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Abstract. We consider the 3D quantum BBGKY hierarchy which corresponds to the N -particle
Schrödinger equation. We assume the pair interaction is N3β−1V (Nβ ·). For the interaction param-
eter β ∈ (0, 2/3), we prove that, provided an energy bound holds for solutions to the BBKGY
hierarchy, the N → ∞ limit points satisfy the space-time bound conjectured by S. Klainerman
and M. Machedon [45] in 2008. The energy bound was proven to hold for β ∈ (0, 3/5) in [28].
This allows, in the case β ∈ (0, 3/5), for the application of the Klainerman–Machedon unique-
ness theorem and hence implies that the N → ∞ limit of BBGKY is uniquely determined as a
tensor product of solutions to the Gross–Pitaevskii equation when the N -body initial data is fac-
torized. The first result in this direction in 3D was obtained by T. Chen and N. Pavlović [11] for
β ∈ (0, 1/4) and subsequently by X. Chen [15] for β ∈ (0, 2/7]. We build upon the approach of
X. Chen but apply frequency localized Klainerman–Machedon collapsing estimates and the end-
point Strichartz estimate in the estimate of the “potential part” to extend the range to β ∈ (0, 2/3).
Overall, this provides an alternative approach to the mean-field program by L. Erdős, B. Schlein,
and H.-T. Yau [28], whose uniqueness proof is based upon Feynman diagram combinatorics.

Keywords. BBGKY hierarchy, n-particle Schrödinger equation, Klainerman–Machedon space-
time bound, quantum Kac program

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162
1.1. Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166

2. Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
3. Estimate of the potential part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171

3.1. A simpler proof in the case β ∈ (0, 2/5) . . . . . . . . . . . . . . . . . . . . . . 1172
3.2. The case β ∈ (0, 2/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176

4. Collapsing and Strichartz estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
4.1. Various forms of collapsing estimates . . . . . . . . . . . . . . . . . . . . . . . 1182
4.2. A Strichartz estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189

X. Chen: Department of Mathematics, University of Rochester, Hylan Building,
Rochester, NY 14618, USA; e-mail: chenxuwen@math.brown.edu,
https://www.math.rochester.edu/people/faculty/xchen84/
J. Holmer: Department of Mathematics, Brown University,
151 Thayer Street, Providence, RI 02912, USA; e-mail: holmer@math.brown.edu,
http://www.math.brown.edu/˜holmer/

Mathematics Subject Classification (2010): Primary 35Q55, 35A02, 81V70; Secondary 35A23,
35B45



1162 Xuwen Chen, Justin Holmer

Appendix A. The topology on the density matrices . . . . . . . . . . . . . . . . . . . . . 1193
Appendix B. Proof of estimates (2.9) and (2.11) . . . . . . . . . . . . . . . . . . . . . . . 1194
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197

1. Introduction

The 3D quantum BBGKY (Bogolyubov–Born–Green–Kirkwood–Yvon) hierarchy is
generated from the N -body Hamiltonian evolution ψN (t) = eitHNψN,0 with symmet-
ric initial datum, and the N -body Hamiltonian is given by

HN = −1xN +
1
N

∑
1≤i<j≤N

N3βV (Nβ(xi − xj )). (1.1)

In the above, t ∈ R, xN = (x1, . . . , xN ) ∈ R3N , 1xN denotes the standard Lapla-
cian with respect to the variables xN ∈ R3N , the factor 1/N in (1.1) is to make sure
that the interactions are proportional to the number of particles, and the pair interaction
N3βV (Nβ(xi−xj )) is an approximation to the Dirac δ function which matches the Gross–
Pitaevskii description of Bose–Einstein condensation that the many-body effect should be
modeled by a strong on-site self-interaction. Since ψNψN is a probability density, we de-
fine the marginal densities {γ (k)N (t, xk, x′k)}

N
k=1 by

γ
(k)
N (t, xk, x′k) =

∫
ψN (t, xk, xN−k)ψN (t, x′k, xN−k) dxN−k, xk, x′k ∈ R3k.

Then {γ (k)N (t, xk, x′k)}
N
k=1 is a sequence of trace class operator kernels which are symmet-

ric, in the sense that
γ
(k)
N (t, xk, x′k) = γ

(k)
N (t, x′k, xk),

and

γ
(k)
N (t, xσ(1), . . . , xσ(k), x

′

σ(1), . . . , x
′

σ(k)) = γ
(k)
N (t, x1, . . . , xk, x

′

1, . . . , x
′

k) (1.2)

for any permutation σ, and satisfy the 3D quantum BBGKY hierarchy of equations which
written in operator form is

i∂tγ
(k)
N + [1xk , γ

(k)
N ] =

1
N

∑
1≤i<j≤k

[VN (xi − xj ), γ
(k)
N ]

+
N − k

N

k∑
j=1

Trk+1[VN (xj − xk+1), γ
(k+1)
N ] (1.3)

if we do not distinguish γ (k)N as a kernel and the operator it defines.1 Here the operator
VN (x) represents multiplication by the function VN (x), where

VN (x) = N
3βV (Nβx), (1.4)

1 From here on, we consider only the β > 0 case. For β=0, see [31, 32, 46, 48, 50, 36, 37, 13, 7] .
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and Trk+1 means taking the k + 1 trace, for example,

Trk+1 VN (xj − xk+1)γ
(k+1)
N =

∫
VN (xj − xk+1)γ

(k+1)
N (t, xk, xk+1; x′k, xk+1) dxk+1.

In 2008, S. Klainerman and M. Machedon implicitly made the following conjecture
on the solution of the BBGKY hierarchy.

Conjecture 1 (Klainerman–Machedon [45]). Assume the interaction parameter β is in
(0, 1]. Suppose that the sequence {γ (k)N (t, xk, x′k)}

N
k=1 is a solution to the 3D quantum

BBGKY hierarchy (1.3) subject to the energy condition: there is a C0 (independent of N
and k) such that for any k ≥ 0, there is an N0(k) such that

∀N ≥ N0(k), sup
t∈R

Tr
( k∏
j=1

(1−1xj )
)
γ
(k)
N ≤ C

k
0 . (1.5)

Then, for every finite time T , every limit point 0 = {γ (k)}∞k=1 of {0N }∞N=1 =

{{γ
(k)
N }

N
k=1}

∞

N=1 in
⊕

k≥1 C([0, T ],L1
k) with respect to the product topology τprod (defined

in Appendix A) satisfies the space-time bound: there is a C independent of j, k such that∫ T

0
‖R(k)Bj,k+1γ

(k+1)(t)‖L2
x,x′
dt ≤ Ck, (1.6)

where L1
k is the space of trace class operators on L2(R3k), R(k) =

∏k
j=1(|∇xj | |∇x′j

|),

and
Bj,k+1 = Trk+1[δ(xj − xk+1), γ

(k+1)
].

Though Conjecture 1 was not explicitly stated in [45], as we will explain after stating The-
orem 1.1, the bound (1.6) is necessary to implement Klainerman–Machedon’s powerful
and flexible approach in the most involved part of the quantum Kac program which math-
ematically proves the cubic nonlinear Schrödinger equation (NLS) as the N → ∞ limit
of quantumN -body dynamics. Kirkpatrick–Schlein–Staffilani [43] completely solved the
T2 version of Conjecture 1 and were the first to successfully implement such an approach.
However, Conjecture 1, in the R3 version as stated, was fully open until recently. T. Chen
and Pavlović [11] have been able to prove Conjecture 1 for β ∈ (0, 1/4). In [15], X. Chen
simplified and extended the result to the range of β ∈ (0, 2/7]. We devote this paper
to proving Conjecture 1 for β ∈ (0, 2/3). In particular, we surpass the self-interaction
threshold,2 namely β = 1/3. To be specific, we prove the following theorem.

Theorem 1.1 (Main theorem). Assume the interaction parameter β is in (0, 2/3) and
the pair interaction V is in L1

∩ W 2,(6/5)+. Under condition (2.5), every limit point
0 = {γ (k)}∞k=1 of {0N }∞N=1 satisfies the Klainerman–Machedon space-time bound (1.6).

Establishing the N →∞ limit of hierarchy (1.3) justifies the mean-field limit in Gross–
Pitaevskii theory. Such an approach was first proposed by Spohn [52] and can be regarded

2 We will explain why we call the β > 1/3 case self-interaction later in this introduction.
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as a quantum version of Kac’s program. We see that, asN →∞, hierarchy (1.3) formally
converges to the infinite Gross–Pitaevskii hierarchy

i∂tγ
(k)
+ [1xk , γ

(k)
] =

(∫
V (x) dx

) k∑
j=1

Trk+1[δ(xj − xk+1), γ
(k+1)
]. (1.7)

When the initial data is factorized,

γ (k)(0, xk, x′k) =
k∏

j=1

φ0(xj )φ̄0(xj ),

hierarchy (1.7) has a special solution

γ (k)(t, xk; x′k) =
k∏

j=1

φ(t, xj )φ̄(t, xj ) (1.8)

if φ solves the cubic NLS

i∂tφ = −1xφ +

(∫
V (x) dx

)
|φ|2φ. (1.9)

Thus such a limit process shows that, in an appropriate sense,

lim
N→∞

γ
(k)
N =

k∏
j=1

φ(t, xj )φ̄(t, xj ),

hence justifies the mean-field limit.
Such a limit in 3D was first proved in a series of important papers [26, 27, 28, 29, 30]

by Elgart, Erdős, Schlein, and Yau.3 Briefly, the Elgart–Erdős–Schlein–Yau approach4

can be described as follows:

Step A. Prove that, with respect to the topology τprod defined in Appendix A, the sequence
{0N }

∞

N=1 is compact in the space
⊕

k≥1 C([0, T ],L1
k).

Step B. Prove that every limit point 0 = {γ (k)}∞k=1 of {0N }∞N=1 must verify hierar-
chy (1.7).

Step C. Prove that, in the space in which the limit points from Step B lie, there is a
unique solution to hierarchy (1.7). Thus {0N }∞N=1 is a compact sequence with only one
limit point. Hence 0N → 0 as N →∞.

In 2007, Erdős, Schlein, and Yau obtained the first uniqueness theorem [28, Theorem 9.1]
for solutions to the hierarchy (1.7). The proof is surprisingly delicate—it spans 63 pages
and uses complicated Feynman diagram techniques. The main difficulty is that hierar-
chy (1.7) is a system of infinitely coupled equations. Briefly, [28, Theorem 9.1] is the
following:5

3 Around the same time, there was the 1D work [1].
4 See [4, 35, 49] for different approaches.
5 For further development in this direction, see [6, 21, 34, 40].
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Theorem 1.2 (Erdős–Schlein–Yau uniqueness [28, Theorem 9.1]). There is at most one
nonnegative symmetric operator sequence {γ (k)}∞k=1 that solves hierarchy (1.7) subject to
the energy condition

sup
t∈[0,T ]

Tr
( k∏
j=1

(1−1xj )
)
γ (k) ≤ Ck. (1.10)

In [45], based on their null form paper [44], Klainerman and Machedon gave a different
proof of the uniqueness of hierarchy (1.7) in a space different from that used in [28,
Theorem 9.1]. The proof is shorter (13 pages) than the proof of [28, Theorem 9.1]. Briefly,
[45, Theorem 1.1] is the following:6

Theorem 1.3 (Klainerman–Machedon uniqueness [45, Theorem 1.1]). There is at most
one symmetric operator sequence {γ (k)}∞k=1 that solves hierarchy (1.7) subject to the
space-time bound (1.6).

For special cases like (1.8), condition (1.10) is actually

sup
t∈[0,T ]

‖〈∇x〉φ‖L2 ≤ C, (1.11)

while condition (1.6) means ∫ T

0

∥∥|∇x |(|φ|2φ)∥∥L2 dt ≤ C. (1.12)

When φ satisfies NLS (1.9), both are known. In fact, due to the Strichartz estimate [41],
(1.11) implies (1.12), that is, condition (1.6) seems to be a bit weaker than (1.10). As
already mentioned, the proof of [45, Theorem 1.1] is considerably shorter than the proof
of [28, Theorem 9.1]. It is then natural to wonder whether [45, Theorem 1.1] simplifies
Step C. To answer this question it is necessary to know whether the limit points in Step B
satisfy condition (1.6), that is, whether Conjecture 1 holds.

