotonicity in the
boundary conditions, we can reduce to the case of constant boundary conditions equal to
H(L) − 1 and H(L) in the upper and lower parts of the circuit C∗ respectively. Then,
an application of Theorem 5.7(1) shows that the point v = (xv, yv) with xv = xw and
yv = yw +K , with

K =
a + b

2
+

λL1/3+2ε

8β(τ(θ)+ τ ′′(θ))(cos θ)3
− c(β, θ)L1/3+ε,

for a suitable constant c(β, θ) > 0, lies w.h.p. below a chain C(v) connecting A and B
with ηy ≥ H(L) for all y ∈ C(v). Call this event F(v). Next, observe that the point v
lies above ∂W(x, `) and has a vertical distance h at least L1/3+ε from ∂W(x, `). Indeed,
by (6.2),

h = K −
a + b

2
−10 =

λ(1− `c(λ)/`)
8β(τ(θ)+ τ ′′(θ))(cos θ)3

L1/3+2ε
− c(β, θ)L1/3+ε

≥ L1/3+ε,

where we use the assumption 1−`c(λ)/` ≥ δL and we take L large enough. In particular,
it follows that v lies outside the enlarged shape W(x, `′), `′ = `(1+L−2/3), since this is
larger than W(x, `) by an additive O(L1/3) only.

Repeating the above argument for all θ ∈ [0, π/4] (of course O(L) values of θ in
this range suffice) and using symmetry to cover the other corners of the droplet, consid-
ering the intersection of all events F(v(θ)), one finds that w.h.p. there exists a chain C
surrounding W(x, `′) such that ηy ≥ H(L) for all y ∈ C as desired. ut

Step 2. By assumption we can pretend that E0(W(x0, `)) holds, where x0 is the center
of the region A, which we identify with the origin. Thus, by Step 1, E0(W(x0, `x0))

holds w.h.p. Next, we establish that this is enough to invade the whole region
LL(λ, 1+ δL,−mγL).

Lemma 6.7. Conditionally on E0(W(x0, `x0)), E0(LL(λ, 1+ δL,−mγL)) holds w.h.p.

tζ `W1 + ζ

•ζ

D1D0

LL(λ, 1+ δL,−mγL)

Fig. 6. Growth of the initial droplet as described in Step 2: from W(x0, `) to W(x0, `x0) and from
W(x0, `x0) to LL(λ, 1+ δL,−mγL).
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Before proving Lemma 6.7, we need the following deterministic lemma concerning the
enlargement of squeezed Wulff shapes. Fix λ > 0 and `c(λ) < ` < 1/`τ . The Wulff body
`W1 is strictly contained in the unit square Q; see Section 3 for the notation. Setting
`∗ = 1/`τ one finds that D0 := `∗W1 is tangent to all four sides of Q, i.e. it is the
maximal Wulff shape inside Q. For any ζ ∈ D0 such that `W1 + ζ ⊂ D0, define

tζ = max{t ≥ 1 : t`W1 + ζ ⊂ Q},

with the convention that tζ = 0 if there is no such t . We define D1 =
⋃
ζ∈D0
{tζ `W1+ζ }.

We then repeat the above enlargement procedure. Namely, given the set Dk , we define

Dk+1 =
⋃
ζ∈Dk

{tζ `W1 + ζ },

where tζ = max{t ≥ 1 : t`W1 + ζ ⊂ Q} for ζ ∈ Dk with `W1 + ζ ⊂ Dk and with
tζ = 0 if `W1 + ζ 6⊂ Dk . The sequence {Dk}k consists of nested convex subsets of Q.

Lemma 6.8. The sequence Dk converges to D∞ := L(λ, `/`c(λ), 1). Moreover, the
Hausdorff distance between ∂Dk and ∂D∞ is upper bounded by ck for some constant
c ∈ (0, 1).

Proof. The set Dk has four symmetric flat pieces where it is tangent to the sides of Q.
Let vk denote the length of one flat piece and write rk = (1 − vk)/2. Moreover, notice
that 2rk is the side of the smallest square one can put around the Wulff body skW1 with
sk = 2rk/`τ . Simple geometric considerations then show that the sequence rk satisfies

rk+1 = rk(1−
√

2 y/`τ )+
`
√

2
y, r0 =

1
2
,

where y is the radius of the Wulff body W1 in the direction θ = π/4. Set a = 1−
√

2 y/`τ
and note that a ∈ (0, 1). It follows that rk = 1

2a
k
+ √̀

2
y
∑k−1
j=0 a

j . As k→∞, this con-
verges to ``τ /2, which is the value corresponding to the limiting shape L(λ, `/`c(λ), 1).
The Hausdorff distance between ∂Dk and ∂Dk+1 is then of order ak and the desired con-
clusion follows. ut

Proof of Lemma 6.7. Consider the sets Dk , k = 0, 1, . . . , defined above. By assumption
we know that L(1−(m−1)γL)D0 ∼W(x0, `x0) is contained w.h.p. in anH(L)-contour.
We now prove that conditionally on E0(L(1 − (m − 1)γL − kL−2/3+3ε)Dk), the event
E0(L(1− (m− 1)γL − (k + 1)L−2/3+3ε)Dk+1) holds w.h.p.

