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Abstract. A Weyl arrangement is the arrangement defined by the root system of a finite Weyl
group. When a set of positive roots is an ideal in the root poset, we call the corresponding arrange-
ment an ideal subarrangement. Our main theorem asserts that any ideal subarrangement is a free
arrangement and that its exponents are given by the dual partition of the height distribution, which
was conjectured by Sommers–Tymoczko. In particular, when an ideal subarrangement is equal to
the entire Weyl arrangement, our main theorem yields the celebrated formula by Shapiro, Steinberg,
Kostant, and Macdonald. The proof of the main theorem is classification-free. It heavily depends
on the theory of free arrangements and thus greatly differs from the earlier proofs of the formula.

Keywords. Arrangement of hyperplanes, root system, Weyl arrangement, free arrangement, ideals,
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1. Introduction

Let 8 be an irreducible root system of rank ` and fix a simple system (or basis) 1 =
{α1, . . . , α`}. Let 8+ be the set of positive roots. Define the partial order ≥ on 8+ such
that α ≥ β if α−β ∈ Z≥0α1+· · ·+Z≥0α` for α, β ∈ 8+. A subset I of8+ is called an
ideal if a positive root β satisfying α ≥ β for some α ∈ I belongs to I . The height ht(α)
of a positive root α =

∑`
i=1 ciαi is defined to be

∑`
i=1 ci . Let m = max{ht(α) | α ∈ I }.

The height distribution in I is a sequence of positive integers (i1, . . . , im), where ij :=
|{α ∈ I | ht(α) = j}|. The dual partition DP(I ) of the height distribution in I is given
by a multiset of ` integers,

DP(I ) := ((0)`−i1 , (1)i1−i2 , . . . , (m− 1)im−1−im , (m)im),

where (a)b implies that the integer a appears exactly b times.1
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For α ∈ 8+ let Hα denote the hyperplane orthogonal to α. For each ideal I ⊆ 8+,
define the ideal subarrangement A(I ) := {Hα | α ∈ I }. In particular, when I = 8+,
A(8+) is called the Weyl arrangement which is known to be a free arrangement. (See §2
and [9] for basic definitions and results concerning free arrangements.) Our main theorem
is the following:

Theorem 1.1. Any ideal subarrangement A(I ) is free with exponents DP(I ).

Theorem 1.1 was conjectured by Sommers and Tymoczko [11] who defined and studied
the ideal exponents, which is essentially the same as our DP(I ). They also verified The-
orem 1.1 when 8 is not of the type F4, E6, E7 or E8 by using the addition-deletion
theorem [13]. Our proof is classification-free.

Corollary 1.2 (Steinberg [12], Kostant [5], Macdonald [6]). The exponents of the Weyl
arrangement A(8+) are given by DP(8+).

Corollary 1.2, which was referred to as “the remarkable formula of Kostant, Macdonald,
Shapiro, and Steinberg” in [2], was first discovered by A. Shapiro (unpublished). Then
R. Steinberg found it independently in [12]. It was B. Kostant [5] who first proved it with-
out using the classification by studying the principal three-dimensional subgroup of the
corresponding Lie group. I. G. Macdonald [6] gave a proof using generating functions. An
outline of Macdonald’s proof is presented in [4, (3.20)]. G. Akyildiz and J. Carrell [1, 2]
generalized the remarkable formula in a geometric setting. Theorem 1.1 is another gen-
eralization in the language of the theory of free hyperplane arrangements. Consequently,
our proof, which heavily depends on the theory of free arrangements, greatly differs from
the earlier proofs of the formula.

Corollary 1.3. Suppose that 8+ = {β1, . . . , βs} with ht(β1) ≤ · · · ≤ ht(βs). Define

8t := {β1, . . . , βt } (1 ≤ t ≤ s).

Then the arrangement A(8t ) is free with exponents DP(8t ).

Corollary 1.4. For any ideal I ⊆ 8+, the characteristic polynomial χ(A(I ), t) splits as

χ(A(I ), t) =
∏̀
i=1

(t − di),

where d1, . . . , d` are nonnegative integers which coincide with DP(I ).

