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Abstract. Let µ ≥ 2 be a real number and let M(µ) denote the set of real numbers approximable
at order at least µ by rational numbers. More than eighty years ago, Jarnı́k and, independently,
Besicovitch established that the Hausdorff dimension of M(µ) is equal to 2/µ. We investigate the
size of the intersection of M(µ) with Ahlfors regular compact subsets of the interval [0, 1]. In
particular, we propose a conjecture for the exact value of the dimension of M(µ) intersected with
the middle-third Cantor set and give several results supporting this conjecture. We show in particular
that the conjecture holds for a natural probabilistic model that is intended to mimic the distribution
of the rationals. The core of our study relies heavily on dimension estimates concerning the set
of points lying in an Ahlfors regular set and approximated at a given rate by a system of random
points.

Keywords. Diophantine approximation, Hausdorff dimension, irrationality exponent, Cantor set,
Mahler’s problem

1. Introduction

In Section 2 of his paper Some suggestions for further research, Mahler [29] posed the
following problem.

Mahler’s Problem. How close can irrational elements of Cantor’s set be approximated
by rational numbers

(i) in Cantor’s set, and
(ii) by rational numbers not in Cantor’s set?

Here, Cantor’s set is the middle-third Cantor set, that is, the set of all real numbers of
the form a13−1

+ a23−2
+ · · · + ai3−i + · · · with ai ∈ {0, 2} for every integer i ≥ 1.

This set is denoted by K , and is just called the Cantor set in all what follows. Let us
emphasize that we do not make the explicit distinction between the two items in Mahler’s
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7 rue René Descartes, 67084 Strasbourg, France; e-mail: bugeaud@math.unistra.fr
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Problem, i.e. we do not distinguish between the intrinsic and the extrinsic approximation
problems. Accordingly, we interpret here Mahler’s Problem as merely asking whether
there are elements in the Cantor set with any prescribed irrationality exponent; see also [9,
Problem 35]. Recall that the irrationality exponent µ(ξ) of an irrational real number ξ is
defined by

µ(ξ) = sup
{
µ ∈ R

∣∣∣∣ ∣∣∣∣ξ − pq
∣∣∣∣ < 1

qµ
for i.m. (p, q) ∈ Z× N

}
,

where “i.m.” stands for infinitely many. The irrationality exponent of every irrational
number is greater than or equal to 2, and it is precisely 2 for Lebesgue almost all real
numbers [33, Section 1]. Furthermore, when ξ is a rational number, we set µ(ξ) = 1.

As a first step towards Mahler’s question, Weiss [36] established that the irrationality
exponent is also 2 for almost every point in the Cantor set K , with respect to the stan-
dard measure thereon. Levesley, Salp and Velani [26] constructed explicit elements of K
having a prescribed irrationality exponent: for µ ≥ (3+

√
5)/2, they showed that

µ
( ∞∑
j=1

2 · 3−bµ
j
c

)
= µ, (1.1)

where b · c denotes the integer part function. Subsequently, Bugeaud [11] used the theory
of continued fractions to prove that (1.1) also holds for all µ ≥ 2 and that there are
uncountably many elements in K with any prescribed irrationality exponent. This gives
a satisfactory answer to Mahler’s question: irrational elements of the Cantor set can be
approximated by rational numbers at any prescribed rate. However, unfortunately, the
method does not yield any information on the size of the set of points in the Cantor set
whose irrationality exponent is at least a given real number µ > 2. The starting point of
the present paper is to investigate this problem, by considering the Hausdorff dimension
of the intersection set M(µ) ∩K , where

M(µ) = {ξ ∈ R | µ(ξ) ≥ µ};

we refer to Section 2.1 below for the necessary recalls on the notion of Hausdorff dimen-
sion. The size of the two sets forming the above intersection is very well known. First,
the Hausdorff dimension of the Cantor set K is

dimHK = κ with κ =
log 2
log 3

= 0.6309298 . . . (1.2)

(see for instance [17]). Second, a famous result established independently by Jarnı́k [20]
and Besicovitch [5] asserts that

∀µ ≥ 2 dimH M(µ) = 2/µ. (1.3)

Furthermore, for every µ ≥ 2, the set of all real numbers with irrationality exponent
exactly equal to µ has the same Hausdorff dimension as the set M(µ); this follows from
finer results subsequently obtained by Jarnı́k [21].
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Besides the irrationality exponent, we also consider the exponents vb which first ap-
peared in [1], but were already implicitly used in [26]. They provide information on the
lengths of blocks of digits 0 (or of digits b−1) occurring in the expansion of an irrational
real number ξ to the integer base b ≥ 2, and are defined by

vb(ξ) = sup{v ∈ R | ‖bj ξ‖ < b−vj for i.m. j ∈ N},

where ‖ · ‖ denotes the distance to the nearest integer. When ξ is rational, it is convenient
to adopt the convention that vb(ξ) = 0. For any irrational ξ , it follows from the definition
of µ(ξ) and vb(ξ) that

µ(ξ) ≥ vb(ξ)+ 1. (1.4)

However, these inequalities are rarely sharp. As a matter of fact, an easy covering ar-
gument shows that the exponent vb vanishes for Lebesgue almost every real number.
Furthermore, for any real v ≥ 0, the Hausdorff dimension of the set

Vb(v) = {ξ ∈ R | vb(ξ) ≥ v} (1.5)

is equal to 1/(v + 1); this follows from a general result of Borosh and Fraenkel [6] (see
also [1]).

The triadic analog of the above question is then to determine the Hausdorff dimension
of V3(v) ∩ K . This has been done by Levesley, Salp and Velani [26], thereby shedding
some new light on Mahler’s problem. To be specific, Corollary 1 in [26] asserts that

dimH(V3(v) ∩K) =
κ

v + 1
, (1.6)

which can be seen as the product of the dimension ofK by that of V3(v). It is also proved
in [26] that (1.6) still holds when V3(v) is replaced by the set of all real ξ such that
v3(ξ) = v. This shows that there exist points in the Cantor set that can be approximated
at any prescribed order by rational numbers whose denominators are powers of three, and
gives a very satisfactory answer to the triadic analog of Mahler’s problem. Note however
that things are much easier for the exponent v3 than for the irrationality exponent µ,
mainly for the following reason: if a point ξ ∈ K is approximated at a rate v > 1 by a
triadic number p/3j , that is, if

|ξ − p/3j | < 3−vj ,

then this triadic number p/3j necessarily lies in K . Let us also mention that, as recently
pointed out by Fishman and Simmons, (1.6) may be extended to the more general situation
where the sets V3(v) are replaced by Vb(v) for every prime b, and the Cantor set K is
replaced by the fractal set composed of all the real numbers whose b-ary digits belong to
some fixed subset of {0, . . . , b − 1}; we refer to [19] for details and related results.

With the help of (1.4), let us now remark that the set M(µ) contains V3(µ − 1) for
any µ ≥ 2. Along with (1.6), this readily implies that

dimH(M(µ) ∩K) ≥ dimH(V3(µ− 1) ∩K) = κ/µ. (1.7)
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Thus, in view of (1.2) and (1.3), the Hausdorff dimension of the intersection of K and
M(µ) is bounded from below by half the product of their dimensions. As regards the
upper bound, Pollington and Velani [31] used a covering argument due to Weiss [36] to
establish that for every µ ≥ 2,

dimH(M(µ) ∩K) ≤ 2κ/µ, (1.8)

so that the dimension of the intersection is bounded from above by the product of the
dimensions. We also refer to the work of Kristensen [25] for a similar result.

In view of the aforementioned results, Levesley, Salp and Velani [26] speculate at the
end of their paper that the dimension of the intersection of K and M(µ) is equal to the
product of their dimensions:

dimH(M(µ) ∩K) = 2κ/µ. (1.9)

They also believe that the following weaker statement holds:

lim
µ↓2

dimH(M(µ) ∩K) = κ. (1.10)

The starting point of the present work is to discuss the validity of (1.9) and (1.10).
We agree with (1.10) but disagree with (1.9). As a matter of fact, we propose another
conjecture for the dimension of M(µ) ∩K .

Conjecture 1.1. For any real µ ≥ 2, the set of points in the Cantor set whose irrationality
exponent is at least µ satisfies

dimH(M(µ) ∩K) = max{2/µ+ κ − 1, κ/µ}. (1.11)

We refer to Figure 1 for a graph representing the conjectured value (1.11) of the Haus-
dorff dimension, along with the known bounds (1.7) and (1.8). We believe that proving
Conjecture 1.1 is difficult, and requires a deep understanding of the distribution of ra-
tional points near the Cantor set. Note that, according to this conjecture, the Hausdorff
dimension of M(µ) ∩K exhibits a “phase transition” at the critical value

µc =
2− κ
1− κ

=
log(9/2)
log(3/2)

= 3.709511 . . . . (1.12)

The approach we develop actually suggests the following behaviors:

• Below this critical value, the rational numbers that belong to the Cantor set, or are very
close thereto, do not play a privileged role in approximation of points of the Cantor set;
as in many generic situations where there is no particular interplay between two sets,
the codimension of their intersection is thus the sum of their codimensions, so that

codimH(M(µ) ∩K) = codimH M(µ)+ codimHK = 2− 2/µ− κ

(see e.g. [17, Chapter 8] for such generic situations).
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µ

dimH(M(µ) ∩K)

2

κ

κ/2

µc

κ/µc

Fig. 1. The solid curve shows the conjectured value (1.11) of the Hausdorff dimension of the set
M(µ) ∩ K . The dashed curves represent the known bounds (1.7) and (1.8). The critical value µc
is defined by (1.12).

• Above the critical value, the aforementioned rational numbers become predominant
when approximating points of the Cantor set; the dimension is thus equal to the lower
bound (1.7) obtained by Levesley, Salp and Velani [26] which corresponds to restricting
the approximating rationals to being the triadic endpoints of the intervals occurring in
the construction of the Cantor set.

Various arguments supporting Conjecture 1.1 are given in Section 2 below. Therein, we
begin by giving heuristic arguments, and we also present a doubly metric point of view
that yields further evidence for Conjecture 1.1. We also present a randomized version
of the above problem; this consists in replacing the approximating rational numbers by
random points that are intended to mimic the distribution of the rationals while taking
into account the fact that some rationals fall into the Cantor set exactly, or are very close
to it. In particular, we show that Conjecture 1.1 is satisfied for this random model (see
Section 2.4).

The motivation behind the study of such randomized models starts from the follow-
ing observation. From the viewpoint of the metric theory of Diophantine approximation,
the points with rational coordinates and a sequence of random points independently and
uniformly distributed in a given nonempty compact set share a lot of properties: for exam-
ple, they both give rise to homogeneous ubiquitous systems, and the sets of points they
approximate share the same size and large intersection properties (see [13, 15] and the
references therein). Pushing further the analogy, we also put forward a conjecture for the
exponents vb when b is not a power of three.

Conjecture 1.2. Assume that the integer b ≥ 2 is not a power of three. Then:
(1) for any ξ ∈ K ,

0 ≤ vb(ξ) ≤
κ

1− κ
;

(2) for any v ∈ [0, κ/(1− κ)],

dimH(Vb(v) ∩K) =
1

v + 1
+ κ − 1.
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In case b is not a power of three, we expect that there is so little interplay between the
expansions to bases b and 3 that we are in the generic situation where the codimension of
the intersection of the sets K and Vb(v) is equal to the sum of their codimensions. This is
of course in stark contrast with the formula (1.6) obtained by Levesley, Salp and Velani
for b = 3. The probabilistic arguments supporting Conjecture 1.2 are given in Section 2.5.

In Section 3, which is actually the core of this paper, we put the study of the proba-
bilistic counterparts of the aforementioned number-theoretical open questions in a more
general context. Specifically, for convenience we will work on the circle T = R/Z, en-
dowed with the usual quotient distance d, and we develop a general theory for the size of
E(X, r) ∩G, where

E(X, r) = {ξ ∈ T | d(ξ,Xn) < rn for i.m. n ≥ 1}

and G is a nonempty compact subset of T. Here, X = (Xn)n≥1 is a sequence of random
variables in T and r = (rn)n≥1 is a sequence of real numbers in (0, 1]. In particular,
we give the probability that the random set E(X, r) intersects the compact set G, and we
analyze the value of the Hausdorff measures of E(X, r) ∩G for general gauge functions.
The random points Xn are uniformly distributed on the circle, and are often supposed to
have very little dependence on one another.

