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Abstract. We describe a cluster algebra algorithm for calculating the q-characters of Kirillov–
Reshetikhin modules for any untwisted quantum affine algebra Uq (̂g). This yields a geomet-
ric q-character formula for tensor products of Kirillov–Reshetikhin modules. When g is of type
A,D,E, this formula extends Nakajima’s formula for q-characters of standard modules in terms
of homology of graded quiver varieties.
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1. Introduction

Let g be a simple Lie algebra over C, and let Uq (̂g) be the corresponding untwisted
quantum affine algebra with quantum parameter q ∈ C∗ not a root of unity. The finite-
dimensional complex representations of Uq (̂g) have been studied by many authors during
the past twenty years. We refer the reader to [CP1] for a classical introduction, and to
[CH, Le2] for recent surveys on this topic.

In [HL1], we started to explore some new connections between this rich representation
theory and the cluster algebras of Fomin and Zelevinsky. The main result, proved in [HL1]
in type An and D4, and extended to any A,D,E type by Nakajima [N4], shows the exis-
tence of a tensor category C1 of finite-dimensional Uq (̂g)-modules whose Grothendieck
ring is a cluster algebra of the same finite Dynkin type, such that the classes of simple
modules coincide with the set of cluster monomials. As a consequence, the q-characters
of the simple objects of C1 can be computed algorithmically using the combinatorics of
cluster algebras. Moreover, the Caldero–Chapoton formula for cluster expansions leads
to some new geometric formulae for these characters, in terms of Euler characteristics of
quiver Grassmannians.
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Unfortunately the category C1 is quite small. For instance it contains only three
Kirillov–Reshetikhin modules for each node of the Dynkin diagram of g. Another limi-
tation of the papers [HL1] and [N4] is that g is assumed to be of simply laced type. In
fact, the general proof of Nakajima uses in a crucial way his geometric construction of
the standard Uq (̂g)-modules [N1], which is only available in the simply laced case.

In this paper we drop the assumption of being simply laced, and we consider a much
larger tensor subcategory C− which contains, up to spectral shifts, all the irreducible
finite-dimensional representations of Uq (̂g). Our first main result (Theorem 3.1) is an
algorithm which calculates the q-character of an arbitrary Kirillov–Reshetikhin module
in C− as the result of a sequence of cluster mutations. The only input for this calculation
is the initial seed of our cluster algebra A , which is encoded in a quiver obtained from
the Cartan matrix of g by a simple and uniform recipe. (It may be worth noting that A is
always a skew-symmetric cluster algebra, even when g is not simply laced.)

The proof of this theorem is based on the fact that the q-characters of Kirillov–
Reshetikhin modules are solutions of the corresponding T -system of Kuniba, Nakanishi
and Suzuki [KNS1, N2, H]. This will come as no surprise, given the many papers already
devoted to the relationships between cluster algebras and T -systems (see in particular
[IIKNS], [IIKKN1], [IIKKN2]; in fact our algorithm is inspired by [GLS2, §13], where
similar T -system formulas are obtained for generalized minors of symmetric Kac–Moody
groups). We find it nevertheless remarkable that, by interpreting the T -system equa-
tions as appropriate cluster transformations, one is able to obtain Kirillov–Reshetikhin
q-characters starting from their highest weight monomials via a procedure of successive
approximations. To the best of our knowledge this simple “bootstrap” algorithm has not
been noticed before, although, in retrospect, it could certainly have been formulated and
proved without knowledge of cluster algebra theory.

At this stage, we should recall that long ago Frenkel and Mukhin [FM] described
a completely different algorithm, which can be used for computing the q-characters of
Kirillov–Reshetikhin modules [N2, H]. The advantage of our approach is that we are
now in a position to apply deep results of the theory of cluster algebras and obtain new
formulas for Kirillov–Reshetikhin q-characters. In [DWZ1, DWZ2], Derksen, Weyman
and Zelevinsky have constructed a categorical model for a large class of cluster algebras
using quivers with potentials. In particular they have proved a far-reaching generalization
of the Caldero–Chapoton formula, expressing any cluster variable in terms of the F -
polynomial of an associated quiver representation (see also [Pl1] for a different proof
of this generalized formula). Applying this formula in our context, we get a geometric
character formula for arbitrary Kirillov–Reshetikhin modules, and also for their tensor
products (Theorem 4.8).

When g is simply laced, and we restrict our attention to the simplest Kirillov–Resheti-
khin modules and their tensor products, namely the fundamental modules and the standard
modules, the quiver Grassmannians involved in our formula are homeomorphic to the
projective varieties L•(V ,W) used by Nakajima [N3, §4] in his geometric construction
of the standard modules. This suggests that the quiver Grassmannians we introduce, in
connection with general Kirillov–Reshetikhin modules of not necessarily simply laced
type, might be interesting new varieties.
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When g is a classical Lie algebra of typeA, B, C,D, there exist tableau sum formulas
for the q-characters of certain Kirillov–Reshetikhin modules (see [KNS2, §7] and refer-
ences therein). From the geometric point of view of Theorem 4.8, these formulas can be
explained by the fact that the corresponding quiver representations have a nice and regular
“grid structure”, and in many cases their quiver Grassmannians are reduced to points (see
e.g. §§6.4–6.6).

The cluster algebra approach also suggests that our results should extend far beyond
Kirillov–Reshetikhin modules. Indeed, we show (Theorem 5.1) that the cluster algebra
A is isomorphic to the Grothendieck ring of C−. It is then natural to conjecture that this
isomorphism maps all cluster monomials of A to the classes of certain simple objects
of C− (Conjecture 5.2), and to extend the above geometric character formula to all these
simple objects (Conjecture 5.3). The results of [HL1, HL2, N4] provide some evidence
supporting these conjectures in the simply laced case.

Here is a more precise outline of the paper. In Section 2 we associate with every simple
Lie algebra g some quivers (§2.1), from which we define a cluster algebra A (§2.2).
We also introduce the untwisted quantum affine algebra Uq (̂g) (§2.3). In Section 3 we
state and prove our algorithm for computing Kirillov–Reshetikhin q-characters as special
cluster variables of A . The proof uses T -systems (§3.2.1) and the notion of truncated
q-characters (§3.2.2). In Section 4, we consider an algebra A defined by a quiver with
potential, coming from our initial seed for A (§4.1). We introduce certain distinguished
A-modules K(i)

k,m (§4.3), and we state our geometric formula for Kirillov–Reshetikhin
q-characters in terms of Grassmannians of submodules of the K(i)

k,m (Theorem 4.8). To
prove it, we calculate the g-vectors of these q-characters, regarded as cluster variables
of A , and we apply a result of Plamondon [Pl2] which allows one to reconstruct the A-
module corresponding to a given cluster variable from the knowledge of its g-vector. To
be in a position to apply this result, we show that the defining potential of A is rigid, and
that appropriate truncations of A are finite-dimensional (Proposition 4.17). In Section 5,
we prove Theorem 5.1 and we formulate Conjectures 5.2 and 5.3. The paper closes with
an appendix illustrating our results with many examples.

2. Definitions and notation

2.1. Quivers

2.1.1. Cartan matrix. Let C = (cij )i,j∈I be an indecomposable n × n Cartan matrix of
finite type [Ka, §4.3]. There is a diagonal matrix D = diag(di | i ∈ I ) with entries in
Z>0 such that the product

B = DC = (bij )i,j∈I

is symmetric. We normalize D so that min{di | i ∈ I } = 1, and we set t := max{di |
i ∈ I }. Thus

t =

 1 if C is of type An, Dn, E6, E7 or E8,

2 if C is of type Bn, Cn or F4,

3 if C is of type G2.
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It is easy to check by inspection that

(di > 1 and cij < 0) ⇒ (cij = −1). (1)

One attaches to C a Dynkin diagram δ with vertex set I [Ka, §4.7]. Since C is assumed
to be indecomposable and of finite type, δ is a tree.

All the objects that we consider below depend on C, but we shall not always repeat it,
nor indicate it explicitly in our notation.

Example 2.1. The Cartan matrix C of type B3 in the Cartan–Killing classification is
defined by

C =

 2 −1 0
−1 2 −1
0 −2 2

 .
We have D = diag(2, 2, 1) and the symmetric matrix B is given by

B =

 4 −2 0
−2 4 −2
0 −2 2

 .
2.1.2. Infinite quiver. Set Ṽ = I × Z. We introduce a quiver 0̃ with vertex set Ṽ . The
arrows of 0̃ are given by

((i, r)→ (j, s)) ⇔ (bij 6= 0 and s = r + bij ).

Lemma 2.2. The quiver 0̃ has two isomorphic connected components.

Proof. Let i ∈ I be such that di = 1. For every r ∈ Z we have an arrow (i, r) →

(i, r + 2). Since the Dynkin diagram δ is connected, every vertex (j, s) ∈ Ṽ is connected
to a vertex of the form (i, r), so 0̃ has at most two connected components. Moreover,
since δ is a tree, any path from (i, r) to (i, s) in 0̃ contains as many arrows of the form
(j, p)→ (k, p+ bjk) with j 6= k, as it contains arrows of the form (k, t)→ (j, t + bkj ).
Since bjk = bkj , and since bjj ∈ 2Z for every j ∈ I , it follows that if there is a path from
(i, r) to (i, s) then s−r ∈ 2Z. Therefore 0̃ has exactly two connected components. These
two components are isomorphic via the map (j, r) 7→ (j, r + 1) ((j, r) ∈ Ṽ × Z)). ut

We pick one of the two isomorphic connected components of 0̃ and call it 0. The vertex
set of 0 is denoted by V .

2.1.3. Semi-infinite quiver. We will have to use a second labelling of the vertices of 0. It
is deduced from the first one by means of the function ψ defined by

ψ(i, r) = (i, r + di) ((i, r) ∈ V ). (2)

Let W ⊂ I × Z be the image of V under ψ . We shall denote by G the same quiver as
0 but with vertices labelled by W . Write W− := W ∩ (I × Z≤0). Let G− be the full
subquiver of G with vertex set W−.
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Example 2.3. The definitions of §2.1.2 and §2.1.3 are illustrated in Figures 1 and 2. We
find it convenient to always display the quivers 0 in the following way. We draw all
arrows of the form (i, r)→ (i, r + bii) vertically, going upwards. Moreover, if (i, r) and
(i, s) are two vertices with r − s 6∈ biiZ, we draw them in different columns. Hence, the
quivers attached to C always have

∑
i∈I di columns. Finally, the integer r determines the

altitude of the vertex (i, r) in 0. Therefore, since for i 6= j we have bij ≤ 0, the arrows
(i, r)→ (j, r + bij ) are represented as oblique arrows going down.

(1,2)

&&

... (3,2)

xx
(2,1)

xx &&
(1,0)

OO

&&
(3,0)

xx

OO

(2,−1)

OO

xx &&
(1,−2)

OO

&&
(3,−2)

xx

OO

(2,−3)

xx

OO

&&
(1,−4)

OO

&&
(3,−4)

xx

OO

(2,−5)

xx

OO

&&
(1,−6)

OO

...

(3,−6)

OO

(2,0)

xx &&
(1,−1)

&&
(3,−1)

xx
(2,−2)

xx

OO

&&
(1,−3)

OO

&&
(3,−3)

xx

OO

(2,−4)

xx

OO

&&
(1,−5)

OO

...

(3,−5)

OO

Fig. 1. The quivers 0 and G− in type A3.

...
...

(2,5)

xx
(1,5)

xx
(1,3)

&&

OO

(2,3)

OO

&&
(2,1)

OO

xx
(1,1)

xx

OO

(1,−1)

OO

&&
(2,−1)

OO

&&
(2,−3)

OO

xx
(1,−3)

xx

OO

(1,−5)

OO

&&
(2,−5)

OO

&&
(2,−7)

OO

xx
(1,−7)

xx

OO

(1,−9)

OO

(2,−9)

OO

...
...

...

OO

(2,0)

&&
(2,−2)

OO

xx
(1,−1)

xx
(1,−3)

&&
(2,−4)

OO

&&
(2,−6)

OO

xx
(1,−5)

xx

OO

(1,−7)

OO

(2,−8)

OO

...
...

...

OO

Fig. 2. The quivers 0 and G− in type B2.
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Figure 1 displays the quivers 0 and G− for C of type A3. Figure 2 shows 0 and G−

for C of type B2. In both cases we have denoted by 0 the connected component of 0̃
containing the vertex (2, 1). For another illustration, with C of type G2, see Figure 3.
More examples can be found in the Appendix, §§6.5–6.7.

2.2. Cluster algebras

We refer the reader to [FZ2] and [GSV] for an introduction to cluster algebras, and for
any undefined terminology.

2.2.1. Cluster algebra attached toG−. Consider an infinite set z− = {zi,r | (i, r) ∈ W−}
of indeterminates over Q. Let A be the cluster algebra defined by the initial seed
(z−,G−). Thus, A is the Q-subalgebra of the field Q(z−) of rational functions gener-
ated by all the elements obtained from some element of z− via a finite sequence of seed
mutations (see [GG, Definition 3.1]). Note that there are no frozen variables.

