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Abstract. The rational homology groups of packing complexes are important in algebraic geom-
etry since they control the syzygies of line bundles on projective embeddings of products of pro-
jective spaces (Segre–Veronese varieties). These complexes are a common generalization of the
multidimensional chessboard complexes and of the matching complexes of complete uniform hy-
pergraphs, whose study has been a topic of interest in combinatorial topology. We prove that the
multivariate version of representation stability, a notion recently introduced and studied by Church
and Farb, holds for the homology groups of packing complexes. This allows us to deduce stabil-
ity properties for the syzygies of line bundles on Segre–Veronese varieties. We provide bounds for
when stabilization occurs and show that these bounds are sometimes sharp by describing the linear
syzygies for a family of line bundles on Segre varieties. As a motivation for our investigation, we
show in an appendix that Ein and Lazarsfeld’s conjecture on the asymptotic vanishing of syzygies
of coherent sheaves on arbitrary projective varieties reduces to the case of line bundles on a product
of (at most three) projective spaces.

Keywords. Syzygies, representation stability, Segre varieties, Veronese varieties, chessboard com-
plexes, matching complexes, packing complexes, asymptotic vanishing

1. Introduction

In this paper we prove that the rational homology groups of packing complexes satisfy
representation stability in the sense of Church and Farb, and we derive as a consequence
a stabilization phenomenon for the syzygies of line bundles on Segre–Veronese varieties.
Of particular interest is the case of “stabilization to zero”, i.e. when the rational homology
groups, respectively the syzygy modules, become trivial. The reason for this is explained
in the appendix where we show that the conjecture of Ein and Lazarsfeld on the asymp-
totic vanishing of syzygies of sufficiently positive embeddings of a projective variety
reduces to a vanishing statement for syzygies of line bundles on a product of (at most
three) projective spaces.

We begin by formulating a theorem that illustrates the kind of syzygy stabilization re-
sults that we are aiming for. We first introduce some notation: when X ⊂ PW is a projec-
tive variety, embedded by the complete linear series corresponding to some line bundle L,
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we associate to any sheaf B on X the Koszul cohomology group Kp,q(X,B;L) (Sec-
tion 2.2). If we let B =

⊕
n∈ZH

0(X,B⊗L⊗n) and S = Sym(W) thenKp,q(X,B;L) is
the space of minimal p-syzygies of degree p + q of the S-module B.

Theorem 6.1. For n ≥ 2, let X = PV1 × · · · × PVn, where Vi are vector spaces over
a field K of characteristic zero, and consider the line bundles L = O(1, , . . . , 1) and
Ba = O(a, 0, . . . , 0) on X. For p ≥ 0 and λ = (λ1, . . . , λn) a collection of partitions
of p letmλ denote the multiplicity of Sλ1V1⊗· · ·⊗SλnVn in

∧p
(V1⊗· · ·⊗Vn). We have

the decomposition into irreducible GL(V1)× · · · × GL(Vn)-representations

Kp,0(X,Ba;L) =
⊕
λ

(Sλ1[p+a]V1 ⊗ Sλ2V2 ⊗ · · · ⊗ SλnVn)
⊕mλ ,

where given a partition δ = (δ1, δ2, . . . ) of some integer r we write δ[m] for the parti-
tion (m − r, δ1, δ2, . . . ). Sδ denotes the Schur functor associated to δ, and we make the
convention that Sδ[m] is identically zero when m− r < δ1.

Note that the conclusion of the theorem remains true in the case n = 1 if we replace
Kp,0(Ba) with the p-th syzygy module of ma , where m is the homogeneous maximal
ideal in the polynomial ring S = Sym(V ): it is well-known (see [BE75, Cor. 3.2] or
[Gre84b, (1.a.10)]) that the minimal free resolution of ma is given by

0← ma ← SaV ⊗ S(−a)← Sa,1V ⊗ S(−a − 1)← Sa,12V ⊗ S(−a − 2)← · · · .

Theorem 6.1 was known in the case n = 2 where in fact all the modules Kp,q(Ba) can be
described explicitly (see [FH98, RR00] or [Wey03, Chapter 6] for a more general story).
We will prove Theorem 6.1 by applying the techniques of [FH98] involving combinatorial
Laplacians.

The description of syzygies in Theorem 6.1 is fairly explicit, the only mystery be-
ing the calculation of the multiplicities mλ. This is known to be a complicated plethysm
problem, and our theorem is meant to illustrate that the problem of computing syzygies
even for simple modules supported on a product of projective spaces is in some sense
equally difficult. An asymptotic measure of the complexity of the syzygies in the lin-
ear and quadratic strands (Kp,0 and Kp,1) for the Veronese varieties has been obtained
by Fulger and Zhou [FZ15] by analyzing the number of distinct irreducible representa-
tions appearing in these syzygy modules, as well as the sum of their multiplicities. In
Theorem 6.4 we provide a concrete illustration of their theory by describing the linear
syzygies of O(1) under a Veronese embedding.

We view Theorem 6.1 as a stabilization result in the following way, which we will be
able to generalize further: for a large enough (a ≥ p) the number of irreducible repre-
sentations (counted with multiplicities) appearing in the decomposition of Kp,0(Ba) sta-
bilizes, and furthermore there is a simple recipe to get the decomposition of Kp,0(Ba+1)

from that of Kp,0(Ba). We prove a similar statement for the syzygies of line bundles
Bb = O(b1, . . . , bn) on a product of projective spacesX = PV1×· · ·×PVn with respect
to an ample line bundle L = O(d1, . . . , dn):
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Theorem 5.3. Let r < n, let d = (d1, . . . , dn) be a sequence of positive integers, and
fix nonnegative integers p, q and br+1, . . . , bn such that bj < dj for at least one j ∈
{r + 1, . . . , n}. For integers b1, . . . , br let Ni = (p + q)di + bi . Then there exist a
finite number of n-tuples of partitions λ and corresponding multiplicities mλ such that
the decomposition

Kp,q(X,Bb;L) =
⊕
λ

(
Sλ1[N1]

V1 ⊗ · · · ⊗ Sλr [Nr ]Vr ⊗ Sλr+1Vr+1 ⊗ · · · ⊗ SλnVn
)⊕mλ

holds independently of b1, . . . , br as long as bi ≥ (p + q)di for i = 1, . . . , r .

The condition of the existence of j > r such that bj < dj is not restrictive since
Kp,q(Bb) = Kp,q+1(Bb ⊗ L−1) = Kp,q+1(Bb−d). Letting d1 = · · · = dn = 1, r = 1
and q = 0 in the above corollary yields the situation of Theorem 6.1 where the inequality
bi ≥ (p + q)di is in fact sharp (i = 1, b1 = a, d1 = 1, q = 0, so the inequality becomes
a ≥ p). Unfortunately, we have not been able to give a description of the multiplicities
mλ as in Theorem 6.1.

A natural question to ask is whether the conclusion of Theorem 5.3 remains valid
when r = n. The answer is positive and in fact it is not difficult to show thatKp,q(Bb) = 0
when bi � 0 for all i, so stabilization occurs in the most naive possible way. The best
vanishing result for Kp,q(Bb) that we are aware of is

Corollary 2.3. Let d = (d1, . . . , dn) be a sequence of positive integers and let b =
(b1, . . . , bn) be a sequence of arbitrary integers. Then Kp,2(Bb) = 0 for

p ≤ min{di + bi : i = 1, . . . , n}.

As we explain in Section 2.3 this is a consequence of [Ath04, Thm. 5.3], or of standard
Castelnuovo–Mumford regularity arguments.

If we let b1 = · · · = bn = 0 in Corollary 2.3 then we find that the homogeneous coor-
dinate ring of the Segre–Veronese variety corresponding to the embedding via L = O(d)
satisfies the Green–Lazarsfeld property Np (introduced in [GL85]) for p ≤ mini di . This
was proved in [HSS06] and strengthened to p ≤ mini(di+1) in [BCR11]. The aforemen-
tioned vanishing results are far from being sharp: Rubei proved that the coordinate ring of
a Segre variety satisfies Np for p ≤ 3 [Rub07]; the coordinate ring of the d-th Veronese
embedding of P2 satisfies property Np for p ≤ 3d − 3 [Bir95] and it was conjectured
in [OP01] that the same is true for embeddings of higher dimensional projective spaces.
More general asymptotic vanishing conjectures have been formulated by Ein and Lazars-
feld for the syzygies of arbitrary varieties and in particular for Veronese varieties [EL12].
In the Appendix we prove that asymptotic vanishing statements for arbitrary varieties can
be reduced to the case of Segre–Veronese varieties, which motivates the desire to obtain
good vanishing statements for the modules Kp,q(Bb).

To prove Theorem 5.3 we show that representation stability (see Section 3) holds
for packing complexes (defined below), and then use [KRW01, Thm. 5.3] to translate
between the syzygy modules Kp,q(Bb) and the homology groups of packing complexes.
We defer the description of the correspondence between syzygies and the homology of
packing complexes, as well as the technical definitions of representation stability, to later
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sections, and focus on packing complexes for the rest of the introduction. We refer the
reader to [CF13, CEF15] for an introduction to representation stability and to [SS16] for
an equivalent notion and an extension of the structural theory. We point out that part of the
motivation for [SS16] was earlier work by Snowden where certain finiteness properties
for syzygies of Segre embeddings are established [Sno13].

Definition 1.1 (Packing complexes). Consider n-tuples d = (d1, . . . , dn) of positive
integers, and A = (A1, . . . , An) of finite sets. Let V be the set of n-tuples α =
(α1, . . . , αn), where αi is a subset of Ai of size di . The packing complex CdA is the simpli-
cial complex whose (r − 1)-simplices are subsets {α1, . . . , αr} ⊂ V where αik is disjoint
from α

j
k whenever i 6= j , for 1 ≤ i, j ≤ r , 1 ≤ k ≤ n. Note that for each i, the symmet-

ric group SAi of permutations of the set Ai acts on CdA and hence also on its homology
groups. WhenAi = {1, . . . , Ni} for some n-tupleN = (N1, . . . , Nn) of positive integers,
we write CdN for the corresponding packing complex. It has an action of the product of
symmetric groups SN = SN1 × · · · ×SNn .