In Section 4, we consider the particular case where the approximating points Xn are
stochastically independent. This is what ultimately enables us to establish the probabilis-
tic counterpart of Conjecture 1.1 mentioned above. In Section 5, we allow some weak
dependence between those points, namely, we assume that Xn is the fractional part of
anX, where X is uniformly distributed on [0, 1) and (an)n≥1 is a sequence of positive in-
tegers that grows sufficiently fast. Our findings lead to the following metrical statement:
if the sequence (an)n≥1 grows fast enough, for instance if an+1 ≥ n

log log nan for n ≥ 2,
then for Lebesgue almost every real α and for every real ν ≥ 1,

dimH{ξ ∈ K | ‖anα − ξ‖ < 1/nν for i.m. n ≥ 1} = 1/ν + κ − 1

if this value is nonnegative; otherwise, the above set is empty. We refer to Theorem 5.2 for
details. If the real numbers ξ are not restricted to the Cantor set, then one recovers a much
easier situation already studied by various authors including Bugeaud [8], Schmeling and
Troubetzkoy [32], Fan, Schmeling, and Troubetzkoy [18], and Liao and Seuret [28]. Most
of the proofs are postponed to Sections 7 and 8, while Section 6 is devoted to concluding
observations and a brief discussion of further problems.

2. Various arguments supporting the conjectures

We begin by giving heuristic arguments supporting Conjecture 1.1. We then introduce a
doubly metric point of view that shows further evidence for this statement to hold. We
also put forward a randomized version of the problem, and we show that Conjecture 1.1
holds for this probabilistic model. Finally, we present an analogous random model meant
to support Conjecture 1.2. Before proceeding, we set up notation and recall some facts
that will be used throughout the paper.
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2.1. Notation and recalls

For convenience, we shall almost always work on the circle T = R/Z. As a matter of
fact, the function ξ 7→ µ(ξ) that maps a real number to its irrationality exponent is one-
periodic, so we may consider it just on the interval [0, 1). With a slight abuse, we shall
identify the elements of this interval with those of the circle. Accordingly, if ξ is a rational
number on the circle, then µ(ξ) = 1. Likewise, the irrationality exponent of an irrational
point ξ ∈ T may be written in the form

µ(ξ) = sup{µ ∈ R | d(ξ, p/q) < q−µ for i.m. (p, q) ∈ R},

where d is the usual quotient distance on the circle. The set R appearing in the above
formula is defined by

R = {(p, q) ∈ Z× N | 0 ≤ p < q and gcd(p, q) = 1}, (2.1)

so that every rational number in T may be written in the form p/q for a unique pair
(p, q) ∈ R. Then the intersection of the set M(µ) with the interval [0, 1) may be identi-
fied with the set of all points ξ ∈ T such that µ(ξ) ≥ µ. For simplicity, this subset of the
circle will still be denoted by M(µ); this is also the image of the original set under the
projection modulo one. Plainly, the same kind of analogy holds for the exponents vb(ξ)
and the sets Vb(v). In addition, we still denote byK the image of the Cantor set under the
projection modulo one.

Let us now give a brief account of the notion of Hausdorff and packing measures
and dimensions; we refer for instance to [17, 30] for further details. Let m be a positive
integer. Let g denote a gauge function, that is, a nondecreasing right-continuous function
defined on [0,∞) which vanishes only at zero. The Hausdorff g-measure of a subset E
of Tm is defined by

Hg(E) = lim
δ↓0
↑ Hg

δ (E) with Hg
δ (E) = inf

∞∑
n=1

g(|Un|),

where |U | denotes the diameter of the setU . Here, the infimum is taken over all sequences
(Un)n≥1 of subsets of Tm satisfying E ⊆

⋃
n Un and |Un| < δ for all n ≥ 1. Moreover,

the symbol ↑ indicates that the value Hg
δ (E) is nondecreasing when δ decreases to zero.

We shall sometimes assume that the gauge function is doubling, that is, g(2r) ≤ Cg(r)
for all r > 0 and some C > 0.

We shall also make use of packing g-measures. Recall that the packing premeasure
associated with a gauge function g is defined by

P g(E) = lim
δ↓0
↓ P

g
δ (E) with P

g
δ (E) = sup

∞∑
n=1

g(|Bn|),

where the supremum is taken over all sequences (Bn)n≥1 of disjoint closed balls of Tm
centered in E and with diameter less than δ. Here, the symbol ↓ indicates that the value



1240 Yann Bugeaud, Arnaud Durand

P
g
δ (E) is nonincreasing when δ decreases to zero. The packing g-measure of a set E is

then defined by

Pg(E) = inf
E⊆

⋃
n Un

∞∑
n=1

P g(Un).

It is known that Pg , as well as Hg , is a Borel measure on the torus Tm. However, the
premeasures P g are only finitely subadditive.

When the gauge function g is of the form r 7→ rs with s > 0, it is customary to write
Hs , P s and Ps for Hg , P g and Pg , respectively. These gauge functions give rise to the
notion of Hausdorff and packing dimensions. To be specific, the Hausdorff dimension of
a nonempty set E ⊆ Tm is defined by

dimH E = sup{s ∈ (0, m) | Hs(E) = ∞} = inf{s ∈ (0, m) | Hs(E) = 0},

with the convention that sup ∅ = 0 and inf∅ = m. Likewise, the packing dimension
dimP E is defined by replacing the Hausdorff measure Hs by the packing measure Ps in
the above formula. Moreover, one recovers the upper box-counting dimension dimB E by
considering the premeasures P s instead of Hs . All these dimensions thus enable one to
give an abridged description of the size properties of E. When the set E is empty, we
adopt the convention that these dimensions are all equal to −∞.

Finally, to make some of our statements more tangible, we often work under the fol-
lowing regularity assumption when considering compact subsets of the circle.

Definition 2.1 (Ahlfors regularity). A compact subset G of the circle is Ahlfors regular
with dimension γ ∈ (0, 1] if there exists a real number c > 0 such that

∀x ∈ G ∀r > 0 rγ /c ≤ Hγ (G ∩ B(x, r)) ≤ crγ ,

where B(x, r) is the open arc centered at x with length 2r .

In view of the mass distribution principle for Hausdorff and packing measures, if a com-
pact set G is Ahlfors regular with dimension γ , then

0 < Hγ (G) ≤ Pγ (G) ≤ P γ (G) <∞,

so that the Hausdorff, box-counting and packing dimensions of G coincide and are all
equal to γ (see [17, 30]). We refer to [12] for more details on Ahlfors regularity and im-
portant examples of regular sets; in particular, it is clear that T is regular with dimension
one and it is well known that the set K is regular with dimension κ given by (1.2).

2.2. Heuristic arguments supporting Conjecture 1.1

Prior to stating rigorous results, let us begin by giving some loose arguments towards
Conjecture 1.1. Note that for large values of µ, i.e. larger than the critical µc defined
by (1.12), the conjectured dimension coincides with the lower bound (1.7) resulting from
the work of Levesley, Salp and Velani [26]. Therefore, the chief novelty brought by Con-
jecture 1.1 concerns the small values of the approximation rate; the main purpose of our
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discussion is then to explain why we expect (1.11) to hold, especially for small values
of µ. We actually focus our heuristic arguments on the upper bound on the Hausdorff
dimension, because it is certainly the easiest to get the feel of.

To begin, note that the density of a given subset R′ of the set R defined by (2.1) may
be measured by means of the parameter

σ(R′) = lim sup
j→∞

1
j

log3 #(R′ ∩Rj ). (2.2)

Here, log3 is the base three logarithm and Rj is the set of pairs (p, q) ∈ R such that
3j ≤ q < 3j+1. Using standard estimates on the growth of Euler’s totient function [2,
Theorem 13.14], one easily checks that log3 #Rj is equivalent to 2j as j → ∞. Thus,
σ(R′) is bounded from above by two, and the closer σ(R′) is to this bound, the denser R′
is in R.

To make the connection with Conjecture 1.1, let us consider the set R0
K formed by

the rational numbers that belong to the Cantor set K , that is,

R0
K = {(p, q) ∈ R | p/q ∈ K}. (2.3)

For any integer j ≥ 1, it is easy to see that the set R0
K ∩ Rj contains the pairs

(2 + 3a1 + · · · + 3j−1aj−1, 3j ) for all possible choices of a1, . . . , aj−1 ∈ {0, 2}. As
a consequence, σ(R0

K) ≥ κ , where κ is the Hausdorff dimension of K (see (1.2)). A re-
cent conjecture of Broderick, Fishman and Reich asserts that there are not considerably
much more elements in R0

K ∩ Rj than those specified above. To be precise, based on
computer simulations, these authors made the following conjecture: for all ε > 0,

#(R0
K ∩R

j ) = O(2(1+ε)j ) as j →∞ (2.4)

(see [7, Conjecture 1]); we also refer to [19] for heuristic arguments supporting this con-
jecture. The validity of (2.4) would straightforwardly imply that

σ(R0
K) = κ. (2.5)

Moreover, let us consider a point ξ in the Cantor setK and a pair (p, q) in the set Rj ,
and assume that d(ξ, p/q) < q−µ. Then it is clear that the pair (p, q) belongs to the set

Rµ,j
K = {(p, q) ∈ Rj

| d(p/q,K) < 3−µj },

where d( · ,K) denotes the distance to the Cantor setK . The points at a distance less than
3−µj fromK form a set with Lebesgue measure of the order of 3(κ−1)µj ; this is due to the
fact thatK is Ahlfors regular with dimension κ . Thus, assuming that the rational numbers
p/q, for (p, q) ∈ Rj , are evenly spread on the circle, this value of the Lebesgue measure
should give the proportion of pairs in Rj that belong to Rµ,j

K . This would imply that
#Rµ,j

K is of the order of 3(2−(1−κ)µ)j , up to logarithmic factors. However, this estimate
is too stringent when µ is large; we must indeed take into account the fact that Rµ,j

K
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necessarily contains R0
K ∩Rj , which gives a lower bound on its cardinality. Combined

with (2.5), the previous arguments result in the following conjecture:

lim sup
j→∞

1
j

log3 #Rµ,j
K ≤ max{2− (1− κ)µ, κ}. (2.6)

Verifying this conjecture would of course require a very good understanding of the dis-
tribution of the rational numbers lying near the Cantor set. The conjecture suggests that
when µ is larger than the critical value µc defined by (1.12), the condition defining Rµ,j

K

becomes so strict that the 3−µj -neighborhood of K cannot contain considerably more
rational numbers than K itself. This is probably what lies at the root of the “phase transi-
tion” phenomenon mentioned in Section 1.

Finally, for any real ε > 0 and any integer j0 ≥ 1, we clearly have

M(µ) ∩K ⊆

∞⋃
j=j0

⋃
(p,q)∈Rµ−ε,j

K

B(p/q, 3−(µ−ε)j ).

We may then apply the Hausdorff–Cantelli lemma, and deduce that the Hausdorff dimen-
sion of M(µ) ∩K is bounded from above by any positive s for which the series

∞∑
j=1

#Rµ−ε,j
K (3−(µ−ε)j )s

converges. Assuming that the conjectured estimate (2.6) holds, and letting ε go to zero,
we end up with the formula given in Conjecture 1.1.

2.3. A doubly metric point of view: rotating the Cantor set

In view of (1.7), the intersection of M(µ) and K cannot be too small, because the ra-
tional endpoints of the Cantor set contribute to its Hausdorff dimension in a very special
way. We believe however that these rational endpoints lose their privileged status in the
approximation when the exponent µ is small. A drastic way of artificially removing this
privileged status is to rotate the Cantor set by a generic angle α; indeed, the endpoints of
the set α + K are generically not rational anymore, and thus may not be used in the ap-
proximation. Here, α +K denotes the image of K under the circle rotation with angle α.
In order to study the size of the intersection of M(µ) with the rotated Cantor set α +K ,
we may adopt a doubly metric point of view: we analyze the set of pairs (ξ, α) in the
torus such that ξ belongs to M(µ)∩ (α+K). We also develop the same approach for the
exponent vb related to the expansion to a given base b ≥ 2. In both cases, the formulae
we obtain for the dimension are similar to those in Conjectures 1.1 and 1.2.

