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Abstract. We consider a function which is a viscosity solution of a uniformly elliptic equation
only at those points where the gradient is large. We prove that the Hölder estimates and the Harnack
inequality, as in the theory of Krylov and Safonov, apply to these functions.
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1. Introduction

This paper is concerned with deriving estimates for functions satisfying a uniformly el-
liptic equation only at points where the gradient is large. For such functions, we prove a
Hölder estimate together with a Harnack inequality.

Intuitively, wherever the gradient of a function u is small, the function will be Lip-
schitz, so we should not need any further information from the equation at those points
in order to obtain a Hölder regularity result. However, there is an obvious difficulty in
carrying out this proof since we do not know a priori where |∇u| will be large and where
it will be small, and these sets may be very irregular. Moreover, the proofs of regularity
for elliptic equations involve integral quantities in the whole domain which are hard to
obtain unless the equation holds everywhere. As an extra technical difficulty, we consider
viscosity solutions which are not even differentiable a priori.

The main contribution of this paper is the way the so-called Lε estimate is derived.
We recall that deriving an Lε estimate consists in getting a “good” estimate on the size of
the superlevel set of a nonnegative supersolution that is small at least at one point. In the
uniformly elliptic case, this estimate is obtained thanks to the pointwise Aleksandrov–
Bakelman–Pucci estimate. Here, we proceed differently by estimating directly the mea-
sure of the set of points where the supersolution can be touched by cusps from below.
This idea was inspired by [C] and [Sav], where a similar argument is carried out with
paraboloids instead of cusps. We strongly believe that a proof based on applying the ABP
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estimate to the difference of the solution and a particular function, as in [CC], [KS1] or
[Saf], cannot be done for the result of this paper.

Main results. In order to state our main results, the notion of supersolutions and subsolu-
tions “for large gradients” should be made precise. We do it by introducing some extremal
operators depending on the ellipticity constants λ and3 and also on a parameter γ which
measures how large the gradient should be. They coincide with the classical Pucci oper-
ators (plus first order terms) when |∇u| ≥ γ , but provide no information otherwise. We
will be dealing with merely (lower or upper) semicontinuous functions, and their gradi-
ents together with equations will be understood in the viscosity sense. For a C2 function
u : � ⊂ Rd → R, we consider

M+(D2u,∇u) =

{
3 trD2u+ − λ trD2u− +3|∇u| if |∇u| ≥ γ,
+∞ otherwise,

M−(D2u,∇u) =

{
λ trD2u+ −3 trD2u− −3|∇u| if |∇u| ≥ γ,
−∞ otherwise.

The main theorem of this paper is the following Hölder estimate.

Theorem 1.1 (Hölder estimate). For any continuous function u : B1 → R such that

M−(D2u,∇u) ≤ C0 in B1,

M+(D2u,∇u) ≥ −C0 in B1,

‖u‖L∞(B1) ≤ C0,

we have u ∈ Cα(B1/2) and
‖u‖Cα(B1/2) ≤ CC0

where C depends on λ, 3, the dimension and γ /C0, and α depends on λ, 3 and the
dimension.

Remark 1.2. The constant C in Theorem 1.1 grows like (γ /C0)
α as γ /C0 tends to∞.

That is,
C(d, λ,3, γ /C0) = C̃(d, λ,3)(1+ (γ /C0)

α).

Note that when γ = 0, the constant C becomes independent of C0 and we recover the
classical estimate for uniformly elliptic equations.

Our second main result is the following Harnack inequality.

Theorem 1.3 (Harnack inequality). For any nonnegative continuous function u :

B1 → R such that

M−(D2u,∇u) ≤ C0 in B1,

M+(D2u,∇u) ≥ −C0 in B1,

we have
sup
B1/2

u ≤ C
(

inf
B1/2

u+ C0

)
.

The constant C depends on λ, 3, the dimension and γ /(C0 + infB1/2 u).
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We emphasize that the result stated in terms of the extremal operators M+ and M− is
more general than a result which specifies equations of a particular form. A more classical
way to write the assumption of Theorem 1.1 would be that for some uniformly elliptic
measurable coefficients aij (x), a bounded vector field bj (x) and a bounded function c(x),
the function u satisfies

aij (x)∂iju+ bi(x)∂iu = c(x) only where |∇u(x)| ≥ γ. (1.1)

This statement is equivalent to the assumption of our theorems if u is a classical solution
to the equations. Our statement with the extremal operatorsM+ andM− is more suitable
for the viscosity solution framework. Note also that a bounded solution to a nonlinear
equation would also satisfy our assumptions if the equation is of the form

F(D2u,Du, u, x) = 0,

and satisfies the conditions

• F(0, p, r, x) ≤ C(r)|p| if |p| ≥ γ .
• For every fixed p, r and x such that |p| ≥ γ , F(A, p, r, x) is uniformly elliptic in A.

In fact, in the case of classical solutions (or even W 2,d solutions), this nonlinear situation
is not more general than (1.1), since in particular we could obtain (1.1) by linearizing the
equation.

