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Abstract. The purpose of this paper is to show how central extensions of (possibly infinite-dimen-
sional) Lie algebras integrate to central extensions of étale Lie 2-groups in the sense of [Get09,
Hen08]. In finite dimensions, central extensions of Lie algebras integrate to central extensions of
Lie groups, a fact which is due to the vanishing of π2 for each finite-dimensional Lie group. This
fact was used by Cartan (in a slightly other guise) to construct the simply connected Lie group
associated to each finite-dimensional Lie algebra.

In infinite dimensions, there is an obstruction for a central extension of Lie algebras to integrate
to a central extension of Lie groups. This obstruction comes from non-trivial π2 for general Lie
groups. We show that this obstruction may be overcome by integrating central extensions of Lie
algebras not to Lie groups but to central extensions of étale Lie 2-groups. As an application, we
obtain a generalization of Lie’s Third Theorem to infinite-dimensional Lie algebras.
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1. Introduction

Central extensions of Lie algebras and their integrability are closely related to Lie’s Third
Theorem. In fact, one can use the integration theory of central extensions of Lie algebras
[Nee02] to decide (under some mild requirements) whether a given Lie algebra is the Lie
algebra of a Lie group. In finite dimensions, this is always the case due to the vanishing
of π2 for each finite-dimensional Lie group. In infinite dimensions, π2 does not always
vanish and leads to Lie algebras which do not integrate to Lie groups [EK64, DL66].
A similar phenomenon occurs when integrating finite-dimensional Lie algebroids to Lie
groupoids [Pra68, CF03]. In this case it is π2 of the leaves that restricts the integrability
of a Lie algebroid.

On the other hand, the theory of higher Lie group(oid)s has been much developed
recently. Already in the early twentieth century, 2-groups were studied by Whitehead
and his followers under various names, such as crossed modules. They are also studied
from the perspective of “gr-champs” (i.e. stacky groups) by Breen [Bre90]. More recently,
various versions of 2-groups, with different strictness assumptions, have been studied as
models for the string group [BCSS07, SP11] using a method of categorification, initiated
by Baez’ school [BL04]. However to treat all higher group(oid)s in various categories
together, the most efficient method is to apply Duskin and Glenn’s idea of Kan complexes
[Dus79, Gle82]. This method has the advantage that it easily gives the concept of Lie n-
group(oid)s for all n ∈ N if we take our category to be the one of manifolds, or the
concept of topological n-group(oid)s for all n ∈ N if we change our category to be the one
of topological spaces (see e.g. [Hen08, Zhu09] for such a treatment with the additional
choice of a Grothendieck pretopology for the taken category). This allows us to treat many
theories uniformly without repeating the proofs. Moreover, starting from Getzler’s work
on integration of nilpotent L∞-algebras or [Get09], this sort of Lie n-group(oid)s have
been widely used in many integration problems, for example the integration of general
L∞-algebras of Henriques [Hen08], the integration of finite-dimensional Lie algebroids
[TZ06], the integration of Courant algebroids [LBv11, MT11, SZ11]. Thus there is a
general belief that these Lie n-group(oid)s are the correct objects of a certain (higher)
category that corresponds, via integration, to the one of various infinitesimal objects, for
example, L∞-algebras or L∞-algebroids.

Using this sort of Lie 2-groups, we study in this article the integration of another sort
of infinitesimal objects, namely infinite-dimensional Lie algebras and their central exten-
sions. We obtain a version of Lie’s Third Theorem asserting that each locally exponential
Lie algebra (see Definition A.4) with topologically split center integrates to an étale Lie
2-group. The same question was studied in [Woc11a] by using a completely different and
less powerful concept of Lie 2-group, since it only admits a notion of smoothness “near
the identity”. Note that this concept of “locally smooth” Lie 2-group is only known to
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be equivalent to the one mentioned above in very special cases [WW15] that do not gov-
ern the situation we have in this paper. The point of the current article is that it extends
the result of [Woc11a] to a global one. One can do this because we weaken (in a certain
sense) the category of “smooth 2-spaces” from [Woc11a], which is nothing but the cate-
gory of Lie groupoids with strict morphisms, to the bicategory of smooth stacks, which is
equivalent to the one of Lie groupoids with generalized morphisms and 2-morphisms. To
obtain our result we have to enhance the approach from [Woc11a] significantly because
generalized morphisms are more involved than the strict ones. This effort is eventually
rewarded by obtaining a globally smooth object integrating an infinite-dimensional Lie
algebra.

We now go into some more detail. The basic idea behind the integration processes
from [Nee02] (and [CF03]) is to integrate prescribed curvature 2-forms along certain
triangles (respectively homotopies between paths). Suppose that g is the Lie algebra of a
simply connected Lie groupG and that ω : g×g→ z is a continuous Lie algebra cocycle.
If the period homomorphism π2(G)

perω
−−→ z (see (1.1)) has discrete image, then ω has an

integrating cocycle in the locally smooth Lie group cohomologyH 2
loc(G, z/perω(π2(G))),

i.e., the differentiation homomorphism

D : H 2
loc(G, z/perω(π2(G)))→ H 2

c (g, z)

has the class of ω in its range [Nee02, Corollary 6.3]. This is shown by integrating ω along
some carefully chosen triangles, an idea which goes back to van Est [Est58]. The proce-
dure then reveals the obstruction against integration as a cocycle condition, which may
also be viewed as an associativity constraint for enlarging a local group to a global one (cf.
[Smi51a, Smi51b, Est62a, Est62b]). So one is naturally pushed to non-associative struc-
tures when searching for a general solution of the integration problem. Our Lie 2-groups
are such structures, which provide at the same time the next higher coherence that the
problem naturally has (cf. the discussion in [Woc11a, Section 2]).

In this paper, we deal with the case when perω(π2(G)) is not discrete. In this case,
z/perω(π2(G)) does not exist as a Lie group any more. One of the natural substitutes for

it is the Lie 2-group [π2(G)
perω
−−→ z]1 (see Example 2.11), which exists regardless of the

discreteness of perω(π2(G)). However, if perω(π2(G)) is discrete, then z/perω(π2(G))

is equivalent to a direct factor of [π2(G)
perω
−−→ z] and thus [π2(G)

perω
−−→ z] is the

universal object taking over the rôle of z/perω(π2(G)). Moreover, extensions of G by

[π2(G)
perω
−−→ z] live in the category of Lie 2-groups and thus permit us to incorporate the

non-associativity mentioned above. In this sense our treatment is a natural extension of
the procedure from [Nee02]. The price to pay for this freedom is that one has to work with
group objects in smooth stacks (also known as Lie 2-groups2) instead of group objects in
smooth manifolds (i.e. Lie groups). This is technically more challenging but has similar
underlying ideas.

1 Another substitute would be the diffeological group z/perω(π2(G)) [Woc11a, Remark 7.1].
2 Notice that when n = 2, Lie n-groups described via Kan complexes that we mentioned earlier

are proven [Zhu09] to be equivalent to group objects in smooth stacks.
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Section 2 is concerned with setting up the theory of central extensions of Lie groups
by abelian Lie 2-groups [A

µ
−→ B], in particular to show how such extensions can be

obtained from certain Čech cohomology classes. This section builds heavily on [SP11,
Section 3]. It provides the conceptual background for understanding the constructions in
the next section.

Section 3 then presents the refinement of the aforementioned idea of integration along
triangles. The problem one has to overcome is that the cocycle condition that one has
in z/perω(π2(G)) makes many arguments work implicitly. One example for this is the
smoothness of the multiplication of the central extension of Lie groups associated to an
integrating cocycle for ω as discussed in Section 3.4. All these implications now have to
be built into the choices of the triangles, and this is the key point of Section 3. In a certain
sense, the essence of this construction is subsumed in Figures 1 and 2.

Section 4 then provides the differentiation process which justifies naming the con-
struction of the previous section “integration”. We restrict in this treatment to étale Lie
2-groups, for which the differentiation leads to ordinary Lie algebras. The main result on
this is the following

Theorem. If G is a simply connected Lie group with Lie algebra g, z is a Mackey-
complete locally convex space and ω : g × g → z is a continuous Lie algebra cocycle,
then the differentiation homomorphism

D : Ext(G, [π2(G)
perω
−−→ z])→ Ext(g, z) ∼= H 2

c (g, z)

has [ω] in its image. Here G is the Lie group G viewed as a Lie 2-group (see Ex-
ample 2.11).

This then implies readily the following generalization of Lie’s Third Theorem that our
construction allows for.

Theorem. If g is a locally convex locally exponential Lie algebra such that z := z(g) ⊆ g
is a complemented and Mackey-complete subspace, then there exists an étale Lie 2-group
G with L(G) ∼= g.

At the end of the paper, we provide some background on infinite-dimensional manifolds
and the derived concepts of Lie groups, Lie groupoids and smooth stacks.

Conventions

Unless stated otherwise, G denotes throughout a 1-connected Lie group, modeled on a
locally convex space, and g denotes its Lie algebra. Moreover, z stands for a Mackey-
complete locally convex vector space3, 0 ⊆ z is a discrete subgroup so that Z := z/0
is a Lie group with universal covering morphism q : z → Z. In addition, ω : g × g → z

3 Mackey-complete locally convex spaces also go under the name of convenient vector spaces,
in particular each complete locally convex space is of this type [KM97, Theorem I.2.14].
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will always denote a continuous Lie algebra cocycle. Associated to this data is the period
homomorphism

perω : π2(G)→ z, [σ ] 7→

∫
σ

ωl, (1.1)

where ωl is the left-invariant 2-form on G with ωl(e) = ω (cf. [Nee02, Section 5]). Note
that under our assumptions, π2(G) ∼= H2(G) by the Hurewicz homomorphism, and we
identify π2(G) with H2(G) throughout.

We denote by 1(n) ⊆ Rn the standard n-simplex, viewed as a manifold with corners.
By C∞(1(n),G) we mean the manifold of smooth n-simplices inG (see also Proposition
A.6) and by C∞∗ (1

(n),G) those smooth n-simplices that are base-point preserving maps,
where the base-point of 1(n) is 0 and the base-point of G is the identity. For a simplicial
complex 6 we will denote by C∞pw(6,G) the piecewise smooth maps (cf. Remark A.7).
The simplicial manifold that will play an important rôle in this paper is the classifying
simplicial space BG• = (Gi)i∈N0 (with the product smooth structure and the convention
G0
:= ∗) and the standard simplicial maps p(n)i : BG(n) → BG(n−1) (cf. Example 2.1).

Moreover, µ : A→ B is always a morphism between the abelian Lie groups A and B.

2. Differentiable hypercohomology and its geometric counterpart

2.1. Differentiable hypercohomology

The hypercohomology of complexes of sheaves on manifolds, action groupoids and com-
plex stacks is explicitly studied for instance in [Bry93, Gom05] and [FHRZ08, §A.2].
Here we extend it to the category of simplicial manifolds and relate it to our construction
using a suitable covering constructed in Section 3. We emphasize the Čech approach to
differentiable hypercohomology and we are mostly interested in the simplicial manifold
BG• (i.e., the nerve of the Lie groupoid G⇒ ∗, see Example 2.1).

Recall that a simplicial manifoldX• is a functor1op
→ Man, where1 is the standard

simplex category of finite ordinal numbers [n] and non-decreasing maps [n] → [m]. This
has the alternative description as a collection of manifolds Xn and structure maps

dnk : Xn→ Xn−1 (face maps), snk : Xn→ Xn+1 (degeneracy maps),
k ∈ {0, 1, . . . , n}, (2.1)

that satisfy the usual coherence conditions (see for instance [GJ99, Chapter I.1]).

Example 2.1. (a) We can interpret each manifold as a constant simplicial space with Xn
= M for all n and all structure maps to be the identity.

(b) Given a Lie groupoid4 G := (G1
s
⇒
t
G0), we complete it to a simplicial manifold

BG• with
BGn = G1 ×s,G0,t · · · ×s,G0,t G1 (n copies of G1)

4 For a Lie groupoid we require the source and target maps to be surjective submersions in the
sense of Appendix B.
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for n ≥ 1 and BG0 = G0. The face maps, for n ≥ 2, are given by

dnk (g1, . . . , gn) =


(g2, . . . , gn), k = 0,
(g1, . . . , gkgk+1, . . . , gn), 0 < k < n,

(g1, . . . , gn−1), k = n,

and the degeneracy maps, for n ≥ 1, by

snk (g1, . . . , gn) =


(1t(g1), g1, . . . , gn), k = 0,
(g1, . . . , gk, 1t(gk+1), gk+1, . . . , gn), 0 < k < n,

(g1, . . . , gn, 1s(gn)), k = n.

Moreover, d1
0 (g) = s(g), d1

1 (g) = t(g), s0
0(x) = e(x), where e : G0 → G1 is the identity

embedding. This construction is known as the nerve of the Lie groupoid G. We call it BG•
because its geometric realization is the classifying space of G [Seg68]. If G = (G ⇒ ∗),
then we also denote BG• by BG•.

For a simplicial manifold X•, a sheaf F• on X• consists of sheaves Fn on Xn for
all n and morphisms F •(α) : X•(α)∗Fn

→ Fm for each α : [n] → [m] such that
F •(α ◦ β) = F •(α) ◦ F •(β) [Del74, §5.1.6]. Alternatively these morphisms can also be
described by morphisms Dnk : (d

n
k )
∗Fn−1

→ Fn and Snk : (s
n
k )
∗Fn+1

→ Fn satisfying
the corresponding compatibility conditions. Likewise, we define morphisms of sheaves as
in [Del74, §5.1.6]. This then leads to the notion of a (bounded below) complex of sheaves
on X•,

F•∗ = ((F•n )n∈N0 ,F
•
n

dn
−→ F•n+1) (2.2)

(see also [Gom05, §3.2]).
A covering U of a simplicial manifoldX• consists of a simplicial set I • and a covering

(U
(n)
i )i∈I (n) of Xn such that X•(α)(U

(m)
i ) ⊆ U

(n)
I •(α)(i) for each α : [n] → [m]. One can

demand less structure for a covering of a simplicial space (see [SP11] or [WW15]). We
demand all this structure to make the normalization arguments later on work. In particular,
a covering, induces another simplicial space U• with Un :=

∐
i∈In U

(n)
i and the inclusions

induce a simplicial map U• → X•. The following lemma shows that one can always
extend coverings of Xn to coverings of X•.

Lemma 2.2. If X• is a simplicial manifold and (Uj )j∈J is a covering of Xm, then there
exists a covering U of X• such that (U (m)

i∈I (m)
) is a refinement of (Uj )j∈J .

Proof. We denote 1(m, n) := Hom1([m], [n]) (note that this is a finite set). We first
observe that J determines a simplicial set I • with I (n) := J1(m,n) and with α : [n] → [n′]
getting mapped to

α1 : J1(m,n
′)
→ J1(m,n), α1((jf )f∈1(m,n′))g = jα◦g.
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Now for each f ∈ 1(m, n) we pull back the covering (Uj )j∈J of Xm to a covering of Xn
and take as a covering of Xn the coarsest common refinement (U (n)i )i∈I (n) with

U
(n)
i := X•(f0)

−1(Ujf0
) ∩ · · · ∩X•(fs)

−1(Ujfs )

(where i = (jf0 , . . . , jfs ) with s = |1(m, n)|) of all such coverings. To check that
this is indeed a covering we have to show that for each α : [n′] → [n] and each i =
(jf )f∈1([m],[n]) we have

X•(α)(U
(n)
i ) ⊆ U

(n′)

α1(i)

⇔ X•(α)
(
X•(f0)

−1(Ujf0
) ∩ · · · ∩X•(fs)

−1(Ujfs )
)
⊆ X•(f )

−1(Ujα◦f ) ∀f ∈ 1(m, n
′)

⇔ X•(α ◦ f )
(
X•(f0)

−1(Ujf0
) ∩ · · · ∩X•(fs)

−1(Ujfs )
)
⊆ Ujα◦f ∀f ∈ 1(m, n

′).