Cluster algebras of infinite rank have not received much attention up to now. (In fact,
we are not aware of any paper other than [GG]; in [GG], a specific example of type A∞
is developed, in connection with a triangulated category studied by Holm and Jorgensen
[HoJo].)

For our purposes, one can always work with sufficiently large finite subseeds of the
seed (z−,G−), and replace A by the genuine cluster subalgebras attached to them. On
the other hand, statements become nicer if we formulate them in terms of the infinite rank
cluster algebra A .

2.2.2. Monomial change of variables. Let Y = {Yi,r | (i, r) ∈ W } be a new set of
indeterminates over Q. Let Y− = {Yi,r ∈ Y | (i, r) ∈ W−}. For (i, r) ∈ W−, we perform
the substitution

zi,r =
∏

k≥0, r+kbii≤0

Yi, r+kbii . (3)

Note that all variables on the right-hand side of (3) belong to Y−.

Example 2.4. If G− is as in Figure 2, we have

z2,0 =Y2,0, z2,−2 =Y2,−2Y2,0, z2,−4 =Y2,−4Y2,−2Y2,0,

z2,−6 =Y2,−6Y2,−4Y2,−2Y2,0, z1,−1 =Y1,−1, z1,−5 =Y1,−5Y1,−1,

z1,−9 =Y1,−9Y1,−5Y1,−1, z1,−13 =Y1,−13Y1,−9Y1,−5Y1,−1, z1,−3 =Y1,−3,

z1,−7 =Y1,−7Y1,−3, z1,−11 =Y1,−11Y1,−7Y1,−3, etc.

2.2.3. Sequence of vertices. As explained in Example 2.3, the arrows of G− of the form
(i, r) → (i, r + bii) are called vertical and displayed in columns. To each column we
attach an initial label given by the index of its top vertex (i, r), for which r is maximal
among the vertices of the column.
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We now form a sequence of tn columns by induction as follows. At each step we pick
a column whose label (i, r) has maximal r among labels of all columns. After picking a
column with label (i, r), we change its label to (i, r − bii). Finally, reading column after
column in this ordering, from top to bottom, we get an infinite sequence S of vertices
of G−.

Example 2.5. If G− is as in Figure 1, then t = 1, the sequence of columns consists of
three columns, and we obtain the following sequence of vertices:

S = ((2, 0), (2,−2), (2,−4), . . . , (1,−1), (1,−5), (1,−9), . . . ,
(3,−1), (3,−3), (3,−5), . . .).

(Here, the columns labelled (1,−1) and (3,−1) could be interchanged.)
If G− is as in Figure 2, then t = 2, the sequence of columns consists of four columns

and gives the following sequence of vertices:

S = ((2, 0), (2,−2), (2,−4), . . . , (1,−1), (1,−5), (1,−9), . . . ,
(2, 0), (2,−2), (2,−4), . . . , (1,−3), (1,−7), (1,−11), . . .).

Note that the column with vertices (2, r) appears twice. It appears first because its initial
label is (2, 0). After we pick it, its label is changed to (2,−2), so it appears again between
the columns labelled (1,−1) and (1,−3).

Finally, for (i, r) ∈ G−, we define ki,r to be the unique positive integer k satisfying

0 < kbii − |r| ≤ bii . (4)

In other words, (i, r) is the kth vertex in its column, counting from the top.

Example 2.6. If G− is as in Figure 2, then

k2,−2 = 2, k1,−9 = 3.

2.3. Quantum affine algebras

2.3.1. The algebra Uq (̂g). Let g be the simple Lie algebra over C with Cartan matrix C.
We denote by αi (i ∈ I ) the simple roots of g, and by$i (i ∈ I ) the fundamental weights.
They are related by

αi =
∑
j∈I

cji$j . (5)

Let hˇ be the dual Coxeter number of g (see [Ka, §6.1]). The values of hˇ are recalled in
Table 1.

Let ĝ be the corresponding untwisted affine Lie algebra. Thus if g has type Xn in
the Cartan–Killing classification, ĝ has type X(1)n in the Kac classification [Ka, §4.8].
Let Uq (̂g) be the Drinfeld–Jimbo quantum enveloping algebra of ĝ (see e.g. [CP1]). We
regard Uq (̂g) as a C-algebra with quantum parameter q ∈ C∗ not a root of unity.
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g An Bn Cn Dn E6 E7 E8 F4 G2

t 1 2 2 1 1 1 1 2 3

hˇ n+ 1 2n− 1 n+ 1 2n− 2 12 18 30 9 4

Table 1. Dual Coxeter numbers.

2.3.2. q-characters. Frenkel and Reshetikin [FR] have attached to every complex finite-
dimensional representation of Uq (̂g) a q-character χq(M). If M is irreducible, it is de-
termined up to isomorphism by its q-character. The irreducible finite-dimensional rep-
resentations of Uq (̂g) have been classified by Chari and Pressley in terms of Drinfeld
polynomials (see [CP1, Theorem 12.2.6]). Equivalently, irreducible finite-dimensional
representations of Uq (̂g) can be parametrized by the highest dominant monomial of their
q-character [FR], and this is the parametrization we shall use.

By definition, the q-character χq(M) is a Laurent polynomial with positive integer
coefficients in the infinite set of variables Y = {Yi,a | i ∈ I, a ∈ C∗}, which should be
seen as a quantum affine analogue of {e$i | i ∈ I }. In this paper we will be concerned
only with polynomials involving the subset of variables

Yi,qr ((i, r) ∈ W).

For simplicity of notation, we shall therefore write Yi,r instead of Yi,qr . Thus our q-char-
acters will be Laurent polynomials in the variables of the set Y introduced in §2.2.2.

Let m be a dominant monomial in the variables Yi,r ∈ Y, that is, a monomial with
nonnegative exponents. We denote by L(m) the corresponding irreducible representation
of Uq (̂g), and by χq(m) = χq(L(m)) its q-character. For example, if m is of the form

m =

k−1∏
j=0

Yi, r+jbii (i ∈ I, r ∈ Z, k ≥ 1),

then L(m) is called a Kirillov–Reshetikhin module, and usually denoted by W (i)
k,r . In par-

ticular, if k = 1 we get a fundamental module W (i)
1,r = L(Yi,r). By convention, if k = 0

the moduleW (i)
0,r is the trivial one-dimensional module for every (i, r), and its q-character

is equal to 1.
Finally, following [FR], for (i, r) ∈ V we introduce the following quantum affine

analogue of eαi :

Ai,r := Yi,r−diYi,r+di

( ∏
j : cji=−1

Yj,r

)−1( ∏
j : cji=−2

Yj,r−1Yj,r+1

)−1

×

( ∏
j : cji=−3

Yj,r−2Yj,rYj,r+2

)−1
. (6)

Note that since (i, r) ∈ V , we have (i, r ± di) ∈ W . If cji < 0, we also have, because
of (1),

(j, r + cji + 1) = (j, r + dj (cji + 1)) = (j, r + bij + dj ) ∈ W.

It follows that Ai,r is a Laurent monomial in the variables Yj,s with (j, s) ∈ W .
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3. An algorithm for the q-characters of Kirillov–Reshetikhin modules

3.1. Statement and examples

Let A be the cluster algebra defined in §2.2.1, with initial seed 6 = (z−,G−), and let

S = ((i1, r1), (i2, r2), . . .)

be the sequence of vertices of the quiver of A defined in §2.2.3. We denote by µS (6)

the new seed obtained after performing the sequence of mutations indexed by S , that is,
by mutating first at vertex (i1, r1), then at vertex (i2, r2), etc. More generally, for m ≥ 1,
let 6m = µmS (6) be the seed obtained from 6 after m repetitions of the mutation se-
quence µS . Let z(m)i,r be the cluster variable of 6m sitting at vertex (i, r) ∈ W−; this is
a Laurent polynomial in the initial variables zj,s , (j, s) ∈ W−. Let y(m)i,r be the Laurent
polynomial obtained from z

(m)
i,r by performing the change of variables (3) of §2.2.2; this

is a Laurent polynomial in the variables Yj,s, (j, s) ∈ W−.

Theorem 3.1. (a) The quiver of µS (6) is equal to the quiver of 6, that is, to G−.
(b) Suppose that m ≥ hˇ/2. Then the y(m)i,r are the q-characters of Kirillov–Reshetikhin

modules. More precisely, for m ≥ hˇ/2,

y
(m)
i,r = χq(W

(i)
k, r−2tm),

where k = ki,r is defined as in §2.2.3.

Remark 3.2. It is well known that, for p ∈ Z, the q-character χq(W
(i)
k,r+p) is deduced

from χq(W
(i)
k,r) by applying the ring automorphism mapping Yj,s to Yj,s+p for every

(j, s) ∈ I × Z. Therefore, modulo these straightforward automorphisms, Theorem 3.1
describes the q-characters of all Kirillov–Reshetikhin modules.

Remark 3.3. Although the statement of Theorem 3.1 involves an infinite seed 6 and an
infinite sequence S of mutations, the calculation of the q-character of a given Kirillov–
Reshetikhin module requires only a finite number of mutations on a finite initial segment
of the semi-infinite quiver. More precisely, the proof of Theorem 3.1 will show that all
the q-characters χq(W

(i)
k,s) with k = 1, . . . , l can be calculated using (h′ + 2l − 1)h′n/2

mutations, where h′ = dhˇ/2e.

Example 3.4. Let g be of type A3. The quiver G− of the initial seed is displayed in
Figure 1. The initial cluster variables are

z2,0 = Y2,0, z2,−2 = Y2,−2Y2,0, z2,−4 = Y2,−4Y2,−2Y2,0, etc.
z1,−1 = Y1,−1, z1,−3 = Y1,−3Y1,−1, z1,−5 = Y1,−5Y1,−3Y1,−1, etc.
z3,−1 = Y3,−1, z3,−3 = Y3,−3Y3,−1, z3,−5 = Y3,−5Y3,−3Y3,−1, etc.

After the mutation sequence µS , the first new cluster variables are
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y
(1)
2,0 = Y2,−2 + Y1,−1Y3,−1Y

−1
2,0 ,

y
(1)
2,−2 = Y2,−4Y2,−2 + Y1,−1Y3,−1Y2,−4Y

−1
2,0 + Y1,−3Y1,−1Y

−1
2,−2Y

−1
2,0Y3,−3Y3,−1,

y
(1)
2,−4 = Y2,−6Y2,−4Y2,−2 + Y1,−1Y3,−1Y2,−6Y2,−4Y

−1
2,0

+ Y1,−3Y1,−1Y2,−6Y
−1
2,−2Y

−1
2,0Y3,−3Y3,−1

+ Y1,−5Y1,−3Y1,−1Y
−1
2,−4Y

−1
2,−2Y

−1
2,0Y3,−5Y3,−3Y3,−1,

y
(1)
1,−1 = Y1,−3 + Y

−1
1,−1Y2,−2 + Y

−1
2,0Y3,−1,

y
(1)
1,−3 = Y1,−5Y1,−3 + Y1,−5Y

−1
1,−1Y2,−2 + Y1,−5Y

−1
2,0Y3,−1

+ Y−1
1,−3Y

−1
1,−1Y2,−4Y2,−2 + Y−1

1,−3Y2,−4Y
−1
2,0Y3,−1 + Y

−1
2,−2Y

−1
2,0Y3,−3Y3,−1,

y
(1)
1,−5 = Y1,−7Y1,−5Y1,−3 + Y1,−7Y1,−5Y

−1
1,−1Y2,−2 + Y1,−7Y1,−5Y

−1
2,0Y3,−1

+ Y1,−7Y
−1
1,−3Y

−1
1,−1Y2,−4Y2,−2 + Y1,−7Y

−1
1,−3Y2,−4Y

−1
2,0Y3,−1

+ Y1,−7Y
−1
2,−2Y

−1
2,0Y3,−3Y3,−1 + Y

−1
1,−5Y

−1
1,−3Y

−1
1,−1Y2,−6Y2,−4Y2,−2

+ Y−1
1,−5Y

−1
1,−3Y2,−6Y2,−4Y

−1
2,0Y3,−1 + Y

−1
1,−5Y2,−6Y

−1
2,−2Y

−1
2,0Y3,−3Y3,−1

+ Y−1
2,−4Y

−1
2,−2Y

−1
2,0Y3,−5Y3,−3Y3,−1,

(We omit the variables y(1)3,−1, y(1)3,−5, y(1)3,−5, since they are readily obtained from y
(1)
1,−1,

y
(1)
1,−5, y(1)1,−5 via the symmetry (1 ↔ 3).) After a second application of the mutation