Example 1.2. For n = 2, d1 = d2 = 1 and N1 = N2 = 2 the complex C(1,1)(2,2) is 1-
dimensional (it can be thought of as a simplicial complex classifying configurations of
nonattacking rooks on a 2×2 chessboard). It has four vertices (1, 1), (2, 1), (1, 2), (2, 2),
and two edges, as shown below:

(1, 1) (1, 2)

(2, 2) (2, 1)

If we write z(i,j) for the homology class of the point (i, j), then the reduced homology
group H̃0(C(1,1)(2,2)) has a basis consisting of a single element u = z(1,1) − z(2,1). The dif-
ferences z(1,1) − z(2,2) and z(2,1) − z(1,2) are both zero, as they represent the boundaries
of the two edges. To understand H̃0(C(1,1)(2,2)) as a S2×S2-module, we need to understand
how the transpositions σ1 and σ2 in the two factors act on u. We have

σ1 · u = z(2,1) − z(1,1) = −u,

σ2 · u = z(1,2) − z(2,2) = z(2,1) − z(1,1) = −u,

(where the middle equality in the last line uses z(1,1) = z(2,2) and z(2,1) = z(1,2)). Hence
both σ1 and σ2 act by multiplication by −1, which means that H̃0(C(1,1)(2,2)) is the tensor
product of the sign representations of the two factors. The sign representation of S2
corresponds to the partition (1, 1), i.e. to the Young diagram . Therefore we can write

H̃0(C(1,1)(2,2)) = ⊗ .

We will see in Theorem 2.1 that this is equivalent to the fact that the degree two equations
defining matrices of rank one (the 2-factor Segre embedding) are spanned precisely by
the 2× 2 minors of a generic matrix.

Before stating the main stabilization result for the homology groups of packing complexes
(see Theorem 5.1 for the more technical statement), we introduce some more notation:
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given a partition δ ` r , we write [δ] for the corresponding irreducible representation of
the symmetric group Sr ; H̃k denotes the k-th reduced homology group with coefficients
in the field K.

Corollary 5.2. For k ≥ −1 and fixed values of the parameters Nr+1, . . . , Nn, there exist
a finite number of n-tuples of partitions λ = (λ1, . . . , λn) and multiplicities mλ > 0 such
that the decomposition

H̃k(C
d

N ) =
⊕
λ

([λ1
[N1]] ⊗ · · · ⊗ [λ

r
[Nr ]] ⊗ [λ

r+1
] ⊗ · · · ⊗ [λn])⊕mλ

holds for Ni ≥ 2mdi , i = 1, . . . , r , where m = min{bNj/dj c : j = r + 1, . . . , n}.

Packing complexes generalize (multidimensional) chessboard complexes (the case d1 =

· · · = dn = 1) and the matching complexes of complete graphs (the case n = 1
and d1 = 2). The integral homology and the connectedness properties of these com-
plexes have been a topic of interest in combinatorial topology starting from [Bou92] (see
[BLVZ94, Zie94, Wac03, Ath04, SW07]). The approach of relating syzygies to simplicial
homology was used by Reiner and Roberts [RR00] to give an independent proof of the
results of Lascoux and Józefiak–Pragacz–Weyman [Las78, JPW81] on the Betti numbers
of the ideals of 2× 2-minors of generic matrices and generic symmetric matrices. A par-
ticularly beautiful determination of the rational homology of 2-dimensional chessboard
complexes was obtained by Friedman and Hanlon [FH98] using combinatorial Lapla-
cians. The corresponding calculation for matching complexes of complete graphs was
subsequently obtained by Dong and Wachs [DW02].

Our paper is organized as follows. In Section 2 we recall some basic facts from rep-
resentation theory and introduce the syzygy functors whose stability properties we intend
to study. We also describe the relationship between these functors and the reduced ho-
mology groups of packing complexes. In Section 3 we introduce the basic notions of
representation stability in the multivariate setting, following the univariate case described
in [CF13, Chu12, CEF15]. In Section 4 we set up an inductive procedure for studying the
homology of packing complexes by exhibiting a long exact sequence that relates the re-
duced homology groups of several such complexes. We prove representation stability for
the homology groups of packing complexes in Section 5, based on the results in Sections
3 and 4. We end with the calculation of the linear syzygies for a family of line bundles
on Segre varieties using combinatorial Laplacians in Section 6. In the Appendix we show
how the asymptotic vanishing conjecture of Ein and Lazarsfeld for syzygies of arbitrary
varieties reduces to a vanishing statement for syzygies of line bundles on a product of at
most three projective spaces.

2. Preliminaries

2.1. Representation theory

For an introduction to the representation theory of general linear and symmetric groups,
see [FH91] and also [Mac95, Chapter 1, Appendix A]. If µ = (µ1 ≥ µ2 ≥ · · · ) is a
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partition of r (written µ ` r , or r = |µ|) and W a vector space over a field K of char-
acteristic zero, then SµW (resp. [µ]) denotes the irreducible representation of the general
linear group GL(W) (resp. of the symmetric group Sr ) corresponding to µ. If µ = (r),
then SµW is SymrW and [µ] is the trivial Sr -representation. The GL(W)- (resp. Sr -)
representations U that we consider decompose as U =

⊕
µ Uµ where Uµ ' (SµW)mµ

(resp. Uµ ' [µ]mµ ) is the µ-isotypic component of U . We make the analogous defini-
tions when we work over products of general linear (resp. symmetric) groups, replacing
partitions by n-tuples of partitions (called n-partitions and denoted by `n). We write SA

for the group of permutations of a set A, and SA = SA1 × · · · × SAn for an n-tuple
A = (A1, . . . , An) of sets. SA is isomorphic to the group SN = SN1 × · · ·×SNn asso-
ciated to the n-tuple N = (N1, . . . , Nn), where Ni = |Ai |. If λ `n N , λ = (λ1, . . . , λn),
we write Sλ for the tensor product of Schur functors Sλ1 ⊗ · · · ⊗ Sλn , and [λ] for the
irreducible SN -representation [λ1

] ⊗ · · · ⊗ [λn].
Given n-tuples N = (N1, . . . , Nn) and N ′, we say that N ′ is a successor of N (or N

a predecessor of N ′, or that N,N ′ are consecutive) if N ′i = Ni + 1 for some i, and
Nj = N

′

j for j 6= i. In general we write N ≤ N ′ if Ni ≤ N ′i for all i.
Following the notation in [CF13], if λ is an n-partition, we write λ[N ] for the n-

partition λ̃ `n N defined by λ̃i = (Ni − |λ
i
|, λi1, λ

i
2, . . . ) (of course this makes sense

only if Ni ≥ |λi | + λi1). For instance, when n = 2, λ = ((3, 1), (2, 2, 1)) and N = (8, 7),
we have |λ1

| = 4, |λ2
| = 5, and λ[N ] = ((4, 3, 1), (2, 2, 2, 1)). We will often picture

n-partitions as formal tensor powers of Young diagrams, and interpret them according to
the context as either irreducible representations of a product of general linear groups, or
of a product of symmetric groups:

λ = ⊗ , λ[N ] = ⊗ .

Note that for N = (8, 6), the 2-partition λ[N ] is not defined.
IfUi is aGi-representation, i = 1, 2, for some groupsG1,G2, then the external tensor

product U1 �U2 is aG1×G2-representation (note that whenever we try to emphasize the
distinction between external and internal tensor products, we will be using the symbol �

instead of ⊗). We write 1G (or just 1) for the trivial representation of a group G. For a
subgroup H ⊂ G and representations U of H and W of G, we write

IndGH (U) = K[G] ⊗K[H ] U and ResGH (W) = WH

for the induced representation of U and the restricted representation of W respectively,
where K[M] denotes the group algebra of a group M , and WH is just W , regarded as an
H -module.

2.2. The syzygy functors Kd
p,q(b)

If X ⊂ PW is a projective variety, embedded by the complete linear series corresponding
to some line bundle L (so that W = H 0(X,L)), we associate to any sheaf B on X the
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Koszul cohomology group Kp,q(X,B;L) (or simply Kp,q(B) when X and L are under-
stood from the context) defined as the homology of the 3-term complex∧p+1

W ⊗H 0(X,B ⊗ Lq−1)→
∧p

W ⊗H 0(X,B ⊗ Lq)

→
∧p−1

W ⊗H 0(X,B ⊗ Lq+1). (2.1)

Consider now the case when X = PV1 × · · · × PVn is a product of projective spaces
and L = O(d1, . . . , dn) is an ample line bundle on X. Write Bb = O(b1, . . . , bn) for
arbitrary integers bi . It is clear that X,L,Bb depend functorially on the vector spaces
V1, . . . , Vn, so the same is true for the Koszul cohomology groups Kp,q(Bb). We write
K
d
p,q(b) : Vecn → Vec for the functor on finite-dimensional K-vector spaces that assigns

to an n-tuple (V1, . . . , Vn) the corresponding syzygy module Kp,q(Bb). As we will see
in Theorem 2.1, these functors are controlled by the homology of the packing complexes
introduced in Definition 1.1. Figure 1 below describes the beginning of the equivariant
Betti table (Kd

p,q) for d = (1, 1) (corresponding to the 2-factor Segre embedding): dashes
correspond to Kd

p,q = 0, and instead of writing Sλ1 ⊗ Sλ2 , we picture the appropriate
diagrams.

K − − − − · · ·

⊗ ⊗ + ⊗ ⊗ + ⊗

− ⊗ + + + · · ·

⊗ ⊗ ⊗ + ⊗

− − − − ⊗ · · ·

...
...

...
...

...
. . .

Fig. 1. Syzygy functors for 2-factor Segre embeddings.

2.3. The correspondence between syzygy functors and the homology of packing
complexes

In this section we describe the correspondence between the syzygy functors from the
previous section and the (reduced) homology groups of the packing complexes intro-
duced in Definition 1.1. This correspondence has been exploited by Reiner and Roberts
[RR00] to compute the syzygy functors for the quadratic Veronese and 2-factor Segre
varieties. It is an instance of more general results that relate syzygies of graded modules
over affine semigroup rings to simplicial homology ([BH97], [Sta96, Thm. 7.9], [Stu96,
Thm. 12.12]).
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Theorem 2.1 ([KRW01, Thm. 5.3]). Let p, q be nonnegative integers, let d =
(d1, . . . , dn) be a sequence of positive integers, and let b = (b1, . . . , bn) be a sequence of
arbitrary integers. Write Ni = (p + q)di + bi , and let N = (N1, . . . , Nn). Consider an
n-partition λ `n N . Then the multiplicity of Sλ in Kd

p,q(b) coincides with the multiplicity
of the irreducible SN -representation [λ] in H̃p−1(C

d

N ).