Fix ` = `c(λ0)(1 + δL), and consider a droplet W(x, `) such that W(x, `) ⊂ Dk .
From Lemma 6.6, we can let W(x, `) grow up to W(x, `x). Repeating this at every x as
above yields the desired claim since the parameter tζ in the definition of Dk can be iden-
tified with `x/` for x = ζL. This establishes that under the assumptions of Lemma 6.7,
for any k, the set L(1 − (m − 1)γL − kL−2/3+3ε)Dk is contained w.h.p. in an H(L)-
contour. From Lemma 6.8, we know that a number k = O(logL) of steps suffices to
attain a distance of order 1/L between Dk and D∞, and therefore w.h.p. L(1−mγL)D∞
is contained in an H(L)-contour. This proves Lemma 6.7. ut
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Proof of Proposition 6.5. The above two steps provide a proof in the case n = 0. The
other cases are obtained with exactly the same argument, provided one uses λ(n) instead
of λ(0) = λ (we recall that n is fixed as L→∞). ut

Proof of Theorem 6.2(a). Fix n ∈ Z+. Suppose that the event

En+1(LL(λ(n), 1+ δL,−(H(L)− n− 1)γL)) (6.3)

holds w.h.p. On the latter event, conditioning on the outermost (H(L)−n−1)-contour 0
and using monotonicity (the event appearing in Theorem 6.2(a) is increasing), one can
assume that there are boundary conditions at height H(L) − n − 1 outside the region
3′ = 30 \ 1

+

0 which contains the set LL(λ(n), 1 + δL,−(H(L) − n − 1)γL). It fol-
lows from Proposition 6.5 that w.h.p. En(LL(λ(n), 1+ δL,−(H(L)− n)γL) holds. Since
(H(L)− n)γL ≤ (logL)2L−2/3+3ε

≤ L−2/3+4ε the desired conclusion follows.
Thus, it suffices to prove that (6.3) holds w.h.p. assuming (6.1). We use recursion,

starting from the case of the 1-contour. Here one has boundary conditions at height zero
outside the L×L square3 and floor at 0. By monotonicity one can lower the floor down
to height −(H(L) − n − 1). Once this is done the statistic of the 1-contours coincides
with the statistic of the (H(L) − n)-contours with floor at 0 and boundary conditions
at height H(L) − n − 1. By Proposition 6.5, with m = 1, one infers that there is a 1-
contour in the original problem that contains LL(λ(n), 1+δL,−γL). Recursively, assume
that w.h.p. there exists a k-contour containing LL(λ(n), 1 + δL,−kγL). Conditioning on
the outermost such contour, using monotonicity one can assume boundary conditions at
height k on a set3′ that contains LL(λ(n), 1+ δL,−kγL). Repeating the above argument
(lowering the floor and using Proposition 6.5) one sees that w.h.p. there exists a (k + 1)-
contour containing LL(λ(n), 1+ δL,−(k+1)γL). Once we reach the height k = H(L)−
n− 1, the proof is complete. ut

6.2. Retreat of droplets. We recall that, from Section 4, w.h.p. a macroscopic (H(L)−
n)-contour exists iff λ(n) > λc. In that case it is unique w.h.p. by Theorem 6.2(b).

Theorem 6.9. Fix ε, ε̂ ∈ (0, 1/10) and let 3 be a square of side L. Consider the
SOS model on 3 with boundary conditions at height zero and floor at height zero. Fix
n ∈ Z+ and assume λ(n) ≥ λc + ε̂. Then w.h.p. as L → ∞ the unique macroscopic
(H(L)−n)-contour is contained in LL(λ(n), tL, δL) (cf. Definition 3.4) with tL = 1− δL
and δL = L−ε/8.

Proof. We use induction on n.

(i) We begin by treating the base case n = 0.

Definition 6.10. Given s ∈ [0, 1] we say that H(s) holds if w.h.p. there exists a unique
macroscopic H(L)-contour 00 and it is contained in LL(λ, s, δL).

With this definition the statement of the theorem for n = 0 follows from the next two
lemmas.

Lemma 6.11 (Base case). For any s small enough H(s) holds.
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Lemma 6.12 (Inductive step). Fix s ≤ tL. Then H(s) implies H(s + L−2/3).

Proof of Lemma 6.11. We actually prove that w.h.p. 00 is contained in LL(λ, s, 0) for s
small enough. Fix s ∈ (0, 1/4) and define Ti , i = 1, . . . , 4, as the “curved triangle”
delimited by the curved portion of the boundary of LL(λ, 4s, 0) facing the ith corner vi
of 3 and ∂3. Let A,B be the end points of the curved portion of the boundary of T1
(both at distance 2s`c`τL from v1). Let now Ei be the event that inside Ti \LL(λ, 2s, 0)
there exists a macroscopic chain where the height of the surface is at least H(L). If the
macroscopic H(L)-contour 00—which, under π0

3, exists w.h.p. by Proposition 4.9 and
is unique by Theorem 6.2—is not contained in LL(λ, s, 0), then necessarily one of the
four events Ei occurred. By symmetry, it is therefore enough to show that π0

3(E1) =

O(e−c(logL)2) for any s small enough.
For this purpose let us introduce boundary conditions τ on ∂3 as follows:

τx =

{
H(L) if x ∈ ∂3 \ ∂T1,

H(L)− 1 if x ∈ ∂3 ∩ ∂T1.
(6.4)

By monotonicity we can bound π0
3(E1) from above by π τ3(E1). Let 0 be the openH(L)-

contour 0 joiningA,B and denote byG the event that 0 does not get out of LL(λ, 2s, 0).
We can once again appeal to [15, Lemma A.2] to get

π τ3(E1 |G) ≤ e
−c(logL)2 .

