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Abstract. We consider the wave and Schrödinger equations on a bounded open connected subset
� of a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its
boundary is nonempty. We observe the restriction of the solutions to a measurable subset ω of �
during a time interval [0, T ] with T > 0. It is well known that, if the pair (ω, T ) satisfies the Geo-
metric Control Condition (ω being an open set), then an observability inequality holds guaranteeing
that the total energy of solutions can be estimated in terms of the energy localized in ω × (0, T ).

We address the problem of the optimal location of the observation subset ω among all possible
subsets of a given measure or volume fraction. A priori this problem can be modeled in terms of
maximizing the observability constant, but from the practical point of view it appears more relevant
to model it in terms of maximizing an average either over random initial data or over large time.
This leads us to define a new notion of observability constant, either randomized, or asymptotic
in time. In both cases we come up with a spectral functional that can be viewed as a measure of
eigenfunction concentration. Roughly speaking, the subset ω has to be chosen so as to maximize
the minimal trace of the squares of all eigenfunctions. Considering the convexified formulation of
the problem, we prove a no-gap result between the initial problem and its convexified version, un-
der appropriate quantum ergodicity assumptions, and compute the optimal value. Our results reveal
intimate relations between shape and domain optimization, and the theory of quantum chaos (more
precisely, quantum ergodicity properties of the domain �).

We prove that in 1D a classical optimal set exists only for exceptional values of the volume
fraction, and in general one expects relaxation to occur and therefore classical optimal sets not to
exist. We then provide spectral approximations and present some numerical simulations that fully
confirm the theoretical results in the paper and support our conjectures.

Finally, we provide several remedies to nonexistence of an optimal domain. We prove that when
the spectral criterion is modified to consider a weighted one in which the high frequency compo-
nents are penalized, the problem has a unique classical solution determined by a finite number of
low frequency modes. In particular the maximizing sequence built from spectral approximations is
stationary.
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1. Introduction

1.1. Problem formulation and overview of the main results

In this article we model and solve the problem of optimal observability for wave and
Schrödinger equations posed on any open bounded connected subset of a Riemannian
manifold, with various possible boundary conditions.

We briefly highlight the main ideas and contributions of the paper on a particular case,
often arising in applications.

Assume that � is a given bounded open subset of Rn, representing for instance a
cavity in which some signals are propagating according to the wave equation

∂t ty = 1y, (1)

with Dirichlet boundary conditions. Assume that one is allowed to place some sensors
in the cavity, in order to make some measurements of the signals propagating in � over
a certain horizon of time. We assume that we have the choice not only of the placement
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of the sensors but also of their shape. The question under consideration is then the deter-
mination of the best possible shape and location of sensors, achieving the best possible
observation, in some sense to be made precise.

This problem of optimal observability, inspired by the theory of inverse problems
and by control-theoretical considerations, is also intimately related to those of optimal
controllability and stabilization (see Section 6 for a discussion of these issues).

So far, the problem has been formulated informally and a first challenge is to state the
question properly, so that the resulting problem will be both mathematically solvable and
relevant in view of practical applications.

A first obvious but important remark is that, in the absence of constraints, the best
policy consists in observing the solutions over the whole domain �. This is however
clearly not reasonable, and in practice the domain covered by sensors has to be lim-
ited, due for instance to cost considerations. From the mathematical point of view, we
model this basic limitation by considering, as the set of unknowns, the set of all pos-
sible measurable subsets ω of � that are of Lebesgue measure |ω| = L|�|, where
L ∈ (0, 1) is some fixed real number. Any choice of such a subset represents the sen-
sors put in �, and we assume that we are able to measure the restrictions of the solutions
of (1) to ω.

Modeling. Let us now model the notion of best observation. At this step it is useful to
recall some well known facts on the observability of the wave equation.

For all (y0, y1) ∈ L2(�,C) × H−1(�,C), there exists a unique solution y ∈

C0(0, T ;L2(�,C)) ∩ C1(0, T ;H−1(�,C)) of (1) such that y(0, ·) = y0(·) and
∂ty(0, ·) = y1(·). Let T > 0.

We say that (1) is observable on ω in time T if there exists C > 0 such that1

C‖(y0, y1)‖2
L2×H−1 ≤

∫ T

0

∫
ω

|y(t, x)|2 dx dt (2)

for all (y0, y1) ∈ L2(�,C)×H−1(�,C). This is the so-called observability inequality,
which is of great importance in view of showing the well-posedness of some inverse
problems. It is well known that within the class of C∞ domains �, this observability
property holds if the pair (ω, T ) satisfies the Geometric Control Condition in � (see [3]),
according to which every ray of geometrical optics that propagates in the cavity � and
is reflected on its boundary ∂� intersects ω within time T . The observability constant is
defined by

1 In this inequality, and throughout the paper, we use the usual Sobolev norms. For every u ∈
L2(�,C), we have ‖u‖L2(�,C) = (

∫
� |u(x)|

2 dx)1/2. The Hilbert space H 1(�,C) is the space
of functions of L2(�,C) having a distributional derivative in L2(�,C), endowed with the norm
‖u‖H 1(�,C) = (‖u‖

2
L2(�,C) + ‖∇u‖

2
L2(�,C))

1/2. The Hilbert space H 1
0 (�,C) is defined as the

closure in H 1(�,C) of the set of functions of class C∞ on � and of compact support in the open
set �. It is endowed with the norm ‖u‖

H 1
0 (�,C)

= ‖∇u‖L2(�,C). The Hilbert space H−1(�,C) is
the dual of H 1

0 (�,C) with respect to the pivot space L2(�,C), endowed with the corresponding
dual norm.
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C
(W)
T (χω) =

inf
{∫ T

0

∫
�
χω(x)|y(t, x)|

2 dx dt

‖(y0, y1)‖2
L2×H−1

∣∣∣∣ (y0, y1) ∈ L2(�,C)×H−1(�,C)\{(0, 0)}
}
. (3)

It is the largest possible constant for which (2) holds. It depends both on the time T (the
horizon time of observation) and on the subset ω on which the measurements are taken.
Here, χω stands for the characteristic function of ω.

A priori, it might appear natural to model the problem of best observability as that of
maximizing the functional χω 7→ C

(W)
T (χω) over the set

UL = {χω | ω is a measurable subset of � of Lebesgue measure |ω| = L|�|}. (4)

This choice of model is hard to handle from the theoretical point of view, and more im-
portantly, is not so relevant in practical issues. Let us explain these two facts.

First of all, a spectral expansion of the solutions shows the emergence of crossed
terms in the functional to be minimized, which are difficult to treat. To see this, in what
follows we fix a Hilbert basis (φj )j∈N∗ of L2(�,C) consisting of (real-valued) eigenfunc-
tions of the Dirichlet–Laplacian operator on �, associated with the negative eigenvalues
(−λ2

j )j∈N∗ . Then any solution y of (1) can be expanded as

y(t, x) =

∞∑
j=1

(aj e
iλj t + bj e

−iλj t )φj (x), (5)

where the coefficients aj and bj account for initial data. It follows that

C
(W)
T (χω) =

1
2

inf
(aj ),(bj )∈`

2(C)∑
∞

j=1(|aj |
2
+|bj |

2)=1

∫ T

0

∫
ω

∣∣∣ ∞∑
j=1

(aj e
iλj t + bj e

−iλj t )φj (x)

∣∣∣2 dx dt,
and maximizing this functional over UL appears to be very difficult from the theoreti-
cal point of view, due to the crossed terms

∫
ω
φjφk dx measuring the interaction over ω

between distinct eigenfunctions.
The second difficulty with this model is its limited relevance in practice. Indeed, the

observability constant defined by (3) is deterministic and corresponds to the worst pos-
sible case. Hence, in this sense, it is a pessimistic constant. In practical applications one
realizes a large number of measurements, and it may be expected that this worst case
will not occur so often. Thus, one would like the observation to be optimal for most of
experiments but maybe not for all of them. This leads us to consider instead an averaged
version of the observability inequality over random initial data. More details will be given
in Section 2.3 on the randomization procedure; in a few words, we define what we call
the randomized observability constant by

C
(W)
T ,rand(χω) =

1
2

inf
(aj ),(bj )∈`

2(C)∑
∞

j=1(|aj |
2
+|bj |

2)=1

E
(∫ T

0

∫
ω

∣∣∣ ∞∑
j=1

(βν1,jaj e
iλj t + βν2,jbj e

−iλj t )φj (x)

∣∣∣2 dx dt), (6)
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where (βν1,j )j∈N∗ and (βν2,j )j∈N∗ are two sequences of (for example) i.i.d. Bernoulli ran-
dom laws on a probability space (X ,A,P), and E is the expectation over X with respect
to the probability measure P. It corresponds to an averaged version of the observability
inequality over random initial data. Actually, we have the following result.

Theorem 1.1 (Characterization of the randomized observability constant). For every
measurable subset ω of �,

C
(W)
T ,rand(χω) =

T

2
inf
j∈N∗

∫
ω

φj (x)
2 dx. (7)

It is interesting to note that always C(W)T (χω) ≤ C
(W)
T ,rand(χω), and the strict inequality

holds for instance in each of the following cases (see Remark 2.5 for details):

• in 1D, with � = (0, π) and Dirichlet boundary conditions, whenever T is not an
integer multiple of π ;
• in multi-D, with � stadium-shaped, whenever ω contains an open neighborhood of the

wings (in that case, we actually have C(W)T (χω) = 0).

Taking all this into account we model the problem of best observability in the following
more relevant and simpler way: maximize the functional

J (χω) = inf
j∈N∗

∫
ω

φj (x)
2 dx (8)

over the set UL.
The functional J can be interpreted as a criterion reflecting the concentration prop-

erties of eigenfunctions. This functional can as well be recovered by considering, in-
stead of an averaged version of the observability inequality over random initial data, a
time-asymptotic version of it. More precisely, we claim that, if the eigenvalues of the
Dirichlet–Laplacian are simple (which is a generic property), then J (χω) is the largest
possible constant C such that

C‖(y0, y1)‖2
L2×H−1 ≤ lim

T→∞

1
T

∫ T

0

∫
ω

|y(t, x)|2 dx dt

for all (y0, y1) ∈ L2(�,C)×H−1(�,C) (see Section 2.5).
The derivation of this model and of the corresponding optimization problem, and the

new notions of averaged observability inequalities it leads to (Section 2), constitute the
first contribution of the present article.

It can be noticed that, in this model, the time T does not play any role.
It is by now well known that, in the characterization of fine observability properties

of solutions of wave equations, two ingredients enter (see [40]): on the one hand, the
spectral decomposition and the observability properties of eigenfunctions; on the other,
the microlocal components that are driven by rays of geometric optics. The randomized
observability constant takes the first spectral component into account but neglects the
microlocal aspects that were annihilated, to some extent, by the randomization process.
In that sense, the problem of maximizing the functional J defined by (8) is essentially a
high-frequency problem.



1048 Yannick Privat et al.

Solving. With a view to solving the uniform optimal design problem

sup
χω∈UL

J (χω), (9)

we first introduce a convexified version of the problem, by considering the convex clo-
sure of the set UL for the L∞ weak star topology, that is, UL = {a ∈ L∞(�, [0, 1]) |∫
�
a(x) dx = L|�|}. The convexified problem then consists in maximizing the functional

J (a) = inf
j∈N∗

∫
�

a(x)φj (x)
2 dx

over UL. Clearly, a maximizer does exist. But since the functional J is not lower semi-
continuous, it is not clear whether or not there may be a gap between the problem (9)
and its convexified version. The analysis of this question happens to be very interest-
ing and reveals deep connections with the theory of quantum chaos and, more precisely,
with quantum ergodicity properties of �. We prove for instance the following result (see
Section 3.2 for other related statements).

Theorem 1.2 (No-gap result and optimal value of J ). Assume that the sequence of prob-
ability measures µj = φj (x)

2dx converges vaguely to the uniform measure |�|−1 dx

(Quantum Unique Ergodicity on the base), and that there exists p ∈ (1,∞] such that the
sequence (φj )j∈N∗ of eigenfunctions is uniformly bounded in L2p(�). Then

sup
χω∈UL

J (χω) = max
a∈UL

J (a) = L

for every L ∈ (0, 1). In other words, there is no gap between the problem (9) and its
convexified version.

At this step, it follows from Theorems 1.1 and 1.2 that, under some spectral assumptions,
the maximal possible value of C(W)T ,rand(χω) (over the set UL) is equal to T L/2. Several
remarks are in order.

• Except in the one-dimensional case, we are not aware of domains � in which the spec-
tral assumptions of the above result are satisfied. As discussed in Section 3.3, this question
is related to deep open questions in mathematical physics and semiclassical analysis such
as the QUE conjecture.

• The spectral assumptions above are sufficient but not necessary to derive such a no-gap
statement: indeed, we can prove that the result still holds true if� is a hypercube (with the
usual eigenfunctions that are products of sine functions), or if� is a two-dimensional disk
(with the usual eigenfunctions parametrized by Bessel functions), although, in the latter
case, the eigenfunctions do not equidistribute as the eigenfrequencies increase, as illus-
trated by the well known whispering galleries effect (see Proposition 3.9 in Section 3.2).

• We are not aware of any example in which there is a gap between the problem (9) and
its convexified version.
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• It is also interesting to note that, since the spectral criterion J defined by (8) depends on
the specific choice of the orthonormal basis (φj )j∈N∗ of eigenfunctions of the Dirichlet–
Laplacian, one can consider an intrinsic version of the problem, consisting in maximizing
the spectral functional

Jint(χω) = inf
φ∈E

∫
ω

φ(x)2 dx

over UL, where E denotes the set of all normalized eigenfunctions of the Dirichlet–
Laplacian. For this problem we have a result similar to the one above (Theorem 3.16
in Section 3.6).

These results show intimate connections between domain optimization and quantum
ergodicity properties of �. Such a relation was suggested in the early work [13] concern-
ing the exponential decay properties of dissipative wave equations.

• The result stated in the theorem above holds true as well when replacing UL with the
class of Jordan measurable subsets of � of measure L|�|. The proof (given in Section
3.4), based on a kind of homogenization procedure, is constructive and consists in build-
ing a maximizing sequence of subsets for the problem of maximizing J , showing that it
is possible to increase the values of J by considering subsets of measure L|�| having an
increasing number of connected components.

Nonexistence of an optimal set and remedies. The maximum of J over UL is clearly
reached (in general, even in infinitely many ways, as can be seen using Fourier series,
see [50]). The question of the reachability of the supremum of J over UL, that is, the
existence of an optimal classical set, is a difficult question in general. In particular cases
it can however be addressed using harmonic analysis. For instance in dimension one,
we can prove that the supremum is reached if and only if L = 1/2 (and there aare in-
finitely many optimal sets). In higher dimension, the question is completely open, and
we conjecture that, for generic domains � and generic values of L, the supremum is not
reached and hence there does not exist any optimal set. It can however be noted that, in the
two-dimensional Euclidean square, if we restrict the search for optimal sets to Cartesian
products of 1D subsets, then the supremum is reached if and only if L ∈ {1/4, 1/2, 3/4}
(see Section 4.1 for details).

In view of that, it is natural to study a finite-dimensional spectral approximation of
the problem, namely the problem of maximizing the functional

JN (χω) = min
1≤j≤N

∫
ω

φj (x)
2 dx

over UL, for N ∈ N∗. The existence and uniqueness of an optimal set ωN is then not dif-
ficult to prove, as also is the 0-convergence of JN to J for the weak star topology of L∞.
Moreover, the sets ωN have a finite number of connected components, expected to in-
crease as N increases. Several numerical simulations (provided in Section 4.2) will show
the shapes of these sets; their increasing complexity (as N increases) is in accordance
with the conjecture of the nonexistence of an optimal set maximizing J . It can be noted
that, in the one-dimensional case, for L sufficiently small, loosely speaking, the optimal
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domain ωN for N modes is the worst possible when considering the truncated problem
with N + 1 modes (spillover phenomenon; see [23, 50]).

This intrinsic instability is in some sense due to the fact that in the definition of the
spectral criterion (8) all modes have the same weight, and the same criticism can be made
on the observability inequality (2). Due to the increasing complexity of the geometry of
high-frequency eigenfunctions, the optimal shape and placement problems are expected
to be highly complex.

One expects the problem to be better behaved if lower frequencies are more weighted
than the higher ones. It is therefore relevant to introduce a weighted version of the ob-
servability inequality (2), by considering the (equivalent) inequality

C
(W)
T ,σ (χω)(‖(y

0, y1)‖2
L2×H−1 + σ‖y

0
‖

2
H−1) ≤

∫ T

0

∫
ω

|y(t, x)|2 dx dt,

where σ ≥ 0 is some weight. We then have C(W)T ,σ (χω) ≤ C
(W)
T (χω).

Considering, as before, an averaged version of this weighted observability inequality
over random initial data, we get 2C(W)T ,σ,rand(χω) = T Jσ (χω), where the weighted spectral
criterion Jσ is defined by

Jσ (χω) = inf
j∈N∗

σj

∫
ω

φj (x)
2 dx

with σj = λ2
j /(σ + λ

2
j ) (an increasing sequence of positive real numbers converging to 1;

see Section 4.4 for details). The truncated criterion Jσ,N is then defined accordingly, by
keeping only the N first modes. We then have the following result.

Theorem 1.3 (Weighted spectral criterion). Assume that the sequence of probability
measures µj = φj (x)

2dx converges vaguely to the uniform measure |�|−1dx, and
that the sequence of eigenfunctions φj is uniformly bounded in L∞(�). Then, for every
L ∈ (σ1, 1), there exists N0 ∈ N∗ such that

max
χω∈UL

Jσ (χω) = max
χω∈UL

Jσ,N (χω) ≤ σ1 < L

for every N ≥ N0. In particular, the problem of maximizing Jσ over UL has a unique
solution χωN0 , and moreover the set ωN0 has a finite number of connected components.

As previously, note that the assumptions of the above theorem (referred to as L∞-QUE,
as discussed further) are strong. We are however able to prove that the conclusion of
Theorem 1.3 holds true in a hypercube with Dirichlet boundary conditions with the usual
eigenfunctions there are of products of sine functions, although QUE is not satisfied in
such a domain (see Proposition 4.20 in Section 4.4).

The theorem says that, for the problem of maximizing Jσ,N over UL, the sequence of
optimal sets ωN is stationary whenever L is large enough, and ωN0 is the (unique) optimal
set, solving the problem of maximizing Jσ . It can be noted that the lower threshold in
L depends on the chosen weights, and the numerical simulations that we will provide
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indicate that this threshold is sharp in the sense that if L < σ1 then the sequence of
maximizing sets loses its stationarity feature.

In conclusion, this weighted version of our spectral criterion can be viewed as a rem-
edy for the spillover phenomenon. Note that, of course, other more evident remedies can
be discussed, such as the search for an optimal domain in a set of subdomains sharing
nice compactness properties (such as having a uniform perimeter or BV norm; see Sec-
tion 4.3). However, our aim is to investigate the optimization problems in the broadest
classes of measurable domains and discuss the mathematical, physical and practical rele-
vance of the criterion encoding the notion of optimal observability.

Let us finally note that all our results hold for wave and Schrödinger equations on
any open bounded connected subset of a Riemannian manifold (replacing 1 with the
Laplace–Beltrami operator), with various possible boundary conditions (Dirichlet, Neu-
mann, mixed, Robin) or no boundary conditions in case the manifold is compact without
boundary. The abstract framework and possible generalizations are described in Section 5.

1.2. Brief state of the art

The literature on optimal observation or sensor location problems is abundant in engineer-
ing applications (see, e.g., [35, 45, 59, 62, 65] and references therein), but the number of
mathematical theoretical contributions is limited.

In engineering applications, the aim is to optimize the number, place and type of
sensors in order to improve the estimation of the state of the system, and this concerns,
for example, active structural acoustics, piezoelectric actuators, vibration control in me-
chanical structures, damage detection and chemical reactions, to name but a few. In most
of these applications, however, the method consists in approximating appropriately the
problem by selecting a finite number of possible optimal candidates and recasting it as a
finite-dimensional combinatorial optimization problem. Among the possible approaches,
the closest one to ours consists in considering truncations of Fourier expansion represen-
tations. Adopting such a Fourier point of view, the authors of [22, 23] studied optimal
stabilization issues for the one-dimensional wave equation and, up to our knowledge,
these are the first articles in which one can find rigorous mathematical arguments and
proofs to characterize the optimal set whenever it exists, for the problem of determining
the best possible shape and position of the damping subdomain of a given measure. In
[4] the authors investigate the problem modeled in [59] of finding the best possible distri-
butions of two materials (with different elastic Young modulus and different density) in
a rod in order to minimize the vibration energy in the structure. For this optimal design
problem in wave propagation, the authors of [4] prove existence results and provide con-
vexification and optimality conditions. The authors of [1] also propose a convexification
formulation of eigenfrequency optimization problems applied to optimal design. In [17]
the authors discuss several possible criteria for optimizing the damping of abstract wave
equations in Hilbert spaces, and derive optimality conditions for a certain criterion related
to a Lyapunov equation. In [50] we investigated the problem (9) in the one-dimensional
case. We also quote the article [51] where we study the related problem of finding the
optimal location of the support of the control for the one-dimensional wave equation. We
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mention our work [53] on parabolic equations (see also references therein), for which
results are of a very different nature.