The latter is true since for each f ∈ 1(m, n′) we have α◦f = fi for some i. To complete
the proof we observe that the canonical map I (m) → J , (jf )f∈1(m,m) 7→ jid[m] , induces
the corresponding refinement. ut

Let now U be a covering of X•. Then we set

Čp,q,r :=
∏

i0,...,iq∈I (p)

Fp
r (U

(p)
i0
∩ · · · ∩ U

(p)
iq
). (2.3)

We have δgp (:= d1,0,0) : Č
p−1,q,r

→ Čp,q,r defined by

(δgpf )i0,...,iq =

p∑
k=0

(−1)k+pDpk (fdpk (i0),...,d
p
k (iq )
◦ d

p
k︸ ︷︷ ︸

∈(d
p
k )
∗Fp−1

) (2.4)

and δ̌ (:= d0,1,0) : Č
p,q,r
→ Čp,q+1,r defined by the Čech differential

(δ̌f )i0,...,iq+1(x) =

q+1∑
l=0

(−1)lfi0,...,̂il ,...,iq+1
(x). (2.5)

There is another differential d (:= d0,0,1) : Č
p,q,r

→ Čp,q,r+1, induced by the
differential dr : Fr → Fr+1 in the sheaf complex. Then (Čp,q,r , δgp, δ̌, d) is a triple
complex and the total complex is ČN :=

⊕
N=p+q+r Č

p,q,r with the total differential
D3 = δgp + (−1)p δ̌ + (−1)p+qd.

Definition 2.3. The Čech hypercohomology Ȟ n
U (X•,F

•
∗ ) of the complex F•∗ of sheaves

on X• with respect to the covering U is the cohomology of the total complex of
(Čp,q,r , δgp, δ̌, d). The group of n-cocycles of this triple complex is denoted ŽnU (X•,F

•
∗ )

and its elements are called differentiable cocycles.
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On the other hand, one can define the sheaf hypercohomology H n
sh(X•,F

•
∗ ) to be the

hyper derived functor of the functor

F•∗ 7→ H 0(0(F•∗ )),
where the section functor 0 for a sheaf F• on X• is given by F• 7→ ker(D0 − D1 :

F0(X0) → F1(X1)). The hyper derived functor is then given by the usual construc-
tion using injective resolutions as in [Fri82, Chapter 2] (see also [Del74, Con03]).
The following proposition generalizes the case of the relation between Čech coho-
mology and sheaf cohomology. Recall that a covering U of X• is called F-acyclic if
H≥1(U

(n)
i0
∩ · · ·∩U

(n)
iq
,Fn

r ) = 0 for all finite subsets {i0, . . . , iq} ⊆ I (n) and all n, r . The
reasoning of [FHRZ08, §A.2] then carries over to show

Proposition 2.4. In the above setup, there is a morphism of abelian groups

Ȟ n
U (X•,F

•
∗ )→ H n

sh(X•,F
•
∗ ).

In particular, if U is an Fr -acyclic covering of X for each r , then Ȟ n
U (X ,F

•
∗ )
∼=

H n
sh(X ,F

•
∗ ).

Thus the Čech hypercohomology of F•∗ , defined as the direct limit

Ȟ n(X•,F•∗ ) := lim
−→
Ȟ n
U (X•,F

•
∗ ),

is isomorphic to the sheaf cohomologyH n
sh(X•,F

•
∗ ) if each covering admits an F-acyclic

refinement. When the existence of acyclic coverings is not guaranteed, one needs to take
the limit over all hyper-coverings but not only coverings of X• as explained in [Fri82].
Then the same result holds. However, each covering is in particular a hyper-covering and
all our constructions will yield cocycles on usual coverings. In addition, the equivalences
of cocycles that we construct will also live on usual coverings. Thus our constructions
will lead to well-defined classes in Čech cohomology and thus also in sheaf cohomology.

There is one additional condition on Čech cocycles, which simplifies computations a
lot: it is the assumption that they are normalized. For this we consider

Fp

r,0(U
(p)
i0
∩ · · · ∩ U

(p)
iq
) :=

q⋂
l=0

ker((šql )
∗)

with

š
q
l : U

(p)
i0
∩ · · · ∩ U

(p)
iq

∼=
−→ U

(p)
i0
∩ · · · ∩ Uil ∩ Uil ∩ · · · ∩ U

(p)
iq+1

,

xi0,...,iq 7→ xi0,...,il−1,il ,il ,il+1,...,iq ,

the standard Čech degeneracy maps and

Č
p,q,r

0 :=

p−1⋂
k=0

ker(σk) ∩
∏

i0,...,iq∈I (p)

Fp

r,0(U
(p)
i0
∩ · · · ∩ U

(p)
iq
)

with

σk : Č
p,q,r
→ Čp−1,q,r , σk(f )i0,...,iq = S

p−1
k (f

s
p−1
k (i0),...,s

p−1
k (iq )

◦ s
p−1
k ),
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the degeneracy map induced by the degeneracies spk : Xp → Xp+1 and Sp−1
k : (s

p−1
k )∗Fp

→ Fp−1. It is clear that (Čp,q,r0 , δgp, δ̌, d) is a triple subcomplex of (Čp,q,r , δgp, δ̌, d)

and thus the cohomology of the associated total complex

Ȟ n
0,U (X•,F

•
∗ )

comes equipped with a natural morphism

Ȟ n
0 (X•,F

•
∗ ) := lim

−→
Ȟ n

0,U (X•,F
•
∗ )→ Ȟ n(X•,F•∗ )

from normalized to ordinary Čech cohomology. The normalized Čech cohomology is
what we will work with in this article. For its conceptual interpretation we will first show
that it actually agrees with non-normalized Čech cohomology and thus with sheaf coho-
mology in many interesting cases.

Proposition 2.5. Suppose that A given by

Ap,q+1

i
p,q
k

��

Ap−1,q
d
p,q
k //

Ap,q

d
p,q+1
k

OO

i
p,q−1
k
��

i
p−1,q
k

oo

d
p+1,q
k //

Ap+1,q

i
p,q
k

oo

Ap,q−1

d
p,q
k

OO

is a bi-cosimplicial abelian group. Then the normalized cochains

A
p,q

0 =

p−1⋂
k=0

ker(ip−1,q
k ) ∩

q−1⋂
k=0

ker(i
p,q−1
k )

form a bi-cosimplicial abelian subgroup A0 and the inclusion of the associated total
complexes Tot(A0)→ Tot(A) induces an isomorphism in cohomology.

Proof. We first define the vertically normalized cochains Av to be A
p,q
v =⋂p−1

k=0 ker(ip−1,q
k ), which is also a bi-cosimplicial abelian subgroup of A. Likewise, we

define the horizontally normalized cochains Ah to be Ap,qh =
⋂q−1
k=0 ker(i

p,q−1
k ). Ob-

serve that A0 = (Av)h. By the dual Dold–Kan correspondence [Wei94, Corollary 8.4.3]
the cochain complex of a cosimplicial abelian group has the same cohomology as its
normalized subcomplex. Thus Tot(Av) → Tot(A) and Tot((Av)h) → Tot(Av) induce
isomorphisms in cohomology. ut

Corollary 2.6. IfX• is a simplicial manifold and F•∗ is a complex of sheaves onX•, then
the canonical morphism

Ȟ n
0 (X•,F

•
∗ )→ Ȟ n(X•,F•∗ ) (2.6)

is an isomorphism.
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Remark 2.7. We spell out the definition of Čech hypercohomology from Definition 2.3
in the case we are interested in for convenience and later reference. First note that for
the constant simplicial manifold associated to a manifold M (cf. Example 2.1) the Čech
hypercohomology is what is also called the non-abelian cohomology Ȟ 2(M,A

µ
−→ B)

with coefficients in the crossed module µ : A → B (see for instance [NW13, Woc11b,
BS07, Bar06, Bre94, Gir71, Ded60]).

In this article we will mainly be interested in the simplicial manifold BG•, the nerve
of the infinite-dimensional Lie groupoid G ⇒ ∗5 with the 2-term complex of sheaves
of germs of smooth functions with values in A and B, where A

µ
−→ B is a morphism of

abelian Lie groups.
Then our triple complex is

Čp,q,−1
=

∏
i0,...,iq∈I (p)

C∞(U
(p)
i0
∩ · · · ∩ U

(p)
iq
, A),

Čp,q,0 =
∏

i0,...,iq∈I (p)

C∞(U
(p)
i0
∩ · · · ∩ U

(p)
iq
, B),

(2.7)

with d = µ∗, i.e.,
(µ∗f )i0,...,iq (x) = µ(fi0,...,iq (x)).

Then a 2-cocycle of the total differential in this triple complex is given by maps (we
also write down the slightly more intuitive names of them that we will use in the geometric
construction later on):

φ1,1,0 (= γ = (γi,j )) : U
(1)
i ∩ U

(1)
j → B, ∀i, j ∈ I (1),

φ1,2,−1 (= η = (ηi,j,k)) : U
(1)
i ∩ U

(1)
j ∩ U

(1)
k → A, ∀i, j, k ∈ I (1),

φ2,0,0 (= F = (Fi)) : U
(2)
i → B, ∀i ∈ I (2),

φ2,1,−1 (= 8 = (8i,j )) : U
(2)
i ∩ U

(2)
j → A, ∀i, j ∈ I (2),

φ3,0,−1 (= 2 = (2i)) : U
(3)
i → A, ∀i ∈ I (3),

such that (when r = 0)

d0,1,0(φ
1,2,−1) (= δ̌(η)) = 0, (2.8)

d1,0,0(φ
1,2,−1)+ d0,1,0(φ

2,1,−1) (= δgp(η)+δ̌(8)) = 0, (2.9)

d1,0,0(φ
2,1,−1)− d0,1,0(φ

3,0,−1) (= δgp(8)− δ̌(2)) = 0, (2.10)

d1,0,0(φ
3,0,−1) (= δgp(2)) = 0, (2.11)

and (involving mixings of r = 0 and r = 1)

5 If dim(G) <∞, then π2(G) = 0 and the integration procedure we consider here is covered by
[Nee02].
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−d0,1,0(φ
1,1,0)− d0,0,1(φ

1,2,−1) (= −δ̌(γ )− µ∗(η)) = 0, (2.12)

d1,0,0(φ
1,1,0)+ d0,1,0(φ

2,0,0)− d0,0,1(φ
2,1,−1) (= δgp(γ )+ δ̌(F )− µ∗(8)) = 0,

(2.13)

d1,0,0(φ
2,0,0)− d0,0,1(φ

3,0,−1) (= δgp(F )− µ∗(2)) = 0. (2.14)

Two differentiable 2-cocycles (φ1,1,0, φ1,2,−1, φ2,0,0, φ2,1,−1, φ3,0,−1) and (φ̃1,1,0,

φ̃1,2,−1, φ̃2,0,0, φ̃2,1,−1, φ̃3,0,−1) are called equivalent if they differ by a coboundary,
that is, there exist

ψ1,0,0 (= ξ = (ξi)) : (U
′′)
(1)
i → B,

ψ1,1,−1 (= ρ = (ρi,j )) : (U
′′)
(1)
i ∩ (U

′′)
(1)
j → A,

ψ2,0,−1 (= σ = (σi) : (U
′′)
(2)
i → A

such that

−d0,1,0(ψ
1,1,−1) = φ1,2,−1

− φ̃1,2,−1 (= −δ̌(ρ) = η − η′), (2.15)

d1,0,0(ψ
1,1,−1)+ d0,1,0(ψ

2,0,−1) = φ2,1,−1
− φ̃2,1,−1 (= δgp(ρ)+ δ̌(σ ) = 8−8

′),

(2.16)

d1,0,0(ψ
2,0,−1) = φ3,0,−1

− φ̃3,0,−1 (= δgp(σ ) = 2−2
′), (2.17)

−d0,1,0(ψ
1,0,0)+ d0,0,1(ψ

1,1,−1) = φ1,1,0
− φ̃1,1,0 (= −δ̌(ξ )+ µ∗(ρ) = γ − γ

′),

(2.18)

d1,0,0(ψ
1,0,0)+ d0,0,1(ψ

2,0,−1) = φ2,0,0
− φ̃2,0,0 (= δgp(ξ)+ µ∗(σ ) = F − F

′),

(2.19)

on a common refinement U ′′ of the two simplicial covers (U (n)i )i∈I (n) and (U ′(n)i )i∈(I ′)(n) .

2.2. From differentiable hypercohomology to Lie 2-groups

In this section we will describe how to construct Lie 2-groups from differentiable co-
cycles, similar to [SP11, Theorem 99].

We first introduce the concept of a group object in a bicategory and afterwards the
corresponding notions of extensions and central extensions of Lie 2-groups. We will be
brief on this; our main reference is [SP11].

Definition 2.8. LetC be a bicategory with finite products. A group object inC (orC-group,
for brevity) consists of the following data:

• an object G in C,
• 1-morphisms

m : G×G→ G (the multiplication),
u : ∗ → G (the unit)

such that
(pr1, m) : G×G→ G×G (2.20)

is an equivalence in C,
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• invertible 2-morphisms

a : m ◦ (m× id)⇒ m ◦ (id×m) (the associator)

` : m ◦ (u× id)⇒ id
r : m ◦ (id× u)⇒ id

}
(the left, resp. right unit constraint)

subject to the requirement that certain coherence conditions hold. A C-group is strict if
all the 2-morphisms above are the identity 2-morphisms.

A 1-morphism G → H of C-groups consists of a morphism F : G → H in C and
invertible 2-morphisms F2 : mH ◦(F×F)⇒ F ◦mG and F0 : F ◦uG ⇒ uH satisfying the
corresponding coherence conditions. Likewise, a 2-morphism between 1-morphisms of
C-groups consists of a 2-morphism between the underlying 1-morphisms in C satisfying
a certain coherence condition.

We refer to [SP11, Definitions 41–43], [Blo08, §4.3] and [BL04, p. 37] (the latter
in the case that C is actually a strict 2-category) for the various coherence conditions
mentioned above.

Definition 2.9. Let sSt (respectively éSt) be the bicategory of (respectively étale) Lie
groupoids, i.e., objects are (respectively étale) Lie groupoids, 1-morphisms are general-
ized morphisms and 2-morphisms are morphisms between generalized morphisms (see
Appendix B for details). Then a group object in sSt is also called a Lie 2-group. The
corresponding bicategory is denoted Lie2-groups. A Lie 2-group is étale if it is further a
group object in éSt.

Notice that our notion of a Lie 2-group is equivalent to the notion of Lie 2-group
from [Get09, Hen08], defined by pointed simplicial manifolds satisfying Kan conditions
Kan(n, j) for all 0 ≤ j ≤ n and Kan!(n, j) for all 0 ≤ j ≤ n ≥ 3. This has been proven
in [Zhu09].

Definition 2.10. An abelian C-group in a bicategory C with finite products is a group
object (G,m, u, a, l, r), together with an invertible 2-morphism β : m ⇒ m ◦ T , where
T : G × G → G × G is the canonical flip automorphism such that the corresponding
coherence conditions [SP11, Definition 47] are fulfilled.

A 1-morphism of abelian 2-groups consists of a 1-morphism of the underlying
C-groups making the diagram from [SP11, Definition 48] commute. A 2-homomorphism
of abelian 2-groups consists of an arbitrary 2-morphism between 1-morphisms of abelian
C-groups.