Corollary 1.5. For any ideal I ⊆ 8+, let A(I )C denote the complexified arrangement
of A(I ). Then

Poin(M(A(I )C), t) =
∏̀
i=1

(1+ di t),

where M(A(I )C) is the complement of A(I )C and d1, . . . , d` are nonnegative integers
which coincide with DP(I ).
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The organization of this article is as follows. In §2 we review basic definitions and results
about free arrangements. Then in §3 we introduce a new tool to prove the freeness of
arrangements. It is called the multiple addition theorem (MAT). In §4, we verify all the
three conditions in the MAT so that we may apply the MAT to prove Theorem 1.1. In §5,
we complete the proof of Theorem 1.1 and its corollaries.

2. Preliminaries

In this section we review some basic concepts and results concerning free arrangements.
Our standard reference is [9].

Let V be an `-dimensional vector space over a field k. An arrangement (of hyper-
planes) is a finite set of linear hyperplanes in V . Let S := S(V ∗) be the symmetric
algebra of the dual space V ∗. The defining polynomial Q(A) of an arrangement A is

Q(A) :=
∏
H∈A

αH ∈ S,

where αH ∈ V ∗ is a defining linear form of H ∈ A. The derivation module Der S is
the collection of all k-linear derivations from S to itself. It is a free S-module of rank `.
Define the module of logarithmic derivations by

D(A) := {θ ∈ Der S | θ(αH ) ∈ αHS for any H ∈ A}.

We say that A is free with exponents (d1, . . . , d`) if D(A) is a free S-module with a
homogeneous basis θ1, . . . , θ` such that deg θi = di (i = 1, . . . , `). In this case, we use
the expression exp(A) = (d1, . . . , d`). Define the intersection lattice by

L(A) :=
{⋂
H∈B

H

∣∣∣ B ⊆ A
}
, (2.1)

where the partial order is given by reverse inclusion. Let V ∈ L(A) be the minimum. For
X ∈ L(A), define

AX := {H ∈ A | X ⊆ H } (localization), (2.2)

AX
:= {H ∩X | H ∈ A \AX} (restriction). (2.3)

The Möbius function µ : L(A)→ Z is characterized by

µ(V ) = 1, µ(X) = −
∑

X(Y⊆V
µ(Y ).

Define the characteristic polynomial χ(A, t) of A by

χ(A, t) :=
∑

X∈L(A)
µ(X)tdimX.
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Theorem 2.1 (Factorization theorem, [14, 7, 9]). If A is free with exp(A)=(d1, . . . , d`),
then

χ(A, t) =
∏̀
i=1

(t − di).

Assume that A is a free arrangement in the complex space V = C` with exp(A) =
(d1, . . . , d`). Define the complement of A by

M(A) := V \
⋃
H∈A

H.

Then the Poincaré polynomial of the topological space M(A) splits as

Poin(M(A), t) =
∏̀
i=1

(1+ di t).

3. Multiple addition theorem

In this section, the root system 8 does not appear. The following is a variant of the addi-
tion theorem in [13], which we call the multiple addition theorem (MAT).

Theorem 3.1 (Multiple addition theorem (MAT)). Let A′ be a free arrangement with
exp(A′) = (d1, . . . , d`) (d1 ≤ · · · ≤ d`), and 1 ≤ p ≤ ` the multiplicity of the highest
exponent, i.e.,

d1 ≤ · · · ≤ d`−p < d`−p+1 = · · · = d` =: d.

Let H1, . . . , Hq be hyperplanes with Hi 6∈ A′ for i = 1, . . . , q. Define

A′′j := (A
′
∪ {Hj })

Hj = {H ∩Hj | H ∈ A′} (j = 1, . . . , q).

Assume that the following three conditions are satisfied:

(1) X := H1 ∩ · · · ∩Hq is q-codimensional.
(2) X 6⊆

⋃
H∈A′ H .

(3) |A′| − |A′′j | = d (1 ≤ j ≤ q).

Then q ≤ p and A := A′∪{H1, . . . , Hq} is free with exp(A) = (d1, . . . , d`−q , (d+1)q).

Proof. Assume 1 ≤ j ≤ q. Let νj : A′′j → A′ be a map satisfying

νj (Y ) ∩Hj = Y (Y ∈ A′′j ).