In this paper, we provide a complete model and mathematical analysis of the optimal
observability problem, overviewed in Section 1.1. The article is structured as follows.

Section 2 is devoted to discussing and defining a relevant mathematical criterion,
modeling the optimal observability problem. We first introduce the context and recall
the classical observability inequality, and then using spectral considerations we introduce
randomized or time asymptotic observability inequalities, to come up with a spectral cri-
terion which is at the heart of our study.

The resulting optimal design problem is solved in Section 3, where we derive, under
appropriate spectral assumptions, a no-gap result between our problem and its convexi-
fied version. To do so, we exhibit some deep relations between shape optimization and
concentration properties of eigenfunctions.

The existence of an optimal set is investigated in Section 4. We study a spectral ap-
proximation of our problem, providing a maximizing sequence of optimal sets which
does not converge in general. We then provide some remedies, in particular by defining a
weighted spectral criterion and showing the existence and uniqueness of an optimal set.

Section 5 is devoted to generalizing all results to wave and Schrödinger equations on
any open bounded connected subset of a Riemannian manifold, with various boundary
conditions.

Further comments are provided in Section 6, concerning the problem of optimal shape
and location of internal controllers, as well as several open problems and issues.

2. Modeling the optimal observability problem

This section is devoted to discussing and mathematically modeling the problem of maxi-
mizing the observability of wave equations. A first natural model is to settle the problem
of maximizing the observability constant, but it appears that this problem is both difficult
to treat from the theoretical point of view, and actually not so relevant for practice. Using
spectral considerations, we will then define a spectral criterion based on averaged ver-
sions of the observability inequalities, which is better suited to model what is expected in
practice.

2.1. The framework

Let n ≥ 1, T be a positive real number and � be an open bounded connected subset
of Rn. We consider the wave equation

∂t ty = 1y (10)

in (0, T ) × �, with Dirichlet boundary conditions. Let ω be an arbitrary measurable
subset of � of positive measure. Throughout the paper, the notation χω stands for the
characteristic function of ω. The equation (10) is said to be observable on ω in time T if
there exists C(W)T (χω) > 0 such that



Optimal observability of wave and Schrödinger equations 1053

C
(W)
T (χω)‖(y

0, y1)‖2
L2×H−1 ≤

∫ T

0

∫
ω

|y(t, x)|2 dx dt (11)

for all (y0, y1) ∈ L2(�,C) × H−1(�,C). This is the so-called observability inequal-
ity, relevant in inverse problems or in control theory because of its dual equivalence to
controllability (see [42]). It is well known that within the class of C∞ domains �, this
observability property holds, roughly, if the pair (ω, T ) satisfies the Geometric Control
Condition (GCC) in � (see [3, 9]), according to which every geodesic ray in �, reflected
on its boundary according to the laws of geometric optics, intersects the observation set ω
within time T . In particular, if at least one ray does not reach ω until time T then the
observability inequality fails because of the existence of Gaussian beam solutions con-
centrated along the ray, and therefore away from the observation set (see [55]).

In what follows, the observability constant C(W)T (χω) is the largest possible nonnega-
tive constant for which the inequality (11) holds, that is,

C
(W)
T (χω) = inf

{∫ T
0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

∣∣∣∣ (y0, y1) ∈ L2(�,C)×H−1(�,C)\{(0, 0)}
}
.

(12)
We next discuss the question of mathematically modeling the notion of maximizing

the observability of wave equations. It is a priori natural to consider the problem of maxi-
mizing the observability constant C(W)T (χω) over all possible subsets ω of � of Lebesgue
measure |ω| = L|�| for a given time T > 0. In the next two subsections, using spectral
expansions, we discuss the difficulty and relevance of this problem, leading us to consider
a more adapted spectral criterion.

2.2. Spectral expansion of solutions

From now on, we fix an orthonormal Hilbert basis (φj )j∈N∗ of L2(�,C) consisting of
eigenfunctions of the Dirichlet–Laplacian on �, associated with the positive eigenval-
ues (λ2

j )j∈N∗ . As said in the introduction, in what follows the Sobolev norms are com-
puted in a spectral way with respect to these eigenelements. Let (y0, y1) ∈ L2(�,C) ×
H−1(�,C) be some arbitrary initial data. The solution y ∈ C0(0, T ;L2(�,C)) ∩
C1(0, T ;H−1(�,C)) of (10) such that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·) can be
expanded as

y(t, x) =

∞∑
j=1

(aj e
iλj t + bj e

−iλj t )φj (x), (13)

where the sequences (aj )j∈N∗ and (bj )j∈N∗ belong to `2(C) and are determined in terms
of the initial data (y0, y1) by

aj =
1
2

(∫
�

y0(x)φj (x) dx −
i

λj

∫
�

y1(x)φj (x) dx

)
,

bj =
1
2

(∫
�

y0(x)φj (x) dx +
i

λj

∫
�

y1(x)φj (x) dx

)
,

(14)
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for every j ∈ N∗. Moreover, we have2

‖(y0, y1)‖2
L2×H−1 = 2

∞∑
j=1

(|aj |
2
+ |bj |

2). (15)

It follows from (13) that∫ T

0

∫
ω

|y(t, x)|2 dx dt =

∞∑
j,k=1

αjk

∫
ω

φi(x)φj (x) dx, (16)

where

αjk =

∫ T

0
(aj e

iλj t − bj e
−iλj t )(āke

−iλk t − b̄ke
iλk t ) dt. (17)

The coefficients αjk , (j, k) ∈ (N∗)2, depend only on the initial data (y0, y1), and their
precise expression is given by

αjk =
2aj āk
λj − λk

sin
(
(λj − λk)

T

2

)
ei(λj−λk)T /2 −

2aj b̄k
λj + λk

sin
(
(λj + λk)

T

2

)
ei(λj+λk)T /2

−
2bj āk
λj + λk

sin
(
(λj + λk)

T

2

)
e−i(λj+λk)T /2 +

2bj b̄k
λj − λk

sin
(
(λj − λk)

T

2

)
e−i(λj−λk)T /2

(18)

whenever λj 6= λk , and

αjk = T (aj āk + bj b̄k)−
sin(λjT )
λj

(aj b̄ke
iλjT + bj āke

−iλjT ) (19)

when λj = λk .

Remark 2.1. In dimension one, set � = (0, π). Then φj (x) =
√

2/π sin(jx) and λj =
j for every j ∈ N∗. In this one-dimensional case, it can be noticed that all nondiagonal
terms vanish when the time T is a multiple of 2π . Indeed, if T = 2pπ with p ∈ N∗, then
αij = 0 whenever i 6= j , and

αjj = pπ(|aj |
2
+ |bj |

2) (20)

for all (i, j) ∈ (N∗)2, and therefore∫ 2pπ

0

∫
ω

|y(t, x)|2 dx dt =

∞∑
j=1

αjj

∫
ω

sin2(jx) dx. (21)

Hence in that case there are no crossed terms. The optimal observability problem for this
one-dimensional case was studied in detail in [50].

2 Indeed, for every u =
∑
∞
j=1 ujφj ∈ L

2(�,C), we have ‖u‖2
L2 =

∑
∞
j=1 |uj |

2 and ‖u‖2
H−1 =∑

∞
j=1 |uj |

2/λ2
j

.
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Using the above spectral expansions, the observability constant is given by

C
(W)
T (χω) =

1
2

inf
(aj ),(bj )∈`

2(C)∑
∞

j=1(|aj |
2
+|bj |

2)=1

∫ T

0

∫
ω

∣∣∣ ∞∑
j=1

(aj e
iλj t − bj e

−iλj t )φj (x)

∣∣∣2 dx dt, (22)

aj and bj being the Fourier coefficients of the initial data, defined by (14).
Due to the crossed terms appearing in (16), the problem of maximizing C(W)T (χω)

over all possible subsets ω of� of measure |ω| = L|�| is very difficult to handle, at least
from the theoretical point of view. The difficulty related to the cross terms already appears
in one-dimensional problems (see [50]). Actually, this question is very much related to
classical problems in nonharmonic Fourier analysis, such as the one of determining the
best constants in Ingham’s inequalities (see [29, 30]).

This problem is therefore let open, but as we will see next, although it is very inter-
esting, it is not so relevant from the practical point of view.

2.3. Randomized observability inequality

As mentioned above, the problem of maximizing the deterministic (classical) observabil-
ity constant C(W)T (χω) defined by (12) over all possible measurable subsets ω of � of
measure |ω| = L|�| is open and is probably very difficult. However, when considering
the practical problem of locating sensors in an optimal way, the optimality should rather
be considered in terms of an average with respect to a large number of experiments. From
this point of view, the observability constant C(W)T (χω), which is by definition determinis-
tic, is expected to be pessimistic in the sense that it corresponds to the worst possible case.
In practice, when carrying out a large number of experiments, it can be expected that the
worst possible case does not occur very often. Having this in mind, we next define a new
notion of observability inequality by considering an average over random initial data.

The observability constant defined by (12) is defined as an infimum over all possible
(deterministic) initial data. We are going to slightly modify this definition by random-
izing the initial data in some precise sense, and considering an averaged version of the
observability inequality with a new (randomized) observability constant.

Consider the expression of C(W)T (χω) given by (22) in terms of spectral expansions.
Following the works of N. Burq and N. Tzvetkov on nonlinear partial differential equa-
tions with random initial data (see [7, 10, 11]), which use early ideas of Paley and Zyg-
mund (see [47]), we randomize the coefficients aj , bj , cj , with respect to the initial condi-
tions, by multiplying each of them by some well chosen random law. This random selec-
tion of all possible initial data for the wave equation (10) consists in replacing C(W)T (χω)

by the randomized version

C
(W)
T ,rand(χω) =

1
2

inf
(aj ),(bj )∈`

2(C)∑
∞

j=1(|aj |
2
+|bj |

2)=1

E
(∫ T

0

∫
ω

∣∣∣∣ ∞∑
j=1

(βν1,jaj e
iλj t − βν2,jbj e

−iλj t )φj (x)

∣∣∣∣2 dx dt), (23)



1056 Yannick Privat et al.

where (βν1,j )j∈N∗ and (βν2,j )j∈N∗ are sequences of independent Bernoulli random vari-
ables on a probability space (X ,A,P), satisfying

P(βν1,j = ±1) = P(βν2,j = ±1) = 1/2 and E(βν1,jβ
ν
2,k) = 0,

for all j and k in N∗ and every ν ∈ X . Here, E stands for the expectation over the
space X with respect to the probability measure P. In other words, instead of considering
the deterministic observability inequality (11) for the wave equation (10), we consider the
randomized observability inequality

C
(W)
T ,rand(χω)‖(y

0, y1)‖2
L2×H−1 ≤ E

(∫ T

0

∫
ω

|yν(t, x)|
2 dx dt

)
(24)

for all (y0, y1) ∈ L2(�,C) × H−1(�,C), where yν denotes the solution of the wave
equation with the random initial data y0

ν (·) and y1
ν (·) determined by their Fourier coeffi-

cients aνj = β
ν
1,jaj and bνj = β

ν
2,jbj (see (14) for the explicit relation between the Fourier

coefficients and the initial data), that is,

yν(t, x) =

∞∑
j=1

(βν1,jaj e
iλj t + βν2,jbj e

−iλj t )φj (x). (25)

This new constant C(W)T ,rand(χω) is called the randomized observability constant.

Theorem 2.2. We have

2C(W)T ,rand(χω) = T inf
j∈N∗

∫
ω

φj (x)
2 dx

for every measurable subset ω of �.

Proof. The proof is immediate by expanding the square in (23), using Fubini’s theorem
and the fact that the random laws are independent, of zero mean and of variance 1. ut

Remark 2.3. It can be easily checked that Theorem 2.2 still holds true when consider-
ing, in the above randomization procedure, more general real random variables that are
independent, have mean 0, variance 1, and superexponential decay. We refer to [7, 10]
for more details on these randomization issues. Bernoulli and Gaussian random variables
satisfy such appropriate assumptions. As proved in [11], for all initial data (y0, y1) ∈

L2(�,C)×H−1(�,C), the Bernoulli randomization keeps the L2
×H−1 norm constant,

whereas Gaussian randomization generates a dense subset of L2(�,C) × H−1(�,C)
through the mapping R(y0,y1) : ν ∈ X 7→ (y0

ν , y
1
ν ) provided that all Fourier coefficients

of (y0, y1) are nonzero and the measure θ charges all open sets of R. The measureµ(y0,y1)

defined as the image of P by R(y0,y1) strongly depends both on the choice of the random
variables and on the choice of the initial data (y0, y1). Properties of these measures are
established in [11].

Remark 2.4. It is easy to see that C(W)T ,rand(χω) ≥ C
(W)
T (χω) for every measurable subset

ω of �, and every T > 0.
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Remark 2.5. As mentioned previously, the problem of maximizing the deterministic
(classical) observability constant C(W)T (χω) defined by (12) over all possible measurable
subsets ω of� of measure |ω| = L|�| is open and is probably very difficult. For practical
issues it is actually more natural to consider the problem of maximizing the randomized
observability constant defined by (23). Indeed, when considering for instance the practi-
cal problem of locating sensors in an optimal way, the optimality should be considered
in terms of an average with respect to a large number of experiments. From this point of
view, the deterministic observability constant is expected to be pessimistic with respect
to its randomized version. Indeed, in general it is expected that C(W)T ,rand(χω) > C

(W)
T (χω).

In dimension one, with � = (0, π) and Dirichlet boundary conditions, it follows
from [50, Proposition 2] (where this one-dimensional case is studied in detail) that these
strict inequalities hold if and only if T is not an integer multiple of π (note that if T is
a multiple of 2π then the equalities follow immediately from Parseval’s Theorem). Note
that, in the one-dimensional case, the GCC is satisfied for every T ≥ 2π , and the fact
that the deterministic and the randomized observability constants do not coincide is due
to crossed Fourier modes in the deterministic case.

In dimension greater than one, there is a class of examples where the strict inequality
holds: this is indeed the case when one is able to assert that C(W)T (χω) = 0 whereas
C
(W)
T ,rand(χω) > 0. Let us provide several examples.

An example of such a situation for the wave equation is provided by considering
� = (0, π)2 with Dirichlet boundary conditions and L = 1/2. It is indeed proved further
(see Proposition 4.2 and Remark 4.4) that the domain ω = {(x, y) ∈ � | x < π/2}
maximizes J over UL, and that J (χω) = 1/2. Clearly, such a domain does not satisfy the
Geometric Control Condition, and one has C(W)T (χω) = 0, whereas C(W)∞ (χω) = 1/4.

Another class of examples for the wave equation is provided by the well known Buni-
movich stadium with Dirichlet boundary conditions. Setting � = R ∪W , where R is the
rectangular part and W the circular wings, it is proved in [12] that, for any open neigh-
borhood ω of the closure of W (or even, any neighborhood ω of the vertical intervals
between R andW ) in �, there exists c > 0 such that

∫
ω
φj (x)

2 dx ≥ c for every j ∈ N∗.
It follows that J (χω) > 0, whereas C(W)T (χω) = 0 since ω does not satisfy the Geometric
Control Condition. It can be noted that the result still holds if one replaces the wings W
by any other manifold glued along R, so that � is a partially rectangular domain.

2.4. Conclusion: a relevant criterion

In the previous section we have shown that it is more relevant in practice to model the
problem of maximizing the observability as the problem of maximizing the randomized
observability constant.

Using Theorem 2.2, this leads us to consider the following spectral problem.

• Let L ∈ (0, 1) be fixed. Maximize the spectral functional

J (χω) = inf
j∈N∗

∫
ω

φj (x)
2 dx (26)

over all possible measurable subsets ω of � of measure |ω| = L|�|.
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Note that this spectral criterion is independent of T and is of diagonal nature, not in-
volving any crossed term. However, it depends on the choice of the specific Hilbert basis
(φj )j∈N∗ of eigenfunctions of A, at least when the spectrum of A is not simple. We will
come back to this issue in Section 3.6 by considering an intrinsic spectral criterion, where
the infimum is taken over all possible normalized eigenfunctions of A.

Maximization of J will be studied in Section 3, and will lead to an unexpectedly rich
field of investigations, related to quantum ergodicity properties of �.

Before going on with that study, let us provide another way of coming up with the
spectral functional (26). In the previous section we have seen that T J (χω) can be inter-
preted as a randomized observability constant, corresponding to a randomized observ-
ability inequality. We will see next that J (χω) can also be obtained by performing a time
averaging procedure on the classical observability inequality.

2.5. Time asymptotic observability inequality

First of all, we claim that, for all (y0, y1) ∈ L2(�,C)×H−1(�,C), the quantity

1
T

∫ T

0

∫
ω

|y(t, x)|2 dx dt,

where y ∈ C0(0, T ;L2(�,C))∩C1(0, T ;H−1(�,C)) is the solution of the wave equa-
tion (10) such that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·), has a limit as T tends to ∞
(this fact is proved in Lemmas A.1 and A.2 further). This leads to the concept of time
asymptotic observability constant

C(W)∞ (χω) =

inf
{

lim
T→∞

1
T

∫ T
0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

∣∣∣∣ (y0, y1) ∈ L2(�,C)×H−1(�,C) \ {(0, 0)}
}
.

(27)

This constant appears as the largest possible nonnegative constant for which the time
asymptotic observability inequality

C(W)∞ (χω)‖(y
0, y1)‖2

L2×H−1 ≤ lim
T→∞

1
T

∫ T

0

∫
ω

|y(t, x)2| dx dt (28)

holds for all (y0, y1) ∈ L2(�,C)×H−1(�,C).
We have the following results.

Theorem 2.6. For every measurable subset ω of �,

2C(W)∞ (χω) = inf
{∫

ω

∑
λ∈U |

∑
k∈I (λ) ckφk(x)|

2 dx∑
∞

k=1 |ck|
2

∣∣∣∣ (cj )j∈N∗ ∈ `2(C) \ {0}
}
,

where U is the set of all distinct eigenvalues λk and I (λ) = {j ∈ N∗ | λj = λ}.
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Corollary 2.7. 2C(W)∞ (χω) ≤ J (χω) for every measurable subset ω of �. If the domain
� is such that every eigenvalue of the Dirichlet–Laplacian is simple, then

2C(W)∞ (χω) = inf
j∈N∗

∫
ω

φj (x)
2 dx = J (χω)

for every measurable subset ω of �.

The proof of these results is given in the Appendix. Note that, as is well known, the
assumption of the simplicity of the spectrum of the Dirichlet–Laplacian is generic with
respect to the domain � (see e.g. [44, 63, 26]).

Remark 2.8. It follows obviously from the definitions of the observability constants that

lim sup
T→∞

C
(W)
T (χω)

T
≤ C(W)∞ (χω)

for every measurable subset ω of �. However, equality does not hold in general. Indeed,
consider a set � with a smooth boundary, and a pair (ω, T ) not satisfying the Geometric
Control Condition. Then C(W)T (χω) = 0 must hold. However, J (χω) may be positive, as
already discussed in Remark 2.5 where we gave several classes of examples having this
property.

3. Optimal observability under quantum ergodicity assumptions

We define

UL = {χω | ω is a measurable subset of � of measure |ω| = L|�|}. (29)

In Section 2, our discussions have led us to model the problem of optimal observability
as

sup
χω∈UL

J (χω) (30)

with
J (χω) = inf

j∈N∗

∫
ω

φj (x)
2 dx,

where (φj )j∈N∗ is a Hilbert basis of L2(�,C) (defined in Section 2.1), consisting of
eigenfunctions of 1.

The cost functional J (χω) can be seen as a spectral energy (de)concentration crite-
rion. For every j ∈ N∗, the integral

∫
ω
φj (x)

2 dx is the energy of the j th eigenfunction
restricted to ω, and the problem is to maximize the infimum over j of these energies, over
all subsets ω of measure |ω| = L|�|.

This section is organized as follows. Section 3.1 contains some preliminary remarks
and, in particular, introduces a convexified version of the problem (30). Our main results
are stated in Section 3.2. They provide the optimal value of (30) under spectral assump-
tions on �, by proving moreover that there is no gap between the problem (30) and its
convexified version. These assumptions are discussed in Section 3.3. Sections 3.4 and 3.5
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are devoted to proving our main results. Finally, in Section 3.6 we consider an intrinsic
spectral variant of (30) where, as announced in Section 2.4, the infimum is taken over all
possible normalized eigenfunctions of 1.