sequence µS , the first new cluster variables are

y
(2)
2,0 = Y2,−4+Y1,−3Y3,−3Y

−1
2,−2+Y1,−3Y

−1
3,−1+Y

−1
1,−1Y3,−3+Y

−1
1,−1Y2,−2Y

−1
3,−1+Y

−1
2,0 ,

y
(2)
2,−2 = Y2,−6Y2,−4 + Y1,−3Y3,−3Y2,−6Y

−1
2,−2 + Y1,−5Y1,−3Y

−1
2,−4Y

−1
2,−2Y3,−5Y3,−3

+ Y1,−5Y
−1
2,0Y

−1
3,−3 + Y

−1
1,−3Y

−1
2,0Y3,−5 + Y

−1
1,−3Y2,−4Y

−1
2,0Y

−1
3,−3 + Y2,−6Y

−1
2,0

+ Y1,−5Y
−1
2,−4Y

−1
2,0Y3,−5 + Y1,−3Y2,−6Y

−1
3,−1 + Y1,−5Y1,−3Y

−1
3,−3Y

−1
3,−1

+ Y1,−5Y1,−3Y
−1
2,−4Y3,−5Y

−1
3,−1 + Y

−1
1,−1Y2,−6Y3,−3 + Y

−1
1,−3Y

−1
1,−1Y3,−5Y3,−3

+ Y1,−5Y
−1
1,−1Y

−1
2,−4Y3,−5Y3,−3 + Y

−1
1,−3Y

−1
1,−1Y2,−4Y2,−2Y

−1
3,−3Y

−1
3,−1

+ Y−1
1,−1Y2,−6Y2,−2Y

−1
3,−1 + Y

−1
1,−3Y

−1
1,−1Y2,−2Y3,−5Y

−1
3,−1

+ Y1,−5Y
−1
1,−1Y2,−2Y

−1
3,−3Y

−1
3,−1 + Y1,−5Y

−1
1,−1Y

−1
2,−4Y2,−2Y3,−5Y

−1
3,−1

+ Y−1
2,−2Y

−1
2,0 ,

y
(2)
1,−1 = Y1,−5 + Y

−1
1,−3Y2,−4 + Y

−1
2,−2Y3,−3 + Y

−1
3,−1,

y
(2)
1,−3 = Y1,−7Y1,−5 + Y1,−7Y

−1
1,−3Y2,−4 + Y1,−7Y

−1
2,−2Y3,−3 + Y

−1
1,−5Y

−1
1,−3Y2,−6Y2,−4

+ Y−1
1,−5Y2,−6Y

−1
2,−2Y3,−3 + Y

−1
2,−4Y

−1
2,−2Y3,−5Y3,−3 + Y

−1
1,−5Y2,−6Y

−1
3,−1

+ Y1,−7Y
−1
3,−1 + Y

−1
2,−4Y3,−5Y

−1
3,−1 + Y

−1
3,−3Y

−1
3,−1.
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Here hˇ/2 = 2, so we can observe that the cluster variables obtained after performing the
mutation sequence µS twice are indeed q-characters of Kirillov–Reshetikhin modules,
namely,

y
(2)
2,0 = χq(Y2,−4), y

(2)
2,−2 = χq(Y2,−6Y2,−4), etc.,

y
(2)
1,−1 = χq(Y1,−5), y

(2)
1,−3 = χq(Y1,−7Y1,−5), etc.,

y
(2)
3,−1 = χq(Y3,−5), y

(2)
3,−3 = χq(Y3,−7Y3,−5), etc.

Example 3.5. Let g be of type B2. The quiver G− of the initial seed is displayed in
Figure 2. The initial cluster variables are

z2,0 = Y2,0, z2,−2 = Y2,−2Y2,0, z2,−4 = Y2,−4Y2,−2Y2,0, etc.,
z1,−1 = Y1,−1, z1,−5 = Y1,−5Y1,−1, z1,−9 = Y1,−9Y1,−5Y1,−1, etc.,
z1,−3 = Y1,−3, z1,−7 = Y1,−7Y1,−3, z1,−11 = Y1,−11Y1,−7Y1,−3, etc.

After the mutation sequence µS , the first new cluster variables are

y
(1)
2,0 = Y2,−4 + Y1,−3Y

−1
2,−2,

y
(1)
2,−2 = Y2,−6Y2,−4 + Y1,−3Y2,−6Y

−1
2,−2 + Y1,−5Y1,−3Y

−1
2,−4Y

−1
2,−2 + Y1,−3Y

−1
1,−1,

y
(1)
2,−4 = Y2,−8Y2,−6Y2,−4 + Y1,−3Y2,−8Y2,−6Y

−1
2,−2 + Y1,−5Y1,−3Y2,−8Y

−1
2,−4Y

−1
2,−2

+ Y1,−7Y1,−5Y1,−3Y
−1
2,−6Y

−1
2,−4Y

−1
2,−2+Y1,−7Y1,−3Y

−1
1,−1Y

−1
2,−6+Y

−1
1,−1Y1,−3Y2,−8,

y
(1)
1,−1 = Y1,−5 + Y

−1
1,−1Y2,−4Y2,−2 + Y2,−4Y

−1
2,0 + Y1,−3Y

−1
2,−2Y

−1
2,0 ,

y
(1)
1,−5 = Y1,−5Y1,−9 + Y1,−9Y

−1
1,−1Y2,−4Y2,−2 + Y1,−9Y2,−4Y

−1
2,0 + Y1,−9Y1,−3Y

−1
2,−2Y

−1
2,0

+ Y−1
1,−5Y

−1
1,−1Y2,−8Y2,−6Y2,−4Y2,−2 + Y

−1
1,−5Y2,−8Y2,−6Y2,−4Y

−1
2,0

+ Y−1
1,−5Y1,−3Y2,−8Y2,−6Y

−1
2,−2Y

−1
2,0 + Y1,−3Y2,−8Y

−1
2,−4Y

−1
2,−2Y

−1
2,0

+ Y1,−7Y1,−3Y
−1
2,−6Y

−1
2,−4Y

−1
2,−2Y

−1
2,0 ,

y
(1)
1,−3 = Y1,−7 + Y

−1
1,−3Y2,−6Y2,−4 + Y2,−6Y

−1
2,−2 + Y1,−5Y

−1
2,−4Y

−1
2,−2 + Y

−1
1,−1,

y
(1)
1,−7 = Y1,−7Y1,−11 + Y1,−11Y

−1
1,−3Y2,−6Y2,−4 + Y1,−11Y2,−6Y

−1
2,−2

+ Y1,−11Y1,−5Y
−1
2,−4Y

−1
2,−2 + Y

−1
1,−7Y

−1
1,−3Y2,−10Y2,−8Y2,−6Y2,−4

+ Y−1
1,−7Y2,−10Y2,−8Y2,−6Y

−1
2,−2 + Y

−1
1,−7Y1,−5Y2,−10Y2,−8Y

−1
2,−4Y

−1
2,−2

+ Y1,−5Y2,−10Y
−1
2,−6Y

−1
2,−4Y

−1
2,−2 + Y1,−9Y1,−5Y

−1
2,−8Y

−1
2,−6Y

−1
2,−4Y

−1
2,−2

+ Y1,−9Y
−1
1,−1Y

−1
2,−8Y

−1
2,−6 + Y1,−11Y

−1
1,−1 + Y

−1
1,−1Y2,−10Y

−1
2,−6

+ Y−1
1,−7Y

−1
1,−1Y2,−10Y2,−8 + Y

−1
1,−5Y

−1
1,−1.

Here hˇ/2 = 3/2, and we can observe that certain cluster variables are not yet q-characters
of Kirillov–Reshetikhin modules. But some already are, namely

y
(1)
1,−3 = χq(Y1,−7), y

(1)
1,−7 = χq(Y1,−7Y1,−11), etc.
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After a second application of the mutation sequence µS , since 2 > 3/2, all the new
cluster variables are q-characters of Kirillov–Reshetikhin modules. For example

y
(2)
2,0 = Y2,−8 + Y1,−7Y

−1
2,−6 + Y

−1
1,−3Y2,−4 + Y

−1
2,−2 = χq(Y2,−8).

3.2. Proof of Theorem 3.1

The proof relies on two main ingredients which we shall first review, namely, T -systems
and truncated q-characters.

3.2.1. T -systems. With the quantum affine algebra Uq (̂g) is associated a system of dif-
ference equations called a T -system [KNS1]. Its unknowns are denoted by

T
(i)
k,r (i ∈ I, k ∈ N, r ∈ Z).

We fix the initial boundary condition

T
(i)

0,r = 1 (i ∈ I, r ∈ Z). (7)

If g is of type An,Dn, En, the T -system equations are

T
(i)
k,r+1T

(i)
k,r−1 = T

(i)
k−1,r+1T

(i)
k+1,r−1 +

∏
j : cij=−1

T
(j)
k,r (i ∈ I, k ≥ 1, r ∈ Z). (8)

If g is not of simply laced type, the T -system equations are more complicated. They can
be written in the form

T
(i)
k,r+di

T
(i)
k,r−di

= T
(i)
k−1,r+diT

(i)
k+1,r−di + S

(i)
k,r (i ∈ I, k ≥ 1, r ∈ Z), (9)

where S(i)k,r is defined as follows. If di ≥ 2 then

S
(i)
k,r =

∏
j : cji=−1

T
(j)
k,r

∏
j : cji≤−2

T
(j)

dik, r−di+1. (10)

If di = 1 and t = 2, then

S
(i)
k,r =


∏

j : cij=−1

T
(j)
k,r

∏
j : cij=−2

T
(j)
l,r T

(j)

l,r+2 if k = 2l,

∏
j : cij=−1

T
(j)
k,r

∏
j : cij=−2

T
(j)

l+1,rT
(j)

l,r+2 if k = 2l + 1.
(11)

Finally, if di = 1 and t = 3, that is, if g is of type G2, then denoting by j the other vertex
of δ we have dj = 3 and

S
(i)
k,r =


T
(j)
l,r T

(j)

l,r+2T
(j)

l,r+4 if k = 3l,

T
(j)

l+1,rT
(j)

l,r+2T
(j)

l,r+4 if k = 3l + 1,

T
(j)

l+1,rT
(j)

l+1,r+2T
(j)

l,r+4 if k = 3l + 2.

(12)
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Example 3.6. Let g be of type B2. The Cartan matrix is

C =

(
2 −1
−2 2

)
and we have d1 = 2 and d2 = 1. The T -system reads:

T
(1)
k,r+2T

(1)
k,r−2 = T

(1)
k−1,r+2T

(1)
k+1,r−2 + T

(2)
2k,r−1 (k ≥ 1, r ∈ Z),

T
(2)

2l,r+1T
(2)
2l,r−1 = T

(2)
2l−1,r+1T

(2)
2l+1,r−1 + T

(1)
l,r T

(1)
l,r+2 (l ≥ 1, r ∈ Z),

T
(2)

2l+1,r+1T
(2)

2l+1,r−1 = T
(2)

2l,r+1T
(2)

2l+2,r−1 + T
(1)
l+1,rT

(1)
l,r+2 (l ≥ 0, r ∈ Z).

It was conjectured in [KNS1], and proved in [N2] (for g of type A,D,E) and [H] (gen-
eral case), that the q-characters of the Kirillov–Reshetikhin modules of Uq (̂g) satisfy the
corresponding T -system. More precisely, we have

Theorem 3.7 ([N2], [H]). For i ∈ I , k ∈ N, r ∈ Z,

T
(i)
k,r = χq(W

(i)
k,r)

is a solution of the T -system in the ring Z[Y±1
i,r | (i, r) ∈ I × Z].

3.2.2. Truncated q-characters. Let C− be the full subcategory of the category of finite-
dimensional Uq (̂g)-modules whose objects have all their composition factors of the
form L(m) where m is a dominant monomial in the variables of Y−.

Lemma 3.8. The q-character of an object in C− belongs to Z[Y±1
i,r | Yi,r ∈ Y].

Proof. A simple object of C− is a quotient of a tensor product of fundamental repre-
sentations of C−. But the q-character of a fundamental representation can be calculated
by means of the Frenkel–Mukhin algorithm [FM]. At each step the algorithm produces
monomials which involve only variables Yi,r ∈ Y. Hence the result. ut

Note that for a dominant monomial m in the variables of Y−, the q-character χq(m) may
contain Laurent monomials m′ involving variables Yi,r ∈ Y \ Y−. Following [HL1],
we define the truncated q-character χ−q (m) to be the Laurent polynomial obtained
from χq(m) by discarding all these monomials m′. So, by definition, χ−q (m) ∈ Z[Y±1

i,r |

Yi,r ∈ Y−].

Example 3.9. Let g be of type B2. We keep the notation of Example 3.6. The fundamen-
tal modules L(Y1,−3) and L(Y2,−4) have q-characters equal to

χq(Y1,−3) = Y1,−3 + Y
−1
1,1Y2,−2Y2,0 + Y2,−2Y

−1
2,2 + Y1,−1Y

−1
2,0Y

−1
2,2 + Y

−1
1,3 ,

χq(Y2,−4) = Y2,−4 + Y1,−3Y
−1
2,−2 + Y

−1
1,1Y2,0 + Y

−1
2,2 .

The corresponding truncated q-characters are

χ−q (Y1,−3) = Y1,−3, χ−q (Y2,−4) = Y2,−4 + Y1,−3Y
−1
2,−2.
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Proposition 3.10. (i) C− is a tensor category.
(ii) The assignment [L(m)] 7→ χ−q (m) extends to an injective ring homomorphism from

the Grothendieck ring K0(C−) to Z[Y±1
i,r | Yi,r ∈ Y−].