For the reader’s convenience we include a short proof of this theorem below.

Proof of Theorem 2.1. By (2.1), Kd
p,q(b)(V1, . . . , Vn) is computed as the homology of

the 3-term complex∧p+1
(Symd1 V1 ⊗ · · · ⊗ Symdn Vn)⊗ Sym(q−1)d1+b1 V1 ⊗ · · · ⊗ Sym(q−1)dn+bn Vn

→
∧p

(Symd1 V1 ⊗ · · · ⊗ Symdn Vn)⊗ Symqd1+b1 V1 ⊗ · · · ⊗ Symqdn+bn Vn

→
∧p−1

(Symd1 V1 ⊗ · · · ⊗ Symdn Vn)⊗ Sym(q+1)d1+b1 V1 ⊗ · · · ⊗ Sym(q+1)dn+bn Vn

(2.2)

where the second differential ∂ is obtained by embedding∧p
(Symd1 V1 ⊗ · · · ⊗ Symdn Vn)

↪→
∧p−1

(Symd1 V1 ⊗ · · · ⊗ Symdn Vn)⊗ (Symd1 V1 ⊗ · · · ⊗ Symdn Vn),

and then applying the multiplication maps

Symdi Vi ⊗ Symqdi+bi Vi → Sym(q+1)di+bi Vi

(the first differential is defined analogously). Explicitly, once we fix a basis for Vi , we
can think of Symr Vi as having a basis (zβ)β , indexed by multisets β of size r and entries
in {1, . . . , dim(Vi)}. Also, Symd1 V1 ⊗ · · · ⊗ Symdn Vn has a basis (zα)α indexed by n-
tuples α = (α1, . . . , αn), where each αi is a multiset of size di as before. We deduce
that

∧p
(Symd1 V1⊗ · · · ⊗ Symdn Vn)⊗ Symqd1+b1 V1⊗ · · · ⊗ Symqdn+bn Vn has a basis

consisting of all elements

zα1 ∧ · · · ∧ zαp ⊗ zβ1 ⊗ · · · ⊗ zβn

indexed by n-tuples α1, . . . , αp of multisets, together with multisets β1, . . . , βn, such that
|αij | = dj and |βj | = qdj + bj . A similar description holds for the bases of the remaining
vector spaces in the complex (2.2). The differential ∂ sends

zα1 ∧ · · · ∧ zαp ⊗ zβ1 ⊗ · · · ⊗ zβn

7→

p∑
i=1

(−1)i−1zα1 ∧ · · · ∧ ẑαi ∧ · · · ∧ zαp ⊗ zβ1∪α
i
1
⊗ · · · ⊗ zβn∪αin

.

The complex (2.2) is equivariant with respect to theG = GL(V1)×· · ·×GL(Vn)-action,
and the representations involved are homogeneous polynomial representations of multi-
degree (N1, . . . , Nn) [Mac95, Chapter 1, Appendix A]. It follows that in order to under-
stand the functor Kd

p,q(b), it suffices to assume that dim(Vi) = Ni , and understand the
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decomposition of Kd
p,q(b)(V1, . . . , Vn) into irreducible G-representations. Furthermore,

if we restrict (2.2) to its (1, 1, . . . )-weight subspace with respect to the action of the torus
of tuples of diagonal matrices in G (determined by the choice of bases in each Vi), then
we get a 3-term complex

D• : Dp+1 → Dp → Dp−1

of SN -representations. By Schur–Weyl duality, the homology H(D•) of D• determines
K
d
p,q(b)(V1, . . . , Vn) in the sense that for any n-partition λ = (λ1, . . . , λn), the multi-

plicity of the irreducible G-representation Sλ1V1 ⊗ · · · ⊗ SλnVn in Kd
p,q(b)(V1, . . . , Vn)

coincides with that of the irreducible SN -representation [λ] inside H(D•).
Let us take a closer look at the complex D•. The space Dp has a basis consisting of

all elements
zα1 ∧ · · · ∧ zαp ⊗ zβ1 ⊗ · · · ⊗ zβn ,

where αi = (αi1, . . . , α
i
n), and αij and βj are subsets of {1, . . . , Nj }, with |αij | = dj ,

|βj | = qdj + bj , and for every j = 1, . . . , n, the sets α1
j , . . . , α

p
j , βj form a partition of

{1, . . . , Nj }. In particular, the sets βj are completely determined by α1, . . . , αp, so that
we can make the identification

zα1 ∧ · · · ∧ zαp ⊗ zβ1 ⊗ · · · ⊗ zβn ↔ zα1 ∧ · · · ∧ zαp .

This means that we can write the differential ∂ : Dp → Dp−1 as

∂ : zα1 ∧ · · · ∧ zαp 7→

p∑
i=1

(−1)i−1zα1 ∧ · · · ∧ ẑαi ∧ · · · ∧ zαp ,

(with a similar formula holding for ∂ : Dp+1 → Dp). If we identify zα1 ∧ · · · ∧ zαp with
the (oriented) (p−1)-simplex {α1, . . . , αp} belonging to the simplicial complex CdN , then
∂ can be identified with the boundary map of CdN , hence

H(D•) = H̃p−1(C
d

N ).

This concludes the proof of the theorem. ut

We point out a vanishing result for the homology of packing complexes, which via the
above theorem yields the vanishing of certain syzygy functors. We note that Theorem 2.2
below in fact holds for integral homology, and that it would be desirable from the point of
view of algebraic geometry to obtain sharper vanishing results for the rational homology
of packing complexes.

Theorem 2.2. Let d = (d1, . . . , dn) be a sequence of positive integers and let p ≥ 0. If
N = (N1, . . . , Nn) with Ni ≥ p(di + 1)+ di for i = 1, . . . , n, then H̃p−1(C

d

N ) = 0.
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Proof. Set

µ = min
i=1,...,n

⌊
Ni − di

di + 1

⌋
.

It follows from [Ath04, Thm. 5.3] that CdN is (µ− 1)-connected (note the correspondence
Ni ↔ ni and di ↔ ri between our notation and that of loc. cit.; note also that loc. cit.
proves a slightly better connectedness result when some of the di’s are equal to 1). It
follows that for p ≤ µ we have H̃p−1(C

d

N ) = 0. ut

Corollary 2.3. Let d = (d1, . . . , dn) be a sequence of positive integers and let b =
(b1, . . . , bn) be a sequence of arbitrary integers. ThenKd

p,2(b) = 0 for p ≤ min{di+bi :
i = 1, . . . , n}.

Proof. The condition Kd

p,2(b) = 0 is equivalent via Theorem 2.1 to the vanishing of

H̃p−1(C
d

N ), whereNi = (p+2)di+bi . Applying Theorem 2.2 we find that this vanishing
holds as soon as (p + 2)di + bi ≥ p(di + 1)+ di , which is equivalent to di + bi ≥ p.

Alternatively, with the notation in Section 2.2 we see by [EL12, Prop. 3.2] that

K
d

p,2(Bb) = H
1(X,

∧p+1
M ⊗OX(d1 + b1, . . . , dn + bn)), (2.3)

where M = Ker(H 0(X,OX(d)) ⊗ OX → OX(d)) is the restricted tautological bundle
corresponding to the embedding of X by O(d). We have M = M1 � · · · �Mn, where
Mi = Ker(H 0(PVi,OPVi (di))⊗OPVi → OPVi (di)), so

∧p+1
M decomposes as a direct

sum of Sλ1M1 � · · ·� SλnMn for λi ` (p + 1). Using Künneth’s formula, the vanishing
of the terms in (2.3) reduces to proving that

H 1(PVi, SµMi ⊗OPVi (di + bi)) = 0 for µ ` (p + 1).

Now since Mi is 1-regular with respect to OPVi (1) (see [Laz04, Section I.8] for defini-
tions), it follows that M⊗(p+1)

i is (p + 1)-regular, hence the same is true of SµMi which
is a direct summand inM⊗(p+1)

i . If p ≤ (di+bi) then SµMi is also (di+bi+1)-regular,
and the desired vanishing follows. ut

3. Representation stability

This section is based on [CF13, CEF15]. We adopt a slightly different strategy from
[CEF15] which is valid only in characteristic zero, but offers a quick access to stability
for the problem at hand, namely for the stabilization of homology of packing complexes.

We denote by Set the category of sets, where morphisms are injective maps. For a
positive integer n, we let Setn denote the n-fold product of Set with itself. We write Vec
for the category of finite-dimensional vector spaces over K.

Definition 3.1 (FIn-modules [CEF15]). We define an FIn-module to be a functor V :
Setn → Vec. A morphism of FIn-modules is just a natural transformation T : V → W .
We will often refer to V as an FI-module or simply a module, when there is no danger of
confusion.
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If V is an FIn-module, and A = (A1, . . . , An) is an n-tuple, then VA admits a natural
action of the product of symmetric groups SA = SA1 × · · · ×SAn . We can then think
of the FIn-module V as a pair (V , φ) consisting of a collection V = (VN )N of finite-
dimensional SN -representations VN , indexed by n-tuples N = (N1, . . . , Nn) of positive
integers, equipped with maps φN,N ′ : VN → VN ′ for all consecutive n-tuples N,N ′.
These maps have to be equivariant with respect to the SN -action when we regard SN

as a subgroup of SN ′ in the natural way, i.e. we can think of φN,N ′ as a SN -equivariant

map VN → Res
SN ′

SN
(VN ′), or a SN ′ -equivariant map Ind

SN ′

SN
(VN ) → VN ′ . A morphism

T between V = (V , φ) and W = (W,ψ) is then a collection of SN -equivariant maps
TN : VN → WN satisfying ψN,N ′ ◦ TN = TN ′ ◦ φN,N ′ .