Apart from curiosity, there are realistic reasons to study Conjecture 1. While [28,
Theorem 9.1] is a powerful theorem, it is difficult to adapt such an argument to other
interesting and colorful settings: a different spatial dimension, a three-body interaction
instead of a pair interaction, or the Hermite operator instead of the Laplacian. The last
situation mentioned is physically important. On the one hand, all the known experiments
of BEC use harmonic trapping to stabilize the condensate [2, 24, 23, 42, 53]. On the
other hand, different trapping strength produces quantum behaviors, which do not exist
in the Boltzmann limit of classical particles or in the quantum case when the trapping is
missing, and have been experimentally observed [33, 54, 22, 39, 25]. The Klainerman–
Machedon approach applies easily in these meaningful situations [43, 9, 14, 15, 16, 34].7

Thus proving Conjecture 1 actually helps to advance the study of quantum many-body
dynamics and the mean-field approximation in the sense that it provides a flexible and
powerful tool in 3D.

6 For progress in this direction, see [19].
7 See [17, 18, 20] for progress in the case of focusing interactions.
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The well-posedness theory of the Gross–Pitaevskii hierarchy (1.7) subject to general
initial data also requires that the limits of the BBGKY hierarchy (1.3) lie in the space in
which the space-time bound (1.6) holds. See [8, 10, 11].

As pointed out in [26], the study of the Hamiltonian (1.1) is of particular interest
when β ∈ (1/3, 1]. The reason is the following. In physics, the initial datum ψN (0) of
the Hamiltonian evolution eitHNψN (0) is usually assumed to be close to the ground state
of the Hamiltonian

HN,0 = −1xN + ω
2
0|xN |

2
+

1
N

∑
1≤i<j≤N

N3βV (Nβ(xi − xj )).

The preparation of the available experiments and the mathematical work [47] by Lieb,
Seiringer, Solovej and Yngvason confirm this assumption. Such an initial datum ψN (0) is
localized in space. We can assume all N particles are in a box of side length 1. Let the ef-
fective radius of the pair interaction V be a; then the effective radius of VN is about a/Nβ .
Thus every particle in the box interacts with (a/Nβ)3 × N other particles. Thus, for
β > 1/3 and large N , every particle interacts with only itself. This exactly matches the
Gross–Pitaevskii theory that the many-body effect should be modeled by a strong on-site
self-interaction. Therefore, for the mathematical justification of Gross–Pitaevskii theory,
it is of particular interest to prove Conjecture 1 for self-interaction (β > 1/3) as well.

To the best of our knowledge, the main theorem (Theorem 1.1) in the current paper
is the first result proving Conjecture 1 for self-interaction (β > 1/3). For β ≤ 1/3, the
first progress on Conjecture 1 is the β ∈ (0, 1/4) work [11] by T. Chen and N. Pavlović
and then the β ∈ (0, 2/7] work [15] by X. Chen. As a matter of fact, the main theorem
(Theorem 1.1) in the current paper has already fulfilled the original intent of [45], namely,
simplifying the uniqueness argument of [28], because [28] deals with β ∈ (0, 3/5). Con-
jecture 1 for β ∈ [2/3, 1] is still open.

1.1. Organization of the paper. In §2, we outline the proof of Theorem 1.1. The overall
pattern follows that introduced by X. Chen [15], who obtained Theorem 1.1 for β ∈
(0, 2/7]. Let P (k)

≤M be the Littlewood–Paley projection defined in (2.1). Theorem 1.1 will
follow once it is established that for allM ≥ 1, there exists N0 depending onM such that
for all N ≥ N0,

‖P
(k)
≤MR

(k)BN,j,k+1γ
(k+1)
N (t)‖L1

T L
2
x,x′
≤ Ck (1.13)

where BN,j,k+1 is defined by (2.3). By substituting the Duhamel–Born expansion, carried
out to coupling level K , of the BBGKY hierarchy, this is reduced to proving analogous
bounds on the free part, potential part, and interaction part, defined in §2. Each part is
reduced via the Klainerman–Machedon board game. Estimates for the free part and inter-
action part were previously obtained by X. Chen [15] but are reproduced here for conve-
nience in Appendix B. For the estimate of the interaction part, one takes K = logN , the
utility of which was first observed by T. Chen and N. Pavlović [11].

The main new achievement of our paper is the improved estimates on the potential
part, which are discussed in §3. We make use of the endpoint Strichartz estimate, phrased
in terms of the Xb norm, in place of the Sobolev inequality employed by X. Chen [15].
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We also introduce frequency localized versions of the Klainerman–Machedon collapsing
estimates, allowing us to exploit the frequency localization in (1.13). Specifically, the op-
erator P (k)

≤M does not commute with BN,j,k+1, but the composition P (k)
≤Mk

BN,j,k+1P
(k+1)
∼Mk+1

enjoys better bounds if Mk+1 � Mk . We prove the Strichartz estimate and the frequency
localized Klainerman–Machedon collapsing estimates in §4. Frequency localized space-
time techniques of this type were introduced by Bourgain [5, Chapter IV, §3] into the
study of the well-posedness for nonlinear Schrödinger equations and other nonlinear dis-
persive PDE.

In [15], (1.13) is obtained without the frequency localization P (k)
≤M for β ∈ (0, 2/7].

In Theorem 3.2, we prove that this estimate still holds without frequency localization
for β ∈ (0, 2/5) by using the Strichartz estimate alone. This already surpasses the self-
interaction threshold β = 1/3. For the purpose of proving Conjecture 1, the frequency
localized estimate (1.13) is equally good, but allows us to achieve higher β.

2. Proof of the main theorem

We establish Theorem 1.1 in this section. For simplicity of notation, we denote
‖ · ‖Lp[0,T ]L2

x,x′
by ‖ · ‖LpT L2

x,x′
, and ‖ · ‖Lpt (R)L2

x,x′
by ‖ · ‖Lpt L2

x,x′
. Let us begin by in-

troducing some notation for Littlewood–Paley theory. Let P i
≤M be the projection onto

frequencies ≤ M and P iM the analogous projections onto frequencies ∼ M , acting on
functions of xi ∈ R3 (the ith coordinate). We take M to be a dyadic frequency range
2` ≥ 1. Similarly, we define P i

′

≤M and P i
′

M , which act on the variable x′i . Let

P
(k)
≤M =

k∏
i=1

P i
≤MP

i′

≤M . (2.1)

To establish Theorem 1.1, it suffices to prove the following theorem.

Theorem 2.1. Under the assumptions of Theorem 1.1, there exists a C (independent of
k, M , N) such that for each M ≥ 1 there exists N0 (depending on M) such that for
N ≥ N0,

‖P
(k)
≤MR

(k)BN,j,k+1γ
(k+1)
N (t)‖L1

T L
2
x,x′
≤ Ck (2.2)

where
BN,j,k+1γ

(k+1)
N = Trk+1[VN (xj − xk+1), γ

(k+1)
N ]. (2.3)

We first explain how, assuming Theorem 2.1, we can prove Theorem 1.1. When condition
(1.5) holds, it has been proved in Elgart–Erdős–Schlein–Yau [26, 27, 28, 29, 30] and
Kirkpatrick–Schlein–Staffilani [43] that, as trace class operators,

BN,j,k+1γ
(k+1)
N ⇀ Bj,k+1γ

(k+1) (weak∗) (2.4)

uniformly in t (see [43, (6.7)] or [16, (5.6)], for example). Let Hk be the Hilbert–Schmidt
operators on L2(R3k). Recall that the test functions for weak∗ convergence in L1

k come
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from Kk (the compact operators onL2(R3k)) and the test functions for weak∗ convergence
in Hk come from Hk. Thus the weak∗ convergence (2.4) as trace class operators implies
that as Hilbert–Schmidt operators,

BN,j,k+1γ
(k+1)
N ⇀ Bj,k+1γ

(k+1) (weak∗)

uniformly in t, because Hk ⊂ Kk , i.e. there are fewer test functions. Since Hk is reflex-
ive, the above weak∗ convergence is no different from the weak convergence. Moreover,
noticing that P (k)

≤MR
(k)J is simply another test function if J is a test function, we know

that as Hilbert–Schmidt operators,

P
(k)
≤MR

(k)BN,j,k+1γ
(k+1)
N ⇀ P

(k)
≤MR

(k)Bj,k+1γ
(k+1) (weak)

uniformly in t. Hence, by basic properties of weak convergence,

‖P
(k)
≤MR

(k)Bj,k+1γ
(k+1)
‖L1

T L
2
x,x′
≤ lim inf

N→∞
‖P

(k)
≤MR

(k)BN,j,k+1γ
(k+1)
N (t)‖L1

T L
2
x,x′
≤ Ck.

Since the above holds uniformly in M , we can let M → ∞ and, by the monotone con-
vergence theorem, we obtain

‖R(k)Bj,k+1γ
(k+1)
‖L1

T L
2
x,x′
≤ Ck,

which is exactly the Klainerman–Machedon space-time bound (1.6). This completes the
proof of Theorem 1.1, assuming Theorem 2.1.

The rest of this paper is devoted to proving Theorem 2.1. We are going to establish
estimate (2.2) for a sufficiently small T which depends on the controlling constant in
condition (1.5) and is independent of k, N and M; then a bootstrap argument together
with condition (1.5) gives estimate (2.2) for every finite time at the price of a larger
constant C. Before we start, alert readers should keep in mind that we will mostly use the
following form of condition (1.5):

‖S(k)γ
(k)
N ‖L∞t L

2
x,x′
≤ Ck0 (2.5)

where S(k) =
∏k
j=1(〈∇xj 〉〈∇x′j

〉), because we will be working in L2. To see how (2.5)
follows from (1.5), one simply notices that∫ ∣∣∣∣〈∇x〉〈∇x′〉 ∫ φ(x, r)φ(x′, r) dr

∣∣∣∣2 dx dx′
=

∫ ∣∣∣∣∫ 〈∇x〉φ(x, r)〈∇x′〉φ(x′, r) dr∣∣∣∣2 dx dx′
≤

∫ (∫
〈∇x〉φ(x, r)〈∇x〉φ(x, r) dr

)(∫
〈∇x′〉φ(x

′, r)〈∇x′〉φ(x
′, r) dr

)
dx dx′

=

(∫
φ(x, r)(1−1x)φ(x, r) dx dr

)2

.
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We start the proof of Theorem 2.1 by rewriting hierarchy (1.3) as

γ
(k)
N (tk) = U

(k)(tk)γ
(k)
N,0 +

∫ tk

0
U (k)(tk − tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

+
N − k

N

∫ tk

0
U (k)(tk − tk+1)B

(k+1)
N γ

(k+1)
N (tk+1) dtk+1 (2.6)

with the short-hand notation

U (k) = eit1xk e
−it1x′

k ,

V
(k)
N γ

(k)
N =

1
N

∑
1≤i<j≤k

[VN (xi − xj ), γ
(k)
N ],

B
(k+1)
N γ

(k+1)
N =

k∑
j=1

BN,j,k+1γ
(k+1)
N .

We omit the i in front of the potential term and the interaction term so that we do not need
to keep track of its exact power.

Writing out the lcth Duhamel–Born series of γ (k)N by iterating hierarchy (2.6)
lc times,8 we have

γ
(k)
N (tk)

= U (k)(tk)γ
(k)
N,0 +

N−k

N

∫ tk

0
U (k)(tk−tk+1)B

(k+1)
N U (k+1)(tk+1)γ

(k+1)
N,0 dtk+1

+

∫ tk

0
U (k)(tk−tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

+
N−k

N

∫ tk

0
U (k)(tk−tk+1)B

(k+1)
N

×

∫ tk+1

0
U (k+1)(tk+1−tk+2)V

(k+1)
N γ

(k+1)
N (tk+2) dtk+2 dtk+1

+
N−k

N

N−k−1
N

×

∫ tk

0
U (k)(tk−tk+1)B

(k+1)
N

∫ tk+1

0
U (k+1)(tk+1−tk+2)B

(k+2)
N γ

(k+2)
N (tk+2) dtk+2 dtk+1

= · · · .

After lc iterations

γ
(k)
N (tk) = FP(k,lc)(tk)+ PP(k,lc)(tk)+ IP(k,lc)(tk) (2.7)

8 Here, lc stands for “level of coupling” or “length/depth of coupling”. When lc = 0, we recover
(2.6).
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where the free part at coupling level lc is given by

FP(k,lc) = U (k)(tk)γ
(k)
N,0

+

lc∑
j=1

(j−1∏
l=0

N − k − l

N

) ∫ tk

0
· · ·

∫ tk+j−1

0
U (k)(tk − tk+1)B

(k+1)
N · · ·

. . . U (k+j−1)(tk+j−1 − tk+j )B
(k+j)
N (U (k+j)(tk+j )γ

(k+j)

N,0 ) dtk+1 · · · dtk+j ,

the potential part is given by

PP(k,lc) =
∫ tk

0
U (k)(tk − tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1 +

lc∑
j=1

(j−1∏
l=0

N − k − l

N

)
×

∫ tk

0
· · ·

∫ tk+j−1

0
U (k)(tk − tk+1)B

(k+1)
N · · ·U (k+j−1)(tk+j−1 − tk+j )B

(k+j)
N

×

(∫ tk+j

0
U (k+j)(tk+j − tk+j+1)V

(k+j)
N γ

(k+j)
N (tk+j+1) dtk+j+1

)
dtk+1 · · · dtk+j ,

(2.8)

and the interaction part is given by

IP(k,lc) =
( lc∏
l=0

N − k − l

N

) ∫ tk

0
· · ·

∫ tk+lc

0
U (k)(tk − tk+1)B

(k+1)
N · · ·

· · ·U (k+lc)(tk+lc − tk+lc+1)B
(k+lc+1)
N (γ

(k+lc+1)
N (tk+lc+1)) dtk+1 · · · dtk+lc+1.