Thus we are left with the proof that, for all s small enough, G occurs w.h.p. As in
Lemma 5.9, we can write

π τ3(0) ∝ exp
(
−β|0| +93(0)+

λ

L
A(0)+ o(L)

)
(6.5)

where A(0) is the signed area of 0 with respect to the segment AB with the obvious
choice of the signs. Clearly

A(0) ≤ 2s2`2
c`

2
τL

2
= 2s2(λ̂/λ)2L2

≤ 2s2(λ̂/λc)
2L2
≤ s2L2

for β large enough (cf. Remark 3.7). Thus

π τ3(G
c) ≤ es

2(L+o(L))

∑
0∈Gc e

−β|0|+93(0)∑
0 e
−β|0|+93(0)+

λ
L
A(0)

≤ es
2(L+o(L))

∑
0∈Gc e

−(β−e−β )|0|+9Z2 (0)∑
0 e
−(β+e−β )|0|+9Z2 (0)+

λ
L
A(0)

= es
2(L+o(L))

∑
0∈Gc e

−(β−e−β )|0|+9Z2 (0)∑
0 e
−(β−e−β )|0|+9Z2 (0)

×

∑
0 e
−(β−e−β )|0|+9Z2 (0)∑

0 e
−(β+e−β )|0|+9Z2 (0)+

λ
L
A(0)

(6.6)
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where we have used |93(0) − 9Z2(0)| ≤ e−β |0|. By [20, Sec. 4.14] the first ratio on
the r.h.s. of (6.6) is bounded from above by exp(−csL) with c independent of β, since
the event Gc implies an excess length of order sL for the contour. By Jensen’s inequality
with respect to the measure ν on 0 corresponding to the weight e−(β−e

−β )|0|+9Z2 (0), the
second ratio is bounded from above by

exp
(

2e−βν(|0|)−
λ

L
ν(A(0))

)
.

Using once again [20, Ch. 4] we obtain ν(|0|) ≤ 2sL and ν(A(0)) = O((sL)3/2). Hence
π τ3(G

c) = O(e−csL/2) for any s small enough independent of L. ut

Proof of Lemma 6.12. Let us fix some notation. Let s′ = s + L−2/3 and, referring to
Figure 7 and centering the box 3 at the origin, let

fs : (−(1+ δL)L/2, 0] → [−(1+ δL)L/2, 0]

be the decreasing convex function whose graph is the south-west quarter of
∂(LL(λ, s, δL)). Let x̂(s) be the unique solution of fs(x) = x. We will denote by x∗(s)
(resp. x∗(s)) the point after which fs(·) is smaller than −L/2 (resp. after which fs(·) is
flat and equals −L(1+ δL)/2).

fs

•

x∗(s)x̂(s)

••

x∗(s)

(
−
L
2 ,−

L
2
)

x
• 1

2 δLL

Fig. 7. The graph of the function fs describing the south-west quarter of ∂(LL(λ, s, δL)).

For x ∈ [x̂(s), x∗(s′)] let x± := x ± 1
2L

2/3+ε and define

Zs(x) =
1
2
[fs(x

−)+fs(x
+)]−

λ

8β(τ(θ)+ τ ′′(θ))(cos θ)3
L1/3+2ε

−σ(x, θ)Lε (6.7)

with θ = θx ∈ [0, π/4] such that tan θ = |f ′s (x)| and σ 2(x, θ) = O(L2/3+ε) is given in
Theorem 5.7.
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We first observe that, if s ≤ tL,

Zs(x) ≥ fs′(x) (6.8)

where the r.h.s. is larger than −L/2 because x ≤ x∗(s′). Indeed,

x∗(s)− x∗(s
′) ≥ c

√
δL L so that x+ < x∗(s),

and using Lemma 3.9 together with simple trigonometry we obtain

fs(x) =
1
2
[fs(x

−)+ fs(x
+)] −

1
s(1+ δL)

[
λ

8β(τ(θ)+ τ ′′(θ))(cos θ)3
L1/3+2ε

]
+ o(1). (6.9)

Moreover,

fs′(x) ≤ fs(x)+ c(s
′
− s)L = fs(x)+ cL

1/3

for some positive constant c. Therefore, if s ≤ 1− δL = 1− L−ε/8,

Zs(x)− fs′(x) ≥
λ

8β(τ(θ)+ τ ′′(θ))(cos θ)3
L1/3+2ε

(
1

s(1+ δL)
− 1

)
− cL1/3

≥
λ

8β(τ(θ)+ τ ′′(θ))(cos θ)3
L1/3+2εδ2

L − cL
1/3,

which is positive.

x̂ x∗ x∗

Q
Q̃

Cx

Fig. 8. Final step in the inductive construction (Lemma 6.12).
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We are now going to apply the results of Theorem 5.7 (see Definitions 5.6, 5.5 and Fig-
ure 3). Consider the rectangleQx of horizontal side L2/3+ε and vertical side 2L2/3+ε cen-
tered at (x, 1

2 [fs(x
−)+fs(x

+)]). For simplicity we initially assume that x∈[x̂(s), x∗(s′)]
is such that Qx ⊂ 3. Later on we will explain how to treat the general case. Let Q̃x de-
note the 2(logL)2-neighborhood of Qx and let Gx be the event that there exists a regular
circuit C∗ ∈ Q̃x \ Qx such that the height η�C∗ on C∗ is not greater than the height
ξ(C∗, j, a, b) given in Definition 5.6 with a = fs(x−)− (logL)2, b = fs(x+)− (logL)2,
j = H(L). Here the roles of j, j−1 have been interchanged with respect to the setting of
Theorem 5.7, i.e. in the present application the boundary conditions are at height j above
A,B and j − 1 below. Define Ex as the event that there exists a chain Cx of lattice sites
satisfying the following conditions:

(i) Cx connects the points A,B;
(ii) the point (x, Zs(x)) lies below Cx ;

(iii) ηy ≤ H(L)− 1 for all y ∈ Cx .