3.1. Preliminary remarks

Since the set UL does not have compactness properties ensuring the existence of a solution
of (30), we consider the convex closure of UL for the weak star topology of L∞,

UL =
{
a ∈ L∞(�, [0, 1])

∣∣∣∣ ∫
�

a(x) dx = L|�|

}
. (31)

This convexification procedure is standard in shape optimization problems where an opti-
mal domain may fail to exist because of hard constraints (see e.g. [6]). Replacing χω ∈ UL
with a ∈ UL, we define a convexified formulation of the problem (30) by

sup
a∈UL

J (a), (32)

where
J (a) = inf

j∈N∗

∫
�

a(x)φj (x)
2 dx. (33)

Obviously, we have

sup
χω∈UL

inf
j∈N∗

∫
�

χω(x)φj (x)
2 dx ≤ sup

a∈UL
inf
j∈N∗

∫
�

a(x)φj (x)
2 dx. (34)

In the next section, we compute the optimal value (32) of this convexified problem
and investigate the question of knowing whether the inequality (34) is strict or not. In
other words we investigate whether there is a gap or not between the problem (30) and its
convexified version (32).

Remark 3.1 (Comments on the choice of the topology). In our study we consider mea-
surable subsets ω of�, and we endow the setL∞(�, {0, 1}) of all characteristic functions
of measurable subsets with the weak star topology. Other topologies are used in shape
optimization problems, such as the Hausdorff topology. Note however that, although the
Hausdorff topology has nice compactness properties, it cannot be used in our study be-
cause of the measure constraint on ω. Indeed, Hausdorff convergence does not preserve
measure, and the class of admissible domains is not closed for this topology. Topologies
associated with convergence in the sense of characteristic functions or in the sense of
compact sets (see for instance [25, Chapter 2]) do not easily guarantee the compactness
of minimizing sequences of domains, unless one restricts the class of admissible domains,
imposing for example some kind of uniform regularity.

Remark 3.2. We stress that the question of the possible existence of a gap between
the original problem and its convexified version is not obvious and cannot be handled
with usual 0-convergence tools, in particular because the function J defined by (33)
is not lower semicontinuous for the weak star topology of L∞ (it is however upper
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semicontinuous for that topology, as an infimum of linear functions). To illustrate this
fact, consider the one-dimensional case of Remark 2.1. In this specific situation, since
φj (x) =

√
2/π sin(jx) for every j ∈ N∗, one has

J (a) =
2
π

inf
j∈N∗

∫ π

0
a(x) sin2(jx) dx

for every a ∈ UL. Since the functions x 7→ sin2(jx) converge weakly to 1/2, it clearly
follows that J (a) ≤ L for every a ∈ UL. Therefore, we have sup

a∈UL J (a) = L, and
the supremum is reached for the constant function a(·) = L. Consider the sequence of
subsets ωN of (0, π) of measure Lπ defined by

ωN =

N⋃
k=1

(
kπ

N + 1
−
Lπ

2N
,
kπ

N + 1
+
Lπ

2N

)
for every N ∈ N∗. Clearly, the sequence of functions χωN converges to the constant func-
tion a(·) = L for the weak star topology of L∞, but nevertheless, an easy computation
shows that

∫
ωN

sin2(jx) dx =


Lπ

2
−
N

2j
sin
(
jLπ

N

)
if (N + 1) | j,

Lπ

2
+

1
2j

sin
(
jLπ

N

)
otherwise,

and hence

lim sup
N→∞

2
π

inf
j∈N∗

∫
ωN

sin2(jx) dx < L.

This simple example illustrates the difficulty in understanding the limiting behavior of
the functional because of the lack of lower semicontinuity, which makes possible the
occurrence of a gap in the convexification procedure. In Section 3.2, we will prove that
there is no such gap under an additional geometric spectral assumption.

3.2. Optimal value of the problem

Let us first compute the optimal value of the convexified optimal design problem (32).

Lemma 3.3. The problem (32) has at least one solution. Moreover,

sup
a∈UL

inf
j∈N∗

∫
�

a(x)φj (x)
2 dx = L, (35)

and the supremum is reached for the constant function a(·) = L on �.

Proof. Since J (a) is defined as the infimum of linear functionals that are continuous for
the weak star topology of L∞, it is upper semicontinuous for this topology. It follows that
the problem (32) has at least one solution, denoted by a∗(·).
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In order to prove (35), we consider Cesàro means of eigenfunctions.3 Note that, since
the constant function a(·) = L belongs to UL, it follows that sup

a∈UL J (a) ≥ L. Let us
prove the converse inequality. Since

sup
a∈UL

inf
j∈N∗

∫
�

a(x)φj (x)
2 dx = inf

(αj )∈`1(R+)∑
∞

j=1 αj=1

∞∑
j=1

αj

∫
�

a∗(x)φj (x)
2 dx,

one gets, by considering particular choices of sequences (αj )j∈N∗ ,

sup
a∈UL

inf
j∈N∗

∫
�

a(x)φj (x)
2 dx ≤ inf

N∈N∗
1
N

N∑
j=1

∫
�

a∗(x)φj (x)
2 dx.

By [28, Theorem 17.5.7 and Corollary 17.5.8], the sequence (N−1∑N
j=1 φ

2
j )N∈N∗ of

Cesàro means is uniformly bounded on�, and converges to the constant |�|−1 uniformly
on every compact subset of the open set� for the C0 topology and thus weakly in L1(�).
As a consequence, since a∗ ∈ L∞(�), we have

inf
N∈N∗

1
N

N∑
j=1

∫
�

a∗(x)φj (x)
2 dx ≤

∫
�
a∗(x) dx

|�|
= L.

The conclusion follows. ut

Remark 3.4. In general the convexified problem (32) does not admit a unique solu-
tion. Indeed, under symmetry assumptions on � there exist infinitely many solutions.
For example, in dimension one, with � = (0, π), all solutions of (32) are given
by all functions in UL whose Fourier expansion series is of the form a(x) = L +∑
∞

j=1(aj cos(2jx)+ bj sin(2jx)) with coefficients aj ≤ 0.

It follows from (34) and (35) that supχω∈UL infj∈N∗
∫
ω
φj (x)

2 dx ≤ L. The next result
states that this inequality is an equality under the following spectral assumptions. Note
that µj = φ2

j dx is a probability measure for every integer j .

3 In an early version of this manuscript, we used the following two assumptions on (φj )j∈N∗ in
order to prove (35).

• Weak Quantum Ergodicity (WQE) on the base. There exists a subsequence of the sequence of
probability measures µj = φ2

j
dx converging vaguely to the uniform measure |�|−1dx.

• Uniform L∞-boundedness. There exists A > 0 such that ‖φj‖L∞(�) ≤ A for every j ∈ N∗.
Note that the two assumptions above imply, in particular, that there exists a subsequence of
(φ2
j
)j∈N∗ converging to |�|−1 for the weak star topology of L∞(�). Under these assumptions,

(35) follows easily. We warmly thank Lior Silberman who indicated to us that the WQE assump-
tion may be dropped by using a Cesàro mean argument, and Nicolas Burq for having pointed out
the appropriate result of [28] used hereafter.
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• Quantum Unique Ergodicity (QUE) on the base. The whole sequence of probability
measures µj = φ2

j dx converges vaguely to the uniform measure |�|−1 dx.
• Uniform Lp-boundedness. There exist p∈(1,∞] andA>0 such that ‖φj‖L2p(�)≤A

for every j ∈ N∗.
We stress that these assumptions are made for a selected Hilbert basis (φj )j∈N∗ of eigen-
functions. We refer to Section 3.3 for many comments on that fact from the semiclassical
analysis point of view.

Theorem 3.5. Assume that ∂� is Lipschitz. Under QUE on the base and uniform Lp-
boundedness assumptions, we have

sup
χω∈UL

inf
j∈N∗

∫
ω

φj (x)
2 dx = L (36)

for every L ∈ (0, 1).

Theorem 3.5 is proved in Section 3.4. It follows from this result, together with Corollary
2.7 and Theorem 2.2, that the maximal value of the randomized observability constant
C
(W)
T ,rand(χω) over the set UL is equal to T L/2, and that, if the spectrum of1 is simple, the

maximal value of the time asymptotic observability constant C(W)∞ (χω) over the set UL is
equal to L/2.

The question of knowing whether the supremum in (36) is reached (existence of an
optimal set) is investigated in Section 4.1.

Remark 3.6. It follows from the proof of Theorem 3.5 that this statement holds true as
well whenever the set UL is replaced with the set of all measurable subsets ω of �, of
measure |ω| = L|�|, that are moreover either open with a Lipschitz boundary, or open
with a bounded perimeter, or Jordan measurable (i.e., whose boundary is of measure
zero).

Remark 3.7. The proof of Theorem 3.5 is constructive and provides a theoretical way of
building a maximizing sequence of subsets, by implementing a kind of homogenization
procedure. Moreover, this proof highlights the following interesting feature:
• It is possible to increase the value of J by considering subsets having an increasing

number of connected components.

Remark 3.8. The assumptions of Theorem 3.5 are sufficient to imply (36), but they are
not sharp, as proved in the next proposition.

Proposition 3.9. (i) Assume that � = (0, π)2 is a square in R2, and consider the usual
Hilbert basis of eigenfunctions of 1 made of products of sine functions. Then QUE
on the base is not satisfied. However, the equality (36) holds true.

(ii) Assume that � is the unit disk in R2, and consider the usual basis of eigenfunctions
of 1 defined in terms of Bessel functions. Then, for every p ∈ (1,∞], the uniform
Lp-boundedness property is not satisfied, and QUE on the base is not satisfied. How-
ever, the equality (36) holds true.

In this proposition, the result on the square could be expected, since the square is nothing
but a tensorized version of the one-dimensional case (see also Remark 3.10 hereafter).
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The result in the disk is more surprising, having in mind that, among the quantum limits
in the disk, one can find the Dirac measure along the boundary which causes the well
known phenomenon of whispering galleries. This strong concentration feature could have
led to the intuition that there exists an optimal set, concentrating around the boundary; the
calculations show that it is however not the case, and (36) is proved to hold.

The next subsection brings some comments on the quantum ergodicity assumptions
made in these theorems.

3.3. Comments on quantum ergodicity assumptions

This subsection is organized as a series of remarks.

Remark 3.10. The assumptions of Theorem 3.5 hold true in dimension one. Indeed, it
has already been mentioned that the eigenfunctions of the Dirichlet–Laplacian operator
on � = (0, π) are given by φj (x) =

√
2/π sin(jx) for every j ∈ N∗. Therefore, clearly,

the whole sequence (not only a subsequence) (φ2
j )j∈N∗ converges weakly to 1/π for the

weak star topology of L∞(0, π). The same property clearly holds for all other boundary
conditions considered in this article.

Remark 3.11. In dimension greater than one the situation is widely open. Generally
speaking, our assumptions are related to ergodicity properties of �. Before providing
precise results, we recall the following well known definition.

• Quantum Ergodicity (QE) on the base. There exists a subsequence of the sequence
of probability measures µj = φ2

j dx of density one converging vaguely to the uniform
measure |�|−1dx.

Here, density one means that there exists I ⊂ N∗ such that #{j ∈ I | j ≤ N}/N

converges to 1 as N → ∞. Note that QE implies WQE.4 It is well known that, if the
domain � (seen as a billiard where the geodesic flow moves at unit speed and bounces
at the boundary according to the geometric optics laws) is ergodic, then QE is satisfied.
This is the contents of Shnirel’man’s Theorem, proved in [14, 19, 58, 68] in various
contexts (manifolds with or without boundary, with a certain regularity). Actually the
results proved in these references are stronger, for two reasons. Firstly, they are valid for
any Hilbert basis of eigenfunctions of 1, whereas here we make this kind of assumption
only for the specific basis (φj )j∈N∗ that has been fixed at the beginning of the study.
Secondly, they establish that a stronger microlocal version of the QE property holds for
pseudodifferential operators, in the unit cotangent bundle S∗� of �, and not just only on
the configuration space�. Here, however, we do not need (de)concentration results in the
full phase space, but only in the configuration space. This is why, following [67], we use
the wording “on the base”.

Note that the vague convergence of the measures µj is weaker than the convergence
of the functions φ2

j for the weak topology of L1(�). Since � is bounded, the property

4 Note that, up to our knowledge, the notion of WQE has not been considered before, whereas
QE and QUE are classical in mathematical physics.
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of vague convergence in Shnirel’man’s Theorem is equivalent to saying that, for a sub-
sequence of density one,

∫
ω
φj (x)

2 dx converges to |ω|/|�| for every Borel measurable
subset ω of � such that |∂ω| = 0 (this follows from the Portmanteau Theorem). In con-
trast, the property of convergence for the weak topology of L1(�) is equivalent to say-
ing that, for a subsequence of density one,

∫
ω
φj (x)

2 dx converges to |ω|/|�| for every
measurable subset ω of �. Under the assumption that all eigenfunctions are uniformly
bounded in L∞(�), both notions are equivalent.

Note that the notion of L∞-QE property, meaning that the above QE property holds
for the weak topology of L1, is defined and mentioned in [67] as a delicate open problem.
As said above, we stress that, under the assumption that all eigenfunctions are uniformly
bounded in L∞(�), QE and L∞-QE are equivalent.

To the best of our knowledge, nothing seems to be known on the uniformLp-bounded-
ness property. As above, it follows from the Portmanteau Theorem that, under uniform
Lp-boundedness (with p > 1), the QUE on the base property holds true for the weak
topology of L1.

Remark 3.12. Shnirel’man’s Theorem leaves open the possibility of having an excep-
tional subsequence of measures µj converging vaguely to some other measure. The QUE
assumption consists in assuming that the whole sequence converges vaguely to the uni-
form measure. It is an important issue in quantum and mathematical physics. Note indeed
that the quantity

∫
ω
φj (x)

2 dx is interpreted as the probability of finding the quantum
state of energy λ2

j in ω. We stress again that here we consider a version of QUE in the
configuration space only, not in the full phase space. Moreover, we consider the QUE
property for the basis (φj )j∈N∗ under consideration, but not necessarily for any such basis
of eigenfunctions.

QUE obviously holds true in the one-dimensional case of Remark 2.1 (see also Re-
mark 3.2) but it does not however hold true for multi-dimensional hypercubes.

More generally, only partial results exist. The question of determining what are the
possible weak limits of the µj ’s (semiclassical measures, or quantum limits) is widely
open in general. It could happen that, even in the framework of Shnirel’man’s Theorem, a
subsequence of density zero converges to an invariant measure like for instance a measure
carried by closed geodesics (these are the so-called strong scars, see, e.g., [18]). Note
however that, as already mentioned, here we are concerned with concentration results in
the configuration space only.

The QUE on the base property, stating that the whole sequence of measures µj =
φ2
j dx converges vaguely to the uniform measure, postulates that there is no such con-

centration phenomenon. Note that, although rational polygonal billiards are not ergodic
in the phase space, while polygonal billiards are generically ergodic (see [33]), the prop-
erty QE on the base holds in any rational polygon5 (see [43]), and in any flat torus (see
[56]). Apart from these recent results, and in spite of impressive recent results around
QUE (see, e.g., the survey [57]), up to now no example of a multi-dimensional domain is
known where QUE on the base holds true.

5 A rational polygon is a planar polygon whose interior is connected and simply connected and
whose vertex angles are rational multiples of π .
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Remark 3.13. The question of knowing whether there exists an example where there is a
gap between the convexified problem (32) and the original one (30), is an open problem.
We think that, if such an example exists, then the underlying geodesic flow ought to be
completely integrable and have strong concentration properties. As already mentioned,
in our framework we have fixed a given basis (φj )j∈N∗ of eigenvectors, and we consider
only the weak limits of the measures φ2

j dx. We are not aware of any example having
strong enough concentration properties to derive a gap statement.

Remark 3.14. Our results here show that shape optimization problems are intimately re-
lated to the ergodicity properties of �. Notice that, in the early article [13], the authors
suggested such connections. They analyzed the exponential decay of solutions of damped
wave equations. Their results show that the quantum effects of bouncing balls or whis-
pering galleries play an important role in the failure of exponential decay properties. At
the end of the article, the authors conjectured that such considerations could be useful
in the placement and design of actuators or sensors. Our results of this section provide
precise results showing these connections and new perspectives on those intuitions. In our
view they are the main contribution of our article, in the sense that they point out close
relations between shape optimization and ergodicity, and provide new open problems and
directions for domain optimization analysis.

3.4. Proof of Theorem 3.5

In what follows, for every measurable subset ω of �, we set Ij (ω) =
∫
ω
φj (x)

2 dx for
j ∈ N∗. By definition, J (ω) = infj∈N∗ Ij (ω). Note that, from QUE on the base and from
the Portmanteau Theorem (see Remark 3.11), it follows that, for every Borel measurable
subset ω of � such that |ω| = L|�| and |∂ω| = 0, one has Ij (ω) → L as j → ∞, and
hence J (ω) ≤ L.

Let ω0 be an open connected subset of � of measure L|�| having a Lipschitz bound-
ary. In what follows we assume that J (ω0) < L, otherwise there is nothing to prove. By
the QUE assumption, there exists an integer j0 such that

Ij (ω0) ≥ L−
1
4 (L− J (ω0)) (37)

for every j > j0.
Our proof below consists in implementing a kind of homogenization procedure by

constructing a sequence of open subsets ωk (starting from ω0) having a Lipschitz bound-
ary such that |ωk| = L|ωk| and limk→∞ J (ωk) = L. Proving this limit is not easy and we
are going to distinguish between lower and higher eigenfrequencies. For the low frequen-
cies, we are going to prove that, by moving some mass of the initial set ω0 according to
some kind of homogenization idea, we can increase the value of J . The high frequencies
will be tackled thanks to the estimate (37) implied by the QUE assumption.

Denote by ω0 the closure of ω0, and by ωc0 the complement of ω0 in �. Since � and
ω0 have a Lipschitz boundary, it follows that ω0 and �\ω0 have the δ-cone property6 for

6 We recall that an open subset� of Rn has the δ-cone property if, for every x ∈ ∂�, there exists
a normalized vector ξx such that C(y, ξx , δ) ⊂ � for every y ∈ � ∩ B(x, δ), where C(y, ξx , δ) =
{z ∈ Rn | 〈z− y, ξ〉 ≥ (cos δ)‖z− y‖ and 0 < ‖z− y‖ < δ}.
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some δ > 0 (see [25, Theorem 2.4.7]). Consider partitions of ω0 and ωc0,

ω0 =

K⋃
i=1

Fi and ωc0 =

K̃⋃
i=1

F̃i, (38)

to be chosen later. As a consequence of the δ-cone property, there exists cδ > 0 and a
partition (Fi)1≤i≤K (resp. (F̃i)1≤i≤K̃ ) such that, for |Fi | small enough,

∀i ∈ {1, . . . , K} (resp. ∀i ∈ {1, . . . , K̃}),
ηi

diamFi
≥ cδ

(
resp.

η̃i

diam F̃i
≥ cδ

)
, (39)

where ηi (resp., η̃i) is the inradius7 of Fi (resp., F̃i), and diamFi (resp., diam F̃i) the
diameter of Fi (resp., of F̃i).

It is then clear that, for every i ∈ {1, . . . , K} (resp., for every i ∈ {1, . . . , K̃}),
there exists ξi ∈ Fi (resp., ξ̃i ∈ F̃i) such that B(ξi, ηi/2) ⊂ Fi ⊂ B(ξi, ηi/cδ) (resp.,
B(ξ̃i, η̃i/2) ⊂ F̃i ⊂ B(ξ̃i, η̃i/cδ)), where B(ξ, η) stands for the open ball centered at ξ
with radius η. These features characterize a substantial family of sets (also called nicely
shrinking sets), as is well known in measure theory. By continuity, the points ξi and ξ̃i are
Lebesgue points of the functions φ2

j for every j ≤ j0. This implies that, for all j ≤ j0,∫
Fi

φj (x)
2 dx = |Fi |φj (ξi)

2
+ o(|Fi |) as ηi → 0,

for every i ∈ {1, . . . , K}, and∫
F̃i

φj (x)
2 dx = |F̃i |φj (ξi)

2
+ o(|F̃i |) as η̃i → 0,

for every i ∈ {1, . . . , K̃}. Setting η = max(max1≤i≤K diamFi,max1≤i≤K̃ diam F̃i) and

using
∑K
i=1 |Fi | = |ω0| = L|�| and

∑K̃
i=1 |F̃i | = |ω

c
0| = (1 − L)|�|, we obtain∑K

i=1 o(|Fi |)+
∑K̃
i=1 o(|F̃i |) = o(1) as η→ 0. It follows that

Ij (ω0) =

∫
ω0

φj (x)
2 dx =

K∑
i=1

|Fi |φj (ξi)
2
+ o(1),

Ij (ω
c
0) =

∫
ωc0

φj (x)
2 dx =

K̃∑
i=1

|F̃i |φj (ξ̃i)
2
+ o(1),

(40)

for every j ≤ j0, as η→ 0. Note that, since ωc0 is the complement of ω0 in �,

Ij (ω0)+ Ij (ω
c
0) =

∫
ω0

φj (x)
2 dx +

∫
ωc0

φj (x)
2 dx = 1 (41)

for every j . Seting hi = (1− L)|Fi | and `i = L|F̃i |, we infer from (40) and (41) that

7 In other words, the largest radius of balls contained in Fi .
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(1−L)Ij (ω0) =

K∑
i=1

hiφj (ξi)
2
+ o(1), LIj (ω0) = L−

K̃∑
i=1

`iφj (ξ̃i)
2
+ o(1), (42)

for every j ≤ j0, as η → 0. In what follows, we denote by Vn the Lebesgue measure of
the n-dimensional unit ball. For ε > 0 to be chosen later, we define the perturbation ωε

of ω0 by

ωε =
(
ω0\

K⋃
i=1

B(ξi, εi)
)
∪

K̃⋃
i=1

B(ξ̃i, ε̃i),

where εi=εh
1/n
i /|B(ξi, 1)|1/n=εh1/n

i /V
1/n
n and ε̃i=ε`

1/n
i /|B(̃ξi, 1)|1/n=ε`1/n

i /V
1/n
n .