By (2.7), to establish (2.2), it suffices to prove that

‖P
(k−1)
≤M R(k−1)BN,1,kFP(k,lc)‖L1

T L
2
x,x′
≤ Ck−1, (2.9)

‖P
(k−1)
≤M R(k−1)BN,1,kPP(k,lc)‖L1

T L
2
x,x′
≤ Ck−1, (2.10)

‖P
(k−1)
≤M R(k−1)BN,1,kIP(k,lc)‖L1

T L
2
x,x′
≤ Ck−1, (2.11)

for all k ≥ 2 and for some C and a sufficiently small T determined by the controlling con-
stant in condition (2.5) and independent of k,N andM.We observe thatB(j)N has 2j terms
inside so that each summand of γ (k)N (tk) contains factorially many terms (∼ (k + lc)!/k!).
We use the Klainerman–Machedon board game to combine them and hence reduce the
number of terms that need to be treated. Define

J
(k,j)
N (tk+j )(f

(k+j)) = U (k)(tk− tk+1)B
(k+1)
N · · ·U (k+j−1)(tk+j−1− tk+j )B

(k+j)
N f (k+j),

where tk+j means (tk+1, . . . , tk+j ); then the Klainerman–Machedon board game implies
the lemma below.
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Lemma 2.1 (Klainerman–Machedon board game). One can express∫ tk

0
· · ·

∫ tk+j−1

0
J
(k,j)
N (tk+j )(f

(k+j)) dtk+j

as a sum of at most 4j−1 terms of the form∫
D

J
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j ,

that is,∫ tk

0
· · ·

∫ tk+j−1

0
J
(k,j)
N (tk+j )(f

(k+j)) dtk+j =
∑
m

∫
D

J
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j .

Here D ⊂ [0, tk]j , µm are maps from {k + 1, . . . , k + j} to {k, . . . , k + j − 1} satisfying
µm(k + 1) = k and µm(l) < l for all l, and

J
(k,j)
N (tk+j , µm)(f

(k+j))

= U (k)(tk − tk+1)BN,k,k+1U
(k+1)(tk+1 − tk+2)BN,µm(k+2),k+2 · · ·

· · ·U (k+j−1)(tk+j−1 − tk+j )BN,µm(k+j),k+j (f
(k+j)).

Proof. Follow the proof of [45, Theorem 3.4], the Klainerman–Machedon board game,
replacingBj,k+1 byBN,j,k+1 and noticing thatBN,j,k+1 still commutes with eit1xi e

−it1x′
i

whenever i 6= j . This argument reduces the number of terms by combining them. ut

In the rest of this paper, we establish estimate (2.10) only. The reason is the following.
On the one hand, the proof of (2.10) is exactly the place that relies on the restriction β ∈
(0, 2/3) in this paper. On the other hand, X. Chen has already proven estimates (2.9) and
(2.11) [15, (6.3) and (6.5)] without using any frequency localization. For completeness,
we include a proof of (2.9) and (2.11) in Appendix B. Before we delve into the proof of
(2.10), we remark that the proof of (2.9) and (2.10) is independent of the coupling level lc
and we will take lc to be logN for estimate (2.11).9

3. Estimate of the potential part

In this section, we prove estimate (2.10). To be specific, we establish the following theo-
rem.

Theorem 3.1. Under the assumptions of Theorem 1.1, there exists a C (independent of
k, lc,Mk−1, N) such that for each Mk−1 ≥ 1 there exists N0 (depending on Mk−1) such
that for N ≥ N0,

‖P
(k−1)
≤Mk−1

R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′
≤ Ck−1

where PP(k,lc) is given by (2.8).

9 The technique of taking k = logN for estimate (2.11) was first applied by T. Chen and
N. Pavlović [11].



1172 Xuwen Chen, Justin Holmer

In this section, we will employ the estimates stated and proved in Section 4. Due to the
technicality of the proof of Theorem 3.1 involving Littlewood–Paley theory, we prove a
simpler β ∈ (0, 2/5) version first to illustrate the basic steps in establishing Theorem 3.1.
We then prove Theorem 3.1 in Section 3.2.

3.1. A simpler proof in the case β ∈ (0, 2/5)

Theorem 3.2. For β ∈ (0, 2/5), we have

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′
≤ Ck−1

for some C and a sufficiently small T determined by the controlling constant in condition
(2.5) and independent of k, lc and N.

Proof. The proof is divided into four steps. We will reproduce every step for Theorem
3.1 in Section 3.2.

Step I. By Lemma 2.1, we know that

PP(k,lc) =
∫ tk

0
U (k)(tk − tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

+

lc∑
j=1

(j−1∏
l=0

N − k − l

N

)(∑
m

∫
D

J
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j

)
(3.1)

where

f (k+j) =

∫ tk+j

0
U (k+j)(tk+j − tk+j+1)V

(k+j)
N γ

(k+j)
N (tk+j+1) dtk+j+1, (3.2)

and the sum
∑
m has at most 4j−1 terms.

For the second term in (3.1), we iterate Lemma 4.2 to prove the following estimate:10∥∥∥∥R(k−1)BN,1,k

∫
D

J
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j

∥∥∥∥
L1
T L

2
x,x′

≤ (CT 1/2)j‖R(k+j−1)BN,µm(k+j),k+jf
(k+j)
‖L1

T L
2
x,x′
. (3.3)

In fact,

A :=

∥∥∥∥R(k−1)BN,1,k

∫
D

J
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j

∥∥∥∥
L1
T L

2
x,x′

=

∫ T

0

∥∥∥∥∫
D

R(k−1)BN,1,kU
(k)(tk − tk+1)BN,k,k+1 · · · dtk+1 . . . dtk+j

∥∥∥∥
L2

x,x′

dtk.

10 This also helps in proving estimates (2.9) and (2.11)—see Appendix B.
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By Minkowski,

A ≤

∫
[0,T ]j+1

‖R(k−1)BN,1,kU
(k)(tk − tk+1)BN,k,k+1 · · · ‖L2

x,x′
dtk dtk+1 . . . dtk+j ,

and by Cauchy–Schwarz in dtk ,

A ≤

T 1/2
∫
[0,T ]j

(∫
‖R(k−1)BN,1,kU

(k)(tk − tk+1)BN,k,k+1 · · · ‖
2
L2

x,x′
dtk

)1/2

dtk+1 . . . dtk+j .

Use Lemma 4.2 to get

A ≤ CT 1/2
∫
[0,T ]j

‖R(k)BN,k,k+1U
(k+1)(tk+1 − tk+2) · · · ‖L2

x,x′
dtk+1 . . . dtk+j .

Repeating the previous steps j − 1 times, we reach relation (3.3).
Applying (3.3) to (3.1), we obtain

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤

∥∥∥∥R(k−1)BN,1,k

∫ tk

0
U (k)(tk − tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

∥∥∥∥
L1
T L

2
x,x′

+

lc∑
j=1

4j−1(CT 1/2)j‖R(k+j−1)BN,µm(k+j),k+j (f
(k+j))‖L1

T L
2
x,x′

≤

∥∥∥∥R(k−1)BN,1,k

∫ tk

0
U (k)(tk − tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

∥∥∥∥
L1
T L

2
x,x′

+

lc∑
j=1

(CT 1/2)j‖R(k+j−1)BN,µm(k+j),k+j (f
(k+j))‖L1

T L
2
x,x′
.

Inserting a smooth cut-off θ(t) with θ(t) = 1 for t ∈ [−T , T ] and θ(t) = 0 for t ∈
[−2T , 2T ]c into the above estimate, we get

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤

∥∥∥∥R(k−1)BN,1,kθ(tk)

∫ tk

0
U (k)(tk − tk+1)θ(tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

∥∥∥∥
L1
T L

2
x,x′

+

lc∑
j=1

(CT 1/2)j‖R(k+j−1)BN,µm(k+j),k+j θ(tk+j )(f̃
(k+j))‖L1

T L
2
x,x′

where

f̃ (k+j)=

∫ tk+j

0
U (k+j)(tk+j−tk+j+1)

(
θ(tk+j+1)V

(k+j)
N γ

(k+j)
N (tk+j+1)

)
dtk+j+1. (3.4)
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Step II. The Xb space (defined in §4) version of Lemma 4.2, Lemma 4.3, turns the last
step into

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤ CT 1/2
∥∥∥∥θ(tk) ∫ tk

0
U (k)(tk − tk+1)R

(k)
(
θ(tk+1)V

(k)
N γ

(k)
N (tk+1)

)
dtk+1

∥∥∥∥
X
(k)
(1/2)+

+ C

lc∑
j=1

(CT 1/2)j+1
‖θ(tk+j )R

(k+j)f̃ (k+j)‖
X
(k+j)

(1/2)+
.

Step III. Recall the definition of f̃ (k+j),

f̃ (k+j) =

∫ tk+j

0
U (k+j)(tk+j − tk+j+1)

(
θ(tk+j+1)V

(k+j)
N γ

(k+j)
N (tk+j+1)

)
dtk+j+1,

so

R(k+j)f̃ (k+j)

=

∫ tk+j

0
U (k+j)(tk+j − tk+j+1)R

(k+j)
(
θ(tk+j+1)V

(k+j)
N γ

(k+j)
N (tk+j+1)

)
dtk+j+1.

We then apply Lemma 4.1 to get

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′
≤ CT 1/2∥∥R(k)(θ(tk+1)V

(k)
N γ

(k)
N (tk+1)

)∥∥
X
(k)
−(1/2)+

+ C

lc∑
j=1

(CT 1/2)j+1∥∥R(k+j)(θ(tk+j+1)V
(k+j)
N γ

(k+j)
N (tk+j+1)

)∥∥
X
(k+j)

−(1/2)+
.

Step IV. Now we would like to utilize Lemma 4.6. We first analyse a typical term to
demonstrate the effect of Lemma 4.6. To be specific, we have∥∥R(k)(θ(tk+1)VN (x1 − x2)γ

(k)
N (tk+1)

)∥∥
X
(k)
−(1/2)+

≤
C

N
‖VN (x1 − x2)θ(tk+1)R

(k)γ
(k)
N (tk+1)‖X(k)

−(1/2)+

+
C

N

∥∥∥∥(VN )′(x1 − x2)θ(tk+1)

(
R(k)

|∇x1 |

)
γ
(k)
N (tk+1)

∥∥∥∥
X
(k)
−(1/2)+

+
C

N

∥∥∥∥(VN )′′(x1 − x2)θ(tk+1)

(
R(k)

|∇x1 | |∇x2 |

)
γ
(k)
N (tk+1)

∥∥∥∥
X
(k)
−(1/2)+

by Leibniz’s rule, where

R(k)

|∇x1 |
=

( k∏
j=2

|∇xj |

)( k∏
j=1

|∇x′j
|

)
.
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Applying Lemma 4.6 to each summand above yields∥∥R(k)(θ(tk+1)VN (x1 − x2)γ
(k)
N (tk+1)

)∥∥
X
(k)
−(1/2)+

≤
C

N
‖VN‖L3+‖θ(tk+1)R

(k)γ
(k)
N ‖L2

tk+1
L2

x,x′

+
C

N
‖V ′N‖L2+

∥∥∥∥θ(tk+1)〈∇x1〉
1/2
(
R(k)

|∇x1 |

)
γ
(k)
N

∥∥∥∥
L2
tk+1

L2
x,x′

+
C

N
‖V ′′N‖L(6/5)+

∥∥∥∥θ(tk+1)〈∇x1〉〈∇x2〉

(
R(k)

|∇x1 | |∇x2 |

)
γ
(k)
N

∥∥∥∥
L2
tk+1

L2
x,x′

≤ C‖S(k)γ
(k)
N ‖L2

2T L
2
x,x′
,

since ‖VN/N‖L3+ ‖V ′N/N‖L2+ , and ‖V ′′N/N‖L(6/5)+ are uniformly bounded in N for β ∈
(0, 2/5). In fact,

‖VN/N‖L3+ ≤ N
2β−1
‖V ‖L3+ ,

‖V ′N/N‖L2+ ≤ N
5β/2−1

‖V ′‖L2+ ,

‖V ′′N/N‖L(6/5)+ ≤ N
5β/2−1

‖V ′′‖L(6/5)+ ,

where by Sobolev, V ∈ W 2,(6/5)+ implies V ∈ L(6/5)+ ∩ L6+ and V ′ ∈ L2+.
Using the same idea for all the terms, we end up with

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤ CT k2
‖S(k)γ

(k)
N ‖L∞2T L

2
x,x′
+ CT 1/2

lc∑
j=1

(CT 1/2)j+1(k + j)2‖S(k+j)γ
(k+j)
N ‖L∞2T L

2
x,x′

because there are k2 terms inside V (k)N . Plug in condition (2.5):

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′
≤ CT k2Ck0 + CT

1/2
∞∑
j=1

(CT
1
2 )j+1(k + j)2C

k+j

0

≤ Ck0

(
CT k2

+ CT 1/2k2
∞∑
j=1

(CT 1/2)j+1C
j

0 + CT
1/2
∞∑
j=1

(CT 1/2)j+1j2C
j

0

)
.