Claim 6.13. W.h.p. the event Ex occurs.

Before proving the claim let us conclude the proof of Lemma 6.12. If Ex occurs for
all x ∈ [x̂(s), x∗(s′)], then necessarily there exists a chain Ĉ (obtained by patching to-
gether the individual chains Cx) joining the vertical lines through the points with hori-
zontal coordinates x̂(s) − 1

2L
2/3+ε and x∗(s′) + 1

2L
2/3+ε and staying above the curve

Zs := {(x, Zs(x)) : x ∈ [x̂(s), x∗(s′)]} where the surface height is at most H(L) − 1.
Notice that (6.8) implies that Zs is above the curve fs′ on the same interval [x̂(s), x∗(s′)].
By the claim, the above event occurs w.h.p. In view of symmetry with respect to reflec-
tion across the south-west diagonal of 3, the corresponding event occurs in the upper
half of the south-west corner of 3. By patching together the two chains constructed in
this way, we have shown that w.h.p. the left vertical boundary of 3 and the bottom hor-
izontal boundary of 3 are connected by a chain of sites C which stays above the curve
fs′ such that ηx ≤ H(L) − 1 for all x ∈ C. Since we are assuming H(s), we know
that w.h.p. there exists a unique H(L)-contour 00. The contour 00 cannot cross C so that
either C is contained in 300 , the interior of 00, or it is contained in 3 \ 300 . The first
case can be excluded since it would produce a macroscopic negative contour in 3, which
has negligible probability by Proposition 2.7. The second case implies that the curve fs′
lies outside of 00. The same argument can be repeated for the remaining three corners
of the box 3. That implies that w.h.p. the macroscopic H(L)-contour 00 is contained
inside L(λ, s′, δL). ut

Proof of Claim 6.13. To compute the probability of the event Gx defined above, let �s
be the event that the unique macroscopic H(L)-contour 00 is contained in LL(λ, s, δL).
Since we assume H(s), the event�s occurs w.h.p. On the other hand, conditionally on�s ,
Gx occurs w.h.p. (cf. Lemma 5.4). In conclusion, Gx occurs w.h.p. We will denote by C∗
the most external circuit characterizing the event Gx .6

6 Of all this complicated construction the reader should just keep in mind the following simplified
picture: C∗ = ∂Qx and the height of the surface is at most H(L)− 1 on the portion of ∂Qx below
the curve fs(·) and at least H(L) above it.
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Putting all together we have

π0
3(Ex) ≥ π

0
3(Ex |Gx)−O(e

−c(logL)2)

≥ min
C∗
π0
3

(
Ex

∣∣ η�C∗ ≤ ξ(C∗, j, a, b))−O(e−c(logL)2)

with (j, a, b) as above and the minimum taken over all possible regular circuits in
Q̃x \Qx . Since the event Ex is decreasing, monotonicity gives

min
C∗
π0
3

(
Ex

∣∣ η�C∗ ≤ ξ(C∗, j, a, b)) ≥ min
C∗
π0
3

(
Ex

∣∣ η�C∗ = ξ(C∗, j, a, b)b).
At this stage we are exactly in the setting of Theorem 5.7 which states that the open
H(L)-contour inside the region enclosed by C∗ and induced by the boundary conditions
ξ(C∗, j, a, b) goes above the point (x, Ys(x)) w.h.p. The latter event implies the event Ex
by the very definition of the H(L)-contour. In conclusion,

min
C∗
π0
3

(
Ex

∣∣ η�C∗ = ξ(C∗, j, a, b)) = 1−O(e−c(logL)2)

and Ex occurs w.h.p. ut

It remains to consider the case where the rectangle Qx exits the lower side of 3, which
happens if x is close to x∗(s′). In this case we repeat the same reasoning, except that in or-
der to estimate π0

3(Ex | η�C∗ ≤ ξ(C∗, j, a, b)) from below, we use the domain-enlarging
procedure of Lemma 2.15 and we replace 3 with 3′ = 3 ∪ Qx , again with boundary
conditions at height zero on ∂3′. The proof then proceeds identically as before and in this
case by construction the regular circuit C∗ coincides with ∂Qx in the portion of ∂Qx that
exits 3.

(ii) Here we briefly discuss the case n ≥ 1. As before we denote by 0n the (unique w.h.p.)
macroscopic (H(L)− n)-contour. Assume inductively that

LL(λn−1, t
+

L ,−δL) ⊂ 0n−1 ⊂ LL(λn−1, t
−

L , δL) w.h.p. (6.10)

where t±L = 1 ± δL, δL = L−ε/8 and λ0 = λ. Notice that the first inclusion has been
proved in Theorem 6.2.

For brevity denote by Gn−1 the set of all possible realizations of 0n−1 satisfying (6.10)
and, for each 0 ∈ Gn−1, denote by V0 the interior of 0. In the base case n = 1 the
claim (6.10) follows from point (i) together with Theorem 6.2. Define H(n)(s) exactly as
H(s) in Definition 6.10 but with the macroscopic H(L)-contour 00 replaced by 0n. In
order to get the analog of Lemma 6.11 for H(n)(s), i.e., that H(n)(s) holds for s small
enough, we write

π0
3(0n*LL(λ(n), s, 0))≤ max

0∈Gn−1
π0
3

(
0n*LL(λ(n), s, 0)

∣∣0n−1=0
)
+O(e−c(logL)2).