Note that it is possible to define such a perturbation provided that

0 < ε < min
(

min
1≤i≤K

ηiV
1/n
n

h
1/n
i

, min
1≤i≤K̃

η̃iV
1/n
n

`
1/n
i

)
.

It follows from the well known isodiametric inequality8 that |Fi | ≤ Vn(diamFi)
n/2n for

every i ∈ {1, . . . , K}, and |F̃i | ≤ Vn(diam F̃i)
n/2n for every i ∈ {1, . . . , K̃}, indepen-

dently of the partitions considered. Set ε0 = min(1, 2cδ). Using (39), we get

ηiV
1/n
n

h
1/n
i

=
ηiV

1/n
n

(1− L)1/n|Fi |1/n
≥

1
(1− L)1/n

2ηi
diamFi

≥ ε0

for every i ∈ {1, . . . , K}, and similarly η̃iV
1/n
n /`

1/n
i ≥ ε0 for every i ∈ {1, . . . , K̃}. It

follows that the previous perturbation is well defined for every ε ∈ (0, ε0]. Note that, by
construction,

|ωε| = |ω0| −

K∑
i=1

εni |B(ξi, 1)| +
K̃∑
i=1

ε̃ni |B(̃ξi, 1)| = |ω0| − ε
n
K∑
i=1

hi + ε
n
K̃∑
i=1

`i

= |ω0| − ε
n(1− L)

K∑
i=1

|Fi | + ε
nL

K̃∑
i=1

|F̃i |

= |ω0| − ε
n(1− L)L|�| + εnL(1− L)|�| = |ω0| = L|�|.

Using again the fact that ξi and ξ̃i are Lebesgue points of the functions φ2
j , we get∫

B(ξi ,εi )

φj (x)
2 dx = |B(ξi, εi)|φj (ξi)

2
+ o(|B(ξi, εi)|) as εi → 0,

for every i ∈ {1, . . . , K}, and∫
B(̃ξi ,̃εi )

φj (x)
2 dx = |B(̃ξi, ε̃i)|φj (̃ξi)

2
+ o(|B(̃ξi, ε̃i)|) as ε̃i → 0,

8 The isodiametric inequality states that, for every compact subset K of the Euclidean space Rn,
we have |K| ≤ |B(0, diam(K)/2)|.
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for every i ∈ {1, . . . , K̃}. Since |B(ξi, εi)| = εn(1−L)|Fi | and |B(̃ξi, ε̃i)| = εnL|F̃i |, and
since

∑K
i=1 |Fi | = L|�| and

∑K̃
i=1 |F̃i | = (1−L)|�|, we infer that

∑K
i=1 o(|B(ξi, εi)|)+∑K̃

i=1 o(|B(̃ξi, ε̃i)|) = εno(1) as ε→ 0, and thus as η→ 0. It follows that

Ij (ω
ε) =

∫
ωε
φj (x)

2 dx = Ij (ω0)−

K∑
i=1

∫
B(ξi ,εi )

φj (x)
2 dx +

K̃∑
i=1

∫
B(ξ̃i ,̃εi )

φj (x)
2 dx,

= Ij (ω0)− ε
n
( K∑
i=1

hiφj (ξi)
2
−

K̃∑
i=1

`iφj (ξ̃i)
2
)
+ εno(1) as η→ 0,

and hence, using (42),

Ij (ω
ε) = Ij (ω0)+ ε

n(L− Ij (ω0))+ ε
no(1) as η→ 0,

for all j ≤ j0 and ε ∈ (0, ε0]. Since εn0 ≤ 1, it then follows that

Ij (ω
ε) ≥ J (ω0)+ ε

n(L− J (ω0))+ ε
no(1) as η→ 0, (43)

for all j ≤ j0 and ε ∈ (0, ε0], where the functional J is defined by (26).
We now choose the subdivisions (38) fine enough (that is, η > 0 small enough) so that,

for every j ≤ j0, the remainder term o(1) (as η→ 0) in (43) is bounded by 1
2 (L−J (ω0)).

It follows from (43) that

Ij (ω
ε) ≥ J (ω0)+

εn

2
(L− J (ω0)) (44)

for all j ≤ j0 and ε ∈ (0, ε0).
Let us prove that the set ωε still satisfies an inequality of the type (37) for ε small

enough. Using the uniform Lp-boundedness property and Hölder’s inequality, we have

|Ij (ω
ε)− Ij (ω0)| =

∣∣∣∣∫
�

(χωε (x)− χω0(x))φj (x)
2 dx

∣∣∣∣
≤ A2

(∫
�

|χωε (x)− χω0(x)|
q dx

)1/q

for every integer j and every ε ∈ (0, ε0], where q is defined by 1/p+1/q = 1. Moreover,∫
�

|χωε (x)− χω0(x)|
q dx =

∫
�

|χωε (x)− χω0(x)| dx = ε
n
( K∑
i=1

hi +

K̃∑
i=1

`i

)
= 2εnL(1− L)|�|,

and hence |Ij (ωε)− Ij (ω0)| ≤ (2A2qεnL(1− L)|�|)1/q . Therefore, setting

ε1 = min
(
ε0,

(
(L− J (ω0))

q

22q+1A2qL(1− L)|�|

)1/n)
,

it follows from (37) that
Ij (ω

ε) ≥ L− 1
2 (L− J (ω0)) (45)

for all j ≥ j0 and ε ∈ (0, ε1].
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Now, using the fact that J (ω0) +
εn

2 (L − J (ω0)) ≤ L − 1
2 (L − J (ω0)) for every

ε ∈ (0, ε0], we infer from (44) and (45) that

J (ωε) ≥ J (ω0)+
εn

2
(L− J (ω0)) (46)

for all ε ∈ (0, ε1]. In particular, this holds for ε such that εn = min(εn0 , C(L− J (ω0))
q)

with the positive constant C = 1/(22q+1A2qL(1 − L)|�|). For this specific value of ε,
we set ω1 = ω

ε, and hence

J (ω1) ≥ J (ω0)+
1
2 min

(
εn0 , C(L− J (ω0))

q
)
(L− J (ω0)). (47)

Note that the constants involved in this inequality depend only on L, A and �. Note also
that, by construction, ω1 has the δ-cone property.

If J (ω1) ≥ L then we are done. Otherwise, we apply all the previous arguments to
this new set ω1: using QUE, there exists an integer still denoted j0 such that (37) holds
with ω0 replaced with ω1. This provides a lower bound for high frequencies. The lower
frequencies j ≤ j0 are then handled as previously, and we end up with (44) with ω0
replaced with ω1. Finally, this leads to the existence of ω2 such that (47) holds with ω1
replaced with ω2 and ω0 replaced with ω1.

By iteration, we construct a sequence (ωk)k∈N of subsets of � (satisfying the δ-cone
property) of measure |ωk| = L|�| satisfying, as long as J (ωk) < L,

J (ωk+1) ≥ J (ωk)+
1
2 min

(
εn0 , (L− J (ωk))

q
)
(L− J (ωk)).

If J (ωk) < L for every integer k, then clearly the sequence (J (ωk))k∈N is increasing,
bounded above by L, and converges to L. This finishes the proof.

Remark 3.15. It can be noted that, in the above construction, the subsets ωk are open,
Lipschitz and of bounded perimeter. Hence, considering the problem on the class of mea-
surable subsets ω of �, of measure |ω| = L|�|, that are moreover either open with a
Lipschitz boundary, or open with a bounded perimeter, or Jordan measurable, the conclu-
sion is still that the supremum is equal to L. This proves the assertion of Remark 3.6.

3.5. Proof of Proposition 3.9

First of all, we assume that � = (0, π)2, a square in R2, and we consider the normalized
eigenfunctions of the Dirichlet–Laplacian defined by

φj,k(x, y) =
2
π

sin(jx) sin(ky), for all (j, k) ∈ (N∗)2.

It is obvious that QUE on the base is not satisfied.
Let us however prove that supχω∈UL J (χω) = L. We consider a particular subclass of

measurable subsets ω of � defined by ω = ω1 × ω2, where ω1 and ω2 are measurable
subsets of (0, π). Using the Fubini Theorem, we have

J (χω) =
2
π

inf
j∈N∗

∫
ω1

sin2(jx) dx ×
2
π

inf
k∈N∗

∫
ω2

sin2(ky) dy,
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and hence, from the no-gap result in 1D (for the domain (0, π), according to Remark
3.10), it follows that supχω∈UL J (χω) ≥ |ω1| |ω2|/π

2
= L, whence the result.

Assume now that � = {x ∈ R2
| ‖x‖ < 1} is the unit (Euclidean) disk in R2.

We consider the normalized eigenfunctions of the Dirichlet–Laplacian given by the triply
indexed sequence

φjkm(r, θ) =

{
R0k(r)/

√
2π if j = 0,

Rjk(r)Yjm(θ) if j ≥ 1,
(48)

for j ∈ N, k ∈ N∗ and m = 1, 2, where (r, θ) are the usual polar coordinates. The func-
tions Yjm(θ) are defined by Yj1(θ) = (1/

√
π) cos(jθ) and Yj2(θ) = (1/

√
π) sin(jθ),

and Rjk by

Rjk(r) =
√

2
Jj (zjkr)

|J ′j (zjk)|
, (49)

where Jj is the Bessel function of the first kind of order j , and zjk > 0 is the kth zero
of Jj . The eigenvalues of the Dirichlet–Laplacian are given by the double sequence of
−z2

jk and are of multiplicity 1 if j = 0, and 2 if j ≥ 1.

A maximizing sequence for L = 0.3A maximizing sequence for L=0.3

Fig. 1. Particular radial subsets.

To prove the no-gap statement, we use particular (radial) subsets ω, of the form ω =

{(r, θ) ∈ [0, 1] × [0, 2π ] | θ ∈ ωθ }, where |ωθ | = 2Lπ , as drawn in Figure 1. For such a
subset ω, one has∫

ω

φjkm(x)
2 dx =

∫ 1

0
Rjk(r)

2r dr

∫
ωθ

Yjm(θ)
2 dθ =

∫
ωθ

Yjm(θ)
2 dθ

for all j ∈ N∗, k ∈ N∗ and m = 1, 2. For j = 0,∫
ω

φ0km(x)
2 dx =

∫ 1

0
Rjk(r)

2r dr

∫
ωθ

dθ = |ωθ |.

Moreover, since Lπ = |�| =
∫ 1

0 r dr
∫
ωθ
dθ = 1

2 |ωθ |, it follows that |ωθ | = 2Lπ . By
applying the no-gap result in 1D (clearly, it can be applied with the cosine functions as
well), one has

sup
ωθ⊂[0,2π ]
|ωθ |=2Lπ

inf
j∈N∗

∫
ωθ

sin2(jθ) dθ = sup
ωθ⊂[0,2π ]
|ωθ |=2Lπ

inf
j∈N∗

∫
ωθ

cos2(jθ) dθ = Lπ.
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Therefore, we deduce that

sup
χω∈UL

inf
j∈N, k∈N∗
m∈{1,2}

∫
ω

φjkm(x)
2 dx = L,

and the conclusion follows.

3.6. An intrinsic spectral variant of the problem

The problem (26), defined in Section 2.4, whenever the spectrum of 1 is not simple,
depends on the Hilbert basis (φj )j∈N∗ of L2(�,C) under consideration. In this section
we assume that the eigenvalues (λ2

j )j∈N∗ of −1 are multiple, so that the choice of the
basis (φj )j∈N∗ enters into play.

We have already seen in Theorem 2.6 (see Section 2.3) that, in the case of multiple
eigenvalues, the spectral expression for the time asymptotic observability constant is more
intricate and it does not seem that our analysis can be adapted in an easy way to that case.

Moreover, recall that the criterion J defined by (26) has been motivated in Section 2.3
by means of a randomizing process on the initial data, leading to a randomized observ-
ability constant (see Theorem 2.2), but in that case this criterion depends a priori on the
choice of the basis (φj )j∈N∗ of eigenfunctions.

In order to get rid of this dependence, and to deal with a more intrinsic criterion, it
makes sense to consider the infimum of the criteria J defined by (26) over all possible
choices of orthonormal bases of eigenfunctions. This leads us to consider the following
intrinsic variant of the problem.

Intrinsic uniform optimal design problem. Maximize the functional

Jint(χω) = inf
φ∈E

∫
ω

φ(x)2 dx (50)

over all possible subsets ω of � of measure |ω| = L|�|, where E denotes the set of all
normalized eigenfunctions of 1.

Here, “intrinsic” means that this problem does not depend on the choice of a basis of
eigenfunctions of 1.

As in Theorem 2.2, the quantity (T /2)Jint(χω) can be interpreted as a constant for
which the randomized observability inequality (24) for the wave equation holds, but this
constant is smaller than or equal to C(W)T ,rand(χω). Furthermore, C(W)T (χω)≤(T /2)Jint(χω).
Indeed, this follows from the deterministic observability inequality applied to the partic-
ular solution y(t, x) = eiλtφ(x) for every eigenfunction φ. In brief, we have

C
(W)
T (χω) ≤

T

2
Jint(χω) ≤ C

(W)
T ,rand(χω).

As in Section 3.1, the convexified version of the above problem is to maximize the func-
tional

Jint(a) = inf
φ∈E

∫
�

a(x)φ(x)2 dx
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over the set UL. Obviously, this problem has at least one solution, and

sup
χω∈UL

inf
φ∈E

∫
�

χω(x)φ(x)
2 dx ≤ sup

a∈UL
inf
φ∈E

∫
�

a(x)φ(x)2 dx = L,

the last equality being easily obtained by adapting the proof of Lemma 3.3.
The intrinsic counterpart of Theorem 3.5 is the following.

Theorem 3.16. Assume that the uniform measure |�|−1 dx is the unique limit point of
the family of probability measures µφ = φ2 dx, φ ∈ E , for the vague topology, and
that the whole family of eigenfunctions in E is uniformly bounded in L2p(�) for some
p ∈ (1,∞]. Then

sup
χω∈UL

inf
φ∈E

∫
ω

φ(x)2 dx = L (51)

for every L ∈ (0, 1).

Proof. The proof follows the same lines as in Section 3.4, replacing the integer index
j with a continuous index. The only thing to notice is the derivation of the estimate
corresponding to (44). In Section 3.4, to obtain (44) from (43), we used the fact that only
a finite number of terms have to be considered. Now the number of terms is infinite, but
one has to consider all possible normalized eigenfunctions associated with an eigenvalue
|λ| ≤ |λ0|. Since this set is compact for every λ0, there is no difficulty extending our
previous proof. ut

4. Nonexistence of an optimal set and remedies

In Section 4.1 we investigate the question of the existence of an optimal set, reaching the
supremum in (30). Apart from simple geometries, this question remains essentially open
and we conjecture that in general there does not exist any optimal set. In Section 4.2 we
study a spectral approximation of (30), by keeping only the N first modes. We establish
existence and uniqueness results, and provide numerical simulations showing the increas-
ing complexity of the optimal sets. We then investigate possible remedies to the nonex-
istence of an optimal set of (30). As a first remark, we consider in Section 4.3 classes of
subsets with compactness properties, intended to ensure existence results for (30). Since
our aim is however to investigate (measurable) domains as general as possible, in Sec-
tion 4.4 we introduce a weighted variant of the observability inequality, where the weight
is stronger on lower frequencies. We then come up with a weighted spectral variant of
(30), for which we prove, in contrast with the previous results, that there exists a unique
optimal set whenever L is large enough, and that the maximizing sequence built from a
spectral truncation is stationary.

4.1. On the existence of an optimal set

In this section we comment on the problem of whether the supremum in (36) is reached
or not, in the framework of Theorem 3.5. This problem remains essentially open except
in several particular cases.
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1D case. For the one-dimensional case already mentioned in Remarks 2.1, 3.2 and 3.10,
we have the following result.

Proposition 4.1. Assume that � = (0, π), with the usual Hilbert basis of eigenfunctions
made of sine functions. Let L ∈ (0, 1). The supremum of J over UL (which is equal
to L) is reached if and only if L = 1/2. In that case, it is reached for all measurable
subsets ω ⊂ (0, π) of measure π/2 such that ω and its symmetric image ω′ = π − ω are
complementary in (0, π).

Proof. Although the proof can be found in [22] and [50], we recall it here briefly since
similar arguments will be used in the proof of the forthcoming Proposition 4.2.

A subset ω⊂(0, π) of Lebesgue measure Lπ solves (36) if and only if
∫
ω

sin2(jx) dx

≥ Lπ/2 for every j ∈ N∗, that is,
∫
ω

cos(2jx) dx ≤ 0. Therefore the Fourier series
expansion of χω on (0, π) must be of the form L +

∑
∞

j=1(aj cos(2jx) + bj sin(2jx))
with aj ≤ 0. Let ω′ = π − ω be the symmetric set of ω with respect to π/2. The
Fourier series expansion of χω′ is L +

∑
∞

j=1(aj cos(2jx) − bj sin(2jx)). Set g(x) =
L− 1

2 (χω(x)+ χω′(x)) for almost every x ∈ (0, π). The Fourier series expansion of g is
−
∑
∞

j=1 aj cos(2jx) with aj ≤ 0 for every j ∈ N∗.
Assume that L 6= 1/2. Then the sets ω and ω′ are not disjoint, and hence g is dis-

continuous. It then follows that
∑
∞

j=1 aj = −∞. Moreover,
∑
∞

j=1 aj is also the limit of∑
∞

k=1 ak4̂n(k) as n → ∞, where 4̂n is the Fourier transform of the positive function
4n whose graph is the triangle joining the points (−1/n, 0), (0, 2n) and (1/n, 0) (note
that 4n is an approximation of the Dirac measure, with integral equal to 1). This is in
contradiction with the fact that∫ π

0
g(t)4n(t) dt =

∞∑
k=1

ak4̂n(k),

derived from Plancherel’s Theorem. ut

2D square. For the two-dimensional square � = (0, π)2 studied in Proposition 3.9 we
are not able to provide a complete answer to the existence question. We are however able
to characterize the existence of optimal sets that are Cartesian products.

Proposition 4.2. Assume that � = (0, π)2, with the usual basis of eigenfunctions made
of products of sine functions. Let L ∈ (0, 1). The supremum of J over the class of all
possible subsetsω = ω1×ω2 of Lebesgue measureLπ2, whereω1 andω2 are measurable
subsets of (0, π), is reached if and only if L ∈ {1/4, 1/2, 3/4}. In that case, it is reached
for all such sets ω satisfying

1
4 (χω(x, y)+ χω(π − x, y)+ χω(x, π − y)+ χω(π − x, π − y)) = L

for almost all (x, y) ∈ [0, π2
].

Proof. A subset ω ⊂ (0, π)2 of Lebesgue measure Lπ2 is a solution of (36) if and only
if (4/π2)

∫
ω

sin2(jx) sin2(ky) dx dy ≥ L for all (j, k) ∈ (N∗)2, that is,∫
ω

cos(2jx) cos(2ky) dx dy ≥
∫
ω

cos(2jx) dx dy +
∫
ω

cos(2ky) dx dy. (52)



Optimal observability of wave and Schrödinger equations 1075

Set `x =
∫ π

0 χω(x, y) dy for almost every x ∈ (0, π), and `y =
∫ π

0 χω(x, y) dx for
almost every y ∈ (0, π). Letting either j or k tend to∞ and using Fubini’s Theorem in
(52) leads to

∫ π
0 `x cos(2jx) dx ≤ 0 and

∫ π
0 `y cos(2ky) dy ≤ 0, for all j, k ∈ N∗.

Now, ifω = ω1×ω2, whereω1 andω2 are measurable subsets of (0, π), then the func-
tions x 7→ `x and y 7→ `y must be discontinuous. Using arguments similar to the proof of
Proposition 4.1, it follows that the functions x 7→ `x+`π−x and y 7→ `y+`π−y must be
constant on (0, π), and hence

∫ π
0 `x cos(2jx) dx = 0 and

∫ π
0 `y cos(2ky) dy = 0 for all

j, k ∈ N∗. By (52), it follows that
∫
ω

cos(2jx) cos(2ky) dx dy ≥ 0 for all (j, k) ∈ (N∗)2.
The function F defined by

F(x, y) = 1
4 (χω(x, y)+ χω(π − x, y)+ χω(x, π − y)+ χω(π − x, π − y))

for almost all (x, y) ∈ (0, π)2 can only take the values 0, 1/4, 1/2, 3/4 and 1, and its
Fourier series is of the form

L+
4
π2

∞∑
j,k=1

(∫
ω

cos(2ju) cos(2kv) du dv
)

cos(2jx) cos(2ky),

and all Fourier coefficients are nonnegative. Using once again arguments similar to the
proof of Proposition 4.1 (Fourier transform and Plancherel’s Theorem), one shows that F
must necessarily be continuous on (0, π)2 and thus constant. The conclusion follows. ut

Remark 4.3. All the results above can obviously be generalized to multi-dimensional
domains � that are Cartesian products of N one-dimensional sets.