As mentioned above, both Theorem 1.1 and Theorem 1.3 derive from a so-called
Lε estimate (see Theorem 5.1). Its proof is based upon a method which seems to have
originated in the work of Cabré [C] and continued in the work of Savin [Sav]. Such an idea
has also been recently used in [AS]. The idea is to estimate the measure of the superlevel
set of supersolutions by sliding some specific functions from below and estimating the
measure of the set of contact points. In [Sav], and also recently in [AS], the use of the
ABP estimate is bypassed by sliding paraboloids from below. In [C], X. Cabré uses the
distance function squared which is a natural replacement of quadratic polynomials on a
Riemannian manifold. In [AS], in order to prove the existence of a special barrier function
to their equation (see [AS, Lemma 3.3]), they slide from below a barrier to a simpler
equation. In the present paper, we slide cusp functions of the form ϕ(x) = −|x|1/2.

We finally mention that we chose to state and prove results for equations with bounded
(by C0) right hand sides. We do so for the sake of clarity but, as the reader can check by
following the proofs attentively, it is possible to deal with continuous right hand side f0
in equations and get estimates which only depend on the Ld -norm of the function f0.

Our definition of M+ and M− also determines the type of gradient dependence that
we allow in our equations. In terms of linear equations with measurable coefficients as
in (1.1), we are assuming that b ∈ L∞. In the uniformly elliptic case, the best known
estimate depends only on ‖b‖Ld , which was obtained recently in [Saf]. We have not yet
analyzed whether we can extend our result to that kind of gradient dependence. Nor have
we been able to obtain a satisfactory parabolic version of our results yet.

Known results. We next explain how results stated in [DaFQ2, I, BD] are related to the
ones presented in this paper.
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In [BD, DaFQ2], a Harnack inequality is derived for solutions of some singular/degen-
erate equations. These solutions satisfy the assumptions of the Harnack inequality of The-
orem 1.3.

In [I], on the one hand, a Harnack inequality and Hölder estimates are proved for
functions satisfying the asumptions of this article. Unfortunately, there is a gap in the
proof of the lemma corresponding to the Lε estimate (see [I, Lemma 7]). On the other
hand, an Aleksandrov–Bakelman–Pucci estimate is derived in [I]. The interested reader
is also referred to [DaFQ1, J, CDDM] for other results for equations in nondivergence
form and to [ACP] for equations in divergence form that are either degenerate or singular.

In [De], an equation of the following form is studied:

−tr(A(Du, u, x)D2u)+ f (x, u,Du) = 0

under the assumptions that

3−1λ(p)I ≤ A(x, r, p) ≤ 3λ(p)I,

|f (x, r, p)| ≤ 1
23(1+ λ(p))(1+ |p|),

where λ(p) ≥ λ0 > 0 for |p| ≥ γ . The main theorem of that paper is a Hölder continuity
result, which is proved using probabilistic techniques. Note that the assumptions of our
theorems cover this situation. The most important difference between the result in [De]
and ours is that in that paper the equation plays some role even where |p| is small, since
it is important in the proof that all the eigenvalues of A are comparable at every point.

Organization of the paper. The paper is organized as follows. In Section 2, we introduce
tools that will be used in the proofs. In Section 3, we state and prove the main new lemma.
It is a measure estimate satisfied by nonnegative supersolutions. In Section 5, we deduce
a so-called Lε estimate from the main new lemma. In Section 6, a Hölder estimate is
derived from the Lε estimate. The last section, Section 7, is devoted to the proof of the
Harnack inequality stated above.

2. Preliminaries

2.1. Scaling

In this short subsection, we analyze how the equations involving M± change according
to scaling. Those facts will be used repeatedly in Sections 4–7.

If u satisfies M+(D2u,∇u) ≥ A in �, then v(x) = Ku(x0 + rx) satisfies the in-
equality M+r,K(D

2v,∇v) ≥ Kr2A in x0 + r�, where

M+r,K(D
2v,∇v) =

{
3 trD2v+ − λ trD2v− + r3|∇v| if |∇v| ≥ rKγ,
+∞ otherwise.

Note that if r ≤ 1 and K ≥ 1 then M+r,K ≤ M+. Therefore, we find in particular that
M+(D2v,∇v) ≥ r2KA in x0 + r�.

Likewise, if M−(D2u,∇u) ≤ A in �, then M−(D2v,∇v) ≤ r2KA in x0 + r�.
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2.2. The growing ink-spots lemma

In this section, we state and prove a consequence of Vitali’s covering lemma. This result
replaces the usual Caldéron–Zygmund decomposition [CC] when we derive the so-called
Lε estimate of Corollary 4.3. It is a statement from measure theory which is essentially
the same that was used in the original work by Krylov and Safonov [KS1]. The suggestive
name growing (or crawling) ink-spots was coined by E. M. Landis according to [KS2].

Lemma 2.1 (Growing ink-spots lemma). Let E ⊂ F ⊂ B1 be two open sets. We make
the following two assumptions for some constant δ ∈ (0, 1).
• If any ball B ⊂ B1 satisfies |B ∩ E| > (1− δ)|B|, then B ⊂ F .
• |E| ≤ (1− δ)|B1|.

Then |E| ≤ (1− cδ)|F | for some constant c depending on the dimension only.

Proof. For every x ∈ F , since F is open, there exists some maximal ball which is con-
tained in F and contains x. We choose one of those balls for each x ∈ F and call it Bx .