Proof. The argument follows the lines of [HL1, §5.2.4, §6.2]. Recall the Laurent mono-
mials Ai,r introduced in (6). By [FR], a Laurent monomial m′ of the q-character of a
simple object of C− can always be written in the form m′ = mM where m is a domi-
nant monomial in the variables of Y−, and M is a monomial in the variables A−1

i,k with
(i, k + di) ∈ W . Note that the Y -variable appearing in Ai,r with the highest spectral pa-
rameter is Yi,r+di . It follows that A−1

i,r is a right-negative monomial in the sense of [FM],
that is, the Y -variable with highest spectral parameter occurring in A−1

i,r has a negative
exponent.

Let L(m) and L(m′) be simple objects of C−, that is, m and m′ are dominant mono-
mials in the variables of Y−. If L(m′′) is a composition factor of L(m) ⊗ L(m′), then
m′′ is a product of monomials of χq(m) and χq(m′). So, we have m′′ = mm′M where
M is a monomial in the variables A−1

i,r . We claim that, since m′′ is dominant, the spectral
parameters r have to satisfy r + di ≤ 0. Indeed, otherwise m′′ would be right-negative.
Therefore, by Lemma 3.8, the monomial m′′ contains only variables of Y−, hence L(m′′)
is in C−, and C− is a monoidal category. Moreover, by [CP2, Prop. 5.1], the category C−

is stable under duals, so it is a tensor category. This proves (i).
To prove (ii) consider now an arbitrary Laurent monomial m′ of the q-character of

an object of C−. As above, it can be written in the form m′ = mM where m is a dom-
inant monomial in the variables of Y−, and M is a monomial in the variables A−1

i,k with
(i, k + di) ∈ W . Now m′ contains a variable Yj,s 6∈ Y− if and only if M contains a neg-
ative power of Ai,r for some pair (i, r) such that (i, r + di) 6∈ W−. So, if R denotes the
subring of Z[Y±1

i,r | Yi,r ∈ Y] generated by all the monomials of the q-characters of the
objects of C−, and if I denotes the linear span of those monomials containing a variable
Yj,s ∈ Y \ Y−, we see that I is an ideal of R. Hence, if π : R → R/I is the natural
projection, we can realize the truncated q-character map χ−q as

χ−q = π ◦ χq ,

which shows that χ−q is a ring homomorphism K0(C−) → Z[Y±1
i,r | Yi,r ∈ Y−]. Fi-

nally, the fact that χ−q is injective follows from the fact that I contains only nondominant
monomials, and that two q-characters having the same dominant monomials with the
same coefficients are equal. ut

3.2.3. Proof of the theorem. We first notice that the initial cluster variables zi,r are equal,
after the change of variables (3), to the truncated q-characters of certain Kirillov–Resheti-
khin modules, namely,

zi,r =
∏

k≥0, r+kbii≤0

Yi,r+kbii = χ
−
q (W

(i)
ki,r ,r

),
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where ki,r is defined as in (4). Indeed, the level of truncation is chosen so that after trun-
cation only the highest dominant monomial of these q-characters survives.

Now, the main idea of the proof is that the quiver G− and the mutation sequence µS
are designed in such a way that, at every step of the mutation sequence, the exchange
relation is nothing other than a T -system equation. Let us first check this when g is of
rank two.

For g of type A2, the sequence of mutated quivers obtained at each step of µS is
shown in the Appendix, §6.1. The mutations take place at the boxed vertices. Reading the
second quiver of §6.1, we see that the new cluster variable obtained after the first mutation
is equal to

z2,−2 + z1,−1

z2,0
=
χ−q (W

(2)
2,−2)+ χ

−
q (W

(1)
1,−1)

χ−q (W
(2)
1,0)

= χ−q (W
(2)
1,−2).

Here we have used Theorem 3.7 and Proposition 3.10. Similarly, from the third quiver of
§6.1, the new cluster variable obtained after the second mutation is equal to

χ−q (W
(2)
3,−4)χ

−
q (W

(2)
1,−2)+ χ

−
q (W

(1)
2,−3)

χ−q (W
(2)
2,−2)

= χ−q (W
(2)
2,−4).

An easy induction shows that, after every vertex of the second column has been mutated,
each cluster variable of the form χ−q (W

(2)
k,−2k+2) gets replaced by the new cluster variable

χ−q (W
(2)
k,−2k). We now continue by mutating vertices of the first column. We first get, at

the top vertex,

χ−q (W
(1)
2,−3)+ χ

−
q (W

(2)
1,−2)

χ−q (W
(1)
1,−1)

= χ−q (W
(1)
1,−3).

Then, mutating at the next vertex gives

χ−q (W
(1)
3,−5)χ

−
q (W

(1)
1,−3)+ χ

−
q (W

(2)
2,−4)

χ−q (W
(1)
2,−3)

= χ−q (W
(1)
2,−5).

By induction one sees that, after every vertex of the first column has been mutated,
each cluster variable of the form χ−q (W

(1)
k,−2k+1) gets replaced by a new cluster variable

χ−q (W
(1)
k,−2k−1). Moreover, one sees that the new quiver obtained afterµS is nothing other

than G−. Hence we conclude that one application of µS produces a seed with the same
quiver, and in which every cluster variable χ−q (W

(i)
k,r) has been replaced by χ−q (W

(i)
k,r−2).

In other words, the effect of µS is merely a uniform shift of the spectral parameters r
by −2.

The argument is similar for g of type B2. The sequence of mutated quivers obtained
at each step of µS is displayed in §6.2. Reading the second quiver of §6.2, we see that
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the new cluster variable obtained after the first mutation is equal to

z2,−2 + z1,−1

z2,0
=
χ−q (W

(2)
2,−2)+ χ

−
q (W

(1)
1,−1)

χ−q (W
(2)
1,0)

= χ−q (W
(2)
1,−2).

Similarly, from the third quiver of §6.2, the new cluster variable obtained after the second
mutation is equal to

χ−q (W
(2)
3,−4)χ

−
q (W

(2)
1,−2)+ χ

−
q (W

(1)
1,−1)χ

−
q (W

(1)
1,−3)

χ−q (W
(2)
2,−2)

= χ−q (W
(2)
2,−4).

By induction, after every vertex of the second column has been mutated, each cluster
variable of the form χ−q (W

(2)
k,−2k+2) gets replaced by the new cluster variable χ−q (W

(2)
k,−2k).

We now continue by mutating vertices of the third column. We first get, at the top vertex,

χ−q (W
(1)
2,−5)+ χ

−
q (W

(2)
2,−4)

χ−q (W
(1)
1,−1)

= χ−q (W
(1)
1,−5).

Then, mutating at the next vertex gives

χ−q (W
(1)
3,−9)χ

−
q (W

(1)
1,−5)+ χ

−
q (W

(2)
4,−8)

χ−q (W
(1)
2,−5)

= χ−q (W
(1)
2,−9).

By induction one sees that, after every vertex of the third column has been mutated,
each cluster variable of the form χ−q (W

(1)
k,−4k+3) gets replaced by the new cluster variable

χ−q (W
(1)
k,−4k−1). For the third part of µS , we mutate again along the second column. One

checks that after that, each cluster variable of the form χ−q (W
(2)
k,−2k) produced after the

first part of µS gets replaced by χ−q (W
(2)
k,−2k−2). Finally, the fourth part of µS along

the first column replaces each cluster variable of the form χ−q (W
(1)
k,−4k+1) by the new

cluster variable χ−q (W
(1)
k,−4k−3). Moreover, one sees that the new quiver obtained after

µS is precisely G−. Hence we conclude that one application of µS produces a seed
with the same quiver, and in which every cluster variable χ−q (W

(i)
k,r) has been replaced by

χ−q (W
(i)
k,r−4). In other words, the effect of µS is merely a uniform shift of the spectral

parameters r by −4.
The argument is similar for g of type G2. The quiver G− for this case is displayed in

Figure 3, and the mutation sequence is

(2, 0), (2,−2), (2,−4), . . . , (1,−1), (1,−7), (1,−13), . . . ,
(2, 0), (2,−2), (2,−4), . . . , (1,−3), (1,−9), (1,−15), . . . ,
(2, 0), (2,−2), (2,−4), . . . , (1,−5), (1,−11), (1,−17), . . . .

The sequence of mutated quivers obtained at each step of µS is displayed in §6.3.
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(2,0)

��
(2,−2)

��

OO

(1,−1)

��

(2,−4)

OO

$$

(1,−3)

��

(2,−6)

OO

��

(1,−5)

zz

(2,−8)

OO

��

(1,−7)

OO

��

(2,−10)

OO

$$

(1,−9)

OO

(2,−12)

OO

OO

OO

OO

(1,−11)

OO

...
...

...
...

Fig. 3. The quiver G− for g of type G2.

For a general g, we use a reduction to rank two. Namely, we show that mutation
sequences and T -system equations are compatible with rank two reductions.

First, by construction, the sequence of vertices S is a union of tn columns:

S = (S1, . . . ,Stn),

where each column Sk is a subset of ik×Z≤0 for a certain ik ∈ I . As above, we use µSk

to denote the sequence of mutations indexed by Sk . So we have

µS = µStn
◦ µStn−1 ◦ · · · ◦ µS1 .

For 0 ≤ k ≤ tn, we get the mutated quiver

6k = (µSk
◦ µSk−1 ◦ · · · ◦ µS1)(6).

For a subset J ⊂ I , let us denote by (6k)J the subquiver of 6k obtained by deleting the
vertices (i, r) such that i /∈ J , and the edges whose tail or head is such a vertex. For any
i ∈ I , the mutation sequence µSk

does not modify (6k)i . Consequently, (6k)i = (6)i
does not depend on k (it is a disjoint union of di semi-infinite linear quivers). Moreover,
the mutation sequenceµSk

modifies only the edges whose tail (resp. head) is in ik×Z and
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head (resp. tail) is in j×Z where cikj < 0. This is because each mutation of the sequence
takes place at a vertex (ik, r) having two incoming arrows from vertices (ik, r ± di) and
outgoing arrows to vertices of the form (j, s) with cikj < 0. Consequently, for each i 6= j
in I , the effect of the mutation sequence µS on (6){i,j} is the same as the effect of an
iteration of the mutation sequence corresponding to the rank two Lie subalgebra of g
attached to {i, j} ⊂ I . But we have established the result for rank two Lie algebras, so
this implies

(µS (6)){i,j} = (6){i,j}.

As this is true for any i 6= j in I , we get µS (6) = 6.
Secondly, a T -system equation involves only a certain index i ∈ I and the indices

j ∈ I with cij < 0. The T -system equations do not change by reduction, in the sense
that for such a j , the powers of the factors T (j)l,s in the second term S

(i)
k,r of the right-hand

side of (9) are the same as for the T -system equation associated with the rank two Lie
subalgebra of g attached to {i, j}. Combining this with our results above for the sub-
quivers (6k){i,j}, we have proved that, for a general g, all exchange relations of cluster
variables of our mutation sequence are in fact T -system equations. Moreover, the muta-
tion sequence µS replaces the initial seed 6 by a seed with the same quiver; the cluster
variables, expressed in terms of the Yi,r via (3), are truncated q-characters of the same
Kirillov–Reshetikhin modules, the only difference being that their spectral parameters
are uniformly shifted by −2t .

Hence, after m applications of µS we will get the truncated q-characters

y
(m)
i,r = χ

−
q (W

(i)
ki,r , r−2tm).

Now taking into account [FM, Corollary 6.14], we see that if 2tm ≥ thˇ, then all the
monomials of the q-character ofW (i)

ki,r , r−2tm are lower than the level of truncation, that is,

χ−q (W
(i)
ki,r , r−2tm) = χq(W

(i)
ki,r , r−2tm).

This finishes the proof of Theorem 3.1.

4. A geometric character formula for Kirillov–Reshetikhin modules

4.1. Semi-infinite quivers with potentials

Recall the map ψ : V → W of §2.1.3. Set V − := ψ−1(W−), and denote by 0− the full
subquiver of 0 with vertex set V −. Thus 0− is the same graph as G−, but with a change
of labelling of its vertices. (Compare for instance Figures 3 and 7.)

For every i 6= j in I with cij 6= 0, and every (i,m) in V −, we have in 0− an oriented
cycle:
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(i,m)

&&

(i,m− bii)

OO

... (j,m+ bij )

yy

(i,m+ 2bij + bii)

(i,m+ 2bij )

OO

(13)

There are 2|bij |/bii = |cij | consecutive vertical up arrows, hence this cycle has length
2 + |cij |. We define a potential S as the formal sum of all these oriented cycles up to
cyclic permutations (see [DWZ1, §3]). This is an infinite sum, but note that a given arrow
of 0− can only occur in a finite number of summands. Hence all the cyclic derivatives
of S, defined as in [DWZ1, Definition 3.1], are finite sums of paths in 0−. Let R be the
list of all cyclic derivatives of S. Let J denote the two-sided ideal of the path algebra C0−
generated by R. Following [DWZ1], we now introduce

Definition 4.1. Let A be the infinite-dimensional C-algebra C0−/J .