Remark 4.4. According to Proposition 4.2, if L = 1/2, then there are infinitely many
optimal sets. Four of them are drawn in Figure 2. It is interesting to note that the optimal
sets on the left in the figure do not satisfy the Geometric Control Condition mentioned
in Section 2.1, and that in this configuration the (classical, deterministic) observability
constant C(W)T (χω) vanishes, whereas, according to the previous results, C(W)T ,rand(χω) =

T L/2. This is in accordance with Remarks 2.5 and 2.8.

Fig. 2. � = (0, π)2, L = 1/2.

2D disk. In the two-dimensional disk, we are also unable to provide a complete answer
to the existence question, but we can derive the following result.

Proposition 4.5. Assume that � = {x ∈ R2
| ‖x‖ < 1} is the unit (Euclidean) disk

in R2, with the usual Hilbert basis of eigenfunctions defined in terms of Bessel functions.
Let L ∈ (0, 1). The supremum of J (which is equal to L) over the class of all possible
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subsets ω = {(r, θ) ∈ [0, 1] × [0, 2π ] | r ∈ ωr , θ ∈ ωθ } such that |ω| = Lπ , where
ωr is any measurable subset of [0, 1] and ωθ is any measurable subset of [0, 2π ], is
reached if and only if L = 1/2. In that case, it is reached for all subsets ω = {(r, θ) ∈
[0, 1] × [0, 2π ] | θ ∈ ωθ } of measure π/2, where ωθ is any measurable subset of [0, 2π ]
such that ωθ and its symmetric image ω′θ = 2π − ωθ are complementary in [0, 2π ].

In order to prove this result, we are going to use the explicit expression of certain semi-
classical measures on the disk (weak limits of the probability measures φ2

j dx), and not
only the Dirac measure along the boundary which causes the well known phenomenon of
whispering galleries.

Proof of Proposition 4.5. We consider the Hilbert basis of eigenfunctions defined in (48),
with the functions Rjk defined by (49). Many properties of these functions are known, in
particular (see [36]):

• for every j ∈ N, the sequence of probability measures r 7→ Rjk(r)
2 r dr converges

vaguely to 1 as k→∞,
• for every k ∈ N∗, the sequence of probability measures r 7→ Rjk(r)

2 r dr converges
vaguely to the Dirac at r = 1 as j →∞.

These convergence properties permit one to identify certain quantum limits, the second
property accounting for the well known phenomenon of whispering galleries.

Less known is the convergence of the above sequence of measures when the ratio
j/k is kept constant. Simple computations (see [8]) show that, when taking the limit of
Rjk(r)

2 r dr with a fixed ratio j/k, and making this ratio vary, we obtain the family of
probability measures

µs = fs(r) dr =
1

√
1− s2

r
√
r2 − s2

χ(s,1)(r) dr,

parametrized by s ∈ [0, 1) (we can even extend to s = 1 by defining µ1 as the Dirac
measure at r = 1). It follows from the Portmanteau Theorem9 that

sup
a∈UL

J (a) = sup
a∈UL

inf
j∈N, k∈N∗
m∈{1,2}

∫ 2π

0

∫ 1

0
a(r, θ)φjkm(r, θ)

2 r drdθ ≤ sup
a∈UL

K(a), (53)

where

K(a) =
1

2π
inf

s∈[0,1)

∫ 1

0

∫ 2π

0
a(r, θ) dθ fs(r) dr. (54)

Lemma 4.6. We have max
a∈UL K(a) = L, and the maximum of K is reached for the

constant function a∗ = L.

9 Actually to apply the Portmanteau Theorem it is required to apply the argument on every com-
pact [0, 1 − ε], thus excluding a neighborhood of s = 1 so as to ensure that the quantum limits
under consideration are uniformly bounded in L3/2 (for instance). Since the inequality holds for
every ε > 0, the desired inequality follows anyway.
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Proof. First, note thatK(a∗ = L) = L and that the infimum in the definition ofK is then
reached for every s ∈ [0, 1). SinceK is concave (as infimum of linear functions), in order
to prove that a∗ = L realizes the maximum it suffices to show that 〈DK(a∗), h〉 ≤ 0
(directional derivative) for every function h defined on � such that

∫
�
h(x) dx = 0.

Using Danskin’s Theorem10 (see [16, 5]), we have

〈DK(a∗), h〉 =
1

2π
inf

s∈[0,1)

∫ 1

0

∫ 2π

0
h(r, θ) dθ fs(r) dr.

For contradiction, assume that there exists a function h on � such that
∫
�
h(x) dx = 0

and
∫ 1

0

∫ 2π
0 h(r, θ) dθ fs(r) dr > 0 for every s ∈ [0, 1). Then∫ 1

s

∫ 2π

0
h(r, θ) dθ

r
√
r2 − s2

dr > 0

for every s ∈ [0, 1), and integrating in s over [0, 1), we get

0 <
∫ 1

0

∫ 1

s

∫ 2π

0
h(r, θ) dθ

r
√
r2 − s2

dr ds =

∫ 1

0

∫ r

0

r
√
r2 − s2

ds

∫ 2π

0
h(r, θ) dθ dr

=
π

2

∫ 1

0
r

∫ 2π

0
h(r, θ) dθ dr =

π

2

∫
�

h(x) dx = 0,

which is a contradiction. ut

According to Proposition 3.9 (Section 3.5), we have supχω∈UL J (χω) = max
a∈UL J (a) =

max
a∈UL K(a), where K is defined by (54). For every a ∈ UL (which is a function of r

and θ ), setting b(r) = 2π−1 ∫ 1
0 a(r, θ) dθ , we obtain

∫ 1
0 b(r)r dr = L/2, and clearly

max
a∈UL

K(a) = max
b∈L∞(0,1;[0,1])∫ 1

0 b(r)r dr=L/2

Kr(b),

where we have set

Kr(b) = inf
s∈[0,1)

1
√

1− s2

∫ 1

0
b(r)

r
√
r2 − s2

dr

for every b ∈ L∞(0, 1). It follows from Lemma 4.6 that the constant function b∗ = L is
a maximizer of Kr , and Kr(b∗) = L.

Lemma 4.7. The constant function b∗ = L is the unique maximizer of Kr over all func-
tions b ∈ L∞(0, 1; [0, 1]) such that

∫ 1
0 b(r)r dr = L/2.

10 There is a small difficulty here in applying Danskin’s Theorem, due to the fact that the set [0, 1)
is not compact. This is easily overcome by applying the slightly more general version [5, Theorem
D2] of Danskin’s Theorem, noting that for a = L every s ∈ [0, 1) realizes the infimum in the
definition of K .
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Proof. Let b be a maximizer of Kr . Then, by definition,∫ 1

s

b(r)
r

√
r2 − s2

dr ≥ L
√

1− s2 (55)

for every s ∈ [0, 1). Integrating the left-hand side of (55) in s over [0, 1), using the Fubini
Theorem and the fact that

∫ 1
0 b(r)r dr = L/2, one gets∫ 1

0

∫ 1

s

b(r)
r

√
r2 − s2

dr ds = Lπ/4.

Moreover, the integral in s over [0, 1) of the right-hand side of (55) is
∫ 1

0 L
√

1− s2 ds =

Lπ/4. Hence both integrals are equal, and therefore the inequality in (55) is actually an
equality, that is,

1
√

1− s2

∫ 1

s

b(r)
r

√
r2 − s2

dr = L (56)

for every s ∈ [0, 1). Now, since the linear mapping

L∞(0, 1)→ L∞(0, 1), b 7→

(
s 7→

1
√

1− s2

∫ 1

s

b(r)
r

√
r2 − s2

dr

)
(which is, by the way, an Abel transform) is clearly one-to-one, and since b∗ = L is a
solution of (56), it finally follows that b = b∗. ut

Coming back to the problem of maximizingK over UL, the following result easily follows
from the above lemma.

Lemma 4.8. An element a ∈ UL is a maximizer ofK if and only if (2π)−1 ∫ 2π
0 a(r, θ) dθ

= L for almost every r ∈ [0, 1].

Note that if a ∈ UL is a maximizer of J then it must be a maximizer of K .
It follows from the above lemma, from Proposition 4.1 and from the proof of Propo-

sition 3.9 that, for L = 1/2, the supremum of J over UL is reached for every subset ω of
the form ω = {(r, θ) ∈ [0, 1] × [0, 2π ] | θ ∈ ωθ }, where ωθ is any subset of [0, 2π ] such
that ωθ and its symmetric image ω′θ = 2π − ωθ are complementary in [0, 2π ].

It remains to prove that if L 6= 1/2 then the supremum of J over UL is not reached.
Assume otherwise that L 6= 1/2 and χω ∈ UL is a maximizer of J . Then in particular

inf
j∈N, k∈N∗

∫ 1

0

1
π

∫ 2π

0
χω(r, θ) sin2(jθ) dθ Rjk(r)

2r dr = L.

Actually this equality holds as well on replacing the sine with a cosine, but we shall not
use it. Writing sin2(jθ) = 1

2 −
1
2 cos(2jθ), and noting (from Lemma 4.8) that∫ 1

0

1
2π

∫ 2π

0
χω(r, θ) dθ Rjk(r)

2r dr = L,
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we infer that ∫ 2π

0

∫ 1

0
χω(r, θ)Rjk(r)

2 r dr cos(2jθ) dθ ≤ 0

for all j, k ∈ N∗. Making use of the fact that, for every j ∈ N, the sequence of proba-
bility measures r 7→ Rjk(r)

2 r dr converges vaguely to 1 as k → ∞, and applying the
Portmanteau Theorem, we infer that∫ 2π

0

∫ 1

0
χω(r, θ) dr cos(2jθ) dθ ≤ 0

for every j ∈ N∗. Applying again the Fourier arguments used in the proof of Propo-
sition 4.1, it follows that the function θ 7→

∫ 1
0 χω(r, θ) dr must be continuous (since

L 6= 1/2). The statement of the proposition now easily follows. ut

Conjectures. In view of the results above one could expect that when � is the unit N -
dimensional hypercube, there exist a finite number of values of L ∈ (0, 1) such that
the supremum in (36) is reached. We do not know to what extent this conjecture can be
formulated for generic domains �.

4.2. Spectral approximation

In this section, we consider a spectral truncation of the functional J defined by (26),
setting

JN (χω) = min
1≤j≤N

∫
ω

φj (x)
2 dx (57)

for every N ∈ N∗ and every measurable subset ω of �, and we consider the spectral
approximation of the problem (30),

sup
χω∈UL

JN (χω). (58)

As before, the functional JN is naturally extended to UL by

JN (a) = min
1≤j≤N

∫
�

a(x)φj (x)
2 dx

for every a ∈ UL. We have the following result, establishing existence, uniqueness and
0-convergence properties.

Theorem 4.9. (i) For every measurable subset ω of �, the sequence (JN (χω))N∈N∗ is
nonincreasing and converges to J (χω).

(ii) We have
lim
N→∞

max
a∈UL

JN (a) = max
a∈UL

J (a).

Moreover, if (aN )n∈N∗ is a sequence of maximizers of JN in UL, then, up to a subse-
quence, it converges to a maximizer of J in UL in the weak star topology of L∞.
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(iii) For every N ∈ N∗, the problem (58) has a unique solution χωN ∈ UL. Moreover, ωN

is semianalytic11 and thus it has a finite number of connected components.

Proof. For every measurable subset ω of �, the sequence (JN (χω))N∈N∗ is clearly non-
increasing and thus convergent. Note that

JN (χω) = inf
{ N∑
j=1

αj

∫
ω

φj (x)
2 dx

∣∣∣ αj ≥ 0,
N∑
j=1

αj = 1
}
,

J (χω) = inf
{∑
j∈N∗

αj

∫
ω

φj (x)
2 dx

∣∣∣ αj ≥ 0,
∑
j∈N∗

αj = 1
}
.

Hence, for every (αj )j∈N∗ ∈ `1(R+), one has

N∑
j=1

αj

∫
ω

φj (x)
2 dx ≥ JN (χω)

N∑
j=1

αj

for all N ∈ N∗, and letting N →∞ yields∑
j∈N∗

αj

∫
ω

φj (x)
2 dx ≥ lim

N→∞
JN (ω)

∑
j∈N∗

αj ,

and thus limN→∞ JN (χω) ≤ J (χω). This proves (i) since always JN (χω) ≥ J (χω).
Since JN is upper semicontinuous (and even continuous) in the L∞ weak star topol-

ogy and since UL is compact in this topology, it follows that JN has at least one maximizer
aN ∈ UL. Let ā ∈ UL be a limit point of the sequence (aN )n∈N∗ in the L∞ weak star
topology. Then, for every p ≤ N ,

sup
a∈UL

J (a) ≤ sup
a∈UL

JN (a) = JN (a
N ) ≤ Jp(a

N ),

and letting N →∞ yields

sup
a∈UL

J (a) ≤ lim
N→∞

JN (a
N ) ≤ lim

N→∞
Jp(a

N ) = Jp(ā)

for every p ∈ N∗. Since Jp(ā) tends to J (ā) ≤ sup
a∈UL J (a) as p→∞, it follows that

ā is a maximizer of J in UL, proving (ii).

11 A subset ω of a real analytic finite-dimensional manifold M is said to be semianalytic if it can
be written in terms of equalities and inequalities of analytic functions, that is, for every x ∈ ω,
there exists a neighborhood U of x in M and 2pq analytic functions gij , hij (with 1 ≤ i ≤ p and
1 ≤ j ≤ q) such that

ω ∩ U =

p⋃
i=1
{y ∈ U | gij (y) = 0 and hij (y) > 0, j = 1, . . . , q}.

We recall that such semianalytic (and more generally, subanalytic) subsets enjoy nice properties,
for instance they are stratifiable in the sense of Whitney (see [21, 27]).
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To prove (iii), let us now show that JN has a unique maximizer aN ∈ UL, which is
moreover a characteristic function. We define the simplex set

AN =

{
α = (αj )1≤j≤N

∣∣∣ αj ≥ 0,
N∑
j=1

αj = 1
}
.

Note that

min
1≤j≤N

∫
�

a(x)φj (x)
2 dx = min

α∈AN

∫
�

a(x)

N∑
j=1

αjφj (x)
2 dx

for every a ∈ UL. It follows from Sion’s minimax theorem (see [60]) that there ex-
ists αN ∈ AN such that (aN , αN ) is a saddle point of the bilinear functional (a, α) 7→∫
�
a(x)

∑N
j=1 αjφj (x)

2 dx defined on UL ×AN , and

max
a∈UL

min
α∈AN

∫
�

a(x)

N∑
j=1

αjφj (x)
2 dx = min

α∈AN

max
a∈UL

∫
�

a(x)

N∑
j=1

αjφj (x)
2 dx

= max
a∈UL

∫
�

a(x)

N∑
j=1

αNj φj (x)
2 dx =

∫
�

aN (x)

N∑
j=1

αNj φj (x)
2 dx. (59)

Note that the eigenfunctions φj are analytic in � (by analytic hypoellipticity, see [46]).
We claim that the (analytic) function x 7→

∑N
j=1 α

N
j φj (x)

2 is never constant on any
subset of positive measure. Indeed, otherwise this function would be constant on � (by
analyticity). We would then infer from the Dirichlet boundary conditions that the function
x 7→

∑N
j=1 α

N
j φj (x)

2 vanishes on �̄, which is a contradiction.
It follows from this fact and from (59) that there exists λN > 0 such that aN (x) = 1

if
∑N
j=1 α

N
j φj (x)

2
≥ λN , and aN (x) = 0 otherwise, for almost every x ∈ �. Hence there

exists ωN ∈ UL such that aN = χωN . By analyticity, ωN is semianalytic (see footnote
11) and thus has a finite number of connected components. ut

Remark 4.10. Note that Theorem 4.9(iii) can be seen as a generalization of [23, Theorem
3.1] and [48, Theorem 3.1]. We have also provided a shorter proof.

Remark 4.11. In the 1D case of� = (0, π)with Dirichlet boundary conditions, it can be
proved that the optimal set ωN maximizing JN is the union of N intervals concentrating
around equidistant points and that ωN is actually the worst possible subset for the problem
of maximizing JN+1. This is the spillover phenomenon, observed in [23] and rigorously
proved in [50].

We provide hereafter several numerical simulations based on the modal approximation
described previously, which permit us to exhibit some maximizing sequences of sets.

Assume first that � = (0, π)2, with the normalized eigenfunctions of the Dirichlet–
Laplacian given by φj,k(x1, x2) = (2/π) sin(jx1) sin(kx2) for all (x1, x2) ∈ (0, π)2.
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Fig. 3. � = (0, π)2, with Dirichlet boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes), N = 20 (400 eigenmodes). The optimal domain is in green.

Let N ∈ N∗. We use an interior point line search filter method to solve the spectral
approximation supχω∈UL JN (χω) of the problem (30), where

JN (χω) = min
1≤j,k≤N

∫ π

0

∫ π

0
χω(x1, x2)φj,k(x1, x2)

2 dx1 dx2.

Some results are provided in Figure 3.
Assume now that � = {x ∈ R2

| ‖x‖ < 1}, the unit Euclidean disk in R2, with the
normalized eigenfunctions of the Dirichlet–Laplacian given as before in terms of Bessel
functions by (48). In Proposition 3.9, a no-gap result has been stated in this case. Some
simulations are provided in Figure 4. We observe that optimal domains are radially sym-
metric. This is actually an immediate consequence of the uniqueness of a maximizer for
the modal approximation problem stated in Theorem 4.9 and of the fact that � is itself
radially symmetric.

4.3. A first remedy: other classes of admissible domains

According to Proposition 4.1, we know that, in the one-dimensional case, the problem
(30) is ill-posed in the sense that it has no solution except for L = 1/2. In larger dimen-
sion, we expect a similar conclusion. One of the reasons is that the set UL defined by
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Fig. 4. � = {x ∈ R2
| ‖x‖ ≤ 1}, with Dirichlet boundary conditions, and L = 0.2. Optimal

domain for N = 1 (1 eigenmode), N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes) and N = 20 (400 eigenmodes).

(29) is not compact for the usual topologies, as discussed in Remark 3.1. To overcome
this difficulty, one can define a new class of admissible sets, VL ⊂ UL, enjoying sufficient
compactness properties, and to replace the problem (30) with

sup
χω∈VL

J (χω). (60)

Of course, now the extremal value is not necessarily the same since the class of admissible
domains has been further restricted.

To ensure the existence of a maximizer χω∗ of (60), it suffices to endow VL with a
topology, finer than the weak star topology of L∞, for which VL is compact. Of course in
this case,

J (χω∗) = max
χω∈VL

J (χω) ≤ sup
χω∈UL

J (χω).

This extra compactness property can be guaranteed by, for instance, considering some
α > 0, and then any of the following possible choices:

VL = {χω ∈ UL | P�(ω) ≤ α}, (61)

where P�(ω) is the relative perimeter of ω with respect to �;

VL = {χω ∈ UL | ‖χω‖BV(�) ≤ α}, (62)

where ‖ · ‖BV(�) is the BV(�)-norm of functions of bounded variation on � (see for
example [2]); or

VL = {χω ∈ UL | ω satisfies the 1/α-cone property} (63)
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(see Section 3.4, footnote 6). Naturally, the optimal set then depends on the bound α under
consideration, and numerical simulations (not reported here) show that, as α → ∞, the
family of optimal sets behaves as the maximizing sequence built in Section 4.2, so that,
in particular, the number of connected components grows as α is increasing.

The point of view that we adopted in this article is however not to restrict the classes
of possible subsets ω, but rather to discuss the physical relevance of the criterion under
consideration. In the next subsection we consider a modification of the spectral criterion,
based on physical considerations.

4.4. A second remedy: weighted observability inequalities

First, observe that, in the observability inequality (11), by definition, all modes (in the
spectral expansion) have the same weight. It is however expected (and finally, observed)
that the problem is difficult owing to the increasing complexity of the geometry of high
frequency eigenfunctions. Moreover, measuring lower frequencies is in some sense physi-
cally different from measuring high frequencies. Therefore, it seems relevant to introduce
a weighted version of the observability inequality (11), by considering the inequality

C
(W)
T ,σ (χω)(‖(y

0, y1)‖2
L2×H−1 + σ‖y

0
‖

2
H−1) ≤

∫ T

0

∫
ω

|y(t, x)|2 dx dt, (64)

where σ ≥ 0 is some weight.
This inequality holds true under the GCC. Since the norm used at the left-hand side is

stronger than the one of (11), it follows that C(W)T ,σ (χω) ≤ C
(W)
T (χω) for every σ ≥ 0.