By composing maps between consecutive n-tuples we get maps φN,N ′ wheneverN ≤
N ′ (i.e.Ni ≤ N ′i for all i). As remarked in [CEF15, Remark 3.3.1], (V , φ) needs to satisfy
a further compatibility relation: denoting by [N ] the set {1, . . . , N1}× · · · × {1, . . . , Nn},
for any N ≤ N ′, v ∈ VN and v′ = φN,N ′(v), and for every σ 1, σ 2

∈ SN ′ such that
σ 1
|[N ] = σ

2
|[N ′], the equality σ 1(v′) = σ 2(v′) holds.

The following definition of stability is inspired by [Chu12, Definition 1.2].

Definition 3.2 (Representation stability). The FIn-module V is called representation
stable if for all n-partitions λ and all N � 0 (i.e. for sufficiently large values of the
parameters N1, . . . , Nn), the natural map (induced by φN,N ′ )

φN,N ′(λ) :
(
Ind

SN ′

SN
((VN )λ[N ])

)
λ[N ′]
→ (VN ′)λ[N ′]

is an isomorphism for all N ′ ≥ N . We will often refer to V as a stable module, for
simplicity. We say that V has injectivity range/surjectivity range/stable range N ′ ≥ N if
the maps φN,N ′(λ) are injective/surjective/isomorphisms for all λ whenever N ′ ≥ N .

Note that for N � 0 and N ′ ≥ N , the above definition implies that for a stable module V
the maps φN,N ′ are injective, the image of φN,N ′ generates VN ′ as a SN ′ -representation,
and the multiplicity of λ[N ] in VN is independent ofN for every n-partition λ. This means
that V satisfies uniform representation stability in the sense of [CF13, Definition 2.6].

For 0 ≤ s ≤ n and a subset I = {i1, . . . , is} of {1, . . . , n}, we consider a fixed
collection Ai1 , . . . , Ais of finite sets. Given any FIn-module V , we can restrict it to an
FIn−s-moduleW by lettingW((Aj )j /∈I ) = V (A1, . . . , An). We callW a restriction (pull-
back) of V .

Definition 3.3 (Representation superstability). The FIn-module V is called representa-
tion superstable if all its restrictions are representation stable. We will often refer to V as
a superstable module, for simplicity.

Remark 3.4. For any n ≥ 1, it makes sense to talk about finitely generated FIn-modules
in the sense of [CEF15], or about finitely generated GLn∞-equivariant Sym((C∞)n)-
modules in the sense of [SS16]. It can be checked that (in characteristic zero) a module is
finitely generated if and only if it is superstable.
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Remark 3.5 (FI-spaces). In the terminology of [CEF15], the functor that assigns to a
tuple A of sets the packing complex CdA is an FI-space. Applying the reduced homology
functors H̃i to this FI-space yields FI-modules that are superstable (see Theorem 5.1).

Lemma 3.6. If V is representation (super)stable and W is a sub- or quotient module
of V , thenW is also representation (super)stable. More generally, if V has a finite filtra-
tion with quotients Wi , then all Wi are (super)stable if V is.

Proof. The superstable case is a consequence of the stable case, so we only deal with
the latter. Since V is a stable FIn-module, there are finitely many n-partitions λ such that
λ[N ] appears in VN for N � 0, and moreover the multiplicity mλ(VN ) of λ[N ] in VN
is constant for N � 0. If W is a sub- (resp. quotient) module of V , then for each such λ
the induced maps φN,N ′(λ)|W are injective (resp. surjective) for N ′ ≥ N � 0, so the
multiplicities mλ(WN ) are eventually nondecreasing (resp. nonincreasing), hence they
stabilize and therefore φN,N ′(λ)|W are eventually bijective. The last statement follows by
an easy induction. ut

Corollary 3.7. If V,W are representation (super)stable, and T : V → W is a mor-
phism, then Im(T ) and Ker(T ) are also representation (super)stable.

Lemma 3.8. Given an “exact triangle” X• → Y• → Z• → X•[−1], i.e. an exact
sequence

· · · → Xk → Yk → Zk → Xk−1 → Yk−1 → · · ·

with Xk , Yk representation (super)stable for all k, then Zk is also representation (su-
per)stable for every k. If Xk, Yk, Xk−1, Yk−1 have stable range N ′ ≥ N , then Zk also
has stable range N ′ ≥ N .

In particular, if
0→ A→ B → C → 0

is a short exact sequence of FIn-modules, and if any two of A,B,C are (super)stable,
then the same is true of the third. If B has stable range N ′ ≥ N then A has injectivity
range N ′ ≥ N and C has surjectivity range N ′ ≥ N . If any two of A,B,C have stable
range N ′ ≥ N then the same is true of the third.

Proof. Follows from the 5-lemma. ut

We say that an FIn-module V is trivial if VN = 0 for N � 0. It is supertrivial if VN = 0
except maybe for finitely many tuples N . We note that a (super)trivial module is (su-
per)stable. For the purpose of stability, it will be convenient to identify modules that
coincide for sufficiently large multidegrees. More precisely, we say that V and W are
equivalent if there exist trivial submodules V 0

⊂ V , W 0
⊂ W , and an isomorphism be-

tween V/V 0 and W/W 0. We say that V is simple if it is trivial, or if it is equivalent to W
for every nontrivial submodule W of V .

We denote by V (λ) the FIn-module where V (λ)N = [λ[N ]] for all N for which λ[N ]
is defined and V (λ)N = 0 otherwise, and for a successor N ′ of N , the map φN,N ′ is zero
when V (λ)N = 0, and otherwise it is the unique (up to scaling) nonzero SN -equivariant
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map from [λ[N ]] to [λ[N ′]]. It is clear that V (λ) is simple and stable (in fact it is even
superstable), and the next lemma shows that every simple stable module is equivalent
to V (λ) for some λ.

Lemma 3.9. If V is a stable nontrivial module, then V contains a submodule equivalent
to V (λ) for some n-partition λ.

Remark 3.10. An easy induction argument combined with the above lemma shows that
every stable module V has a finite filtration (a composition series) whose quotients are
simple modules equivalent to V (λ) for λ in some finite collection P of n-partitions. We
call each λ ∈ P a constituent of V . For each such λ, we denote by mλ the number of oc-
currences of (a module equivalent to) V (λ) in a composition series for V . We call mλ the
multiplicity of the constituent λ. The constituents and their multiplicities are characterized
by the decomposition

VN =
⊕
λ∈P
[λ[N ]]⊕mλ for N � 0.

Definition 3.11. Given a collection P of n-partitions, we say that λ ∈ P is size maximal
if for any λ̃ ∈ P , we have either |λi | = |λ̃i | for all i = 1, . . . , n, or |λi | > |λ̃i | for some i.

Lemma 3.12. If λ ∈ P is size maximal, and N,N ′ are consecutive n-tuples, then for

every λ̃ ∈ P different from λ, λ[N ] does not occur in Res
SN ′

SN
(λ̃[N ′]).

Proof. This follows from Pieri’s rule. ut

Proof of Lemma 3.9. Throughout the proof we will assume that N � 0. There is a finite
set P of n-partitions λ such that λ[N ] occurs in VN , and for each such λ, the multiplicity
of λ[N ] in VN is mλ, independent of N .

We fix now a size maximal λ ∈ P . It follows from Lemma 3.12 that if N,N ′ are
consecutive n-tuples, then there are no nonzero SN -equivariant maps between (VN )λ[N ]
and (VN ′)λ̃[N ′] when λ̃ 6= λ. Letting WN = (VN )λ[N ] for all N yields a (stable) submod-

ule W of V . We fix N0
� 0 and define U by letting UN0 be a subrepresentation of WN0

isomorphic to λ[N0
], and letting UN be the image of UN0 via φN0,N (λ) when N ≥ N0

(and UN = 0 otherwise). It is clear that U is a submodule of V equivalent to V (λ). ut

Definition 3.13 (External tensor product of FI-modules). For an FIn-module V and an
FIm-module W , we let V �W denote their external tensor product, defined by

(V �W)N1,...,Nn,M1,...,Mm = VN1,...,Nn ⊗WM1,...,Mm ,

with the natural induced maps. If V and W are (super)stable, then the same is true of
V �W . Note that if λ is an n-partition, then the FIn-module V (λ) = V (λ1)� · · ·�V (λn)

is an external tensor product of FI1-modules.
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Definition 3.14 (Convolution of FI-modules). Given two FIn-modules V,W , we define
their convolution V ∗W by

(V ∗W)N =
⊕

N1
+N2
=N

Ind
SN

S
N1×SN2

(VN1 �WN2),

with the natural induced maps. In the functor notation, if A = (A1, . . . , An) denotes an
n-tuple of sets, and if we write A = B t C to signify Ai = Bi t Ci for all i, then

(V ∗W)A =
⊕

BtC=A

VB ⊗WC .

Note that tensor products and convolutions preserve exactness, and they are associative.
Given an n-partition µ `n a = (a1, . . . , an), we write T (µ) for the supertrivial FIn-

module having T (µ)a = [µ], and T (µ)N = 0 for all N 6= a. For general (super)stable
modules V,W , it is not the case that V ∗W is also stable. However, we will see in Theorem
3.15 below that convolution with modules of the form T (µ) (or more general supertrivial
modules) preserves stability. If V is any FIn-module then

(V ∗ T (µ))N =

{
Ind

SN

SN−a×Sa
(VN−a � [µ]) if N ≥ a,

0 otherwise.

When V = V (1) is the FIn-module corresponding to the empty partition (VN = 1SN

for all N ), V ∗ T (µ) coincides with the multivariate analogue of the module M(µ) in-
troduced in [CEF15, Def. 2.2.6]. An important part of the theory of finitely generated
FI-modules that Church–Ellenberg–Farb develop is based on the fact that the modules
M(µ) are finitely generated, which is proved in [Chu12, Theorem 2.8]. We formulate the
following consequence/generalization of this theorem.

Theorem 3.15 ([Chu12, Theorem 2.8]). If V is a representation (super)stable FIn-mod-
ule and T is a supertrivial FIn-module, then the convolution V ∗ T is representation
(super)stable. Moreover, if V has stable range N ′ ≥ N , and a = (a1, . . . , an) is such
that Ta′ = 0 for a′ > a, then V ∗ T has stable range N ′ ≥ N + 2a.

Remark 3.16. In the language of [SS16], the first part of the theorem says that the ten-
sor product between a finitely generated module and a finite length module is finitely
generated, which is a tautology in their context.