Define a polynomial
bj := Q(A′)/

∏
Y∈A′′j

ανj (Y ),

where ανj (Y ) is a defining linear form of νj (Y ). Then it is known that

D(A′)αHj := {θ(αHj ) | θ ∈ D(A
′)} ⊆ (αHj , bj ).
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(See [13] and [9, p. 114] for example.) Let θ1, . . . , θ` be a basis for D(A′) with deg θi =
di (i = 1, . . . , `) and deg θ1 ≤ · · · ≤ deg θ`−p = d`−p < d. Since

deg bj = |A′| − |A′′j | = d

by the condition (3), the above inclusion implies that

θi ∈ D(A) (i = 1, . . . , `− p).

Define

ϕi := θ`−i+1 (i = 1, . . . , p).

Note that ϕ1, . . . , ϕp are of degree d. Again, since deg bj = d we may express

ϕi(αHj ) ≡ cijbj mod (αHj )

with constants cij . Let C be the (p × q)-matrix C = (cij )i,j .
By the condition (2), we may choose a point z ∈ X \

⋃
H∈A′ H . Then the evaluation

of D(A′) at the point z is the tangent space TV,z of V at z. Thus

TV,z = evz(D(A′)) = evz〈ϕ1, . . . , ϕp〉 ⊕ evz〈θ1, . . . , θ`−p〉.

Let π : TV,z → TV,z/TX,z be the natural projection. Note that the definition of the matrix
C shows that

rankC = dimπ(evz〈ϕ1, . . . , ϕp〉).

Since evz〈θ1, . . . , θ`−p〉 ⊆ TX,z, one has

rankC = dimπ(evz〈ϕ1, . . . , ϕp〉) = dim(TV,z/TX,z) = q,

where the last equality is the condition (1). Hence q ≤ p and we may assume that

C =

(
Eq
O

)
by applying elementary row operations. Thus θ1, . . . , θ`−q , αH1ϕ1, . . . , αHqϕq form a ba-
sis forD(A). Hence A is a free arrangement with exp(A) = (d1, . . . , d`−q , (d+1)q). ut

4. Local heights, local-global formula and positive roots of the same height

In this section we will verify the three conditions in the MAT (Theorem 3.1). From now
on we will use the notation of §1 and §2. We will often denote the Weyl arrangement
A(8+) simply by A. Our standard references on root systems are [3] and [4].
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Let α ∈ 8+. Define Aα to be the restriction of the Weyl arrangement A to Hα . In
other words,

Aα
:= AHα =

{
K ∩Hα

∣∣ K ∈ A \ {Hα}
}
.

Then Y ∈ Aα is an element of L(A) with codimY = 2.
For X ∈ L(A), let 8X := 8 ∩X⊥. Then 8X is a root system of rank codimX. Note

that the positive roots in 8X are taken to be 8+ ∩8X, and 8X may be reducible. When
8X is irreducible, define the local height of α at X by

htX(α) := ht8X (α)

where the height on the right-hand side is taken with respect to the simple system of 8X
corresponding to the above positive roots. When 8X is not irreducible, we interpret

htX(α) := ht9(α),

where 9 is the irreducible component of 8X which contains α.
To verify the condition (3) in the MAT for ideal subarrangements, we need the fol-

lowing theorem together with Proposition 4.4:

Theorem 4.1 (Local-global formula for heights). For α ∈ 8+, we have

ht8(α)− 1 =
∑
X∈Aα

(htX(α)− 1) .

Proof. We proceed by an ascending induction on ht8(α). When α is a simple root, then
both sides are zero. Now suppose ht8(α) > 1. Let α1 ∈ 1 be a simple root such that
β := α − α1 ∈ 8

+. Let X0 := Hα ∩Hβ . Then {α1, α, β} ⊆ 8X0 . Set

C8(α) :=
∑
X∈Aα

(htX(α)− 1) .

If we verify
C1 := C8(α)− C8(β)− 1 = 0,

then we will obtain

C8(α) = C8(β)+ 1 = ht8(β) = ht8(α)− 1

by the induction assumption. So it remains to show C1 = 0. Note that htX0(α)− htX0(β)

= 1, X0 ∈ Aα and X0 ∈ Aβ . Compute

C1 = C8(α)− C8(β)− 1 =
∑
X∈Aα

(htX(α)− 1)−
∑
Y∈Aβ

(htY (β)− 1)− 1

=

∑
X∈Aα\{X0}

(htX(α)− 1)−
∑

Y∈Aβ\{X0}

(htY (β)− 1) . (4.1)

Let Z := AX0 = {K ∩X0 | K ∈ A, X0 6⊆ K}. Define

C2 :=
∑
Z∈Z

( ∑
X∈Aα

\{X0}
X⊃Z

(htX(α)− 1)−
∑

Y∈Aβ
\{X0}

Y⊃Z

(htY (β)− 1)
)
.
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We will show that C1 = C2. To this end, we show that in the expression of C2, we have
(A) every term in (4.1) appears and (B) each of them appears only once.