Example 4.2. Let g be of type A3. Then 0− is the first graph in Figure 4. The ideal J
is generated by the following seven families of linear combinations of paths, for every
m ∈ Z<0:

((1, 2m), (2, 2m− 1), (1, 2m− 2)),
((3, 2m), (2, 2m− 1), (3, 2m− 2)),
((1, 2m), (1, 2m+ 2), (2, 2m+ 1))+ ((1, 2m), (2, 2m− 1), (2, 2m+ 1)),
((3, 2m), (3, 2m+ 2), (2, 2m+ 1))+ ((3, 2m), (2, 2m− 1), (2, 2m+ 1)),
((2, 2m− 1), (1, 2m− 2), (1, 2m))+ ((2, 2m− 1), (2, 2m+ 1), (1, 2m)),
((2, 2m− 1), (3, 2m− 2), (3, 2m))+ ((2, 2m− 1), (2, 2m+ 1), (3, 2m)),
((2, 2m+ 1), (1, 2m), (2, 2m− 1))+ ((2, 2m+ 1), (3, 2m), (2, 2m− 1)).

(2,−1)

yy %%
(1,−2)

%%

(3,−2)

yy
(2,−3)

yy

OO

%%
(1,−4)

OO

%%

(3,−4)

yy

OO

(2,−5)

{{

OO

##
(1,−6)

OO

... (3,−6)

OO

(2,−1)

%%
(2,−3)

OO

yy

(1,−3)

yy
(1,−5)

%%

(2,−5)

OO

%%
(2,−7)

OO

yy

(1,−7)

yy

OO

(1,−9)

OO

(2,−9)

OO

...
...

...

OO

Fig. 4. The quivers 0− for g of type A3 and B2.
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Here, using the fact that there is at most one arrow between two vertices of 0−, we
have denoted unambiguously paths by sequences of vertices. Thus ((1, 2m), (2, 2m− 1),
(1, 2m− 2)) denotes the path of length 2 starting at (1, 2m), passing through (2, 2m− 1)
and ending in (1, 2m− 2). Also, for m = −1, the third and fourth linear combinations of
paths reduce respectively to the single paths

((1,−2), (2,−3), (2,−1)) and ((3,−2), (2,−3), (2,−1)).

Example 4.3. Let g be of type B2. Then 0− is the second graph of Figure 4. The ideal
J is generated by the following four families of linear combinations of paths, for every
m ∈ Z<0:

((1, 2m−1), (2, 2m−3), (1, 2m−5)),
((1, 2m−1), (1, 2m+3), (2, 2m+1))+((1, 2m−1), (2, 2m−3), (2, 2m−1), (2, 2m+1)),
((2, 2m−3), (1, 2m−5), (1, 2m−1))+((2, 2m−3), (2, 2m−1), (2, 2m+1), (1, 2m−1)),
((2, 2m+1), (2, 2m+3), (1, 2m+1), (2, 2m−1))+((2, 2m+1),

(1, 2m−1), (2, 2m−3), (2, 2m−1)).

For m = −1 and m = −2 the second linear combinations of paths reduce respectively to
the single paths

((1,−3), (2,−5), (2,−3), (2,−1)) and ((1,−5), (2,−7), (2,−5), (2,−3)).

For m = −1 the fourth linear combination of paths reduces to the single path

((2,−1), (1,−3), (2,−5), (2,−3)).

4.2. F -polynomials of A-modules

Let M be a finite-dimensional A-module, and let e ∈ NV− be a dimension vector. Let
Gre(M) be the variety of submodules of M with dimension vector e. This is a projec-
tive complex variety, and we denote by χ(Gre(M)) its Euler characteristic. Following
[DWZ2], consider the polynomial

FM =
∑
e∈NV−

χ(Gre(M))
∏

(i,r)∈V−

v
ei,r
i,r (14)

in the indeterminates vi,r ((i, r) ∈ V −), called the F -polynomial of M . Note that, for
Gre(M) to be nonempty, one must take e between 0 and the dimension vector of M
(componentwise). Moreover, if e = 0 or e = dim(M), the variety Gre(M) is just a point,
so FM is a monic polynomial with constant term equal to 1.

In what follows, we shall evaluate the variables of the F -polynomials at the inverses
of the variables Ai,r introduced in (6), namely:

vi,r := A
−1
i,r = Y

−1
i,r−di

Y−1
i,r+di

∏
j : cji=−1

Yj,r
∏

j : cji=−2

Yj,r−1Yj,r+1
∏

j : cji=−3

Yj,r−2Yj,rYj,r+2.

(15)
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4.3. Generic kernels

Suppose that X and Y are A-modules such that HomA(X, Y ) is finite-dimensional. As-
sume also that there exists f ∈ HomA(X, Y ) such that Ker(f ) is finite-dimensional. Then
there is an open dense subset Õ of HomA(X, Y ) such that the kernels of all elements of
Õ are finite-dimensional. Moreover, since the map sending a homomorphism f to the F -
polynomial of Ker(f ) is constructible (see [Pa, §2]), Õ contains an open dense subset O
of HomA(X, Y ) such that the F -polynomials of the kernels of all elements ofO coincide.
We shall say that an element of O is a generic homomorphism from X to Y .

Let us denote by Si,m the one-dimensional A-module supported on (i,m) ∈ V −. Let
Ii,m be the (infinite-dimensional) injective A-module with socle isomorphic to Si,m. The
C-vector space Ii,m has a basis indexed by classes modulo J of paths in 0− with final
vertex (i,m). In particular, for every k ≥ 0 we have in 0− a path

((i,m− kbii), (i,m− (k − 1)bii), . . . , (i, m)) (16)

of length k from (i,m − kbii) to (i,m), whose class modulo J is nonzero. Thus the
(i,m− kbii)-component of the dimension vector of Ii,m is nonzero, and it follows that

HomA(Ii,m, Ii,m−kbii ) 6= 0 ((i,m) ∈ V −, k ≥ 0). (17)

More precisely, HomA(Ii,m, Ii,m−kbii ) has finite dimension equal to the (i,m − kbii)-
component of the dimension vector of Ii,m. The next lemma will be proven in §4.5.3.

Lemma 4.4. There exists f ∈ HomA(Ii,m, Ii,m−kbii ) with Ker(f ) finite-dimensional.

Because of this lemma, the following definition makes sense.

Definition 4.5. Let K(i)
k,m be the kernel of a generic A-module homomorphism from Ii,m

to Ii,m−kbii .

Example 4.6. Figures 5 and 6 show the structure of some modules K(i)
k,m in type A3. Our

convention for displaying these quiver representations is the following. We only keep the
vertices of 0− whose corresponding vector space is nonzero, and the arrows whose cor-
responding linear map is nonzero. Moreover, in these small examples, almost all vertices
carry a vector space of dimension 1. The only exception is the module K(2)

2,−3 in Figure 6,
whose vertex (2,−3) carries a vector space of dimension 2. The maps associated with the

(3,−2)

yy
(2,−3)

yy
(1,−4)

(2,−1)

yy %%
(1,−2)

%%

(3,−2)

yy
(2,−3)

(1,−2)

%%
(2,−3)

%%
(3,−4)

Fig. 5. The modules K(1)1,−4, K(2)1,−3, K(3)1,−4 for g of type A3.
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(3,−2)

yy
(2,−3)

yy
(1,−4) (3,−4)

yy

OO

(2,−5)

yy

OO

(1,−6)

OO

(2,−1)

yy %%
(1,−2)

α

%%

(3,−2)

βyy
(2,−3)

κ

OO

δyy
ε

%%
(1,−4)

%%

OO

(3,−4)

yy

OO

(2,−5)

γ

OO

(1,−2)

%%
(2,−3)

%%
(1,−4)

OO

%%

(3,−4)

(2,−5)

OO

%%
(3,−6)

OO

Fig. 6. The modules K(1)2,−4, K(2)2,−3, and K(3)2,−4 for g of type A3.

arrows incident to this vertex have the following matrices:

α = β = γ =

(
1
0

)
, δ = ε = κ =

(
0 1

)
.

All other arrows carry linear maps with matrix
(
±1
)
, whose sign is easily deduced from

the defining relations of A.
It is a nice exercise to check that the modules shown in Figures 5 and 6 are indeed

the claimed modules K(i)
k,m (see also Example 4.7 below). For instance, one can easily

see that the (1,−6)-component of the dimension vector of I1,−4 is equal to 1. Hence
HomA(I1,−4, I1,−6) is of dimension 1, and K(1)

1,−4 is the kernel of any nonzero homomor-
phism. It is also easy to see that the (2,−5)-component of the dimension vector of I2,−3
is 2. In this case we have a stratification of the 2-plane HomA(I2,−3, I2,−5) with three
strata of dimension 0, 1, 2. The module K(2)

1,−3 is the kernel of any homomorphism in the
open stratum, that is, of any surjective homomorphism. The image of any homomorphism
in the one-dimensional stratum is the unique submoduleX of I2,−5 with dimension vector
given by

dim(Xi,m) =

{
1 if i = 2 and m = −5− 2j for some j ∈ N,
0 otherwise.

The kernel of such a homomorphism is infinite-dimensional.

Example 4.7. Assume that g is of typeA,D,E. In this case, the modulesK(i)
1,r are closely

related to the indecomposable injective modules over the preprojective algebra 3 of δ.
Consider the subalgebra 3̃ of A generated by the images modulo J of the arrows of

0− of the form (i,m) → (j,m − 1), for every edge between i and j in δ, and every
(i,m) ∈ V −. In other words, if 1−δ is the subquiver of 0− obtained by erasing all the
vertical arrows (i,m− 2)→ (i,m), then 3̃ is isomorphic to the quotient of C1−δ by the
two-sided ideal generated by the relations∑

j : cij<0

((i,m), (j,m− 1), (i,m− 2)) = 0 ((i,m) ∈ V −).

Thus, 3̃ is a Z<0-graded version of3. We can of course regard the simple A-module Si,r
as a 3̃-module. Let Hi,r be the injective 3̃-module with socle Si,r . Then Hi,r is finite-
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dimensional. More precisely, for r ≤ 1− h, Hi,r is just a graded version of the indecom-
posable injective3-module Ii with socle the one-dimensional3-module Si supported on
vertex i of δ. For r > 1− h, Hi,r is a graded version of a submodule of Ii .

Any 3̃-module X can be given the structure of an A-module by letting the vertical
arrows (i,m − 2) → (i,m) act by 0 on X. In particular we can regard Hi,r as a finite-
dimensional A-module. Then one can check that Ii,r has a unique submodule isomorphic
to Hi,r , giving rise to a nonsplit short exact sequence

0→ Hi,r → Ii,r → Ii,r−2 → 0 ((i, r) ∈ V −).

It follows that the module K(i)
1,m is isomorphic to Hi,m. In particular, when m ≤ 1 − h,

K
(i)
1,m is a graded version of the injective 3-module Ii .

4.4. A geometric character formula

Recall the A-module K(i)
k,r defined in §4.3. We can now state our second main result.

Theorem 4.8. Let (i, r) ∈ V − and k ∈ N. The F -polynomial of K(i)
k,r is equal to the nor-

malized truncated q-character of the Kirillov–Reshetikhin module W (i)
k, r−(2k−1)di

. More
precisely,

χ−q (W
(i)
k, r−(2k−1)di

) =
( k∏
s=1

Yi, r−(2s−1)di

)
F
K
(i)
k,r

,

where the variables vi,r of the F -polynomial are evaluated as in (15).

Remark 4.9. If r ≤ di − thˇ, then the truncated q-character of W (i)
k, r−(2k−1)di

is equal to
the complete q-character. Hence, Theorem 4.8 gives a geometric formula for the q-char-
acter of any Kirillov–Reshetikhin module (up to a spectral shift).

Remark 4.10. IfM and N are two finite-dimensional A-modules, then FM⊕N = FMFN
[DWZ2, Proposition 3.2]. It follows immediately that, replacing in Theorem 4.8 the mod-
uleK(i)

k,r by a direct sum of such modules, we obtain a similar geometric character formula
for arbitrary tensor products of Kirillov–Reshetikhin modules. In particular, we get a ge-
ometric formula for the standard modules, which are isomorphic to tensor products of
fundamental modules.

Remark 4.11. Let g be of typeA,D,E. Let V and W be finite-dimensional vector spaces
graded by V −. In [N1] (see also [N4]), Nakajima has introduced a graded quiver variety
L•(V,W) and has endowed the sum of cohomologies⊕

V
H ∗(L•(V,W))

with the structure of a standard Uq (̂g)-module, with highest weight encoded by W. It was
proved by Lusztig (in the ungraded case), and by Savage and Tingley (in the graded case),
that L•(V,W) is homeomorphic to a Grassmannian of submodules of an injective module
over the graded preprojective algebra (see [Le2, §2.8]). Therefore, using the description
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of K(i)
1,r given in Example 4.7, we see that the varieties

Gre
(⊕
(i,r)

(K
(i)
1,r)
⊕ai,r

)
involved in our geometric q-character formula for standard modules in the simply laced
case are homeomorphic to certain Nakajima varieties L•(V,W). Here, the multiplicities
ai,r are the dimensions of the graded components of W, and we assume that ai,r = 0 if
r > 1− h. Similarly the graded dimension of V is encoded by the dimension vector e.