Proof of Theorem 3.15. As before, it is enough to treat the case when V is stable, the su-
perstable case being a direct consequence. Since V is stable, it has a composition series by
Remark 3.10 with terms that are equivalent to V (λ). Since convolutions preserve exact-
ness, it follows that we may assume V = V (λ) for some λ. Similarly, since T has a filtra-
tion with supertrivial modules of the form T (µ), we may assume that T = T (µ). Writing
V = V (λ1) � · · · � V (λn) as a tensor product of FI1-modules, and µ = (µ1, . . . , µn), it
follows that

V ∗ T (µ) = (V (λ1) ∗ T (µ1)) � · · · � (V (λn) ∗ T (µn)).
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To prove the stability of V ∗T and the estimation for the stable range we are then reduced
to the case when n = 1, i.e. when λ and µ ` a are partitions. By the argument in
Lemma 3.9, V (λ) is a submodule in M(λ) = V (1) ∗ T (λ), hence V (λ) ∗ T (µ) is a
submodule in V (1) ∗ T (λ) ∗ T (µ) = V (1) ∗ (T (λ) ∗ T (µ)) which is stable by [Chu12,
Theorem 2.8]. It follows from Lemma 3.6 that V (λ) ∗ T (µ) is also stable.

To end the proof of the theorem we need to show that if V (λ) has stable rangeN ′ ≥ N
and µ ` a, then V (λ) ∗ T (µ) has stable range N ′ ≥ N + 2a. Since V (λ)m = 0 for
m ≤ |λ| + λ1, we must have N ≥ |λ| + λ1. As noted before, V (λ) ∗ T (λ) is a submodule
of V (1) ∗ (T (λ) ∗ T (µ)) =

⊕
ν V (1) ∗ (T (ν)

⊕cνλ,µ) where cνλ,µ are the Littlewood–
Richardson coefficients. In particular all partitions ν that appear have |ν| = |λ| + a and
ν1 ≤ λ1 + µ1 ≤ λ1 + a. It follows that for such ν, V (1) ∗ T (ν) has weight [CEF15,
Def. 3.2.1] at most |λ| + a and stability degree [CEF15, Def. 3.1.3] at most λ1 + a, and
since (|λ| + a) + (λ1 + a) ≤ N + 2a we get by [CEF15, Prop. 3.3.3] that V (1) ∗ T (ν)
has stable range N ′ ≥ N + 2a. We conclude that the module V (1) ∗ (T (λ) ∗ T (µ)) has
stable range N ′ ≥ N + 2a, which by the last part of Lemma 3.8 implies that V (λ) ∗T (µ)
has injectivity range N ′ ≥ N + 2a. Observe now that by the Littlewood–Richardson rule
the multiplicities of the irreducible representations [δ[N ′]] appearing in (V (λ) ∗ T (µ))N ′
stabilize for N ′ ≥ N + 2a, which then implies that the stable range of V (λ) ∗ T (µ) is
N ′ ≥ N + 2a. ut

4. Inductive approach to computing the homology of packing complexes

We fix a sequence d = (d1, . . . , dn) of positive integers, and drop it from the notation for
the rest of this section: we write CA for the packing complex CdA associated to the n-tuple
of sets A = (A1, . . . , An) (Definition 1.1). We write Cα1,...,αn for the full subcomplex
of CA generated by the vertex (0-simplex) α = (α1, . . . , αn) and all its adjacent vertices
(also known as the star of α). If we write A′i = Ai \ αi and A′ = (A′1, . . . , A

′
n), then

Cα1,...,αn can be thought of as the cone over CA′ (CA′ is called the link of α).
We now fix an n-tuple N = (N1, . . . , Nn) of positive integers and the corresponding

complex CN . We proceed to construct a long exact sequence that relates the reduced
homology groups of CN to those of the complexes CN ′ for N ′ ≤ N . Such long exact
sequences have been previously studied in the case of matching complexes by [Bou92,
SW07, Jon08], and for chessboard complexes by [BLVZ94, SW07].

Example 4.1. Assume that n = 2, N1 = N2 = 3 and d1 = d2 = 1. Since the sets αi
are singletons, αi = {ai}, we write ai instead of αi . If we take a1 = a2 = 3, then the
subcomplex Ca1,a2 of C(1,1)(3,3) looks like

(3,3)

(2,2)

(1,1) (1,2)

(2,1)

hence it is the cone over the complex C(1,1)(2,2) discussed in Example 1.2.
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There is one situation when it is easy to compute the homology of CdN , namely when it is
zero-dimensional.

Lemma 4.2. Suppose that Nj < 2dj for some j = 1, . . . , n. Then CdN is zero-dimen-
sional (or empty), and

H0(C
d

N ) =
⊕
λ`nN

[λ],

where the sum is over n-partitions λ = (λ1, . . . , λn) with each λi having at most two
parts and λi1 ≥ max(di, Ni − di).

Proof. The first assertion follows from the definition of the complexes CdN . To describe

H0(C
d

N ), note that it has a natural basis indexed by the 0-simplices of CdN . SN acts
transitively on these simplices with stabilizers isomorphic to Sd × SN ′ , where N ′ =
(N1 − d1, . . . , Nn − dn). It follows that as a SN -representation,

H0(C
d

N ) = Ind
SN

Sd×SN ′
(1Sd

⊗ 1SN ′
),

whose decomposition into irreducibles can then be computed using Pieri’s rule. ut

We shall assume from now on that Nj ≥ 2dj for all j . Fix an index i between 1 and n,
and an element ai ∈ Ai . Consider the n-tuple Ai = (A1, . . . , Ai \ {ai}, . . . , An). Since
CAi is a subcomplex of CA, we get a relative homology long exact sequence

· · · → H̃r(CAi )→ H̃r(CA)→ Hr(CAi , CA)→ · · · . (4.1)

Note that this exact sequence is equivariant with respect to the action of SAi ⊂ SA. We
identify Hr(CAi , CA) with H̃r(Xi), where Xi is the quotient space CA/CAi . We write ∗
for the image of CAi in the quotient. Xi is connected (because Nj ≥ 2dj for all j ), hence
H̃0(X

i) = 0, and furthermore it is covered by subspaces Xiα1,...,αi ,...,αn
, where αj ⊂ Aj

for all j , ai ∈ αi , and

Xiα1,...,αi ,...,αn
= Im(Cα1,...,αn ⊂ CA→ Xi).

Since any 0-simplex of Cα1,...,αn distinct from (α1, . . . , αn) is contained in Ai , it follows
that any two distinct subspaces Xiα1,...,αi ,...,αn

of Xi intersect in a single point, namely ∗.
This shows that for r > 0,

H̃r(X
i) =

⊕
αj⊂Aj
ai∈αi

H̃r(X
i
α1,...,αi ,...,αn

). (4.2)

Note that Xiα1,...,αi ,...,αn
is obtained by taking the cone over CA′ (where A′j = Aj \ αj for

all j , as before), and then collapsing CA′ , so it can be naturally identified with the suspen-
sion of CA′ (see Example 4.3 below). The effect of suspension on reduced homology is
just a shift in degrees, thus

H̃r(X
i
α1,...,αi ,...,αn

) = H̃r−1(CA′).



Representation stability for syzygies of line bundles on Segre–Veronese varieties 1217

Equation (4.2) then becomes

H̃r(X
i) =

⊕
αj⊂Aj
ai∈αi

H̃r−1(CA′(α1,...,αn)), (4.3)

where we write A′(α1, . . . , αn) to emphasize the dependence of A′ on the sets αj .

Example 4.3. Continuing Example 4.1, we fix i = 2 and a2 = 3. The quotient space Xi

is then

*

(1,3)

(2,3) (3,3)

Xi1,3

Xi2,3 Xi3,3

Xi is covered by the three subsets Xij,3, j = 1, 2, 3, each of which consists of two pairs
of points, four 1-cells and two 2-cells. Xi has a natural action of the product S3 ×S2 of
symmetric groups. The subspace Xi3,3 is the suspension of the complex in Example 1.2,
whose only nonvanishing reduced homology group is H̃0, which is 1-dimensional. It fol-
lows that H̃1(X

i) has dimension 3, which is not hard to see from the picture.

We can compute H̃r(Xi) more precisely by keeping track of the equivariance of the de-
composition (4.3) with respect to the group SAi = SA1 × · · · ×SAi\{ai } × · · · ×SAn .
Let us fix a collection α1, . . . , αn with ai ∈ αi , and the corresponding n-tuple A′. For
j = 1, . . . , n, j 6= i, we have a natural inclusion SA′j

× Sαj ⊂ SAj . Similarly,
SA′i
×Sαi\{ai } ⊂ SAi\{ai }. Denote by Sαi the product Sα1 ×· · ·×Sαi\{ai }×· · ·×Sαn .

Then the previous inclusions give rise to a natural containment

H = SA′ ×Sαi ⊂ SAi .

The space Xiα1,...,αn
admits a natural action of the group H , where the factor Sαi acts

trivially. The reduced homology groups H̃r(Xiα1,...,αn
) are therefore H -representations.

The complex CA′ has a natural SA′ -action. We can extend it to an H -action by letting
Sαi act trivially. It follows that the identification

H̃r(X
i
α1,...,αi ,...,αn

) = H̃r−1(CA′)

is in fact an equality of H -modules. Moreover, if we write S for a system of representa-
tives of the collection SAi/H of left cosets, then we can rewrite the decomposition (4.3)
as

H̃r(X
i) =

⊕
σ∈S

σ · H̃r−1(CA′),

or alternatively

H̃r(X
i) = Ind

S
Ai

H (H̃r−1(CA′)).
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Putting everything together, we obtain

Proposition 4.4. Fix a sequence d = (d1, . . . , dn) of positive integers. Consider sets
A1, . . . , An, with |Aj | = Nj ≥ 2dj for j = 1, . . . , n. Fix an index i ≤ n and an
element ai ∈ Ai . Let α1, . . . , αn be subsets of A1, . . . , An respectively, with ai ∈ αi .
Let A′j = Aj \ αj for j = 1, . . . , n, and write A = (A1, . . . , An), A′ = (A′1, . . . , A

′
n),

Ai = (A1, . . . , Ai \ {ai}, . . . , An) and αi = (α1, . . . , αi \ {ai}, . . . , αn). Then there is a
long exact sequence

· · · → Ind
S
Ai

SA′×Sαi
(H̃r(C

d

A′
)⊗ 1)→ H̃r(C

d

Ai
)→ Res

SA

S
Ai
(H̃r(C

d

A))

→ Ind
S
Ai

SA′×Sαi
(H̃r−1(C

d

A′
)⊗ 1)→ H̃r−1(C

d

Ai
)→ Res

SA

S
Ai
(H̃r−1(C

d

A))→ · · · ,

which is equivariant with respect to the action of the group SAi .