2.3.1. The irrationality exponent. A straightforward adaptation of the arguments of
Weiss [36] and Kristensen [25] implies that the bound (1.8) holds uniformly after ro-
tating the Cantor set by an arbitrary angle; specifically, for every real µ ≥ 2 and every
angle α ∈ T,

dimH(M(µ) ∩ (α +K)) ≤ 2κ/µ.
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However, the next result gives a generic upper bound that is much more stringent than the
above uniform one.

Theorem 2.2. The following holds for Lebesgue almost every angle α ∈ T:

(1) for any irrational point ξ ∈ α +K ,

2 ≤ µ(ξ) ≤
2

1− κ
;

(2) for any µ ∈ [2, 2/(1− κ)],

dimH(M(µ) ∩ (α +K)) ≤ 2/µ+ κ − 1.

Theorem 2.2 shows that the codimension of the intersection of M(µ) and α+K is gener-
ically at least the sum of their codimensions. As mentioned previously, such a situation
is expected to occur when there is no particular interplay between the two sets whose
intersection is being taken (see e.g. [17, Chapter 8]). In other words, the points of the
generically rotated Cantor set do not have a specific status with respect to approximation
by rationals. For small values of the exponent µ, we expect that this observation remains
valid when the Cantor set is not even rotated. As a matter of fact, the bound given by
Theorem 2.2 then matches that of Conjecture 1.1.

The situation is very different for large values of µ. Indeed, the above result ensures
that the Hausdorff dimension of M(µ) ∩ (α + K) is at most zero for generic values
of α, but (1.7) shows that the dimension is positive when α vanishes. Therefore, when
µ is large, the rationals that belong to the Cantor set, or are very close thereto, become
predominant when approximating points of the Cantor set. Still, they lose their privileged
status when the Cantor set is rotated in a generic manner.

Let us now establish Theorem 2.2. This result actually follows from the general state-
ments that we give in Section 3 below. To be more specific, let (pn, qn)n≥1 denote an enu-
meration of the set R for which (qn)n≥1 is nondecreasing. Furthermore, let r = (rn)n≥1
be the sequence defined by rn = 1/qn, and let X = (Xn)n≥1 be the circle valued sequence
defined by Xn = pn/qn−α. Note that when α is uniformly distributed, the points Xn are
uniformly distributed on the circle. It is now clear that we are in the framework considered
in Section 3. Indeed, observe that for any real ε > 0,

M(µ) ∩ (α +K) ⊆ α + (E(X, rµ−ε) ∩K), (2.7)

where E(X, rµ−ε) is defined as in (3.1) and rµ−ε denotes the sequence formed by the real
numbers rµ−εn . Given that K is Ahlfors regular with dimension κ , we have P κ(G) <∞,
and we may apply Theorem 3.1 (see page 1251). In this way, we find that with probability
one,

µ > ε +
2

1− κ
⇒ E(X, rµ−ε) ∩K = ∅,

and for every real s > 0,

s >
2

µ− ε
+ κ − 1 ⇒ Hs(E(X, rµ−ε) ∩K) = 0.

Along with (2.7), these two implications straightforwardly lead to Theorem 2.2.
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For the sake of completeness, let us also give a proof of the above theorem that does
not call upon the general results stated in Section 3. We actually obtain a slightly weaker
statement than Theorem 2.2, namely, for every real µ ≥ 2 and Lebesgue almost every
angle α ∈ T,

dimH(M(µ) ∩ (α +K)) ≤ max{2/µ+ κ − 1, 0}. (2.8)

However, the advantage of this alternative proof is that it exhibits a connection with a
doubly metric statement of independent interest. To proceed, observe that for any angle α,
the set M(µ) ∩ (α +K) may be regarded as the intersection of

M×(µ) = {(ξ, α) ∈ T2
| ξ ∈ α +K and µ(ξ) ≥ µ}.

with the line on T2 formed by the points with second coordinate α. Thus, applying a
classical slicing result [17, Corollary 7.10], we deduce that for Lebesgue almost every
α ∈ T,

dimH(M(µ) ∩ (α +K)) ≤ max{dimH M×(µ)− 1, 0}.

In order to obtain (2.8), we are thus reduced to estimating the Hausdorff dimension of
M×(µ), which is the purpose of the next statement.

Proposition 2.3. For any real µ ≥ 2,

dimH M×(µ) = 2/µ+ κ.

Proof. To begin, observe that the mapping 9 : (ξ, α) 7→ (ξ − α, α) from T2 onto itself
is bi-Lipschitz and satisfies

9(M×(µ)) = {(ξ, α) ∈ T2
| ξ ∈ K and α ∈ −ξ +M(µ)}.

Hence, M×(µ) has the same Hausdorff dimension as the above set, which is easier to
handle. Moreover, K is Ahlfors regular with dimension κ , so we may adapt the proof
of [17, Proposition 7.9] to show that for all s > κ , there exists a constant c > 0, depending
only on K and s, such that for any Borel subset E of T2,

Hs(E) ≥ c

∫
K

Hs−κ(E ∩ Lξ0)H
κ(dξ0),

where Lξ0 is the set of points (ξ, α) ∈ T2 such that ξ = ξ0. We now apply this result to
the set9(M×(µ)). It is easy to see that for each ξ0 ∈ T, there is a simple isometry which
maps the intersection of this last set with Lξ0 onto {0} ×M(µ). Consequently,

Hs(9(M×(µ))) ≥ cHs−κ(M(µ))Hκ(K).

If s− κ < 2/µ, we deduce from (1.3) that Hs−κ(M(µ)) is infinite, so that the Hausdorff
measure on the left-hand side is infinite as well. It follows that the Hausdorff dimension
of M×(µ) is bounded from below by 2/µ+ κ .

For the reverse inequality, it suffices to find an appropriate covering of 9(M×(µ)).
Fix a positive real number ε and a point (ξ, α) in this last set. The irrationality exponent
of α + ξ is then larger than µ − ε, so that for any integer q0 ≥ 1, there is a rational
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number p/q with denominator at least q0 such that d(α + ξ, p/q) < q−µ+ε. Moreover,
let j (q) be the integer part of the base three logarithm of qµ−ε/2. The set K is naturally
covered by 2j (q) closed arcs with length 3−j (q); let xj (q),0, . . . , xj (q),2j (q)−1 denote their
centers. Given that ξ ∈ K , we have d(ξ, xj (q),k) ≤ 3−j (q)/2 for some k. Furthermore,
making use of the triangle inequality, we deduce that

d(α, p/q − xj (q),k) ≤ d(p/q − α, ξ)+ d(ξ, xj (q),k) < q−µ+ε + 3−j (q)/2 ≤ 3−j (q).

If T2 is equipped with the product distance, it follows that (ξ, α) belongs to the open ball
with radius 3−j (q) centered at (xj (q),k, p/q − xj (q),k), which is denoted by Bq,p,k . As a
result, for any ε > 0 and q0 ≥ 1,

9(M×(µ)) ⊆

∞⋃
q=q0

q−1⋃
p=0

2j (q)−1⋃
k=0

Bq,p,k.

Let s and δ be positive real numbers. For q0 large enough, we deduce from the above
covering that

Hs
δ(9(M

×(µ))) ≤

∞∑
q=q0

q2j (q)(2 · 3−j (q))s ≤ 3s22s−κ
∞∑
q=q0

q1+(µ−ε)(κ−s),

and the last series converges when s > 2/(µ− ε)+ κ . The required upper bound on the
Hausdorff dimension of M×(µ) now follows straightforwardly. ut

2.3.2. The exponents vb. Given an integer b ≥ 2 and a real v ≥ 0, the above method
enables one to study the size properties of the set

V×b (v) = {(ξ, α) ∈ T2
| ξ ∈ α +K and vb(ξ) ≥ v},

which is the analog of M×(µ) for the exponent vb related to the expansion to base b. To
be precise, making obvious changes in the last proof, one easily checks that

dimH V×b (v) =
1

v + 1
+ κ.

As a consequence, for almost every angle α ∈ T in the sense of Lebesgue measure, we
also plainly have

dimH(Vb(v) ∩ (α +K)) ≤ max
{

1
v + 1

+ κ − 1, 0
}
. (2.9)

Again, this bound is much more stringent than the uniform bound which follows from the
arguments of Weiss [36] and Kristensen [25], specifically,

∀α ∈ T dimH(Vb(v) ∩ (α +K)) ≤
κ

v + 1
.

Finally, making use of the results of Section 3, we may establish the following analog of
Theorem 2.2, thereby obtaining a slightly more precise statement than (2.9).
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Theorem 2.4. Let b ≥ 2 be an integer. The following holds for Lebesgue almost every
angle α ∈ T:

(1) for any ξ ∈ α +K ,
0 ≤ vb(ξ) ≤

κ

1− κ
;

(2) for any v ∈ [0, κ/(1− κ)],

dimH(Vb(v) ∩ (α +K)) ≤
1

v + 1
+ κ − 1. (2.10)

When b = 3, the above result is of course in stark contrast with the formula (1.6) obtained
by Levesley, Salp and Velani, which corresponds to the case of the original Cantor set
where α = 0. This is again due to the fact that the endpoints of the Cantor set, which are
triadic rational numbers, lose their privileged role in approximation when the Cantor set
is rotated.

When b is not a power of three, it is expected that there is very little interaction
between the expansions to the bases b and three. Hence, the points of the Cantor set
should not have particular properties with respect to approximation by b-adic rationals.
Therefore, the Hausdorff dimension of Vb(v)∩ (α+K) should be the same for α = 0 and
for a generic value of α. Conjecture 1.2 is thus equivalent to the fact that Theorem 2.4 is
still valid when α vanishes, and that (2.10) is not only an upper bound, but an equality.

2.4. Conjecture 1.1 holds for a probabilistic counterpart of the irrationality exponent

As mentioned in Section 1, from the viewpoint of metric number theory, the points with
rational coordinates and a sequence of random points chosen independently and uni-
formly in a given nonempty compact set share a lot of properties: they both lead to ho-
mogeneous ubiquitous systems, and to a variety of sets which share the same size and
large intersection properties (see [13, 15] and the references therein). Starting from this
remark, we shall replace the approximating rational numbers by a sequence of random
points which is intended to mimic the distribution of rational numbers and to take into
account the fact that some rational numbers fall into the Cantor set exactly, or are very
close to it; we shall then show that Conjecture 1.1 is satisfied for this random model.

Let us now detail our model. Let RK denote a subset of the set R defined by (2.1).
To make the connection with Conjecture 1.1, we intend the set RK to contain the pairs
(p, q) in R such that the rational number p/q is exactly in K , or very close thereto. In
particular, we intend RK to contain the set R0

K defined by (2.3). For this reason, and in
view of (2.5), we assume from now on that RK is a subset of R that satisfies

σ(RK) = κ. (2.11)

We may now consider a family (Yp,q)(p,q)∈R of independent random variables on the
circle such that:

• if (p, q) ∈ RK , then Yp,q is uniformly distributed in K with respect to the κ-dimen-
sional Hausdorff measure restricted to K;
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• if (p, q) 6∈ RK , then Yp,q is uniformly distributed in T with respect to the Lebesgue
measure.

Instead of considering approximation by rational numbers, we shall study approximation
by these random points Yp,q . Specifically, we are interested in the size properties of the
random subsets F(µ) of T defined by

F(µ) = {ξ ∈ T | d(ξ, Yp,q) < q−µ for i.m. (p, q) ∈ R}. (2.12)

The mapping µ 7→ F(µ) is obviously nonincreasing, and for any ξ ∈ T, we may define

µ•(ξ) = sup{µ ≥ 0 | ξ ∈ F(µ)}, (2.13)

which is the analog of the irrationality exponent for approximation by the random
points Yp,q .