By monotonicity

π0
3

(
0n * LL(λ(n), s, 0)

∣∣ 0n−1 = 0
)
≤ π

ξ

3ext
0

(0n * LL(λ(n), s, 0))
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where 3ext
0 = 3 \ V0 and the boundary height ξ is equal to zero on ∂3 and equal to

H(L) − n on ∂3ext
0 \ ∂3. We then proceed as in the proof of Lemma 6.11 for the new

setting (3ext
0 , ξ) with the following modifications:

(i) in the definition of A,B, {Ti}4i=1 and {Ei}4i=1 the parameter λ is replaced by λ(n);
(ii) in the definition (6.4) of the auxiliary boundary conditions τ the height H(L) is

replaced by the height H(L)− n.

Thus we get
π
ξ

3ext
0

(0n * LL(λ(n), s, 0)) ≤ 4π τ
3ext
0
(E1)

where the measure π τ
3ext
0

describes the SOS model on 3ext
0 , with floor at height zero and

boundary conditions τ equal toH(L)−n−1 on ∂3ext
0 ∩∂T1 and equal toH(L)−n else-

where. Under π τ
3ext
0

w.h.p. there is no macroscopic (H(L)−n+1)-contour inside3ext
0 (the

argument is as in the proof of Theorem 6.2(b)). We can therefore again write down the
distribution of the open (H(L) − n)-contour joining the points A,B exactly as in (6.5).
The rest of the proof follows step by step the proof of Lemma 6.11; one uses the fact
that the distance between the “internal” boundary 0 of 3ext

0 and the segment AB is pro-
portional to L to disregard the possible “pinning interaction” between the open contour
and 0.

Similarly one proves the analog of Lemma 6.12 for H(n)(s). In conclusion, (6.10)
follows for 0n and the induction can proceed. ut

6.3. Conclusion: proof of Theorem 2. Assume that, along a subsequence Lk ,
λ(Lk) → λ?. Consider first the case λ? > λc. Then by Proposition 4.9 one finds that
the event E0(L(1+ δL)`c(λ(L))W1) holds w.h.p. (see also Remark 6.3). Therefore, from
Theorem 6.2, for any ε0 > 0, the unique macroscopic H(L)-contour, say 00, contains
the region L(1 − ε0)Lc(λ?) w.h.p. Similarly, Theorem 6.9 shows that 00 is contained in
the region L(1+ ε0)L(λ?) w.h.p. Analogous statements hold for the unique macroscopic
(H(L)−n)-contours 0n for all fixed values of n ∈ Z+ provided we replace λ? by λ?e4βn.
Since the nested limiting shapes Lc(λ?e4βn) converge to the unit square Q as n → ∞,
the above statements imply the theorem in the case λ? > λc.

The case λ? < λc uses exactly the same argument, except that here one knows that
w.h.p. there is no macroscopic H(L)-contour by Proposition 4.6, and the results of The-
orems 6.2 and 6.9 can be applied to the macroscopic (H(L) − n)-contours with n ≥ 1
only.

6.4. Proof of Theorem 3. Thanks to Proposition 4.9 and Theorem 6.2 (see Remark 6.4)
we know that the distance of the unique macroscopicH(L)-contour 00 from the boundary
along the flat piece of the limiting shape is w.h.p. not larger thanO(L1/3+ε) for any fixed
ε > 0. It remains to prove the lower bound.

Let us write I for the interval I (k)ε of Theorem 3 and write L instead of Lk . Let
xi, i = 1, . . . , K , be a mesh of equally spaced points on I , xi+1 − xi = 2L2/3−ε , with x1
(resp. xK ) the leftmost (resp. rightmost) point in I . Note that K is of order L1/3+ε . Let
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Qi , 1 ≤ i ≤ K , be the collection of disjoint squares with side-length 2L2/3−ε centered
at xi , let Ri = Qi ∩3 be the upper half of Qi and set ∂+Ri = ∂Ri ∩3.

Then, under π0
3, w.h.p. the following event A occurs: for every 1 ≤ i ≤ K there

exists a connected chain of sites, within distance (logL)2 from ∂+Ri and touching ∂3
both on the left and on the right of xi , where the height function η is at most H(L). On
the event A, denote by Ci the most internal such chain and set C =⋃i Ci .

That A occurs w.h.p. is true by monotonicity: A is decreasing, so we can lift the
boundary conditions around 3 to H(L) and then apply Lemma 5.4 to deduce that all
dominos in 3 are of negative type (see Definition 5.2 with j = H(L)). The existence of
the chains Ci then follows easily (a similar argument was used in the proof of Lemma 6.6).

We want to show that maxx∈I ρ(x) ≥ L1/3−ε/2 w.h.p. This is a decreasing event.
Then, condition on the realization of C and by monotonicity lift all heights along C to
exactly H(L). This way, the height function in each wiggled rectangle R̃i enclosed by Ci
is independent. We therefore concentrate on a single i.

xi

Ci

∂Λ

b.c.≡ H(L)− 1

b.c.≡ H(L)

2L2/3−ǫ

L2/3−ǫ

R̃i

2L2/3−ε

b.c. ≡ H(L)

Ci

R̃i ∂3

xi

L2/3−ε

b.c. ≡ H(L)− 1
Fig. 9. A point xi , the rectangle Ri (dashed line), the chain Ci (wiggled line) enclosing the wiggled
rectangle R̃i . The thick horizontal line is the boundary of 3. The wiggled square Q̃i is obtained
by joining to R̃i a rectangle of height L2/3−ε and width 2L2/3+ε

+O((logL)2), with two corners
coinciding with the endpoints of Ci .