Remark 4.5. If we make the convention that H̃−1(C
d

A′
) is the trivial SA′ -representation

when Cd
A′

is empty (i.e. Nj < 2dj for some j ), then the conclusion of the proposition
remains true when Nj is allowed to be smaller than 2dj .

Example 4.6. We continue with Example 4.3. Note that the only nonzero reduced ho-
mology group of C(1,1)(2,2) is H̃0, and as explained in the introduction, its description as a
S2 ×S2-module is

H̃0(C(1,1)(2,2)) = ⊗ .

Inducing up to S3 ×S2 and using Pieri’s rule, we obtain

IndS3×S2
S2×S2

(H̃0(C(1,1)(2,2))) =
(
+

)
⊗ .

Using the arguments we are about to present, one can deduce (we leave it as an exercise
for the interested reader) that the only nonzero reduced homology group of C(1,1)(3,2) is H̃1,
and

H̃1(C(1,1)(3,2)) = ⊗ .

We would like to compute the reduced homology groups of C(1,1)(3,3) . The long exact se-
quence in Proposition 4.4 yields

0→ H̃1(C(1,1)(3,2))→ H̃1(C(1,1)(3,3))→ IndS3×S2
S2×S2

(H̃0(C(1,1)(2,2)))

→ H̃0(C(1,1)(3,2))→ H̃0(C(1,1)(3,3))→ 0,

i.e.

0→ ⊗ → H̃1(C(1,1)(3,3))→
(
+

)
⊗ → 0→ H̃0(C(1,1)(3,3))→ 0.
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This forces H̃0(C(1,1)(3,3)) = 0, which can also be seen from the fact that C(1,1)(3,3) is connected,
and moreover

ResS3×S3
S3×S2

(H̃1(C(1,1)(3,3))) = ⊗ + ⊗ + ⊗ . (4.4)

There are two irreducible S3×S3-representations whose restrictions to S3×S2 contain
the representation [(1, 1, 1)] ⊗ [(2)], namely

⊗ and ⊗ .

If [(1, 1, 1)] ⊗ [3] has positive multiplicity in H̃1(C(1,1)(3,3)), then by symmetry the same is
true for [(3)] ⊗ [(1, 1, 1)]. But then

ResS3×S3
S3×S2

(
⊗

)
= ⊗

would have positive multiplicity inside ResS3×S3
S3×S2

(H̃1(C(1,1)(3,3))), which is not the case. It

follows that [(1, 1, 1)]⊗ [(2, 1)]must occur in H̃1(C(1,1)(3,3)), and by symmetry the same has
to be true of [(2, 1)] ⊗ [(1, 1, 1)]. Since

ResS3×S3
S3×S2

(
⊗ + ⊗

)
= ⊗ + ⊗ + ⊗

coincides with the restriction of H̃1(C(1,1)(3,3)) to S3 ×S2 (see (4.4)), this forces

H̃1(C(1,1)(3,3)) = ⊗ + ⊗ .

Note that this coincides with the description of the functorK2,1 in Figure 1 on page 1207.
That this should be the case is a consequence of Theorem 2.1.

5. Representation stability for packing complexes

In this section we prove the stabilization of the homology groups of packing complexes.
The argument is based on the general results on representation stability established in
Section 3.

Theorem 5.1. Fix n > 0 and an n-tuple d = (d1, . . . , dn) of positive integers. For
k ≥ −1 the FIn-module Hk defined by letting

(Hk)A = H̃k(C
d

A)

whenever A is an n-tuple of finite sets, is representation superstable and trivial.
Moreover, if r < n and if we fix n − r sets, say Ar+1, . . . , An, of cardinalities

Nr+1, . . . , Nn respectively, and if we let

m = min
j=r+1,...,n

bNj/dj c,
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then the pull-back FIr -module Hk(Nr+1, . . . , Nn) defined by

Hk(Nr+1, . . . , Nn)(A1,...,Ar ) = (Hk)(A1,...,An)

has stable range N ′ ≥ N , where N = 2m(d1, . . . , dr).

Corollary 5.2. For k ≥ −1 and fixed values of Nr+1, . . . , Nn, there exist a finite number
of n-partitions λ = (λ1, . . . , λn) and multiplicities mλ > 0 such that the decomposition

H̃k(C(d1,...,dn)
(N1,...,Nn)

) =
⊕
λ

([λ1
[N1]] ⊗ · · · ⊗ [λ

r
[Nr ]] ⊗ [λ

r+1
] ⊗ · · · ⊗ [λn])⊕mλ

holds for Ni ≥ 2mdi , i = 1, . . . , r , where m = min{bNj/dj c : j = r + 1, . . . , n}.

Theorem 5.3. Let r < n, let d = (d1, . . . , dn) be a sequence of positive integers, and
fix nonnegative integers p, q and br+1, . . . , bn such that bj < dj for at least one j ∈
{r + 1, . . . , n}. For integers b1, . . . , br , let Ni = (p + q)di + bi . Then there exist a finite
number of n-partitions λ and corresponding multiplicitiesmλ such that the decomposition

K
d
p,q(b1, . . . , br , br+1, . . . , bn) =

⊕
λ

(Sλ1[N1]
⊗ · · · ⊗ Sλr [Nr ] ⊗ Sλr+1 ⊗ · · · ⊗ Sλn)

⊕mλ

holds independently of b1, . . . , br as long as bi ≥ (p + q)di , i = 1, . . . , r .

Proof. The result follows from Corollary 5.2 and from Theorem 2.1, which describes
the relationship between Kd

p,q(b) and H̃p−1(C
d

N ), where Nj = (p + q)dj + bj . With the
notation of Corollary 5.2 we have

m = min
j=r+1,...,n

bNj/dj c = p + q,

since by assumption 0 ≤ bj < dj for at least one j ∈ {r + 1, . . . , n}. The conclusion
now follows by observing that the condition Ni ≥ 2mdi = 2(p + q)di of Corollary 5.2
is equivalent to bi ≥ (p + q)di , i = 1, . . . , r . ut

Proof of Theorem 5.1. The fact that the functors Hk are stable and trivial follows from
Theorem 2.2. Assume now that r < n. By Definition 3.3, to prove superstability we need
to show that fixing any n − r of the parameters N1, . . . , Nn (for simplicity of notation
we will assume that they are Nr+1, . . . , Nn), the corresponding pull-back FIr -module
Hk(Nr+1, . . . , Nn) is stable. We prove this statement by induction on the (n − r)-tuple
(Nr+1, . . . , Nn), considering the lexicographical ordering of tuples. Note that if N =
(N1, . . . , Nr), then Hk(Nr+1, . . . , Nn) is given by

Hk(Nr+1, . . . , Nn)N = H̃k(C(d1,...,dn)
(N1,...,Nn)

).

If Ni < di for some i = r + 1, . . . , n, then C(d1,...,dn)
(N1,...,Nn)

is empty, so the only nonzero
module Hk is H−1 = V (1)⊗ 1S(Nr+1,...,Nn)

, where V (1) is the stable module correspond-
ing to the empty r-partition, i.e. V (1)N is the trivial SN -representation for every N . Note
that

m = min{bNj/dj c : j = r + 1, . . . , n} = 0
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in this case and V (1) has stable rangeN ′ ≥ 0 = (0, . . . , 0), so the estimation of the stable
range holds.

If Ni ≥ di for all i, and Nj < 2dj for some j , then the only nonzero Hk is H0, and
it follows from Lemma 4.2 (which computes H0 rather than H̃0) that we have an exact
sequence

0→ H0 → (V (1)∗T (µ))⊗ Ind
S(Nr+1,...,Nn)

S(dr+1,...,dn)
(1S(dr+1,...,dn)

)→ V (1)⊗1S(Nr+1,...,Nn)
→ 0,

where µ = ((d1), . . . , (dr)) is the r-partition corresponding to the trivial S(d1,...,dr )-
representation. Since V (1) has stable range N ′ ≥ 0, and since V (1) ∗ T (µ) is stable with
stable range N ′ ≥ 2(d1, . . . , dr) (Theorem 3.15), it follows from Lemma 3.6 that H0 is
also stable with stable range N ′ ≥ 2 · (d1, . . . , dr). Note that

m = min{bNj/dj c : j = r + 1, . . . , n} = 1,

so the estimation of the stable range holds in this case as well.
We may then assume that Ni ≥ 2di for all i = r + 1, . . . , n. Applying Proposition

4.4 with i = n and ai = Nn, we get an exact triangle X•→ Y•→ Z•→ X•[−1], where

Yk = Hk(Nr+1, . . . , Nn − 1), Zk = Hk(Nr+1, . . . , Nn),

and Xk is a direct sum of copies of

T (µ) ∗Hk(Nr+1 − dr+1, . . . , Nn − dn),

where µ = ((d1), . . . , (dr)). More precisely, for each N = (N1, . . . , Nr) we find that
(T (µ) ∗Hk(Nr+1 − dr+1, . . . , Nn − dn))N is a S(Nr+1−dr+1,...,Nn−dn)-representation and

(Xk)N =

Ind
S(Nr+1,...,Nn−1)

S(Nr+1−dr+1,...,Nn−dn)×S(dr+1,...,dn−1)

(
(T (µ) ∗Hk(Nr+1 − dr+1, . . . , Nn − dn))N � 1

)
,

where the 1 on the RHS denotes the trivial S(dr+1,...,dn−1)-representation. By induction
the Yk’s are stable with stable range N ′ ≥ 2m(d1, . . . , dr) and the Hk(Nr+1 − dr+1,

. . . , Nn − dn)’s are stable with stable range N ′ ≥ 2(m − 1)(d1, . . . , dr). Since we have
µ `r (d1, . . . , dr), it follows from the last part of Theorem 3.15 that the Xk’s are stable
with stable range

N ′ ≥ 2(d1, . . . , dr)+ 2(m− 1)(d1, . . . , dr) = 2m(d1, . . . , dr).