If Bx = B1 for any x ∈ F , then the result of the theorem follows immediately since
|E| ≤ (1− δ)|B1|, so let us assume that it is not the case.

We claim that |Bx ∩ E| ≤ (1 − δ)|Bx |. Otherwise, we could find a slightly larger
ball B̃ containing Bx such that |B̃ ∩ E| > (1− δ)|B̃| and B̃ 6⊂ F , contradicting the first
hypothesis.

The family of balls Bx covers the set F . By the Vitali covering lemma, we can select
a finite subcollection of nonoverlapping balls Bj := Bxj such that F ⊂

⋃K
j=1 5Bj .

By construction, Bj ⊂ F and |Bj ∩ E| ≤ (1 − δ)|Bj |. Thus, |Bj ∩ F \ E| ≥ δ|B|.
Therefore

|F \ E| ≥

K∑
j=1

|Bj ∩ F \ E| ≥

K∑
j=1

δ|Bj | =
δ

5d

K∑
j=1

|5Bj | ≥
δ

5d
|F |.

The proof is finished with c = 1/5d . ut

3. Main new lemma

The lemma in this section is the main difference with the classical case. It is the only
lemma whose proof differs substantially from the uniformly elliptic case (γ = 0).

Lemma 3.1 (A measure estimate). There exist two small constants ε0 > 0 and δ > 0,
and a large constant M > 0, such that if γ ≤ ε0, then for any lower semicontinuous
function u : B1 → R such that

u ≥ 0 in B1,

M−(D2u,∇u) ≤ 1 in B1,

|{u > M} ∩ B1| > (1− δ)|B1|,

we have u > 1 in B1/4.

Remark 3.2. Amusingly enough, the values ofM and ε0 in the lemma above are absolute
constants. They do not depend on λ, 3 or the dimension. But the constant δ does.
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3.1. The proof for classical solutions

The proof of Lemma 3.1 is easier to understand when u is a smooth function. We will
first describe the proof in this case. In the next subsection we will explain why the result
holds for lower semicontinuous viscosity solutions in general.

Proposition 3.3. The conclusion of Lemma 3.1 holds if u is a C2 supersolution.

Proof. For contradiction, assume that for all ε0, δ, M , we can find u as above and such
that u(x0) ≤ 1 for some point x0 ∈ B1/4.

Consider U = {u > M} ∩ B1/4. For every x ∈ U , let y ∈ B1 be a point where the
minimum of u(y)+ 10|y − x|1/2 is achieved.

On the one hand, since u ≥ 0 in B1 and x ∈ U ⊂ B1/4, we have u(z)+10|z−x|1/2 >
5
√

3 if z ∈ ∂B1. On the other hand, u(x0)+10|x0−x|
1/2
≤ 1+5

√
2 < 5

√
3. Therefore,

the minimum will never be achieved on the boundary and so y ∈ B1. Moreover, we obtain
u(y)+ 10|y − x|1/2 ≤ 1+ 5

√
2 and in particular u(y) ≤ 1+ 5

√
2.

We now choose the constant M to be M := 2 + 5
√

2 (note that M does not depend
on anything!). In this way, we know that u(y) < M . In particular x 6= y and |z− x|1/2 is
differentiable at z = y.

Note that for one value of x, there could be more than one point y where the minimum
is achieved. However, the value of y determines x completely since we must have

∇u(y) = 5(x − y)|y − x|−3/2.

For convenience, set ϕ(z) = −10|z|1/2. We thus have

∇u(y) = ∇ϕ(y − x), (3.1)
D2u(y) ≥ D2ϕ(y − x). (3.2)

The relations (3.1) and (3.2), together with M−(D2u,Du) ≤ 1, imply that

|D2u(y)| ≤ C
(
1+ |D2ϕ(y − x)| + |∇ϕ(y − x)|

)
(3.3)

provided that ε0 ≤ minB5/4 |∇ϕ| = 2
√

5. In the previous inequality, C depends on the
ellipticity constants and the dimension.

Since for each value of y, there is only one value of x, we can define a mapm(y) := x.
Let T be the domain of m. That is, T is the set of values that y takes as x ∈ U . We know
that T ⊂ {y : u(y) < M} and m(T ) = U .

Replacing x = m(y) in (3.1) and applying the chain rule, we obtain

D2u(y) = D2ϕ(y −m(y))(I −Dm(y)).

Solving for Dm and using the estimate (3.3), we get (in terms of Frobenius norms)

|Dm(y)| ≤ 1+ C
1+ |D2ϕ(y − x)| + |ϕ(y − x)|

|D2ϕ(y − x)|
≤ C.
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Therefore
(1− 4dδ)|B1/4| ≤ |U | =

∫
T
|detDm(y)| dy ≤ C|T |.

Since T ⊂ {y : u(y) < M}, from our assumptions we obtain |T | ≤ δ|B1|. This is a con-
tradiction if δ is small enough (depending on the ellipticity constants and the dimension).
The proof is now complete. ut

3.2. Formalizing the proof for viscosity solutions

In this subsection, we explain how to derive Lemma 3.1 for merely lower semicontinuous
viscosity supersolutions. In order to do so, we use classical inf-convolution techniques
to reduce to the case of semiconcave viscosity supersolutions (Proposition 3.4). We then
prove Lemma 3.1 in the semiconcave case (Proposition 3.5 below).