We can then choose a T independent of k, lc and N such that the two infinite series
converge. We get

‖R(k−1)BN,1,kPP(k,lc)‖L1
T L

2
x,x′
≤ Ck0 (CT k

2
+ CT 1/2k2

+ CT 1/2)

≤ Ck0 (CT 2k + CT 1/22k + CT 1/2) ≤ Ck−1

for some C larger than C0 because k ≥ 2. This concludes the proof of Theorem 3.2. ut
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3.2. The case β ∈ (0, 2/3). To make formulas shorter, let us write

R
(k)
≤Mk
= P

(k)
≤Mk

R(k),

since P (k)
≤Mk

and R(k) are usually bundled together.

3.2.1. Step I. By (3.1),

‖R
(k−1)
≤Mk−1

BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤

∥∥∥∥R(k−1)
≤Mk−1

BN,1,k

∫ tk

0
U (k)(tk − tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

∥∥∥∥
L1
T L

2
x,x′

+

lc∑
j=1

∑
m

∥∥∥∥R(k−1)
≤Mk−1

BN,1,k

∫
D

J
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j

∥∥∥∥
L1
T L

2
x,x′

where f (k+j) is again given by (3.2) and the sum
∑
m has at most 4j−1 terms. By

Minkowski’s integral inequality,∥∥∥∥R(k−1)
≤Mk−1

BN,1,k

∫
D

J
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j

∥∥∥∥
L1
T L

2
x,x′

=

∫ T

0

∥∥∥∥∫
D

R
(k−1)
≤Mk−1

BN,1,kJ
(k,j)
N (tk+j , µm)(f

(k+j)) dtk+j

∥∥∥∥
L2

x,x′

dtk

≤

∫
[0,T ]j+1

‖R
(k−1)
≤Mk−1

BN,1,kU
(k)(tk − tk+1)BN,k,k+1 · · · ‖L2

x,x′
dtk dtk+j =: A.

By Cauchy–Schwarz in the tk integration,

A ≤ T 1/2
∫
[0,T ]j

(∫
‖R

(k−1)
≤Mk−1

BN,1,kU
(k)(tk − tk+1)BN,k,k+1 · · · ‖L2

x,x′
dtk

)1/2

dtk+j .

By Lemma 4.4,

A ≤

CεT
1/2

∑
Mk≥Mk−1

(
Mk−1

Mk

)1−ε∫
[0,T ]j

‖R
(k)
≤Mk

BN,k,k+1U
(k+1)(tk+1 − tk+2) · · · ‖L2

x,x′
dtk+j .

Iterating the previous step j − 1 times yields

A ≤ (CεT
1/2)j

∑
Mk+j−1≥···≥Mk≥Mk−1

[(
Mk−1

Mk

Mk

Mk+1
· · ·

Mk+j−2

Mk+j−1

)1−ε

×‖R
(k+j−1)
≤Mk+j−1

BN,µm(k+j),k+j (f
(k+j))‖L1

T L
2
x,x′

]
= (CεT

1/2)j
∑

Mk+j−1≥···≥Mk≥Mk−1

[(
Mk−1

Mk+j−1

)1−ε

×‖R
(k+j−1)
≤Mk+j−1

BN,µm(k+j),k+j (f
(k+j))‖L1

T L
2
x,x′

]
where the sum is over all Mk, . . . ,Mk+j−1 dyadic such that Mk+j−1≥· · ·≥Mk≥Mk−1.
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Hence

‖R
(k−1)
≤Mk−1

BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤

∥∥∥∥R(k−1)
≤Mk−1

BN,1,k

∫ tk

0
U (k)(tk − tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

∥∥∥∥
L1
T L

2
x,x′

+

lc∑
j=1

{
(CεT

1/2)j
∑

Mk+j−1≥···≥Mk≥Mk−1

[
M1−ε
k−1

M1−ε
k+j−1

× ‖R
(k+j−1)
≤Mk+j−1

BN,µm(k+j),k+j (f
(k+j))‖L1

T L
2
x,x′

]}
.

We then insert a smooth cut-off θ(t) with θ(t) = 1 for t ∈ [−T , T ] and θ(t) = 0 for
t ∈ [−2T , 2T ]c into the above estimate to get

‖R
(k−1)
≤Mk−1

BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤

∥∥∥∥R(k−1)
≤Mk−1

BN,1,kθ(tk)

∫ tk

0
U (k)(tk − tk+1)θ(tk+1)V

(k)
N γ

(k)
N (tk+1) dtk+1

∥∥∥∥
L1
T L

2
x,x′

+

lc∑
j=1

{
(CεT

1/2)j
∑

Mk+j−1≥···≥Mk≥Mk−1

[
M1−ε
k−1

M1−ε
k+j−1

× ‖R
(k+j−1)
≤Mk+j−1

BN,µm(k+j),k+j (θ(tk+j )f̃
(k+j))‖L1

T L
2
x,x′

]}
,

where the sum is over all Mk, . . . ,Mk+j−1 dyadic such that Mk+j−1 ≥ · · · ≥ Mk ≥

Mk−1, and f̃ (k+j) is again defined via (3.4).

3.2.2. Step II. Using Lemma 4.5, theXb space version of Lemma 4.4, we turn Step I into

‖R
(k−1)
≤Mk−1

BN,1,kPP(k,lc)‖L1
T L

2
x,x′

≤CεT
1/2

∑
Mk≥Mk−1

M1−ε
k−1

M1−ε
k

∥∥∥∥∫ tk

0
U (k)(tk− tk+1)

(
R
(k)
≤Mk

θ(tk+1)V
(k)
N γ

(k)
N (tk+1)

)
dtk+1

∥∥∥∥
X
(k)
(1/2)+

+

lc∑
j=1

(CεT
1/2)j+1

∑
Mk+j≥Mk+j−1≥···≥Mk≥Mk−1

M1−ε
k−1

M1−ε
k+j

‖θ(tk+j )R
(k+j)
≤Mk+j

(f̃ (k+j))‖
X
(k+j)

(1/2)+
.

3.2.3. Step III. Lemma 4.1 gives us

‖R
(k−1)
≤Mk−1

BN,1,kPP(k,lc)‖L1
T L

2
x,x′
≤ A+ B
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where

A = CεT
1/2

∑
Mk≥Mk−1

M1−ε
k−1

M1−ε
k

‖R
(k)
≤Mk

θ(tk+1)V
(k)
N γ

(k)
N (tk+1)‖X(k)

−(1/2)+

and

B =

lc∑
j=1

{
(CεT

1/2)j+1
∑

Mk+j≥Mk+j−1≥···≥Mk≥Mk−1

[
M1−ε
k−1

M1−ε
k+j

× ‖R
(k+j)
≤Mk+j

θ(tk+j+1)V
(k+j)
N γ

(k+j)
N (tk+j+1)‖X(k+j)

−(1/2)+

]}
.

3.2.4. Step IV. We focus for a moment on B. First, we handle the sum over Mk ≤ · · · ≤

Mk+j−1 with the help of Lemma 3.1:

B =

lc∑
j=1

{
(CεT

1/2)j+1
∑

Mk+j≥Mk−1

[
M1−ε
k−1

M1−ε
k+j

(
log2

Mk+j

Mk−1
+ j

)j
j !

×
∥∥R(k+j)
≤Mk+j

(
θ(tk+j+1)V

(k+j)
N γ

(k+j)
N (tk+j+1)

)∥∥
X
(k+j)

−(1/2)+

]}
We then take a T j/4 from the front to apply Lemma 3.2 and get

B . CεT
1/2

lc∑
j=1

{
(CεT

1/4)j
∑

Mk+j≥Mk−1

[
M1−2ε
k−1

M1−2ε
k+j

×
∥∥R(k+j)
≤Mk+j

(
θ(tk+j+1)V

(k+j)
N γ

(k+j)
N (tk+j+1)

)∥∥
X
(k+j)

−(1/2)+

]}
where the sum is over dyadic Mk+j such that Mk+j ≥ Mk−1. Applying (4.26) yields

B . CεT
1/2

lc∑
j=1

{
(CεT

1/4)j (k + j)2
∑

Mk+j≥Mk−1

[
M1−2ε
k−1

M1−2ε
k+j

min(M2
k+j , N

2β)Nβ/2−1

× ‖θ(tk+j+1)S
(k+j)γ

(k+j)
N (tk+j+1)‖L2

tk+j+1
L2

x,x′

]}
.

Rearranging terms gives

B . CεT
1/2

lc∑
j=1

{
(CεT

1/4)j (k + j)2‖θ(tk+j+1)S
(k+j)γ

(k+j)
N (tk+j+1)‖L2

tk+j+1
L2

x,x′

×M1−2ε
k−1 N

β/2−1
∑

Mk+j≥Mk−1

(· · · )

}
where ∑

Mk+j≥Mk−1

(· · · ) =
∑

Mk+j≥Mk−1

min(M1+2ε
k+j ,M

−1+2ε
k+j N2β).
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We carry out the summation inMk+j by dividing intoMk+j ≤N
β (for which min(M1+2ε

k+j ,

M−1+2ε
k+j N2β) = M1+2ε

j ) and Mk+j ≥ Nβ (for which min(M1+2ε
k+j ,M

−1+2ε
k+j N2β) =

M−1+2ε
k+j N2β ). This yields∑
Mk+j≥Mk−1

min(M1+2ε
k+j ,M

−1+2ε
k+j N2β) .

( ∑
Nβ≥Mk+j≥Mk−1

+

∑
Mk+j≥Mk−1,Mk+j≥N

β

)
(· · ·)

.
∑

Nβ≥Mk+j≥1

M1+2ε
k+j +

∑
Mk+j≥N

β

M−1+2ε
k+j N2β

. Nβ+2ε .

Hence

B . CεT
1/2

×

lc∑
j=1

(CεT
1/4)j (k+ j)2‖θ(tk+j+1)S

(k+j)γ
(k+j)
N (tk+j+1)‖L2

tk+j+1
L2

x,x′
M1−2ε
k−1 N

3β/2−1+2ε

. M1−2ε
k−1 N

3β/2−1+2εCεT
1/2

lc∑
j=1

(CεT
1/4)j (k + j)2T 1/2

‖S(k+j)γ
(k+j)
N ‖L∞t L

2
x,x′
.

Via condition (2.5), this becomes

B . M1−2ε
k−1 N

3β/2−1+2εCεT

lc∑
j=1

(CεT
1/4)j (k + j)2C

k+j

0

. Ck0M
1−2ε
k−1 N

3β/2−1+2εCεT
(
k2
∞∑
j=1

(CεT
1/4)jC

j

0 +

∞∑
j=1

(CεT
1/4)j j2C

j

0

)
.

We can then choose a T independent of Mk−1, k, lc and N such that the two infinite
series converge. This yields

B . Ck−1M1−2ε
k−1 N

3β/2−1+2ε

for some C > C0. Therefore, for β < 2/3, there is a C independent of Mk−1, k, lc,
and N such that given Mk−1, there is N0(Mk−1) which makes

B ≤ Ck−1 for all N ≥ N0.

This completes the treatment of B for β < 2/3; and A is treated similarly (without the
need to appeal to Lemmas 3.1 and 3.2 below). Thus we have completed the proof of
Theorem 3.1 and hence of Theorem 2.1.

Lemma 3.1. ∑
Mk−1≤Mk≤···≤Mk+j−1≤Mk+j

1 ≤

(
log2

Mk+j

Mk−1
+ j

)j
j !