From this weighted observability inequality (64), we can define as well the random-
ized observability constant and the time asymptotic observability constant (we do not
provide the details), and we come up with the following result, which is the weighted
version of Theorem 2.2 and of Corollary 2.7.

Proposition 4.12. For every measurable subset ω of �, we have 2C(W)T ,σ,rand(χω) =

T Jσ (χω), and moreover if every eigenvalue of 1 is simple, then 2C(W)∞,σ (χω) = Jσ (χω),
where

Jσ (χω) = inf
j∈N∗

λ2
j

σ + λ2
j

∫
ω

φj (x)
2 dx. (65)

It is seen from that proposition that the (initial data or time) averaging procedures do not
lead to the functional J defined by (26) but to the slightly different (weighted) functional
Jσ defined by (65). Let us now investigate the problem

sup
χω∈UL

Jσ (χω). (66)

We will see that the study of (65) differs significantly from the one considered previously.
Note that the sequence (λ2

j /(σ + λ
2
j ))j∈N∗ is increasing, and 0 < λ2

j /(σ + λ
2
j ) < 1 for

every j ∈ N∗.
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As in Section 3.1, the convexified version of this problem is

sup
a∈UL

Jσ (a), (67)

where

Jσ (a) = inf
j∈N∗

λ2
j

σ + λ2
j

∫
�

a(x)φj (x)
2 dx. (68)

As in Sections 3.1 and 3.2, under the assumption that there exists a subsequence of
(φ2
j )j∈N∗ converging to |�|−1 in the weak star L∞ topology (L∞-WQE property), the

problem (67) has at least one solution, the supremum is equal to L, and it is reached for
the constant function a = L.

We will next establish a no-gap result, similar to Theorem 3.5, but only valuable for
nonsmall values ofL. Actually, we will show that the present situation differs significantly
from the previous one, in the sense that, if λ2

1/(σ + λ
2
1) < L < 1, then the high frequency

modes do not play any role in the problem (66). Before coming to that result, let us first
define a truncated version of (66). For every N ∈ N∗, we define

Jσ,N (a) = inf
1≤j≤N

λ2
j

σ + λ2
j

∫
�

a(x)φj (x)
2 dx. (69)

An immediate adaptation of the proof of Theorem 4.9 yields the following result.

Proposition 4.13. For every N ∈ N∗, the problem

sup
a∈UL

Jσ,N (a) (70)

has a unique solution aN , which is moreover the characteristic function of a set ωN .
Furthermore, ωN is semianalytic (see footnote 11), and thus it has a finite number of
connected components.

The main result of this section is the following.

Theorem 4.14. Assume that the QUE on the base and uniform L∞-boundedness prop-
erties are satisfied for the selected Hilbert basis (φj )j∈N∗ of eigenfunctions. Let L ∈
(λ2

1/(σ + λ
2
1), 1). Then there exists N0 ∈ N∗ such that

max
χω∈UL

Jσ (χω) = max
χω∈UL

Jσ,N (χω) ≤
λ2

1

σ + λ2
1
< L (71)

for every N ≥ N0. In particular, the problem (66) has a unique solution χωN0 , and more-
over the set ωN0 is semianalytic and has a finite number of connected components.

Proof. Using the same arguments as in Lemma 3.3, it is clear that the problem (67) has
at least one solution, denoted by a∞. Let us first prove that there exists N0 ∈ N∗ such
that Jσ (a∞) = Jσ,N0(a

∞). Let ε ∈ (0, L − λ2
1/(σ + λ

2
1)). It follows from the L∞-QUE
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property that there exists N0 ∈ N∗ such that

λ2
j

σ + λ2
j

∫
�

a∞(x)φj (x)
2 dx ≥ L− ε (72)

for every j > N0. Therefore,

Jσ (a
∞) = inf

j∈N∗

λ2
j

σ + λ2
j

∫
�

a∞(x)φj (x)
2 dx

= min
(

inf
1≤j≤N0

λ2
j

σ + λ2
j

∫
�

a∞(x)φj (x)
2 dx, inf

j>N0

λ2
j

σ + λ2
j

∫
�

a∞(x)φj (x)
2 dx

)
≥ min(Jσ,N0(a

∞), L− ε) = Jσ,N0(a
∞),

since L − ε > λ2
1/(σ + λ

2
1) and Jσ,N0(a

∞) ≤ λ2
1/(σ + λ

2
1). It follows that Jσ (a∞) =

Jσ,N0(a
∞).

Let us now prove that Jσ (a∞) = Jσ,N0(a
N0), where aN0 is the unique maximizer

of Jσ,N0 (see Proposition 4.13). By definition of a maximizer, Jσ (a∞) = Jσ,N0(a
∞) ≤

Jσ,N0(a
N0). For contradiction, assume that Jσ,N0(a

∞) < Jσ,N0(a
N0). Let us then design

an admissible perturbation at ∈ UL of a∞ such that Jσ (at ) > Jσ (a
∞), which will

contradict the optimality of a∞. For every t ∈ [0, 1], set at = a∞ + t (aN0 − a∞).
Since Jσ,N0 is concave, one gets

Jσ,N0(at ) ≥ (1− t)Jσ,N0(a
∞)+ tJσ,N0(a

N0) > Jσ,N0(a
∞)

for every t ∈ (0, 1], which means that

inf
1≤j≤N0

λ2
j

σ + λ2
j

∫
�

at (x)φj (x)
2 dx > inf

1≤j≤N0

λ2
j

σ + λ2
j

∫
�

a∞(x)φj (x)
2 dx ≥ Jσ (a

∞)

(73)

for every t ∈ (0, 1]. Moreover, since aN0(x)− a∞(x) ∈ (−2, 2) for almost every x ∈ �,
it follows from (72) that

λ2
j

σ + λ2
j

∫
�

at (x)φj (x)
2 dx

=
λ2
j

σ + λ2
j

∫
�

a∞(x)φj (x)
2 dx+ t

λ2
j

σ + λ2
j

∫
�

(aN0(x)− a∞(x))φj (x)
2 dx ≥ L− ε− 2t

for every j ≥ N0. Let us choose t such that 0 < t < 1
2 (L− ε− λ

2
1/(σ + λ

2
1)), so that the

previous inequality yields

λ2
j

σ + λ2
j

∫
�

at (x)φj (x)
2 dx >

λ2
1

σ + λ2
1
≥

λ2
1

σ + λ2
1

∫
�

a∞(x)φ1(x)
2 dx ≥ Jσ (a

∞) (74)
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for every j ≥ N0. Combining the estimate (73) on the low modes with the estimate (74)
on the high modes, we conclude that

Jσ (at ) = inf
j∈N∗

λ2
j

σ + λ2
j

∫
�

at (x)φj (x)
2 dx > Jσ (a

∞),

which contradicts the optimality of a∞.
Therefore Jσ,N0(a

∞) = Jσ (a
∞) = Jσ,N0(a

N0), and the result follows. ut

Remark 4.15. Under the assumptions of the theorem, there is no gap between the prob-
lem (66) and its convexified formulation (67), as before. But, in contrast to the previous
results, here there always exists a maximizer in the class of characteristic functions when-
ever L is larger than a threshold value, and moreover, this optimal set can be computed
from a truncated formulation (69) for a certain value ofN . In other words, the maximizing
sequence (χωN )N∈N∗ resulting from Proposition 4.13 is stationary. Here, the high modes
play no role, whereas in the previous results all modes had the same impact. This result
is due to adding the weight σ ≥ 0 on the left hand-side of the observability inequali-
ties. It can be noted that the threshold value λ2

1/(σ + λ
2
1), accounting for the existence of

an optimal set, becomes smaller when σ increases. This is in accordance with physical
intuition.

Remark 4.16. Here, if L is not too small, then there exists an optimal set (with nice
regularity properties) realizing the largest possible time asymptotic and randomized ob-
servability constants. The optimal value of these constants is known to be less than L but
its exact value is unknown. It is related to solving a finite-dimensional numerical opti-
mization problem.

Remark 4.17. In the case where L ≤ λ2
1/(σ + λ

2
1), we do not know whether there is

a gap or not between the problem (66) and its convexified formulation (67). Adapting
shrewdly the proof of Theorem 3.5 does not seem to allow one to derive a no-gap result.

Nevertheless, using these arguments we can prove that supχω∈UL Jσ (χω) ≥
λ2

1
σ+λ2

1
L.

Remark 4.18. We formulate the following two open questions.

• Under the assumptions of Theorem 4.14, does the conclusion hold true for every
L∈(0, 1)?
• Does the statement of Theorem 4.14 still hold true under weaker ergodicity assump-

tions, for instance is it possible to weaken QUE to WQE (defined in footnote 3)?

Remark 4.19. The QUE assumption in Theorem 4.14 is very strong, as already dis-
cussed. It is true in the 1D case but, up to now, no example of a multi-dimensional domain
satisfying such an assumption is known. Anyway, we are able to prove that the conclusion
of Theorem 4.14 holds true in � = (0, π)n as well with the usual basis made of products
of sine functions.
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Proposition 4.20. Assume that � = (0, π)n, with the normalized eigenfunctions of 1
given by φj1...jn(x1, . . . , xn) = (2/π)n/2

∏n
k=1 sin(jkxk) for all (j1, . . . , jn) ∈ (N∗)n and

xi ∈ (0, π). There exist L0 ∈ (0, 1) and N0 ∈ N∗ such that

max
χω∈UL

Jσ (χω) = max
χω∈UL

Jσ,N (χω) (75)

for all L ∈ [L0, 1) and N ≥ N0.

Proof. The proof follows the same lines as the one of Theorem 4.14. Nevertheless, the
inequality (72) may not hold since QUE on the base is not satisfied here. In the specific
case under consideration, (72) is replaced with the following assertion: for any ε > 0,
there exist N0 ∈ N∗ and L0 ∈ (0, 1) such that

λ2
j1...jn

σ + λ2
j1...jn

∫
(0,π)n

a(x)φj1...jn(x)
2 dx ≥ L− ε

for all a ∈ UL, all L ∈ [L0, 1) and all (j1, . . . , jn) ∈ (N∗)n such that
∑n
k=1 jk ≥ N0.

It then suffices to apply it to a = a∞, where a∞ denotes a solution to the problem (67).
This assertion indeed follows from the following lemma.

Lemma 4.21. Let M > 0 and a ∈ L∞((0, π)n, [0,M]). Then

inf
(j1,...,jn)∈(N∗)n

∫
(0,π)n

a(x)φj1...jn(x)
2 dx ≥

M

π
F [n]

(∫
(0,π)n a(x) dx

Mπn−1

)
, (76)

where F(x) = x − sin x for every x ∈ [0, π] and F [n] = F ◦ · · · ◦ F (n times).

Proof. We are going to prove this lemma by induction on n. Let us first establish (76) for
n = 1.

Let j be fixed. Clearly, the minimum of the functional a ∈ L∞((0, π), [0,M]) 7→∫ π
0 a(x) sin2(jx)dx is reached at a = Mχω, with

ω =

(
0,
|ω|

2j

)
∪

j−1⋃
k=1

(
k

j
−
|ω|

2j
,
k

j
+
|ω|

2j

)
∪

(
1−
|ω|

2j
, π

)
.

It is remarkable that the value of the functional over this set does not depend on j . Indeed,∫
ω

sin2(jπx) dx = 2j
∫
|ω|/2j

0
sin2 jx dx = 2

∫
|ω|/2

0
sin2 u du =

1
2
(|ω| − sin(|ω|)).

Since a = Mχω, we have
∫ π

0 a(x) dx = M|ω|, and we conclude that

2
π

∫ π

0
a(x) sin2(jx)dx ≥

1
π

∫ π

0
a(x) dx −

M

π
sin

∫ π
0 a(x) dx

M
=
M

π
F

(∫ π
0 a(x) dx

M

)
.

For n ≥ 2, we prove the general formula (76) by induction on n. Let us assume
that (76) has been established for integers k ≤ n − 1, and let us prove it for k = n. In



Optimal observability of wave and Schrödinger equations 1089

the reasoning below, we use the notation x′ = (x2, . . . , xn), and thus x = (x1, xn). Let
a ∈ L∞((0, π)n, [0,M]) be an arbitrary function. Using the Fubini Theorem, we have(

2
π

)n ∫
(0,π)n

a(x)

n∏
k=1

sin2(jkxk) dx =

(
2
π

)n−1 ∫
(0,π)n−1

a1(x
′)

n∏
k=2

sin2(jkxk) dx
′,

with a1(x
′) = (2/π)

∫ π
0 a(x1, x

′) sin2(j1x1) dx1. Since a takes its values in [0,M], we
see that a1 ∈ L

∞((0, π), [0,M]). From the induction assumption (formula (76) with
n− 1), it follows that(

2
π

)n∫
(0,π)n

a(x)

n∏
k=1

sin2(jkxk) dx≥
M

π
F [n−1]

(
1

Mπn−2

∫
(0,π)n−1

a1(x
′) dx′

)
. (77)

Note that 0 ≤ 1
Mπn−2

∫
(0,π)n−1 a1(x

′) dx′ ≤ π . Now, using the Fubini Theorem, we have∫
(0,π)n−1

a1(x
′) dx′ =

2
π

∫
(0,π)n

a(x) sin2(j1x1) dx =
2
π

∫ π

0
b1(x1) sin2(j1x1) dx1,

with b1(x1) =
∫
(0,π)n−1 a(x1, x

′)dx′. Since a takes its values in [0,M], it follows that
b1 ∈ L

∞((0, π), [0,Mπn−1
]). Therefore, applying (76) with n = 1, we get

2
π

∫ π

0
b1(x1) sin2(j1x1) dx1 ≥ Mπ

n−2F

(∫ π
0 b1(x1) dx1

Mπn−1

)
,

and so ∫
(0,π)n−1

a1(x
′) dx′ ≥ Mπn−2F

(∫
(0,π)n a(x) dx

Mπn−1

)
. (78)

Again, 0 ≤ 1
Mπn−1

∫
(0,π)n a(x) dx ≤ π . Since F : [0, π] → [0, π] is an increasing

function, we infer (76) from (77) and (78). ut

Let ε > 0. Applying Lemma 4.21 with M = 1 to a∞ ∈ UL, we get the existence of L0
such that for any L ≥ L0 and any (j1, . . . , jn) ∈ (N∗)n,∫

(0,π)n
a∞(x)φj1...jn(x)

2 dx ≥
1
π
F [n](Lπ) ≥ 1− ε,

since F [n](Lπ)→ π as L→ 1. Moreover, since λ2
j1...jn

/(σ + λ2
j1...jn

)→ 1 as
∑n
k=1 jk

→ ∞, there exists N0 ∈ N∗ such that λ2
j1...jn

/(σ + λ2
j1...jn

) ≥ 1 − ε as long as
∑n
k=1 jk

≥ N0. Therefore,

λ2
j1...jn

σ + λ2
j1...jn

∫
(0,π)n

a∞(x)φj1...jn(x)
2 dx ≥ 1− 2ε ≥ L− 2ε

as long as
∑n
k=1 jk ≥ N0, and the conclusion follows. ut
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Fig. 5. � = (0, π)2, with Dirichlet boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6.; row 4: L = 0.9. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes),
N = 10 (100 eigenmodes).

We end this section by providing several numerical simulations based on the modal ap-
proximation of this problem for the Euclidean square � = (0, π)2. Note that we are then
in the framework of Remark 4.19, and hence the conclusion of Proposition 4.20 holds
true. As in Section 4.2, we use an interior point line search filter method to solve the
spectral approximation of the problem supχω∈UL JN,σ (χω), with σ = 1. Some numeri-
cal simulations are provided in Figure 5, where the optimal domains are represented for
L ∈ {0.2, 0.4, 0.6, 0.9} (by row). In the first three cases, the number of connected com-
ponents of the optimal set seems to increase with N . On the last row (L = 0.9), the
numerical results illustrate the conclusion of Proposition 4.20, showing clear evidence of
the stationarity feature of the maximizing sequence proved in this proposition.

5. Generalization to wave and Schrödinger equations on manifolds with various
boundary conditions

In this section we show how all the previous results can be generalized to wave and
Schrödinger equations posed on any bounded connected subset of a Riemannian mani-
fold, with various possible boundary conditions. For each step of our analysis we explain
what are the modifications that have to be taken into account.
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General framework. Let (M, g) be a smooth n-dimensional Riemannian manifold, n≥1.
Let T be a positive real number and � be an open bounded connected subset of M . We
consider both the wave equation

∂t ty = 1gy, (79)

and the Schrödinger equation
i∂ty = 1gy, (80)

in (0, T )×�. Here, 1g denotes the usual Laplace–Beltrami operator on M for the met-
ric g. If the boundary ∂� of � is nonempty, then we consider boundary conditions

By = 0 on (0, T )× ∂�, (81)

where B can be either:

• the usual Dirichlet trace operator, By = y|∂�, or
• Neumann, By = ∂y

∂n |∂�
, where ∂

∂n
is the outward normal derivative on the bound-

ary ∂�, or
• mixed Dirichlet–Neumann, By = χ00y|∂� + χ01

∂y
∂n |∂�

, where ∂� = 00 ∪ 01 with
00 ∩ 01 = ∅, and χ0i is the characteristic function of 0i , i = 0, 1, or
• Robin, By = ∂y

∂n |∂�
+ βy|∂�, where β is a nonnegative bounded measurable function

defined on ∂� such that
∫
∂�
β > 0.

Our study encompasses the case where ∂� = ∅: in this case, (81) is unnecessary and �
is a compact connected n-dimensional Riemannian manifold. The canonical Riemannian
volume on M is denoted by Vg , inducing the canonical measure dVg . Measurable sets12

are considered with respect to the measure dVg .
In the boundaryless and in the Neumann cases, the Laplace–Beltrami operator is not

invertible on L2(�,C) but is invertible in

L2
0(�,C) =

{
y ∈ L2(�,C)

∣∣∣∣ ∫
�

y(x) dx = 0
}
.

In what follows, the notation X stands for L2
0(�,C) in the boundaryless and in the Neu-

mann cases, and for L2(�,C) otherwise. We denote by A = −1g the Laplace operator
defined on D(A) = {y ∈ X | Ay ∈ X and By = 0} with one of the above boundary
conditions whenever ∂� 6= ∅. Note that A is a selfadjoint positive operator.

For all (y0, y1) ∈ D(A1/2) × X, there exists a unique solution y of the wave equa-
tion (79) in the space C0(0, T ;D(A1/2)) ∩ C1(0, T ;X) such that y(0, ·) = y0(·) and
∂ty(0, ·) = y1(·).

Let ω be an arbitrary measurable subset of � of positive measure. The equation (79)
is said to be observable on ω in time T if there exists C(W)T (χω) > 0 such that

C
(W)
T (χω)‖(y

0, y1)‖2
D(A1/2)×X

≤

∫ T

0

∫
ω

|∂ty(t, x)|
2 dVg dt (82)

12 If M is the usual Euclidean space Rn then dVg = dx is the usual Lebesgue measure.
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for all (y0, y1) ∈ D(A1/2)×X. This observability inequality holds if (ω, T ) satisfies the
GCC in �.

A similar observability problem can be formulated for the Schrödinger equation (80).
For every y0

∈ D(A), there exists a unique solution y of (80) in the spaceC0(0, T ;D(A))
such that y(0, ·) = y0(·). The equation (80) is said to be observable on ω in time T if
there exists C(S)T (χω) > 0 such that

C
(S)
T (χω)‖y

0
‖

2
D(A) ≤

∫ T

0

∫
ω

|∂ty(t, x)|
2 dVg dt (83)

for every y0
∈ D(A). If (ω, T ∗) satisfies the GCC then the observability inequality (83)

holds for every T > 0 (see [39]). This is so since the Schrödinger equation can be viewed
as a wave equation with an infinite speed of propagation. The GCC is sufficient to ensure
the observability for the Schrödinger equation, but to obtain sharp necessary and sufficient
conditions is a widely open problem (see [38]). The norms that are used will be computed
in a spectral way (see below).

Remark 5.1. These inequalities can be formulated in different ways by suitable choices
of function spaces. For instance, the observability inequality (82) is equivalent to

C
(W)
T (χω)‖(y

0, y1)‖2
X×(D(A1/2))′

≤

∫ T

0

∫
ω

|y(t, x)|2 dVg dt (84)

for all (y0, y1) ∈ X× (D(A1/2))′, with the same observability constants. Here the dual is
considered with respect to the pivot space X. The space (D(A1/2))′ is endowed with the
norm defined by

‖z‖(D(A1/2))′ = sup
w∈D(A1/2)
‖w‖

D(A1/2)≤1

〈z,w〉(D(A1/2))′,D(A1/2).

For instance if A = −1 with Dirichlet boundary conditions as considered previously,
then the observability inequality (84) exactly coincides with (11); we thus recover the
observability inequality that we considered up to now for wave equations with Dirichlet
boundary conditions.