Example 2.11. (a) If G is an arbitrary Lie group, then the Lie groupoid with objects and
morphisms equal to G and structure maps equal to idG gives a strict group object in sSt
if we take the multiplication to be induced by the multiplication morphism on G and the
unit to be the inclusion of the unit element (and all 2-morphisms to be trivial). Since the
inclusion Man→ sSt preserves products, this is just the image in sSt of the group object
G in Man. We will denote this Lie 2-group by G.

(b) If µ : A → B is a morphism of abelian Lie groups, then we get a Lie groupoid
(A × B ⇒ B) with s(a, b) = b, t(a, b) = µ(a)b, ib = (eA, b) and (a′, µ(a)b) ◦
(a, b) = (a′a, b). This inherits the structure of a strict group object in sSt from the group
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multiplication on A× B and B (thus m is an honest morphism of Lie groupoids), which
is abelian (where we may choose β to be the identity). We will denote this abelian Lie
2-group by [A

µ
−→ B].

Definition 2.12. An extension of G by [A
µ
−→ B] consists of

• a Lie 2-group Ĝ,
• 1-morphisms [A

µ
−→ B]

p
−→ Ĝ and Ĝ

q
−→ G

such that their composition is equal6 to the canonical 1-morphism [A
µ
−→ B] → ∗ → G

and that Ĝ → G is a principal [A
µ
−→ B]-2-bundle (cf. [SP11, NW13, Woc11b]7). Two

extensions [A
µ
−→ B]

p
−→ Ĝ

q
−→ G and [A

µ
−→ B]

p′

−→ Ĝ′
q ′

−→ G are equivalent if there exist
a 1-morphism f : Ĝ→ Ĝ′ and a 2-morphism λ : f ◦ p⇒ p′

Ĝ

q
$$

[A
µ
−→ B] G

Ĝ′
q ′
::

p

88

p
′

&&

f

��

λ

�


such that q = q ′ ◦ f . In this case we also call (f, λ) an equivalence of central extensions.

Example 2.13. Suppose G is a 1-connected Lie group. The space

PeG := {γ ∈ C([0, 1],G) | γ (0) = e}

of continuous pointed paths in G is again a Lie group [GN14] with respect to the
topology of uniform convergence and pointwise multiplication. Thus the evaluation map
ev : PeG → G, γ 7→ γ (1), is a smooth group homomorphism and has a smooth sec-
tion σ : U → PeG on some identity neighborhood U ⊆ G. We extend this to a section
σ : G→ PeG (in general discontinuous). It follows from the existence of a smooth local
section that ev is a submersion [NSW13, Appendix B]. The kernel ker(ev) is the pointed
(continuous) loop group �G, which has the universal covering

π2(G)→ �̃G→ �G.

Since continuous group automorphisms of �G lift in a unique way to group automor-
phisms of �̃G, we deduce that PeG acts by a lift of the conjugation action (from the
right) on �̃G, which is smooth since π2(G) is discrete. Thus this action, along with the
canonical map τ : �̃G → PeG, is a smooth crossed module and thus determines a Lie
2-group 52(G) [NSW13, Example 4.3], [Woc11b, Remark 2.4], [Por08, FB02, BS76].

6 Note that equality is the only sensible thing here since G is a discrete groupoid.
7 Unlike in [Woc11b], we do here allow arbitrary morphisms of smooth stacks as local trivializa-

tions, not only those which are represented by smooth functors [SP11, NW13].
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It is of a quite simple nature, since the multiplication and inversion morphisms are repre-
sented by smooth functors on the action groupoid 0 of the action of �̃G on PeG induced
by τ .

Now 52(G) comes along with a homomorphism of Lie 2-groups into G, induced by
ev. Moreover, [π2(G) → 0] embeds canonically into 52(G) if we consider π2(G) as a
subgroup of �̃G. We thus obtain a sequence of Lie 2-groups

[π2(G)→ 0] → 52(G)→ G.

To see that this is in particular an extension we have to check that 52(G) → G is
a principal 2-bundle. For this it suffices to observe that over Ug := g · U we have the
smooth section σg(x) = σ(g) · σ(g−1

· x) of ev and that this induces a smooth functor

[π2(G)→ 0] × Ug → 52(G)|Ug , (a, idx) 7→ (a, σg(x)).

The latter can easily be shown to be a weak equivalence.

Lemma 2.14 ([SP11, Lemma 82]). Let [A
µ
−→ B] → Ĝ → G be an extension. Then

there exists a 1-morphism G → Aut([A
µ
−→ B]) of 2-groups,8 unique up to a unique

2-morphism.

Definition 2.15. An extension [A
µ
−→ B] → Ĝ → G is central if the 1-morphism from

the preceding lemma is 2-equivalent to the trivial one.

Remark 2.16. If A is a Lie group and G a Lie group, then we define a Lie monoid
extension of G by A to be a principal A-bundle Ĝ→ G which is a Lie monoid such that
Ĝ→ G and the inclusion A→ Ĝ given by a 7→ eĜ.a are homomorphisms of monoids.

We will now see that Ĝ → G is already an extension of Lie groups, i.e., pr1 × m:

Ĝ×Ĝ→ Ĝ×Ĝ is a diffeomorphism. In fact, consider the factorization pr×mĜ = p◦β
through the canonical maps to and from the pull-back:

A× A
pr×mA

//

��

A× A

α

��

A× A

��

Ĝ× Ĝ
β

//

��

(pr×mG)∗(G×G)

q

��

p
// Ĝ× Ĝ

��

G×G G×G
pr×mG

// G×G

where p and q are the canonical maps and α and β are induced maps into the pull-back.
Since pr×mG is a diffeomorphism and the pull-back is functorial, it follows that p is a
diffeomorphism. Since pr×mA is an isomorphism of Lie groups, we also conclude that
β is invertible.

8 2-groups are understood as group objects in the 2-category of categories.
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The remainder of this section will be devoted to the proof of the following theorem.

Theorem 2.17. Given a morphism A
µ
−→ B of abelian Lie groups and an arbitrary Lie

group G we have a well-defined map

Ȟ 3(BG•, A
µ
−→ B)→ Ext(G, [A

µ
−→ B]),

where Ext(G, [A
µ
−→ B]) denotes the equivalence classes of central extensions of G by

[A
µ
−→ B].

The proof of this theorem will be finished at the end of Section 2.3. We first warm up
with the following construction which also gives a geometric interpretation of the Čech
cohomology of a constant simplicial manifold. Note that we will assume throughout that
the occurring Čech cocycles are normalized, which is justified by Corollary 2.6.

2.2.1. The principal bundle structure. For a morphism A
µ
−→ B of abelian Lie groups

and a manifold M , viewed as a constant simplicial manifold, let (η, γ ) be a 2-cocycle
representing an element in the hypercohomology Ȟ 2(M,A

µ
−→ B) (cf. Remark 2.7), that

is, there is an open cover (Ui)i∈I on M with smooth maps

η : U[2]→ A, γ : U[1]→ B,

satisfying D3(η, γ ) = 0, i.e., µ ◦ η = δ̌(γ ) and δ̌(η) = 0. Here, to simplify the notation,
for q ≥ 0 we define U[q] to be the disjoint union

U[q] :=
∐

i0,...,iq∈I

Ui0 ∩ · · · ∩ Uiq (2.21)

of (q+1)-fold intersections. The cocycle (γ, η) defines a principal 2-bundle P(γ,η)→ M

(cf. [NW13, Woc11b]). It is presented by a Lie groupoid denoted by U[1]×(η,γ )B×A⇒
U[0] × B. The structure maps are given by

t(xij , b, a) = (xi, b), s(xij , b, a) = (xj , b+µ(a)+γij (x)), ∀(xij , b, a) ∈ Uij×B×A,

and
(xij , b, a) · (xjk, b

′, a′) = (xik, b, a + a
′
−ηijk(x)), (2.22)

e(xi, b) = (xii, b, 0),

(xij , b, a)
−1
= (xji, b + µ(a)+ γij (x),−a).

ThenD3(η, γ ) = 0 implies that (2.22) is compatible with the source and target maps and
is associative.

For the description of bundle morphisms in local coordinates it is often necessary
to change the open covers describing a principal 2-bundle. Unlike the case of principal
bundles, different choices of η, γ representing the same class in H 2(M,A

µ
−→ B) do

not give isomorphic principal 2-bundles, but only essentially equivalent groupoids with
isomorphic principal bundle structure:

Theorem 2.18 ([Woc11b, Theorem 2.22]). Given a strict 2-group A
µ
−→ B, the equiva-

lence classes of principal [A→ B]-2-bundles P → M are classified by Ȟ 2(M,A
µ
−→ B).
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2.2.2. The Lie 2-group structure. Now starting from a cocycle φ ∈ Ž3
U (BG•, A

µ
−→ B)

of a given simplicial covering (U (n)i )i∈I (n) , we set off to construct the groupoid which

provides the base space for Ĝ in the central extension [A
µ
−→ B] → Ĝ→ G.

First of all, we need to construct an A
µ
−→ B principal 2-bundle over G. There is a

homomorphism

Ž3
U (BG•, A

µ
−→ B)

τ
−→ Ž2

U (G,A
µ
−→ B),

τ(φ1,1,0, φ1,2,−1, φ2,1,−1, φ2,0,0, φ3,0,−1) = (φ1,1,0, φ1,2,−1),
(2.23)

inducing on the level of cohomology classes the edge homomorphism

Ȟ 3(BG•, A
µ
−→ B)→ Ȟ 2(G,A

µ
−→ B)

(note that Ȟ 2
U (G,A

µ
−→ B) is by definition the cohomology of the double complex Č1,q,r

for p = 1 constant from (2.7)).
The 2-cocycle (φ1,1,0, φ1,2,−1) gives us the desired principal 2-bundle via the con-

struction in Section 2.2.1. We call this Lie groupoid 0[φ] and it will serve as the underly-
ing Lie groupoid of our Lie 2-group. Notice that (U (1)i )i∈I (1) is a covering of G, thus by
the above discussion we have

0[φ]0 = U
(1)
[0] × B, 0[φ]1 = U

(1)
[1] × B × A.

Here the subscripts denote disjoint union of intersections (see (2.21)). For this section we
will switch back to the notation for cocycles that we used in Section 2.1. In this notation
the groupoid multiplication on 0[φ] is given by

(u0, u1, b, a) · (u1, u2, b
′, a′) = (u0, u2, b, a + a

′
−φ1,2,−1(u0, u1, u2)),

where we have also identified the intersection Ui0 ∩ Ui1 with the pull-back Ui0 ×G Ui1 .
We recall that BG, the nerve of (G ⇒ ∗), is a simplicial manifold as established in

Example 2.1. We use d2, d0 : BG2 = G × G → BG1 = G to pull back the 2-cocycle
(φ(1,1,0), φ(1,2,−1)) on G. Then we obtain two such 2-cocycles d∗2 (φ

(1,1,0), φ(1,2,−1)) and

d∗0 (φ
(1,1,0), φ(1,2,−1)) onG×G. The above construction gives us an (A

µ
−→ B)×2 principal

2-bundle on G×G, whose underlining Lie groupoid, denoted by 02
[φ], is given by

U
(2)
[1] × B

×2
× A×2 ⇒ U

(2)
[0] × B

×2.

Moreover, there is a Lie groupoid morphism (d0, d2) : 0
2
[φ] → 0[φ] × 0[φ] defined on

U
(2)
[1] × B

×2
× A×2

→ U
(1)
[1] × B × A× U

(1)
[1] × B × A by

(v0, v1, b0, b1, a0, a1) 7→ (d0(v0), d0(v1), b0, a0)× (d2(v0), d2(v1), b1, a1). (2.24)

We will always define a Lie groupoid morphism on the space of arrows since this de-
termines the morphism on the objects uniquely. Notice that d∗00[φ] × d

∗

20[φ] is given
by

U ′
(2)
[1] × A

×2
× B×2 ⇒ U ′

(2)
[0] × B

×2,
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where (U ′(2)i0,i1 := Ui0 × Ui1)(i0,i1)∈I (1)×I (1) is the product open covering of G × G.
Note that this is exactly the same as the coarsest common refinement of the pull-back
covers d∗0 (U

(1)
i )i∈I (1) and d∗2 (U

(1)
i )i∈I (1) , thus it contains U (2) as a subcovering. By

[Woc11b, Corollary 2.23], the groupoid morphism (2.24) as the composition of the in-
clusion 02

[φ] → d∗00[φ] × d
∗

20[φ] and the isomorphism d∗00[φ] × d
∗

20[φ]
∼= 0[φ]×2

is a weak equivalence. Thus 02
[φ] and 0[φ]×2 are Morita equivalent. Similarly, we use

d0d0, d2d0, d2d2 : BG3 → BG1 to pull back the 2-cocycle (φ(1,1,0), φ(1,2,−1)). This gives
us a Lie groupoid 03

[φ]which is an (A
µ
−→ B)×3 principal 2-bundle onG×G×G. More-

over the map (d2d2, d2d0, d0d0) gives rise to a Morita equivalence between 03
[φ] and the

product of three copies of 0[φ].
We now define the multiplication morphism m : 02

[φ] → 0[φ] by

(v0, v1, b0, b1, a0, a1) 7→ (d1(v0), d1(v1), b0+b1+φ
2,0,0(v0), a0+a1+φ

2,1,−1(v0, v1)).

(2.25)
Since the morphism 02

[φ] → 0[φ] × 0[φ] is a weak equivalence, the span

0[φ] × 0[φ] ← 02
[φ]

m
−→ 0[φ]

defines a generalized morphism m̃ : 0[φ] × 0[φ] → 0[φ]. That (2.25) is indeed a Lie
groupoid morphism follows from (2.13) and (2.9) as follows. Keep in mind that in 02

[φ]

we have

t(v0, v1, b0, b1, a0, a1) = (v0, b0, b1),

s(v0, v1, b0, b1, a0, a1)

=
(
v1, b0 + µ(a0)+ φ

1,1,0(d0(v0), d0(v1)), b1 + µ(a1)+ φ
1,1,0(d2(v0), d2(v1))

)
,

(v0, v1, b0, b1, a0, a1) · (v1, v2, b
′

0, b
′

1, a
′

0, a
′

1)

=
(
v0, v2, b0, b1, a0 + a

′

0 − φ
1,2,−1(d2(v0), d2(v1), d2(v2)),

a1 + a
′

1 − φ
1,2,−1(d0(v0), d0(v1), d0(v2))

)
,

Then m ◦ t = t ◦m holds by definition and we have

m ◦ s(v0, v1, b0, b1, a0, a1) =
(
d1(v1), b0 + µ(a0)+ φ

1,1,0(d2(v0), d2(v1))

+ b1 + µ(a1)+ φ
1,1,0(d0(v0), d0(v1))+ φ

2,0,0(v1)
)

s ◦m(v0, v1, b0, b1, a0, a1) =
(
d1(v1), b0 + b1 + φ

2,0,0(v0)+ µ(a0 + a1)

+ d0,0,1(φ
2,1,−1(v0, v1))+ φ

1,1,0(d1(v0), d1(v1))
)
.