Proposition 3.4. Assume Lemma 3.1 is proved for semiconcave supersolutions. Then its
conclusion is also true for a lower semicontinuous supersolution u.

Proof. Let u be a merely lower semicontinuous supersolution defined in B1.
Let v := min(u, 2M) where M is given by Lemma 3.1 for semiconcave solutions.

Note that v is still a supersolution because it is the minimum of two supersolutions. We
have 0 ≤ v ≤ 2M .

Consider the inf-convolution of v with parameter ε > 0:

vε(x) = inf
y∈B1

(
v(y)+ (2ε)−1

|y − x|2
)
.

It is classical to prove that vε is still a supersolution at x ∈ B1−δ (for δ > 0) of the same
equation provided that we can show that yx /∈ B1.

Consider yx ∈ B1 such that

vε(x) = v(yx)+ (2ε)−1
|yx − x|

2
≤ v(x).

Then
|yx − x| ≤ 2

√
‖v‖∞ε = 2

√
2Mε.

Thus, for any δ > 0, vε is a supersolution in B1−δ provided that 2
√

2Mε < δ.
Note that vε is semiconcave and

D2vε ≤ ε
−1I.

Since v is lower semicontinuous, it is classical to show that vε converges to v in the
half-relaxed sense (which is exactly the same as 0-convergence). Moreover,

{u > M} =
⋃
ε>0

{vε > M}.

Note that as ε→ 0, the sets {vε > M} form an increasing nested collection, therefore

|{u > M}| = lim
ε→0
|{vε > M}|.
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For ε sufficiently small, we can apply Lemma 3.1 (appropriately scaled to the ball
B1−δ instead of B1) and obtain vε ≥ 1 in B(1−δ)/4. Since u ≥ vε and δ is arbitrarily
small, the proof is finished. ut

Proposition 3.5. The conclusion of Lemma 3.1 holds if u is a semiconcave viscosity su-
persolution.

Proof. The main idea of the proof was already explained in Lemma 3.1 for u ∈ C2. Here
we need to work harder in order to deal with the technical difficulty that we do not assume
that u is twice differentiable. Yet, the proof follows essentially the same lines.

In order to organize the proof, we highlight the main steps in bold.
We assume that we have a semiconcave function u which satisfies

u ≥ 0 and M−(D2u,∇u) ≤ 1 in B1.

We also assume that

min
B1/4

u ≤ 1 and |{u > M} ∩ B1| > (1− δ)|B1| (3.4)

in order to obtain a contradiction.

Step 0. Analyzing the semiconcavity assumption. We assume only that D2u ≤ C0 in
the sense that u(x)− C0|x|

2/2 is concave. This means that for every point x0 ∈ B1 there
exists a vector p ∈ Rd (a vector in the superdifferential), which is p = ∇u(x0) in case u
is differentiable at x0, so that

u(x) ≤ u(x0)+ p · (x − x0)+
C0

2
|x − x0|

2. (3.5)

for all x ∈ B1.
We finally recall that by Aleksandrov theorem, the semiconcave function u is point-

wise twice differentiable almost everywhere. That means that there exists a set E ⊂ B1
of measure zero such that at every point x ∈ B1 \ E, the function u is differentiable and
there exists a symmetric matrix D2u(x) such that

u(y) = u(x)+ (y − x) · ∇u(x)+ 1
2 〈D

2u(x) (y − x), (y − x)〉 + o(|x − y|2).

Moreover, we also have [HU]

∇u(y) = ∇u(x)+D2u(x)(y − x)+ o(|x − y|),

where by ∇u(y) we mean any vector in the superdifferential of u at y.

Step 1. Touching u with cusps from below. As in the proof for u ∈ C2, we define
ϕ(x) = −10|x|1/2 and M = 2+ 5

√
2.

Consider the open set U = {u > M} ∩ B1/4. From our assumption (3.4), we have
|U | > |B1/4| − δ|B1|, which is a significant measure for δ small. We can assume for
example that |U | ≥ |B1/8|, which is a constant which depends on the dimension d only.
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For every x ∈ U , we look for the point y ∈ B1 which realizes the minimum in

u(y)− ϕ(y − x) = min{u(z)− ϕ(z− x) : z ∈ B1}. (3.6)

Equivalently, if we let q(x) = minz∈B1
(u(z)− ϕ(z− x)), we have

u(y) = ϕ(y − x)+ q(x),

u(z) ≥ ϕ(z− x)+ q(x) ∀z ∈ B1.
(3.7)

Since minB1/4 u ≤ 1, we observe that q(x) ≤ 1−minB1/2 ϕ = 1+5
√

2. Consequently,
y /∈ ∂B1, since for y ∈ ∂B1 we would have ϕ(y − x) + q(x) < 0 ≤ u(y). Moreover,
u(y) = ϕ(y − x)+ q(x) ≤ 1+ 5

√
2 = M − 1. In particular y /∈ U and y 6= x.