Example 4.12. Let g be of type A3. We have

v1,r = Y
−1
1,r−1Y

−1
1,r+1Y2,r , v2,r = Y

−1
2,r−1Y

−1
2,r+1Y1,rY3,r , v3,r = Y

−1
3,r−1Y

−1
3,r+1Y2,r .

We continue Example 4.6. The submodule structure of the A-modules displayed in Fig-
ure 5 is very simple. Indeed, in this case, all the nonempty varieties Gre(K

(i)
k,r) are reduced

to a single point, and their Euler characteristics are equal to 1. Therefore the F -polynomial
reduces to a generating polynomial for the dimension vectors of the (finitely many) sub-
modules of K(i)

k,r . This yields the following well known formulas for the q-characters of
the fundamental modules:

χq(L(Y1,−5)) = Y1,−5(1+ v1,−4 + v1,−4v2,−3 + v1,−4v2,−3v3,−2)

= Y1,−5 + Y
−1
1,−3Y2,−4 + Y

−1
2,−2Y3,−3 + Y

−1
3,−1,

χq(L(Y2,−4)) = Y2,−4(1+ v2,−3 + v1,−2v2,−3 + v2,−3v3,−2 + v1,−2v2,−3v3,−2

+ v1,−2v2,−3v3,−2v2,−1)

= Y2,−4 + Y1,−3Y
−1
2,−2Y3,−3 + Y

−1
1,−1Y3,−3 + Y1,−3Y

−1
3,−1

+ Y−1
1,−1Y2,−2Y

−1
3,−1 + Y

−1
2,0 ,

Similarly, the A-modules shown in Figure 6 give the following Kirillov–Reshetikhin
q-characters:

χq(L(Y1,−7Y1,−5)) = Y1,−7Y1,−5
(
1+ v1,−4(1+ v1,−6 + v2,−3 + v1,−6v2,−3

+ v2,−3v3,−2 + v1,−6v2,−3v2,−5 + v1,−6v2,−3v3,−2

+ v1,−6v2,−3v2,−5v3,−2 + v1,−6v2,−3v2,−5v3,−2v3,−4)
)
,

χq(L(Y2,−6Y2,−4)) = Y2,−6Y2,−4
(
1+ v2,−3(1+ v1,−2 + v2,−5 + v3,−2

+ v1,−2v2,−5 + v1,−2v3,−2 + v2,−5v3,−2 + v1,−2v2,−5v3,−2

+ v1,−2v2,−5v1,−4 + v1,−2v3,−2v2,−1 + v2,−5v3,−2v3,−4

+ v1,−2v2,−5v3,−2v1,−4 + v1,−2v2,−5v3,−2v2,−1

+ v1,−2v2,−5v3,−2v3,−4 + v1,−2v2,−5v3,−2v1,−4v2,−1

+ v1,−2v2,−5v3,−2v1,−4v3,−4 + v1,−2v2,−5v3,−2v3,−4v2,−1

+ v1,−2v2,−5v3,−2v1,−4v2,−1v3,−4

+ v1,−2v2,−5v3,−2v1,−4v2,−1v3,−4v2,−3)
)
.
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We omit the q-characters χq(L(Y3,−5)) and χq(L(Y3,−5Y3,−7)), since they are readily
obtained from χq(L(Y1,−5)) and χq(L(Y1,−5Y1,−7)) via the symmetry 1↔ 3.

Example 4.13. Let g be of typeG2, with the long root being α1. The quiver 0− is shown
in Figure 7. The modules K(1)

1,r and K(2)
1,s with r ≤ −10 and s ≤ −11 have dimension 10

and 6, respectively. For instance, K(1)
1,−10 and K(2)

1,−11 are represented in Figure 8. In the

moduleK(1)
1,−10 the vector space sitting at vertex (2,−7) has dimension 2 (all other spaces

have dimension 1). The maps incident to this space are given by the following matrices
(see Figure 8):

α =

(
0
1

)
, β =

(
1 0

)
, γ =

(
1
0

)
, γ ′ =

(
0 1

)
.

The corresponding fundamental modules have dimension

dimL(Y1,−13) = 15, dimL(Y2,−12) = 7.

The Grassmannians of submodules ofK(1)
1,−10 andK(2)

1,−11 are in this case again all reduced
to points, and the formula of Theorem 4.8 amounts to an enumeration of the dimension

(2,−1)

��
(2,−3)

��

OO

(1,−4)

��

(2,−5)

OO

%%

(1,−6)

��

(2,−7)

OO

��

(1,−8)

yy

(2,−9)

OO

��

(1,−10)

OO

��

(2,−11)

OO

%%

(1,−12)

OO

(2,−13)

OO

OO

OO

OO

(1,−14)

OO

...
...

...
...

Fig. 7. The quiver 0− for g of type G2.
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(2,−3)

��

(1,−4)

α

��

(2,−5)

OO

$$

(1,−6)

��

(2,−7)

γ ′

OO

β

��

(1,−8)

zz

(2,−9)

γ

OO

(1,−10)

(2,−11)

OO

(2,−1)

��
(1,−4)

��

(2,−5)

%%

(2,−7)

OO

(1,−8)

xx
(2,−11)

Fig. 8. The modules K(1)1,−10 and K(2)1,−11 for g of type G2.

vectors of all submodules. This gives

χq(L(Y1,−13)) = Y1,−13
(
1+v1,−10(1+v2,−7(1+v2,−9(1+v1,−6+v2,−11+v1,−6v2,−11

+ v1,−6v2,−3+v2,−11v1,−8+v1,−6v2,−11v2,−3+v1,−6v2,−11v1,−8

+v1,−6v2,−11v2,−3v1,−8(1+v2,−5(1+v2,−7(1+v1,−4))))))
)
,

χq(L(Y2,−12))

= Y2,−12
(
1+v2,−11(1+v1,−8(1+v2,−5(1+v2,−7(1+v1,−4(1+v2,−1)))))

)
,

where, following (15), we have

v1,r = Y
−1
1,r+3Y

−1
1,r−3Y2,r+2Y2,rY2,r−2, v2,r = Y

−1
2,r+1Y

−1
2,r−1Y1,r .

Remark 4.14. Assuming Theorem 4.8, we can easily calculate the dimension vectors of
the A-modules K(i)

1,r for r ≤ di − thˇ. Indeed, by [FM, Lemma 6.8], the lowest monomial
of χq(Yi,r−di ) is equal to Y−1

ν(i),r−di+thˇ
, where ν is the involution of I defined byw0(αi) =

−αν(i). Denote by (dj,s(K
(i)
1,r)) the dimension vector of K(i)

1,r . Then

Y−1
ν(i),r−di+thˇ

= Yi,r−di

∏
(j,s)∈V−

v
dj,s (K

(i)
1,r )

j,s ,

and using (15), this equation determines the numbers dj,s(K
(i)
1,r). In particular, if we in-

troduce the ungraded dimension vector (dj (i)) of K(i)
1,r by

dj (i) :=
∑
s

dj,s(K
(i)
1,r) (r ≤ di − thˇ),
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we can deduce from this the nice formula∑
i,j∈I

dj (i)αj =
∑
β∈8>0

β, (18)

where 8>0 is the set of positive roots of g. This can be observed in Figures 5 and 8
(see also §§6.4–6.7 below). When g is of type A, D, E, as explained in Remark 4.7
the modules K(i)

1,r are graded versions of the indecomposable injective modules over the
preprojective algebra 3, and formula (18) recovers a well known property of 3.

4.5. Proof of the theorem

The proof relies on Theorem 3.1, and on the categorification of cluster algebras by means
of quivers with potentials, developed by Derksen, Weyman and Zelevinsky [DWZ1,
DWZ2]. This categorification provides (among other things) a description of cluster vari-
ables in terms of Grassmannians of submodules, which will be our key ingredient. An
important additional result will be borrowed from Plamondon [Pl2].

4.5.1. F -polynomials and g-vectors of cluster variables. Recall the cluster algebra A of
§2.2.1, with initial seed (z−,G−). Following [FZ3, (3.7)], define

ŷi,r :=
∏

(i,r)→(j,s)

zj,s
∏

(j,s)→(i,r)

z−1
j,s ((i, r) ∈ W−). (19)

Here the first (resp. second) product is over all outgoing (resp. incoming) arrows at vertex
(i, r) of the graph G−. The following result is similar to [HL1, Lemma 7.2].

Lemma 4.15. After performing in (19) the change of variables (3),

ŷi,r = A
−1
i, r−di

((i, r) ∈ W−),

where the Laurent monomials Ai,r are given by (6).

Proof. Using the definition of the quiver G−, we can rewrite (19) as

ŷi,r =
zi, r+bii

zi, r−bii

∏
j 6=i

zj, r+bij+dj−di

zj, r−bij+dj−di
,

where the product is over all j ’s such that cij 6= 0. Here we use the convention that
zi,s = 1 for every (i, s) with s > 0. Using the change of variables (3), we obtain

ŷi,r = Y
−1
i, r−bii

Y−1
i,r

∏
j 6=i; cij 6=0

Yr, r−di+bij+djYr, r−di+bij+3dj · · ·Yr, r−di−bij−dj .

The result then follows by comparison with (6), if we notice again that bij + dj = cji + 1
because of (1). ut
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In [FZ3] Fomin and Zelevinsky attach to every cluster variable x of A a polynomial Fx
with integer coefficients in the set of variables ŷ = {ŷi,r | (i, r) ∈ W−}, and a vector
gx ∈ Z(W−), such that [FZ3, Corollary 6.3]

x = zgxFx (̂y). (20)

Note that A has no frozen cluster variables, so there is no denominator in (20). The
polynomial Fx and the integer vector gx are called the F -polynomial and g-vector of the
cluster variable x, respectively. We refer the reader to [FZ3] for their definition.

On the other hand, it follows from the theory of q-characters that for every simple
Uq (̂g)-module L(m) in the category C−, the truncated q-character χ−q (L(m)) can be
written as

χ−q (L(m)) = mPm, (21)

where Pm is a polynomial with integer coefficients in the variables {A−1
i, r−di

| (i, r)∈W−}.
Moreover, Pm has constant term 1.

Now, by the proof of Theorem 3.1, among the cluster variables of A , we find all the
truncated q-characters of the Kirillov–Reshetikhin modules of C−. These are of the form
L(m) with

m = m
(i)
k,r :=

k−1∏
j=0

Yi, r+jbii ((i, r) ∈ W−, r + (k − 1)bii ≤ 0). (22)

Proposition 4.16. The g-vector of the truncated q-character of the Kirillov–Reshetikhin
module W (i)

k,r = L(m
(i)
k,r), considered as a cluster variable of A , is given by

gj,s =


1 if (j, s) = (i, r),
−1 if (j, s) = (i, r + kbii) and r + kbii ≤ 0,
0 otherwise.

Proof. Write for short m = m(i)k,r , and denote by x the cluster variable χ−q (L(m)). Then,
comparing (20) with (21), we have

Pm = m
−1zgxFx,

where, by Lemma 4.15, Pm and Fx are polynomials in the same variables

ŷi,r = A
−1
i,r−di

.

Since Pm has constant term 1, it follows that mz−gx is a monomial in the variables ŷi,r
which divides the F -polynomial Fx . But, by [FZ3, Proposition 5.2], Fx is not divisible
by any ŷi,r . So, using (3), we obtain

zgx = m =
zi,r

zi, r+kbii
,

where as above, we set zi,s = 1 if s > 0. ut
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4.5.2. Truncated algebras. Let ` ∈ Z<0. Let 0−` be the full subquiver of 0− with set of
vertices

V −` := {(i,m) ∈ V
−
| m ≥ `}.

Let S` be the corresponding truncation of the potential S, that is, S` is defined as the sum
of all cycles in S which only involve vertices of V −` . Let J` denote the two-sided ideal
of C0−` generated by all cyclic derivatives of S`. Finally, define the truncated algebra at
height ` as

A` := C0−` /J`.

Proposition 4.17. For every ` we have:

(i) the algebra A` is finite-dimensional;
(ii) the quiver with potential (0−` , J`) is rigid.

Proof. The proof is similar to [DWZ1, Example 8.7]. Let π : C0−` → A` be the natural
projection. To prove (i), we show that A` is spanned by the images under π of a finite
number of paths. The arrows of 0−` are of two types:

(a) the vertical arrows of the form (i,m)→ (i,m+ bii);
(b) the oblique arrows of the form (i,m)→ (j,m+ bij ) provided cij < 0.

Let us say that a path from (i,m) to (j, s) in 0−` is going up (resp. down) if m < s (resp.
m > s). Note that all vertical arrows go up and all oblique arrows go down. Each oblique
arrow of the boundary of 0−` belongs to a single cycle of the potential S`, and each interior
oblique arrow belongs to exactly two cycles. Therefore each interior oblique arrow gives
rise to a “commutativity relation” in A`:

π
(
(j,m+ bji), (i,m+ 2bji), (i,m+ 2bji + bii), . . . , (i, m− bii), (i,m)

)
= −π

(
(j,m+ bji), (j,m+ bji + bjj ), . . . , (j,m− bji − bjj ), (j,m− bji), (i,m)

)
.