The philosophy behind the above random model is the following. We believe that the
pairs (p, q) ∈ R such that p/q is exactly in, or very close to, the Cantor set K form a
set with density parametrized by κ . Thus, we choose a subset RK of R that is intended
to contain those pairs, and we assume that (2.11) holds. In particular, RK has low density
in R. We then randomize the situation: we replace the vast majority of rational numbers
by random points that are chosen uniformly in the circle T, and we also introduce a
slight bias in the distribution in the sense that the rational numbers that are indexed by
a pair in RK are replaced by random points that are chosen uniformly in K . The rate of
approximation q−µ is left unchanged.

With the help of the results obtained in Section 4 below, we may now establish Con-
jecture 1.1 above in this randomized situation. This amounts to proving that (1.11) holds
when the set M(µ) is replaced by its random counterpart

M•(µ) = {ξ ∈ T | µ•(ξ) ≥ µ};

this results in the following statement. Note that we may apply the results of Section 4
because the set K is Ahlfors regular with dimension κ .

Theorem 2.5. The following holds with probability one:

(1) for any ξ ∈ K ,
µ•(ξ) ≥ 2;

(2) for any real µ ≥ 2,

dimH(M•(µ) ∩K) = max{2/µ+ κ − 1, κ/µ}.

The remainder of this section is devoted to the proof of Theorem 2.5, modulo Proposi-
tions 4.1 and 4.4. Let FK(µ) and F

K{(µ) denote the sets obtained when replacing R
by RK and its complement R{

K , respectively, in the definition (2.12) of F(µ). Then we
may decompose this last set as

F(µ) = FK(µ) ∪ FK{(µ).
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Note that the above union is not necessarily disjoint. This enables us to rewrite µ•(ξ) in
the form

µ•(ξ) = max{µ•K(ξ), µ
•

K{(ξ)},

whereµ•K(ξ) andµ•
K{(ξ) are defined by replacing F(µ) in (2.13) by FK(µ) and F

K{(µ),
respectively. The proof of Theorem 2.5 now reduces to showing the next two lemmas.

Lemma 2.6. The following holds with probability one:

(1) for any ξ ∈ K ,
µ•K(ξ) ≥ 1;

(2) for any real µ ≥ 1,
dimH{ξ ∈ K | µ

•

K(ξ) ≥ µ} = κ/µ.

Proof. Let X = (Xn)n≥1 be a sequence of random points that are independently and
uniformly distributed in the Cantor set K , and r = (rn)n≥1 be the sequence defined by
rn = 1/qn, where (pn, qn)n≥1 is an enumeration of RK for which (qn)n≥1 is nonde-
creasing. Note that (4.1) holds with ρ = σ(RK), because of the definition (2.2) of this
parameter. It is now easy to see that the sets FK(µ) are distributed as the sets E(X, rµ)
defined as in (3.1). As a consequence, µ•K(ξ) is distributed as νX,r(ξ). The result follows
from Proposition 4.4 below, along with (2.11). ut

Lemma 2.7. The following holds with probability one:

(1) for any ξ ∈ K ,

2 ≤ µ•
K{(ξ) ≤

2
1− κ

;

(2) for any µ ∈ [2, 2/(1− κ)],

dimH{ξ ∈ K | µ
•

K{(ξ) ≥ µ} = 2/µ+ κ − 1.

Proof. The proof is very similar to that of Lemma 2.6. Let X = (Xn)n≥1 denote a se-
quence of random points that are independently and uniformly distributed in T, and let
r = (rn)n≥1 be defined by rn = 1/qn, where (pn, qn)n≥1 is an enumeration of R{

K for
which qn is nondecreasing. One easily checks that (4.1) holds with ρ = 2 and that the sets
F
K{(µ) are distributed as the sets E(X, rµ). Hence, the exponent µ•

K{(ξ) is distributed as
νX,r(ξ), and it just remains to apply Proposition 4.1 below. ut

The above approach is quite flexible in the sense that (2.11) may be adapted in order to
fit the true value of σ(R0

K). In accordance with Broderick, Fishman and Reich [7], we
conjectured above that σ(R0

K) is equal to κ . This led us to assume (2.11), and then to
prove Conjecture 1.1 above for the present random model. However, the authors of [7]
formulated a weaker conjecture than (2.4) for which they have even stronger evidence,
namely that there exists a real number ς < 2 such that

#(R0
K ∩R

j ) = O(2ςj ) as j →∞

(see [7, Conjecture 2]). The last bound would readily imply that σ(R0
K) is between κ

and κς . This entices us to relax (2.11) by just assuming that the set RK satisfies

κ ≤ σ(RK) < 2κ.



Diophantine approximation on the Cantor set 1249

Inspecting the above proofs, it is easy to see that Theorem 2.5(1) still holds under this
weaker assumption, whereas Theorem 2.5(2) has to be replaced by the following state-
ment: for any µ ≥ 2,

dimH(M•(µ) ∩K) = max{2/µ+ κ − 1, σ (RK)/µ}.

In particular, the validity of Conjecture 1.1 for the random model is equivalent to that
of (2.11).

2.5. A probabilistic counterpart of the exponents vb and its connections with
Conjecture 1.2

Let us now modify the preceding ideas in order to put forward a randomized situation that
is adapted to the exponents vb. In this way, we shall derive an analog of the dimension
result (1.6) of Levesley, Salp and Velani [26] when b is a power of three, and give some
probabilistic arguments leading to Conjecture 1.2 otherwise.

For any integer j ≥ 1, let Kj denote the set of all integers k ∈ {0, . . . , bj − 1}
such that gcd(k, bj ) = 1. Furthermore, let KjK denote the set of all k ∈ Kj for which
the rational number kb−j is in the Cantor set K . Now, given j ≥ 1 and k ∈ Kj , we
consider a random point Yj,k that is uniformly distributed in K if k ∈ KjK , and uniformly
in T otherwise. We also assume that the points Yj,k are independently distributed. This
enables us to introduce the sets

Fb(v) = {ξ ∈ T | d(ξ, Yj,k) < b−(v+1)j for i.m. j ≥ 1 and k ∈ Kj },

as well as, for any ξ ∈ T, the exponent

v•b(ξ) = sup{v ∈ R | ξ ∈ Fb(v)},

which may be seen as a probabilistic counterpart of vb. Thus, in this randomized setting,
the analogs of the sets Vb(v) defined by (1.5) are just

V•b (v) = {ξ ∈ R | v•b(ξ) ≥ v}.

2.5.1. Case where b is a power of three. In that situation, for any integer j ≥ 1, there
are 2bj/3 integers in the set Kj . Moreover, there are exactly bκj rational numbers with
reduced denominator bj in the Cantor set K . In other words, KjK has cardinality bκj .
Making the obvious changes to the proof of Theorem 2.5, we easily deduce the following
statement.

Theorem 2.8. Let b be a power of three. The following holds with probability one:

(1) for any ξ ∈ K ,
v•b(ξ) ≥ 0;

(2) for any real v ≥ 0,
dimH(V•b (v) ∩K) =

κ

v + 1
.
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When b = 3, we thus recover the same formula for the Hausdorff dimension as in the
original context of approximation by triadic rational numbers, that is, just the formula for
the exponent v3 (see (1.6)).

2.5.2. Case where b is not a power of three. Here, the cardinality of Kj is again of the
order of bj ; specifically, it is equal to bj times the product of 1 − 1/p where p ranges
over the prime factors of b. However, we do not know the cardinality of KjK anymore.
It is believed that the base b representation is essentially independent of that in base
three, on which the construction ofK heavily relies; this entices us to make the following
conjecture: for all ε > 0,

#KjK = O(2εj ) as j →∞. (2.14)

Assuming that (2.14) holds, and adapting the proof of Theorem 2.5, we then infer that
almost surely, for any ξ ∈ K , the exponent v•b(ξ) is nonnegative. Moreover, with proba-
bility one, for any real v,

0 ≤ v ≤
κ

1− κ
⇒ dimH(V•b (v) ∩K) =

1
v + 1

+ κ − 1, (2.15)

and
v >

κ

1− κ
⇒ dimH(V•b (v) ∩K) ≤ 0. (2.16)

In particular, with probability one, the set of points ξ in K for which v•b(ξ) ≥ κ/(1− κ)
is nonempty. Moreover, the discussion that precedes Proposition 4.1 actually implies that
this set is dense in K .

The above approach does not enable us to determine whether or not the dimension
in (2.16) is zero, that is, whether or not there exists ξ ∈ K such that v•b(ξ) ≥ v, when
v > κ/(1−κ). However, a straightforward adaptation of the proof of Theorem 2.5 implies
that

∞∑
j=1

#KjK <∞ ⇒ a.s. ∀ξ ∈ K v•b(ξ) ≤
κ

1− κ
.

Thus, under a much stronger assumption than (2.14), our method shows that the dimen-
sion in (2.16) is−∞. In any case, deciding whether or not this dimension is zero certainly
requires much more information on KjK than just (2.14).

As regards the original exponent vb, we suspect that the dimension in (2.16) is equal
to −∞, meaning that vb is bounded from above by κ/(1 − κ) on the Cantor set K .
Combined with (2.15), this is what led us to Conjecture 1.2 above.

3. Approximation by uniform random points: general results

The purpose of this section is to study the situation in which the sequence of approximat-
ing points is chosen at random. For convenience, we work again on the circle T = R/Z,
endowed with the usual quotient distance d. Given a sequence X = (Xn)n≥1 of random
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variables in T and a sequence r = (rn)n≥1 of real numbers in (0, 1], consider the random
subset E(X, r) of T defined by

E(X, r) = {ξ ∈ T | d(ξ,Xn) < rn for i.m. n ≥ 1}, (3.1)

and consisting of the points that are approximated at a rate given by rn by the random
pointsXn. Our purpose is to study the probability that E(X, r) intersects a given nonempty
compact set G ⊆ T, and to describe the size of the intersection when it is nonempty.
Such a description will be obtained by studying the Hausdorff measure of E(X, r) ∩ G.
Throughout this section, we assume that the random points Xn are uniformly distributed
on the circle T.

3.1. Size of the intersection with a compact set: upper bounds

At this point, we do not make any assumption on the correlations between these random
points. Our first result gives an upper bound on the size of the intersection of the random
set E(X, r) with a fixed compact set G whose size is controlled in terms of the finiteness
of certain packing premeasures. We refer to Section 7.1 for its proof.

Theorem 3.1. Let G denote a nonempty compact subset of the circle, and let g be a
doubling gauge function such that P g(G) <∞.

(1) The following holds:
∞∑
n=1

rn

g(rn)
<∞ ⇒ a.s. E(X, r) ∩G = ∅.

(2) For any doubling gauge function h,
∞∑
n=1

h(rn)rn

g(rn)
<∞ ⇒ a.s. Hh(E(X, r) ∩G) = 0.

3.2. Size of intersection with a compact set: lower bounds under a weak dependence
condition

Our purpose is now to give a converse to Theorem 3.1(1), under the assumption that the
random approximating points Xn are independent or somewhat close to being so, in the
following sense. First, for any sequence B = (Bn)n≥1 of Borel subsets of T with positive
Lebesgue measure, set

θ(X,B) = sup
n≥1

P(X1 ∈ B1, . . . , Xn ∈ Bn)

P(X1 ∈ B1) · . . . · P(Xn ∈ Bn)
.

Clearly, θ(X,B) is always at least one, and is equal to one regardless of the choice of B
when the variables Xn are independent. A way of relaxing the independence assumption
is then to impose a control on the maximal ratios θ(X,B) by supposing that

2(X,B) = sup
B∈B

θ(X,B) <∞, (3.2)
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where B denotes an appropriately chosen collection of sequences of Borel sets. Note that
the above condition gets more stringent as B becomes larger.

The collection on which we shall impose control is denoted by B(r) and is defined
as follows in terms of the sequence r that gives the approximation rate. For any k ∈
{0, . . . , qn − 1}, let In,k denote the image of the interval [k/qn, (k + 1)/qn) under the
projection modulo one. Here, we choose qn to be equal to d1/rne, where d · e stands for
the ceiling function. Then B(r) is defined as the collection of all sequences of the form
(In,kn)n≥1, where (kn)n≥1 is a sequence of nonnegative integers satisfying kn < qn.