Since u is a semiconcave function, at the point y where it is touched from below by the
smooth function ϕ it must be differentiable, and ∇u(y) = ∇ϕ(y − x). A further analysis
of the second derivatives of u at y is postponed until later in the proof.

Step 2. Defining the contact set T . We define T as the set of contact points y ∈ B1
for all values of x ∈ U . In other words, for any y ∈ T , there exists xy ∈ U such that
(3.6) holds. This definition is just a rephrasing of the definition of T given in the proof of
Lemma 3.1.

As mentioned above, we have u(y) ≤ M − 1 for all y ∈ T . Thus

T ⊂ B1 ∩ {u ≤ M − 1}.

Step 3. ∇u is Lipschitz on T . Since u(x) > M for all x ∈ U and u(y) ≤ M − 1 for all
y ∈ T , we must have |y−x| > ε for some ε > 0 depending on the modulus of continuity
of u. The function ϕ has a singularity at the origin. This constant ε > 0 tells us that we
are evaluating ϕ(y − x) away from this singularity where ϕ is C2 and |D2ϕ| < Cε−3/2.

Let x1, y1 and x2, y2 be two pairs of corresponding points (they are two pairs of x, y
points satisfying (3.6)). Let r = 2|y1−y2|. For any z ∈ Br(y1), we use the bound ofD2ϕ

above and (3.7) to obtain

u(z) ≥ ϕ(z− x1) ≥ ϕ(y1 − x1)+∇ϕ(y1 − x1) · (z− y1)− Cε
−3/2r2

= u(y1)+∇u(y1) · (z− y1)− Cε
−3/2r2.

In particular, for z = y2,

u(y2) ≥ u(y1)+∇u(y1) · (y2 − y1)− Cε
−3/2r2.

Exchanging the roles of y1 and y2, we also get

u(y1) ≥ u(y2)+∇u(y2) · (y1 − y2)− Cε
−3/2r2.

Inserting this bound for u(y1) into the first inequality, we get

u(z) ≥ u(y2)+∇u(y2) · (y1 − y2)+∇u(y1) · (z− y1)− Cε
−3/2r2.
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Moreover, from (3.5), we also have

u(z) ≤ u(y2)+∇u(y2) · (z− y2)+ Cr
2.

Subtracting the two inequalities above, we obtain

(∇u(y1)−∇u(y2)) · (z− y1) ≤ C(ε
−3/2
+ 1)r2.

Since z is an arbitrary point in Br(y1), we conclude that |∇u(y1) − ∇u(y2)| ≤

C(1 + ε−3/2)r . That is, we have proved that ∇u is Lipschitz on T . The estimate of
the Lipschitz norm [∇u]Lip(T ) that we obtained depends on ε and consequently on the
modulus of continuity of u. It is not a universal constant.

Step 4. The map m : T → U . As pointed out above, u must be differentiable at the
point y and∇u(y) = ∇ϕ(y−x). Note that the value of∇ϕ(y−x) = −5|y−x|−3/2(y−x)

uniquely determines the value of y − x. In particular, for every y ∈ T , there is a unique
x ∈ U such that (3.6) holds, and that is the point x such that ∇u(y) = ∇ϕ(y − x). Let us
definem : T → U as the function that maps y into x. That is, from the implicit definition

∇u(y) = ∇ϕ(y −m(y)), (3.8)

we deduce
m(y) = y − (∇ϕ)−1

∇u(y),

where by (∇ϕ)−1 we mean the inverse of ∇ϕ as a function Rd → Rd .
We have already shown that ∇u is Lipschitz on T . Clearly, the map (∇ϕ)−1 which

maps ∇ϕ(y − x) to y − x has a singularity for large gradients, or equivalently where
y − x is close to the origin. As pointed out above, we always have |y − x| > ε for some
ε > 0 depending on the modulus of continuity of u. So at least we know that on T ,
(∇ϕ)−1 will be a Lipschitz map (in fact smooth) with Lipschitz constant depending on ε
(and consequently on the modulus of continuity of u). This implies that m is Lipschitz.
Therefore, m is differentiable almost everywhere and we have the classical formula

|U | =

∫
T
|detDm(y)| dy. (3.9)

Step 5. A universal estimate on Dm. So far we have only estimated |Dm(y)| in terms
of ε. This was only a technical step to justify the expression (3.9). Now we will obtain an
estimate for |Dm(y)| depending only on the universal constants λ, 3 and d.

As mentioned in Step 0, u is pointwise twice differentiable except perhaps on a set E
of measure zero. In particular, for all y ∈ T \ E, we have M−(D2u(y),∇u(y)) ≤ 1 in
the classical sense and we can do the computations below.

We take γ sufficiently small in order to ensure that |∇u(y)| = |∇ϕ(y − x)| > γ for
all y ∈ B1 and x ∈ B1/4. Thus, the condition M−(D2u(y),Du(y)) ≤ 1 is meaningful
and we obtain

λ tr(D2u(y))+ −3 tr(D2u(y))−

= M−(D2u(y),∇u(y))+3|∇u(y)| ≤ C(1+ |y − x|−1/2). (3.10)
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Moreover, from (3.7), we have D2u(y) ≥ D2ϕ(y − x). In particular the negative part
of the Hessian of ϕ controls the Hessian of u: (D2u(y))− ≤ (D2ϕ(y − x))−. Combining
this with (3.10) we obtain

|D2u(y)| ≤ C
(
(D2ϕ(y − x))− + 1+ |y − x|−1/2)

≤ C(1+ |y − x|−3/2).