Thus m ◦ s = s ◦m is equivalent to (2.13). Similarly, we have on the one hand

m((v0, v1, b0, b1, a0, a1) · (v1, v2, b
′

0, b
′

1, a
′

0, a
′

1))

= m
(
v0, v2, b0, b1, a0 + a

′

0 − φ
1,2,−1(d2(v0), d2(v1), d2(v2)),

a1 + a
′

1 − φ
1,2,−1(d0(v0), d0(v1), d0(v2))

)
=
(
d1(v0), d1(v2), b0 + b1 + φ

2,0,0(v0), a0 + a
′

0 − φ
1,2,−1(d2(v0), d2(v1), d2(v2))

+ a1 + a
′

1 − φ
1,2,−1(d0(v0), d0(v1), d0(v2))+ φ

2,1,−1(v0, v2)
)
,
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and on the other hand

m(v0, v1, b0, b1, a0, a1) ·m(v1, v2, b
′

0, b
′

1, a
′

0, a
′

1)

=
(
d1(v0), d1(v1), b0 + b1 + φ

2,0,0(v0), a0 + a1 + φ
2,1,−1(v0, v1)

)
·
(
d1(v1), d1(v2), b

′

0 + b
′

1 + φ
2,0,0(v1), a

′

0 + a
′

1 + φ
2,1,−1(v1, v2)

)
=
(
d1(v0), d1(v2), b0 + b1 + φ

2,0,0(v0),

a0+ a1+φ
2,1,−1(v0, v1)+ a

′

0+ a
′

1+φ
2,1,−1(v1, v2)−φ

1,2,−1(d1(v0), d1(v1), d1(v2))
)
.

Thus m and · commute iff (2.9) holds.
Like the multiplication morphism, the associator will not be defined on 0[φ]×3, but

on the Morita equivalent Lie groupoid 03
[φ]. There are two Lie groupoid morphisms

f1, f2 : 0
3
[φ] → 0[φ] defined on U (3)

[1] × B
×3
× A×3

→ (U
(1)
[1] × B × A)

×3 by

f1 : (w0, w1, b0, b1, b2, a0, a1, a2)

7→
(
d1(d2(w0)), d1(d2(w1)), b0 + b1 + b2 + d

∗

2φ
2,0,0(w0)+ d

∗

0φ
2,0,0(w0),

a0 + a1 + a2 + d
∗

2φ
2,1,−1(w0, w1)+ d

∗

0φ
2,1,−1(w0, w1)

)
,

f2 : (w0, w1, b0, b1, b2, a0, a1, a2)

7→
(
d1(d1(w0)), d1(d1(w1)), b0 + b1 + b2 + d

∗

1φ
2,0,0(w0)+ d

∗

3φ
2,0,0(w0),

a0 + a1 + a2 + d
∗

1φ
2,1,−1(w0, w1)+ d

∗

3φ
2,1,−1(w0, w1)

)
. (2.26)

As before, f1 and f2 are Lie groupoid morphisms by (2.13) and (2.9) and since d1 ◦ d1 =

d1 ◦ d2. Note that f1 is the same asm ◦ (id×m), restricted from (id×m)∗02
[φ] to 03

[φ]

and that f2 is the same as m ◦ (m× id), restricted from (m× id)∗02
[φ] to 03

[φ].
There is a smooth natural transformation α : f1⇐f2, which is a map α : 03

[φ]0

→ 0[φ]1 = U
(2)
[1] × B × A defined by

(w0, b0, b1, b2)

7→
(
d1d2(w0), d1d2(w0), b0 + b1 + b2 + d

∗

2φ
2,0,0(w0)+ d

∗

0φ
2,0,0(w0), φ

3,0,−1(w0)
)
.

To verify this, we only need to show that

f1(γ ) · α(s(γ )) = α(t(γ )) · f2(γ ) (2.27)

for γ ∈ 03
[φ]1 (source-target matching is equivalent to (2.13) and (2.14) and d1d1 =

d1d2). Take γ = (w0, w1, b0, b1, b2, a0, a1, a2). Then

s(γ ) =
(
w1, b0 + µ(a0)+ φ

1,1,0(d0(d0(w0)), d0(d0(w1))),

b1 + µ(a1)+ φ
1,1,0(d2(d0(w0)), d2(d0(w1))),

b2 + µ(a2)+ φ
1,1,0(d2(d2(w0)), d2(d2(w1)))

)
,

and t(γ ) = (w0, b0, b1, b2). Then

f1(γ ) · α(s(γ )) =
(
d1d2(w0), d1d2(w1), b0 + b1 + b2 + d

∗

2φ
2,0,0(w0)+ d

∗

0φ
2,0,0(w0),

a0 + a1 + a2 + d
∗

2φ
2,1,−1(w0, w1)+ d

∗

0φ
2,1,−1(w0, w1)+ φ

3,0,−1(w1)
)
,
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and

α(t(γ )) ·f2(γ ) =
(
d1(d2(w0)), d1(d1(w1)), b0+b1+b2+d

∗

2φ
2,0,0(w0)+d

∗

0φ
2,0,0(w0),

φ3,0,−1(w0)+ a0 + a1 + a2 + d
∗

1φ
2,1,−1(w0, w1)+ d

∗

3φ
2,1,−1(w0, w1)

)
.

Thus (2.27) is equivalent to (2.10). In the end, the same argument as before shows that

d1,0,0φ
3,0,−1

= 0 (2.28)

is equivalent to the coherence condition that the associator α has to satisfy (see also [SP11,
Theorem 99]).

For the unit we choose some i ∈ I (1) such that the identity e ofG is in U (1)i . Then the
unit of Ĝ is given by the groupoid morphism, uniquely determined by

u : ∗ → 0[φ], ∗ 7→ (e, 0) ∈ Ui × B.

Then the composition m ◦ (id × u) is defined as a smooth functor on the Lie groupoid
s∗10

2
[φ], where

s1 : G× ∗ ∼= G→ G×G

is the embedding into the first factor. Since (s−1
1 (U

(2)
i ))i∈I (2) is a refinement of

(d2(U
(2)
i ))i∈I (2) and since (d2(U

(2)
i ))i∈I (2) is a refinement of (U (1)i )i∈I (1) by assumption,

the natural inclusion s∗10
2
[φ] ↪→ 0[φ] is a weak equivalence. It thus suffices to check

that
s∗10

2
[φ] → 02

[φ]
m
−→ 0[φ]

is also equal to the inclusion s∗10
2
[φ] ↪→ 0[φ]. An arbitrary morphism in s∗10

2
[φ] is now

of the form (v0, v1, b0, 0, a0, 0), where v0 = s1(u0) and v1 = s1(u1). Thus the simplicial
identities and our normalization conditions imply that

m(v0, v1, b0, 0, a0, 0) =
(
d1(v0), d1(v1), b0 + φ

2,0,1(v0), a0 + φ
2,1,0(v0, v1)

)
= (v0, v1, b0, a0).

This shows that the 2-morphism m ◦ (id × u) ⇒ id can actually be taken to be rep-
resented by the identity natural transformation on the inclusion s∗10

2
[φ] ↪→ 0[φ]. The

same argument shows that u is also a strict right unit. A categorification of the argument
in Remark 2.16 now shows that (2.20) holds for 0[φ]. Thus 0[φ] together with m, u and
α is indeed a Lie 2-group, denoted Ĝφ .

Having fixed the choice of i ∈ I (1) with e ∈ Ui , there is a canonical morphism of Lie
groupoids (A× B ⇒ B)→ 0[φ], given by

(a, b) 7→ (ei, ei, a, b) ∈ Ui ∩ Ui × B × A

(where we have again identified Ui ×G Ui with Ui ∩ Ui ⊆ G); one easily checks that
this defines a morphism of the associated Lie 2-groups [A

µ
−→ B]

p
−→ Ĝφ with trivial F2

and F0. Likewise, the morphism 0[φ] → G given by

(u0, u1, b, a) 7→ u0
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gives a homomorphism of Lie 2-groups Ĝφ
q
−→ G. From this it is obvious that the com-

position [A
µ
−→ B] → Ĝφ → G is the trivial morphism [A

µ
−→ B] → ∗ → G. We thus

have an extension
[A

µ
−→ B] → Ĝφ → G.

That this is in fact a central extension follows from the fact that we considered the action
of G on [A

µ
−→ B] as trivial (cf. [SP11, Lemma 84]). We thus arrive at the following

Proposition 2.19. For φ ∈ Ž3
U (BG•, A

µ
−→ B), the Lie 2-group Ĝφ , together with the

morphisms [A
µ
−→ B]

p
−→ Ĝφ and Ĝφ

q
−→ G is a central extension of Lie 2-groups.

2.3. Cohomologous cocycles

Now suppose that we have two cohomologous 3-cocycles φ and φ̃ satisfying equations
(2.15)–(2.19) with a 2-cochain ψ . Since different covers lead to weak equivalences, we
may as well assume that φ and φ̃ live on the same cover U . In this case the 1-morphism
f : Ĝφ → Ĝφ̃ is given by the smooth functor

F : 0[φ] → 0[φ̃], (u0, u1, b, a) 7→
(
u0, u1, b + ψ

1,0,0(u0), a + ψ
1,1,−1(u0, u1)

)
,

by the smooth natural transformation F2 : mGφ ◦ (F × F)⇒ F ◦mGφ̃ ,

(v0, b0, b1) 7→
(
d1(v0), d1(v0), b0 + b1 + φ

2,0,0(v0)+ ψ
1,0,0(d1(v0)), ψ

2,0,−1(v0)
)
,

and by the smooth natural transformation F0 : F ◦ u⇒ u′, ∗ 7→ (ei, eĩ, 0, 0).
Indeed, (2.18) implies that F preserves source and target, and (2.15) implies that F

preserves the groupoid multiplication. Thus F is a groupoid morphism. Moreover, (2.19)
and (2.16) imply source-target matching for F2. That F2 satisfies the coherence condition
is then a consequence of (2.17). The equivalence between the central extensions is then
completed by the smooth natural transformation

λ : F ◦ p⇒ p′, (a, b) 7→ (ei, eĩ, b, a).

3. Geometric cocycle constructions

This section describes a geometric way for constructing differentiable cocycles onG from
Lie algebra cocycles on g and is the heart of the paper.

3.1. Locally smooth cocycles

The continuous second Lie algebra cohomology H 2
c (g, z) topologically classifies split

central extensions
z→ ĝ→ g

of g by z. Given a 2-cocycle ω representing a class [ω] ∈ H 2(g, z), we first review the
construction from [Woc11a] of a locally smooth cocycle (F̃ , 2̃) integrating ω.
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Definition 3.1. Let G be an arbitrary Lie group and A an abelian Lie group. Then we set

Cnloc(G,A) := {f : G
n
→ A | f is smooth on some identity neighborhood}.

On Cnloc(G,A) we have the usual group differential dgp : C
n
loc(G,A)→ Cn+1

loc (G,A),

dgp f (g0, . . . , gn) =

g0.f (g1, . . . , gn)−

n−1∑
i=0

(−1)if (g0, . . . , gigi+1, . . . , gn)− (−1)nf (g0, . . . , gn−1).

The corresponding cohomology groups will be denoted by H n
loc(G,A). If A

µ
−→ B is a

morphism of abelian Lie groups, then an (A
µ
−→ B)-valued locally smooth group cocycle

on G (briefly called a locally smooth cocycle if the setting is understood) consists of two
maps F ∈ C2

loc(G,B) and 2 ∈ C3
loc(G,A) such that

dgp F = µ ◦2 and dgp2 = 0.

Now 2̃ is constructed as follows. For each g, h ∈ G, let α̃(g) : 1(1) → G be smooth
with α̃(g)(0) = e and α̃(g)(1) = g, and β̃(g, h) : 1(2)→ G be smooth with

g.̃α(h)− α̃(gh)+ α̃(g) = ∂sing β̃(g, h), (3.1)

where ∂sing denotes the differential of singular chains. These maps exist since we assume
that G is 1-connected. In addition, we may choose these maps so that

G 3 g 7→ α̃(g) ∈ C∞∗ (1
(1),G) and G2

3 (g, h) 7→ β̃(g, h) ∈ C∞∗ (1
(2),G)

are smooth on an identity neighborhood U . In fact, if ϕ : P → P̃ ⊆ g is a chart for G
with ϕ(e) = 0 and P̃ convex and if we write g̃ := ϕ(g) and g̃ ? h̃ := g̃h, then we set

α̃(g)(t) := ϕ−1(t · g̃), (3.2)

β̃(g, h)(s, t) := ϕ−1(t (g̃ ? sh̃)+ s(g̃ ?(1− t )̃h)),

for g, h ∈ U and U ⊆ P open with U2
⊆ P and ϕ(U) convex (cf. [Woc11a, Lemma

1.7]). Since the maps

U × [0, 1] 3 (g, t) 7→ α̃(g)(t) ∈ G,

U × U ×1(2) 3 (g, h, (s, t)) 7→ β̃(g, h)(s, t) ∈ G

are smooth, the maps g 7→ α̃(g) and (g, h) 7→ β̃(g, h) are smooth on U and U × U
respectively [GN14]. In addition, we fix some V ⊆ U open with e ∈ V , V 2

⊆ U and
V = V −1.

Lemma 3.2 ([Woc11a, Lemmas 1.5–1.7]). For g, h, k ∈ G,

2̃(g, h, k) := g.β̃(h, k)− β̃(gh, k)+ β̃(g, hk)− β̃(g, h) (3.3)

is a closed singular 2-chain on G and thus defines an element of H2(G) ∼= π2(G). More-
over, the map (g, h, k) 7→ [2̃(g, h, k)] is a (π2(G) → 0)-valued locally smooth group
cocycle.
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From the building blocks of 2̃, we can also construct a (π2(G)
perω
−−→ z)-valued cocycle

as follows. We set
F̃ (g, h) :=

∫
β̃(g,h)

ωl = perω(β̃(g, h)). (3.4)

Since (g, h) 7→ β̃(g, h) is smooth on V and since integration along a fixed integrand
defines a smooth map C∞(1(2),G) → z (see Appendix A), it follows that F̃ is smooth
on V × V . From the definition, it follows directly that

F̃ (h, k)− F̃ (gh, k)+ F̃ (g, hk)− F̃ (g, h) =

∫
g.β̃(h,k)−β̃(gh,k)+β̃(g,hk)−β̃(g,h)

ωl

= perω(2̃(g, h, k)) (3.5)

(we have used the fact that ωl is left-invariant) and so (F̃ , 2̃) is a (π2(G)
perω
−−→ z)-valued

locally smooth cocycle on G. This cocycle integrates ω (in an appropriate sense, cf.
[Woc11a, Theorem 1.11]) and it is universal with this property [Woc11a, Corollary 1.18].

Eventually, we relate the cocycle (F̃ , 2̃) to the integration procedure from [Nee02].

Proposition 3.3. If im(perω) ⊆ z is discrete and q : z → Z := z/im(perω) is the quo-
tient map, then f := q ◦F̃ defines a locally smooth (0→ Z)-valued cocycle. It integrates
ω in the sense that D([f ]) = [ω], where

D : H 2
loc(G, z/perω(π2(G)))→ H 2

c (g, z)

is the differentiation homomorphism from [Nee02, Section 4].

Proof. Equation (3.5) shows that (dgp f )(g, h, k) vanishes in Z and since F̃ is smooth
in a neighborhood of (e, e), the same is true for f = q ◦ F̃ . Since f coincides with the
cocycle constructed in [Nee02, Section 6], it integrates ω by [Nee02, Corollary 6.3]. ut

Since (equivalence classes of) (0 → Z)-valued locally smooth group cocycles are the
same thing as central extensions ofG by Z [Nee02], the previous proposition answers the
integrability question for ω in the case of discrete im(perω).

3.2. Differentiable cocycles

The locally smooth cocycle from the previous section lacked the global smoothness prop-
erties of the group structure. In the case of ordinary groups, the locally smooth group
cocycles induced a smooth structure on the whole group extension, turning it into an ex-
tension of a Lie group. This procedure made heavy use of the associativity of the group
multiplication and thus does not seem to work for higher groups any more.