(A) We prove that every term in (4.1) appears in C2. Let X ∈ Aα
\ {X0}. Let Z :=

X ∩ X0 ⊂ X. Then codimZ = 3 because X ⊂ Hα and X0 ⊂ Hα . The same proof is
valid for Y ∈ Aβ

\ {X0}.
(B) We prove that each of the terms in (A) appears only once in C2. Let Z1, Z2 ∈ Z

and X ∈ Aα
\ {X0}. Assume that X ⊃ Z1 and X ⊃ Z2. Then Z1 = X ∩ X0 = Z2. The

same proof is valid for Y ∈ Aβ
\ {X0}.

Thus we obtain C1 = C2. It is easy to verify the local-global formula of heights
directly when the root system is either A3, B3 or C3. Also the local-global formula for
root systems of rank two is tautologically true. Thus we may assume the local-global
formula for 8Z with Z ∈ Z and we compute

C1 = C2 =
∑
Z∈Z

( ∑
X∈Aα

\{X0}
X⊃Z

(htX(α)− 1)−
∑

Y∈Aβ
\{X0}

Y⊃Z

(htY (β)− 1)
)

=

∑
Z∈Z

( ∑
X∈Aα

X⊃Z

(htX(α)− 1)−
∑
Y∈Aβ

Y⊃Z

(htY (β)− 1)− htX0(α)+ htX0(β)
)

=

∑
Z∈Z

(
(ht8Z (α)− 1)− (ht8Z (β)− 1)− 1

)
= 0. ut

Corollary 4.2. For α ∈ 8+, we have

ht8(α)− 1 =
∣∣{{β1, β2} ⊆ 8

+
∣∣ α ∈ Z>0β1 + Z>0β2

}∣∣.
Proof. LetX ∈ Aα . Then9 := 8X is a root system of rank two, (A2, A1×A1,B2 orG2),
and we may directly verify that

ht9(α)− 1 =
∣∣{{β1, β2} ⊆ 9

+
∣∣ α ∈ Z>0β1 + Z>0β2

}∣∣.
Using the local-global formula (Theorem 4.1), we compute

ht8(α)− 1 =
∑
X∈Aα

(htX(α)− 1)

=

∑
X∈Aα

∣∣{{β1, β2} ⊆ 8
+
∩8X

∣∣ α ∈ Z>0β1 + Z>0β2
}∣∣

=
∣∣{{β1, β2} ⊆ 8

+
∣∣ α ∈ Z>0β1 + Z>0β2

}∣∣. ut

Remark 4.3. When the root system 8 is simply-laced, Corollary 4.2 yields

ht8(α)− 1 =
∣∣{{β1, β2} ⊆ 8

+
∣∣ α = β1 + β2

}∣∣.
Proposition 4.4. Let I ⊆ 8+ be an ideal. Fix α ∈ I with k + 1 := ht(α) > 1. Define

B′ := {Hβ | β ∈ I, ht(β) ≤ k},

B := B′ ∪ {Hα}, B′′ := BHα = {H ∩Hα | H ∈ B′}.

Then |B′| − |B′′| = k.
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Proof. When I = 8+ we denote the triple (B,B′,B′′) by (A,A′,A′′). Note that B′′ is a
subset of A′′ = Aα . For X ∈ A′′, we will verify

htX(α)− 1 =

{
|BX| − 2 if X ∈ B′′,
0 otherwise,

(4.2)

where BX is the localization defined in (2.2). Recall the height distribution of 8+X is

i1 = 2, i2 = · · · = in = 1 (n = |8+X| − 1).

Case 1. If X ∈ B′′, then |BX| ≥ 2. Since IX := I ∩ 8+X is an ideal of 8+X and
|IX| = |BX| ≥ 2, IX contains the simple system of 8X. This implies

IX = {β ∈ 8
+

X | htX(β) ≤ htX(α)} and |IX| = htX(α)+ 1.

Hence (4.2) holds in this case because

htX(α)− 1 = |IX| − 2 = |BX| − 2.