We now differentiate (3.8) (recall that this is a valid computation for y ∈ T \ E) and
obtain

D2u(y) = D2ϕ(y − x)(I −Dm(y)). (3.11)

Therefore,

|Dm(y)| = D2ϕ(y − x)−1(D2ϕ(y − x)−D2u(y)
)

≤ ‖D2ϕ(y − x)−1
‖ ‖D2ϕ(y − x)−D2u(y)‖ ≤ C

where C is a universal constant. For the last inequality we have used the relations
‖D2ϕ(y − x)−1

‖ = C|x − y|3/2 and ‖D2ϕ(y − x) − D2u(y)‖ ≤ C(1 + |x − y|−3/2).
Note how the dependence on |x−y| cancels out. This step would not work for some other
choices of ϕ, for example ϕ(x) = −|x|.

Thus, we have obtained |Dm| ≤ C almost everywhere in T , for a universal con-
stant C. We can insert this estimate in (3.9) and obtain

|U | ≤

∫
T
Cd dy = Cd |T |.

This gives a lower bound for the measure of the set T of contact points. Thus, |T | ≥ δ|B1|

for some δ > 0. Since T ⊂ {u ≤ M − 1}, we obtain a contradiction with (3.4) and finish
the proof. ut

4. A barrier function and the doubling property

Consider the barrier function b(x) = |x|−p. Assume initially that γ = 0. We compute,
for x ∈ B2 \ {0},

M−(D2b,∇b) = λp(p + 1)|x|−p−2
−3(d − 1)p|x|−p−2

−3p|x|−p−1

= p|x|−p−2 (λ(p + 1)−3(d − 1)−3|x|)

≥ p|x|−p−2 (λ(p + 1)−3(d + 1))

≥ p|x|−p−2 if p is large enough.

Thus, the function b(x)=|x|−p is a subsolution of the Pucci relation M−(D2b,∇b)≥0
in B2 \ {0} with γ = 0. Likewise, it will be a subsolution of M−(D2b,∇b) ≥ 0 in
B2 \ {0} provided that γ is chosen smaller than the minimum norm of its gradient.

Using this barrier function, we prove the following doubling property for lower
bounds of supersolutions.



1332 Cyril Imbert, Luis Silvestre

Lemma 4.1 (Doubling property for supersolutions). There exists a small constant ε0>0
depending on λ,3 and the dimension such that if u ≥ 0 is a supersolution of
M−(D2u,∇u) ≤ 1 in B2 and u > M in B1/4 for some large constant M , then u > 1
in B1.

Remark 4.2. The constant M depends on λ, 3, γ and the dimension.

Proof of Lemma 4.1. We compare the function u with

B(x) := M
|x|−p − 2−p

2 · 4p
.

We choose M ≥ 1 sufficiently large that both B ≥ 1 and |∇B| ≥ γ in B1.
We have

M−(D2B,∇B) ≥
M

2 · 4p
M−(D2b,∇b)

≥
M

2 · 4p
p2−p−2

≥ 2 for M large enough.

Moreover, B = 0 on ∂B2 and B < M in ∂B1/4. Therefore B ≤ u in the ring B2 \ B1/4
(this is the comparison principle between the viscosity supersolution u and the classical
subsolution B, which follows directly from the definition of viscosity solution).

Therefore, u ≥ B ≥ 1 in B1. Moreover, for ε = minB1/4(u/M − 1) we also have
u ≥ (1+ ε)M > 1 in B1, which finishes the proof. ut

Combining Lemmas 3.1 and 4.1, we obtain

Corollary 4.3. There exist small constants ε0 > 0 and δ > 0, and a large constant
M > 0, such that if γ ≤ ε0, then for any continuous function u : B2 → R such that

u ≥ 0 in B2,

M−(D2u,∇u) ≤ 1 in B2,

|{u > M} ∩ B1| > (1− δ)|B1|,

we have u > 1 in B1.

Remark 4.4. Note that the constant M in Corollary 4.3 is the product of the two con-
stants M in Lemmas 3.1 and 4.1.

Proof of Corollary 4.3. Let M1 and M2 be the constants from Lemmas 3.1 and 4.1,
respectively. Then the function v = u/M2 satisfies the assumption of Lemma 3.1 for
M2 ≥ 1 (which can be assumed without loss of generality). We conclude that v > 1
in B1/4, i.e. u > M2 in B1/4. We can then apply Lemma 4.1 to get u > 1 in B1. ut

The following corollary is just a scaled version of the above result.
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Corollary 4.5. There exist small constants ε0 > 0 and δ > 0, and a large constant
M > 0, such that if γ ≤ ε0, then for any r ≤ 1 and κ ≥ 1, and any continuous function
u : Br → R such that

u ≥ 0 in Br ,

M−(D2u,∇u) ≤ κ in Br ,

|{u > κM} ∩ Br/2| > (1− δ)|Br/2|,

we have u > κ in Br/2.