In this section, we shall enhance the construction from the previous section in an ad-
hoc manner to a globally smooth object associated to the Lie algebra cocycle ω, namely
a differentiable cocycle with respect to an equivariant cover of G.

We will now describe how to obtain the Čech cocycle describing the underlying 2-
bundle from (F̃ , 2̃) (cf. [Woc11a, Remark 7.2]). The cocycle (F̃ , 2̃) has the property that
F̃ is smooth on U ×U and 2̃ is smooth on U ×U ×U , for some identity neighborhood
U ⊆ G. Let V ⊆ U be open such that e ∈ V , V = V −1 and V 2

⊆ U . From V we obtain



Integrating central extensions 1295

the open cover (Vi)i∈G when setting

Vi := i · V. (3.6)

We associate to (F̃ , 2̃) (see (3.1), (3.4) and (3.3)) the cocycle

γi,j : Vi ∩ Vj → z,

g 7→ −F̃ (j, j−1g)+ F̃ (i, i−1g)− perω(2̃(i, i
−1j, j−1g)),

(3.7)

ηi,j,l : Vi ∩ Vj ∩ Vl → π2(G),

g 7→ −2̃(j, j−1l, l−1g)+ 2̃(i, i−1l, l−1g)− 2̃(i, i−1j, j−1g);
(3.8)

see Section 3.4 for an interpretation of this assignment.
From this definition, one immediately checks that γi,j and ηi,j,l satisfy (2.8) and

(2.12) (recall that F̃ and 2̃ vanish whenever one of its arguments is e). That γi,j depends
smoothly on g follows from

F̃ (i, i−1g)− F̃ (j, j−1g)− perω(2̃(i, i
−1j, j−1g)) = F̃ (i, i−1j)− i.F̃ (i−1j, j−1g)

for j−1g ∈ V ⊆ U if g is in Vj , and if Vi ∩ Vj 6= ∅, then i−1j ∈ V 2
⊆ U . Similarly, one

sees that ηi,j,l depends smoothly on g from

2̃(i, i−1j, j−1g)− 2̃(i, i−1l, l−1g)+ 2̃(j, j−1l, l−1g)

= 2̃(i, i−1j, j−1l)+ i.2̃(i−1j, j−1l, l−1g).

The construction from Section 2.2.1 now gives a Lie groupoid c = (Vi, γi,j , ηi,j,l)i,j,k∈G.
We call this Lie groupoid Gω from now on. We will justify this notation later on by
showing that, up to equivalence, Gω does not depend on the choices made.

This Lie groupoid will be shown to carry the structure of a Lie 2-group that integrates
ω in the general case, regardless of whether perω(π2(G)) is discrete or not.

In what follows, we stick to the notation introduced in Section 3.1. In addition, for
each j ∈ G we choose some open identity neighborhood Wj ⊆ V with j−1Wj j ⊆ V

and with ϕ(Wj ) ⊆ g convex. In case G = C∞(M,K) (for M a compact manifold) or
G = C(X,K) (for X a compact space) and K a Lie group with compact Lie algebra, we
may assume without loss of generality that Wj = V . In fact, in these cases there exist
convex Ad-invariant zero neighborhoods in g on which the exponential map restricts to a
diffeomorphism. This yields an equivariant chart ϕ with respect to the conjugation action
on G and the adjoint action on g.

Having fixed these choices we set

Vi,j := {(g, h) ∈ G×G | i
−1g ∈ Wj , j

−1h ∈ V, (ij)−1gh ∈ V }. (3.9)

Since (g, h) ∈ Vg,h, we clearly have an open cover ofG×G and because the indexing set
isG×G, we have canonical maps p1, p2, p3 : G×G→ G satisfying pa(Vi,j ) ⊆ Vpa(i,j)
for a = 1, 2, 3.
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Lemma 3.4. Let C∞pw(6,G) denote the space of piecewise smooth maps from the sim-
plicial complex 6 in Figure 3 (see Remark A.7) to G. There exists a smooth map
αi,j : Vi,j → C∞pw(6,G) such that

∂sing αi,j (g, h)

= α̃(i)+ i.̃α(i−1g)+ g.̃α(j)+ gj.̃α(j−1h)− ij.̃α((ij)−1gh)− α̃(ij) (3.10)

(see Figure 1).

Fig. 1. Construction of αi,j (the hatched areas depend smoothly on (g, h) and the blank areas are
constant).

Proof. We first observe that

Vi,j × [0, 1]2 3 ((g, h), (s, t)) 7→ i · α̃(i−1g)(s) · α̃(j)(1− t) ∈ G

defines a smooth map (since i−1g ∈ V if (g, h) ∈ Vi,j ) and thus a smooth map
λi,j : Vi,j → C∞([0, 1]2,G). Moreover, we may choose an orientation on [0, 1]2 such
that λi,j (g, h)|∂[0,1]2 is the piecewise smooth path

i.̃α(i−1g) ∗ g.̃α(j) ∗ i.̃α(i−1g).j ∗ i.̃α(j)

(here, ∗ means concatenation of paths and means orientation reversion). Choosing an
appropriate triangulation of [0, 1]2 then gives a map λi,j : Vi,j → C∞pw(6,G) with

∂sing λi,j (g, h) = i.̃α(i
−1g)+ g.̃α(j)− i.̃α(i−1g).j − i.̃α(j).

Next, we consider the map

Vi,j × [0, 1]2 3 ((g, h), (s, t)) 7→ ij.̃α((j−1
· α̃(i−1g)(s) · j))(t) ∈ G. (3.11)

Since ϕ(Wj ) ⊆ g is convex and i−1g ∈ Wj ⊆ V , it follows from the construction
of α̃(i−1g) in (3.2) that j−1α̃(i−1g)(s)j ∈ j−1Wj j ⊆ V for all s ∈ [0, 1] and thus
(3.11) defines a smooth function. This in turn restricts to a piecewise smooth function
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Vi,j → C∞([0, 1],G) on the boundary ∂[0, 1]2,

i.̃α(i−1g).j ∗ ij.̃α((ij)−1gj) ∗ cij ∗ cij

(where cij denotes the constant path at ij ∈ G). By choosing the same triangulation of
[0, 1]2 as above this yields a smooth map µi,j : Vi,j → C∞pw(6,G) with

∂sing µi,j (g, h) = i.̃α(i
−1g).j − ij.̃α((ij)−1gj).

Since β̃|V×V is smooth, it follows that
νi,j : Vi,j → C∞pw(6,G), (g, h) 7→ ij.β̃((ij)−1gj, j−1h),

is smooth with
∂sing νi,j (g, h) = ij.̃α((ij)

−1gj)+ gj.̃α(j−1h)− ij.̃α((ij)−1gh).

Altogether, α̃(i, j) := β̃(i, j) + λi,j + µi,j + νi,j has the desired properties (where we
interpret β̃(i, j) ∈ C∞pw(6,G) as a constant map). ut

Lemma 3.5. If αi,j : Vi,j → C∞pw(6,G) is smooth and satisfies (3.10), then

8(i,j),(i′,j ′) : Vi,j ∩ Vi′,j ′ → 〈C
∞
pw(6,G)〉Z,

(g, h) 7→ αi,j (g, h)− αi′,j ′(g, h)− β̃(i, i
−1i′)+ i.β̃(i−1i′, i′−1g)

− g.β̃(j, j−1j ′)+ gj.β̃(j−1j ′, j ′−1h)

+ β̃(ij, (ij)−1i′j ′)− ij.β̃((ij)−1i′j ′, (i′j ′)−1gh),

(3.12)

(see Figure 2) actually takes values in the singular 2-cycles Z2(G) and determines a
smooth (locally constant) map to H2(G) ∼= π2(G). For simplicity we denote this map
Vi,j ∩ Vi′,j ′ → π2(G) also by 8(i,j),(i′,j ′).

Fig. 2. Construction of 8(i,j),(i′,j ′).
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Proof. The smoothness of 8(i,j),(i′,j ′) follows from the smoothness of αi,j and β|U×U ,
and from the fact that i−1i′ ∈ V 2

⊆ U if Vi,j ∩ Vi′,j ′ 6= ∅. Now (3.1) and (3.10) imply

∂sing8(i,j),(i′,j ′)(g, h)

= α̃(i)+ i.̃α(i−1g)+ g.̃α(j)+ gj.̃α(j−1h)− ij.̃α((ij)−1gh)− α̃(ij)

− α̃(i′)− i′ .̃α(i′−1g)− g.̃α(j ′)− gj ′ .̃α(j ′−1h)+ i′j ′ .̃α((i′j ′)−1gh)+ α̃(i′j ′)

−
(̃
α(i)+ i.̃α(i−1i′)− α̃(i′)

)
+ i.

(̃
α(i−1i′)+ i−1i′ .̃α(i′−1g)− α̃(i−1g)

)
− g.

(̃
α(j)+ j.̃α(j−1j ′)− α̃(j ′)

)
+gj.

(̃
α(j−1j ′)+ j−1j ′ .̃α(j ′−1h)− α̃(j−1h)

)
+
(̃
α(ij)+ ij.̃α((ij)−1i′j ′)− α̃(i′j ′)

)
− ij.

(̃
α((ij)−1i′j ′)+ (ij)−1i′j ′ .̃α(i′j ′−1gh)− α̃((ij)−1gh)

)
= 0,

and the claim follows. ut

The maps αi,j : Vi,j → C∞pw(6,G) (composed with the integration mapC∞pw(6,G)→ z)
and 8(i,j),(i′,j ′) : Vi,j ∩ Vi′,j ′ → π2(G) will yield multiplication morphisms on the
groupoid Gω. In order to turn Gω into a Lie 2-group, we also need a 2-morphism yielding
the associator. This will be furnished by the next construction. For this, we note that we
have an open cover

Vi,j,l := {(g, h, k) ∈G
×3
| (g, h) ∈ Vi,j , (g, hk) ∈ Vi,j l, (gh, k) ∈ Vij,l, (h, k) ∈ Vj,l}

(3.13)
of G × G × G and the canonical maps pa : G×3

→ G×2 (for a = 1, 2, 3, 4) satisfy
pa(Vi,j,l) ⊆ Vp(i,j,l).

Lemma 3.6. If αi,j : Vi,j → C∞pw(6,G) is smooth and satisfies (3.10) then for each
(i, j, l) ∈ G3, the map

2i,j,l : Vi,j,l → 〈C
∞
pw(6,G)〉Z,

(g, h, k) 7→ −g.αj,l(h, k)+ αij,l(gh, k)− αi,j l(g, hk)+ αi,j (g, h),
(3.14)

takes values in the singular 2-chains Z2(G) and determines a smooth (constant) map to
H2(G) ∼= π2(G).

Proof. From (3.10) we get

∂sing2i,j,l(g, h, k)

= −g.
(̃
α(j)+ j.̃α(j−1h)+ h.̃α(l)+ hl.̃α(l−1k)− j l.̃α((j l)−1hk)− α̃(j l)

)
+ α̃(ij)+ ij.̃α((ij)−1gh)+ gh.̃α(l)+ ghl.̃α(l−1k)− ij l.̃α((ij l)−1ghk)− α̃(ij l)

−
(̃
α(i)+ i.̃α(i−1g)+ g.̃α(j l)+ gjl.̃α((j l)−1hk)− ij l.̃α((ij l)−1ghk)− α̃(ij l)

)
+ α̃(i)+ i.̃α(i−1g)+ g.̃α(j)+ gj.̃α(j−1h)− ij.̃α((ij)−1gh)− α̃(ij) = 0.

Then the claim follows from the fact that αi,j is smooth on Vi,j . ut
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We now set

Fi,j := perω ◦ αi,j (:=

∫
αi,j

ωl), (3.15)

which is a smooth map from Vi,j to z by the assumption on αi,j .

Lemma 3.7. There is a simplicial cover of BG• with U (1) = {Vi}, U (2) = {Vi,j } and
U (3) = {Vi,j,l} with Vi , Vi,j and Vi,j,l defined in (3.6), (3.9) and (3.13) respectively.
Moreover

(γi,j , ηi,j,l, Fi,j ,−8(i,j),(i′,j ′),2i,j,k)

as defined in (3.7), (3.8), (3.15), (3.12) and (3.14) constitutes a differentiable
(π2(G)

perω
−−→ z)-valued cocycle on BG• with respect to this cover.

Proof. A simplicial cover of BG• is induced as follows. As an indexing simplicial set, we
take I • with I (n) = Gn with the standard simplicial maps from Example 2.1. Then U (1),
U (2) and U (3) are covers of BG1, BG2 and BG3 respectively, which are by construction
compatible with all simplicial maps. We now define the cover of BGn inductively from
the one of BGn−1 by setting

U (n)g1,...,gn
=

n⋂
k=0

(dnk )
−1(U

(n−1)
dnk (g1,...,gn)

).

Then dnk (U
(n)
g1,...,gn)⊆U

(n−1)
dnk (g1,...,gn)

by definition and since dnk ◦s
n
k = id we have snk (U

(n)
g1,...,gn)

⊆ Un+1
snk (g1,...,gn)

.
Plugging in the definitions we obtain immediately

γj,l(x)− γi,l(x)+ γi,j (x)+ perω(ηi,j,l(x)) = 0 for x ∈ Vi ∩ Vj ∩ Vl .

Since αi,j : Vi,j → C∞pw(6,G) satisfies (3.10), it follows from this and (3.7) that

perω(8(i,j),(i′,j ′)(g, h)) = Fi,j (g, h)− Fi′,j ′(g, h)− γi,i′(g)− γj,j ′(h)+ γij,i′j ′(gh)

for (g, h) ∈ Vi,j ∩Vi′,j ′ (see (3.12) and Figure 2 for the definition of8(i,j),(i′,j ′)). Finally,
the maps 2i,j,l : Vi,j,l → π2(G) satisfy

perω(2i,j,l(g, h, k))+ Fj,l(h, k)− Fij,l(gh, k)+ Fi,j l(g, hk)− Fi,j (g, h) = 0

by their very definition (3.14) and Fij = perω ◦ αij .
In order to obtain a differentiable cocycle, we have to check some further properties.

In fact, we obtain

ηj,k,m(g)− ηi,l,m(g)+ ηi,j,m(g)− ηi,j,l(g) = 0
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for g ∈ Vi ∩ Vj ∩ Vl ∩ Vm by plugging in the definition of ηi,j,l(g) from (3.8). To check
the compatibility of 8(i,j),(i′,j ′) with ηi,j,l we observe that

8(i′,j ′),(i′′,j ′′)(g, h)−8(i,j),(i′′,j ′′)(g, h)+8(i,j)(i′,j ′)(g, h)

= 2̃(i, i−1i′, i′−1i′′)+ 2̃(i−1i′, i′−1i′′, i′′−1g)

+ 2̃(j, j−1j ′, j ′−1j ′′)+ 2̃(j−1j ′, j ′−1j ′′, j ′′−1g)

− 2̃
(
ij, (ij)−1i′j ′, (i′j ′)−1i′′j ′′

)
− 2̃

(
(ij)−1i′j ′, (i′j ′)−1i′′j ′′, (i′′j ′′)−1g

)
= −ηi,i′,i′′(g)− ηj,j ′,j ′′(h)+ ηij,i′j ′,i′′j ′′(gh),

where the first equality follows from the definition of 8(i,j),(i′,j ′) in (3.12) and of 2̃ in
(3.3) (note thatG acts trivially on π2(G)), and the second equality follows from (3.8) and
the cocycle identity for 2̃. The compatibility of 2i,j,l and 8(i,j),(i′,j ′) in turn reads

2i′,j ′,l′(g, h, k)−2i,j,l(g, h, k)

= g.8(j,l),(j ′,l′)(h, k)−8(ij,l),(i′j ′,l′)(gh, k)+8(i,j l),(i′,j ′l′)(g, hk)−8(i,j),(i,j ′)(g, h),

which follows by plugging in the definitions of2i,j,l from (3.14) and of8(i,j),(i′,j ′) from
(3.12). Finally, we have to check that 2i,j,l is closed with respect to δgp:

g.2j,l,m(h, k, o)−2ij,l,m(gh, k, o)+2i,j l,m(g, hk, o)−2i,j,lm(g, h, ko)+2i,j,l(g, h, k)

= 0,

which follows from the simple fact that 2i,j,k is already the image of αi,j under δgp. ut

3.3. Dependence on choices

In this section we shall briefly discuss the dependence of the construction from the previ-
ous section on the various choices that we made. If we first fix the Lie algebra 2-cocycleω,
then we are left with

(1.a) the choice of α̃ : G→ C∞(1(1),G),
(1.b) the choice of β̃ : G×G→ C∞(1(2),G),
(1.c) the choice of the identity neighborhoods U,V ,
(1.d) the choice of the open cover (Vi,j )(i,j)∈G×G of G×G,
(1.e) the choice of αi,j : Vi,j → C∞pw(6,G).