The path in the left-hand side consists of an oblique arrow followed by |cij | vertical
arrows, while the right-hand side has |cji | vertical arrows followed by an oblique arrow.
Let p be a path in 0−` with origin (i,m). Using only the above type of commutativity
relations, we can bring a number of vertical arrows to the front of p and write

π(p) = π(p2)π(p1),

where p1 is a path with origin (i,m) consisting only of vertical arrows, and p2 is a path
satisfying the following property: if q is a maximal factor of p2 containing only vertical
arrows, then q is preceded by at least one oblique arrow, say (j, s)→ (k, s + bjk), and q
contains less than |ckj | arrows. Hence q can be nontrivial only if |ckj | > 1.

In particular, in the simply laced case, p2 contains only oblique arrows. In that case,
we can immediately conclude that all arrows of p1 go up and all arrows of p2 go down,
so the lengths of p1 and p2 are both bounded by `, and therefore A` is finite-dimensional.

Otherwise, if q is nontrivial and p2 contains other vertical arrows after q, then q needs
to be followed by at least two oblique arrows. Indeed, with the same notation as above,
q consists ofN vertical arrows of the form (k, r)→ (k, r+bkk)with 1 ≤ N < |ckj |. Now,
by (1), the inequality |ckj | > 1 implies dk = 1 and dj = |bkj |. Let (k, t) → (l, t + bkl)
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be the first arrow coming after q. Then since dk = 1 we have |clk| = 1. If this oblique
arrow is followed by a vertical one (l, t + bkl) → (l, t + bkl + bll), then we can use
the commutativity relation and bring it, together with all the vertical arrows possibly
following it, on top of q. In this way, we replace q by a vertical path q ′ followed by two
consecutive oblique arrows.

One then easily checks by inspection that the subpath of p2 containing q together
with the oblique arrow preceding it and the oblique arrow following it, is going down.
Therefore, by induction, p2 can be factored into a product of paths, each of length less
than t + 2, and all these paths go down (except possibly the last one, which might end
with less than t vertical arrows). So again, the length of p2 is bounded above, and this
proves (i) in all cases.

To prove (ii), it is enough to show that every cycle of the form (13) is cyclically
equivalent to an element of J`. Up to cyclic equivalence, this cycle γ can be written with
origin in (i,m). Then

π(γ ) = π
(
(i,m), (j,m+bij ), (i,m+2bij ), (i,m+2bij+bii), . . . , (i, m−bii), (i,m)

)
= π

(
(i,m), (j,m+bij ), (j,m+bij+bjj ), . . . , (j,m−bij−bjj ), (j,m−bij ), (i,m)

)
= π

(
(i,m), (i,m+bii), . . . , (i, m−2bij−bii), (i,m−2bij ), (j,m−bij ), (i,m)

)
,

and the last path is cyclically equivalent to(
(i,m− 2bij ), (j,m− bij ), (i,m), (i,m+ bii), . . . , (i, m− 2bij − bii), (i,m− 2bij )

)
.

This cycle is nothing other than γ shifted vertically up by −2bij . Hence, iterating this
process, we can replace, modulo J` and cyclic equivalence, any cycle γ of the form (13)
by a similar cycle γ ′ sitting at the top boundary of 0−` . Now the upper oblique arrow of
γ ′ does not belong to any other cycle, so it gives rise to a zero relation in A`. In other
words, γ ′ is cyclically equivalent to an element of J`. This proves (ii). ut

Remark 4.18. In the simply laced case and when |`| is less than the Coxeter number,
the algebra A` arises as the endomorphism algebra of a (finite-dimensional) rigid module
over the preprojective algebra 3 associated with δ, and appears in the works of Geiss,
Schröer and the second author (see [GLS1, GLS2]). This gives another proof of Proposi-
tion 4.17(i) in this case.

4.5.3. Proof of Lemma 4.4 and Theorem 4.8. Let (i, r) ∈ V − and k ∈ N. By Theo-
rem 3.1, the truncated q-character χ−q (W

(i)
k, r−(2k−1)di

) is a cluster variable x of A . By
Proposition 4.16, the g-vector of x is given by

gj,s =


1 if (j, s) = (i, r − 2kdi + di),
−1 if (j, s) = (i, r + di),
0 otherwise.

(23)

Note that, since (i, r) ∈ V −, we have (i, r + di) ∈ W−. For ` < 0, let W−` := ψ(V
−

` )

and z−` = {zi,r | (i, r) ∈ W
−

` }. We denote by G−` the same quiver as 0−` , but with
vertices labelled by W−` . Clearly, the cluster variable x is a Laurent polynomial in the
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variables of z−` for some ` � 0, and can be regarded as a cluster variable of the cluster
algebra A` defined by the initial seed (z−` ,G

−

` ). By Proposition 4.17(ii), we can apply
the theory of [DWZ1, DWZ2] and deduce that the F -polynomial of x coincides with the
polynomial FM associated with a certain A`-module M . In order to identify this module,
we apply [Pl2, Remark 4.1], which states in our setting that M is the kernel of a generic
element of the homomorphism space between two injectiveA`-modules corresponding to
the negative and positive components of the g-vector of x. More precisely, denote by S`i,m
the one-dimensional A`-module supported on (i,m) ∈ V −` . Let I `i,m be the injective
A`-module with socle isomorphic to S`i,m. Then, using (23) and taking into account the
change of labelling ψ : V −` → W−` given by (2), we conclude that M is the kernel of a
generic element of HomA`(I

`
i,r , I

`
i,r−kbii

).
Finally, we can identify M with the kernel of a generic homomorphism between in-

jective A-modules. Indeed, for m < ` < 0 we have a natural projection Am→ A` whose
kernel is generated by all arrows of 0−m starting or ending at a vertex v ∈ V −m \ V

−

` .
This induces for every (i, r) ∈ V −` an embedding I `(i,r) → Im(i,r), and we can regard the
A-module I(i,r) as the direct limit of I `(i,r) along these maps. Since FM is independent of
` � 0, we see that M is also the kernel of a generic element of HomA(Ii,r , Ii,r−kbii ),
that is, M = K

(i)
k,r . In particular K(i)

k,r is finite-dimensional. This proves Lemma 4.4 and
finishes the proof of Theorem 4.8.

Remark 4.19. Using the same formula as (14), we can attach to the infinite-dimensional
A-module Ii,m a formal power series FIi,m in the variables vj,r . This series also has an
interpretation in terms of quantum affine algebras. Indeed, by [HJ], the category of finite-
dimensional Uq (̂g)-modules can be seen as a subcategory of a category O of (possibly
infinite-dimensional) representations of a Borel subalgebra of Uq (̂g). The q-character
morphism can be extended to the Grothendieck ring of O (the target ring is also com-
pleted). This category contains distinguished simple representations called negative fun-
damental representations L−i,a (i ∈ I , a ∈ C∗) [HJ, Definition 3.7]. Denote by χ̃q(L−i,a)
the normalized q-character of L−i,a , that is, its q-character divided by its highest weight
monomial. This normalized q-character is a formal power series in the variables A−1

j,b

[HJ, Theorem 6.1], and it is obtained as a limit of normalized q-characters of Kirillov–
Reshetikhin modules. It is not difficult to deduce from Theorem 4.8 and Remark 4.9 that,
for m ≤ di − thˇ,

χ̃q(L
−

i, qm−di
) = FIi,m .

This is the first geometric description of the q-character of these negative fundamental
representations.

5. Beyond Kirillov–Reshetikhin modules

5.1. Grothendieck rings

Let us consider again the cluster algebra A , with initial seed 6 = (z−,G−) whose clus-
ter variables zi,r are given by (3). The Laurent phenomenon for cluster algebras implies
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that A is a subring of Z[Y±1
i,r | Yi,r ∈ Y−]. The following theorem gives the precise

relationship between A and the Grothendieck ring of the category C−.

Theorem 5.1. The cluster algebra A is equal to the image of the injective ring homo-
morphism from K0(C−) to Z[Y±1

i,r | Yi,r ∈ Y−] given by [L(m)] 7→ χ−q (m) (see Propo-
sition 3.10). Hence A is isomorphic to the Grothendieck ring of C−.

Proof. Let R− denote the image of the homomorphism [L(m)] 7→ χ−q (m). By [FR],
K0(C−) is the polynomial ring in the classes of the fundamental modules of C−, hence
R− is the polynomial ring in the truncated q-characters χ−q (Yi,r) (Yi,r ∈ Y−). By Theo-
rem 3.1, A contains all these fundamental truncated q-characters, hence A contains R−.

To prove the reverse inclusion, we will use a description of the image of the q-charac-
ter homomorphism as an intersection of kernels of screening operators [FR, FM]. To do
this, we need to work with complete (i.e. untruncated) q-characters. So let us consider as
in §3.2.2 the larger set of variables Y. Following [FR, §7.1], for every i ∈ I , we have a
linear operator Si from the ring Z[Y±1

i,r | Yi,r ∈ Y] to a certain free module Yi over this
ring, which satisfies the Leibniz rule

Si(xy) = x Si(y)+ y Si(x) (x, y ∈ Z[Y±1
i,r | Yi,r ∈ Y]).

It was conjectured in [FR] and proved in [FM] that an element of Z[Y±1
i,r | Yi,r ∈ Y] is a

polynomial in the q-characters χq(Yi,r) (Yi,r ∈ Y) if and only if it belongs to⋂
i∈I

Ker Si .

Let us now introduce an auxilliary cluster algebra A ′. It is defined using the same
initial seed (z−,G−) as A , but the initial variables of A ′ are given by the following
modification of (3):

z′i,r :=
∏

k≥0, r+kbii≤0

Yi, r+kbii+2thˇ,

in which the spectral parameters are all shifted upwards by 2thˇ. By Theorem 3.1, if we
apply to this initial seed of A ′ the sequence of mutations µS repeated hˇ times, we will
obtain a new seed6′ with the same quiverG−. Moreover, the cluster variable of6′ sitting
at vertex (i, r) ∈ W− is nothing other than the complete q-character χq(W

(i)
ki,r ,r

).
Consider a cluster variable x of A . By definition, x is obtained from 6 by a finite

sequence of mutations µx . We want to show that x belongs to R−. By Theorem 3.1, all
cluster variables of 6 belong to R−, so by induction on the length, we may assume that
the last exchange relation of µx is of the form

xy = M1 +M2,

where y is a cluster variable of A , M1 and M2 are cluster monomials of A , and y,
M1, M2 belong to R−. Let us apply the same sequence of mutations µx in the cluster
algebra A ′ to the seed 6′. The last exchange relation will be of the form

x′y′ = M ′1 +M
′

2,
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where y′, M ′1, M ′2 are polynomials in the complete fundamental q-characters χq(Yi,r)
(Yi,r ∈ Y−). Moreover, from x′, y′, M ′1, M ′2 we recover x, y, M1, M2 by application
of the truncation ring homomorphism. By the Laurent phenomenon [FZ1] in the cluster
algebra A ′, we know that x′, y′, M ′1, M ′2 are Laurent polynomials in the variables of Y.
Since Si is a derivation, we have

Si(x
′y′) = x′Si(y

′)+ y′Si(x
′) = Si(M

′

1)+ Si(M
′

2),

hence Si(x′) = 0 because Si(y′) = Si(M
′

1) = Si(M
′

2) = 0. It follows that x′ is
annihilated by all the screening operators, so x′ is a polynomial in the q-characters
χq(Yi,r) (Yi,r ∈ Y−). This implies that x is a polynomial in the truncated q-characters
χ−q (Yi,r) (Yi,r ∈ Y−), that is, x ∈ R−. ut

5.2. Conjectures

5.2.1. Cluster monomials. In view of Theorem 5.1, it is natural to formulate some con-
jectures. Following [Le1], let us say that a simple Uq (̂g)-module S is real if S ⊗ S is
simple.

Conjecture 5.2. In the above identification of the cluster algebra A with the ring of
truncated q-characters of C−, the cluster monomials get identified with the truncated
q-characters of the real simple modules of C−.

When g is of type A, D, E, Conjecture 5.2 is essentially equivalent to [HL1, Conjecture
13.2]. But the initial seed used here is different and allows a direct connection between
cluster expansions and (truncated) q-characters.

5.2.2. Geometric q-character formulas. Using the methods and tools of §4, we can
translate Conjecture 5.2 into a new conjectural geometric formula for the (truncated)
q-character of a real simple module of C−.

Let m be a dominant monomial in the variables Yi,r ∈ Y−. Using the change of
variables (3), which we can express as

Yi,r =
zi,r

zi,r+bii
((i, r) ∈ W−),

(where we understand zi,s = 1 if s > 0), we can rewrite

m = zg(m) :=
∏

(i,r)∈W−

z
gi,r (m)

i,r .