Proof. The scaled function ur(x) = u(rx/2)/κ satisfies the scaled condition

M−r/2,κ(D
2ur ,∇ur) ≤ r

2
≤ 1 in B2.

We remark that ur satisfies a stronger condition since γ can be replaced by the smaller
value κ−1rγ . So we can apply Corollary 4.3 to ur and obtain the result. ut

5. The Lε estimate

Combining Corollary 4.3 with Lemma 2.1, we obtain the Lε estimate.

Theorem 5.1 (Lε estimate). There exist small constants ε0 > 0 and ε > 0 such that if
γ ≤ ε0, then for any lower semicontinuous function u : B2 → R such that

u ≥ 0 in B2,

M−(D2u,∇u) ≤ 1 in B2,

inf
B1
u ≤ 1,

we have
|{u > t} ∩ B1| ≤ Ct

−ε for all t > 0.

Remark 5.2. This estimate is referred to as the Lε estimate since it yields an estimate on∫
B1
uε(x) dx (depending on C only).

Proof of Theorem 5.1. In order to prove the result, we will prove the equivalent inequality

|{u > Mk
} ∩ B1| ≤ C̃M

−εk

where M is the constant from Corollary 4.5 and ε > 0 has to be properly chosen.
Let Ak := {u > Mk

} ∩ B1, which are open sets. Since infB1 u ≤ 1, from Corollary
4.3 we obtain |A1| ≤ (1 − δ)|B1|. Since Ak ⊂ A1 for all k > 1, we also have |Ak| ≤
(1− δ)|B1| for all k.

We note that Corollary 4.5, with κ = Mk , says that every time a ball B ⊂ B1 satisfies
|B ∩ Ak+1| > (1− δ)|B|, then B ⊂ Ak . Using Lemma 2.1, we obtain

|Ak+1| ≤ (1− cδ)|Ak|,

and therefore, by induction, |Ak| ≤ (1 − cδ)k−1(1 − δ)|B1| = C̃M−εk , where −ε =
log(1− cδ)/logM and C̃ = (1− cδ)−1(1− δ)|B1|. ut

The following lemma is a scaled version of Theorem 5.1.
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Lemma 5.3 (Scaled Lε estimate). There exist small constants ε̃0 > 0, ε1 > 0 and θ > 0
such that if γ ≤ ε̃0, then for any r ≤ 1 and α ∈ (0, 1), and any lower semicontinuous
function u : B2r → R such that

u ≥ 0 in B2r ,

M−(D2u,∇u) ≤ ε1 in B2r ,

|{u > rα} ∩ Br | ≥
1
2 |Br |,

we have u > ε1r
α in Br .

Remark 5.4. We shall see that ε̃0 = ε0ε1 where ε0 is given by Lemma 5.1.

Proof of Lemma 5.3. Let τ be the universal constant such that Cτ−ε < |B1|/2, where C
and ε are the constants of Theorem 5.1. Consider the function ũ(x) = τr−αu(rx). It has
the properties

ũ ≥ 0 in B2,

M−(D2ũ,∇ũ) ≤ τr2−αε1 in B2,

|{ũ > τ } ∩ B1| ≥
1
2 |B1| > Cτ−ε,

with τr1−αγ instead of γ .
Let us choose ε1 = τ

−1. Since r ≤ 1, we have

M−(D2ũ,∇ũ) ≤ 1 in B2.

We now apply Theorem 5.1 to find that ũ > 1 in B1 if τr1−αγ ≤ ε0. We just have to
choose ε̃0 = ε0τ

−1
= ε0ε1 since r1−α

≤ 1. Scaling back, we obtain u > ε1r
α in Br . ut

6. Hölder continuity

In this section, we derive the Hölder estimates of Theorem 1.1 from the (scaled) Lε esti-
mate.

Proof of Theorem 1.1. We start by normalizing the solution u. Let

v(x) =
u(ρx)

C0(1+ ε−1
1 )

,

where ρ ≤ 1 and ε1 is the constant from Lemma 5.3. The function v satisfies the estimates

M−(D2v,∇v) ≤ ε1 in B1,

M+(D2v,∇v) ≥ −ε1 in B1,

‖v‖L∞(B1) ≤ 1,

with γ replaced by ρ

C0(1+ε
−1
1 )
γ . Thus, we pick ρ ≤ 1 such that

ργ

C0(1+ ε−1
1 )
≤ ε̃0,
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where ε̃0 is given by Lemma 5.3. It is enough to choose

ρ = min
(

1,
ε̃0C0(1+ ε−1

1 )

γ

)
.

Let ak = minB2−k
v and bk = maxB2−k

v. We will prove that for some α > 0,

bk − ak ≤ 2× 2−αk. (6.1)

For k = 0, the statement is obvious since b0 ≤ ‖v‖L∞(B1) and a0 ≥ −‖v‖L∞(B1), thus
b0 − a0 ≤ 2. Now we proceed by induction.

Assume that bk − ak ≤ 2× 2−αk and let us prove that bk+1 − ak+1 ≤ 2× 2−α(k+1).
If bk − ak ≤ 2 × 2−α(k+1), then we are done since bk+1 − ak+1 ≤ bk − ak . Hence, we
can assume that (bk − ak)/2 ≥ 2−α(k+1).