We can now apply Lemma 3.8 to conclude that the Zk’s are also stable with stable range
N ′ ≥ 2m(d1, . . . , dr), concluding the proof of the theorem. ut
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6. An example: the linear strand

In this section we show that for certain line bundles on Segre varieties, the decomposition
into irreducible representations of the linear syzygy modules is as hard to compute as
the decomposition of the plethysms

∧p
(V1 ⊗ · · · ⊗ Vn). This gives an indication of how

difficult the problem of computing syzygies for line bundles on Segre–Veronese varieties
can be.

We write Kp,0(a) for the syzygy functor Kd

p,0(a, 0, . . . , 0) where d = (1, . . . , 1) (as
defined in Section 2.2). It describes the linear syzygies for the bundle Ba=O(a, 0, . . . , 0)
with respect to the Segre embedding corresponding to L = O(1, . . . , 1). We have

Theorem 6.1. For n ≥ 2, p ≥ 0 and λ = (λ1, . . . , λn) a collection of partitions of p, let
mλ denote the multiplicity of Sλ1V1 ⊗ · · · ⊗ SλnVn in

∧p
(V1 ⊗ · · · ⊗ Vn). Then

Kp,0(a) =
⊕

λ`n(p,...,p)

(Sλ1[p+a] ⊗ Sλ2 ⊗ · · · ⊗ Sλn)
⊕mλ ,

where the functor Sλ1[p+a] is identically zero when λ1
1 > a.

Remark 6.2. The sequence Kp,0(a) stabilizes (in the sense of Section 3) for a ≥ p.

Proof of Theorem 6.1. The proof is based on the techniques from [FH98]. Note that by
Theorem 2.1 it suffices to show that

H̃p−1(Cp+a,p,...,p) =
⊕

λ`n(p,...,p)

([λ1
[p + a]] ⊗ [λ2

] ⊗ · · · ⊗ [λn])⊕mλ

for all p ≥ 0. As in the proof of Theorem 2.1, H̃p−1(Cp+a,p,...,p) can be computed as the
kernel of the map ∂ : Dp → Dp−1, where Dp is a vector space with a basis consisting of
all elements

zα1 ∧ · · · ∧ zαp ,

where αi = (ai1, . . . , a
i
n) with ai1 ∈ A1 = {1, . . . , p + a}, aij ∈ Aj = {1, . . . , p} for

j > 1, aij 6= a
i′

j for i 6= i′, and

∂(zα1 ∧ · · · ∧ zαp ) =

p∑
i=1

(−1)i−1zα1 ∧ · · · ∧ ẑαi ∧ · · · ∧ zαp .

Consider the transpose operator ∂∗ : Dp−1 → Dp, defined by

∂∗(zα1 ∧ · · · ∧ zαp−1) =
∑
β

zβ ∧ zα1 ∧ · · · ∧ zαp−1 ,

where the sum ranges over all n-tuples β = (b1, . . . , bn) with bj 6= aij for all i, j . Note
that bj is uniquely determined for j = 2, . . . , n, since |Aj | = p. Let 1 = ∂∗ ◦ ∂

denote the Laplacian operator. By [FH98, Prop. 1] the kernel of 1 (the set of harmonic
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p-forms) coincides with the kernel of ∂ , so it suffices to understand the decomposition
into irreducible SA ' Sp+a ×Sp × · · · ×Sp-representations of the 0-eigenspace of 1.

We now consider the spaces Cp, Cp−1 defined in analogy with Dp,Dp−1, replacing
∧ by ⊗. More precisely, Cp has a basis

zα = zα1 ⊗ · · · ⊗ zαp ,

where αi = (ai1, . . . , a
i
n) with aij ∈ Aj and aij 6= ai

′

j for i 6= i′. We can identify zα
with a p × n table whose (i, j)-entry is aij . Besides the left action of SA that permutes
the elements of the sets A1, . . . , An, Cp admits a right action (which we denote by the
symbol ∗) of Sn

p, where the j -th factor acts by permuting the j -th column of the table.
We identify Sn

p with SB = SB1 × · · · × SBn , where Bj is the set of boxes in the j -th
column of the table.

Example 6.3. Let n = 4, p = 3 and a = 2. Consider the element zα = z(2,1,2,3) ⊗

z(4,3,1,1) ⊗ z(3,2,3,2) ∈ Cp corresponding to the table

M =

2 1 2 3
4 3 1 1
3 2 3 2

Thinking of the transposition (1, 2) first as an element of SA1 and then as one of SB1 we
get

(1, 2) ·M =
1 1 2 3
4 3 1 1
3 2 3 2

, M ∗ (1, 2) =
4 1 2 3
2 3 1 1
3 2 3 2

.

The action of (1, 2) ∈ SA3 on zα coincides with that of (1, 2) ∈ SB3 , both yielding the
element z(2,1,1,3) ⊗ z(4,3,2,1) ⊗ z(3,2,3,2) ∈ Cp, but this is not the case for (1, 2) ∈ SA4

and (1, 2) ∈ SB4 :

(1, 2) ·M =
2 1 2 3
4 3 1 2
3 2 3 1

, M ∗ (1, 2) =
2 1 2 1
4 3 1 3
3 2 3 2

.

The actions of SA and SB commute, so the vector space Cp is a representation of S =
(SA1 ×SB1)× · · · × (SAn ×SBn). Moreover, we have Dp = Cp ∗ c for

c =
∑
σ∈Sp

sgn(σ ) · σ,

where we think of Sp as the diagonal subgroup of SB of permutations of the rows of
the tables in Cp. By [FH98, Thm. 3], we have the decomposition into irreducible S-
representations

Cp '
⊕

λ`n(p+a,p,...,p)
µ`n(p,p,...,p)

([λ1
] ⊗ [µ1

])⊗ ([λ2
] ⊗ [µ2

])⊗ · · · ⊗ ([λn] ⊗ [µn]),
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where λ,µ vary over all n-partitions with the property that λi = µi when i > 1, and λ1

is obtained from µ1 by adding a boxes, no two in the same column. We write C(λ,µ)
for the summand in the decomposition of Cp corresponding to a given pair (λ, µ) of
n-partitions.

We define the operator T : Cp → Cp (see also the definition of the map Dr,n in
[FH98, p. 197]) by

T =
( ∑
i<j∈A1

(i, j)
)
−

( ∑
i<j∈B1

(i, j)
)
+

(
p −

(
a

2

))
Id,

where (i, j) denote transpositions in SA1 or SB1 . Note that T commutes with right mul-
tiplication by c, and the induced map T ∗c : Cp ∗c→ Cp ∗c coincides with the Laplacian
1 : Dp → Dp. By [FH98, Lemma 1], T acts on C(λ,µ) by multiplication by

Cλ1 − Cµ1 + p −

(
a

2

)
,

where for a partition δ, the content Cδ of δ is defined as the sum of the contents of the
boxes in its Young diagram, and the content of a box is the difference between its hori-
zontal and vertical coordinates (with the convention that coordinates increase from left to
right and from top to bottom). For example in the case of the partition δ = (6, 3, 3, 1),
Cδ = 9 is the sum of the box contents encoded in the tableau

0 1 2 3 4 5
−1 0 1
−2−1 0
−3

Now since λ1 is obtained from µ1 by adding a boxes, no two in the same column, we get

Cλ1 − Cµ1 =

∑
j

(λ1)′j=(µ
1)′j+1

(j − 1− (µ1)′j ) ≥

a∑
j=1

(j − 1− (µ1)′j ) ≥

(
a

2

)
− p,

with equality if and only if µ1
1 ≤ a and λ1 is obtained from µ1 by adding a row of length

a, i.e. λ1
= µ1

[a + p]. We find that C(λ,µ), which lies in the
(
Cλ1 − Cµ1 + p −

(
a
2

))
-

eigenspace of T , is a kernel element precisely when λ1
= µ1

[a + p]. The conclusion of
the theorem now follows from the fact that the dimension of the vector space

([µ1
] ⊗ · · · ⊗ [µn]) ∗ c

coincides with the multiplicity mλ of Sµ1V1 ⊗ · · · ⊗ SµnVn in
∧p

(V1 ⊗ · · · ⊗ Vn) by
Schur–Weyl duality. ut

Similar techniques can be used to obtain a description of the linear syzygies of the line
bundle B = O(1) on PV with respect to the Veronese embedding corresponding to
L = O(d). We leave it as an exercise for the interested reader to prove the following
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Theorem 6.4. For p ≥ 0, d > 0, and λ a partition of p(d − 1), let mλ denote the
multiplicity of SλV in Symp(Symd−1 V ). Then

Kd
p,0(1) =

⊕
λ`p(d−1)

S
⊕mλ

λ̃
,

where λ̃ is obtained from λ by adding one column of height p + 1 to the beginning of
its Young diagram, i.e. if λ = (λ1, . . . , λp) with λi ≥ 0, then λ̃ = (1 + λ1, 1 + λ2, . . . ,

1+ λp, 1).

Note that by a result of Newell [New51] the multiplicity mλ in the above decomposition
coincides with that of SλV inside the plethysm

∧p
(Symd V ), where λ = (1 + λ1, . . . ,

1+λp) is a partition of pd . The above theorem gives a concrete description of the syzygy
functorsKd

p,0(1)which fits into the more general theory of [FZ15] that gives a quantitative
measure of the asymptotic complexity of the functors Kd

p,0(b) and Kd
p,1(b) as d becomes

very large.

Remark 6.5. The natural question raised by the analogy with Theorem 6.1, of the stabi-
lization of the functors Kd

p,0(b) as b → ∞, is answered in Corollary 2.3: using the fact
that Kd

p,2(b − 2d) = Kd
p,0(b), we deduce that Kd

p,0(b) stabilizes to zero for b ≥ p + d.
Finding the exact value of b for which Kd

p,0(b) becomes zero (or just a vanishing bound
that is sharp enough) would provide a key step in understanding the asymptotic vanishing
behavior of the syzygies of sheaves on arbitrary algebraic varieties: we invite the reader
to consult the Appendix below for more details on this.