Our assumption on the joint law of the points Xn is finally that 2(X,B(r)) is fi-
nite. When the points Xn are independent, this condition is clearly satisfied because then
2(X,B(r)) = 1 for all r. Furthermore, if the series

∑
n rn converges, then the above

finiteness assumption is equivalent to the existence of a positive real number C such that

P
( v⋂
n=1

{Xn ∈ In,kn}
)
≤ C

v∏
n=1

rn

for any integer v ≥ 1 and any choice of the integers kn ∈ {0, . . . , qn − 1}, because the
pointsXn are uniformly distributed. Our converse to Theorem 3.1(1) is now the following
result, which is proven in Section 7.2.

Theorem 3.2. Let G denote a nonempty compact subset of T, and let g be a gauge
function such that Hg(G) > 0. Then{

2(X,B(r)) <∞∑
n rn/g(rn) = ∞

⇒ a.s. E(X, r) ∩G 6= ∅.

The last result of this section gives a partial converse to Theorem 3.1(2), under the same
assumption as in the preceding result, i.e. the finiteness of2(X,B(r)). Before stating this
result, let us consider a compact subsetG of the circle with positive Hausdorff g-measure
for a given gauge function g. The set E(X, r) ∩ G is clearly smaller than G. Thus, in
order to describe its size in terms of generalized Hausdorff measures, we may restrict
our attention to the gauge functions h that increase faster than g in the sense that g/h
monotonically tends to zero at the origin. An expected converse to Theorem 3.1(2) is
then the following:

∞∑
n=1

h(rn)rn

g(rn)
= ∞ ⇒ a.s. Hh(E(X, r) ∩G) > 0. (3.3)

Theorem 3.3 below gives a slightly weaker form of this statement. In fact, we make the
additional assumption that h increases faster than g, with respect to a third gauge func-
tion ϕ which is used as a proxy for g/h in the divergence condition above. To be more
precise, given three gauge functions g, h and ϕ, we say that h increases ϕ-faster than g,
and we write h ≺ϕ g, when g/h monotonically tends to zero at the origin and satisfies

∞∑
j=1

g(2−j )
h(2−j )

(
1

ϕ(2−j )
−

1
ϕ(2−(j−1))

)
<∞. (3.4)

In that case, note that g/h coincides with a gauge function near zero.
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Theorem 3.3. Let G denote a nonempty compact subset of T, and let g be a gauge
function such that Hg(G) > 0. Then, for any gauge functions h and ϕ such that h ≺ϕ g,{

2(X,B(r)) <∞∑
n rn/ϕ(rn) = ∞

⇒ a.s. Hh(E(X, r) ∩G) > 0.

Theorem 3.3 follows straightforwardly from Theorem 3.2 with the help of Lemma 3.4
below. Indeed, in view of this lemma, it suffices to show that E(X, r) intersects every
compact subset of the circle with positive Hausdorff ϕ-measure, a fact that follows from
Theorem 3.2, since 2(X,B(r)) is finite and

∑
n rn/ϕ(rn) diverges.

Lemma 3.4. Let E be a random subset of the circle and assume that there exists a gauge
function ϕ such that for any compact set G ⊆ T,

Hϕ(G) > 0 ⇒ a.s. E ∩G 6= ∅.

Then, for any compact set G ⊆ T and any gauge function g,

Hg(G) > 0 ⇒ ∀h ≺ϕ g a.s. Hh(E ∩G) > 0.

Lemma 3.4 can be seen as an extension of [22, Lemma 3.4] to general Hausdorff mea-
sures. Its proof, given in Section 7.3, relies on the remarkable properties satisfied by a
family of compact sets obtained via a variant of Mandelbrot’s fractal percolation process
that we introduce and study in Section 8.

Let us point out a very simple situation in which the condition h ≺ϕ g defined by (3.4)
is satisfied: it suffices to assume that h increases faster than g in the sense that h/g is
monotonic near zero and satisfies∫ 1

0

h(r)

g(r)
π(dr) = ∞

for some probability measure π on (0, 1]. Note that h may nevertheless be very close to
g near zero because the probability measure π may well concentrate its mass near this
point: for instance, if h(r) = g(r)(log◦p(1/r))ε for some ε > 0 and p ≥ 1, where
log◦p denotes the p-th iterate of the logarithm, then the gauge functions satisfy the above
condition. Now, it is straightforward to check that (3.4) holds if ϕ is a gauge function such
that

1
ϕ(s)
−

1
ϕ(1)

=

∫
r∈(s,1]

h(r)

g(r)
π(dr)

for all s ∈ (0, 1]. Moreover, when ϕ is chosen as above, the Fubini–Tonelli theorem
ensures that

∞∑
n=1

rn

ϕ(rn)
≥

∫ 1

0

h(r)

g(r)

( ∞∑
n=1

rn1{rn<r}

)
π(dr).

As a consequence, assuming the finiteness of2(X,B(r)) and considering a compact setG
with positive Hausdorff g-measure, Theorem 3.3 implies that∫ 1

0

h(r)

g(r)

( ∞∑
n=1

rn1{rn<r}

)
π(dr) = ∞ ⇒ a.s. Hh(E(X, r) ∩G) > 0.
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Note that the divergence of this integral implies that of the series in the statement of Theo-
rem 3.1(2). The above result is therefore slightly weaker than the expected converse (3.3)
to this theorem. To be specific, our approach leaves open the case in which the series
diverges, but the above integral is convergent for every possible choice of the probability
measure π .

4. Application to approximation by independent points

4.1. Uniform distribution in the circle and intersection with a regular set

As before, we suppose that the approximating points Xn are uniformly distributed in the
circle T. In addition, we assume that these points are independent random variables. In
particular, the maximal ratios 2(X,B) defined by (3.2) are equal to one, and the weak
dependence assumption that we made in order to derive the lower bounds in the previous
section is plainly satisfied. As a consequence, all the results stated in Section 3 apply in
the present setting.

Our purpose is now to deduce from these results simpler statements that only involve
Hausdorff dimensions and a probabilistic analog of the irrationality exponent that is de-
fined as follows. To proceed, let us make two additional assumptions on the sequence
r = (rn)n≥1 of approximation radii. First, since the joint law of the approximating points
Xn is invariant under rearrangement, there is no loss of generality in assuming that the se-
quence r is nonincreasing. Second, we suppose that there exists a critical value ρ ∈ (0,∞)
such that {

ν < ρ ⇒
∑
n r

ν
n = ∞,

ν > ρ ⇒
∑
n r

ν
n <∞.

(4.1)

For any real ν ≥ 0, let rν denote the sequence (rνn )n≥1, so that E(X, rν) is obtained by
replacing rn by rνn in the definition (3.1). Observe that the mapping ν 7→ E(X, rν) is
nonincreasing. Therefore, for any ξ ∈ T, we may define

νX,r(ξ) = sup{ν ≥ 0 | ξ ∈ E(X, rν)};

this may be seen as the analog of the irrationality exponent for approximation by the
random points Xn with the rates rn.

Given that the points Xn are independently and uniformly distributed, we may apply
Shepp’s theorem on Dvoretzky’s covering problem [34], thus inferring that with proba-
bility one, the set E(X, rν) is the whole circle when ν is smaller than the critical value ρ
defined by (4.1). As a result,

a.s. ∀ξ ∈ T νX,r(ξ) ≥ ρ. (4.2)

Moreover, Corollary 1 in [15] yields the value of the Hausdorff dimension of the set
E(X, rν): with probability one, for all ν ≥ ρ,

dimH E(X, rν) = ρ/ν,
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from which it is straightforward to deduce that

a.s. ∀ν ≥ ρ dimH{ξ ∈ T | νX,r(ξ) ≥ ν} = ρ/ν. (4.3)

In order to make our statements even more concrete, we further assume that the com-
pact set G with which the intersections are taken is Ahlfors regular with dimension γ in
(0, 1] (see Definition 2.1). Applying Theorems 3.1 and 3.2, we infer that

P(E(X, rν) ∩G 6= ∅) =

{
1 if (1− γ )ν < ρ,

0 if (1− γ )ν > ρ.
(4.4)

Moreover, Theorems 3.1 and 3.3 ensure that if (1− γ )ν < ρ, then with probability one,

dimH(E(X, rν) ∩G) = ρ/ν + γ − 1. (4.5)

Here, we recover two results obtained recently by Li, Shieh and Xiao [27]. More precisely,
building on the study of the limsup random fractals performed in [22], these authors
computed the hitting probabilities of the random set E(X, rν), and the Hausdorff and
packing dimensions of its intersection with a fixed analytic set (see in particular [27,
Theorem 1.1 and Corollary 1.5]).

When (1 − γ )ν 6= ρ, we straightforwardly deduce that the right-hand side of (4.4)
gives the probability that νX,r(ξ) ≥ ν for some ξ ∈ G. The critical case where
(1 − γ )ν = ρ does not explicitly follow from either Theorems 3.1 and 3.2 above or
the results of [27]. However, inspecting the proof of Theorem 3.2, we see that the sets
E(X, rν−ε) ∩G, for ε > 0, are almost surely dense in the complete metric space G. Tak-
ing the intersection of these sets over a sequence (εn)n≥1 converging to zero, and applying
the Baire category theorem, we deduce that the set of points ξ ∈ G such that νX,r(ξ) ≥ ν

is almost surely dense inG as well, hence nonempty. Furthermore, one easily checks that
the right-hand side of (4.5) also gives the Hausdorff dimension of this set. Thus, we end
up with the next statement.

Proposition 4.1. Let G be a compact subset of T, and assume that G is regular with
dimension γ ∈ (0, 1]. If the variables Xn are independently and uniformly distributed
in T, then

a.s. ∀ξ ∈ G ρ ≤ νX,r(ξ) ≤
ρ

1− γ
.

Moreover, for any real ν ≥ ρ such that (1− γ )ν ≤ ρ,

a.s. dimH{ξ ∈ G | νX,r(ξ) ≥ ν} = ρ/ν + γ − 1.

The above result shows that the maximal rate at which the points of a regular set may be
approximated by a sequence of independently and uniformly distributed points is directly
controlled by the size of the set; indeed, the value of γ induces a specific limitation on
the rate with which the points in G may be approximated.

In addition, combined with (4.3), the previous result ensures that if (1−γ )ν ≤ ρ, then
the Hausdorff codimension of the intersection of the set of all ξ ∈ T with νX,r(ξ) ≥ ν and
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the set G is the sum of their codimensions. Such a behavior is expected to be somewhat
generic and is in stark contrast with the special situation of sets with large intersection
(sometimes also termed intersective sets) where the Hausdorff dimension of the inter-
section of the sets is equal to the minimum of their dimensions; we refer to [17, Chap-
ter 8], and to [10, 13, 16] for details. Let us mention here that the set of all ξ ∈ T with
νX,r(ξ) ≥ ν is known to be almost surely intersective, as a consequence of [15, Theo-
rem 2]. In addition, when γ < 1, the setG cannot be intersective (because an intersective
subset of R has packing dimension 1, see [16]), and this is consistent with the observation
that

dimH{ξ ∈ G | νX,r(ξ) ≥ ν} = dimH{ξ ∈ T | νX,r(ξ) ≥ ν} + dimHG− 1

< min
{
dimH{ξ ∈ T | νX,r(ξ) ≥ ν}, dimHG

}
with probability one, under the further assumption that ν > ρ.

4.2. Uniform distribution in a regular set

We now suppose that the variables Xn are uniformly distributed in a given compact sub-
set G of the circle that is assumed to be regular with dimension γ ∈ (0, 1]. The common
law of the random variables Xn is thus the normalized γ -dimensional Hausdorff measure
restricted to G. It is clear that the sets E(X, rν) are contained in G, so that νX,r(ξ) = 0
when ξ /∈ G. In addition, we have the following lower bound on νX,r(ξ) when ξ is in G:

a.s. ∀ξ ∈ G νX,r(ξ) ≥ ρ/γ .

This bound generalizes (4.2) and follows directly from the next lemma.

Lemma 4.2. If γ ν < ρ, then E(X, rν) = G with probability one.