Similarly, the observability inequality (83) is equivalent to

C
(S)
T (χω)‖y

0
‖

2
X ≤

∫ T

0

∫
ω

|y(t, x)|2 dVg dt (85)

for every y0
∈ X.

Spectral expansions. We fix an orthonormal Hilbert basis (φj )j∈N∗ of X consisting of
eigenfunctions of A on �, associated with the positive eigenvalues (λ2

j )j∈N∗ .

Remark 5.2. In the Neumann case or in the case ∂� = ∅, we take X = L2
0(�) to keep

a uniform presentation. Otherwise in X = L2(�), in those cases, we would have λ1 = 0
(a simple eigenvalue) and φ1 = 1/

√
|�|.
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Remark 5.3. We have

D(A) =
{
y ∈ X

∣∣∣ ∞∑
j=1

λ4
j |〈y, φj 〉L2 |

2 <∞
}
,

D(A1/2) =
{
y ∈ X

∣∣∣ ∞∑
j=1

λ2
j |〈y, φj 〉L2 |

2 <∞
}
,

and for every y ∈ D(A) we set ‖y‖2D(A) =
∑
∞

j=1 λ
4
j |〈y, φj 〉L2 |

2 and ‖y‖2
D(A1/2)

=∑
∞

j=1 λ
2
j |〈y, φj 〉L2 |

2.
In the case of Dirichlet boundary conditions, and if ∂� is C2, one has D(A) =

H 2(�,C) ∩ H 1
0 (�,C) (endowed with the norm ‖u‖H 2∩H 1

0
= ‖1u‖L2 ) and D(A1/2) =

H 1
0 (�,C) (endowed with the norm ‖u‖H 1

0
= ‖∇u‖L2 ). For Neumann boundary con-

ditions, one has D(A) = {y ∈ H 2(�,C) | ∂y
∂n |∂�

= 0 and
∫
�
y(x) dx = 0} and

D(A1/2) = {y ∈ H 1(�,C) |
∫
�
y(x) dx = 0}. In the mixed Dirichlet–Neumann

case (with 00 6= ∅), one has D(A) = {y ∈ H 2(�,C) | y|00 =
∂y
∂n |01

= 0} and

D(A1/2) = H 1
00
(�,C) = {y ∈ H 1(�,C) | y|00 = 0} (see e.g. [37]).

For every y0
∈ D(A), the solution y ∈ C0(0, T ;D(A)) of (80) such that y(0, ·) = y0(·)

can be expanded in Fourier series as follows:

y(t, x) =

∞∑
j=1

cj e
iλ2
j tφj (x).

Moreover, ‖y0
‖

2
D(A) =

∑
∞

j=1 λ
4
j |cj |

2, the sequence (λ2
j cj )j∈N∗ being in `2(C) and deter-

mined in terms of y0 by cj =
∫
�
y0(x)φj (x) dVg for every j ∈ N∗. It follows that∫ T

0

∫
ω

|∂ty(t, x)|
2 dVg dt =

∞∑
j,k=1

λ2
j λ

2
kαjk

∫
ω

φj (x)φk(x) dVg

with

αjk = cj c̄k

∫ T

0
e
i(λ2

j−λ
2
k)t dt =

2cj c̄k
λ2
j − λ

2
k

sin
(
(λ2
j − λ

2
k)
T

2

)
e
i(λ2

j−λ
2
k)T /2

whenever j 6= k, and αjj = |cj |2T whenever j = k. The observability constant is given
by

C
(S)
T (χω) = inf

(λ2
j cj )∈`

2(C)∑
∞

j=1 λ
4
j |cj |

2
=1

∫ T

0

∫
ω

∣∣∣ ∞∑
j=1

λ2
j cj e

iλ2
j tφj (x)

∣∣∣2 dVg dt.
Making, as in Section 2.3, a random selection of all possible initial data for the Schrö-
dinger equation (80) leads to define its randomized version as
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C
(S)
T ,rand(χω) = inf

(λ2
j cj )∈`

2(C)∑
∞

j=1 λ
4
j |cj |

2
=1

E
(∫ T

0

∫
ω

∣∣∣ ∞∑
j=1

λ2
j β

ν
j cj e

iλ2
j tφj (x)

∣∣∣2 dVg dt),
where (βνj )j∈N∗ denotes a sequence of independent Bernoulli random variables on a prob-
ability space (X ,A,P). This corresponds to considering the randomized observability
inequality

C
(S)
T ,rand(χω)‖y

0
‖

2
D(A) ≤ E

(∫ T

0

∫
ω

|∂tyν(t, x)|
2 dVg dt

)
for every y0(·) ∈ D(A), where yν denotes the solution of the Schrödinger equation with
the random initial data y0

ν (·) determined by its Fourier coefficients cνj = β
ν
j cj .

Theorem 2.2 then still holds in this general framework, and one has

2C(W)T ,rand(χω) = C
(S)
T ,rand(χω) = T inf

j∈N∗

∫
ω

φj (x)
2 dVg = T J (χω)

for every measurable subset ω of �, where J is defined as before by (26).
The time asymptotic observability constant is defined accordingly for the Schrödinger

equation by

C(S)∞ (χω) = inf
{

lim
T→∞

1
T

∫ T
0

∫
ω
|∂ty(t, x)|

2 dVg dt

‖y0‖2D(A)

∣∣∣∣ y0
∈ D(A) \ {0}

}
. (86)

Corollary 2.7 holds as well, stating that 2C(W)∞ (χω) = C
(S)
∞ (χω) = J (χω)whenever every

eigenvalue of A is simple. Note that the spectrum of the Neumann-Laplacian is known to
consist of simple eigenvalues for many choices of�: for instance, it is proved in [26] that
this property holds for almost every polygon of R2 having N vertices.
Main results under quantum ergodicity assumptions. Theorem 3.5 is unchanged in this
general framework. Several very minor things in the proof have to be (obviously) adapted
to the general Riemannian setting.
Spectral approximation. It must be noted that the third point of Theorem 4.9 can hold
true only if M is an analytic Riemannian manifold and if � has a nontrivial boundary.
This assumption is indeed used at the end of the proof of this theorem, when showing by
contradiction that the function x 7→

∑N
j=1 α

N
j φj (x)

2 is never constant on any subset of
positive measure. The reasoning works when dealing with Dirichlet boundary conditions,
but not for any other boundary condition. Actually, at this step it is required that the
family (φj )j∈N∗ of eigenfunctions satisfies the following geometrical property:
• Strong Conic Independence Property. If there exists a subset E of � of positive

Lebesgue measure, an integer N ∈ N∗, an N -tuple (αj )1≤j≤N ∈ (R+)N , and C ≥ 0
such that

∑N
j=1 αj |φj (x)|

2
= C almost everywhere on E, then C = 0 and αj = 0 for

every j ∈ {1, . . . , N}.
This property is defined, commented on and used in [53]. We have thus to distinguish
between the different boundary conditions under consideration. Up to our knowledge, the
general validity of this property is an open problem. Nevertheless, this property holds true
in the following cases:
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• Dirichlet–Laplacian;
• mixed Dirichlet–Neumann Laplacian defined on D(A0) = {y ∈ H

2(�,C) | χ00y|∂�
= 0}, with 00 ⊂ ∂� and Hn−1(00) > 0;
• Neumann–Laplacian on the n-dimensional square, defined onD(A0)={y∈H

2(�,C) |∫
�
y = 0 and ∂y

∂n
= 0 on ∂�}, with the usual Hilbert basis of eigenfunctions consisting

of products of cosine functions.
In all those cases, the third point of Theorem 4.9 holds true.
Numerical simulations. Some results are provided in Figure 6 for � = (0, π)2 with
Neumann boundary conditions. They illustrate as well the nonstationarity feature of the
maximizing sequence of optimal sets ωN .

Fig. 6. � = (0, π)2, with Neumann boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes), N = 20 (400 eigenmodes).

Remedy: weighted observability inequalities. In the general framework, the weighted
versions (as discussed in Section 4.4) of the observability inequalities (82) and (83) are

C
(W)
T ,σ (χω)(‖(y

0, y1)‖2
D(A1/2)×X

+ σ‖y0
‖

2
X) ≤

∫ T

0

∫
ω

|∂ty(t, x)|
2 dx dt (87)

in the case of the wave equation, and

C
(S)
T ,σ (χω)(‖y

0
‖

2
D(A) + σ‖y

0
‖

2
X) ≤

∫ T

0

∫
ω

|∂ty(t, x)|
2 dx dt (88)

in the case of the Schrödinger equation, where σ ≥ 0.



1096 Yannick Privat et al.

Note that, in the Dirichlet case, if σ = 1 then the inequality (87) corresponds to
replacing the H 1

0 norm with the full H 1 norm defined by ‖f ‖H 1(�,C) = (‖f ‖
2
L2(�,C) +

‖∇f ‖2
L2(�,C))

1/2.

Clearly, we have C(W)T ,σ (χω) ≤ C
(W)
T (χω) and C(S)T ,σ (χω) ≤ C

(S)
T (χω), for every σ ≥ 0.

Proposition 4.12 remains unchanged, stating that 2C(W)T ,σ,rand(χω) = C
(S)
T ,σ,rand(χω) =

T Jσ (χω) for every measurable subset ω of �, and that 2C(W)∞,σ (χω) = C
(S)
∞,σ (χω) =

Jσ (χω) if moreover every eigenvalue of A is simple, where Jσ is defined by (65).
Theorem 4.14 remains in force as well. Therefore, in the general framework, the aver-

aged versions of these weighted observability inequalities constitute a physically relevant
remedy to ensure the existence and uniqueness of an optimal set.

For the sake of completeness, let us provide a numerical simulation illustrating this
result. In Remark 4.19 we can also consider the domain � = Tn (flat torus), � = (0, π)n

with Dirichlet boundary conditions, or mixed Dirichlet–Neumann boundary conditions
with either Dirichlet or Neumann condition on every full edge of the hypercube, with the
usual basis (φj )j∈N∗ of eigenfunctions consisting of products of either sine or of cosine
functions (tensorized version of the 1D case). It is then easy to see that the conclusion of
Proposition 4.20 holds true in these more general cases.

Fig. 7. � = (0, π)2, with Dirichlet boundary conditions on ∂� ∩ ({x2 = 0} ∪ {x2 = π} and
Neumann boundary conditions on the rest of the boundary. Row 1: L = 0.2; row 2: L = 0.4; row 3:
L = 0.6; row 4: L = 0.9. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes),
N = 10 (100 eigenmodes).
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Some numerical simulations are provided in Figure 7 (with the weight σ = 1), again
clearly illustrating the stationarity feature of the maximizing sequence, as soon as L is
large enough.

6. Further comments

In Section 6.1, we show how our results for the problem (30) can be extended to a natural
variant of the observability inequality for Neumann boundary conditions or in the bound-
aryless case. In Section 6.2 we show how the problem of maximizing the observability
constant is equivalent to the optimal design of a control problem and to that of control-
lability in which solutions are driven to rest in final time by means of a suitable control
function. Section 6.3 is devoted to several open issues.

6.1. Further remarks for Neumann boundary conditions or in the boundaryless case

In the Neumann case, or in the case ∂� = ∅, as explained in footnote 5.2 one has to take
care of the constant (in space) solutions that can be an impediment for the observability
inequality to hold. In this section, we show that, if instead of considering the observability
inequalities (82) and (83), we consider the inequalities

C
(W)
T (χω)‖(y

0, y1)‖2
H 1×L2 ≤

∫ T

0

∫
ω

(|∂ty(t, x)|
2
+ |y(t, x)|2) dVg dt (89)

in the case of the wave equation, and

C
(S)
T (χω)‖y

0
‖

2
H 2 ≤

∫ T

0

∫
ω

(|∂ty(t, x)|
2
+ |y(t, x)|2) dVg dt (90)

in the case of the Schrödinger equation (see [61, Chapter 11] for a survey on these prob-
lems), then all our results remain unchanged.13

Indeed, consider initial data (y0, y1) ∈ H 1(�,C) × L2(�,C). The corresponding
solution y can still be expanded as (13), except that now (φj )j∈N∗ are the eigenfunctions
of the Neumann–Laplacian or of the Laplace–Beltrami operator in the boundaryless case,
associated with the eigenvalues (−λ2

j )j∈N∗ , with λ1 = 0 and φ1 being constant, equal to
1/
√
|�|. The relation (15) does not hold any more and is replaced with

‖(y0, y1)‖2
H 1×L2 =

∞∑
j=1

(2λ2
j |aj |

2
+ 2λ2

j |bj |
2
+ |aj + bj |

2). (91)

Following Section 2.3, we define the time asymptotic observability constant C(W)∞ (χω)

as the largest possible nonnegative constant for which the time asymptotic observability
inequality

C(W)∞ (χω)‖(y
0, y1)‖2

H 1×L2 ≤ lim
T→∞

1
T

∫ T

0

∫
ω

(|∂ty(t, x)|
2
+ |y(t, x)|2) dVg dt (92)

13 The norm in H 2(�,C) is given by ‖u‖H 2 = (‖u‖
2
L2 + ‖Du‖

2
L2 + ‖D

2u‖2
L2)

1/2.
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holds for all (y0, y1) ∈ H 1(�,C) × L2(�,C). Similarly, we define the randomized
observability constant C(W)T ,rand(χω) as the largest possible nonnegative constant for which
the randomized observability inequality

C
(W)
T ,rand(χω)‖(y

0, y1)‖2
H 1×L2 ≤ E

(∫ T

0

∫
ω

(|∂tyν(t, x)|
2
+ |yν(t, x)|

2) dVg dt

)
(93)

holds for all (y0, y1) ∈ H 1(�,C)×L2(�,C), where yν is defined as before by (25). The
time asymptotic and randomized observability constants are defined accordingly for the
Schrödinger equation. We have the following result, showing that we recover the same
criterion as before.

Theorem 6.1. Let ω be a measurable subset of �.

(i) If the domain � is such that every eigenvalue of the Neumann–Laplacian is simple,
then 2C(W)∞ (χω) = C

(S)
∞ (χω) = J (χω).

(ii) 2C(W)T ,rand(χω) = C
(S)
T ,rand(χω) = T J (χω).

Proof. Following the proofs of Theorems 2.2 and 2.6, we obtain C
(W)
T ,rand(χω) =

T C
(W)
∞ (χω) = T 0 with

0 = inf
((aj ),(bj ))∈(`

2(C))2\{0}

∑
∞

j=1(1+ λ
2
j )(|aj |

2
+ |bj |

2)
∫
ω
φj (x)

2 dVg∑
∞

j=1(2λ
2
j (|aj |

2 + |bj |2)+ |aj + bj |2)
.

Let us prove that 0 = 1
2J (χω). First, it is easy to see that, in the definition of 0, it suffices

to consider the infimum over real sequences (aj ) and (bj ). Next, setting aj = ρj cos θj
and bj = ρj sin θj , since |aj + bj |2 = ρ2

j (1 + sin(2θj )), to reach the infimum one has to
take θj = π/4 for every j ∈ N∗. It finally follows that

0 = inf
(ρj )∈`

2(R)∑
∞

j=1 ρ
2
j =1

1
2

∞∑
j=1

ρ2
j

∫
ω

φj (x)
2 dVg =

1
2
J (χω). ut

6.2. Optimal shape and location of internal controllers

In this section, we investigate the question of determining the shape and location of the
control domain for the wave or Schrödinger equations that minimizes the L2 norm of
the controllers realizing null controllability and its connections with the previous results
on the optimal design for observability. We shall see that maximizing the observability
constant is equivalent to minimizing the cost of controlling the corresponding adjoint
system.

For the sake of simplicity, we will only deal with the wave equation, the Schrödinger
case being easily adapted from that case. Also, without loss of generality we restrict
ourselves to Dirichlet boundary conditions.
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Consider the internally controlled wave equation on � with Dirichlet boundary con-
ditions

∂t ty(t, x)−1gy(t, x) = hω(t, x), (t, x) ∈ (0, T )×�,
y(t, x) = 0, (t, x) ∈ [0, T ] × ∂�,

y(0, x) = y0(x), ∂ty(0, x) = y1(x), x ∈ �,

(94)

where hω is a control supported in [0, T ] × ω and ω is a measurable subset of �.
Note that (94) is well posed for all initial data (y0, y1) ∈ H 1

0 (�,R) × L
2(�,R)

and every hω ∈ L2((0, T )×�,R), and its solution y belongs to C0(0, T ;H 1
0 (�,R)) ∩

C1(0, T ;L2(�,R)) ∩ C2(0, T ;H−1(�,R)).
The exact null controllability problem consists in finding a control hω steering system

(94) to y(T , ·) = ∂ty(T , ·) = 0.
It is well known that, for every subset ω of � of positive measure, the exact con-

trollability problem is by duality equivalent to the fact that the observability inequality

C‖(φ0, φ1)‖2
L2×H−1 ≤

∫ T

0

∫
ω

|φ(t, x)|2 dVg dt (95)

holds for all (φ0, φ1) ∈ L2(�,R)×H−1(�,R), for a positive constant C (only depend-
ing on T and ω), where φ is the (unique) solution of the adjoint system

∂t tφ(t, x)−1gφ(t, x) = 0, (t, x) ∈ (0, T )×�,
φ(t, x) = 0, (t, x) ∈ [0, T ] × ∂�,

φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x), x ∈ �.

(96)

The Hilbert Uniqueness Method (HUM, see [41, 42]) provides a way to characterize
the unique control solving the above exact null controllability problem and having more-
over a minimal L2((0, T ) × �,R) norm. This control is referred to as the HUM control
and is characterized as follows. Define the HUM functional Jω by

Jω(φ0, φ1) =
1
2

∫ T

0

∫
ω

φ(t, x)2 dVg dt − 〈φ
1, y0
〉H−1,H 1

0
+ 〈φ0, y1

〉L2 . (97)

The notation 〈·, ·〉H−1,H 1
0

stands for the duality bracket between H−1(�,R) and
H 1

0 (�,R), and the notation 〈·, ·〉L2 stands for the usual scalar product of L2(�,R).
If (95) holds then the functional Jω has a unique minimizer (still denoted (φ0, φ1)) in

the space L2(�,R)×H−1(�,R), for all (y0, y1) ∈ H 1
0 (�,R)× L

2(�,R). The HUM
control hω steering (y0, y1) to (0, 0) in time T is then given by hω(t, x) = χω(x)φ(t, x),
for almost all (t, x) ∈ (0, T )×�, where φ is the solution of (96) with initial data (φ0, φ1)

minimizing Jω.
The HUM operator 0ω is then defined by

0ω : H
1
0 (�,R)× L

2(�,R)→ L2((0, T )×�,R), (y0, y1) 7→ hω.
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With this definition, it is a priori natural to model the problem of determining the best
control domain as the problem of minimizing the norm of the operator 0ω,

‖0ω‖ = sup
{
‖hω‖L2((0,T )×�,R)
‖(y0, y1)‖H 1

0×L
2

∣∣∣∣ (y0, y1) ∈ H 1
0 (�,R)× L

2(�,R) \ {(0, 0)}
}
, (98)

over the set UL. The following result holds and can be proved using Fourier expansion.
We refer to [51] for the details of the proof in the one-dimensional case. Note that the
proof in the multi-dimensional case is exactly the same.

Proposition 6.2. Let T > 0 and let ω be measurable subset of �. If C(W)T (χω) > 0 then
‖0ω‖ = 1/C(W)T (χω), and if C(W)T (χω) = 0, then ‖0ω‖ = ∞.

This result illustrates the well known duality between controllability and observability,
and moreover shows that, for the optimal design control problem, one has

inf
χω∈UL

‖0ω‖ =
(

sup
χω∈UL

C
(W)
T (χω)

)−1
. (99)

Therefore the problem of minimizing ‖0ω‖ is equivalent to the problem of maximiz-
ing the observability constant over UL.

However, as discussed previously, it is more relevant to maximize the randomized
observability constant CT ,rand(χω) defined by (23) (see Section 2.3). It is therefore natural
to identify the dual optimal design problem at the control level.

The corresponding control problem reads

∂t ty(t, x)−1gy(t, x)=
∑
j≥1

fj (t)

∫
ω

φ2
j (u) du φj (x), (t, x)∈(0, T )×�,

y(t, x)=0, (t, x)∈[0, T ] × ∂�,

y(0, x)=y0(x), ∂ty(0, x)=y1(x), x∈�.

(100)

Note that in this problem the control is of lumped type, determined by the time-
dependent functions {fj (t)}j≥1 ∈ L2(0, T ; `2) that are weighted by the constant∫
ω
φj (x)

2 dx, which underlines the need of choosing ω so that the uniform spectral ob-
servability property holds, and acting on the profiles φj of the eigenfunctions of the Lapla-
cian.

Note in particular that, as a consequence of the randomization process at the observ-
ability level, the controls are distributed everywhere in the domain, through the profiles
given by the eigenfunctions of the Laplacian.

This issue will be investigated with further detail in a forthcoming article, together
with the corresponding consequences at the level of stabilization.