Case 2. If X ∈ A′′ \ B′′, then BX = {Hα} and IX = {α}. Since IX is an ideal of 8+X,
α is a simple root of 8X. Hence htX(α) = 1. This verifies (4.2).

Combining (4.2) with Theorem 4.1 we compute

|B′| − |B′′| =
∑
X∈B′′

(|BX| − 2) =
∑
X∈B′′

(htX(α)− 1)

=

∑
X∈A′′

(htX(α)− 1) = ht8(α)− 1 = k. ut

Remark 4.5. In particular, let I = 8+, A = A(8+) and let α ∈ 8+ be the highest root.
Recall ht(α) = h− 1, where h is the Coxeter number of 8. Then Proposition 4.4 gives a
new proof of [8, Theorem 3.7]:

|A| − |Aα
| = 1+ |A′| − |A′′| = h− 1

in the case of Weyl arrangements. This formula played a crucial role in [8].

Next we will verify the conditions (1) and (2) in the MAT. Both conditions concern posi-
tive roots of the same height. A subset A of 8+ is said to be an antichain if A is a subset
of 8+ of mutually incomparable elements with respect to the partial order ≥ on 8+.

Lemma 4.6 (Panyushev [10, Proposition 2.10]). Let 8 be a root system of rank ` and
1 be a simple system of 8. Suppose that ` positive roots β1, . . . , β` form an antichain.
Then 1 = {β1, . . . , β`}. In particular, β1, . . . , β` are linearly independent.

Proposition 4.7. Assume that β1, . . . , βq are distinct positive roots of the same height
k + 1. Define

X :=

q⋂
i=1

Hβi .

Then

(1) X is q-codimensional, and
(2) X 6⊆

⋃
α∈8+, ht(α)≤k Hα.
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Proof. (1) Since β1, . . . , βq are distinct positive roots of the same height, they form an
antichain. Apply Lemma 4.6.

(2) Since β1, . . . , βq ∈ 8X form an antichain and rank8X = q, Lemma 4.6 implies
that they form the simple system of 8X. Assume that X ⊆ Hα with ht(α) ≤ k. Then
α ∈ 8X. So α can be expressed as a linear combination of β1, . . . , βq with nonnegative
integer coefficients. As the heights of β1, . . . , βq are all k+ 1, this is a contradiction. ut

5. Proof of Theorem 1.1

In this section we will complete the proof of Theorem 1.1 and its corollaries, and make a
final remark.

Proof of Theorem 1.1. We use induction on

ht(I ) := max{ht(α) | α ∈ I }.

When ht(I ) = 1, A(I ) is a Boolean arrangement. Hence there is nothing to prove.
Assume that k + 1 := ht(I ) > 1. Define

Ij := {α ∈ I | ht(α) ≤ j}.

By definition, Ij is also an ideal for any j ≤ k+1. By the induction hypothesis, Theorem
1.1 holds true for I1, . . . , Ik . In particular, A(Ik) is free with exponents

exp(A(Ik)) = (d1, . . . , d`)

which coincide with DP(Ik). If we set p := |Ik \ Ik−1|, then the induction hypothesis
shows that

d1 ≤ · · · ≤ d`−p < d`−p+1 = · · · = d` = k.

Let {β1, . . . , βq} := Ik+1 \ Ik . Let Hi := Hβi and define X := H1 ∩ · · · ∩ Hq . Then
Proposition 4.7 shows that codimX = q, and

X 6⊆
⋃

H∈A(Ik)
H.

Also, Proposition 4.4 shows that |A(Ik)| − |(A(Ik) ∪ {Hj })Hj | = k for any j . Hence
all of the conditions (1)–(3) in the MAT are satisfied. Now apply the MAT to A(I ) =
A(Ik) ∪ {H1, . . . , Hq}. ut

Corollary 1.3 holds true because the set8t is an ideal. Applying Theorem 2.1 to the ideal
arrangement A(I ), we get Corollaries 1.4 and 1.5.

Remark 5.1. Note that the product A1×A2 of two free arrangements A1 and A2 is again
free, and exp(A1 ×A2) is the disjoint union of exp(A1) and exp(A2) by [9, Proposition
4.28]. Thus it is not hard to see that Theorem 1.1 and its corollaries hold true for all finite
root systems including the reducible ones.
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