Let us call the integer vector g(m) ∈ Z(W−) the g-vector of L(m). Following §4.3, let us
attach to m the A-module K(m) defined as the kernel of a generic A-module homomor-
phism from the injective A-module I (m)− to the injective A-module I (m)+, where

I (m)+ =
⊕

gi,r (m)>0

I
⊕gi,r (m)

i,r−di
, I (m)− =

⊕
gi,r (m)<0

I
⊕|gi,r (m)|

i,r−di
.

Finally, define the F -polynomial FK(m) ofK(m) as in §4.2. We can now state the follow-
ing conjectural generalization of Theorem 4.8.
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Conjecture 5.3. Suppose that L(m) is an irreducible real Uq (̂g)-module in C−. Then
the truncated q-character of L(m) is equal to

χ−q (L(m)) = mFK(m),

where the variables vi,r of the F -polynomial are evaluated as in (15).

Example 5.4. Let g be of type A3. Take m = Y1,−7Y2,−4. We have

I (m)+ = I1,−8 ⊕ I2,−5, I (m)− = I1,−6 ⊕ I2,−3.

The module K(m) has dimension 7 and is displayed in Figure 9. Using for instance
the fact that L(m) is a minimal affinization (in the sense of [C]), we can compute its
q-character. We find

χq(L(Y1,−7Y2,−4)) = Y1,−7Y2,−4
(
1+ v1,−6 + v2,−3 + v1,−6v2,−3 + v1,−2v2,−3

+ v2,−3v3,−2 + v1,−6v1,−2v2,−3 + v1,−6v2,−3v3,−2

+ v1,−6v2,−3v2,−5 + v1,−2v2,−3v3,−2 + v1,−6v1,−2v2,−5v2,−3

+ v1,−6v1,−2v2,−3v3,−2 + v1,−6v2,−5v2,−3v3,−2
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)
,

in agreement with Conjecture 5.3.
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Fig. 9. The A-module K(m) for m = Y1,−7Y2,−4 in type A3.

6. Appendix

6.1. Mutation sequence in type A2

We display the sequence of mutated quivers obtained from G− at each step of the mu-
tation sequence µS . The first quiver is G−, and in the next quivers the box indicates at
which vertex a mutation has been performed.
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6.2. Mutation sequence in type B2

We display the sequence of mutated quivers obtained from G− at each step of the muta-
tion sequence µS .
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6.3. Mutation sequence in type G2

We display the sequence of mutated quivers obtained from G− at each step of the muta-
tion sequence µS .
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(1,−9)

OO

(2,−10)oo
OO

...

OO

(2,−12)

OO
...

OO

(1,−11)

OO

oo

``

(2,0)

&&
(2,−2)

OO

xx
(1,−1)

��
(1,−3)

��

(2,−4)

OO

��

(2,−6)

OO

$$

(1,−5)

jj

(2,−8)

OO

��

(1,−7)

OO

oo

(1,−9)

OO

(2,−10)oo

::

**...

OO

(2,−12)

OO
...

OO

(1,−11)

ee

OO

oo

(2,0)

&&
(2,−2)

OO

xx
(1,−1)

��
(1,−3)

��

(2,−4)

OO

��

(2,−6)

OO

&&
(1,−5)

kk

(2,−8)

OO

yy

(1,−7)

OO

yy
(1,−9)

OO

// (2,−10)

OO

��...

OO

(2,−12)

ee

BB

...

OO

(1,−11)

jj

OO

(2,0)

&&
(2,−2)

OO

xx
(1,−1)

��
(1,−3)

��

(2,−4)

OO

��

(2,−6)

OO

&&
(1,−5)

kk

(2,−8)

OO

xx
(1,−7)

OO

��
(1,−9)

OO

%%
(2,−10)

OO

...

OO

(2,−12)

OO

...

OO

(1,−11)

jj

OO

(2,0)

&&
(2,−2)

OO

xx
(1,−1)

��

(1,−3)

��

(2,−4)

OO

**
(2,−6)

OO

$$

(1,−5)

��

(2,−8)

OO

xx
(1,−7)

OO

��
(1,−9)

OO

(2,−10)

OO

...

OO

(2,−12)

OO
...

OO

(1,−11)

jj

6.4. Examples of A-modules for g of type B2

We describe some A-modules K(i)
k,m for g of type B2. The quiver 0− is

(2,−1)

%%
(2,−3)

OO

yy

(1,−3)

yy
(1,−5)

%%

(2,−5)

OO

%%
(2,−7)

OO

yy

(1,−7)

yy

OO

(1,−9)

OO

(2,−9)

OO

...
...

...

OO

Following the convention of Example 4.6, unless otherwise specified, in the following
figures the vertices carry one-dimensional spaces, and the arrows carry linear maps with
matrix (±1).
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The modules K(1)
1,−5 and K(1)

1,−7 are

(2,−3)

yy

(1,−3)

yy
(1,−5) (2,−5)

OO (1,−5)

%%

(2,−5)

%%
(2,−7)

OO

(1,−7)

The modules K(2)
1,−5 and K(2)

1,−7 are

(2,−1)

%%
(1,−3)

yy
(2,−5)

(2,−3)

yy
(1,−5)

%%
(2,−7)

Applying Theorem 4.8, we recover the following well known formulas for the q-charac-
ters of the fundamental Uq (̂g)-modules:

χq(L(Y1,−7)) = Y1,−7
(
1+ v1,−5(1+ v2,−3(1+ v2,−5(1+ v1,−3)))

)
,

χq(L(Y2,−6)) = Y2,−6
(
1+ v2,−5(1+ v1,−3(1+ v2,−1))

)
.

The modules K(1)
2,−5 and K(2)

2,−7 are

(2,−3)

yy

(1,−3)

yy
(1,−5) (2,−5)

OO

(2,−7)

OO

yy

(1,−7)

yy

OO

(1,−9)

OO

(2,−9)

OO

(2,−3)

yy
(1,−5)

%%

(2,−5)

OO

%%
(2,−7) (1,−7)

yy
(2,−9)

OO

They correspond under Theorem 4.8 to the Kirillov–Reshetikhin modules

W
(1)
2,−11 = L(Y1,−11Y1,−7) and W

(2)
2,−10 = L(Y2,−10Y2,−8).

The modules K(1)
3,−5 and K(2)

3,−7 are

(2,−3)

xx

(1,−3)

xx
(1,−5) (2,−5)

OO

(2,−7)

OO

xx

(1,−7)

xx

OO

(1,−9)

OO

(2,−9)

OO

(2,−11)

OO

xx

(1,−11)

xx

OO

(1,−13)

OO

(2,−13)

OO

(2,−3)

xx
(1,−5)

α

&&

(2,−5)

OO

&&
(2,−7)

γ ′
OO

βxx

(1,−7)

xx
(1,−9)

OO

&&

(2,−9)

γ
OO

(2,−11)

OO
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In K(2)
3,−7, the vertex (2,−7) carries a two-dimensional vector space. The linear maps

carried by the adjacent arrows have the following matrices:

α = γ =

(
1
0

)
, β = γ ′ =

(
0 1

)
.

They correspond under Theorem 4.8 to the Kirillov–Reshetikhin modules

W
(1)
3,−15 = L(Y1,−15Y1,−11Y1,−7) and W

(2)
3,−12 = L(Y2,−12Y2,−10Y2,−8).

6.5. Examples of A-modules for g of type B3

Let g be of type B3, with the short root being α3. The quiver 0− is

(3,−1)

ww
(2,−3)

''ww
(3,−3)

OO

''
(1,−3)

ww
(1,−5)

''
(3,−5)

OO

ww
(2,−5)

ww ''
(2,−7)

OO

''ww
(3,−7)

OO

''
(1,−7)

ww

OO

(1,−9)

''

OO

(3,−9)

OO

ww
(2,−9)

ww

OO

''
(2,−11)

OO

ww ''
(3,−11)

OO

''
(1,−11)

ww

OO

(1,−13)

OO

(3,−13)

OO

(2,−13)

OO

...

OO
...

OO

...

OO
...

OO
...

OO

The module K(1)
1,−9 is

(1,−3)

xx
(3,−5)

xx
(2,−5)

xx
(2,−7)

xx
(3,−7)

OO

(1,−9)

The modules K(2)
1,−11 and K(3)

1,−11 are

(3,−5)

xx

(2,−5)

xx %%
(2,−7)

&&xx

(3,−7)

OO

&&

(1,−7)

yy
(1,−9)

&&

(3,−9)

xx

(2,−9)

xx
(2,−11) (3,−11)

OO

(3,−3)

&&
(2,−5)

xx &&
(3,−7)

&&
(1,−7)

xx
(2,−9)

xx
(3,−11)

The corresponding fundamentalUq (̂g)-modules areL(Y1,−11),L(Y2,−13), andL(Y3,−12),
of respective dimensions 7, 22, and 8.
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6.6. Examples of A-modules for g of type C3

Let g be of type C3, with the long root being α3. The quiver 0− is

(1,−1)
''
(2,−2)

ww

((

(3,−2)

{{
(1,−3)

OO

''
(2,−4)

OO

ww

##

(3,−4)

vv
(1,−5)

OO

''
(2,−6)

OO

((

ww
(3,−6)

OO

{{
(1,−7)

OO

''
(2,−8)

OO

ww

##

(3,−8)

OO

vv
(1,−9)

OO

''
(2,−10)

OO

(3,−10)

OO

...

OO

...

OO
...

OO
...

OO

The modules K(1)
1,−7 and K(2)

1,−8 are

(1,−1)

&&
(2,−2)

&&
(3,−4)

xx
(2,−6)

xx
(1,−7)

(2,−2)

xx

��
(1,−3)

&&
(2,−4)

&&
(3,−4)

xx
(2,−6)

OO

xx
(3,−6)

��
(1,−7)

&&
(2,−8)

The module K(3)
1,−8 is

(2,−4)

vv

""

(3,−4)

β
ww

(1,−5)
α
((
(2,−6)

κ

OO

ι

''

εvv
(3,−6)

||
(1,−7)

OO

((
(2,−8)

γ

OO

(3,−8)

Here, the vector space sitting at vertex (2,−6) has dimension 2. The maps incident to this
space are given by the following matrices:
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α =

(
1
0

)
, β =

(
0
1

)
, γ =

(
1
0

)
, ε =

(
0 1

)
, κ =

(
0 1

)
, ι =

(
1 0

)
.

The corresponding fundamental Uq (̂g)-modules are L(Y1,−8), L(Y2,−10), and L(Y3,−10),
of respective dimensions 6, 14, and 14.

6.7. Examples of A-modules for g of type F4

Let g be of type F4. We label the simple roots α1, α2, α3, α4, so that the short simple roots
are α1 and α2. The quiver 0− is

(1,−1)
''
(2,−2)

ww

((

(3,−2)

{{ **

(4,−2)

��
(1,−3)

OO

''
(2,−4)

OO

ww

##

(3,−4)

vv ��

(4,−4)

tt
(1,−5)

OO

''
(2,−6)

OO

((

ww
(3,−6)

OO

{{ **

(4,−6)

OO

��
(1,−7)

OO

''
(2,−8)

OO

ww

##

(3,−8)

OO

vv ��

(4,−8)

OO

tt
(1,−9)

OO

''
(2,−10)

OO

(3,−10)

OO

(4,−10)

OO

...

OO

...

OO
...

OO
...

OO

...

OO
...

OO

The module K(1)
1,−17 is

(1,−1)

''
(2,−2)

''
(3,−4)

ww ''
(2,−6)

ww

��

(4,−6)

��
(1,−7)

''
(2,−8)

''
(3,−8)

ww
(2,−10)

OO

ww
(3,−10)

�� ��
(1,−11)

''
(2,−12)

''
(4,−12)

ww
(3,−14)

ww
(2,−16)

ww
(1,−17)
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The module K(4)
1,−16 is

(4,−2)

ss
(2,−4)

uu

((

(3,−4)

β ′{{
(1,−5)

α′

))
(2,−6)

ι′

OO

κ ′

##

ε′
uu

(3,−6)

vv ��
(1,−7)

OO

))
(2,−8)

γ ′

OO

))
(3,−8)

uu ++
(4,−8)

ss
(2,−10)

uu

((

(3,−10)

β
{{

(4,−10)

��
(1,−11)

α
))
(2,−12)

ι

OO

κ

##

εuu
(3,−12)

vv
(1,−13)

OO

))
(2,−14)

γ

OO

(3,−14)

++
(4,−16)

Here, the vector spaces sitting at vertex (2,−6) and (2,−12) have dimension 2. The maps
incident to these spaces are given by the following matrices:

α =

(
1
0

)
, κ =

(
1 0

)
, β =

(
0
1

)
, ε =

(
0 1

)
, γ =

(
1
0

)
, ι =

(
0 1

)
,

α′ =

(
1
0

)
, κ ′ =

(
1 0

)
, β ′ =

(
0
1

)
, ε′ =

(
0 1

)
, γ ′ =

(
1
0

)
, ι′ =

(
0 1

)
.

The corresponding fundamental Uq (̂g)-modules are L(Y1,−18) and L(Y4,−18), of respec-
tive dimensions 26, and 53.
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