Proof. Let ε > 0 with γ ν(1 + ε) < ρ. In view of (4.1), there exists an infinite set N
of integers n such that rn ≥ n−(1+ε)/ρ . Given n ∈ N , consider a collection of points
ξ1, . . . , ξun in G such that the arcs B(ξj , n−1/γ /2) are disjoint, and assume that un is
maximal with this property. The arcs B(ξj , n−1/γ ) then cover G, so that

G 6⊆

n⋃
i=1

B(Xi, rνi ) ⇒ ∃j ξj 6∈

n⋃
i=1

B(Xi, r ′n),

where r ′n = r
ν
n − n

−1/γ . Since the random points Xi are independent, this yields

P
(
G 6⊆

n⋃
i=1

B(Xi, rνi )
)
≤

un∑
j=1

n∏
i=1

(1− P(ξj ∈ B(Xi, r ′n))). (4.6)

Moreover, the points Xi are uniformly distributed in the regular set G, so that

P(ξj ∈ B(Xi, r ′n)) =
Hγ (G ∩ B(ξj , r ′n))

Hγ (G)
≥

(r ′n)
γ

cHγ (G)
.
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The fact that G is regular with dimension γ also implies that un ≤ c′n for some constant
c′ > 0. We deduce that the right-hand side of (4.6) is bounded from above by

c′n exp
(
−
n(r ′n)

γ

cHγ (G)

)
≤ c′n exp(−c′′n1−γ ν(1+ε)/ρ)

for some other constant c′′ > 0. Finally, letting n tend to infinity through N , we deduce
that

P
(
G 6⊆

∞⋃
i=1

B(Xi, rνi )
)
= 0.

In other words, the arcs B(Xi, rνi ), for i ≥ 1, cover G with probability one. For any fixed
i0 ≥ 1, we can obviously reproduce the same reasoning, considering only the arcs indexed
by i ≥ i0, so these arcs also suffice to cover G almost surely. The result follows. ut

The case γ ν ≥ ρ is not covered by the previous result, and it is then natural to ask about
the size of E(X, rν). The next statement gives a simple answer.

Lemma 4.3. If γ ν ≥ ρ, then dimH E(X, rν) = ρ/ν with probability one.

Proof. The upper bound follows from the obvious fact that E(X, rν) is covered by the
arcs B(Xn, rνn ) for n larger than any given integer. To be specific, for ε > 0 and n0 ∈ N
such that 2rνn0

< ε, it is clear that Hs
ε(E(X, rν)) is bounded from above by

∑
n≥n0

(2rνn )
s .

In view of (4.1), this series converges for νs > ρ. Letting n0 tend to infinity and ε go to
zero, we then deduce that Hs(E(X, rν)) = 0.

To prove the lower bound, let s > 0 be such that νs < ρ. By Lemma 4.2, E(X, rνs/γ )
coincides with the whole set G with probability one. Given that G is regular with dimen-
sion γ , the general mass transference principle of Beresnevich and Velani then ensures
that E(X, rν) has Hausdorff dimension at least s (see [4, Theorem 3]). ut

It is now straightforward to deduce from the previous lemma the following generalization
of (4.2) and (4.3), which should be compared with Proposition 4.1.

Proposition 4.4. Let G be a compact subset of T, and assume that G is regular with
dimension γ ∈ (0, 1]. If the variables Xn are independently and uniformly distributed
in G, then

a.s. ∀ξ ∈ G νX,r(ξ) ≥ ρ/γ .

Moreover, for any real ν ≥ ρ/γ ,

a.s. dimH{ξ ∈ G | νX,r(ξ) ≥ ν} = ρ/ν.

5. Application to approximation by fractional parts

Let { · } stand for the fractional part function. Identifying the circle T with the interval
[0, 1), we may also regard the mapping x 7→ {x} as the projection modulo one from R
onto T. The purpose of this section is to apply the general results stated in Section 3 to the
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situation where the approximating pointsXn are of the form {anX}, where a = (an)n≥1 is
a sequence of positive integers and X is a point uniformly distributed in [0, 1). It is easy
to see that we match the general framework of Section 3: the random points Xn = {anX}
are clearly uniformly distributed on the circle. This is due to the well known fact that,
for any integer m ≥ 1, the transformation x 7→ {mx} preserves the Lebesgue measure
on [0, 1).

Given a sequence r = (rn)n≥1 of real numbers in (0, 1], the random subset of the
circle defined by (3.1) is now of the form

G(a, r) = {ξ ∈ T | d(ξ, {anX}) < rn for i.m. n ≥ 1}.

All the hypotheses of Theorem 3.1 are fulfilled, so we may directly apply it to G(a, r). In
order to apply the other results of Section 3, we need to show that the weak dependence
condition is satisfied.

We shall show that if the sequence a = (an)n≥1 grows sufficiently fast, then the
random points {anX} are close enough to being independent to ensure that all the results
of Section 3 apply. Specifically, using the notation of Section 3.2, this amounts to showing
the finiteness of 2(({anX})n≥1,B(r)) when the integers an grow fast enough. This is the
purpose of the next result.

Proposition 5.1. For any sequence a = (an)n≥1 of positive integers and any sequence
r = (rn)n≥1 of real numbers in (0, 1],

2(({anX})n≥1,B(r)) ≤ 3 exp
(

4
∞∑
n=1

an

rnan+1

)
.

Proof. Making use of the notation of Section 3.2, let qn = d1/rne and let In,k denote the
image of the interval [k/qn, (k + 1)/qn) under the projection onto the circle. Then

2(({anX})n≥1,B(r)) = sup
k

sup
v≥1

P
( v⋂
n=1

{
{anX} ∈ In,kn

}) v∏
n=1

qn,

where the outer supremum is taken over all sequences k = (kn)n≥1 of nonnegative in-
tegers less than qn. Since the random variables {anX} are uniformly distributed on the
circle, the probability above is equal to∫ 1

0

v∏
n=1

1[kn/qn,(kn+1)/qn)({anx}) dx ≤

(
1+

2
a1

) v∏
n=1

(
1
qn
+

2an
an+1

)
.

We conclude by remarking that qn ≤ 2/rn for all n ≥ 1, and 1+x ≤ ex for all real x. ut

Proposition 5.1 directly shows that when the sequence (an)n≥1 of integers grows fast
enough to ensure the convergence of

∑
n an/(rnan+1), then the dependence between the

random points {anX} is sufficiently weak to guarantee that all the results of Section 3 are
applicable. In that situation, this leads us to a rather precise description of the size of the
intersection of the random set G(a, r) with a fixed compact subset of the circle. By way
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of illustration, we shall now determine the Hausdorff dimension of such an intersection
in the case where the compact set is regular, keeping in mind that the results of Section 3
actually yield much finer statements.

To this end, let G denote a compact subset of T, and suppose that G is regular with
dimension γ ∈ (0, 1]. Also assume that the sequence r satisfies (4.1) for some real ρ > 0.
The convergence of the aforementioned series is then guaranteed when

lim inf
n→∞

log(an/an+1)

log rn
> 1+ ρ. (5.1)

In that situation, we may apply all the results of Section 3. Therefore, when ρ + γ < 1,
Theorem 3.1 ensures that G(a, r)∩G is almost surely empty. When ρ + γ = 1, the inter-
section is empty with probability one or zero, according to the convergence or divergence
of
∑
n r

ρ
n ; this is due to Theorems 3.1 and 3.2. Finally, when ρ + γ > 1, Theorem 3.2

implies that the intersection is almost surely nonempty; by Theorems 3.1 and 3.3, its
Hausdorff dimension then satisfies

a.s. dimH(G(a, r) ∩G) = min{ρ, 1} + γ − 1.

In order to establish a connection with existing results from metric number theory,
let us consider the particular case where the radii rn are of the form n−ν , where ν is a
positive real number. The critical exponent coming into play in (4.1) is then ρ = 1/ν.
Furthermore, the condition (5.1) holds regardless of the value of ν when the integers an
grow superexponentially fast, in the sense that

lim
n→∞

log(an+1/an)

log n
= ∞, (5.2)

which we assume in what follows. In view of the above discussion, we deduce that with
probability one,

dimH
(
G(a, (n−ν)n≥1) ∩G

)
=


γ if ν ≤ 1,
1/ν + γ − 1 if 1 < ν ≤ 1/(1− γ ),
−∞ if ν > 1/(1− γ ).

An emblematic situation is whenG is the Cantor setK , which is regular with dimension κ
given by (1.2). Furthermore, even when G is the whole circle T, considering sequences
a = (an)n≥1 that grow superexponentially fast is also new. In those two cases, adopting
notation that is more customary in the metric theory of Diophantine approximation, we
may rewrite the previous result as follows.

Theorem 5.2. Let (an)n≥1 be a sequence of positive integers such that (5.2) holds. Then,
for Lebesgue almost every real α and for every real ν ≥ 1,

dimH{ξ ∈ R | ‖anα − ξ‖ < 1/nν for i.m. n ≥ 1} = 1/ν,

and
dimH{ξ ∈ K | ‖anα − ξ‖ < 1/nν for i.m. n ≥ 1} = 1/ν + κ − 1

if this value is nonnegative; otherwise, the latter set is empty.
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Note that a simple example of a sequence (an)n≥1 for which (5.1) is satisfied is an =
bn(1+ρ+ε)nc for n ≥ 1, where ε is any fixed positive real number. In addition, one easily
checks that the more stringent condition (5.2) is satisfied for instance by all sequences
of the form an = nnbn , where (bn)n≥1 is a sequence of positive integers monotonically
diverging to infinity.

Our approach fails when the condition (5.2) does not hold, because there may be too
much dependence between the fractional parts {anα}, n ≥ 1, for typical values of α. This
is the case in particular when (an)n≥1 has a linear or geometric growth. In those cases,
however, the situation is well understood if one is not interested in taking the intersection
with the Cantor set. In fact, when an = n, it is shown in [8, 32] that, for every irrational
α and every real ν ≥ 1,

dimH{ξ ∈ R | ‖nα − ξ‖ < 1/nν for i.m. n ≥ 1} = 1/ν.

The case an = 2n has been investigated by Fan, Schmeling, and Troubetzkoy [18], and
also by Liao and Seuret [28]. In particular, these authors determined

dimH{ξ ∈ R | ‖2nα − ξ‖ < 1/nν for i.m. n ≥ 1}

when the real number α is chosen according to a variety of invariant Gibbs measures
associated with the doubling map.

6. Concluding remarks and further problems

6.1. Approximation by algebraic numbers of bounded degree

One natural way to extend the theorem of Jarnı́k and Besicovitch is the study of approxi-
mation to real numbers by algebraic numbers of bounded degree. For n ≥ 1, the accuracy
with which real numbers are approximated by algebraic numbers of degree at most n is
measured by means of the exponents w∗n, introduced in 1939 by Koksma [24]. (Although
we do not introduce Mahler’s exponents wn, we prefer to keep the standard notation w∗n
for Koksma’s exponents.)

Recall that the height H(P ) of an integer polynomial P(X) is the maximum of the
moduli of its coefficients, and the height H(a) of an algebraic number a is the height of
its minimal polynomial over Z. For any integer n ≥ 1 and any real ξ , the exponent w∗n(ξ)
is defined as the supremum of the real numbers w∗ for which the inequality

0 < |ξ − a| ≤ H(a)−w
∗
−1 (6.1)

is satisfied for infinitely many algebraic numbers a of degree at most n. Clearly, every
real ξ satisfies

µ(ξ) = w∗1(ξ)+ 1.

This shows that the exponents w∗n with n ≥ 2 extend the irrationality exponent µ in a
natural way.
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The introduction of the exponent −1 in (6.1) is explained in [9, p. 48]. The reader is
referred to that monograph for results on the exponents w∗n. We only mention here that
w∗n(ξ) = min{n, d − 1} for every real algebraic number ξ of degree d, and Lebesgue
almost all real ξ satisfy w∗n(ξ) = n for all n ≥ 1. In 1970, Baker and Schmidt [3]
extended the theorem of Jarnı́k and Besicovitch to the exponents w∗n. They established
that, for every integer n ≥ 1 and every real w∗ ≥ n, the set

Un(w∗) = {ξ ∈ R | w∗n(ξ) ≥ w
∗
}

satisfies
dimH Un(w∗) =

n+ 1
w∗ + 1

. (6.2)

Note that (1.3) and (6.2) coincide, as expected, for n = 1. Some further metric properties
of the sets Un(w∗)were obtained in [10, 13]; in particular, it is proven there that the above
sets are intersective in the sense of Falconer [16].