,

where the sum is over Mk, . . . ,Mk+j−1 dyadic such that Mk−1 ≤ Mk ≤ · · · ≤ Mk+j−1
≤ Mk+j .
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Proof. This is equivalent to

S :=
∑

ik−1≤ik≤···≤ik+j−1≤ik+j

1 ≤
(ik+j − ik−1 + j)

j

j !
,

where the sum is taken over integers ik, . . . , ik+j−1 such that ik−1 ≤ ik ≤ · · · ≤ ik+j−1
≤ ik+j . We use the estimate (for p, ` ≥ 0)

q∑
i=0

(i + `)p ≤
(q + `+ 1)p+1

p + 1
,

which just follows by estimating the sum by an integral.
First, carry out the summation over ik from ik−1 to ik+1 to obtain

S =
∑

ik−1≤ik+1≤···≤ik+j−1≤ik+j

( ik+1∑
ik=ik−1

1
)
≤

∑
ik−1≤ik+1≤···≤ik+j−1≤ik+j

(ik+1 − ik−1 + 1).

Next, carry out the summation over ik+1 from ik−1 to ik+2:

S ≤
∑

ik−1≤ik+2≤···≤ik+j−1≤ik+j

( ik+2∑
ik+1=ik−1

(ik+1 − ik−1 + 1)
)

≤

∑
ik−1≤ik+2≤···≤ik+j−1≤ik+j

(ik+2−ik−1∑
ik+1=0

(ik+1 + 1)
)

≤

∑
ik−1≤ik+2≤···≤ik+j−1≤ik+j

(ik+2 − ik−1 + 2)2

2
.

Continue in this manner j − 2 times to obtain the claimed bound. ut

Lemma 3.2. For each α > 0 (possibly large) and each ε > 0 (arbitrarily small), there
exists t > 0 (independent of M) sufficiently small such that

∀j ≥ 1, ∀M,
tj (α logM + j)j

j !
≤ Mε .

Proof. We use the following fact: for each σ > 0 (arbitrarily small) there exists t > 0
sufficiently small such that

∀x > 0, tx
(

1
x
+ 1

)x
≤ eσ (3.5)

To apply this fact to prove the lemma, use Stirling’s formula to obtain

tj (α logM + j)j

j !
≤ (et)j

(
α logM + j

j

)j
=: A.

Define x in terms of j by the formula j = α(logM)x. Then by (3.5),

A =

[
(et)x

(
1
x
+ 1

)x]α logM

≤ eσα logM
= Mσα. ut
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4. Collapsing and Strichartz estimates

Define the norm

‖α(k)‖
X
(k)
b

=

(∫
〈τ + |ξk|

2
− |ξ ′k|

2
〉
2b
|α̂(k)(τ, ξk, ξ

′

k)|
2 dτ dξk dξ

′

k

)1/2

.

We will use the case b = (1/2)+ of the following lemma.

Lemma 4.1. Let 1/2 < b < 1 and θ(t) be a smooth cut-off. Then∥∥∥∥θ(t) ∫ t

0
U (k)(t − s)β(k)(s) ds

∥∥∥∥
X
(k)
b

. ‖β(k)‖
X
(k)
b−1
. (4.1)

Proof. The estimate reduces to the space-independent estimate∥∥∥∥θ(t) ∫ t

0
h(t ′) dt ′

∥∥∥∥
H b
t

. ‖h‖
H b−1
t

for 1/2 < b ≤ 1. (4.2)

Indeed, taking h(t) = hxkx′k (t) := U
(k)(−t)β(k)(t, xk, x′k), applying the estimate (4.2) for

fixed xk, x′k , and then applying the L2
xk,x′k

norm to both sides yields (4.1).
Now we prove (4.2). Let P≤1 and P≥1 denote the Littlewood–Paley projections onto

the frequencies |τ | ≤ 1 and |τ | ≥ 1 respectively. Decompose h = P≤1h+ P≥1h and use∫ t
0 P≥1h(t

′) dt ′ = 1
2

∫
(sgn(t − t ′)+ sgn(t ′))P≥1h(t

′) dt ′ to obtain the decomposition

θ(t)

∫ t

0
h(t ′) dt ′ = H1(t)+H2(t)+H3(t),

where

H1(t) = θ(t)

∫ t

0
P≤1h(t

′) dt ′,

H2(t) =
1
2θ(t)[sgn ∗ P≥1h](t) dt

′,

H3(t) =
1
2θ(t)

∫
∞

−∞

sgn(t ′)P≥1h(t
′) dt ′.

We begin by addressing H1. By Sobolev embedding (recall 1/2 < b ≤ 1) and the
Lp → Lp boundedness of the Hilbert transform for 1 < p <∞,

‖H1‖H b
t
. ‖H1‖L2

t
+ ‖∂tH1‖L2/(3−2b)

t
.

Using ‖P≤1h‖L∞t . ‖h‖
H b−1
t

, we thus conclude

‖H1‖H b
t
. (‖θ‖L2

t
+ ‖θ‖

L
2/(3−2b)
t

+ ‖θ ′‖
L

2/3−2b
t

)‖h‖
H b−1
t
.

Next we address H2. By the fractional Leibniz rule,

‖H2‖H b
t
. ‖〈Dt 〉

bθ‖L2
t
‖sgn ∗ P≥1h‖L∞t + ‖θ‖L

∞
t
‖〈Dt 〉

b(sgn ∗ P≥1h)‖L2
t
.
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However,
‖sgn ∗ P≥1h‖L∞t . ‖〈τ 〉−1ĥ(τ )‖L1

τ
. ‖h‖

H b−1
t
.

On the other hand,

‖〈Dt 〉
bsgn ∗ P≥1h‖L2

t
. ‖〈τ 〉b〈τ 〉−1ĥ(τ )‖L2

τ
. ‖h‖

H b−1
t
.

Consequently,
‖H2‖H b

t
. (‖〈Dt 〉

bθ‖L2
t
+ ‖θ‖L∞t )‖h‖H b−1

t
.

For H3, we have

‖H3‖H b
t
. ‖θ‖H b

t

∥∥∥∥∫ ∞
−∞

sgn(t ′)P≥1h(t
′) dt ′

∥∥∥∥
L∞t

.

However, the second term is handled via Parseval’s identity:∫
t ′

sgn(t ′)P≥1h(t
′) dt ′ =

∫
|τ |≥1

τ−1ĥ(τ ) dτ,

from which the appropriate bounds follow again by Cauchy–Schwarz.
Collecting our estimates for H1, H2, and H3, we obtain∥∥∥∥θ(t) ∫ t

0
h(t ′) dt ′

∥∥∥∥
H b
t

. Cθ‖h‖H b−1
t
,

where

Cθ = ‖θ‖L2
t
+ ‖θ ′‖

L
2/(3−2b)
t

+ ‖〈Dt 〉
bθ‖L2

t
+ ‖θ‖

L
2/(3−2b)
t

+ ‖θ‖L∞t . ut

4.1. Various forms of collapsing estimates

Lemma 4.2. There is a C independent of j , k, and N such that ( for f (k+1)(xk+1, x′k+1)

independent of t)

‖R(k)BN,j,k+1U
(k+1)(t)f (k+1)

‖L2
t L

2
x,x′
≤ C‖V ‖L1‖R

(k+1)f (k+1)
‖L2

x,x′
.

Proof. One can find this estimate in [11, (A.18)] or as a special case of [15, Theorem 7].
For more estimates of this type, see [43, 38, 12, 14, 3, 34]. ut

We have the following consequence of Lemma 4.2.

Lemma 4.3. There is aC independent of j , k, andN such that ( for α(k+1)(t, xk+1, x′k+1)

depending on t)

‖R(k)BN,j,k+1α
(k+1)
‖L2

t L
2
x,x′
≤ C‖R(k+1)α(k+1)

‖
X
(k+1)
(1/2)+

.
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Proof. Let

f (k+1)
τ (xk+1, x′k+1) = Ft 7→τ

(
U (k+1)(−t)α(k+1)(t, xk+1, x′k+1)

)
where Ft 7→τ denotes the t 7→ τ Fourier transform. Then

α(k+1)(t, xk+1, x′k+1) =

∫
τ

eitτU (k+1)(t)f (k+1)(xk+1, x′k+1) dτ.

By Minkowski’s inequality

‖R(k)BN,j,k+1α
(k+1)
‖L2

t L
2
x,x′
≤

∫
τ

‖R(k)BN,j,k+1U
(k+1)(t)f (k+1)

‖L2
t L

2
x,x′
dτ =: A.

By Lemma 4.2,

A ≤

∫
τ

‖R(k+1)f (k+1)
‖L2

x,x′
dτ.

For any b > 1/2, we write 1 = 〈τ 〉−b〈τ 〉b and apply Cauchy–Schwarz in τ to obtain

A ≤ ‖〈τ 〉bR(k+1)f (k+1)
‖L2

τ,x,x′
= ‖R(k+1)α(k+1)

‖
X
(k+1)
b

. ut

Lemma 4.4. For each ε > 0, there is a Cε independent of Mk , j , k, and N such that

‖R(k)P
(k)
≤Mk

BN,j,k+1U
(k+1)(t)f (k+1)

‖L2
t L

2
x,x′

≤ Cε‖V ‖L1

∑
Mk+1≥Mk

(
Mk

Mk+1

)1−ε

‖R(k+1)P
(k+1)
≤Mk+1

f (k+1)
‖L2

x,x′

where the sum is over Mk+1 dyadic such that Mk+1 ≥ Mk .

In particular, if we drop off the projection P (k+1)
≤Mk+1

on the right hand side, carry out the
summation and let Mk →∞, we recover Lemma 4.2. This merely gives a fine structure
of Lemma 4.2, but not an alternative proof.

Proof of Lemma 4.4. It suffices to take k = 1 and prove

‖R(1)P
(1)
≤M1

BN,1,2(R
(2))−1U (2)(t)f (2)‖L2

t L
2
x1x′1

≤ Cε‖V ‖L1

∑
M2≥M1

(
M1

M2

)1−ε

‖P
(2)
≤M2

f (2)‖L2
x2,x
′
2

(4.3)

where the sum is over dyadic M2 such that M2 ≥ M1. For convenience, we take only
“half” of the operator BN,1,2: for α(2)(t, x1, x2, x

′

1, x
′

2), define

(B̃N,1,2α
(2))(t, x1, x

′

1) :=

∫
x2

VN (x1 − x2)α
(2)(t, x1, x2, x

′

1, x2) dx2.
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Note that(
R(1)P

(1)
≤M1

B̃N,1,2(R
(2))−1U (2)(t)f (2)

)̂
(τ, ξ1, ξ

′

1)

=

∫∫
ξ2,ξ

′

2

χ
(1)
≤M1

δ(· · · )
V̂N (ξ2 + ξ

′

2)|ξ1|

|ξ1 − ξ2 − ξ
′

2| |ξ2||ξ
′

2|
f̂ (2)(ξ1 − ξ2 − ξ

′

2, ξ2, ξ
′

1, ξ
′

2) dξ2 dξ
′

2 =: I

where χ represents the Littlewood–Paley multiplier on the Fourier side and

δ(· · · ) = δ(τ + |ξ1 − ξ2 − ξ
′

2|
2
+ |ξ2|

2
− |ξ ′1|

2
− |ξ ′2|

2).

Divide this integral into two pieces:

I =

∫∫
|ξ2|≤|ξ

′

2|
(· · · ) dξ2 dξ

′

2 +

∫∫
|ξ ′2|≤|ξ2|

(· · · ) dξ2 dξ
′

2.

In the first term, decompose the ξ ′2 integration into dyadic intervals, and in the second
term, decompose the ξ2 integration into dyadic intervals:

I = A+ B

=:

( ∑
M2≥M1

∫∫
|ξ2|≤|ξ

′

2|
χ2′
M2
(· · · ) dξ2 dξ

′

2 +
∑

M2≥M1

∫∫
|ξ ′2|≤|ξ2|

χ2
M2
(· · · ) dξ2 dξ

′

2

)
+

(∫∫
|ξ2|≤|ξ

′

2|
χ2′
≤M1

(· · · ) dξ2 dξ
′

2 +

∫∫
|ξ2|≤|ξ

′

2|
χ2
≤M1

(· · · ) dξ2 dξ
′

2

)
.