Again by monotonicity, we can apply the domain-enlarging procedure of Lem-
ma 2.15. For this, we enlarge the domain R̃i outside 3 as in Figure 9: this way, R̃i has
been turned into a wiggled square Q̃i of side L2/3−ε

+O((logL)2). Then we consider the
SOS measure π τ

Q̃i
in Q̃i with floor at zero and boundary conditions τ that are τ ≡ H(L)

in ∂Q̃i ∩ 3 and τ ≡ H(L) − 1 on ∂Q̃i \ 3. In this situation, we have exactly one
open H(L)-contour γ . Its law can be written by applying Proposition A.1 to the partition
function below and above γ :

π τ
Q̃i
(γ ) ∝ exp

[
−β|γ | +9

Q̃i
(γ )−

λ

L
A(γ )+ o(1)

]
with A(γ ) the signed area of γ with respect to the bottom boundary of 3 (the minus sign
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in front of the area is due to the fact that we are looking at the area below γ and not
above it).

Denote by P(·) the law on γ given by

P(γ ) ∝ exp[−β|γ | +9
Q̃i
(γ )], (6.11)

without the area term. From [31] we know that for L→ ∞ and rescaling the horizontal
(resp. vertical) space direction by L−(2/3−ε) (resp. L−(1/3−ε/2)), the law P(·) converges
weakly to that of a Brownian bridge on [0, 1], with a suitable diffusion constant. Now let
Ui be the event that γ has maximal height less than L1/3−ε/2 above the midpoint xi , and
we want to prove

lim sup
L→∞

π τ
Q̃i
(Ui) < 1− δ (6.12)

with δ > 0.
If this is the case, then it follows that w.h.p. there is some 1 ≤ i ≤ K ∼ cL1/3+ε

such that the complementary event U ci happens, and the proof of the theorem is con-
cluded. Actually, note that (6.12) implies that, if we consider Lε/2 “adjacent” points
xi, xi+1, . . . , xi+Lε/2 , w.h.p. the event U cj happens for at least one such j . Since xi+Lε/2−
xi = O(L

2/3−ε/2), we have proven the stronger version of the theorem, as in Remark 1.3.
It remains to prove (6.12). Write

π τ
Q̃i
(U ci ) =

E(U ci ; e
−
λ
L
A(γ )+o(1))

E(e−
λ
L
A(γ )+o(1))

, (6.13)

with E the expectation with respect to the law P of (6.11). The denominator is 1 + o(1)
(just use standard techniques [20, Sec. 4.14] to see that is very unlikely that |A(γ )| is
much larger than L2/3−ε

× L1/3−ε/2, as it should be for a random walk). As for the
numerator, Cauchy–Schwarz gives

E(U ci ; e
−
λ
L
A(γ )) ≤

√
P(U ci )

√
E(e−2 λ

L
A(γ )+o(1)).

The second term is 1 + o(1) like the denominator, while the first factor is uniformly
bounded away from 1 since, in the Brownian scaling mentioned above, the event U ci
becomes the event that the Brownian bridge on [0, 1] is lower than 1 at time 1/2, an event
that clearly does not have full probability.

Appendix

A.1. This section contains the proof of Lemma 2.4, showing that for large enough β the
π̂ -probability that the height at 0 would exceed h is (c∞ + δh)e−4βh for some c∞ =
c∞(β) > 0 tending to 1 as β →∞.
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Proof of Lemma 2.4. Let ah = e4βhπ̂(η0 ≥ h) and define

ε1(β, h) =
π̂(η0 ≥ h, S ≥ h)

π̂(η0 ≥ h, S ≤ h− 1)
, ε2(β, h) =

π̂(η0 ≥ h− 1, S ≥ h)
π̂(η0 ≥ h− 1, S ≤ h− 1)

,

where S = max{ηx : x ∼ 0} is the maximum height of a neighbor of the origin. With this
notation,

ah

ah−1
= e4β

·
1+ ε1(β, h)

1+ ε2(β, h)
·

π̂(η0 ≥ h, S ≤ h− 1)
π̂(η0 ≥ h− 1, S ≤ h− 1)

=
1+ ε1(β, h)

1+ ε2(β, h)
, (A.1)

with the last equality due to the fact that π̂(η0 ≥ h, S ≤ h − 1)/π̂(η0 ≥ h − 1, S ≤
h−1) = e−4β . Indeed, this fact easily follows from considering the bijective map T which
decreases η0 by 1 and deducts a cost of 4β from the Hamiltonian of every configuration
associated with the numerator compared to its image in the denominator.

In order to bound ε1 and ε2, we note that there exists some absolute constant c1 > 0
independent of β such that, for any h ≥ 1 and any large enough β,

π̂(η0 ≥ h, S ≥ h) ≤ c1e
−6βh.

(This follows from [15, Sec. 7], or alternatively from the proof of [15, Proposition 3.9].)
On the other hand, by [15, Proposition 3.9] we know that π̂(η0 ≥ h) ≥

1
2 exp(−4βh) for

any h ≥ 0 and β ≥ 1. By combining these with an analogous argument for ε2 we deduce
that

0 ≤ ε1(β, h) ≤ c2e
−2βh, 0 ≤ ε2(β, h) ≤ c2 min(e−2β(h−1), e−4β),

where c2 > 0 is some absolute constant independent of β. Revisiting (A.1) then gives

1− c2 min(e−2β(h−1), e−4β) ≤ ah/ah−1 ≤ 1+ c2e
−2βh,

which readily implies that c∞ = limh→∞ ah exists together with |c∞ − ah| ≤ c3e
−2βh.