Those choices were made in such a way that

(2.a) α̃ is smooth on U and β̃ is smooth on U × U ,
(2.b) ∂sing β̃(g, h) = α̃(g)+ g.̃α(h)− α̃(gh),
(2.c) V = V −1 and V 2

⊆ U ,
(2.d) pr2(Vi,j ) ⊆ j · V , Vi,j · Vi,j ⊆ (ij) · V , pr1(Vi,j ) ⊆ i · V and (i, j) ∈ Vi,j ,
(2.e) αi,j : Vi,j → C∞pw(6,G) is smooth and satisfies (3.10), i.e.

∂sing αi,j (g, h) = α̃(i)+ i.̃α(i
−1g)+ g.̃α(j)+ gj.̃α(j−1h)

− ij.̃α((ij)−1gh)− α̃(ij).
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Moreover, we constructed α̃ and β̃ on an identity neighborhood with the aid of a chart ϕ,
and Vi,j with the aid of open identity neighborhoods Wj ⊆ G for each j ∈ G.

Remark 3.8. All the remaining data of the differentiable cocycle (γi,j , ηi,j,l, Fi,j ,

−8(i,j),(i′,j ′),2i,j,l), including the cover of BG•, were constructed from these choices
(cf. (3.7), (3.8), (3.15), (3.12), (3.14) and (3.13)). If we have another collection
α̃′, β̃ ′, U ′, V ′, V ′i,j and α′i,j of the data (1.a)–(1.e) satisfying the conditions (2.a)–(2.e),
then we obtain another differentiable cocycle (γ ′i,j , η

′

i,j,l, F
′

i,j ,−8
′

(i,j),(i′,j ′)
,2′i,j,l) by

the aforementioned construction. We will argue now that these two differentiable co-
cycles differ by a coboundary. In particular, the choices of the chart ϕ : P → ϕ(P ) ⊆ g
and of theWj are also inessential. The coboundary can be constructed from the given data
as follows.

We have ∂sing(̃α(g) − α̃
′(g)) = 0 (interpreting α̃(g) − α̃′(g) as a singular 1-chain),

and since G is assumed to be simply connected, there exists for each g ∈ G a map
Ã(g) ∈ C(1(2),G) such that

∂sing Ã(g) = α̃(g)− α̃
′(g). (3.16)

Moreover, we may assume without loss of generality that Ã(g) ∈ C∞(1(2),G) and that
g 7→ Ã(g) is smooth on some identity neighborhood U ′′ ⊆ U ∩ U ′. Let V ′′ ⊆ U ′′ be
open with e ∈ V ′′ = V ′′−1

⊆ V ∩ V ′. We set

ξi : V
′′

i → z, g 7→

∫
Ã(i)

ωl +

∫
i.Ã(i−1g)

ωl,

with V ′′i := i · V
′′ for i ∈ G,

ρi,j : V
′′

i ∩ V
′′

j → π2(G), g 7→ β̃(i, i−1g)− i.β̃(i−1j, j−1g)

− (β̃ ′(i, i−1g)− i.β̃ ′(i−1j, j−1g))

− (Ã(i)+ i.Ã(i−1g))+ Ã(j)+ j.Ã(j−1g),

and

σi,j : V
′′

i,j → π2(G), (g, h) 7→ αi,j (g, h)− α
′

i,j (g, h)− (Ã(i)+ i.Ã(i
−1))

− (Ã(j)+ j.Ã(j−1g))+ Ã(ij)+ ij.Ã((ij)−1gh)

with
V ′′i,j := {(g, h) ∈ Vi,j ∩ V

′

i,j | g ∈ i · V
′′, h ∈ j · V ′′, gh ∈ ij · V ′′}

for (i, j) ∈ G × G. One readily checks using (3.1), (3.16) and (3.10) that ρi,j (g) and
σi,j (g, h) are in fact closed singular 2-chains on G and thus define elements of π2(G).
Moreover, it follows from the smoothness assumptions on β̃, β̃ ′, Ã, αi,j and α′i,j that ξi ,
ρi,j and σi,j define smooth maps. Now, a lengthy but straightforward calculation shows
that

δ̌(ξ )+ perω ◦ ρ = γ − γ
′, δ̌(ρ) = η − η′,

δgp(ξ)+ perω ◦ σ = F − F
′, δgp(σ ) = 2−2

′,

δgp(ρ)+ δ̌(σ ) = −(8−8
′),
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on the refinement

· · · →→
→→ (V ′′i,j,l)(i,j,l)∈G×G×G →→

→
(V ′′i,j )(i,j)∈G×G ⇒ (V ′′i )i∈G,

where V ′′i,j,l is constructed from V ′′i,j as in (3.13).

Now let us fix all the data in (1.a)–(1.e), and take ω and ω′ representing the same class in
H 2(g, z), i.e., ω(x, y) − ω′(x, y) = b([x, y]) for b : g → z continuous and linear. This
results in two different differentiable cocycles φ = (γi,j , ηi,j,l, Fi,j ,8(i,j),(i′,j ′),2i,j,l)

and φ′ = (γ ′i,j , η
′

i,j,l, F
′

i,j ,8
′

(i,j),(i′,j ′)
,2′i,j,l). To see that they are equivalent, we define

ξi : i · V → z, g 7→

∫
α̃(i)

bl +

∫
i.̃α(i−1g)

bl,

where bl is the left-invariant 1-from on G with bl(e) = b. Moreover, we set

ρi,j : i · V ∩ j · V → π2(G), g 7→ −2̃(i, i−1j, j−1g),

and σ = 0. Then a straightforward computation shows that φ and φ′ differ by the
coboundary D3(ρ, ξ, σ ). In summary, we thus have the following

Proposition 3.9. The class in Ȟ 3(BG•, A
µ
−→ B) of the differentiable cocycle

(γi,j , ηi,j,l, Fi,j ,8(i,j),(i′,j ′),2i,j,l)

in Ȟ 3(BG•, A
µ
−→ B) from Lemma 3.7 does not depend on the choices made throughout

Section 3.2.

3.4. A bundle-theoretic interpretation of the main construction

If f̃ : G×G→ Z is a locally smooth group cocycle, then we obtain a central extension
ofG by Z as follows. We endow the set Z×Gwith the group structure µ̂f̃ ((x, g), (y, h))
= (x + y + f̃ (g, h), gh) and denote the resulting group by Z ×f̃ G or briefly Ĝf̃ . This
turns

Z→ Ĝf̃ → G (3.17)

with the canonical maps into a central extension of groups. Let f̃ be smooth on U × U
for U ⊆ G an open identity neighborhood, and let V ⊆ U be open such that e ∈ V ,
V = V −1 and V · V ⊆ U . Since V is open in G, Z × V generates Ĝf̃ , and since Z × U
carries a natural manifold structure, Theorem A.2 yields a Lie group structure on Ĝf̃ .
Clearly, (3.17) is then an exact sequence of Lie groups, and since we have the smooth
section U 3 x 7→ (0, x) ∈ Z × U , it is a locally trivial principal bundle.

Lemma 3.10 ([Woc10, Proposition 2.3]). For i ∈ G set Vi := i ·V . Then the assignment

(τ f̃ )i,j : Vi ∩ Vj → Z, g 7→ f̃ (i, i−1g)− f̃ (j, j−1g),

defines a smooth Čech cocycle on the open cover (Vi)i∈G of G. It is a classifying cocycle
of the locally trivial principal bundle (3.17).
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To understand the construction in this paper it will be important to have a coordinate
representation of the multiplication map µ̂f̃ : Ĝf̃ × Ĝf̃ → Ĝf̃ in terms of these bundle
coordinates.

Remark 3.11. The multiplication map makes the diagram

Z × Z

��

+
// Z

��

Ĝf̃ × Ĝf̃

��

µ̂f̃
// Ĝf̃

��

G×G
µ

// G

commute, so we obtain a description of µ̂f̃ on the open coverWi,j := {(g, h) ∈ Vi×Vj |

gh ∈ Vij }. Since the local trivializations of the bundle Ĝf̃ are given by

Z × Vi → Ĝf̃ , (x, g) 7→ (x + f̃ (i, i−1g), g)

(cf. [Woc10, Proposition 2.3]), one checks directly that the map

fi,j : Wi,j → Z,

(g, h) 7→ fi,j (g, h) := f̃ (i, i
−1g)+ f̃ (j, j−1h)+ f̃ (g, h)− f̃ (ij, (ij)−1gh),

(3.18)

is the coordinate representation of (the Z-component of) the multiplication map µ̂f̃ . In
this way we obtain a morphism

Ext(G,Z) ∼= H 2
loc(G,Z)→ Ȟ 2(BG•, 0→ Z).

This is an isomorphism, since each class φ = [(γi,j , Fi)] in Ȟ 2(BG•, 0→ Z) determines
a bundle via its underlying Čech cocycle γi,j and a group structure thereon by the smooth
maps Fi . These assignments are clearly inverse to each other.

From this description it does not follow that fi,j is actually smooth—we only know it be-
cause we can put in a whole lot of bundle theory (yielding this expression of the coordinate
representation) and group theory (yielding the smoothness of the group multiplication in
Theorem A.2).

The crucial point of the construction in Section 3.2 was that there is an alternative
expression for fi,j when f = q ◦ F̃ is the locally smooth cocycle constructed in the case
of discrete periods from a Lie algebra cocycle (cf. Proposition 3.3). Indeed, the expression∫
αi,j

ωl with

αi,j (g, h) = β̃(i, i
−1g)+ g.β̃(j, j−1h)+ β̃(g, h)− β̃(ij, (ij)−1gh) (3.19)
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coincides on Vi,j with
∫
αi,j

ωl since it follows immediately from (3.1) and (3.10) that the
difference αi,j (g, h)− αi,j (g, h) is closed and thus∫

αi,j (g,h)−αi,j (g,h)

ωl ∈ im(perω).

While the smoothness of fi,j =
∫
αi,j

ωl is not immediate from its construction, the

smoothness of
∫
αi,j

ωl is. This made the construction of the differentiable cocycle in Sec-
tion 3.2 work.

4. Lie’s Third Theorem

4.1. Deriving Lie algebras from étale Lie 2-groups

We now explain how to associate a Lie algebra to an étale Lie 2-group. Recall from
Definition 2.9 that a Lie 2-group is a (weak) group object in the bicategory of smooth
stacks (cf. also Appendix B).

Definition 4.1. A Lie groupoid is étale if all its structure maps are local diffeomorphisms.
We call a Lie 2-group for which the underlying Lie groupoid is étale an étale Lie 2-group.
We denote the full subcategory of étale Lie 2-groups in Lie2-groups by Lie2-groupsét.

The next short lemma is the key fact about étale Lie groupoids that will make the con-
struction in what follows work.

Lemma 4.2. Suppose that ϕ : G → H is a smooth functor between the Lie groupoids G
and H and that α : G0 → H1 is a smooth natural transformation with source ϕ. If H is
étale and α(x) = id(ϕ0(x)) for some x ∈ G0, then α = id ◦ ϕ0 on a whole neighborhood
of x.

Proof. Let V ⊆ H0 be open with ϕ0(x) ∈ V such that id|V is a diffeomorphism. Since
s ◦ id = idG0 we see that s is the (two-sided) inverse of id on id(V ), and thus it is in
particular a right inverse. For y ∈ ϕ−1

0 (V ) it thus follows from s(α(y)) = ϕ0(y) that
α(y) = id(s(α(y))) = id(ϕ0(y)). ut

The construction of the Lie algebra associated to the étale Lie 2-group G is along the lines
of [TZ06, Section 5]. The multiplication morphism m : G × G → G (not to be confused
with the composition in G) is a generalized morphism (see Appendix B) represented by

another Lie groupoid H, a weak equivalence G × G 8
←− H and a smooth functor H m

−→ G.
Thus there exists an open neighborhood U of e ∈ G0 (where e = u0(∗)) and a smooth
section

σ : U × U → (H0)80×sG×sG (G1 ×G1)

of (tG × tG) ◦ pr2. If σ1 denotes its first component, then m0 : U × U → G0, (x, y) 7→
m0(σ1(x, y)), is smooth and represents the restriction of the multiplication in G, restricted
to the full subgroupoid U := (s−1

G (U) ∩ t−1
G (U)⇒ U). Note that m1 : G1 ×U G1 → G1
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is uniquely determined by its property to be a smooth functor and the universal property
of the pull-back in the definition of weak equivalence.

Now consider the 2-morphism a : m ◦ (m × id) ⇒ m ◦ (id × m), which is also

represented by another Lie groupoid K, a weak equivalence G × G × G 9
←− K and a

smooth natural transformation a : K0 → G1 between the induced smooth functors m ◦
(m× id) : K→ G and m ◦ (id×m) : K→ G. Inside U we take an open neighborhood V
of e such that m0(V × V ) ⊆ U and there exists a section

σ ′ : V × V × V → (K0)90 ×sG×sG×sG (G1 ×G1 ×G1)

of (tG × tG × tG) ◦ pr2. Then α : V × V × V → G1, (x, y, z) 7→ a(σ1(x, y, z)), defines
a smooth natural transformation between m ◦ (m× id) and m ◦ (id×m).

Now in general m(e, e) 6= e, but we can redefine m to achieve equality here. To
this end consider the 2-morphism ` : m ◦ (u × id) ⇒ id, which is represented by an-

other Lie groupoid L, a weak equivalence G 4
←− L and a smooth natural transforma-

tion ` : L0 → G1 between the induced smooth functors m ◦ (u× id) : L → G and
id : L → G. After possibly shrinking U we may assume that there exists a section
σ ′′ : U → (L0) 40

×sG G1 of tG ◦ pr2. Then λ : U → G1, x 7→ `(σ ′′(x)), defines
a smooth natural transformation between m ◦ (u × id) and id. With the same proce-
dure we derive ρ from r : m ◦ (id × u) ⇒ id. Now there exists a neighborhood U ′ of
m(e, e) and a section σ : U ′ → G1 of sG with σ(m(e, e)) = λ(e). We may assume that
m(U × U) ⊆ U ′ and thus define a smooth natural transformation U × U → G1 with
source m by (x, y) 7→ σ(m(x, y)). We now redefine m as the target of this natural trans-
formation. Since tG(σ (m(e, e))) = e, we see that m(e, e) = e holds for the redefined m.
If we also use this natural transformation to redefine the other structure morphisms of G,
then this endows U with the structure of a “local Lie 2-group”, where “local” means that
all morphisms and 2-morphisms defining the group structure are only defined on the full
subgroupoid of some neighborhood of e.