Appendix: Asymptotic vanishing of syzygies

In this appendix we explain how Ein and Lazarsfeld’s notion of asymptotic vanishing for
syzygies of arbitrary varieties [EL12, Conjecture 7.1] reduces to an asymptotic vanishing
statement for line bundles on projective space (or on a product of projective spaces). The
advantage of this reduction is that it transforms the problem of proving asymptotic syzygy
vanishing into a very concrete one that admits numerous reformulations, situating it at the
confluence of algebraic geometry, representation theory and combinatorial topology.

For q ≥ 2 and b ∈ Zn let Pq,b(d) be functions with the property that the syzygy func-
tors Kd

p,q(b) (defined in Section 2.2) vanish identically for p ≤ Pq,b(d). When q = 2,
we can take P2,b(d) = min{di + bi : i = 1, . . . , n} (Corollary 2.3). In the case n = 1,
Ein and Lazarsfeld conjectured that we can take Pq,b(d) to be a polynomial of degree
q − 1 in d [EL12, Conjecture 7.6]. We do not attempt to conjecture what the best Pq,b(d)
would be when n > 1, but a first naive guess that the reader might want to keep in mind
for the discussion to follow would be to take Pq,b(d) = min{Pi(di) : i = 1, . . . , n}, for
some polynomials Pi of degree q − 1. This guess is supported by the fact that if [EL12,
Conjecture 7.1] were true, and di = uid + vi were linear functions of some parame-
ter d with ui > 0, then P(d) = Pq,b(d) would have to grow as a polynomial of degree
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q − 1 in d (in the statement of the conjecture take X = PV1 × · · · × PVn, B = O(b),
A = O(u1, . . . , un), P = O(v1, . . . , vn)). Our goal is to show that, regardless of their
description, the functions Pq,b(d) control the vanishing of syzygies of arbitrary modules,
as explained below.

Given finite-dimensional K-vector spaces V1, . . . , Vn we write V = V1 ⊕ · · · ⊕ Vn
and S = Sym(V ) for the total coordinate ring of PV1 × · · · × PVn with the usual Zn-
grading. If M is a finitely generated graded S-module and a ∈ Zn, we write Ma for the
a-graded piece of M . We write M(b) for the shifted module given by M(b)a = Ma+b.
If d = (d1, . . . , dn) is a sequence of positive integers, we define the d-syzygy modules
K
d
p,q(M) as the homology of (see also (2.1))

∧p+1
Sd ⊗M(q−1)d →

∧p
Sd ⊗Mqd →

∧p−1
Sd ⊗M(q+1)d .

Theorem A.1. Let q ≥ 2 be an integer and let M be a finitely generated graded S-
module. Consider the minimal free resolution of M

0← M ← E0 ← E1 ← · · · ← Ep ← · · · ← Em← 0, (A.1)

where

Ei =
⊕
b∈Si

Fi,b ⊗ S(b)

for some finite-dimensional vector spaces Fi,b, and finite subsets Si ⊂ Zn. Let

P(d) = min{Pq+i,b(d)+ i : b ∈ Si, i = 0, . . . , m}. (A.2)

Then

K
d
p,q(M) = 0 for p ≤ P(d).

Proof. This follows from [Gre84a, Prop. (1.d.3)]. We sketch a proof for completeness.
Consider the complex

F • : F−1
→ F 0

→ F 1
→ · · · → Fp → 0,

where

F i =
∧p−i

Sd ⊗M(q+i)d , i = −1, 0, . . . , p.

We have H i(F •) = K
d

p−i,q+i(M) for i ≥ 0. We construct a double complex G•• which

is quasi-isomorphic to F •, by letting Gij =
∧p−i

Sd ⊗ (Ej )(q+i)d for i = −1, 0, . . . , p,
and j = 0, 1, . . . , m:



Representation stability for syzygies of line bundles on Segre–Veronese varieties 1227

∧p+1
Sd⊗(E0)(q−1)d // ∧p

Sd⊗(E0)qd // · · · // Sd⊗(E0)(q+p−1)d // (E0)(q+p)d

∧p+1
Sd⊗(E1)(q−1)d //

OO

∧p
Sd⊗(E1)qd //

OO

· · · //

OO

Sd⊗(E1)(q+p−1)d //

OO

(E1)(q+p)d

OO

... //

OO

... //

OO

. . . //

OO

... //

OO

...

OO

∧p+1
Sd⊗(Em)(q−1)d //

OO

∧p
Sd⊗(Em)qd //

OO

· · · //

OO

Sd⊗(Em)(q+p−1)d //

OO

(Em)(q+p)d

OO

The vertical maps are induced from (A.1), while the horizontal ones are the usual Koszul
differentials.

The vertical homology of G•• is F •:

H0(G
i
•) = F

i, Hj (G
i
•) = 0 for j > 0,

while the horizontal homology of G•• is given by

H i(G•j ) =
⊕
b∈Sj

Fj,b ⊗K
d

p−i,q+i(S(b))

for i ≥ 0. Comparing the two spectral sequences associated to the double complexG•• we
conclude that in order to have Kd

p,q(M) = 0 it suffices to show that H i(G•i ) = 0 for 0 ≤
i ≤ m, which in turn would be implied by the vanishing of the modules Kd

p−i,q+i(S(b))

for 0 ≤ i ≤ m, b ∈ Si . Since Kd

p−i,q+i(S(b)) = 0 for p − i ≤ Pq+i,b(d), it follows from

(A.2) that Kd
p,q(M) = 0 for p ≤ P(d), concluding the proof. ut

Corollary A.2. Let M be a finitely generated graded S-module. Then there exist in-
tegers b1, . . . , bn such that Kd

p,2(M) = 0 for all positive integers di ≥ −bi and all
p ≤ min{di + bi : i = 1, . . . , n}.

Consider now an arbitrary projective variety X. Given line bundles A1, . . . ,An, we write
Ld(A1, . . . ,An), or simply Ld for A⊗d1

1 ⊗ · · · ⊗A⊗dnn . We have

Corollary A.3. Fix q ≥ 2 and assume that A1, . . . ,An are very ample line bundles
on X, sufficiently positive so that if we let Vi = H 0(X,Ai), then the natural maps

Symd1 V1 ⊗ · · · ⊗ Symdn Vn→ H 0(Ld) (A.3)

are surjective for all di > 0. If B is any coherent sheaf on X, then there exist m ≥ 0
and finite subsets Si ⊂ Zn, i = 0, . . . , m, such that if we define P(d) as in (A.2) then
Kp,q(X,B;Ld) = 0 for p ≤ P(d).
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In particular, assume that n = 1 and that [EL12, Conjecture 7.6] holds. If A is a very
ample line bundle on X such that the corresponding embedding is projectively normal,
then there exists a polynomial P(d) of degree q − 1 such that

Kp,q(X,B;A⊗d) = 0 for p ≤ P(d).

Proof. We have a commutative diagram where all arrows are closed embeddings:

X
|A1|×···×|An| //

|Ld |
��

Y = PV1 × · · · × PVn

|O(d)|
��

PH 0(Ld) �
� // PW = P(Symd1 V1 ⊗ · · · ⊗ Symdn Vn)

so we can think of B as a sheaf on any of the spaces X, Y , PH 0(Ld) or PW . Since
PH 0(Ld) is a linear subspace of PW by (A.3), the syzygies of B on PW differ from those
on PH 0(Ld) by tensoring with a Koszul complex of linear forms. In particular

min{p : Kp,q(X,B;Ld) 6= 0} = min{p : Kp,q(Y,B;O(d)) 6= 0}.

We are then reduced to the case when X = Y is a product of projective spaces and
Ld = O(d). The conclusion follows now from Theorem A.1 if we let

M =
⊕
a∈Zn

≥0

H 0(Y,B ⊗O(a)).

The last part of the corollary follows from the fact that under the assumption of [EL12,
Conjecture 7.6], the functions Pq+i,b(d) in (A.2) can be taken to be polynomials of degree
q + i − 1 ≥ q − 1. ut

Corollary A.4. Fix q ≥ 2 and let A be an ample line bundle on a projective variety X.
If B is any coherent sheaf on X, then there exist m ≥ 0, finite subsets Si ⊂ Z2, i =
0, . . . , m, and functions dj = dj (d), j = 1, 2, growing linearly in d , such that if we
define P(d1, d2) as in (A.2) and let P(d) = P(d1(d), d2(d)), then for sufficiently large d
we have

Kp,q(X,B;A⊗d) = 0 for p ≤ P(d).

Proof. Let a1, a2 be sufficiently large coprime integers such that Ai = A⊗ai , i = 1, 2,
satisfy the hypotheses of Corollary A.3. If d is large enough, we can find d1, d2 with
di ≈ d/2ai such that d = a1d1+a2d2, i.e. A⊗d = A⊗d1

1 ⊗A⊗d2
2 . The conclusion follows

from Corollary A.3. ut

Corollary A.5. Fix q ≥ 2 and let A,P be line bundles on a projective variety X,
with A ample. Let Ld = A⊗d ⊗ P . If B is any coherent sheaf on X, then there exist
m ≥ 0, finite subsets Si ⊂ Z3, i = 0, . . . , m, and functions dj = dj (d), j = 1, 2, 3,
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growing linearly in d , such that if we define P(d1, d2, d3) as in (A.2) and let P(d) =
P(d1(d), d2(d), d3(d)), then for sufficiently large d we have

Kp,q(X,B;Ld) = 0 for p ≤ P(d).

In particular, if the functions Pq,b(d), b ∈ Z3, grow as polynomials of degree q − 1 in
d1, d2, d3, then P(d) grows as a polynomial of degree q − 1, so [EL12, Conjecture 7.1]
holds.

Proof. Let a1, a2, a3 be sufficiently large positive integers such that gcd(a1, a2+a3) = 1
and the line bundles A1 = A⊗a1 , A2 = A⊗a2 ⊗ P , A3 = A⊗a3 ⊗ P−1 satisfy the
hypotheses of Corollary A.3. If d is large enough, we can find d1, d2 with d1 ≈ d/2a1
and d2 ≈ d/2(a2+ a3) such that d+ a3 = a1d1+ (a2+ a3)d2. If we let d3 = d2− 1 then
d = a1d1 + a2d2 + a3d3 and

Ld = A⊗d ⊗ P = A⊗d1
1 ⊗A⊗d2

2 ⊗A⊗d3
3 .

The conclusion follows as before from Corollary A.3. ut
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