The result due to Weiss that is mentioned at the very beginning of Section 1 was
extended to the exponents w∗n by Kleinbock, Lindenstrauss and Weiss; they proved that,
with respect to the standard measure on the Cantor set, almost all points ξ satisfy

∀n ≥ 1 w∗n(ξ) = n

(see [23, Proposition 7.10]). This motivates the following open question.

Problem 6.1. Let n ≥ 1 be an integer and w∗ ≥ n be a real number. Determine the
Hausdorff dimension of the set

Un(w∗) ∩K = {ξ ∈ K | w∗n(ξ) ≥ w∗}.

As regards this problem, we believe that the following natural extension of Conjecture 1.1
holds.

Conjecture 6.2. For any integer n ≥ 1 and any real w∗ ≥ n, the set of points in the
Cantor set which are approximable at order at least w∗ + 1 by algebraic numbers of
degree at most n satisfies

dimH(Un(w∗) ∩K) = max
{
n+ 1
w∗ + 1

+ κ − 1,
κ

w∗ + 1

}
. (6.3)

A noteworthy result towards this conjecture was established by Kristensen [25]. Ex-
tending the covering argument used in [31, 36], he proved the upper bound

dimH(Un(w∗) ∩K) ≤
2nκ
w∗ + 1

. (6.4)

Furthermore, when n is fixed and h varies, the number of algebraic numbers of degree at
most n and of height h that belong to the circle T is of the order of hn. Therefore, in the
light of the approach developed in Section 2.3, the following extension of Theorem 2.2
plainly holds: for Lebesgue almost every angle α ∈ T, we have both

w∗n(ξ) ≤
n+ 1
1− κ

− 1
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for all ξ ∈ α +K , and

dimH(Un(w∗) ∩ (α +K)) ≤
n+ 1
w∗ + 1

+ κ − 1

for all w∗ ∈ [n, (n + 1)/(1 − κ) − 1]. Note that this last generic bound is much more
stringent than (6.4).

Let us mention that virtually all the ideas developed in this paper may be adapted to
the setting of approximation by algebraic numbers. In particular, as in Section 2.4, one
may define an appropriate probabilistic counterpart of the exponents w∗n and establish the
corresponding version of Conjecture 6.2. Likewise, the same heuristic arguments as in
Section 2.2 suggest that (2.6) can be extended to

lim sup
j→∞

1
j

log3 #An,w∗,j
K ≤ max{n+ 1− (1− κ)(w∗ + 1), κ},

where An,w∗,j
K denotes the set of all algebraic numbers a ∈ T of degree at most n that

satisfy both 3j ≤ H(a) < 3j+1 and d(a,K) < 3−(w
∗
+1)j . Such an upper bound would

obviously be in favor of the validity of Conjecture 6.2.

6.2. A more general framework

All the number-theoretical problems discussed above can be put in the same general
framework. We consider the following question. Let x = (xn)n≥1 be a sequence of points
in T. Given a real ν ≥ 1, set

H(x, ν) = {ξ ∈ T | d(ξ, xn) < n−ν for i.m. n ≥ 1}.

When x forms a regular system in the sense of [9, Chapter 5], we have

dimH H(x, ν) = 1/ν.

Note that this general statement includes (6.2) as soon as we have suitably numbered the
algebraic numbers in T of degree at most n (see [9, Lemma 5.4]).

The general problem that we are concerned with is the estimation of the Hausdorff
dimension of the set

H(x, ν) ∩G = {ξ ∈ G | d(ξ, xn) < n−ν for i.m. n ≥ 1},

where G is a compact subset of T which, for simplicity, is supposed to be regular with
dimension γ ∈ (0, 1). Here, we take the intersection of two null sets of very different
nature. The setG is compact and nowhere dense, whereas when x forms a regular system,
H(x, ν) is an intersective set in the sense of Falconer [16] (see [10, 13]). Even giving an
accurate upper bound on the Hausdorff dimension of H(x, ν) ∩G is challenging.

Problem 6.3. Find reasonable conditions under which one can prove either of the upper
bounds

dimH(H(x, ν) ∩G) ≤ γ /ν or dimH(H(x, ν) ∩G) ≤ 1/ν + γ − 1.
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Note in passing that the latter bound is more stringent than the former. Moreover, a pre-
liminary step towards the first bound in Problem 6.3 would be to understand for which
sequences x one can apply the arguments of [31, 36]. As regards Problem 6.3, the only
general result that may be deduced from the present paper is again an extension of Theo-
rem 2.2: for Lebesgue almost every angle α ∈ T,

dimH(H(x, ν) ∩ (α +G)) ≤ 1/ν + γ − 1;

in particular, the intersection is empty if the bound is negative. This means that the second
bound in Problem 6.3 holds when G is rotated in a generic manner. Moreover, inspecting
the proof of Theorem 2.2, we see that the above result still holds when G is not regular
but only satisfies P g(G) <∞.

Restricting to the case where G is the Cantor set K , one can also ask the following.

Problem 6.4. Compare the Hausdorff dimensions

dimH H(x, ν) and dimH(H(x, ν) ∩K).

The following two extremal examples show that there is no hope of getting a general
answer to Problem 6.4:

1. Assume that x = (xn)n≥1 denotes the natural enumeration of the rational numbers in
T of the form p/3j such that gcd(3, p) = 1 and p has only digits 0 and 2 in its ternary
representation. Then the denominator of xn is of the order of n1/κ , and Corollary 1
in [26] implies that for all ν ≥ 1/κ ,

dimH H(x, ν) = dimH(H(x, ν) ∩K) = 1/ν.

Note that we even have H(x, ν) ∩K = H(x, ν).
2. Now, assume that x = (xn)n≥1 is the natural enumeration of the rational numbers in T

of the form p/3j − 1/(2 · 3j ) such that gcd(3, p) = 1 and p has only digits 0 and 2 in
its ternary representation. Then the denominator of xn is still of the order of n1/κ , and
for all ν ≥ 1/κ ,

dimH H(x, ν) = 1/ν.

However, each point xn is very far from K , at a distance of the order of n1/κ . Thus, in
this case, H(x, ν) ∩K is empty for ν > 1/κ .

7. Proofs of the main results

7.1. Proof of Theorem 3.1

Recall that In,k is defined in Section 3.2 as the image of [k/qn, (k + 1)/qn) under the
projection modulo one. Throughout the proof of Theorem 3.1, we choose qn = b1/rnc.
The circle T may thus be seen as the disjoint union over k ∈ {0, . . . , qn − 1} of the
sets In,k . Let Kn(G) denote the set of integers k for which G intersects In,k . In addition,
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let I ′n,k be the closed subinterval of T with the same midpoint as In,k and three times its
length. It is now easy to check that

∀n ≥ 1 B(Xn, rn) ∩G ⊆
⋃

k∈Kn(G)
Xn∈I

′
n,k

In,k, (7.1)

where B(Xn, rn) denotes the open interval centered at Xn with radius rn.
Furthermore, note that for any k ∈ Kn(G), there exists a point ξk ∈ G ∩ In,k .

Thus, there exists a subset K ′n(G) of Kn(G) of cardinality at least #Kn(G)/2 such
that d(ξk, ξk′) > 1/qn for any distinct k and k′ in K ′n(G). In view of [35, Lemma 4],
the finiteness of P g(G) ensures that there exists a finite Borel measure χ such that
χ(B(x, r)) ≥ g(r) for all x ∈ G and r ∈ (0, 1). As a result,

χ(T) ≥
∑

k∈K ′n(G)

χ(B(ξk, 1/(2qn))) ≥
#Kn(G)

2
g

(
1

2qn

)
.

Since the gauge function g is nondecreasing and doubling, we deduce that

∃C > 0 ∀n ≥ 1 #Kn(G) ≤ C/g(rn). (7.2)

We can now prove the second statement of the theorem. Let h be a doubling gauge
function such that

∑
n h(rn)rn/g(rn) converges. For any δ ∈ (0, 1/2) and any integer

n0 ≥ 1, the inclusion (7.1) ensures that E(X, r)∩G is covered by the intervals In,k indexed
by n ≥ n0 and k ∈ Kn(G) for which Xn ∈ I ′n,k . All these intervals have diameter 1/qn,
which is smaller than δ for n large enough, due to the convergence of the aforementioned
series. As a consequence,

Hh
δ (E(X, r) ∩G) ≤

∞∑
n=n0

h

(
1
qn

) ∑
k∈Kn(G)

1{Xn∈I ′n,k}
.

From (7.2), the fact that the variables Xn are uniformly distributed, and the fact that h is
doubling, we deduce that

E[Hh
δ (E(X, r) ∩G)] ≤

∞∑
n=n0

h

(
1
qn

)
#Kn(G)

3
qn
≤ 6CC′

∞∑
n=n0

h(rn)rn

g(rn)
,

where C′ depends on h only. We can now let n0 tend to infinity, and then let δ tend to
zero. Fatou’s lemma then implies that Hh(E(X, r) ∩ G) has mean zero, and the second
part of the theorem follows.

The constant function equal to one is not, strictly speaking, a gauge function in the
sense of our definition. However, it may be used instead of h above, leading to the first
statement of the theorem. Indeed, in that situation, the Hausdorff measure is just the count-
ing measure, and the previous arguments imply that #(E(X, r) ∩G) has mean zero.
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7.2. Proof of Theorem 3.2

By Frostman’s lemma (see for instance [30, Theorem 8.8]), the positivity of Hg(G) im-
plies that there exists a Borel measure χ such that

∀x ∈ T ∀r ∈ (0, 1) χ(B(x, r)) ≤ g(r). (7.3)

Moreover, the support of χ is a nonempty compact subset ofG that will be denoted byG′.
Thanks to a Baire category argument appearing in [22, p. 12], we only need to show

that for any fixed open interval I of the circle that intersects G′, the event

EI = {d(Xn,G
′
∩ I ) < rn for i.m. n ≥ 1}

holds with probability one. Here, d(Xn,G′∩ I ) denotes the distance from the pointXn to
the setG′∩ I . Indeed, assuming that this holds and letting I run through a countable base
of open intervals that generate the topology of T, we deduce that, with probability one, all
the events EV , for V running through the open sets that intersectG′, hold simultaneously.
As a result, with probability one, for any open subset V of the circle and any integer
u ≥ 1,

G′ ∩ V 6= ∅ ⇒ G′ ∩ V ∩

∞⋃
n=u

B(Xn, rn) 6= ∅,

which means that the above union is dense in the complete metric space G′. The Baire
category theorem then ensures that E(X, r)∩G′ is almost surely dense inG′, and therefore
nonempty. It follows that E(X, r) ∩G is almost surely nonempty as well.

Let now I be an open interval that intersects G′; we will show that the event EI
holds with probability one. We shall make use of the same notation as in the proof of
Theorem 3.1, except that we choose qn = d1/rne. In addition, let In(G) denote the union
over k ∈ Kn(G) of the intervals In,k . One easily checks that for every n ≥ 1,

Xn ∈ In(G) ⇒ d(Xn,G
′
∩ I ) < rn.

Therefore, it suffices to show that with probability one, Xn ∈ In(G) for infinitely many
integers n ≥ 1.

To this end, first observe that the complement of In(G) is the union over k ∈ Kn(G){

of the sets In,k , where Kn(G){ denotes the complement of Kn(G) in {0, . . . , qn − 1}.
Thus, for u ≤ v,

P
( v⋂
n=u

{Xn 6∈ In(G)}
)
=

∑
ku,...,kv

P
( v⋂
n=u

{Xn ∈ In,kn}
)

where each index kn in the sum runs over Kn(G){. All the terms in this sum are bounded
from above by 2(X,B(r))/(qu · . . . · qv), so that the whole sum is bounded by

2(X,B(r))
v∏
n=u

#Kn(G){

qn
.
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Since 1− y ≤ e−y and qn < 2/rn, we get

v∏
n=u

#Kn(G){

qn
≤ exp

(
−

1
2

v∑
n=u

#Kn(G) rn

)
.