The A term is the one that needs elaboration. For B, we have

B =

∫∫
|ξ2|≤|ξ

′

2|
χ
(1)
≤M1

χ2
≤M1

χ2′
≤M1

(· · · ) dξ2 dξ
′

2

+

∫∫
|ξ2|≤|ξ

′

2|
χ
(1)
≤M1

χ2
≤M1

χ2′
≤M1

(· · · ) dξ2 dξ
′

2,

and thus, by Lemma 4.2, we reach

‖B‖L2
τL

2
ξ1ξ
′
1

≤ C‖V ‖L1‖P
(2)
≤M1

f (2)‖L2
x2x′2

,

which is part of the right hand side of estimate (4.3).
We are now left with the estimate of A. Observe that, in the first integration in A, we

can insert for free the projection χ1
≤3M2

χ1′
≤M1

χ2
≤M2

onto f̂ (2), and in the second integra-

tion, we can insert χ1
≤3M2

χ1′
≤M1

χ2′
≤M2

onto f̂ (2). Thus

A =
∑

M2≥M1

∫∫
|ξ2|≤|ξ

′

2|
χ≤3M2(ξ1 − ξ2 − ξ

′

2)χ
1′
≤M1

χ2
≤M2

χ2′
M2
(· · · ) dξ2 dξ

′

2

+

∑
M2≥M1

∫∫
|ξ ′2|≤|ξ2|

χ≤3M2(ξ1 − ξ2 − ξ
′

2)χ
1′
≤M1

χ2′
≤M2

χ2
M2
(· · · ) dξ2 dξ

′

2.
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Then for each piece, we proceed as in Klainerman–Machedon [45], using Cauchy–
Schwarz with respect to measures supported on hypersurfaces and applying the L2

τξ1ξ
′

1

norm to both sides of the resulting inequality.11 In this manner, it suffices to prove the
following estimates, uniform in τ ′ = τ − |ξ ′1|

2:∫∫
|ξ ′2|∼M2
|ξ2|≤M2

δ(· · · )
|ξ1|

2

|ξ1 − ξ2 − ξ
′

2|
2|ξ2|2|ξ

′

2|
2 dξ2 dξ

′

2 ≤ Cε

(
M1

M2

)2(1−ε)

(4.4)

(recall that |ξ1| . M1 � M2) and also∫∫
|ξ2|∼M2
|ξ ′2|≤M2

δ(· · · )
|ξ1|

2

|ξ1 − ξ2 − ξ
′

2|
2|ξ2|2|ξ

′

2|
2 dξ2 dξ

′

2 ≤ Cε

(
M1

M2

)2(1−ε)

. (4.5)

In both (4.4) and (4.5),

δ(· · · ) = δ(τ ′ + |ξ1 − ξ2 − ξ
′

2|
2
+ |ξ2|

2
− |ξ ′2|

2).

By rescaling ξ2 7→ M2ξ2 and ξ ′2 7→ M2ξ
′

2, (4.4) and (4.5) reduce to

I (τ ′, ξ1) :=

∫∫
|ξ ′2|∼1
|ξ2|≤2

δ(· · · )
|ξ1|

2

|ξ1 − ξ2 − ξ
′

2|
2|ξ2|2|ξ

′

2|
2 dξ2 dξ

′

2 ≤ Cε|ξ1|
2(1−ε), (4.6)

I ′(τ ′, ξ1) :=

∫∫
|ξ2|∼1
|ξ ′2|≤2

δ(· · · )
|ξ1|

2

|ξ1 − ξ2 − ξ
′

2|
2|ξ2|2|ξ

′

2|
2 dξ2 dξ

′

2 ≤ Cε|ξ1|
2(1−ε), (4.7)

respectively, for |ξ1| � 1. To be precise, the ξ1 in estimates (4.6) and (4.7) is ξ1/M2
in estimates (4.4) and (4.5). We shall obtain the upper bound |ξ1|

2 log |ξ1|
−1 for both

(4.6), (4.7).
First, we prove (4.7). Begin by carrying out the ξ ′2 integration to obtain

I ′(τ ′, ξ1) =
1
2
|ξ1|

2
∫

1/2≤|ξ2|≤2

H ′(τ ′, ξ1, ξ2)

|ξ1 − ξ2| |ξ2|2
dξ2

where H ′(τ ′, ξ1, ξ2) is defined as follows. Let P ′ be the truncated plane defined by

P ′(τ ′, ξ1, ξ2) = {ξ
′

2 ∈ R3
| (ξ ′2 − λω) · ω = 0, |ξ ′2| ≤ 2}

where

ω =
ξ1 − ξ2

|ξ1 − ξ2|
, λ =

τ ′ + |ξ1 − ξ2|
2
+ |ξ2|

2

2|ξ1 − ξ2|
.

Now let

H ′(τ ′, ξ1, ξ2) =

∫
ξ ′2∈P

′(τ ′,ξ1,ξ2)

dσ(ξ ′2)

|ξ1 − ξ2 − ξ
′

2|
2|ξ ′2|

2 (4.8)

where the integral is computed with respect to the surface measure on P ′.

11 Notice that ‖V̂N‖L∞ ≤ ‖VN‖L1 = ‖V ‖L1 , i.e. V̂N is a dummy factor.
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Since |ξ1 − ξ2| ∼ 1, |ξ2| ∼ 1, we have the following reduction:

I ′(τ ′, ξ1) . |ξ1|
2
∫

1/2≤|ξ2|≤2
H ′(τ ′, ξ1, ξ2) dξ2.

We now evaluate H ′(τ ′, ξ1, ξ2). Introduce polar coordinates (ρ, θ) on the plane P ′ with
respect to the “center” λω, and note that

|ξ1 − ξ2 − ξ
′

2|
2
=
∣∣|ξ1 − ξ2|ω − ξ

′

2
∣∣2 = ∣∣(|ξ1 − ξ2| − λ)ω − (ξ

′

2 − λω)
∣∣2

= (|ξ1 − ξ2| − λ)
2
+ |ξ ′2 − λω|

2
= (|ξ1 − ξ2| − λ)

2
+ ρ2

= α2
+ ρ2 (4.9)

where

α = |ξ1 − ξ2| − λ =
|ξ1|

2
− 2ξ1 · ξ2 − τ

′

2|ξ1 − ξ2|
.

Also,
|ξ ′2|

2
= |(ξ ′2 − λω)+ λω|

2
= |ξ ′2 − λω|

2
+ λ2

= ρ2
+ λ2. (4.10)

Using (4.9) and (4.10) in (4.8), we get

H ′(τ ′, ξ1, ξ2) =

∫ √4−λ2

0

2πρ dρ
(ρ2 + α2)(ρ2 + λ2)

.

The restriction to 0 ≤ ρ ≤
√

4− λ2 arises from the fact that P ′ must sit within the ball
|ξ ′2| ≤ 2. In particular, H ′(τ, ξ1, ξ2) = 0 if |λ| ≥ 2 since then P ′ is located entirely
outside the ball |ξ ′2| ≤ 2. Since |λ| ≤ 2, we have |α| ≤ 3 and |τ ′| ≤ 10.

We consider three cases: (A) |λ| ≤ 1/4 (which implies |α| ≥ 1/4), (B) |α| ≤ 1/4
(which implies |λ| ≥ 1/4), and (C) |λ| ≥ 1/4 and |α| ≥ 1/4. Case (C) is the easiest since
clearly |H ′(τ ′, ξ1, ξ2)| ≤ C.

Let us consider case (B). Then

H ′(τ, ξ1, ξ2) .
∫ 2

0

ρ dρ

ρ2 + α2 =

∫ √2

0

dν

ν + α2 = log
(

1+

√
2
α2

)
.

Substituting back into I ′ yields

I ′(τ ′, ξ1) . |ξ1|
2
∫
|ξ2|≤2

log
(

1+

√
2
α2

)
dξ2.

Since |α| ≤
√

3, it follows that12

log
(

1+

√
2
α2

)
≤ c +

∣∣log |α|
∣∣ ≤ c + ∣∣log ||ξ1|

2
− 2ξ1 · ξ2 − τ

′
|
∣∣

= c +

∣∣∣∣log 2
∣∣∣∣ξ1 ·

(
ξ2 −

1
2
ξ1 +

τ ′ξ1

2|ξ1|2

)∣∣∣∣∣∣∣∣ = c + ∣∣∣∣log
∣∣∣∣ξ1 ·

(
ξ2 −

1
2
ξ1 +

τ ′ξ1

2|ξ1|2

)∣∣∣∣∣∣∣∣.
12 The first step is simply: if x ≥ δ > 0, then log(1+ x) ≤ log x + log(1+ 1/δ). The second step

uses |ξ1 − ξ2| ∼ 1, which follows since |ξ1| � 1 and |ξ2| ∼ 1.
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Hence

I ′(τ ′, ξ1) . |ξ1|
2
(

1+
∫
|ξ2|≤2

∣∣∣∣log
∣∣∣∣ξ1 ·

(
ξ2 −

1
2
ξ1 +

τ ′ξ1

2|ξ1|2

)∣∣∣∣∣∣∣∣ dξ2

)
.

Denote byB(µ, r) the ball of centerµ and radius r . The substitution ξ2 7→ξ2+
1
2ξ1−

τ ′ξ1
2|ξ1|2

yields, with µ = 1
2ξ1 −

τ ′ξ1
2|ξ1|2

,

I ′(τ ′, ξ1) . |ξ1|
2
(

1+
∫
B(µ,2)

∣∣log |ξ1 · ξ2|
∣∣ dξ2

)
. |ξ1|

2
(

log |ξ1|
−1
+

∫
B(µ,2)

∣∣∣∣log
∣∣∣∣ ξ1

|ξ1|
· ξ2

∣∣∣∣∣∣∣∣ dξ2

)
.

By rotating coordinates so that ξ1/|ξ1| = (1, 0, 0), and lettingµ′ denote the corresponding
rotation of µ, we get

I ′(τ ′, ξ1) . |ξ1|
2
(

log |ξ1|
−1
+

∫
B(µ′,2)

∣∣log |(ξ2)1|
∣∣ dξ2

)
where (ξ2)1 denotes the first coordinate of the vector ξ2. Since |τ ′| ≤ 10, it follows that
|µ′| . |ξ1|

−1 and we finally obtain

I ′(τ ′, ξ1) . |ξ1|
2 log |ξ1|

−1

as claimed, completing Case (B).
Case (A) is similar except that we begin with the bound

H ′(τ ′, ξ1, ξ2) .
∫ 2

0

2πρ dρ
ρ2 + λ2 .

This completes the proof of (4.7).
Next, we prove (4.6). In the integral defining I (τ ′, ξ1), we have the restriction 1/2 ≤

|ξ ′2| ≤ 2 and |ξ2| ≤ 2. Note that if 1/4 ≤ |ξ2| ≤ 2, then the argument above that provided
the bound for I ′(τ ′, ξ1) applies. Hence it suffices to restrict to |ξ2| ≤ 1/4, from which it
follows that |ξ1 − ξ2 − ξ

′

2| ∼ 1.
Begin by carrying out the ξ ′2 integration to obtain

I (τ ′, ξ1) =
1
2
|ξ1|

2
∫
|ξ2|≤2

H(τ ′, ξ1, ξ2)

|ξ1 − ξ2| |ξ2|2
dξ2 (4.11)

where H(τ ′, ξ1, ξ2) is defined as follows. Let P be the truncated plane defined by

P(τ ′, ξ1, ξ2) = {ξ
′

2 ∈ R3
| (ξ ′2 − λω) · ω = 0, 1/2 ≤ |ξ ′2| ≤ 2}

where

ω =
ξ1 − ξ2

|ξ1 − ξ2|
, λ =

τ ′ + |ξ1 − ξ2|
2
+ |ξ2|

2

2|ξ1 − ξ2|
.
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Now let

H(τ ′, ξ1, ξ2) =

∫
ξ ′2∈P(τ

′,ξ1,ξ2)

dσ(ξ ′2)

|ξ1 − ξ2 − ξ
′

2|
2|ξ ′2|

2

where the integral is computed with respect to the surface measure on P . Since
|ξ1 − ξ2 − ξ

′

2| ∼ 1 and |ξ ′2| ∼ 1, we obtain H(τ ′, ξ1, ξ2) ≤ C. Substituting into (4.11),
we obtain

I (τ ′, ξ1) . |ξ1|
2
∫
|ξ2|≤1/4

dξ2

|ξ1 − ξ2| |ξ2|2

. |ξ1|
2
(∫
|ξ2|≤2|ξ1|

dξ2

|ξ1 − ξ2| |ξ2|2
+

∫
2|ξ1|≤|ξ2|≤1/4

dξ2

|ξ1 − ξ2| |ξ2|2

)
.

In the first integral, we change variables ξ2 = |ξ1|η, and in the second integral, we use the
bound |ξ1 − ξ2|

−1
≤ 2|ξ2|

−1 to obtain

I (τ ′, ξ1) . |ξ1|
2
(∫
|η|≤2

dη∣∣ξ1/|ξ1| − η
∣∣ |η|2 +

∫
2|ξ1|≤|ξ2|≤1/4

dξ2

|ξ2|3

)
. |ξ1|

2 log |ξ1|
−1.