Finally, if we write c∞ = a0
∏
∞

h=1(ah/ah−1) and use limβ→∞ a0 = 1 together with the
above bounds we immediately see that limβ→∞ c∞(β) = 1. ut

A.2. Fix L ∈ N, ε > 0, and consider3 ⊂ Z2 with area and external boundary such that

|3| ≤ L4/3+2ε, |∂3| ≤ L2/3+2ε. (A.2)

Let Zh,±3,U and Ẑ±3,U be defined as in Proposition 2.12.

Proposition A.1. Fix β ≥ β0 and ε ∈ (0, 1/20), and assume (A.2) holds. Set H(L) =⌊ 1
4β logL

⌋
and h = H(L)− n, n = 0, 1, . . . . Then for all fixed n,

Z
h,±
3,U = Ẑ

±

3,U exp(−π̂(η0 > h)|3| + o(1)), (A.3)

where π̂ is the probability obtained as infinite volume limit with boundary conditions at
height zero of the SOS model at inverse-temperature β.
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Proof. By shifting the heights by −h one can pretend that there are boundary conditions
at height zero, that the floor is at−h and that on U the heights are all ≥ 0 (resp. ≤ 0). Let
ω± denote the associated probability measure with no floor, so that

Z
h,±
3,U/Ẑ

±

3,U = ω±(ηx ≥ −h, x ∈ 3). (A.4)

Consider first the lower bound. Notice that ω± satisfies the FKG property. Thus

ω±(ηx ≥ −h, x ∈ 3) ≥
∏
x∈3

ω±(ηx ≥ −h).

As in [15, Sec. 7, (7.19)], for some constant C > 0 and all j ∈ N one has

C−1e−4βj
≤ ω±(ηx ≥ j) ≤ Ce

−4βj . (A.5)

In particular, ω±(ηx < −h) = O(L−1) for all fixed n, and

ω±(ηx ≥ −h) = 1− ω±(ηx < −h) = exp[−ω±(ηx < −h)+O(L−2)].

For all x ∈ 3 at distance Lε from ∂3, one can write π̂(η0 > h) instead of ω±(ηx < −h)
with an additive error that is O(L−p) for any p > 1 [15, (7.47)]. By (A.2), this proves
the lower bound

ω±(ηx ≥ −h, x ∈ 3) ≥ exp
(
−π̂(η0 > h)|3| +O(L−1/3+4ε)

)
. (A.6)

For the upper bound, we will use essentially the same argument in the proof of [15,
Claim 7.7]. We sketch the main steps below. From (A.4), setting ψx = 1{ηx<−h}, one
writes

Z
h,±
3,U/Ẑ

±

3,U = ω±

(∏
x∈3

(1− ψx)
)
. (A.7)

Partition Z2 into squares P with side r = Lu + 2Lκ , where 0 < κ < u will be fixed later
(we assume for simplicity that Lu, Lκ are both integers). Consider squares Q of side Lu

centered inside the squares P in such a way that each squareQ is surrounded within P by
a shell of thickness Lκ . The set S of dual bonds associated to a nonzero height gradient
is decomposed into connected components (clusters) S. We let I(κ) be the collection of
clusters S in S such that |S| ≥ Lκ , where |S| denotes the number of edges in S. A point
x ∈ 3 can be of four types: 1) those whose distance from the boundary ∂3 is less thanLε;
2) those that belong to a shell in some P \Q; 3) those belonging to a squareQ ⊂ P such
that P intersects one of the clusters in I(κ) or its interior; 4) all other x ∈ 3.

We now spell out the contribution of each type of points to (A.7). We estimate by 1
the indicator 1− ψx for all x of type 1, 2, or 3:

ω±

(∏
x∈3

(1− ψx)
)
≤ ω±

(∏
x∈3′

(1− ψx)
)
,

where 3′ denotes the (random) set of points of type 4. Next, we claim that

ω±

(∏
x∈3′

(1− ψx)
)
≤ ω±

(
exp[−π̂(η0 > h)|3′| + o(1)]

)
. (A.8)
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Once this bound is available one can conclude by showing that

π̂(η0 > h)ω±(|3 \3
′
|) = o(1). (A.9)

Let us first prove (A.9). Recall that π̂(η0 > h) = O(L−1). Using (A.2), one finds
that type 1 points contribute O(L−1/3+4ε) to the l.h.s. of (A.9). Moreover, there are
O(Lκ+u) points in each shell and O(L4/3+2ε−2u) shells, therefore type 2 points con-
tributeO(L1/3+2ε−u+κ). Exactly as in [15], using the fact that contours in I(κ) have area
at least Lκ and at most L4/3+2ε

= o(L2), one finds that type 3 points only contribute o(1)
for any fixed κ > 0 (cf. [15, (7.53)]). We see that choosing e.g. u = 1/3+ 4ε, κ = ε, one
deduces that the total contribution of all points of type 1, 2, or 3 is o(1). This proves (A.9).