Since m(e, e) = e, it follows that λ(e) = ρ(e) is the identity in e and then so is
α(e, e, e) due to the coherence of `, r and α. Now Lemma 4.2 implies that α(x, y, z) is the
identity of m(x,m(y, z)) = m(m(x, y), z) on some neighborhood of (e, e, e), which we
may still assume to be V . Thus (U, V,m, e) is a local Lie group in the sense of [Nee06,
Definition II.10] (the requirement on the existence of inverses follows from requiring
pr1 ×m to be invertible with a similar argument to the one above).

We now have to take care about the choices that we made above. Different choices
will lead to a priori different local Lie groups (U, V,m, e) and (U ′, V ′, m′, e′), and we
now argue that they actually agree. We first observe that we can achieve e = e′ with the
same method as above when ensuring m(e, e) = e. If we construct m′ with the aid of
a different weak equivalence G × G ← H′, then the functors m and m′ are smoothly
equivalent when restricted to the full subgroupoid

U ∩ U ′ :=
(
t−1
G (U ∩ U ′) ∩ s−1

G (U ∩ U ′)⇒ U ∩ U ′
)
.

Since m(e, e) = m′(e, e) = e it follows from the étaleness of G that this smooth natural
transformation is actually the identity on some neighborhood of e. Hence m′ = m on
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some neighborhood of (e, e). Thus the germ of the local group is uniquely determined
by G, which in turn uniquely determines a Lie algebra L(G).

Now the same argument may also be applied to morphisms to show that the assign-
ment G 7→ L(G) actually defines a functor

L : Lie2-groupsét→ LieAlgebras, (4.1)

called the Lie functor. It has the obvious property that if we precompose it with the fully
faithful embedding LieGroups → Lie2-groupsét, given by G 7→ G (see Example 2.11),
then it coincides with the ordinary Lie functor L : LieGroups→ LieAlgebras.

We now observe that the Lie functor is compatible with extensions.

Proposition 4.3. If A
µ
−→ B has A discrete, then any central extension [A

µ
−→ B] → Ĝ

→ G is equivalent to one with Ĝ étale.

Proof. The Lie groupoid underlying the Lie 2-groups A× B ⇒ B is étale, and so is the
total space of the principal 2-bundle P(γ,η) → G, constructed as in Section 2.2.1 from
a cocycle (γ, η) ∈ Ž3

U (G,A
µ
−→ B). The morphism P(γ,η) → Ĝ is a weak equivalence

[Woc11b, Proposition 2.19] and thus induces on P(γ,η) the structure of a Lie 2-group such
that

Ĝ

&&
[A

µ
−→ B] G

P(γ,η)

88

77

'' ��

is an equivalence of central extensions. ut

Corollary 4.4. If A
µ
−→ B has A discrete, then the functor (4.1) induces a morphism

D : Ext(G, [A→ B])→ Ext(g, L(B)),

given by passing from a central extension [A → B] → Ĝ → G to an equivalent one
with Ĝ étale and then applying L.

Proof. We first show that if Ĝ is étale, then the sequence L(B) → L(Ĝ) → g is in
fact a central extension of topological Lie algebras. Since the action of G on [A

µ
−→ B]

is trivial for any central extension [A
µ
−→ B] → Ĝ → G (cf. [SP11, Lemma 84]), we

only have to verify that the morphism L(Ĝ) → L(G) of topological Lie algebras has
a continuous linear section. This in turn follows from the local triviality of the principal
2-bundle Ĝ→ G, since it implies the existence of a smooth local section of the smooth
functor (P1 ⇒ P0)→ G for any Lie groupoid P1 ⇒ P0 representing Ĝ.
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The claim now follows if we can show that for each equivalence of central extensions

Ĝ

q
$$

[A
µ
−→ B] G

Ĝ′
q ′
::

p

88

p
′

&&

f

��

λ

�


with étale Ĝ and Ĝ′ the resulting central extensions of Lie algebras L(B)→ L(Ĝ)→ g
and L(B)→ L(Ĝ′)→ g are equivalent. But this readily follows from the fact that f is
in particular a morphism of étale Lie 2-groups and L(f ) makes the diagram

L(Ĝ)

L(f )

��

L(q)

&&
L(B)

L(p) 66

L(p′) ((

g

L(Ĝ′)
L(q ′)

88

commute. ut

Remark 4.5. Note that there is also a morphism

D : Ȟ 2(BG•, π2(G)
perω
−−→ z)→ H 2

c (g, z)

given by composing the morphism

Ȟ 2(BG•, π2(G)
perω
−−→ z)→ Ext(G, [π2(G)

perω
−−→ z])

from Theorem 2.17 with

D : Ext(G, [π2(G)
perω
−−→ z])→ Ext(g, z) ∼= H 2

c (g, z)

from Corollary 4.4. This is clearly given on the cocycle level by

DFi(x, y) := d
2Fi(1, 1)(x, y)− d2Fi(1, 1)(y, x)

for some Fi : U
(2)
i → z with (1, 1) ∈ U (2)i ⊆ G×G (cf. [Nee02, Lemma 4.6]).

4.2. Lie’s Third Theorem for locally exponential Lie algebras

Central extensions of the Lie algebra g by the abelian Lie algebra z are classified by
H 2
c (g, z). We now use this fact and the established integration procedure to give a criterion

for a Lie algebra to come from an étale Lie 2-group. For this we first show how [ω] ∈
H 2
c (g, z) and the differentiable cocycle

φ := (γi,j , ηi,j,l, Fi,j ,8(i,j),(i′,j ′),2i,j,l)

in Ȟ 3(BG•, π2(G)
perω
−−→ z) from Lemma 3.7 are related.
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Lemma 4.6. Applying the Lie functor to the central extension [π2(G)
perω
−−→ z] → Gφ

→ G results in a central extension isomorphic to z⊕ω g.

Proof. By construction we have to check that the local Lie group associated toGφ has the
Lie algebra z⊕ω g. But by Remark 4.5 this is exactly the same argument as in [Woc11a,
Lemma 1.9] (cf. also [Nee02, Lemma 4.6]). ut

This immediately implies the following

Theorem 4.7. If G is a simply connected Lie group with Lie algebra g, z is a Mackey-
complete locally convex space and ω : g × g → z is a continuous Lie algebra cocycle,
then the differentiation homomorphism

D : Ext(G, [π2(G)
perω
−−→ z])→ Ext(g, z) ∼= H 2

c (g, z)

has [ω] in its image. Here G is the Lie group G viewed as a Lie 2-group (see Example
2.11).

Remark 4.8. We now discuss the relation of the previous theorem to the results from
[Nee02]. To this end, consider a morphism A

µ
−→ B of abelian Lie groups such that

ker(µ) ≤ A is a closed Lie subgroup and im(µ) ≤ B is discrete. Then π := ker(µ) and
Z := B/im(µ) carry natural Lie group structures and [π → 0] × [0→ Z] is equivalent
to [A→ B]. Moreover, we have an induced sequence

Ȟ 2(BG•, π → 0)
χ∗
−→ Ȟ 2(BG•, A

µ
−→ B)

ζ∗
−→ Ȟ 2(BG•, 0→ Z)→ 0 (4.2)

of abelian groups, given by composing cocycles with the canonical morphismsχ : (π→0)
→ (A

µ
−→ B) and ζ : (A

µ
−→ B)→ (0→ Z) of chain complexes.

We claim that (4.2) is exact. It is clear that the sequence is of order two. If φ =
(γi,j , ηi,j,k, Fi,8i,j ,2i) represents a class in ker(ζ∗), then there exist ξi : U

(1)
i → B

such that γi,j + δ̌(ξ )i,j and Fi − δgp(ξ)i take values in im(µ).9 We may thus lift (after
possibly refining the cover) γi,j + δ̌(ξ )i,j to an A-valued cochain ρi,j : U

(1)
i ∩U

(1)
j → A

and Fi − δgp(ξ)i to an A-valued cochain σi : U
(2)
i → A. Then η′ := η + δ̌(ρ), 8′ :=

8− δgp(ρ)− δ̌(σ ) and 2′ := 2− δgp(σ ) takes values in π :

µ ◦ η′ = µ ◦ η + µ ◦ δ̌(ρ) = µ ◦ η + δ̌(γ ) = 0,

µ ◦8′ = µ ◦8− δgp(γ + δ̌(ξ ))− δ̌(F − δgp(ξ)) = µ ◦8− δgp(γ )− δ̌(F ) = 0,
µ ◦2′ = µ ◦2− δgp(F − δgp(ξ)) = µ ◦2− δgp(F ) = 0.

9 Strictly speaking, we would have to choose a refinement of the cover (U (1)
i
)i∈I1 of G, and ξi

might only exist on this refinement. The same applies to each coboundary and each lift throughout
the entire construction. Since the construction terminates after finitely many steps, we may in the
end choose a simplicial common refinement of all covers involved (cf. Lemma 2.2) and thus may
work throughout with one fixed cover.
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Moreover,
(0, η′, 0,8′,2′) = φ +D3(ξ, ρ, σ )

is equivalent to φ and clearly contained in the image of χ∗. This implies that (4.2) is exact
in Ȟ 2(BG•, A

µ
−→ B). Finally, the surjectivity of ζ∗ follows from a lifting argument simi-

lar to the previous one (i.e., lift Z-valued cocycles to B-valued cochains and compensate
the failure of these lifts to being cocycles by A-valued cocycles).

We now apply (4.2) to π2(G)
perω
−−→ z in the case that perω(π2(G)) ≤ z is discrete.

The class of the integrating cocycle

φ := (γi,j , ηi,j,l, Fi,j ,8(i,j),(i′,j ′),2i,j,l)

in Ȟ 3(BG•, π2(G)
perω
−−→ z) from Lemma 3.7 then gets mapped under ζ∗ to a class in

Ȟ 2(BG•, 0→ Z) ∼= Ext(G,Z)

(see Remark 3.11). This is precisely the class of the integrating cocycle from [Nee02].

Remark 4.9. Since we have assumed that G is simply connected, the map

D : Ext(G,Z) ∼= Ȟ 2(BG•, 0→ Z)→ H 2
c (g, z)

∼= Ext(g, z)

is injective for each Z = z/0 with 0 ≤ z discrete (see [Nee02, Theorem 7.12]). More
precisely, the kernel of D coincides with the image of

Hom(π1(G), Z)→ Ext(G,Z), ϕ 7→ (Z × G̃)/π1(G)

(where G̃→ G is the simply connected cover ofG and π1(G) acts on Z via ϕ). However,
the map

D : Ȟ 3(BG•, π2(G)
perω
−−→ z)→ H 2

c (g, z)

is not in general injective. For instance, if z = 0, then the differentiable cocycle

φ := (0, ηi,j,l, 0,8(i,j),(i′,j ′),2i,j,l)

in Ȟ 2(BG•, π2(G)
0
−→ 0) from Lemma 3.7 is in general non-trivial, since it describes the

2-connected cover of G (see Section 5).
In general, set π := ker(perω). Then the canonical morphism χ : (π → 0)→ (π2(G)

perω
−−→ z) of chain complexes gives rise to a morphism

χ∗ : Ȟ
2(BG•, π → 0)→ Ȟ 2(BG•, π2(G)

perω
−−→ z), (4.3)

and we claim that the kernel of D coincides with the subgroup χ∗(Ȟ 2(BG•, π → 0)).
This is in general non-trivial, for instance if π2(G) is finitely generated. Then π is a
direct summand in π2(G) since z is torsion free and thus, for each generator a, either a is
contained in ker(π), or perω is injective on 〈a〉. If π is a direct summand in π2(G), then
χ∗ is clearly injective.
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In order to verify the claim, observe that if D(φ) = 0, then we can assume that the
z-valued components of φ are locally constant. Consequently, φ can also be considered
as a cocycle representing an element in Ȟ 2(BG•, π2(G)

perω
−−→ zδ), where zδ denotes the

abelian Lie group z with the discrete topology. From Remark 4.8 we have the short exact
sequence

χ∗(Ȟ
2(BG•, π → 0)) ↪→ Ȟ 2(BG•, π2(G)

perω
−−→ zδ)

ζ∗
−→ Ȟ 2(BG•, 0→ Zδ)

with Zδ := zδ/perω(π2(G)). From covering theory it follows that

Ȟ 2(BG•, 0→ Zδ) ∼= Ext(G,Zδ) ∼= Hom(π1(G), Z),

and this vanishes for G being simply connected. This shows the claim.

This now readily implies our generalization of Lie’s Third Theorem.

Theorem 4.10. If g is a locally convex locally exponential Lie algebra such that z :=
z(g) ⊆ g is a complemented and Mackey-complete subspace, then there exists an étale
Lie 2-group G with L(G) ∼= g.

Proof. Since g is locally exponential, gad := g/z has Gad ⊆ Aut(g) as Lie group with
L(Gad) = gad [Nee06, Theorem IV.3.8]. Since z is complemented, we have g ∼= z⊕ωad gad
for the continuous cocycle ωad : gad × gad → z, determined by (x, y) 7→ [x, y]1, where
[x, y]1 is the z-component with respect to some chosen topological isomorphism g ∼=
z× gad. Thus we may apply the preceding lemma to the central extension

z(g)→ g→ gad,

which shows the claim. ut

5. An interpretation in terms of 2-connected covers

The integration of the Lie algebra cocycle ω to a locally smooth group cocycle is ob-
structed by π2(G) (or more precisely by perω(π2(G))). In any case, the obstruction van-
ishes if π2(G) does (which is in particular the case for finite-dimensional Lie groups). For
non-simply connected Lie groups one can always pass to the simply connected cover to
resolve obstructions coming from non-trivial fundamental groups, but π2(G) cannot be
ruled out in a similar fashion for the following reasons:

• The 2-connected “cover” G] → G exists as a topological group, but it might not have
a Lie group structure.
• Even if G] has a Lie group structure and G] → G is a submersion (for instance for

certain loop groups or U(`2(C)) → PU(`2(C))), then G] will in general not have a
Lie algebra isomorphic to the one ofG, since the kernel ofG]→ G cannot be discrete.
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However, the central extension 52(G) → G from Example 2.13 takes over the rôle of
the 2-connected cover of G. This is made precise by the next theorem. Note that the
underlying Lie groupoid of 52(G) determines a simplicial manifold B52(G)•. If we
now assume that G is metrizable, then so is each B52(G)n and thus B52(G)• is in
particular a simplicial group object in the category of compactly generated Hausdorff
spaces. On these objects the (ordinary) geometric realization |52(G)| := |B52(G)•| is
particularly well-behaved. Under these requirements we can now show that the canonical
map |52(G)|

q
−→ G, induced by ev : PeG→ G, is a 2-connected cover, i.e., is a fibration,

π2(|52(G)|) vanishes and πi(q) is an isomorphism for i 6= 2.

Theorem 5.1. If G is a metrizable 1-connected Lie group, then |52(G)|
q
−→ G is a

2-connected cover of G. Moreover, the multiplication functor of 52(G) induces on
|52(G)| the structure of a group object in the category of compactly generated Haus-
dorff spaces and q is a morphism thereof.

Proof (cf. [BCSS07, Theorem 28]). From [NSW13, Proposition 4.9] it follows that
|52(G)|

q
−→ G is a fibration and that the fiber is a K(π2(G), 1). Note that the latter

agrees with the geometric realization of

K := ker(52(G)→ G) = (�̃Go�G⇒ �G).