This completes the proof of (4.6). ut

Lemma 4.5. For each ε > 0, there is a Cε independent of Mk , j , k, and N such that

‖R(k)P
(k)
≤Mk

BN,j,k+1α
(k+1)
‖L2

t L
2
x,x′

≤ Cε
∑

Mk+1≥Mk

(
Mk

Mk+1

)1−ε

‖R(k+1)P
(k+1)
≤Mk+1

α(k+1)
‖
X
(k)
(1/2)+

.

where the sum is over dyadic Mk+1 such that Mk+1 ≥ Mk .

Proof. The proof is exactly the same as deducing Lemma 4.3 from Lemma 4.2. We in-
clude the proof for completeness. Let

f (k+1)
τ (xk+1, x′k+1) = Ft 7→τ (U (k+1)(−t)α(k+1)(t, xk+1, x′k+1))

where Ft 7→τ denotes the t 7→ τ Fourier transform. Then

α(k+1)(t, xk+1, x′k+1) =

∫
τ

eitτU (k+1)(t)f (k+1)(xk+1, x′k+1) dτ.

By Minkowski’s inequality

‖R(k)P
(k)
≤Mk

BN,j,k+1α
(k+1)
‖L2

t L
2
x,x′
≤

∫
τ

‖R(k)P
(k)
≤Mk

BN,j,k+1U
(k+1)(t)f (k+1)

‖L2
t L

2
x,x′
dτ

=: I.

By Lemma 4.4,

I ≤ Cε
∑

Mk+1≥Mk

(
Mk

Mk+1

)1−ε ∫
τ

‖R(k+1)P
(k+1)
≤Mk+1

f (k+1)
‖L2

x,x′
dτ.
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For any b > 1/2, we write 1 = 〈τ 〉−b〈τ 〉b and apply Cauchy–Schwarz in τ to obtain

I ≤ Cε
∑

Mk+1≥Mk

(
Mk

Mk+1

)1−ε

‖〈τ 〉bR(k+1)P
(k+1)
≤Mk+1

f (k+1)
‖L2

τ,x,x′

= Cε
∑

Mk+1≥Mk

(
Mk

Mk+1

)1−ε

‖R(k+1)P
(k+1)
≤Mk+1

α(k+1)
‖
X
(k)
(1/2)+

. ut

4.2. A Strichartz estimate

Lemma 4.6. Assume γ (k)(t, xk, x′k) satisfies the symmetry condition (1.2). Let

β(k)(t, xk, x′k) = V (xi − xj )γ
(k)(t, xk, x′k). (4.12)

Then we have the estimates

‖β(k)‖
X
(k)
−(1/2)+

. ‖V ‖
L
(6/5)+
x
‖〈∇xi 〉〈∇xj 〉γ

(k)
‖L2

t L
2
x,x′
, (4.13)

‖β(k)‖
X
(k)
−(1/2)+

. ‖V ‖
L3+
x
‖γ (k)‖L2

t L
2
x,x′
, (4.14)

‖β(k)‖
X
(k)
−(1/2)+

. ‖V ‖
L2+
x
‖〈∇xi 〉

1/2γ (k)‖L2
t L

2
x,x′
. (4.15)

Proof. It suffices to prove the assertion for k = 2. Since we will be need to deal with
Fourier transforms in only selected coordinates, we introduce the following notation:
F0 denotes Fourier transform in t , Fj denotes Fourier transform in xj , and Fj ′ denotes
Fourier transform in x′j . Fourier transforms in multiple coordinates will denoted as com-
bined subscripts – for example, F01′ = F0F1′ denotes the Fourier transform in t and x′1.13

We start by splitting γ (2) into

γ (2) = γ
(2)
|ξ1|≥|ξ2|

+ γ
(2)
|ξ2|≥|ξ1|

.

Below we treat
β
(2)
|ξ2|≥|ξ1|

= V (x1 − x2)γ
(2)
|ξ2|≥|ξ1|

since the |ξ1| ≥ |ξ2| case is similar. Let T denote the translation operator

(Tf )(x1, x2) = f (x1 + x2, x2).

Suppressing the x′1, x′2 dependence, we have

(F12Tβ
(2)
|ξ2|≥|ξ1|

)(t, ξ1, ξ2) = (F12β
(2)
|ξ2|≥|ξ1|

)(t, ξ1, ξ2 − ξ1). (4.16)

13 We are going to apply the endpoint Strichartz estimate on the nontransformed coordinates. We
do not know the origin of such a technique, although it was also used by the first author in [13,
Lemma 6].
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Also

e−2itξ1·ξ2(F12Tβ
(2)
|ξ2|≥|ξ1|

)(t, ξ1, ξ2) = F1
[
(F2Tβ

(2)
|ξ2|≥|ξ1|

)(t, x1−2tξ2, ξ2)
]
(ξ1). (4.17)

Now

(F012β
(2)
|ξ2|≥|ξ1|

)(τ − |ξ2|
2
+ 2ξ1 · ξ2, ξ1, ξ2 − ξ1)

= (F012Tβ
(2)
|ξ2|≥|ξ1|

)(τ − |ξ2|
2
+ 2ξ1 · ξ2, ξ1, ξ2) by (4.16)

= F0
[
eit |ξ2|

2
e−2itξ1·ξ2(F12Tβ

(2)
|ξ2|≥|ξ1|

)(t, ξ1, ξ2)
]
(τ )

= F0
[
eit |ξ2|

2
F1
[
(F2Tβ

(2)
|ξ2|≥|ξ1|

)(t, x1 − 2tξ2, ξ2)
]
(ξ1)

]
(τ ) by (4.17)

= F01
[
eit |ξ2|

2
(F2Tβ

(2)
|ξ2|≥|ξ1|

)(t, x1 − 2tξ2, ξ2)
]
(τ, ξ1). (4.18)

By changing variables ξ2 7→ ξ2 − ξ1 and then τ 7→ τ − |ξ2|
2
+ 2ξ1 · ξ2, we obtain

‖β
(2)
|ξ2|≥|ξ1|

‖
X
(2)
−(1/2)+

= ‖(β
(2)
|ξ2|≥|ξ1|

)̂ (τ, ξ1, ξ2, ξ
′

1, ξ
′

2)〈τ + |ξ1|
2
+ |ξ2|

2
− |ξ ′1|

2
− |ξ ′2|

2
〉
−(1/2)+

‖L2
τξ1ξ2ξ

′
1ξ
′
2

= ‖(β
(2)
|ξ2|≥|ξ1|

)̂ (τ − |ξ2|
2
+ 2ξ1 · ξ2, ξ1, ξ2 − ξ1, ξ

′

1, ξ
′

2)

· 〈τ + 2|ξ1|
2
− |ξ ′1|

2
− |ξ ′2|

2
〉
−(1/2)+

‖L2
τξ1ξ2ξ

′
1ξ
′
2

.

Applying the dual Strichartz (see (4.20) below) shows that

‖β
(2)
|ξ2|≥|ξ1|

‖
X
(2)
−(1/2)+

. ‖F−1
01 [(F012β

(2)
|ξ2|≥|ξ1|

)(τ − |ξ2|
2
+ 2ξ1 · ξ2, ξ1, ξ2 − ξ1)](t, x1)‖L2

ξ2
L2
t L

(6/5)+
x1 L2

x′1x
′
2

=: A.

Utilizing (4.18) and then changing variable x1 7→ x1 + 2tξ2 yields

A = ‖(F2Tβ
(2)
|ξ2|≥|ξ1|

)(t, x1 − 2tξ2, ξ2)‖L2
t L

2
ξ2
L
(6/5)+
x1 L2

x′1x
′
2

= ‖(F2Tβ
(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2)‖L2
t L

2
ξ2
L
(6/5)+
x1 L2

x′1x
′2
2

.

Now note that from (4.12), we have

(F2Tβ
(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2) = V (x1)(F2T γ
(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2).
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It follows that

‖(F2Tβ
(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2)‖L2
t L

2
ξ2
L
(6/5)+
x1 L2

x′1x
′
2

=
∥∥V (x1)

(
‖(F2T γ

(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2)‖L2
x′1x
′
2

)∥∥
L2
t L

2
ξ2
L
(6/5)+
x1

≤ ‖V ‖L(6/5)+‖(F2T γ
(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2)‖L2
t L

2
ξ2
L∞x1

L2
x′1x
′
2

≤ ‖V ‖L(6/5)+‖(F2T γ
(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2)‖L2
t L

2
ξ2x
′
1x
′
2
L∞x1

. ‖V ‖L(6/5)+‖〈∇x1〉
2(F2T γ

(2)
|ξ2|≥|ξ1|

)(t, x1, ξ2)‖L2
t L

2
ξ2x
′
1x
′
2
L2
x1
=: B (4.19)

by Sobolev in x1. Move the dξ2 dx
′

1 dx
′

2 integration to the inside and apply Plancherel in
ξ2 7→ x2 to obtain

B = ‖V ‖L(6/5)+‖〈∇x1〉
2T γ

(2)
|ξ2|≥|ξ1|

‖L2
t L

2
x,x′
= ‖V ‖L(6/5)+‖〈∇x1〉

2γ
(2)
|ξ2|≥|ξ1|

‖L2
t L

2
x,x′
.

Recall that the ξ2 frequency dominates in γ (2)
|ξ2|≥|ξ1|

, and thus

B . ‖V ‖L(6/5)+‖〈∇x1〉〈∇x2〉γ
(2)
|ξ2|≥|ξ1|

(t, x2, x′2)‖L2
t L

2
x,x′

. ‖V ‖L(6/5)+‖〈∇x1〉〈∇x2〉γ
(2)(t, x2, x′2)‖L2

t L
2
x,x′
.

This proves estimate (4.13). Using Hölder exponents (3+, 2, (6/5)+) and (2+, 3, (6/5)+)
in (4.19) yields estimates (4.14) and (4.15). Their proofs are easier in the sense that there
is no need to split γ (2).

It remains to prove the following dual Strichartz estimate (here σ (2)(t, x1, x
′

1, x
′

2),
note that the x2 coordinate is missing):

‖〈τ + 2|ξ1|
2
− |ξ ′1|

2
− |ξ ′2|

2
〉
−(1/2)+σ̂ (2)(τ, ξ1, ξ

′

1, ξ
′

2)‖L2
τL

2
ξ1ξ
′
1ξ
′
2

. ‖σ (2)‖
L2
t L

(6/5)+
x1 L2

x′1x
′
2

. (4.20)

The estimate (4.20) is dual to the equivalent estimate

‖σ (2)‖
L2
t L

6−
x1 L

2
x′1x
′
2

. ‖〈τ+2|ξ1|
2
−|ξ ′1|

2
−|ξ ′2|

2
〉
(1/2)−σ̂ (2)(τ, ξ1, ξ

′

1, ξ
′

2)‖L2
τL

2
ξ1ξ
′
1ξ
′
2

. (4.21)

To prove (4.21), we prove

‖σ (2)‖L2
t L

6
x1
L2
x′1x
′
2

. ‖〈τ+2|ξ1|
2
−|ξ ′1|

2
−|ξ ′2|

2
〉
(1/2)+σ̂ (2)(τ, ξ1, ξ

′

1, ξ
′

2)‖L2
τL

2
ξ1ξ
′
1ξ
′
2

. (4.22)

The estimate (4.21) follows from the interpolation of (4.22) and the trivial equality

‖σ (2)‖L2
t L

2
x1
L2
x′1x
′
2

= ‖〈τ + 2|ξ1|
2
− |ξ ′1|

2
− |ξ ′2|

2
〉
0σ̂ (2)(τ, ξ1, ξ

′

1, ξ
′

2)‖L2
τL

2
ξ1ξ
′
1ξ
′
2

.
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Thus proving (4.20) is reduced to proving (4.22), which we do now. Let

φτ (x1, x
′

1, x2) := F0[U
1(−2t)U1′(−t)U2′(−t)σ (2)(t, x1, x

′

1, x
′

2)](τ ). (4.23)

Then φτ is independent of t and

σ (2)(t, x1, x
′

1, x
′

2) =

∫
eitτU1(2t)U1′(t)U2′(t)φτ (x1, x

′

1, x
′

2) dτ.

Thus

‖σ (2)‖L2
t L

6
x1
L2
x′1x
′
2

.
∫
τ

‖U1′(t)U2′(t)U1(2t)φτ (x1, x
′

1, x
′

2)‖L2
t L

6
x1
L2
x′1x
′
2

dτ

.
∫
τ

‖U1(2t)φτ (x1, x
′

1, x
′

2)‖L2
t L

6
x1
L2
x′1x
′
2

dτ

.
∫
τ

‖U1(2t)φτ (x1, x
′

1, x
′

2)‖L2
x′1x
′
2
L2
t L

6
x1
dτ =: A.