6.3. Open problems

We provide here a list of open problems.
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Optimal stabilization domain. Similar important problems can be addressed as well for
stabilization issues. For instance, when considering the wave equation with a local damp-
ing,

∂t ty = 1y − 2kχωyt , (101)

with k > 0, one can address the question of determining the best possible damping do-
main ω (in the class UL), achieving for instance (if possible) the largest possible expo-
nential decay rate.

This question was investigated in [22] in the one-dimensional case. The following
is known. First, if k → ∞ then the decay rate tends to 0 (overdamping phenomenon).
Second, as proved in [15], if the set ω has a finite number of connected components and
if k is small enough, then, at the first order. the decay rate is determined by the spectral
abscissa which is of the order of k infj∈N∗

∫
ω

sin2(jx) dx. Therefore, in the 1D case, for
k small maximizing the decay rate is equivalent to the problem (30) in 1D (however, with
the additional restriction that χω is in BV).

Note that, even in 1D, except for those two asymptotic regimes in which k is small or
large, the problem of maximizing the decay rate over UL is completely open.

The issue is of course much more complex in the multi-dimensional case. See [49]
for a much easier situation with constant damping.

Generally speaking, the exponential stability property of (101) is equivalent to the
observability property of the corresponding conservative wave equation (1) (see [20]).
Note however that this general statement, “observability implies stabilization”, does not
yield explicit decay rates for the dissipative semigroup.

The ultimate dependence of the decay rate on the amplitude of the dissipative poten-
tial (k) and the geometry of ω is rather complex, as proved in [40]. In fact, the exponential
decay rate τ(ω) does not coincide in general with the negative of the spectral abscissa
S(ω) since it is the minimum of this real number and of a geometric quantity depending
on the average time spent by geodesics crossing ω (see [24] for a study of this geometric
quantity in the square).

It is an interesting open problem to study the maximization of this geometric criterion
over the set UL.

It can be noted that the fact that τ(ω) ≤ −S(ω) and that in multi-D the strict inequality
may hold, is similar to the fact, underlined in Remark 2.5, that C(W)T (χω) ≤ C

(W)
T ,rand(χω)

and that the strict inequality may hold.
As in the context of control, randomized observability implies weaker stabilization

results (see [54] for precise results).

Maximization of the deterministic observability constant. As discussed in Section 2.3,
the problem of maximizing the (usual) deterministic observability constant C(W)T (χω)

(defined by (12)) over UL is open, and is difficult due to the crossed terms appearing
in the spectral expansion. It can be noted that the convexified version of this problem,
consisting in maximizing C(W)T (a) over UL, obviously has some solutions, and again
here the question of a gap, and the question of knowing whether the supremum is reached
over UL (existence of a classical optimal set), are open. Even a truncated version of this
criterion is an open problem, that is, the problem of maximizing the lowest eigenvalue
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of the Gramian matrix whose j, k entry is
∫
ω
φj (x)φk(x) dx. An interesting problem is

to investigate, theoretically or numerically, the sequence of maximizing subsets for this
truncated problem. Even in 1D, this problem is open.

As noted in Remark 2.1, in the one-dimensional case and if T is an integer multiple
of 2π , the crossed terms disappear and the Gramian matrix is diagonal; but if T is not an
integer multiple of 2π then owing to the crossed terms the functional cannot be handled
easily. Similar difficulties due to crossed terms are encountered in the open problem of
determining the best constants in Ingham’s inequality (see [29]), according to which, for
every γ > 0 and every T > 2π/γ , there exist C1(T , γ ), C2(T , γ ) > 0 such that for
every sequence (λn)n∈N∗ of real numbers satisfying |λn+1 − λn| ≥ γ for every n ∈ N∗,
we have

C1(T , γ )
∑
n∈N∗
|an|

2
≤

∫ T

0

∣∣∣∑
n∈N∗

ane
iλnt

∣∣∣2dt ≤ C2(T , γ )
∑
n∈N∗
|an|

2

for all (an)n∈N∗ ∈ `2(C) (see, e.g., [30, 32, 34, 64]).

Dependence on time. Instead of maximizing the observability constant over UL, for a
fixed time T , one can think of running the optimization also over time.

Before setting this problem, let us make the following remark in 1D. Setting � =
[0, π] (with Dirichlet boundary conditions), it is clear that if T ≥ 2π then the observ-
ability inequality (11) is satisfied for every subset ω of positive measure. However, 2π
is not the smallest possible time for a given specific choice of ω. For instance, if ω is a
subinterval of [0, π] then the smallest possible time for which the observability inequality
holds is 2 diam((0, π) \ ω). The question of determining this minimal time is nontrivial
if, instead of an interval, the set ω is, for instance, a fractal set. We state the following
problem (not only in 1D but also in general): given L ∈ (0, 1), does there exist a time
TL > 0 such that the observability inequality (11) holds for all ω ∈ UL and T ≥ TL?

Having in mind this open question, it is interesting to investigate the problem of max-
imizing the functional (χω, T ) 7→ CT (χω) over UL × (0,∞). Similar questions arise
when the observation set is not cylindrical but rather a measurable space-time set having
a certain fixed measure. For such problems the existence of a maximizer is easy to derive
when considering their convexified version, but the question of proving a no-gap result is
nontrivial and has not been studied. Also, it is interesting to investigate whether or not the
supremum is reached in the class of classical sets.

Nonexistence of an optimal set. In Section 4.1, using harmonic analysis we have proved
that, in 1D, the supremum of J over UL is reached if and only if L = 1/2 (and there
are infinitely many optimal sets). In the Euclidean square the question is open, but if the
supremum is considered only over Cartesian products of 1D subsets, then it is reached
if and only if L ∈ {1/4, 1/2, 3/4}. In general, the question of the existence of an opti-
mal set is completely open, and we expect that the supremum is not reached for generic
domains � and generic values of L.

This conjecture is in accordance with the observed increasing complexity of the se-
quence of optimal sets ωN that solve the problem of maximizing the truncated spectral
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criterion JN . An interesting question occurs here. In the (certainly) nongeneric case where
an optimal set does exist (as in 1D for L = 1/2 where there are infinitely many optimal
sets), what is the limit of the sets ωN? More precisely, can it happen that ωN converges to
a set of fractal type? The study of [52], done for fixed initial data, indicates that it might
be the case. The question is however completely open.

Note that in 1D for L sufficiently small, the spillover phenomenon was proved to
occur, according to which the optimal set ωN maximizing JN is, loosely speaking, the
worst possible one for the problem of maximizing JN+1. Proving this fact in a more
general context is an open problem.

Moreover, note that JN is defined as a truncation of the functional J , keeping the N
first modes. It would be interesting to consider similar optimal design problems running
for instance over initial data whose Fourier coefficients satisfy a uniform exponential
decreasing property. Another possibility is to truncate the Fourier series and keep only
the modes whose index is between two integers N1 and N2.

Weighted observability inequalities as a remedy. Intending to provide a physically rele-
vant remedy to the problem of nonexistence of an optimal set, in Section 4.4 we intro-
duced a weighted version of the observability inequality, which is however equivalent to
the classical one. We proved that if L > λ2

1/(σ + λ
2
1) then there exists a unique opti-

mal set, which is moreover the limit of the stationary sequence of optimal set ωN of the
truncated criterion. Our simulations indicate that this threshold in L is sharp. It is an open
question to investigate the situation where L ≤ λ2

1/(σ +λ
2
1): is there a gap or not between

the problem and its convexified version? Is the supremum over UL reached or not?

Quantum ergodicity assumptions. In Theorem 3.5, we assumed the strong QUE on the
base and uniform Lp-boundedness properties. As discussed in Section 3.3, except in 1D,
up to now no domain is known where these assumptions hold true. The property QUE is
related to a well known conjecture in mathematical physics. With the example of the disk
(Proposition 3.9), we have seen that these assumptions are however not sharp.

Theorem 4.14, providing the existence of an optimal set for the weighted version
of the problem, holds true under L∞-QUE on the base. The example of the hypercube
(Proposition 4.20) shows that these assumptions are not sharp.

Weakening the sufficient assumptions of these three results is a completely open prob-
lem.

Note that, concerning the quantum ergodicity assumptions that we used, and the dis-
cussion in Section 3.3, we used the current state of the art in mathematical physics. The
model that we used throughout, based on averaging either with respect to time or with
respect to random initial data, leads to a spectral criterion whose solving requires a good
knowledge of quantum ergodicity properties which are not well known presently. The
problem remains of finding more robust models in which the solving of an optimal de-
sign problem would not require such a fine knowledge of the eigenelements. For instance,
it is likely that the microlocal methods used in [3] in order to provide an almost neces-
sary and sufficient condition for observability to hold (the Geometric Control Condition)
in terms of geometric rays, should allow one to identify classes of domains where the
constant is governed by a finite number of modes.



1104 Yannick Privat et al.

In brief, it is an open question to model the optimal design problems under consider-
ation (possibly, based on the notion of geometric rays as discussed above) in such a way
that the resulting problem will be both physically and mathematically relevant, and will
not require, for its solving, sufficient assumptions so strong as the ones considered here.

Other models. In this article we have modeled and studied the optimal observability prob-
lem for wave and Schrödinger equations. It can be noted that, using the randomization
procedure or the time averaging procedure that we have introduced for the observabil-
ity inequalities, the spectral criterion J considered throughout can be derived as well for
many other conservative models; however, nothing is then known on the probability mea-
sures µj = φ2

j dx where the φj are the eigenfunctions of the underlying operator. As we
have seen, even for the Laplacian the quantum ergodicity properties are widely unknown,
and the situation is even more open for other operators.

For parabolic models the situation seems to be different. The randomization leads to a
weighted spectral criterion similar to Jσ , but with the sequence of weights σj increasing
to∞ (whereas here it was increasing to 1). Because of that, in contrast to the results of
the present article, it is expected that an optimal set does exist, under mild assumptions.
We refer to [53] for results in that direction.

Also, for such other models, the previously raised questions—optimal shape and loca-
tion of internal controllers; maximization of the deterministic observability constant—are
open problems as well.

Appendix: Proof of Theorem 2.6 and of Corollary 2.7

For the convenience of the reader, we first prove Theorem 2.6 in the particular case where
all the eigenvalues of 1 are simple (it corresponds exactly to the proof of Corollary 2.7),
and then we give a generalization to the case of multiple eigenvalues.

From (13), we have y(t, x) =
∑
∞

j=1 yj (t, x) with

yj (t, x) = (aj e
iλj t + bj e

−iλj t )φj (x). (102)

Without loss of generality, we consider initial data (y0, y1) ∈ L2(�,C) × H−1(�,C)
such that ‖(y0, y1)‖2

L2×H−1 = 2, in other words,
∑
j∈N∗(|aj |

2
+ |bj |

2) = 1 (using (15)).
Setting

6T (a, b) =
1
T

∫ T
0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

=
1

2T

∫ T

0

∫
ω

|y(t, x)|2 dx dt,

we write, for an arbitrary N ∈ N∗,

6T (a, b) =
1
T

∫ T

0

∫
ω

(∣∣∣ N∑
j=1

yj (t, x)

∣∣∣2 + ∣∣∣ ∞∑
k=N+1

yk(t, x)

∣∣∣2
+ 2<e

( N∑
j=1

yj (t, x)

∞∑
k=N+1

ȳk(t, x)
))
dx dt. (103)
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Using the assumption that the spectrum of 1 consists of simple eigenvalues, we have the
following result.

Lemma A.1. With the notation above, we have

lim
T→∞

1
T

∫ T

0

∫
ω

∣∣∣ N∑
j=1

yj (t, x)

∣∣∣2dx dt = N∑
j=1

(|aj |
2
+ |bj |

2)

∫
ω

φj (x)
2 dx.

Proof. Since the sum is finite we can invert the infimum (which is a minimum) and the
limit. Now, we write

1
T

∫ T

0

∫
ω

∣∣∣ N∑
j=1

yj (t, x)

∣∣∣2 dx dt
=

1
T

N∑
j=1

αjj

∫
ω

φj (x)
2 dx +

1
T

N∑
j=1

N∑
k=1
k 6=j

αjk

∫
ω

φj (x)φk(x) dx,

where αjk is defined by (17). Using (18) and (19), we get limT→∞ αjj/T = |aj |
2
+ |bj |

2

for every j ∈ N∗, and since the spectrum of 1 consists of simple eigenvalues,

|αjk| ≤
4 max1≤j,k≤N (λj , λk)

|λ2
j − λ

2
k|

(104)

whenever j 6= k. The conclusion follows easily. ut

Let us now estimate the remaining terms

R =
1
T

∫ T

0

∫
ω

∣∣∣ ∞∑
j=N+1

yj (t, x)

∣∣∣2 dx dt,
δ =

1
T
<e

(∫ T

0

∫
ω

N∑
j=1

yj (t, x)

∞∑
k=N+1

ȳk(t, x) dx dt

)
,

of the right-hand side of (103).

Estimate of R. Using the fact that the φj ’s form a Hilbert basis, we get

R ≤
1
T

∫ T

0

∫
�

∣∣∣ ∞∑
j=N+1

yj (t, x)

∣∣∣2 dx dt = 1
T

∞∑
j=N+1

∫ T

0
|aj e

iλj t − bj e
−iλj t |

2 dt

=
1
T

∞∑
j=N+1

(
T (|aj |

2
+ |bj |

2)−
1
λj
<e

(
aj b̄j

e2iλjT − 1
i

))
and finally

R ≤

(
1+

1
λNT

) ∞∑
j=N+1

(|aj |
2
+ |bj |

2). (105)
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Estimate of δ. Using (18) and the fact that λj 6= λk for every j ∈ {1, . . . , N} and every
k ≥ N + 1, we have |δ| ≤ 2

T
(SN1 + S

N
2 + S

N
3 + S

N
4 ) with

SN1 =

∣∣∣∣ N∑
j=1

∞∑
k=N+1

1
λj − λk

aj āke
i(λj−λk)T /2 sin

(
(λj − λk)

T

2

)∫
ω

φj (x)φk(x) dx

∣∣∣∣,
SN2 =

∣∣∣∣ N∑
j=1

∞∑
k=N+1

1
λj + λk

aj b̄ke
i(λj+λk)T /2 sin

(
(λj + λk)

T

2

)∫
ω

φj (x)φk(x) dx

∣∣∣∣,
SN3 =

∣∣∣∣ N∑
j=1

∞∑
k=N+1

1
λj + λk

bj āke
−i(λj+λk)T /2 sin

(
(λj + λk)

T

2

)∫
ω

φj (x)φk(x) dx

∣∣∣∣,
SN4 =

∣∣∣∣ N∑
j=1

∞∑
k=N+1

1
λj − λk

bj b̄ke
−i(λj−λk)T /2 sin

(
(λj − λk)

T

2

)∫
ω

φj (x)φk(x) dx

∣∣∣∣.
Let us estimate SN1 . We write

SN1 =

∣∣∣∣ N∑
j=1

aj

∫
ω

φj (x)

∞∑
k=N+1

āk

λj − λk
ei(λj−λk)T /2 sin

(
(λj − λk)

T

2

)
φk(x) dx

∣∣∣∣,
and, using the Cauchy–Schwarz inequality and the fact that the integral of a nonnegative
function over ω is smaller than the integral of the same function over �, one gets

SN1 ≤

N∑
j=1

|aj |

(∫
�

∣∣∣∣ ∞∑
k=N+1

āk

λj − λk
ei(λj−λk)T /2 sin

(
(λj − λk)

T

2

)
φk(x)

∣∣∣∣2 dx)1/2

=

N∑
j=1

|aj |

( ∞∑
k=N+1

|ak|
2

(λj − λk)2
sin2

(
(λj − λk)

T

2

))1/2

.

The last equality is established by expanding the square of the sum inside the integral,
and by using the fact that the φk’s are orthonormal in L2(�). Since the spectrum of 1
consists of simple eigenvalues (assumed to form an increasing sequence), we infer that
λk − λj ≥ λN+1 − λN for all j ∈ {1, . . . , N} and k ≥ N + 1, and since

∑
∞

j=1 |aj |
2
≤ 1,

it follows that

SN1 ≤
1

λN+1 − λN

N∑
j=1

|aj |
( ∞∑
k=N+1

|ak|
2
)1/2
≤

N

λN+1 − λN
.

The same arguments lead to the estimates SN2 ≤ N/λN , SN3 ≤ N/λN , SN4 ≤

N/(λN+1 − λN ), and therefore

|δ| ≤
4N
T

(
1
λN
+

1
λN+1 − λN

)
. (106)
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Now, combining Lemma A.1 with the estimates (105) and (106) shows that for every
ε > 0, there exist Nε ∈ N∗ and T (ε,Nε) > 0 such that if N ≥ Nε and T ≥ T (ε,Nε),
then ∣∣∣∣6T (a, b)− N∑

j=1

(|aj |
2
+ |bj |

2)

∫
ω

φj (x)
2 dx

∣∣∣∣ ≤ ε.
As an immediate consequence, and using the obvious fact that, for every η > 0, there
exists Nη ∈ N∗ such that if N ≥ Nη then∣∣∣∣ ∞∑

j=1

(|aj |
2
+ |bj |

2)

∫
ω

φj (x)
2 dx −

N∑
j=1

(|aj |
2
+ |bj |

2)

∫
ω

φj (x)
2 dx

∣∣∣∣ ≤ η,
one deduces that limT→∞6T (a, b) =

∑
∞

j=1(|aj |
2
+ |bj |

2)
∫
ω
φj (x)

2 dx. Thus, we have
proved the following lemma, which improves the statement of Lemma A.1.

Lemma A.2. Denoting by aj and bj the Fourier coefficients of (y0, y1) defined by (14),
we have

lim
T→∞

1
T

∫ T

0

∫
ω

|y(t, x)|2 dx dt =

∞∑
j=1

(|aj |
2
+ |bj |

2)

∫
ω

φj (x)
2 dx.

Corollary 2.7 follows by noting that

inf
(aj ),(bj )∈`

2(C)∑
∞

j=1(|aj |
2
+|bj |

2)=1

∞∑
j=1

(|aj |
2
+ |bj |

2)

∫
ω

φj (x)
2 dx = inf

j∈N∗

∫
ω

φj (x)
2 dx.

To finish the proof, we now explain how the arguments above can be generalized to
the case of multiple eigenvalues. In particular, the statement of Lemma A.1 is adapted in
the following way.

Lemma A.3. Using the previous notation, one has

lim
T→∞

1
T

∫ T

0

∫
ω

∣∣∣ N∑
j=1

yj (t, x)

∣∣∣2 dx dt
=

∑
λ∈U
λ≤λN

∫
ω

(∣∣∣ ∑
k∈I (λ)

λkakφk(x)

∣∣∣2 + ∣∣∣ ∑
k∈I (λ)

λkbkφk(x)

∣∣∣2) dx.
Proof. Following the proof of Lemma A.1, simple computations show that

1
T

∫ T

0

∫
ω

∣∣∣ N∑
j=1

yj (t, x)

∣∣∣2dx dt = 1
T

∑
λ∈U

∑
(j,k)∈I (λ)2

αjk

∫
ω

φj (x)φk(x) dx

+
1
T

∑
(λ,µ)∈U2

λ 6=µ

∑
j∈I (λ)
k∈I (µ)

αjk

∫
ω

φj (x)φk(x) dx,
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where

lim
T→∞

αjk

T
=

{
aj āk + bj b̄k if (j, k) ∈ I (λ)2,
0 if j ∈ I (λ), k ∈ I (µ), with (λ, µ) ∈ U2 and λ 6= µ.

The conclusion of the lemma follows. ut

Noting that the previous estimates on R and δ are still valid and that

inf
(aj ),(bj )∈`

2(C)∑
∞

j=1(|aj |
2
+|bj |

2)=1

∑
λ∈U
λ≤λN

∫
ω

(∣∣∣ ∑
k∈I (λ)

akφk(x)

∣∣∣2 + ∣∣∣ ∑
k∈I (λ)

bkφk(x)

∣∣∣2) dx
= inf
(ck)j∈N∗∈`

2(C)∑
∞

k=1 |ck |
2

∫
ω

∑
λ∈U

∣∣∣ ∑
k∈I (λ)

ckφk(x)

∣∣∣2 dx,
Theorem 2.6 follows.
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linear Differential Equations 65, Birkhäuser, Basel (2005) Zbl 1117.49001 MR 2150214

[7] Burq, N.: Large-time dynamics for the one-dimensional Schrödinger equation. Proc. Roy. Soc.
Edinburgh Sect. A 141, 227–251 (2011) Zbl 1226.35072 MR 2786680

[8] Burq, N.: personal communication (2012)
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[40] Lebeau, G.: Équation des ondes amorties. In: Algebraic and Geometric Methods in Mathe-
matical Physics (Kaciveli, 1993), Kluwer, 73–109 (1996) Zbl 0863.58068 MR 1385677

[41] Lions, J.-L.: Exact controllability, stabilizability and perturbations for distributed systems.
SIAM Rev. 30, 1–68 (1988) Zbl 0644.49028 MR 0931277
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