Let mk = (ak + bk)/2. Then we have either |{v > mk} ∩ B2−k−1 | ≥ |B2−k−1 |/2 or
|{v ≤ mk} ∩ B2−k−1 | ≥ |B2−k−1 |/2. In the first case we will prove that ak+1 is larger than
ak , whereas in the second case we will show that bk+1 is smaller than bk .

Assume we are in the first case, i.e. |{v > mk} ∩ B2−k−1 | ≥ |B2−k−1 |/2. We apply
Lemma 5.3 to v − ak with r = 2−k−1 to obtain v − ak ≥ ε12−(k+1)α for some universal
ε1 > 0. Therefore, ak+1 ≥ ak + ε12−(k+1)α . In particular

bk+1 − ak+1 ≤ bk − ak − ε12−(k+1)α
≤ (2α+1

− ε1)2−(k+1)α
≤ 2× 2−(k+1)α

as soon as α is chosen small enough that 2α+1
≤ 2+ ε1.

Assume now we are in the second case. We argue similarly by applying Lemma 5.3
to bk − v.

The estimate (6.1) implies that v is Cα at the origin, with

|v(x)− v(0)| ≤ 4|x|α

for all x ∈ B1. Scaling back to the function u, this means that for all x ∈ Bρ ,

|u(x)− u(0)| ≤ 4(1+ ε−1
1 )ρ−αC0|x|

α
≤ CC0|x|

α

where C = C(λ,3, d, γ /C0). By a standard translation and covering argument, we con-
clude that u ∈ Cα(B1/2) and

[u]C0,α(B1/2)
≤ C̃C0

where C̃ differs from C by a universal constant. The proof is now complete. ut

7. Harnack inequality

This section is devoted to the derivation of a Harnack inequality.

Proof of Theorem 1.3. We first reduce the problem to C0 = 1 and infB1/2 u ≤ 1 by
replacing u with u/(C0 + infB1/2 u). In particular, γ is replaced with γ /(C0 + infB1/2 u).
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Let β > 0 and let ht (x) = t (3/4 − |x|)−β be defined in B3/4. We consider the
minimum value of t such that ht ≥ u in B3/4. The objective of the proof is to show that
this value of t cannot be too large. If t ≤ 1, we are done. Hence, we further assume that
t ≥ 1.

Since t is chosen to be the minimum value such that ht ≥ u, there must exist some
x0 ∈ B3/4 such that ht (x0) = u(x0). Let r = (3/4 − |x0|)/2. That is, 2r is the distance
from x0 to ∂B3/4. Let H0 := ht (x0) = t (2r)−β ≥ 1.

We will estimate the measure of the set {u ≥ H0/2} ∩ Br(x0) in two different ways.
We will get a contradiction if t is too large.

Let us start by an upper bound of the measure. From Theorem 5.1, properly rescaled,

|{u > H0/2} ∩ Br(x0)| ≤ |{u > H0/2} ∩ B3/4| ≤ CH
−ε
0 = Ct

−ε(2r)βε. (7.1)

Let us now obtain a lower bound. Let µ be the small universal constant and β be a
large universal constant such that

M

((
2− µ

2

)−β
− 1

)
≤

1
2
,

(µr)2( 2−µ
2

)−β
− 1
≤ 1,

(µr)γ( 2−µ
2

)−β
− 1
≤ ε0, β ≥

d

ε
,

whereM and ε0 are the constants from Corollary 4.3 and ε comes from Theorem 5.1. The
reader can check that choosing

β = ε−1 max(d, γ )

and µ small enough that

µ ≤
γ

ε0
,

log(1+ µγ/ε)
− log(1− µ/2)

≤
γ

ε
and (1− µ/2)−β − 1 ≤

1
2M

,

we get the four desired inequalities.
The maximum of u in the ball Bµr(x0) is at most the maximum of ht , which equals

t (2r − µr)−β =
( 2−µ

2

)−β
H0. Let us define

v(x) =

( 2−µ
2

)−β
H0 − u(x0 + µrx)(( 2−µ

2

)−β
− 1

)
H0

.

Note that v(0) = 1, v is nonnegative in B1 and satisfies

M−(D2v,∇v) ≤
(µr)2(( 2−µ

2

)−β
− 1

)
H0
≤ 1 in B1,

M+(D2v,∇v) ≥ −
(µr)2(( 2−µ

2

)−β
− 1

)
H0
≥ −1 in B1
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with γ replaced by
(µr)γ

H0
(( 2−µ

2

)−β
− 1

) ≤ ε0

(because of the choice of µ and β).
We can apply Corollary 4.3 (in fact, its contrapositive) and obtain

|{v ≤ M} ∩ B1/2| ≥ δ|B1/2|.

In terms of the original function u, this is an estimate of a set where u is larger than

H0

((
2− µ

2

)−β
−M

((
2− µ

2

)−β
− 1

))
≥
H0

2
,

because of the choice of µ and β. Thus, we obtain the estimate

|{u ≥ H0/2} ∩ Bµr(x0)| ≥ δ|Bµr |.

Together with (7.1), this implies that t is bounded above (since β ≥ d/ε). ut
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