Now apply Keel–Tao’s [41] endpoint Strichartz estimate to obtain

A .
∫
τ

‖φτ (x1, x
′

1, x
′

2)‖L2
x′1x
′
2
L2
x1
dτ

. ‖〈τ 〉(1/2)+φτ (x1, x
′

1, x
′

2)‖L2
τL

2
x1x
′
1x
′
2

= ‖〈τ + 2|ξ1|
2
− |ξ ′1|

2
− |ξ ′2|

2
〉
(1/2)+σ̂ (2)(τ, ξ1, ξ

′

1, ξ
′

2)‖L2
τξ1ξ
′
1ξ
′
2

by (4.23), which completes the proof of (4.22). ut

Corollary 4.1. Let

β(k)(t, xk, x′k) = N
3β−1V (Nβ(xi − xj ))γ

(k)(t, xk, x′k).

Then for N ≥ 1, we have∥∥|∇xi | |∇xj |β(k)∥∥X(k)
−(1/2)+

. N5β/2−1
‖〈∇xi 〉〈∇xj 〉γ

(k)
‖L2

t L
2
x,x′
, (4.24)

‖β(k)‖
X
(k)
−(1/2)+

. Nβ/2−1
‖〈∇xi 〉〈∇xj 〉γ

(k)
‖L2

t L
2
x,x′
. (4.25)

Consequently (with R(k)
≤M = P

(k)
≤MR

(k)),

‖R
(k)
≤Mβ

(k)
‖
X
(k)
−(1/2)+

. Nβ/2−1 min(M2, N2β)‖S(k)γ (k)‖L2
t L

2
x,x′
. (4.26)



Proof of the Klainerman–Machedon conjecture with high β 1193

Proof. Estimate (4.24) follows by applying either (4.13), (4.14), or (4.15) accord-
ing to whether two derivatives, no derivatives, or one derivative, respectively, land on
N3β−1V (Nβ(xi − xj )).

Estimate (4.25) follows by applying (4.13).
Finally, (4.26) follows from (4.24) and (4.25), as follows. Let

Q =
∏

1≤`≤k
` 6=i,j

|∇x` |.

Then
‖R

(k)
≤Mβ

(k)
‖
X
(k)
−(1/2)+

≤ M2
‖Qβ(k)‖

X
(k)
−(1/2)+

.

The Q operator passes directly onto γ (k), and one applies (4.25) to obtain

‖R
(k)
≤Mβ

(k)
‖
X
(k)
−(1/2)+

. Nβ/2−1M2
‖S(k)γ (k)‖L2

t L
2
x,x′
. (4.27)

On the other hand,

‖R
(k)
≤Mβ

(k)
‖
X
(k)
−(1/2)+

≤ ‖Q|∇xi ||∇xj |β
(k)
‖
X
(k)
−(1/2)+

.

The Q operator passes directly on γ (k), and one applies (4.24) to obtain

‖R
(k)
≤Mβ

(k)
‖
X
(k)
−(1/2)+

. N5β/2−1
‖S(k)γ (k)‖L2

t L
2
x,x′
. (4.28)

Combining (4.27) and (4.28), we obtain (4.26). ut

Appendix A. The topology on the density matrices

In this appendix, we define a topology τprod on the density matrices, as was previously
done in [26, 31, 27, 28, 29, 30, 43, 9, 14, 15, 16].

Denote the spaces of compact operators and trace class operators on L2(R3k) by Kk
and L1

k , respectively. Then (Kk)′ = L1
k . Since Kk is separable, we select a dense countable

subset {J (k)i }i≥1 ⊂ Kk in the unit ball of Kk (so ‖J (k)i ‖op ≤ 1 where ‖ · ‖op is the operator
norm). For γ (k), γ̃ (k) ∈ L1

k , we then define a metric dk on L1
k by

dk(γ
(k), γ̃ (k)) =

∞∑
i=1

2−i |Tr J (k)i (γ (k) − γ̃ (k))|.

A uniformly bounded sequence γ (k)N ∈ L1
k converges to γ (k) ∈ L1

k in the weak∗ topology
if and only if

lim
N
dk(γ

(k)
N , γ (k)) = 0.
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For fixed T > 0, let C([0, T ],L1
k) be the space of functions of t ∈ [0, T ] with values

in L1
k which are continuous with respect to the metric dk. On C([0, T ],L1

k), we define
the metric

d̂k(γ
(k)(·), γ̃ (k)(·)) = sup

t∈[0,T ]
dk(γ

(k)(t), γ̃ (k)(t)).

We can then define a topology τprod on the space
⊕

k≥1 C([0, T ],L1
k) to be the product

of the topologies generated by the metrics d̂k on C([0, T ],L1
k).

Appendix B. Proof of estimates (2.9) and (2.11)

Proof of (2.9). Applying Lemma 2.1 and estimate (3.3) to the free part of γ (2)N , we obtain

‖R(k−1)BN,1,kFP(k,lc)‖L1
T L

2
x,x′

≤ CT 1/2
‖R(k)γ

(k)
N,0‖L2

x,x′

+

lc∑
j=1

∑
m

∥∥∥∥R(k−1)BN,1,k

∫
D

J
(k,j)
N (tk+j , µm)(U

(k+j)(tk+j )γ
(k+j)

N,0 ) dtk+j

∥∥∥∥
L1
T L

2
x,x′

≤ CT 1/2
‖R(k)γ

(k)
N,0‖L2

x,x′

+

lc∑
j=1

∑
m

(CT 1/2)j‖R(k+j−1)BN,µm(k+j),k+jU
(k+j)(tk+j )γ

(k+j)

N,0 ‖L1
T L

2
x,x′

≤ CT 1/2
‖R(k)γ

(k)
N,0‖L2

x,x′
+

∞∑
j=1

4j−1(CT 1/2)j+1
‖R(k+j)γ

(k+j)

N,0 ‖L2
x,x′

Use condition (2.5) to get

‖R(k−1)BN,1,kFP(k,lc)‖L1
T L

2
x,x′
≤ CT 1/2Ck0 +

∞∑
j=1

4j−1(CT 1/2)j+1C
k+j

0

≤ Ck0

(
CT 1/2

+

∞∑
j=1

4j−1(CT 1/2)j+1C
j

0

)
.

We can choose a T independent of k, lc and N such that the series in the above estimate
converges. We then have

‖R(k−1)BN,1,kFP(k,lc)‖L1
T L

2
x,x′
≤ Ck0 (CT

1/2
+ C) ≤ Ck−1

for some C larger than C0. Thus, we have shown estimate (2.9). ut
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Proof of (2.11). We proceed as in the proof of estimate (2.9) and end up with

‖R(k−1)BN,1,kIP(k,lc)‖L1
T L

2
x,x′

≤

∑
m

∥∥∥∥R(k−1)BN,1,k

∫
D

J
(k,lc+1)
N (tk+lc+1, µm)(γ

(k+lc+1)
N (tk+lc+1)) dtk+lc+1

∥∥∥∥
L1
T L

2
x,x′

≤

∑
m

(CT 1/2)lc‖R(k+lc)BN,µm(k+lc+1),k+lc+1γ
(k+lc+1)
N (tk+lc+1)‖L1

T L
2
x,x′
.

We then investigate

‖R(k+lc)BN,µm(k+lc+1),k+lc+1γ
(k+lc+1)
N (tk+lc+1)‖L1

T L
2
x,x′
.

Setting µm(k + lc + 1) = 1 for simplicity and looking at B̃N,1,k+lc+1, we have

R(k+lc)B̃N,1,k+lc+1γ
(k+lc+1)
N (t)

= R(k+lc)
∫
VN (x1 − xk+lc+1)γ

(k+lc+1)
N (t, xk+lc , xk+lc+1; x′k+lc , xk+lc+1) dxk+lc+1

= I + II

with I and II given by the product rule:

I =

∫
V ′N (x1− xk+lc+1)

(
R(k+lc)

|∇x1 |

)
γ
(k+lc+1)
N (t, xk+lc , xk+lc+1; x′k+lc , xk+lc+1) dxk+lc+1,

II =
∫
VN (x1− xk+lc+1)(R

(k+lc)γ
(k+lc+1)
N )(t, xk+lc , xk+lc+1; x′k+lc , xk+lc+1) dxk+lc+1,

where we wrote

R(k+lc)

|∇x1 |
=

(k+lc∏
j=2

|∇xj |

)(k+lc∏
j=1

|∇x′j
|

)
.

Then∫
|R(k+lc)B̃N,1,k+lc+1γ

(k+lc+1)
N (t)|2 dxk+lc dx′k+lc

=

∫
|I + II|2 dxk+lc dx′k+lc

≤ C

∫
|I |2 dxk+lc dx′k+lc + C

∫
|II|2 dxk+lc dx′k+lc .
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To estimate the first term, we first use Cauchy–Schwarz in dxk+lc+1:∫
|I |2 dxk+lc dx′k+lc

≤

∫
dxk+lc dx′k+lc

(∫
|V ′N (x1 − xk+lc+1)|

2 dxk+lc+1

)
×

(∫ ∣∣∣∣(R(k+lc)|∇x1 |

)
γ
(k+lc+1)
N (t, xk+lc , xk+lc+1; x′k+lc , xk+lc+1)

∣∣∣∣2 dxk+lc+1

)
≤ N5β

‖V ′‖2
L2

∫
dxk+lc dx′k+lc

×

(∫
|S(k+lc)γ

(k+lc+1)
N (t, xk+lc , xk+lc+1; x′k+lc , xk+lc+1)|

2 dxk+lc+1

)
where V ∈ W 2,(6/5)+ implies that V ∈ H 1 by Sobolev. The trace theorem then gives∫
|I |2 dxk+lc dx′k+lc ≤ CN

5β
‖V ′‖2

L2

∫
dxk+lc dx′k+lc

×

(∫
|S(k+lc+1)γ

(k+lc+1)
N (t, xk+lc , xk+lc+1; x′k+lc , x

′

k+lc+1)|
2 dxk+lc+1 dx

′

k+lc+1

)
= CN5β

‖V ′‖2
L2‖S

(k+lc+1)γ
(k+lc+1)
N ‖

2
L∞T L

2
x,x′
.

Estimating the second term in the same manner, we get∫
|II|2 dxk+lc dx′k+lc =

∫
dxk+lc dx′k+lc

×

∣∣∣∣∫ VN (x1 − xk+lc+1)(R
(k+lc)γ

(k+lc+1)
N )(t, xk+lc , xk+lc+1; x′k+lc , xk+lc+1) dxk+lc+1

∣∣∣∣2
≤ CN3β

‖V ‖2
L2‖S

(k+lc+1)γ
(k+lc+1)
N ‖

2
L∞T L

2
x,x′
,

Accordingly,∫
|R(k+lc)B̃N,1,k+lc+1γ

(k+lc+1)
N (t)|2 dxk+lc dx′k+lc

≤ CN5β
‖V ‖2

H 1‖S
(k+lc+1)γ

(k+lc+1)
N ‖

2
L∞T L

2
x,x′
.

Hence

‖R(k−1)BN,1,kIP(k,lc)‖L1
T L

2
x,x′

≤

∑
m

(CT 1/2)lc‖R(k+lc)BN,µm(k+lc+1),k+lc+1γ
(k+lc+1)
N (tk+lc+1)‖L1

T L
2
x,x′

≤ C4lc (CT 1/2)lcT (CN5β/2
‖V ‖H 1‖S

(k+lc+1)γ
(k+lc+1)
N ‖L∞T L

2
x,x′
).
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Put in condition (2.5), it becomes

‖R(k−1)BN,1,kIP(k,lc)‖L1
T L

2
x,x′
≤ CT (CT 1/2)lcN5β/2C

k+lc+1
0

= Ck0 [CT (CT
1/2)lcN5β/2C

lc+1
0 ].

Replacing the constants C and C0 inside the bracket with some larger constant and group-
ing the terms, we have

‖R(k−1)BN,1,kIP(k,lc)‖L1
T L

2
x,x′
≤ Ck0 [(T

1/2)2+lcN5β/2Clc ].

As in [11, 15], we take the coupling level lc = logN to deal with what is inside the
bracket:

‖R(k−1)BN,1,kIP(k,lc)‖L1
T L

2
x,x′
≤ CCk0 [(T

1/2)2+logNN5β/2Nc
].

Notice that there is no k inside the bracket. Selecting T such that T ≤ e−(5β+2C) ensures
that

(T 1/2)logNN5β/2Nc
≤ 1,

and hence
‖R(k−1)BN,1,kIP(k,lc)‖L1

T L
2
x,x′
≤ CCk0 ≤ C

k−1

with a C larger than C0 and independent of k and N. Thus, we have finished the proof of
estimate (2.11). ut
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[31] Erdős, L., Yau, H. T.: Derivation of the nonlinear Schrödinger equation from a many
body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001) Zbl 1014.81063
MR 1926667
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