Then the same argument as in [BCSS07, Theorem 28] shows that the claim follows
if we can prove that for the canonical morphism �G → K the induced morphism
π1(|�G|)→ π1(|K|) is an isomorphism. Consider the diagram

π2(G) //

��

�̃G //

��

�G

��

π2(G) // E(�̃G) // K

of Lie 2-groups (where E(�̃G) is the pair groupoid of �̃G). The top row is exact by
construction and the bottom row is exact by [NSW13, Proposition 4.9]. Since |E(�̃G)|
is contractible by [Seg68, §3] and [NSW13, Lemma 4.4], and π1(�G) → π0(G) is an
isomorphism by construction, the claim follows from the commutativity of

π1(|�G|)
∼= //

��

π0(|π2(G)|)

∼=

��

π1(|K|)
∼= // π0(|π2(G)|) ut

Thus52(G)→ Gmay be interpreted as a 2-connected cover. Moreover, there is a smooth
version 5∞2 (G) of Example 2.13, where one replaces PeG with

P∞e G := {γ ∈ C
∞([0, 1],G) | γ (0) = e} (5.1)
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and �G with

ker(ev) ∩ P∞e G := �
∞G := {γ ∈ C∞([0, 1],G) | γ (0) = e = γ (1)}. (5.2)

Since the inclusions P∞e G ↪→ PeG and �∞G → �G are homotopy equivalences, it
follows from [NSW13, Proposition 4.5] that |5∞2 (G)| → G is also a 2-connected cover.

If we apply the construction from Section 3.2 to z = 0 and thus to the zero cocycle,
then we obtain a differentiable cocycle φ0 and by Proposition 2.19 a central extension

[π2(G)→ 0] → Ĝφ0 → G.

As above, the geometric realization |Ĝφ0 | → G is a 2-connected cover of G, but now
only as an A∞-space since |Ĝφ0 | is not a group in general (cf. [SP11, §3.7]).10 Moreover,
we have a canonical morphism Ĝφ → Ĝφ0 , induced by forgetting the z-component in
each term. This then gives rise to a central extension

z→ Ĝφ → Ĝφ0

(in the more general setting of [SP11, §3.6]), which can be seen as a central extension
of the 2-connected cover Ĝφ0 of G. In this light the construction from Section 3.2 looks
as if we have first passed to the 2-connected cover Ĝφ0 , where we have then solved the
integration problem which is trivial due to the 2-connectedness of Ĝφ0 .

Appendix A. Differential calculus on locally convex spaces

We provide some background material on locally convex Lie groups and their Lie algebras
in this appendix. See also [Woc13] for more details.

Definition A.1. Let X and Y be locally convex spaces and U ⊆ X be open. Then
f : U → Y is differentiable or C1 if it is continuous, for each (x, v) ∈ U × X the
differential

df (x).v := lim
h→0

f (x + hv)− f (x)

h

exists, and the map df : U × X → Y is continuous. If n > 1 we inductively define f to
be Cn if it is C1 and df is Cn−1, and to be C∞ or smooth if it is Cn for all n ∈ N. We
denote the corresponding spaces of maps by Cn(U, Y ) and C∞(U, Y ).

A (locally convex) manifold is a topological Hausdorff space (without any further
topological requirements) that is locally homeomorphic to open subsets of a locally con-
vex space with smooth chart changes. A (locally convex) Lie group is a group which is a
smooth Hausdorff manifold modeled on a locally convex space such that the group oper-
ations are smooth. A locally convex Lie algebra is a Lie algebra whose underlying vector
space is locally convex and whose Lie bracket is continuous.

10 This can be made precise by constructing an explicit morphism Ĝφ0 → 5∞2 (G)with the aid of
the maps α̃ and β̃. However, while the construction in Section 3.2 relies on concatenations of paths
and triangles, the construction of5∞2 (G) relies on pointwise multiplication. This is the reason why
the morphism Ĝφ0 → 5∞2 (G) would respect the composition (and also the group structure) only
up to homotopy. Explicit formulae for this map would exceed its use.
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The proof of the following theorem is standard (see for instance [Bou98, Proposition
III.1.9.18]).

Theorem A.2. Let G be a group and let U ⊆ G be a subset containing e and endowed
with a manifold structure. Moreover, assume that there exists an open neighborhood
V ⊆ U of e such that

(i) V −1
= V and V · V ⊆ U ,

(ii) V × V 3 (g, h) 7→ gh ∈ U is smooth,
(iii) V 3 g 7→ g−1

∈ V is smooth and
(iv) V generates G as a group.

Then there exists a manifold structure on G such that V is open in G and group multipli-
cation and inversion are smooth. Moreover, for any other choice of V satisfying the above
conditions, the resulting smooth structures on G coincide.

Definition A.3. Let G be a locally convex Lie group. The group G is said to have an
exponential function if for each x ∈ g the initial value problem

γ (0) = e, γ (t)−1
· γ ′(t) = x,

has a solution γx ∈ C∞(R,G) and the function

expG : g→ G, x 7→ γx(1),

is smooth. Furthermore, if there exists a zero neighborhoodW ⊆ g such that expG |W is a
diffeomorphism onto some open identity neighborhood of G, then G is said to be locally
exponential.

The Fundamental Theorem of Calculus for locally convex spaces (cf. [Glö02a, Theorem
1.5]) implies that a locally convex Lie groupG can have at most one exponential function
(cf. [Nee06, Lemma II.3.5]).

Typical examples of locally exponential Lie groups are Banach–Lie groups (by the
existence of solutions of differential equations and the inverse mapping theorem, cf.
[Lan99]) and groups of smooth and continuous mappings from compact manifolds into
locally exponential groups ([Glö02b, §3.2], [Woc06]). However, diffeomorphism groups
of compact manifolds are never locally exponential (cf. [Nee06, Example II.5.13]) and
direct limit Lie groups not always (cf. [Glö05, Remark 4.7]). For a detailed treatment of
locally exponential Lie groups and their structure theory we refer to [Nee06, Section IV].

Definition A.4. A locally convex Lie algebra g is said to be locally exponential if there
exists a circular convex open zero neighborhood U ⊆ g and an open subset D ⊆ U × U
on which there exists a smooth map

mU : D→ U, (x, y) 7→ x ∗ y,

such that (D,U,mU , 0) is a local Lie group and the following holds:

(i) For x ∈ U and |t |, |s|, |t + s| ≤ 1, we have (tx, sx) ∈ D with tx ∗ sx = (t + s)x.
(ii) The second order term in the Taylor expansion of mU in 0 is b(x, y) = 1

2 [x, y].
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As above, all Banach–Lie algebras are locally exponential, as are all Lie algebras of lo-
cally exponential groups (cf. [Nee06, Example IV.2.4]).

Theorem A.5 ([Nee06, Theorem IV.3.8]). Let g be a locally exponential Lie algebra.
Then the adjoint group Gad ≤ Aut(g) carries the structure of a locally exponential Lie
group whose Lie algebra is gad := g/Z(g).

Recall that a locally convex space X is said to be convenient or Mackey-complete if each
element of C∞([0, 1], X) has an integral in X (cf. [KM97, §I.2]). In particular, complete
spaces are convenient [KM97, Theorem I.2.14]. In what follows we silently assume that z
is a Fréchet space. Then all claims follow from the results of [Woc06]. All what we claim
stays valid if z is only assumed to be convenient; the more involved arguments for this
case can be found in [KM97].

We treat 1(n) ⊆ Rn as a manifold with corners as in [Woc06]. Thus a map
f : 1(n) → G is called C1 if it is differentiable in the interior int(1(n)), and in each
local chart of G the differentials (x, v) 7→ df (x).v extend continuously to the boundary
∂(1(n)). It is called Ck if it is C1 and the differential is Ck−1, and smooth if it is Ck

for each k ∈ N. From this one defines a smooth singular n-chain to be a formal sum
f1 + · · · + fn of smooth maps fi : 1(n) → G and denotes by Cn(G) the abelian group
of smooth n-chains. Since the coface maps 1(n−1)

→ 1(n) are smooth, ∂sing restricts to
a boundary operator ∂sing : Cn(G)→ Cn−1(G).

If f : [0, 1]n→ z is smooth, then

f̂n : [0, 1] → C∞([0, 1]n−1, z), s 7→ ((x1, . . . , xn−1) 7→ f (x1, . . . , xn−1, s)),

is smooth. Since C∞([0, 1]n−1, z) is again Fréchet (respectively convenient), it follows
from [KM97, Theorem I.2.14] that

∫ 1
0 f dxn :=

∫ 1
0 f̂n exists in z. We may thus define the

iterated integral ∫
[0,1]n

f :=

∫ 1

0
. . .

(∫ 1

0
f dxn

)
. . . dx1.

If ω is a smooth n-form on [0, 1]n, then we set as usual∫
[0,1]n

ω :=

∫
[0,1]n

ω(∂xn , . . . , ∂x1).

For qn : [0, 1]n → 1(n) a smooth map that restricts to a diffeomorphism on the inte-
rior (e.g.,

(x1, . . . , xn) 7→ ((1− x2) · · · (1− xn)x1, . . . , (1− xn)xn−1, xn)

is such a map) and ω ∈ �n(1(n), z), we define∫
1(n)

ω :=

∫
[0,1]n

q∗n ω.

For σ ∈ C∞(1(n),G) and ω ∈ �n(G, z) we define
∫
σ
ω :=

∫
1(n)

σ ∗ω, and then we
extend it to all σ ∈ Cn(G) by additivity.
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Proposition A.6. The map

C∞(1(n),G)→ z, σ 7→

∫
σ

ω, (A.1)

defined in the previous remark is smooth, where we endow C∞(1(n),G) with the smooth
structure from [Woc06].

Proof. Since an atlas on C∞(1(n),G) is given by γ 7→ ϕ◦(γ−1
·γ ′) for ϕ : U → Ũ ⊆ g

a chart of G and γ ′ ∈ γ · C∞(1(n), U), it clearly suffices to show that the map

C∞(1(n), g)→ z, σ 7→

∫
σ

ω̃ =

∫
. . .

∫ (
(σ ◦ qn)

∗ ω̃
)
(∂xn , . . . , ∂xi ) dxn . . . dx1,

is smooth for each ω̃ ∈ �n(1(n), g). Since C∞(1(n), g) 3 σ 7→ dσ ∈ C∞(T 1(n), g) is
linear and continuous (by the definition of the topology on C∞(1(n), g)), and since eval-
uation is smooth, dσ(T qn(∂xi )) ∈ C

∞([0, 1]n, g) depends smoothly on σ . By the defini-
tion of a smooth n-form (cf. [Nee06, Definition I.4.1]), ω is an element of C∞(g× gn, z),
and since push-forward is a smooth map on mapping spaces by [Woc06, Corollary 29],

ω̃qn(·)(dσ (T qn(∂xn)), . . . , dσ (T qn(∂xn)))) ∈ C
∞([0, 1]n, z)

depends smoothly on σ .
Now the integration map, sending a smooth curve to its integral, is continuous and

linear, so in particular smooth. This implies the smoothness of (A.1). ut

Remark A.7. Suppose 6 =
⋃
i∈I τi is a simplicial complex, where each τi is a homeo-

morphic image of1(ni ) for some ni ∈ N0. We call 6 a p-complex if ni = p for all i ∈ I ,
and finite if I is finite. Unless otherwise mentioned, 6 will always refer to the simplicial
2-complex from Figure 3.

Fig. 3. The triangulation of 6.

A map f : 6 → G is called piecewise smooth if it is continuous and f |τi is smooth
for all i ∈ I . The space C∞pw(6,G) of piecewise smooth maps is then also a Lie group
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with Lie algebra C∞pw(6, g); the construction from [Woc06, §4] or [Glö02b, §3.2] carries
over to this slightly more general situation. The integral of a z-valued p-form ω over
a finite p-simplex is defined by additive extension. Since the restriction of piecewise
smooth maps to simplices is smooth, it follows from Proposition A.6 that

C∞pw(6,G)→ z, σ 7→
∑
i∈I

∫
σ |τi

ω,

is also smooth.

Appendix B. Lie groupoids and the submersion Grothendieck pretopology on locally
convex manifolds

Our Lie group(oid)s are based on locally convex manifolds. More precisely, they
are group(oid) objects in the category of locally convex manifolds endowed with a
Grothendieck pretopology that we will explain in this appendix. See [Woc13] for more
details.

Definition B.1. A singleton Grothendieck pretopology T on a category C is a collection
of morphisms, called covers, subject the following three axioms:

1. Isomorphisms are covers.
2. The composition of two covers is a cover.
3. If U → X is a cover and Y → X is a morphism, then the pull-back Y ×X U is

representable, and the natural morphism Y ×X U → Y is a cover.

A smooth map f : M → N of manifolds is a submersion if for each x ∈ M there exist
charts around x and f (x) such that the coordinate representation of f is a projection.
In this case the pull-back of an arbitrary smooth map of a submersion is a manifold and
the canonical map Z ×N M → Z is again a submersion. Thus the category C0 of such
manifolds has a Grothendieck pretopology T0 whose covers are surjective submersions
[NSW13, Appendix B].

A groupoid object in (C, T ) is a groupoid G1 ⇒ G0 such that G1,G0 ∈ C, all the
structure maps are morphisms in C, and the source and target maps t, s are covers in T .
When G0 is the terminal object ∗ in C, a groupoid object is a group object. The theory of
groupoid objects, stacks, weak equivalence, and generalized morphisms are well known
in various categories (see for example [BX11, Met03, MM03, Noo08] and references
therein). Such a theory for higher groupoids for general (C, T ) is partially developed in
[Zhu09]. Our Lie group(oid) is a group(oid) object in (C0, T0).

To make our paper self-contained we briefly recall here the following for 1-groupoids.

Definition B.2. A morphism f : Z → X of groupoid objects in (C, T ) is a weak equiv-
alence (see [MM03] if

• the map Z0 ×X0 X1 → X0 is a cover in T ,
• the natural map from Z1 to the pull-back Z0 ×X0 X1 ×X0 Z0 (= X1 ×X0×X0 Z0 ×Z0)

is an isomorphism.



Integrating central extensions 1317

Definition B.3. A generalized morphism between two groupoid objects X and Y in
(C, T ) consists of a span of morphisms X

∼
← Z → Y , where Z

∼
→ X is a weak equiva-

lence.

Weak equivalences are in general not invertible as morphisms of groupoid objects. One
has to take the symmetric closure to get an equivalence relation (due to the axioms of the
pretopology we only have to take spans of weak equivalences instead of arbitrary zig-zags
to achieve this).

Definition B.4. Two groupoid objects X and Y in (C, T ) are Morita equivalent if there
is another groupoid Z in (C, T ) and weak equivalences X

∼
← Z

∼
→ Y .

A morphism between two generalized morphisms X
∼
← Z → Y and X

∼
← Z′ → Y is

given by a third zig-zag X
∼
← Z′′ → Y such that Z′′ also provides a weak equivalence

Z
∼
← Z′′

∼
→ Z′ and all triangle diagrams commute up to 2-morphisms of groupoid

objects:
Z

∼

~~   

X Z′′
∼oo //

��

OO

Y

Z′

∼

`` >>

The bicategory of Lie groupoids we use in this article has Lie groupoids in (C0, T0)

as objects, generalized morphisms as 1-morphisms, and morphisms between generalized
morphisms as 2-morphisms. Morita equivalent Lie groupoids correspond one-to-one to
presentable stacks in various categories with Grothendieck pretopologies (see for ex-
ample [BX11, Met03, Noo08, Pro96]). The same technique will apply here for our case
of (C0, T0). Thus our Lie 2-group is in some sense also a stacky Lie group in the sense of
[Blo08].

Acknowledgments. The authors would like to thank the referees for helpful suggestions that led to
several improvements.
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