In addition, recall that G ∩ In,k 6= ∅ if and only if k ∈ Kn(G). Moreover, in that situa-
tion, this intersection contains a point xn,k and is therefore included in the closed interval
B(xn,k, rn) with radius rn centered at this point. With the help of (7.3), we deduce that

χ(T) =
∑

k∈Kn(G)

χ(G ∩ In,k) ≤
∑

k∈Kn(G)

χ(B(xn,k, rn)) ≤ #Kn(G) g(rn).

As a consequence, the cardinality of Kn(G) is bounded from below by χ(T)/g(rn). We
infer that

P
( ∞⋃
n0=1

∞⋂
n=n0

{Xn 6∈ In(G)}
)
≤

∞∑
n0=1

exp
(
−
χ(T)

2

∞∑
n=n0

rn

g(rn)

)
= 0,

in view of the divergence of the series
∑
n rn/g(rn). The result follows.

7.3. Proof of Lemma 3.4

The proof relies on the existence of a family of compact sets Qg indexed by the gauge
functions such that Proposition 7.1 below holds. These compact sets are obtained through
a slight generalization of Mandelbrot’s fractal percolation process that we introduce and
study in Section 8. In the next statement, we make use of the notation h ≺ϕ g defined
by (3.4), and we also write h ≺≺ g to indicate that two gauge functions g and h satisfy

∞∑
j=1

g(2−j )
(

1
h(2−j )

−
1

h(2−(j−1))

)
<∞.

Proposition 7.1. There exists a family of compact sets Qg ⊆ T indexed by gauge func-
tions such that for any set E ⊆ T, and any gauge function g, the following properties
hold:

(1) If Hg(E) = 0, then E ∩Qg = ∅ almost surely.
(2) If E is Borel and Hg(E) > 0, then, for any gauge functions h and ϕ,{

h ≺≺ g ⇒ P(E ∩Qh 6= ∅) > 0,
h ≺ϕ g ⇒ P(Hϕ(E ∩Qh) > 0) > 0.

The above result is established in Section 8; this is actually a straightforward consequence
of Lemmas 8.1–8.3 therein. Let us now give the proof of Lemma 3.4. Let ϕ denote a gauge
function, and let E be a random subset of the circle which intersects almost surely every
fixed compact set having positive Hausdorff ϕ-measure. Now, let G denote a compact
subset of the circle, and let g be a gauge function such that Hg(G) > 0. In addition, let h
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be a gauge function such that h ≺ϕ g. Our purpose is now to show that Hh(E ∩G) > 0
almost surely.

Let (Qn
h)n≥1 denote a sequence of independent copies of the fractal percolation setQh

that are also independent of the random set E, and let

Q̂h =

∞⋃
n=1

Qn
h.

Proposition 7.1(2) ensures that each set G ∩ Qn
h has Hausdorff ϕ-measure zero with a

probability which does not depend on n and is smaller than one. Thus, in view of the
subadditivity of Hausdorff measures, we have

a.s. Hϕ(G ∩ Q̂h) > 0.

Therefore, in view of [17, Theorem 4.10], the setG∩Q̂h almost surely contains a compact
set with positive Hausdorff ϕ-measure. This compact subset thus intersects the random
set E with probability one. Therefore,

a.s. E ∩G ∩ Q̂h 6= ∅.

On top of that, if Hh(E ∩ G) = 0, then Proposition 7.1(1) ensures that the probability
that E ∩G intersects any of the copies Qn

h is zero. As a consequence,

a.s. E ∩G ∩ Q̂h 6= ∅ ⇒ Hh(E ∩G) > 0,

and Lemma 3.4 follows.

8. A generalized fractal percolation process

This section is devoted to the construction and the study of the family of compact setsQg

that we use in the proof of Lemma 3.4 (see Section 7.3 above). These sets are obtained
by dint of a slight generalization of Mandelbrot’s fractal percolation process. To begin,
recall that the infinite complete binary tree may naturally be encoded by the set

T =
∞⋃
j=0

{0, 1}j .

Here, we adopt the convention that {0, 1}0 is reduced to the singleton containing only the
root ∅. Specifically, every node u ∈ T with generation 〈u〉 = j may be seen as a finite
word u = u1 . . . uj over the alphabet {0, 1}, with child nodes the two words u1 . . . uj0
and u1 . . . uj1, and with parent node the word←−u = u1 . . . uj−1 whenever j is positive.
The tree structure is then recovered by endowing the vertex set T with the arcs (←−u , u)
for u 6= ∅.

Now, given a gauge function g, consider the following inhomogeneous percolation
process on the edges of the above tree: the edge connecting a given node u 6= ∅ to its
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parent is retained with probability g(2−〈u〉)/g(2−〈u〉+1), independently of the other edges.
Then, we say that a node u survives the percolation if all the edges between u and the
root ∅ are retained. We always assume that the root itself survives the percolation. The
random subtree of T composed by the nodes that survive the percolation is denoted by Tg .
Note that every given node u survives the percolation with probability g(2−〈u〉)/g(1).

Furthermore, recall that the vertices of the tree T lead to a natural parametrization
of the dyadic intervals of the circle T. In fact, the dyadic interval associated with a node
u = u1 . . . uj in T is the image, denoted by λ(u), of the interval (u12−1

+· · ·+uj2−j )+
[0, 2−j ) under the projection modulo one. In addition, the interval associated with the
root is chosen to be the whole circle, that is, λ(∅) = T. This enables us to consider the
random compact subset of the circle

Qg =

∞⋂
j=1

↓

⋃
u∈Tg
〈u〉=j

λ(u),

where · stands for closure. The set Qg may be seen as an extension to the inhomoge-
neous setting of the compact set obtained through Mandelbrot’s fractal percolation pro-
cess (see [14] and the references therein).

Let us recall that Proposition 7.1 above contains all the important properties satisfied
by the sets Qg that we use in the proof of Lemma 3.4. This proposition may naturally
be split into three separate lemmas that we now state and prove. The first two lemmas
discuss the probability that the random set Qg intersects a given subset of the circle.

Lemma 8.1. For any set E ⊆ T and any gauge function g,

Hg(E) = 0 ⇒ a.s. E ∩Qg = ∅.

Proof. Let δ > 0 and let (Un)n≥1 be a sequence of subsets of T such thatE ⊆
⋃
n Un and

|Un| < δ for all n ≥ 1. Let N0 be the set of all integers n ≥ 1 for which the diameter ofUn
vanishes, and let N1 denote its complement in N. Then the set E may be decomposed as
the union of the sets

E0 = E ∩
⋃
n∈N0

Un and E1 = E ∩
⋃
n∈N1

Un.

On the one hand, it is easy to check that any point of the circle that is fixed in advance
belongs to the set Qg with probability zero. Since the set E0 is at most countable, it
follows that its intersection with Qg is almost surely empty.

On the other hand, for any n ∈ N1, the set Un is contained in four dyadic intervals of
length at most |Un|. Accordingly, there exists a family of nodes un,i in T , with n ∈ N1
and i ∈ {1, 2, 3, 4}, such that{

Un ⊆ λ(u
n,1) ∪ λ(un,2) ∪ λ(un,3) ∪ λ(un,4),

max{|λ(un,1)|, |λ(un,2)|, |λ(un,3)|, |λ(un,4)|} ≤ |Un|
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for all n ∈ N1. As a result, E1 ∩ Qg is covered by the sets λ(un,i) ∩ Qg for n ∈ N1
and i ∈ {1, 2, 3, 4}. Note that, with probability one, the set Qg cannot contain any dyadic
point, that is, any point of the form k2−j . Thus, this last intersection is empty if un,i does
not survive the percolation. This implies that one of these nodes necessarily survives the
percolation when E1 ∩Qg is nonempty. Hence,

P(E1 ∩Qg 6= ∅) ≤
∑
n∈N1

i∈{1,2,3,4}

P(un,i ∈ Tg) =
∑
n∈N1

i∈{1,2,3,4}

g(2−〈u
n,i
〉)

g(1)
≤

4
g(1)

∞∑
n=1

g(|Un|).

Taking the infimum over all the possible coverings (Un)n≥1, and then letting δ go to
zero, we deduce that

P(E ∩Qg 6= ∅) ≤ P(E0 ∩Qg 6= ∅)+ P(E1 ∩Qg 6= ∅) ≤
4
g(1)

Hg(E),

and the result follows. ut

Lemma 8.2. For any Borel set E ⊆ T and any gauge function g,

Hg(E) > 0 ⇒ ∀h ≺≺ g P(E ∩Qh 6= ∅) > 0.
Proof. Since Hg(E) is positive, Frostman’s lemma implies that there exists a Borel mea-
sure χ with support included in E such that (7.3) holds. For any node u ∈ T , set
ψ(u) = χ(λ(u)). Moreover, for any integer j ≥ 0, set hj = h(2−j ) and

Zj =
1
hj

∑
u∈Th
〈u〉=j

ψ(u),

and let Gj denote the σ -algebra generated by the events {u ∈ Th} for 〈u〉 ≤ j . It is
then easy to check that (Zj )j≥0 is a nonnegative martingale with respect to the filtration
(Gj )j≥0, hence converges almost surely to some random variable Z∞ ∈ L1. Furthermore,
for any integer j ≥ 1,

E[Z2
j ] =

1
h2
j

∑
u,v∈T
〈u〉=〈v〉=j

ψ(u)ψ(v)P(u ∈ Th and v ∈ Th).

The probability that two nodes u and v both survive the percolation is clearly equal to
(h〈u〉h〈v〉)/(h0h〈u∧v〉), where u ∧ v denotes their lowest common ancestor in the tree T .
As a consequence,

E[Z2
j ] =

∑
w∈T
〈w〉≤j

1
h0h〈w〉

∑
〈u〉=〈v〉=j
u∧v=w

ψ(u)ψ(v).

Note that the inner sum is equal to ψ(w)2 if the node w has generation j , and to
2ψ(w0)ψ(w1) if w has generation less than j . Therefore,

E[Z2
j ] =

∑
w∈T 〈w〉≤j

1
h0h〈w〉

(
ψ(w)2 − 1{〈w〉≤j−1}(ψ(w0)2 + ψ(w1)2)

)
,
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from which it follows that

E[Z2
j ] =

ψ(∅)2

h2
0
+

1
h0

∑
w∈T

0<〈w〉≤j

ψ(w)2
(

1
h〈w〉
−

1
h〈w〉−1

)
.

In view of (7.3) and the fact that h ≺≺ g, we deduce that

sup
j≥0

E[Z2
j ] ≤

χ(T)2

h(1)2
+
χ(T)
h(1)

∞∑
j=1

g(2−j )
(

1
h(2−j )

−
1

h(2−(j−1))

)
<∞.

This ensures that the martingale (Zj )j≥0 converges to Z∞ in L2. In particular, the ex-
pectation of Z∞ is equal to that of Z0, which is χ(T)/h(1), so that Z∞ is positive with
positive probability. On top of that, if Z∞ is positive, then for any integer j ≥ 0, there is
a node u ∈ Th of generation j such that λ(u) intersects the support of the measure χ . In
that case, Cantor’s intersection theorem ensures that the limit setQh intersects E, and the
result follows. ut

The third and last lemma about the sets Qg concerns the size of their intersection with a
given Borel subset of the circle.

Lemma 8.3. For any Borel set E ⊆ T and any gauge functions g and ϕ,

Hg(E) > 0 ⇒ ∀h ≺ϕ g P(Hϕ(E ∩Qh) > 0) > 0.

Proof. Assume that E has positive Hausdorff g-measure, and that h ≺ϕ g. Then g/h co-
incides with a gauge function ψ satisfying ϕ ≺≺ ψ . In particular, hϕ ≺≺ g and Lemma 8.2
implies that the random set Qhϕ intersects E with positive probability. Furthermore, it
is easy to see that Qhϕ is distributed as Qh ∩ Qϕ , where Qh and Qϕ are independent.
Thus, Qϕ intersects E ∩ Qh with positive probability as well. The result now follows
from Lemma 8.1. ut
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