It remains to prove (A.8). We follow [15]. Any point of type 4 must belong to some
squareQ that is surrounded by a circuit C within the shell aroundQ inside P such that all
heights are equal to zero on C. Then, by conditioning on the circuits C one can proceed by
expanding separately the different squares Q. Fix a square Q and let π̂0

C denote the SOS
measure with boundary conditions at height zero on the circuit C surrounding Q. Then
[15, (7.56)] yields

π̂0
C

(∏
x∈Q

(1−ψx)
)
≤ exp

(
−

∑
x∈Q

π̂0
C(ψx)+O(L

−3/2+2u+c(β))+O(L6u−3)
)
, (A.10)

where c(β) → 0 as β → ∞. Using exponential decay of correlations [12], one can
replace

∑
x∈Q π̂

0
C(ψx) by |Q|π̂(η0 > h) +O(Lu+δ−1) for any δ > 0. Therefore, taking

the product over all squares Q containing points of type 4, and taking the average over
the realizations of 3′, one finds (A.8), since there are at most O(L4/3+2ε−2u) squares Q
in 3′ and u = 1/3 + 4ε, and one can absorb all the errors in the o(1) term if β is large
enough. This ends the proof of Proposition A.1. ut

A.3. Proof of (2.8). Let ω± be defined as in Section A.2 above. Let also ω̄± denote the
probability measure ω± conditioned on the event that there are no macroscopic contours.
Then (2.8) becomes equivalent to

ω̄±(ηx ≥ −h, x ∈ 3) ≤ exp
(
−π̂(η0 > h)|3| +O(L1/2+c(β))

)
. (A.11)

We proceed as in the proof of Proposition A.1. The proof of (A.8) now yields

ω̄±

(∏
x∈3

(1−ψx)
)
≤ ω̄±

(
exp[−π̂(η0 > h)|3′|+CL1−u+δ

+CL1/2+c(β)
+CL4u−1

]
)
,

(A.12)

where C > 0 is a constant, and δ > 0 is arbitrary. The error terms above are explained as
follows: there are at mostO(L2−2u) squaresQ in30 and for each of those one has a term
O(Lu+δ−1) coming from the boundary of Q, and a term O(L−3/2+2u+c(β))+O(L6u−3)

coming from the expansion (A.10).
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Next, we need the statement corresponding to (A.9). Thanks to the assumption on
the absence of large contours, here there are no points of type 3. Thus the argument
behind (A.9) here gives

ω̄±(exp[π̂(η0 > h)|3 \3′|]) ≤ exp[O(L−1+ε
|∂3|)+O(L2−u+κ)]. (A.13)

The error terms above are explained as follows: the first term is the worst case contribution
of boundary terms (points of type 1, i.e. those at distance at most Lε from |∂3|); the
second term is due to the points of type 2, which are at most O(L2−u+κ).

Finally, we can combine (A.12) and (A.13). Taking κ = δ sufficiently small, with e.g.
u = 3/5, using |∂3| = O(L1+ε), one finds that the dominant error term isO(L1/2+c(β)).
This implies the desired upper bound.

A.4. Given A and B in Z2∗, let 4A,B be the set of open contours from A to B that stay
within SA,B , the infinite strip delimited by the vertical lines going through A and B.
Contours are self-avoiding paths, with the usual south-west splitting rule (see e.g. [15,
Definition 3.3]), where closed contours are defined). For 0 ∈ 4A,B , let

w(0) = exp(−β|0| +9SA,B (0))

where |0| is the geometric length of 0. The “decoration term” 9SA,B (γ ) was defined
in (4.15) for closed contours: in the present case of an open contour 0 ∈ 4A,B , it is
understood that 3γ is the subset of SA,B above 0, and 1+γ = 1γ ∩ 3γ (resp. 1−γ =
1γ ∩ (SA,B \3γ )); see Definition 2.1 for 1γ .

The following limit exists [20]:

τ(θ) = − lim
1

β|A− B|
log

∑
0∈4A,B

w(0)

where the limit consists in letting |A − B| (the Euclidean distance between A and B)
diverge while the angle formed by the segment AB with the horizontal axis tends to
θ ∈ (−π/2, π/2).

Remark A.2. As remarked in [20], there is some arbitrariness in the choice of 4A,B :
for instance, one could replace 9SA,B (0) with 9V (0) for some set V containing an
|A− B|1/2+ε-neighborhood of the segment AB, and the resulting surface tension would
be unchanged.

A.5. We briefly discuss the missing details in the proof of Theorem 5.7 given by the wig-
gling of the regular circuit C∗. Referring to Figure 10, let Â, B̂ be the first and last inter-
sections of 0 with the two vertical lines L1,L2 going through the vertical sides ofQ, and
let A,B be the points as in Definition 5.6 (see also Figure 3). The contribution to the area
termA(0)/L coming from the parts of 0 before Â and after B̂ is o(1). Moreover the prob-
ability that the height difference between Â, A or B̂, B is larger that L1/4 is smaller than
exp(−cL1/4). In fact the circuit C∗, being a regular one, cannot deterministically force
such height differences to be larger than O((logL)2). Thus a large (of order L1/4) height
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B

xa

xb

l1 l2

Q

ÂA
A

B̂

B

Q

L2L1

Fig. 10. The rectangleQ, the regular circuit C∗ (closed wiggled line), the contour 0 (thick wiggled
line) and the points Â, B̂, A,B defined in the text.

difference can only be produced by a large “spontaneous” deviation of the contour 0.
Without the area term such a deviation has probabilityO(exp(−cL1/4)) (see (5.19)). The
area term can be taken care of via an application of the Cauchy–Schwarz inequality: using
again (5.19), we see that the average of exp(2λA(0)/L) is of order exp(L3ε). Notice that
L1/4 is negligible with respect to Y (n)− (a + b)/2 ≥ cL1/3+2ε defined in Theorem 5.7.

Thus, conditioning on the parts 0left, 0right of 0 before Â and after B̂, with Â at
distance O(L1/4) from A and similarly for B̂, we have reduced ourselves to a geometry
to which we can directly apply Corollary 5.13 as in the case where the circuit C∗ is the
boundary of Q.
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